}Oos.eurobsdcony.org E u ro Bs D c 0 n

Proceedings of the Fourth
European BSD Conference

November 25 - 27, 2005
University of Basel

sonference Organization:

nicro systems

Niesendamm 2a - Postfach

H-4019 Basel

Jel. +41 613830510 Program Committee: Prof. Dr. Christian Tschudin, Computer Science Department, University of Basel - André von

Fax +41 613830512 Raison, iX Magazin - Marc Balmer, The Organizing Committee - Wim Vandeputte, The OpenBSD Team - Max Laier, The
£-Mail info@eurobsdcon.org FreeBSD Team - Emmanuel Dreyfus, The NetBSD Team - Felix Kronlage, bytemine

=
2
B
S
o
&
>
>

EuroBSDCon 2005

Proceedings of the Fourth European
BSD Conference

November 25 — 27, 2005
University of Basel, Switzerland

Event organization:

micro systems marc balmer
Wiesendamm 2a, Postfach
CH-4019 Basel, Switzerland

Copyright (© 2005 by micro systems marc balmer. All rights reserved.
Printed in Switzerland

Published by micro systems marc balmer
Wiesendamm 2a, Postfach
CH-4019 Basel, Switzerland

Tel. +41 61 383 05 10, Fax +41 61 383 05 12
Email info@msys.ch

http://www.msys.ch/

Conference website: http://2005.eurobsdcon.org/

The copyright of the respective papers remains with the original authors.

While every precaution has been taken in the preparation of these proceedings,

the publisher and the authors assume no responsability for errors, omissions, or for
damages resulting from the use of the information contained herein.

Table of Contents

The Call for Papers

Signal Handlers
Henning Brauer, with Wilhelm Biihler

Single User Secure Shell
Adrian Steinmann

Improving network security by adding randomness
Ryan McBride

Complete Hard Disk Encryption Using FreeBSD's GEOM Framework
Marc Schiesser

Improving TCP/IP security through randomization without sacrificing
interoperability
Michael James Silbersack

A Machine-Independent Port of the MPD Language Run Time System to the
NetBSD Operating System
Ignatios Souvatzis

New Evolutions in the X Window System
Matthieu Herrb and Matthias Hopf

Design and Implementation of OpenOSPFD
Claudio Jeker

Remote user access VPN with IPsec
Emmanuel Dreyfus

Introduction to Multithreading and Multiprocessing in the FreeBSD SMPng
Network Stack
Robert N. M. Watson

Failover Mechanisms for Filtering Bridges on the BSD's
Massimiliano Stucchi

DVCS or a new way to use Version Control Systems for FreeBSD
Ollivier ROBERT

Porting NetBSD /evbarm to the Arcom Viper
Antti Kantee

New Networking Features in FreeBSD 6.0
André Oppermann

11

15

21

49

67

73

87

113

125

139

145

161

171

Embedded OpenBSD
Niall O'Higgins, Uwe Stiihler

rthreads: A New Thread Implementation for OpenBSD
Ted Unangst

FreeBSD Jails in depth. An implementation walkthrough and usefulness example
Matteo Riondato

Conference Sponsors

179

195

199

209

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

EuroBSDCon 2005 - Call for Papers

4th European BSD Conference
November 25 - 27, 2005
University of Basel, Switzerland
http://www.eurobsdcon.org/

Introduction

The Berkeley Software Distribution (BSD) family of
computer operating systems is derived from software
developed at the University of California at Berkeley.
The various family members (Free-. Net- and
OpenBSD. among others) are extensively used both for
embedded appliances and for large internet servers and
have an excellent reputation for stability and state-of-
the-art technology. BSD-derived software is a driving
force for IT research and development and is well-
received as a building block in commercial software
due to its unique license scheme.

The fourth European BSD conference is a great oppor-
tunity to present new ideas to the community and to
meet some of the developers behind the different BSDs.

The two day conference program (Nov 26 and 27) will
be complemented by a tutorial day preceeding the con-
ference (Nov 25).

Call for Papers

The program committee is inviting authors to submit
innovative and original papers not submitted elsewhere
on the applications. architecture. implementation, per-
formance and security of BSD-derived operating sys-
tems. Investigations on economic aspects regarding the
operation of BSD systems are also welcome. Topics of
interest for the Euro BSD Conference 2005 include. but
are not limited to:

. kernel hacking

. embedded application development and deploy-
ment

. device drivers

. security and safe coding practices

. system administration: techniques and tools of
the trade

. operational and economic aspects

Prospective authors of contributions to the technical
program are requested to submit an extended abstract
through the web-interface on the conference website.
All submissions will be reviewed by the program com-
mittee. The extended abstract should be at least two
but no longer than four pages in either PostScript or
PDF format. Submissions accompanied by a non-dis-
closure agreement are not acceptable and will be
returned unread.

Authors of accepted submissions have to provide a full
paper for publication in the conference proceedings and
give permission to the organizers to publish the results
in the printed proceedings and on the conference web
site. Instructions to authors will be available on the con-
ference web site.

Call for Tutorial Proposals

Selected tutorials on practical and problem-solving
aspects of BSD-derived operating systems will be
offered on the day before the Euro BSD Conference.
The tutorials will be presented by speakers who have
wide experience in developing and administering the
different BSDs. Potential tutorial themes include. but
are not limited to:

. Using FreeBSD in a datacenter environment

. Firewall configuration with OpenBSD

. Porting NetBSD to embedded devices

. Safe coding practices to provide secure solutions

If you are interested in presenting a tutorial. please con-
tact the program committee at pc@eurobsdcon.org with
details about the topic. intended audience, required
room and facilities as well as a meaningful CV before
August 1. 2005.

Important Dates

Extended abstracts due: August 1

Tutorial proposals due: August |
Notification to speakers: ~ August 31

Final papers due: October 20
Tutorial day: November 25
Conference: November 26 - 27

Conference Organizers
General Chairs <chair @eurobsdcon.org>

Marc Balmer, micro systems
Vera Hardmeier. micro systems

Program Chair <prog-chair @eurobsdcon.org>

Christian Tschudin, CS Department. University
of Basel

Program Committee

Marc Balmer. micro systems
Emmanuel Dreyfus. the NetBSD project
Felix Kronlage. bytemine

Max Laier. the FreeBSD project

André von Raison. iX Magazin
Christian Tschudin, University of Basel
Wim Vandeputte. the OpenBSD project

Local Organizers

Marc Balmer. micro systems

Giacomo Cariello

Marcus Glocker, UBS AG

Vera Hardmeier. micro systems
Massimiliano Stucchi. WillyStudios.com
Marc Winiger. micro systems

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Signal Handlers

Henning Brauer. with Wilhelm Biihler

October 29. 2005

1 Abstract

Signals are used to notify a program of events in Unix. Programs install signal
handlers to catch them and react. The major problem with signal handlers is
that non-atomic operations can get interrupted, and may end up in an unex-
pected state.

This paper will show these problems in detail. It talks about safe function
in POSIX. ANSI C and the addional safe functions in the current OpenBSD
version. It will show how to cope with possible solutions and finally shows a
safe signal handler.

2 Introduction

2.1 Signal Handlers

Signals are used to notify a program of some events in Unix.

SIGTERM asks a program to shut down and exit, SIGCHLD tells a program
that a child process changed its state. On most unix 31 signals are defined.

Programs can install signal handlers to catch them and react. with one
exception: SIGKILL is not catchable. The program will just exit without any
cleanup that might happen, e.g. if SIGTERM has been caught or the program
exits by itself.

There is a default action for each signal defined.

2.2 Signal Handlers in the News

Signal handlers are very important. There have been numerous exploits in the
past making use of incorrect signal handlers.

2.2.1 ftpd Signal Handling Vulnerability

Ftpd was open for intruders 1997:

This vulnerability is caused by a signal handling routine increasing pro-
cess privileges to root, while still continuing to catch other signals. This intro-
duces a race condition which may allow regular, as well as anonymous ftp, users
to access files with root privileges. Depending on the configuration of the ftpd
server, this may allow intruders to read or write to arbitrary files on the server.

This attack requires an intruder to be able to make a network connection to
a vulnerable ftpd server.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

For details see CERT Advisory CA-1997-16 http://www.cert.org/advisories/CA-
1997-16.html

In this case a remote attacker could take over the entire machine - remote
root. If anonymous ftp was enabled, he didn’t even need a valid user account.

2.2.2 Sendmail Unsafe Signal Handling Race Condition Vulnerabil-
ity

Sendmail before 8.11.4. and 8.12.0 before 8.12.0.Betal0 is vulnerable beause of

unsafe signal handling.

Sendmail signal handlers used for dealing with specific signals (SIGINT,
SIGTERM, etc) are vulnerable to numerous race conditions. including handler
re-entry, interrupting non-reentrant libc functions and entering them again from
the handler. This set of vulnerabilities exist because of unsafe library function
calls from signal handlers (malloc. free. syslog, operations on global buffers.etc).

This vulnerability allows local users to cause a denial of service and possibly
corrupt the heap and gain privileges.

For details see CVE-2001-1349 http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-
2001-1349

2.2.3 Procmail Unsafe Signal Handling Race Condition Vulnerabil-
ity

Procmail 3.20 and earlier is vulnerable beause of unsafe signal handling.

The problems lie in several signal handlers used by the program. By
generating a signal while a signal handling operation is already in progress, an
attacker could interrupt a non-reentrant libc function and enter it again from the
handler. Precise timing in such an attack could possibly result in, for example.
heap corruption or interruption during privilege lowering.

This vulnerability allows local users to cause a denial of service or gain root
privileges.

For details see CVE-2001-0905 http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-
2001-0905

2.2.4 stunnel signal handler race DoS

The stunnel 4.0.3 and earlier allows attackers to cause a denial of service (crash)
via SIGCHLD signal handler race conditions that cause an inconsistency in
the child counter.
For details see CAN-2002-1563 http://cve.mitre.org/cgi-bin/cvename.cgi’name=CAN-
2002-1563

3 The Problem

Signal handlers run upon receival of the associated signal. They can run basi-
cally at any time and they can interrupt basically anything, even syscalls.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

3.1 Simple example

void
sighdlr(int sig)
{
printf("signal %d received", sig);
}

int

main(int argc, char *argv[])

{
signal (SIGHUP, sighdlr);
signal (SIGUSR1, sighdlr);

The printf. being part of the stdio functions. uses buffers internally.

Imagine your program receives a SIGHUP while it does a printf(”%d”. 1);
. The printf is halfway through changing some internal data structures. Now
vour signal handler calls printf, uses the very same data structures, and returns
to the main program.

When we have a look at lib/libe/stdio/fvwrite.c we see it fiddles with all
sorts of pointers. Upon return to your main program the actual pointers and
vour assumptions are out of sync.

Trying to write behind your allocated buffers will crash most time. but it
might even end up in an exploitable buffer overrun.

3.2 malloc

The function malloc uses incredibly complicated data structures internally to
keep track of the allocations, but without locking.

Sending a signal while main program is deep in malloc() will result in a
half-recorded allocation, signal handler malloc()s too, and then return to main
program.

The malloc internally now has a half wrong recording of the allocation it is
about to give out.

The pointer it returns might be completely wrong. It is unpredictable what
happens when you write to it or free() it.

3.3 exit()

void
sigterm(int sig)
{

exit(1);
}

The function exit flushes stdio. You must not asume that all the internal
stdio structs are in a consistent state when your signal handler runs.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

The function exit runs atexit handlers. Again. you must not assume that all
the atexit structures are in a consistent state when vour signal handlers runs.

The function _exit() is safe, but then atexit handlers don’t run and stdio is
not flushed. You must understand the consequences before using -exit() in a
signal handler.

Additionally. the registered atexit handlers are likely not signal handler safe.

The function _exit() is safe. but then atexit handlers don’t run and stdio is
not flushed. You should get clear about the consequences.

3.4 first summary

All the previous examples show basically the same issue: Non-atomic operations
can get interrupted and vou end up in an inconsistent or otherwise unexpected
state.

Due to that, most functions are not signal handler safe.

4 safe functions

4.1 POSIX: safe functions

POSIX demands that these are safe:

_exit(). access(). alarm(). cfgetispeed(). cfgetospeed(). cfsetispeed(). cfse-
tospeed(). chdir(). chmod(), chown(), close(), creat(). dup(). dup2(). execle(),
execve(), fentl(), fork(), fpathconf(). fstat(). fsvnc(). getegid(). geteuid(). get-
gid(), getgroups(), getperp(), getpid(). getppid(). getuid(). kill(), link(), lseek().
mkdir(), mkfifo(). open(), pathconf(). pause(). pipe(). raise(), read(). rename().
rmdir(), setgid(). setpgid(). setsid(). setuid(), sigaction(), sigaddset(). sigdelset ().
sigemptyset(), sigfillset(), sigismember(). signal(), sigpending(). sigprocmask().
sigsuspend (). sleep(). stat(), sysconf(), tedrain(). teflow(), teflush(), tegetattr().
tegetpgrp(), tesendbreak(), tesetattr(), tesetpgrp(), time(). times(). umask(),
uname(), unlink(), utime(), wait(). waitpid(), write().

4.2 POSIX realtime extensions: safe functions

POSIX realtime extensions demand these too to be safe:
aio_error(). clock_gettime(), sigpause(), timer_getoverrun(), aio.return(), fdata-
svne(). sigqueue(). timer_gettime(), aio_suspend(), sem_post(), sigset(). timer_settime().

4.3 ANSI C: safe functions

ANSI C Interfaces, OpenBSD determined to be safe:
strepy(). strcat(). strnepy(). strncat(), and perhaps some others.
This is documented in OpenBSD in the signal(3) manpage.

4.4 OpenBSD: safe functions

Additionally, we made some more functions safe in OpenBSD:

e strlicpy()
e strlcat()

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e syslog.r()
e snprintf()
e vsnprintf()

It was a two years effort to make (v)snprintf() and syslog.r() safe.

5 more issues

5.1 errno...

do {

pid = waitpid(-1, &stat, WNOHANG);
} while (pid == -1 && errno == EINTR);
if (pid == -1)

err(1, NULL);

Imagine vour signal handler runs after waitpid returned -1 and set errno to
EINTR, vet before the errno check.

Your signal handler causes errno to be set to something else, and upon return
vou exit from the loop and quit your program. This is not exactly intended and
can lead to Denial of Service attacks.

5.2 Another example

Another example for the same problem:

do {
n = write(fd, buf, len):
} while (n == -1 && errno == EINTR);

In this case. vou'd try to cope with a write error. but there was only an
interruption by a signal.
The solution is to save and restore errno in signal handlers.

5.3 the _r functions

It is often heard that the *_r functions are reentrant and thus safe to use, even
in signal handlers.

Many are made reentrant in a threads environment by acquiring pthread
locks. Obviously this does not help at all in signal handlers.

6 Possible solutions

Now we saw the problem, but how to cope? There is so little allowed in signal
handlers.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

6.1 the flag solution

A first possible solution could be to set a flag in the signal handler and react
upon later:

int quit = 0;

void
sigterm(int signal)
{
quit = 1;
}
int
main(int argc, char *argv([])
{
signal (SIGTERM, sigterm);
while (!quit) {
/* do something */
poll()
/* do something */
}
}

The flag solution needs a main loop or a similar central place to check the
flag.

Many, but not all programs have an appropriate place for the check.

When a program spends extended amounts of time outside said main loop
(or, more generally. without checking for the signal flag). it will react late on
signals. You must get clear about the consequences of this late reaction. maybe
vou need to cope.

But this is still not safe, because not all data types can be accessed atomically
- same old locking issue again.

int should be safe everyvwhere, but there is no guarantee.

Fortunately, there is sig_atomic_t that is guaranteed to be atomically acces-
sible.

6.2 compiler

And we still have an issue. The compiler can reorder reads and writes, even to
your sig_atomic_t flag, and we're back in locking hell.
For once, there is an easy solution, it’s the volatile keyword.

6.3 safe signal handle
Finally, we have a safe signal handler here:

volatile sig_atomic_t quit = 0;

void

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

sigterm(int sig)
{

quit = 1;
3

6.4 Signal Races

Wihile the signal handler is now safe, there are still signal races. Let’s have a
look at the simple case.

volatile sig_atomic_t gotsigchld = 0;

void
sigchld(int sig)
{
gotsigchld = 1;
3

int

main(int argc, char *argv([])
{

while (!quit) {

poll()

if (gotsigchld)
childhandler();

gotsigchld = 0;

}

}

There is several problems in here. First. we do not keep track of the number
of SIGCHLDs received. If childhandler() only cleans up after one child while
actually two went away there is an obvious problem. Thus. childhandler() needs
to loop until it handled all dieing child processes.

Second, if we receive a second sigchild after childhandler() was run. but
before gotsigchld gets reset to 0. we will not react on that signal at all. The
usual solution is to reset the flag first.

if (gotsigchld) {
gotsigchld = 0;
childhandler();

}

7 next paper

The signal handler is safe, now we have still signal races, this could be another
paper.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

8 Acknowledgment

We would like to thank Theo de Raadt for his continued help and support. as
well as Wim Vandeputte for moral, hard(ware) and liquid support.

9 Authors

9.1 Henning Brauer

Henning Brauer. 27. lives in Hamburg/Germany and runs bsws.de. an ISP fo-
cussing on online solutions for corporations and running most of their network
on OpenBSD. He has been an OpenBSD developer for some vears now, focused
on network stuff. In the past he spent a lot of work on the packet filter. pf.
including the altq merge. thus providing stateful bandwidth management. He
also wrote the chroot and privilege revocation extensions for apache. and did
the privilege revocation/seperation for the dhcp related programs. as well as
several other smaller network daemons. He started and still works a lot on
OpenBGPD and OpenNTPD, shipping with OpenBSD since 3.5 and 3.6. re-
spectively. When you meet him without a notebook he’s likely mountainbiking.
hiking in canada’s fantastic landscape. or hanging out with friends, likely paired
with enjoving brewer’s art.

9.2 Wilhelm Biihler

Wilhelmm Biihler, 39, lives in Karlsruhe/Germany and works at a computing
center. He likes stuffed mascots. The 85-centimeter BSD-daemon was initiated
by him. Ever saw a stuffed blowfish? He supports the OpenBSD-project with
donations on hardware and time. but not as a developer.

10

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Single User Secure Shell

Adrian Steinmann

ast@webgroup.ch

Abstract—Unix systems traditionally do integrity checks and other ini-
tialization before bringing up network services. System administration
tasks, for example operating system upgrades, system disk reformatting,
or system disk partitioning, very often need to be done in single user mode
locally, not via the network. We describe how a ‘Secure Shell Maintenance
RAMdisk Environment’ can be built and launched very early in the boot
process. This environment can be used to remotely fix a problem when the
machine is stuck in single user mode. Our method has already been in use
for a number of years to upgrade remote managed firewall systems [3] from
one release to the next.

I. INTRODUCTION

NYONE who has needed to unexpectedly commute to
A a production machine wedged in single user mode has
wished that it would possibly still allow a remote SSH login.
In most cases, the problem in question does not require network
access to be blocked at all. It is much more a policy decision
that the system first checks the root filesystem and runs other
early startup scripts which may stall before launching network
services.

In this paper we describe a way to build a ‘Secure Shell Main-
tenance RAMdisk Environment’ which can be started even be-
fore the root filesystem is checked. This environment can be
useful in many different situations:

Root filesystem fails to check: When a system crashes, it
sometimes damages the root filesystem so that it cannot be
automatically fixed. Traditionally, the system then stays
without networking enabled awaiting input on the console.
Missing or corrupt files in the /etc hierarchy could also
cause the system to never reach network initialization.

System partitions need to be resized: As more software is in-
stalled, the operating system partitions occasionally need
to be resized. This usually calls for a dump, bsdlabel,
newfs, restore cycle, which may not be possible in
multi user mode.

Pristine operating system upgrade: As is the case for the
FreeBSD 4.x to 5.x migration, it may be desirable to
newfs all the system partitions to take full advantage of
new features or simply to do a ‘clean’ install.

Changing root filesystem to RAID: 1t is difficult to transform
the system partitions of an already installed operating sys-
tem onto a GEOM-based RAID because the system is
using the non-RAID devices. Similarly, atacontrol
create will fail on disks with system partitions because
they are busy.

Minimal installations on small systems: Full installations on
single board computers (SBCs) with only compact flash
(PC-Engines [1], Soekris [2]) from a standard distribution
or from CD may not be practicable.

II. BUILDING THE SECURE SHELL RAMDISK IMAGE

IZE of the Secure Shell Maintenance RAMdisk filesystem
S is a prime concern: it should include all the important tools

11

needed for remote system administration, in particular a SSHv2
daemon, yet it should not fill out too much system memory be-
cause it is retained there during the lifetime of the system.

Earlier releases managed to fit a gzipped kemel and a
gzipped RAMdisk image onto a single 144 MB floppy by
using ‘small’ versions of utilities — see, for example, ports
shells/sash and security/ssh (SSHv1l), as well as
release/picobsd/tinyware.

As of FreeBSD release 5.x, fitting everything on one floppy
became impossible, and in fact most systems deployed nowa-
days do not even carry a floppy drive. Nonetheless, the Secure
Shell Maintenance RAMdisk Environment is still viable be-
cause even systems with only 64MB of compact flash have am-
ple space to store such a RAMdisk image alongside a whittled-
down FreeBSD distribution. Without such a strict size limita-
tion, we now have the additional advantage that we always have
the native implementation of the commands instead of their of-
ten deficient ‘small’ substitutes.

A. Use crunchgen to minimize RAM utilization

In our implementation, the following programs are available
in the RAMdisk environment:
RAMdisk# 1ls /bin

-sh ex kill reboot
[expr kldconfig red
atacontrol fastboot kldload restore
badsect fasthalt kldstat rm
bootOcfg fdisk kldunload rmdir
bsdlabel fsck ldconfig route
bunzip2 fsck_4.2bsd link rrestore
bzcat fsck_ffs 1ln scp
bzip2 fsck_ufs 1s sed
camcontrol gbde mdconfig sh

cat gconcat mdmfs sleep
chflags geli mini_crunch slogin
chgrp geom mkdir ssh
chmod ggatec mknod sshd
chown ggated mount stty
chroot ggatel mount_cd9660 swapctl
clri glabel mount_devfs swapoff
cp gmirror mount_fdescfs sSwapon
date gnop mount_linprocfs sync
dd graid3 mount_nfs sysctl
df gshsec mount_procfs tar
dhclient gstripe mount_std test
dhclient-script gunzip mv touch
diskinfo gzcat newfs tset
disklabel gzip pax tunefs
dmesg halt ping umount
du hostname ps unlink
dump ifconfig pwd vi
dumpfs init rdump zcat
ed kenv realpath

RAMdisk# du -k /bin/x

2256 /bin/-sh

8 /bin/dhclient-script

Note that SSHv2 as well as the network filesy stem utilities
mount._nfs, ggated, and ggatec are present with the req-
uisite network configuration utilities 1 fconfig, route, and
dhclient. The standard archiving tools dump, restore,
tar, and pax with gzip and bzip2 are also available.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Since this is primarily an environment for system administra-
tion, the low-level £di sk, bsdlabel, newfs, and tunefs
utilities are included, with the added luxury of the vi editor
(albeit with a small termcap file supporting only xterm,
screen, vt220, at 386, and cons25 terminals). Finally,
atacontrol, camcontrol, DHCP, GEOM-based RAID,
GBDE, and GELI are available when the underlying kemnel is
adequately configured.

B. Use mdconfig to create a RAMdisk image

The script release/scripts/doFS.sh creates a file
containing a RAMdisk image of a given filesystem hierarchy.
For example, release/Makefile uses this script to create
the ‘Install’ and ‘Fixit’ environments for the standard FreeBSD
distribution CD.

Since the loader supports uncompressing gzip files on-the-
fly, this RAMdisk image can be gzipped and placed into, say,
a /boot/maint/ subdirectory, where it can be accessed at
boot image load time.

C. Use the loader to boot into RAMdisk

While FreeBSD starts up, one can enter the boot loader envi-
ronment by choosing the menu item 6. Escape to loader prompt
on the console, whereupon one is presented with an OK prompt
as shown in figure 1.

OK 1s /boot/maint
/boot/maint
k.CUSTOM.gz
fs_img.gz
params
loader.rc
OK unload
OK load /boot/maint/k.CUSTOM
/boot/maint/k.CUSTOM text=0x22edlb data=0x28bad+0x12748
OK load -t md_image /boot/maint/fs_img
OK include /boot/maint/params
OK set vfs.root.mountfrom=ufs:/dev/mdo
OK autoboot
Hit [Enter] to boot immediately, or any other ...
Booting [/boot/maint/k.CUSTOM] in 9 seconds...

Fig. 1. Booting a RAMdisk maintenance environment from the loader.

By pre-loading the RAMdisk maintenance image and set-
ting the vEs.root .mountfrom variable, the kernel mounts
it as the root filesystem instead of the one specified in the
/etc/fstab file on disk. Note that if the already loaded ker-
nel /boot/kernel/kernel supports the ‘md’ device, there
is no need to unload and load the custom kernel.

III. SOME MINOR HURDLES

HE implementation of the described system is straightfor-

T ward, except for the following minor difficulties:

Crunching SSHv2: The standard build of FreeBSD sshd
requires many libraries, yet most are unnecessary in the
RAMdisk environment. We will show how we can get by
with only linking a fraction of those libraries.

Supporting runtime loader in a crunched binary: Some pro-
grams require runtime loading; this means we must link
some libraries statically and some dynamically — although

12

we are using crunchgen, which by default links every-
thing statically.

Parameterizing a generic RAMdisk image flexibly: 1t is bet-
ter to keep the machine parameterization separate from
the binary RAMdisk image, so that deployment over many
similar machines consists of identical binary files and one
machine-specific text file.

A. Crunching SSHv2 without too many libraries

Even if we specify lots of NO_x options in the crunchgen
configuration file (figure 2), the link phase fails because
libpam. a — among others — remains referenced.

LIBS_AS_SHARED OBJECTS =
buildopts -DNO_CRYPT
buildopts -DNO_INET6
buildopts -DNO_KERBEROS
buildopts -DNO_PAM
buildopts -DNO_X

srcdirs /usr/src/secure/usr.bin
srcdirs /usr/src/secure/usr.sbin
progs scp ssh sshd

libs -1ssh -lutil -1z -lcrypt

1n ssh slogin

-lmd -lcrypto

Fig. 2. A crunchgen configuration file fragment for a ‘mostly statically’
linked SSHv2.

By setting the correct compile time flags for PAM, LIBWRAP,
and XAUTH.PATH in the crypto/openssh/config.hfile
directly, the crunchgen fragment in figure 2 then links suc-
cessfully. The other additionally required libraries not men-
tioned on the 1 ibs line are made available as dynamically load-
able shared objects in the RAMdisk environment.

B. Building ‘mostly statically’ linked crunched binaries

Although the rest of the crunchgen configuration file is
straightforward, the geom programs require the runtime loader
for their dlopen(3) calls. As an added complication, some
/1lib/geom/geom_x.so libraries also expect libmd.so
and libcrypto.so to be dynamically loaded. For this rea-
son we need to include them together with rt1d (1) on the
RAMdisk:

RAMdisk# 1ls -sFR /libw
/lib:
total 1928

2 geom/
880 libc.so.6

992 libcrypto.so.4
54 libmd.so.3

/1ib/geom:

total 156

14 geom_concat.so
42 geom_eli.so

12 geom_label.so
26 geom_mirror.so

10 geom_nop.so

22 geom_raid3.so
14 geom_shsec.so
16 geom_stripe.so

/libexec:
total 134
134 ld-elf.so.lx

RAMdisk# du -k /libws

158 /1ib/geom
2086 /1ib
136 /libexec

Mostly statically linked binaries can be built simply by
replacing “$(CC) -static ...” in the makefile cre-
ated by crunchgen with “$ (CC) -Xlinker -Bstatic

-Xlinker -Bdynamic ...”, where the second set
of “. . .” mention the libraries that are left to be linked dynam-
ically at runtime. Between the crunchgen invocation and the
subsequent make -f mini_crunch.mk command we sub-
stitute completely static linking with ‘mostly static’ via a simple
sed (1) command on the makefile.

We have chosen this particular set of shared objects because
geom/geom_eli.so requires libcrypto.so in addition
to libmd. so. Special attention must be given to dynamic ob-
jects requiring others to make sure that the RAMdisk image re-
mains self-sufficient. For our purposes the goal is to save as
much space as possible by maximizing the number of libraries
which are statically linked.

C. One RAMdisk image for many systems

Another important design goal is to have one RAMdisk im-
age for all machines and yet configure the network and other
machine specific parameters via a separate text-based configu-
ration file. This is resolved by passing information via the ker-
nel environment. The RAMdisk environment then uses kenv
calls to configure the network and, in particular, to create the
/root/.ssh/authorizedkeys file there.

set maint.ifconfig_XX0="192.168.0.254/24"

set maint.ifconfig_XX1="192.168.1.254/24"

set maint.ifconfig_YY0="dhcp”

set maint.defaultrouter="192.168.0.1"

set maint.host="GENERIC"

set maint.domain="SETME.com"

set maint.sshkey 0Ola="ssh-d.. (120 chars) ..qP"
set maint.sshkey_ 0lb="1leQXQ.. (120 chars) ..9d"
set maint.sshkey_0lc="b7Zd+.. (120 chars) ..zu"
set maint.sshkey 01d="KrdBn.. (120 chars) ..tw"
set maint.sshkey 0le="7eMec.. (120 chars) ..4G"
set maint.sshkey 01j="hdTLKVUokhU41Q== 200507"

Fig. 3. A /boot/maint/params file describing a specific machine param-
eterization.

In our setup, the /boot/maint/params file describes the
machine parameterization (see figure 3) and is included by the
loader when booting into the RAMdisk environment (figure 1).

A limitation of kenv is that the key and value lengths
may not exceed 128 characters. Since we need to craft a
/root/.ssh/authorized keys file in the RAMdisk en-
vironment, we split its contents into smaller pieces and then
paste them back together before launching the SSH daemon.

IV. PUTTING IT ALL TOGETHER

AUNCHING the ‘Maintenance Single User Secure Shell’
L as early as possible during the boot sequence is achieved
by placing a startup script in the /etc/rc.d/ directory with
the correct REQUIRE and BEFORE keywords:

#1/bin/sh
PATH=/rescue:/usr/bin:/bin:/usr/sbin:/sbin
export PATH

REQUIRE:
PROVIDE:
KEYWORD:
BEFORE:

initrandom
maint_sshd
nojail
disks

13

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

On a standard FreeBSD 6.0 system, this means it will be in-
voked in fourth place, immediately after initrandom:

6.0-current$ rcorder /etc/rc.d/+ | head -4
/etc/rc.d/rcconf.sh

/etc/rc.d/dumpon

/etc/rc.d/initrandom

/etc/rc.d/maint_sshd

To control launching of the Single User Secure Shell,
/etc/rc.conf is equipped with these knobs and tunables:

maint_sshd_enable="NO"

maint_sshd_mntdir="/boot/maint"

maint_sshd_fs_img="/boot/maint/fs_img"
maint_sshd_port="22222"

When its enable switch is set to "YES", the startup
script /etc/rc.d/maint _sshd mountsthe given RAMdisk
image onto $maint_sshd mntdir with executables from
/rescue. Then, under invocation of the chroot (8) com-
mand from RAMdisk, the /dev mount and network initializa-
tion is started inside the RAMdisk, which also starts a SSHv?2
daemon on port $maint sshd port. Provided the network
configuration in the /boot/maint/params file is correct
and the private SSH keys are known for the public keys therein,
aroot shell can be opened remotely — even when the machine is
stuck in single user mode.

6.0~current$ /bin/ls -1sFR /boot
4 beastie.4th.gz
2 defaults/
2 device.hints
2 frames.4th.gz
2 kernel/
110 loader+
4 loader.4th.gz

2 loader.conf

6 loader.help.gz

2 loader.rc

2 maint/

2 screen.4th.gz
10 support.4th.gz
/boot/defaults:

6 loader.conf.gz

/boot/kernel:
3216 kernel

/boot/maint:
1840 fs_img.gz
1056 k.CUSTOM.gz
2 loader.rc
2 params

Fig. 4. A minimal /boot/ directory hierarchy with gzipped loader files,
RAMdisk image, custom RAMdisk kernel, and RAMdisk configuration files.

The additional disk space requirements are modest and hence
this method is also very well applicable to SBCs. A gzipped
kernel and a gzipped Secure Shell Maintenance R AMdisk im-
age will be at most 4 MB and are integrated into the /boot
hierarchy (figure 4). Note that the loader itself can also be
gzipped, roughly halving its space requirements. A1l files which
the loader may load can also be gzipped because it searches for
* . g2 files and uncompresses them on-the-fly.

Alternatively, instead of launching the maint s shd startup
script at boot time, the loader can be instructed to boot di-
rectly into the RAMdisk by including the lines in figure 1 into
/boot/loader. rc. For this case we generally prefer to sup-

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

ply a custom kernel /boot/maint/k.CUSTOM which has
the device md compiled in and is otherwise stripped of ex-
traneous options not needed in the RAMdisk. The machine can
then be rebooted into the Single User Secure Shell for a console-
free system upgrade.
V. EXPERIENCE WITH SINGLE USER SECURE SHELL

S our own practice shows, the Single User Secure Shell
A has twofold usage:

Staging Single Board Computers: While deploying SBCs by
Advantech, PC-Engines [1], and Soekris [2], we found it
inconvenient or impossible to utilize a Preboot Execution
Environment (pxeboot (8)) for the initial install. These
systems are generally left in the field without keyboard nor
console and only with compact flash (CF) for disk space.
Before assemblage, the CF is populated with the main-
tenance RAMdisk, from which the final installations are
done as if they were an upgrade. The CF can be copied as
a ‘disk image’ (see also the NanoBSD tool in the FreeBSD
tree) or, more portably, it can be initialized in just a few
steps (figure 5) on a host system with PCcard-CF adapter.

Upgrading remote systems: Once the systems are in the
field, the CF certainly cannot be replaced easily yet may
need to be fully initialized and repopulated with new soft-
ware. The systems are rebooted into a current RAMdisk,
from which all operations are possible.

double check that these are correct!
disk=ad4; slice=sl

initialize the MBR
dd if=/dev/zero of=/dev/${disk} bs=512 count=64
fdisk -I ${disk} auto

initialize the FreeBSD bootblocks and label
bsdlabel -w -B ${disk}${slice} auto
bsdlabel ${disk}${slice} | \
sed -e ‘/a:/ s/unused.x/ 4.2BSD * * /' | \
bsdlabel -R -B ${disk}${slice} /dev/stdin

create root fs: no snapshots, space optimize
newfs -n -o space /dev/${disk}${slice}a
mount -o noatime,sync /dev/${disk}${slice}a /mnt

force serial console; populate /boot hierarchy
echo " -h" > /mnt/boot.config
{(cd /mnt && tar vjxpUBf -) < boot+maint.tbz

Fig. 5. Initializing a CF from scratch before deployment in SBC.

As always, there are some caveats and pitfalls which should

be considered:

4MB or more of RAM remain occupied: System memory for
the RAMdisk is allocated forever when maint sshd
is enabled. On small platforms it may be unaccept-
able to sacrifice so much space continuaily. In this
case, the RAMdisk would be loaded only for upgrades
by rebooting after /boot/loader.rc is replaced by
/boot/maint/loader.rc.

Nerwork reconfiguration may interfere: Setups with compli-
cated network configuration could become error-prone
in combination with the RAMdisk network configuration
which takes place earlier. Moreover, when experiment-
ing with IP filter rules remotely, it is always wise to de-

14

fine a special early rule to assure access in the failure case.
On our systems, such interference occurs seldom because
the network configuration defined in the R AMdisk envi-
ronment is identical to the multi user configuration.

Booted kernel may not support ‘md’ devices: W hen the run-
ning kernel does not support memory disks because
device md is not configured, then maint _sshd will
fail to launch. For this reason a custom kernel is kept in
the /boot /maint directory.

SSH daemon in RAMdisk may be a security risk: Access to
the system’s root account is effectively controlled by the
/boot/maint/params file because the SSH deamon
running in RAMdisk must allow root logins.

VI. FUTURE DIRECTIONS

N ONE of the methods we have employed are unique to

FreeBSD. In fact, over the lifetime of this development,
we were able to simplify and go ‘back to the basics’ as FreeBSD
evolved. For this reason, we believe implementing an analogous
RAMdisk environment for the other *BSD systems would be
very straightforward.

The mostly statically linking capability should be integrated
into crunchgen via a new keyword. The chain of library de-
pendencies could be checked automatically to ensure that none
of the required shared objects are linked statically.

Looking ahead, we plan to investigate if a Secure Shell
Maintenance RAMdisk could be loaded via a kernel mod-
ule so that the dependence on the /etc and / rescue di-
rectories can be completely removed. In fact, the RAMdisk
environment could fully replace the present rescue utilities.
Last but not least, it might be practical to present the choice
“Enter Maintenance RAMdisk” directly from loader menu.

Adrian Steinmann eamed a Ph.D. in Mathematical
Physics from Swiss Federal Institute of Technology in
Ziirich and has over 15 years experience as a technical
consultant and software developer. He is founder of
Webgroup Consulting AG, CH-8032 Ziirich, Switzer-
land.

He has been working on FreeBSID since 1993 (ver-
sion 1.0) and since 1997 he maintains and develops
the base system for a remote managed firewall called
‘STYX’ [3]). He is fluent in Perl, C, English, German,
- TItalian, and has passion and flair for finding simple so-
[utions to intricate problems.

During his free time, he likes to play Go, to hike, and to sculpt soapstone.
Some sculptures are on display at www . steinmann.com/ sculptures.

REFERENCES

[1] PC Engine WRAP: Wireless Router Application Platform; 2002-2005; 266
MHz AMD Geode SC1100 CPU, 128MB SDRAM, CF, 2-3 LAN, 1-2
Mini-PCI; www.pcengines.ch

[2] Soekris netd501: Compact, low power, low-cost, comrmunication com-
puter; 2001-2005; 133 MHz, 64MB SDRAM, CF, 3 L AN, | Mini-PCI;
www.soekris.com

(3] STYX Firewall: FreeBSD-based Remote Managed Firewall; 1997-2005;
www.styx.ch

J
i

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Improving network security by adding randomness

Ryan McBride
mcbride @openbsd.org

Abstract

Poorly specified or poorly implemented protocols often
contain fields for which the value is essentially arbitrary,
but can be guessed by an attacker in order to perform
a spoofing attack, or leak information about the system
which provided the data. By using random or strong
pseudo-random data for these fields, many protocol at-
tacks can be prevented or made impractical, and informa-
tion leakage can be minimised.

The OpenBSD project has been very aggressive in its
use of pseudo-random data in its network code; as a policy
pseudo-random data is used in protocol fields wherever
possible, in many cases in a way not envisioned by the
protocol designers.

This paper outlines the reasons for this approach, dis-
cusses how and where it is implemented in OpenBSD,
and provides examples of attacks which this approach has
mitigated. Randomness used within protocols explicitly
for security purposes (such as randomness in IPSec, SSH,
CAREP. etc) is not discussed - the interest is in randomness
which is not intended by the protocol designers.

Introduction

Network protocols often contain fields which require
unique data per packet or per session, or counters ini-
tialised and then incremented. Often the protocol spec-
ification allows arbitrary values to be chosen, but does
not insist on randomness; even when randomness is called
for, a poor implementation can still employ weak values.
The ability to guess these weak or predictable values of-
fers an attacker the opportunity to inject malicious packets
blindly, modifying the data or killing connections.

A secondary concern is that of information leakage:
poorly selected values can disclose internal system state
(such as system time), aiding in general information gath-
ering or even providing data which can be used to facili-
tate other attacks. It should be noted however that gener-
ally such attacks indicate a weakness in the protocol be-
ing attacked. The ability of an attacker to determine the
system time is the most commonly discussed form of in-
formation leakage - but the solution is not to avoid leaking

15

the system time. The solution is to stop using system time
as a “secret” in protocols.

The OpenBSD project has adopted a policy of aggres-
sive use of random and good pseudo-random data in its
networking code. Essentially: if the value of a proto-
col field can be set to an arbitrary value, use data that
an attacker cannot guess. even if no current attack is
known. This pro-active approach has repeatedly resulted
in OpenBSD adding protection against protocol attacks
before they were discovered.

For example, problems with predictable TCP sequence
numbers have been known for some time, and most mod-
ern TCP implementations try to make the initial sequence
number difficult to predict. Paul Watson’s paper “Slip-
ping in the Window™'[1] expanded on threat of blind at-
tacks. He pointing out that some attacks could be con-
ducted without predicting the exact next sequence num-
ber: sequence numbers in attack packets only need to
fall within the TCP window. An attacker who knows the
source and destination addresses and ports can expect to
reset a connection with a known source port in 13.6 sec-
onds at T1 speed. By default, OpenBSD selects the source
port pseudo-randomly from the range 1024 to 49151. If
the source port of the connection has been selected in this
way, the attack will take 7.5 days, making a trivial attack
impractical’.

OpenBSD’s Implementation

Pseudo-random number generation

Most network “randomness’ comes from arc4random(),
a fast 32-bit pseudo-random number generator based on
the alleged RC4 stream cipher. This cipher is not ex-
tremely strong cryptographically: there are significant
weaknesses in the key scheduling algorithm[2], and the
algorithm leaks information about its internal state[3].
OpenBSD attempts to work around these issues by re-
seeding arc4random() on a regular basis from OpenBSD

'In fact OpenBSD requires the sequence number for a TCP reset to
be directly on the edge of the window:; the attack would take several
years at T1 speeds.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

strong random number subsystem and throwing out the
initial 256 words of output.

Despite these weaknesses. arcd4random() is a reason-
able compromise between security and performance; the
goal being to keep the source of random data cheap
enough that it can be used wherever necessary, with-
out measurably reducing the performance of the system.
Cryptographically strong random data is relatively expen-
sive, and most systems cannot generate strong random
data in sufficient quantities to use aggressively on the net-
work.

OpenBSD’s strong random number subsystem con-
stantly gathers randomness from a number of sources and
folds it into a randomness pool. A broad range of cryp-
tographic random number generating hardware is sup-
ported. but IO data and timing measurements are also
stirred into the randomness pool: all mouse movements,
keystrokes, disk activity, network activity, audio playback
and recording, and even the timing of the random number
subsystem itself are used to feed the randomness pool.

While the strong random number subsystem gathers
randomness from many sources, it is also very conser-
vative in estimating the randomness provided by these
sources, and a running estimate of the amount of entropy
in the randomness pool is kept.

It is worth noting that because network packet timings
feed into the randomness pool, while a busier system is
drawing more heavily on the random number generator, it
is also feeding more entropy into the randomness subsys-
tem.

Having multiple consumers of the pseudo-random
number generator also increases the quality of the num-
bers for any one consumer, as requests may be interleaved
and each consumer no longer receives an uninterrupted se-
quence of bits from the function. An attacker attempting
to determine the internal state of the arc4random() sub-
system has no idea whether two random values are se-
quential or 5000 bytes apart in the stream. They may not
even be based on the same key. Even full knowledge of
the network traffic will not provide a clear picture to an
attacker, as arcdrandom() is used heavily by other non-
network subsystems.

Randomness Constraints

Good targets to search for in protocol standards docu-
ments include counters, time stamps, and packet, ses-
sion, or host identifiers. However, randomness needs to
be added carefully - constraints can include a minimum
or maximum gap between sequential numbers, avoiding
"magic" values, or ensuring that values are not repeated
within a minimum time interval.OpenBSD employs a
number of different techniques to provide values which
maximise entropy while meeting these constraints:

16

Some protocols require a locally non-repeating field -
that the number used does not repeat within a certain num-
ber of uses or within a certain time. This property is often
required of fields which are used to disambiguate packets,
such as the DNS id, IP id and IPv6 fragment ID. Values for
these fields can be effectively generated by using a Linear
Congruential Generator (LCG), a pseudo-random num-
ber generator where the next number is generated from
the current one by ru.1 = ars + b(mod m), where a and
m are relatively prime numbers. In order to foil attempts
to guess the internal state of the LCG, a number of val-
ues are discarded for each one generated. Pseudo-random
data from arc4random() is used to make the selection. The
LCG is re-keyed every N values, or every M seconds,
where N is shorter than the full cycle length of the LCG
to avoid blackjack prediction of the next values. Because
re-keying could lead to repetition, one bit of the final out-
put is set to a fixed value which is toggled when re-keying
oceurs.

Less-common requirements are minimum gap or max-
imum gap between sequential numbers; A minimum gap
can be enforced by simply forcing the appropriately val-
ued bit to a fixed value, while a maximum gap can be
enforced by remembering the previous number gener-
ated and adding or subtracting a pseudo-random value
generated by taking arcdrandom() modulo the maxiu-
mum gap. A field which requires increasing values can
be handled similarly, by only adding the pseduo-random
value. Where protocols require a monotonically increas-
ing counter a random value can often be used to initialise
the counter rather than starting from zero; care must be
taken in cases where the protocol makes no provisions for
wrapping of the number, as is the case with the IPSec re-
play counter.

Protocol implementations which ask for the time gen-
erally fall into two categories: those requiring a locally
non-repeating number, and those which require a timer -
not the real time but only require a number that increases
at a regular rate. The former can be dealt with by using an
LCG as discussed above, while the latter can be handled
by keeping a normal timer with some random modula-
tion: If the timer must be uniform across connections, it
can be initialised to a pseduo-random value. Otherwise,
the timer state can be kept independent by offsetting the
timer by a pseudo-random modulator value generated on
a per-connection basis.

End-point randomness

The following are the network fields initialised with
pseudo-random data in OpenBSD’s native TCP/IP stack:

TCP initial sequence number The Transmission Con-
trol Protocol (TCP), requires a sequence number in

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

order to provide ordering of packets[4]; much of
TCP’s resistance to blind spoofing attacks is de-
rived from the difficulty of guessing what a valid
sequence number might be. The ISN must be lo-
cally non-repeating and requires a minimum gap of
32768 bytes between numbers. Because of these
constraints, OpenBSD does not use the output of
arcdrandom() directly here but rather a combina-
tion of 15 bytes from a pseudo-random generator
seeded from arc4random(), and 15 bytes of pure
arcd4random(). Byte 15 is always set to O in order
to ensure the minimum gap between sequence num-
bers. and the most significant byte is toggled each
time the generator is re-seeded, to ensure that the
same number is not re-used within a short period.

TCP Timestamp Modern TCP stacks set a Timestamp
option on TCP packets which contains the local sys-
tem time and an echo of the timestamp from the other
end[5]. This timestamp is used to calculate round
trip times, and as a mechanism for protecting against
wrapped sequence numbers. In OpenBSD, each TCP
connection uses a different initial TCP timer value
initialised with arcdrandom(). This makes spoofing
valid TCP timestamps in a connection more difficult
as an attacker can no longer poll for the current time
to use in attacking an unknown connection.

TCP/UDP ephemeral source port Randomisation of
the ephemeral source port makes all blind attacks
against TCP connections more difficult as an
attacker must correctly guess this portion of the
(source address, source port, destination address,
destination port) tuple. Ephemeral source ports
are selected using arcdrandom() from a range of
available ports; if the selected port is not available a
linear search of the space up or down from that port
is used to find the next available port.

DNS query id Thes 16 bit value is used to disambiguate
DNS requests. An attacker who can guess this value
and the 16 bit source port can blindly spoof DNS
replies and mount DNS cache poisoning attacks. In
order to ensure that sequential valid DNS responses
are not confused, the DNS query id must be locally
non-repeating, and OpenBSD uses an LCG to gener-
ate the bottom 15 bits of this value, toggling the most
significant bit on re-keying.

IP id This 16 bit value is used as an identifier for as-
sembling fragmented IP packets. The ability to pre-
dict this value could permit an attacker to perform
a denial of service attack against applications which
make heavy use of fragmentation, by spoofing frag-
ments which would be correctly reassembled but re-
sult in the entire packet being discarded because of a

failed checksum. The IP id has the same constraints
as the IP id, and uses the same algorithm to generate
it’s value.

IPv6 fragment id Similar in purpose to the IPv4 ip_id,
this 32 bit value is used to identify multiple IPv6
fragments as a single packet. An LCG is used to
generate the bottom 31 bits of this field, toggling the
most significant bit on re-keying.

tun virtual mac address 3 bytes of the virtual MAC ad-
dress are generated directly by arc4random().

ping / ping6 icmp id These programs use their pseudo-
random process ID as the 16 bit icmp id.

ping6 icmp6 node information nonce, used in an
ICMPv6 Node Information Node Addresses query
to match a query to the response; this 64 bit value
is generated directly with arcdrandom(). While tech-
nically this value must be locally non-repeating, the
likelyhood of repetition is not sufficiently high to
warrant the use of more complex code to guarantee
this property.

rpc message transaction identifier Each RPC transac-
tion requires a unique 32-bit ID, which is directly
generated with arc4random()

rdate and ntpd The time client from both of these
utilities use a 64-bit number generated with
arcdrandom() as the transmit time rather than the ac-
tual systern time[6, 7]. The responding server copies
this field into the originating time field on the re-
sponse that it sends back. This makes it much more
difficult for a blind attacker to spoof responses from
the NTP server, and incidentally prevents the leakage
of the real system time.

timed initial sequence number This value is used as a
sequence number to identify time packets send out
by timed.

All the above uses of pseudo-random are enabled by de-
fault in OpenBSD’s network stack, and they cannot be dis-
abled by the user.

Randomness in PF

In situations where a system acts as an intermediary be-
tween other systems rather than an endpoint, such as when
it is operating as a firewall. fields can have their potentiaily
insecure values replaced by pseudo-random data. This can
protect hosts with weaker network stacks from some types
of attacks.

In OpenBSD, this functionality has been implemented
in pf(4). the packet filter. This works well technically

17

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

as the packet filter already requires code to track packet
flow on a per-connection basis. and maintains a state ta-
ble with relevant connection information - a logical place
to store the mappings between the old and new values of
fields which have randomness injected. Moreover, The
firewall already does the packet manipulations, including
IP packet reassembly and moving packet data into con-
tiguous memory required to look into the IP packet pay-
loads; making changes to the packets at this point is rel-
atively simple. And finally, some of the randomness is
also injected in places where packet changes are required
for other functional reasons in the firewall code, for exam-
ple the port and address changes which allow for address
sharing or load balancing.

There is also an issue of expectations management:
conceptually a firewall is already expected to make
security-related changes to packet flow, as opposed to a
simple router which is expected to get packets from A to
B with the minimal set of changes.

Finally, the fine-grained packet matching based on a
number of packet criteria allows the features to be applied
only as needed, which is particularly important for deal-
ing with situations where modifying the packets in this
way has negative side-effects.

PF injects randomness in the following places:

TCP initial sequence number With the ‘'modulate state’
keyword, PF adds a pseudo-random value to the se-
quence numbers in each direction of a connection. In
versions of OpenBSD up to 3.8, this was simply 32
bits of data from arc4random(); a newer algorithm
generates a new initial sequence number with the
same algorithm as OpenBSD’s tcp stack (described
above), and stores the difference between this and
the original timestamp. This ensures that PF gener-
ated timestamps have the same properties regarding
minimum difference between timestamps and mini-
mum repetition times.

nat source port By default the source port of all connec-
tions which match a 'nat’ rule in PF are randomised.
This helps to protects hosts with predictable source
ports from blind spoofing attacks. It is possible to use
the "nat’ keyword to protect hosts behind a PF fire-
wall by translating the port while not changing the
source address.

The port selection mechanism in PF is less con-
strained than the standard BSD mechanism for se-
lecting ephemeral source ports in that a port can
be used simultaneously for multiple connections.
A source port for the connection is selected using
arcdrandom, and then the full tuple (address family,
protocol, source address, source port, destination ad-
dress, destination port) is checked against the state

table. If there is no exact match, the port can be
used. This tends to makes it more robust when a
large number of connections are in progress. as the
initially selected source port is much less likely to
be in use; linear searches of the port space are thus
less likely, and there is consequently less clustering
of active ports.

nat source address By using a pool of multiple transla-
tion addresses with NAT and the ‘random’ address
selection algorithm, it’s possible to mask the source
IP address of a connection. The network section of
the address stays the same, while the host portion of
the address is generated by arc4random();

One can also nat addresses from a net-block to the
same net-block. This can protect from disclosure of
IPv6 source addresses and thus leakage of host infor-
mation, as automatically assigned v6 addresses are
based on the MAC address of the host.

rdr destination address This randomises incoming con-
nections being translated to a pool of servers, pre-
venting an attacker from being able to predict which
server in the pool a specific connection will be di-
rected to.

ip id Many hosts generate predictable values for the
ip_id; this defeats ip_id based NAT detection, and
protects hosts behind the firewall from attacks on
their poor id selection. The identifier field in the IPv6
fragment extension header cannot currently be mod-
ified by PF as PF does no reassembly of IPv6 frag-
ments.

TCP timestamp modulation Modulation of TCP times-
tamp values can make blind spoofing attacks more
difficult, makes it impossible to analyse TCP times-
tamp values to count the number of hosts behind a
NAT device, and prevents the leakage of the real sys-
tem time of machines behind the firewall.

Much of the above PF randomness is redundant for con-
nection originating on an OpenBSD. however it is useful
for protecting non-OpenBSD systems.

Like the end-point randomisations discussed above, the
performance cost of these techniques is negligible. How-
ever, while these randomisation techniques are transparent
to the majority of protocols and applications. a number of
problems exist:

The first two problems are related in that they are the
result of what would now be considered poor protocol
design or implementation: given the prevalence of fire-
walls and network translation on the Internet, new proto-
cols should not depend on untranslated end-to-end con-
nectivity, or the ability to connect or arbitrary ports.

18

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Firstly, some applications require the source port of a
connection to be a specific value; examples include proto-
cols which use the fact that the source port is lower than
1024 to infer that the originating user has superuser privi-
lege. or certain IKE/ISAKMP implementations which re-
quire that the source port be 500. Other applications re-
quire the source address to remain constant across connec-
tions which take place within a single session. Address
and port translation interfere with these types of applica-
tions.

Secondly, some legacy protocols make reverse connec-
tions to ports identified within the protocol. Because the
host behind the firewall is unaware of the translation, it
sends its actual [P and port, which is not valid from the
perspective of the other endpoint. Examples of such pro-
tocols are FTP and H.323.

The third issue relates to integrity protection mecha-
nisms. Network protocols as [PSec AH or TCP MDS5 at-
tempt to authenticate parts of the packet header. When
authenticated values are changed by the firewall in an at-
tempt to add randomness, the authentication fails and the
recipient of the packet rejects the packet as invalid. There-
fore these techniques cannot be used unless the firewall
also knows the secret authentication key and can recal-
culate the authenticating hash when changes are made.
Such a feature has not yet been implemented in PF, and
thus there must be a mechanism to be selective about what
traffic the firewall will attempt to modify.

The final issue concerns the robustness of the firewall
platform. Because these randomness mechanisms are ac-
tive and depend on the translation data mapping the orig-
inal data to the random data inserted by the packet fil-
ter, connections using these techniques are brittle in the
face of firewall reboots (due to failure or maintenance) or
flushes of the state table. While the firewall rules may
still allow packets from the session to pass, the necessary
translations will not occur or a different mapping will be
established by the firewall, and the packets will be rejected
as invalid by the recipient.

Where possible, OpenBSD provides mechanisms to
deal with these issues without requiring that all the func-
tionality is disabled. Because this the randomness is be-
ing added by the firewall, rulesets can be configured to
avoid the use of randomess only for protocols which break
it; Additionally, for randomisation of source IP address,
the sticky-address’ keyword allows the same randomised
mapping to be used for multiple distinct connections, al-
lowing applications which require a constant source ad-
dress to work correctly.

Application-level proxies can also be used to deal with
protocols such as FTP to ensure that appropriate transla-
tions are made in the application data to match the ran-
domisation of packet header fields. Many firewalls at-
tempt with varying success to do this in the packet filter

19

code

Finaily, the pfsync and carp protocols can be used
to provide firewall redundancy, ensuring that pseudo-
random translations are not lost in the event of a firewall
reboot or a hardware failure. Explicit flushing of the PF
state table still results in the loss of these mappings.

Results and Conclusions

OpenBSD’s policy regarding network stack randomness
has proven itself by providing protection against vulner-
abilities unknown at the time that the feature was imple-
mented.

From a performance standpoint. the cost of these tech-
niques is minimal. Furthermore, most of these techniques
have no impact on the protocols. Where such impacts
do occur, OpenBSD is careful to provide mechanisms to
deal with this, for example by restricting the introduction
of randomness. While some of the applications of ran-
domisation in PF can cause application breakage. many
of these problems are largely a fundamental problem with
the hack of network address translation, and not the ran-
domness being applied.

The OpenBSD project encourages other operating sys-
tems to implement these measures; as these techniques
become ubiquitous broken broken protocols that depend
on non-random behaviour are less likely to be designed or
deployed.

Future Work

Over time OpenBSD has seen a convergence between the
protections offered by the TCP/IP stack and the packet
filter, most recently with TCP timestamp generation in
the TCP stack being made to match that in PF, and the
generation of initial sequence numbers in PF being made
to match that in the TCP stack. This convergence will
likely continue over time; because PF provides the abil-
ity to control where randomness is applied, it is an ideal
testing ground for new techniques.

RFC 1323 [5] describes the use of TCP timestamps
for round trip time measurement (RTTM) and protec-
tion against wrapped sequence numbers (PAWS). The ran-
domisation of TCP timestamps lays the foundation for the
PAWS code to provide additional checks to ensure that
TCP timestamps are within an appropriate window. Based
on the rules laid out in this RFC, we can track the times-
tamp sent by the other host as well as the echoed times-
tamp that we sent, and use them as additional sequence
numbers to prevent blind insertion attacks. This func-
tionality has already been implemented in PF by Mike
Frantzen, as part of the TCP normalisation code, and

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

an implementation in OpenBSD’s stack would likely be
based on this.
As the connection rate that can be handled by a sin-
gle system increases, we begin to push the limits of the
| techniques which have worked sucessfully in the past: the
current algorithm for ephemeral port selection degrades
as the number of ports in use increases, taking longer to
find unused ports and clustering the values of new ports
selected. making them easier to predict. One available ap-
proach is to track the least-recently used ports and select
new ports from those: alternatively some preliminary de-
sign discussions have taken place regarding exposing PF’s
state table to other areas of the kernel. Aside from improv-
ing the performance of route and port lookups for connec-
tions being tracked by PF, use of the state table could al-
low more aggressive re-use of ephemeral source ports, as
is done by PF’s translation code: it would also allow both
the stack and pf to select ephemeral ports from a larger
space rather than having their own slice of the available
ports. This technique must be implemented carefully as
the TCP stack should work correctly without PF enabled.

References

[1] P. Watson, “Slipping in the window,” 2004.

[2] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in
the key scheduling algorithm of RC4,” Lecture Notes
in Computer Science, vol. 2259, pp. 1-24, 2001.

[3] S. R. Fluhrer and D. A. McGrew, “Statistical analy-
sis of the alleged rc4 keystream generator.,” in FSE,
pp. 19-30, 2000.

[4] 1. Postel, “RFC 793: Transmission control protocol.”
Sept. 1981. See also STD0007. Status: STANDARD.

5] V. Jacobson, R. Braden, and D. Borman, “RFC 1323:
TCP extensions for high performance,” May 1992.
Obsoletes RFC1072, RFC1185. Status: PROPOSED
STANDARD.

[6] D. Mills, “RFC 2030: Simple network time protocol
(SNTP) version 4 for IPv4, IPv6 and OSI,” Oct. 1996.
Obsoletes RFC1769. Status: INFORMATIONAL.

[7] D. L. Mills, “RFC 1305: Network time protocol (ver-
sion 3) specification, implementation,” Mar. 1992.
Obsoletes RFC0958, RFC1059, RFC1119 . Status:
DRAFT STANDARD.

20

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Complete Hard Disk Encryption Using FreeBSD's
GEOM Framework

Marc Schiesser

m.schiesser [at] quantentunnel.de

October 20" 2005

Abstract

Most technologies and techniques intended for securing digital
data focus on protection while the machine is turned on - mostly by
defending against remote attacks. An attacker with physical access
to the machine, however, can easily circumvent these defenses by
reading out the contents of the storage medium on a different, fully
accessible system or even compromise program code on it in order
to leak encrypted information.

Especially for mobile users, that threat is real. And for those
carrying around sensitive data, the risk is most likely high.

This paper describes a method of mitigating that particular risk
by protecting not only the data through encryption, but also the
applications and the operating system from being compromised
while the machine is turned off.

The platform of choice will be FreeBSD, as its GEOM framework
provides the flexibility to accomplish this task. The solution does
not involve programming, but merely relies on the tools already
provided by FreeBSD.

21

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

22

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Table of Contents
1 Background & MOtVAION........cccviiiiiiiniiiintiiiiicreer e 2
2 Partial disk eNCryPiOn.....ccciiiiiiiiiiiiticrctc e 3
2.1 File-based eNCIYPUON.....ccccoviiiireiiiieieieecnteeset et 4
2.2 Partition-based eNCryPtioN.. ..ottt 5
2.3 The 1eaKaZe IiSK.....coevverrerririiiiiieietiiietet et s sa e 5
2.4 NEW AtTACK VECTOTIS. c.uuiieeiieraieenieeeeieerteeeeeees e see st e et eeesnseessneeesasee s sneeesenseesecnsesssaneeens 6
3 Complete disk @NCIYPON.....c.civiiiiiiiiiriiiiiii e 6
3.1 Tools provided by FreeBSD.........c.cocviviiviiniiiiinininiiiiiiniiiiiiiiinicne e 6
3.2 The problem with complete disk encryption.........cccceevevvvveiiiiiniinieniinieineniiniene. 7
3.3 REQUITEIMENIS. ...cecieiieiiieiiiiiniiiesii ettt s sa s eaa s e s a s ae s sre s eareesaneseaneens 8
3.4 Complete hard disk encryption using GBDE............ccceciivinniniinniinniinniiniiiniccneee 8
3.4.1 Erasing previously stored data...........ccceevuiniiiiiiiiiiniiiiiiiiiin 8
3.4.2 Initialization & the IoCKfile..........ccooiiiii e 9
3.4.3 Attaching the encrypted medium..........ccooiiiiiiiniiniiiiiiiice 9
3.4.4 PartitiONINg...cccueiiiieiiiiiieiiiiiciie ittt e s s nae s e s e abaaeaaeas 10
3.4.5 Creating the fileSySteIM........ovviiiiiniiniiiiiiiiiiiicir e 11
3.4.6 Installing FreeBSD.........oociiiiiiiiiiiiiiicicctrcecciec et 11
3.4.7 Preparing the removable medium........c..ccocceeviiiiininniinniinicrcrcicncne 12
3.4.8 The kernel MOdULES..........coocceiieiincceee ettt e 12
3.4.9 The problem with GBDE........c.ccccoiiiiiiiiiiiiiieieen et 13
3.4.10 The memory disK........ccoeviiiiiiiiiniiiiii 13
3.4.11 Populating the memory disk filesystem..........cccccoevvvieiiniininiinniinniniicnninnnn. 14
3.4.12 The DOOTING PIOCESS.....ucvuiruiiriinrieiiiiniiiieiie ettt s eaan e s 14
3.4.13 Creating the symlinks.........ccocvvviniiniiiniiniiiii 15
3.4.14 Integrating the memory disk image.........c.ccivvviiieiiiniiniinnncininniiin, 15
3.4.15 The SWaP Partition.....c.ccoceiviiiiriieiririiiieicnieete ettt re s s 16
3.4.16 Post-installation iSSUES.........cceviriiieiiiiiiiiiiiiiiiieccict e 16
3.5 Complete hard disk encryption using GELL.........cccccoeceviiniininniinninnniennniniiienniennees 16
3.5.1 Readying the hard disK........c.ccociiiiiiiini e, 17
3.5.2 Improvements and new problems with GELL..........ccccccciiiiiniiinnnninn 17
3.5.3 Initialization, attachment and partitionNing..........ccccceeerveeveenirecieecincnisirereennnen. 18
3.5.4 Filesystem creation and system installation.......c..cc.ccoevevenniininninnniinncnnennn, 19
3.5.5 The removable Medilm.........ccociiiiiiiniiiiiineceecceree e 19
3.5.6 Mounting the encrypted partition..........ccccvveeerceerieneenrnrer e 19
4 Complete hard disk encryption in CONEEXt.........ccvivuieinirieniininninnieniieniiicse s 20
4.1 New defenses & new attack vectors — @gaiN........cceceevuereecuieeieinieeiieenee e ecrecresees 20
4.2 Trade-0ffs......ccovierireeriieeiie ettt ettt e et st s e e rn e 22
4.3 GBDE VS. GELL...uiotiiiniieniieicniinieciniieneenessesiesiessesseesuessesnstesnesnsessasssssssesssesssessesssens 23
3 000) s Lol LD T3 o) s VOO TP 23
References & further reading.........ccceecveevevieerneeenieiinieeienreeseeessreeerreeseeeessneeesesenesssenes 24

23

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

1 Background & motivation

As more and more data enters the digital world, appropriate measures must be taken in
order to protect it.

Considering the ever-increasing number of networked devices and the inherent
exponential growth of the Internet, it is imperative that a large amount of effort go into
securing devices against remote attacks. Common technologies and techniques include
firewalls, intrusion detection systems (IDS), encryption of all kinds of network
transmissions as well as hardening network stacks and fixing buffer overflows.

At the same time, we are witnessing increasingly sophisticated and complex mobile
devices such as PDAs, smartphones and cell phones becoming pervasive and assuming
all kinds of important tasks. Between the general-purpose laptop and the (once) special-
purpose cell phone, pretty much anything in between is available.

As people use these devices, they also generate data - either explicitly or implicitly.
Explicitly stored data might for example include: entering a meeting into the electronic
schedule, storing a telephone number and associating a name with it, or saving an email
message draft in order to finish it later.

But then there is also the data which is stored implicitly. Examples include the
history of the telephone numbers called or received, browser caches, recently accessed
files, silently by the software backed-up data such as email messages, log files and so on.

Even if the user remembers to delete the explicitly stored files after they are no longer
needed, it is possible to trace a lot of his or her activity on the device by looking at the
aforementioned, implicitly stored data. The more sophisticated the device is, the more
such data will usually be generated, mostly without the user's knowledge.

In terms of performance, laptop computers hardly lag behind their desktop
counterparts — enabling them to run the same powerful and complex software. It also
means that the users tend to generate far more data - both explicitly and implicitly -
than on simpler devices.

In addition to being exposed to remote attacks, laptop users are also faced with an
increased exposure of the machine itself.

While stationary computers are physically accessible by usually only a limited
number of people, a laptop computer is intended to be used anywhere and anytime.

This paper does not try to provide any solutions to mitigating the risks of remote
attacks. Instead, it concentrates on the risks posed by attackers with physical access to
the device. An attacker with physical access to a machine can either:

- boot his own operating system, thus overriding any of the restrictions put in
place by the defender (login procedures, filesystem and network access control,
sandboxes etc.)

- or remove the hard drive from the defender's machine and install it in a system
which is under the control of the attacker - in case the target's booting
sequence is protected (e.g. by a BIOS password)

Unfortunately, however, most people and companies take quite lax an approach when it
comes to protecting their data in-storage, while the machine is turned off. The following
pieces of news illustrate just how serious a problem the lack of in-storage encryption can
become:

“Thieves stole computer equipment from Fort Carson containing soldiers'
Social Security numbers and other personal records, the Army said ...” [Sarche,
2005]

24

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

- “Personal devices "are carrying incredibly sensitive information,” said Joel
Yarmon, who, as technology director for the staff of Sen. Ted Stevens (R-
Alaska), had to scramble over a weekend last month after a colleague lost one of
the office's wireless messaging devices. In this case, the data included "personal
phone numbers of leaders of Congress. . . . If that were to leak, that would be
very embarrassing,” Yarmon said.” [Noguchi, 2005]

“A customer database and the current access codes to the supposedly secure
Intranet of one of Europe's largest financial services group was left on a hard
disk offered for sale on eBay.” [Leyden, 2004]

“ ... Citigroup said computer tapes containing account data on 3.9 million
customers, including Social Security numbers, were lost by United Parcel
Service.” [Reuters, 2005]

“Earlier this year, a laptop computer containing the names and Social Security
numbers of 16,500 current and former MCI Inc. employees was stolen from the
car of an MCI financial analyst in Colorado. In another case, a former Morgan
Stanley employee sold a used BlackBerry on the online auction site eBay with
confidential information still stored on the device. And in yet another incident,
personal information for 665 families in Japan was recently stolen along with a
handheld device belonging to a Japanese power-company employee.”
[Noguchi, 2005]

“ ... trading firm Ameritrade acknowledged that the company that handles its
backup data had lost a tape containing information on about 200,000
customers. “ [Lemos, 2005]

- “MCI last month lost a laptop that stores Social Security numbers of 16,500
current and former employees. Iron Mountain, an outside data manager for
Time Warner, also lost tapes holding information on 600,000 current and
former Time Warner workers.” [Reuters, 2005]

Even though the number of press articles reporting damage due to stolen mobile
computers — or more specifically: storage media — does not reach the amount of publicity
that remotely attacked and compromised machines provoke, it must also be taken into
account that data on a laptop does not face as much exposure as it does on an Internet
server.

A laptop computer can be insured and data regularly be backed up in order to limit
the damage in case of loss or theft; but protecting the data from unauthorized access
requires a different approach.

2 Partial disk encryption

Encryption of in-storage data (as opposed to in-transmission) is not a completely new
idea, though. There have been several tools around for encrypting individual files for
quite some time. Examples include the famous PGP (Pretty Good Privacy) as well as its
free equivalent GnuPG and the somewhat less known tools AESCrypt' and NCrypt®.

More sophisticated approaches aim towards encrypting entire partitions. The

1 http://aescrypt.sourceforge.net/
2 http://ncrypt.sourceforge.net/

25

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

vncrypt® project is an example that takes this approach.

2.1 File-based encryption

The idea is that the user can decide for each file individually, whether and how it is to be
encrypted. This has the following implications:

. CPU cycles can be saved on data that the user decides is not worth the effort.
This is an advantage, since encryption requires a lot of processing power. It also
allows the user to choose different keys for different files (although reality
usually reflects the opposite phenomenon).

. Meta data is not encrypted. Even if the file's contents are sufficiently protected,
information such as file name, ownership, creation and modification date,
permissions and size are still stored in the clear. This represents a risk which is
not to be underestimated.

The usability of in-storage encryption largely depends on how transparent the
encryption and decryption process is performed to the user. In order to minimize user
interaction, the relevant system calls must be modified to handle the desired crypto-
graphy accordingly. That way, neither the user nor the applications must make any
additional effort to process encrypted file content, since the kernel will take care of this
task.

If system call modification is not going to take place, any program required to
process encrypted data must either be modified to perform the necessary cryptographic
functions itself or it must rely on an external program for that task. This conversion
between cipher text and plain text — and vice versa - is hardly possible without requiring
any user interaction.

Scenario: file-based encryption of huge files

The file might be a database or multimedia container: if cryptography is not
performed upon system call invocation, the entire file content must be temporarily
stored in plain text — therefore consuming twice the space.

Then the unencrypted copy has to be opened by the application. When the file is
closed, it obviously has to be encrypted again — unless no modification has taken place.
First, the application will therefore save the data in plain text, which must then be
encrypted and written out in its cipher text form again — but by a program capable of
doing the appropriate encryption.

After encryption, the unencrypted (temporary) copy could of course just be unlinked
(removed from the name space), but in that case the unencrypted data would still
remain on the medium until physically completely overwritten. So, if one wants to really
destroy the temporary copy, several overwrites are required — which can consume a lot
of time with large files. Therefore, a lot of unnecessary I/O must be performed.

nario:; file-based enc ion of e
If one wants to encrypt more than just a small bunch of files, it actually doesn't
matter how small or large they are — the procedure described above still must be adhered
to. This is going to become a burden very quickly — even more so, if one actually uses
different passwords for different files.

3 http://sourceforge.net/projects/vncrypt/

26

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

The bottom line is that it simply does not scale. In most cases, encryption is therefore
either abandoned or the following, more effective and efficient scheme is chosen.

2.2 Partition-based encryption

Obviously, creating a temporary plain text copy of an entire partition each time the data
is accessed, is hardly a sane solution. The cryptographic functions must therefore be
performed in the kernel, as it has been implemented with GBDE [Kamp, 2003a] and GELI
[Dawidek, 2005a] in FreeBSD and cgd (4) in NetBSD [Dowdeswell & Ioannidis, 2003],
although a few third party add-ons also exist. One example of this is the aforementioned
vncrypt, which was developed at Sourceforge.

vncrypt is, however, in a further sense still file-based, because the encrypted
partition is only a mounted pseudo-device created via the vn (4) facility from a regular
file. This file holds all the partition's data in encrypted form - including meta data.
OpenBSD's vnconfig (8) provides a similar feature [OpenBSD, 1993].

One aspect associated with partition-based encryption is that its set-up process is
usually more extensive than it is for file-based encryption. But once it has been done,
partition-based encryption is far superior to the file-based encryption scheme. All data
going to the particular partition is — by default — stored encrypted. As both encryption
and decryption is performed transparently to the user and on-the-fly, it is also feasible to
encrypt both large amounts of files and large amounts of data.

But unfortunately, this scheme it not perfect either.

2.3 The leakage risk

As obvious as it may sound, partition-based encryption protects only what goes onto the
encrypted partition. The following scenario highlights the particular problem.

cenario: editing a sensitive documen red on an en ted partition

A mobile user needs to have a lot of documents (and information in general) at his
immediate disposal. Since some information is sensitive, he decides to put it on an
encrypted partition.

The problems start as soon as encrypted files are opened with applications that
create temporary copies of the files currently being worked on, often in the /tmp
directory. So unless the user happens to have /tmp encrypted, his sensitive data is
leaked to an unencrypted part of the medium. Even if the application deletes the
temporary copy afterwards, the data still remains on the medium until it is physically
overwritten. Meta data such as file name, size and ownership may also have leaked and
may therefore remain accessible for some time.

This phenomenon happens equally implicitly with printing. Even if the application
itself does not leak any data, the spooler will usually create a Postscript document in a
subdirectory of /var/spool/lpd/, which is not encrypted unless specifically done so.

Even though it is possible to symlink the “hot” directories such as /tmp, /var/tmp, as
well as the complete /home or /var/spool/lpd/ to directories on the encrypted partition,
the leakage risk can never be avoided completely. It is something that users of partition-
based encryption just have to be aware of and learn to live with by minimizing the
amount of leaked data as much as possible.

27

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

The leakage risk is also another reason why file-based encryption is virtually useless.
While this issue is certainly a problem for sensitive data, there is a far bigger problem,
which so far has been quietly ignored.

2.4 New attack vectors

The point of storing data is to be able to retrieve it at some later date. Most of this data is
processed by user applications, which in turn require an operating system. So far,
everything that was discussed, was based on the assumption that both the OS and the
applications were stored unencrypted - there is also no point in doing otherwise as long
as the data itself is not encrypted.

What follows is the description of one possible way a system can evolve in terms of
security:

. if data cannot* be destroyed, stolen or modified remotely, a dedicated attacker
will find a way to gain local (physical) access to the system

. iflogin procedures, filesystem access control and other restrictions imposed by
the OS and applications cannot be defeated or circumvented, the attacker will
boot his/her own OS

. if the booting sequence on the machine is protected, the attacker will remove
the hard disk and access it from a system under his control

. if the data on the hard disk is encrypted and a brute-force attack is not feasible,
then the attacker will most likely® target the OS and/or the applications

This situation changes rapidly when the data is encrypted: the OS and the applications
are now the target. Instead of breaking the encryption, an attacker can try to subvert the
kernel or the applications, so they leak the desired data or the encryption key.

The goal is therefore to encrypt the OS and all the applications as well. Just as any
security measure that is taken, this scheme involves trade-offs, such as less convenience
and decreased performance. These issues will be discussed later. Every user considering
this scheme must therefore for him- or herself decide, whether the increase in security is
worth the trade-offs.

3 Complete disk encryption

3.1 Tools provided by FreeBSD

The platform of choice here is FreeBSD, because it comes with a modular, very powerful
I/0 framework called GEOM [Kamp, 2003b] since the release of the 5.x branch. The 5.x
branch underwent several major changes compared to the 4.x branch and wasn't
declared -STABLE until the 5.3-RELEASE in November 2004. The 5.x branch did,

4 perfect security is not possible; therefore 'cannot’ should rather be read as 'cannot easily enough’
5 tampering with the hardware is of course also possible, for example with a hardware keylogger;
defending against this kind of attack is not discussed in this paper

28

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

however, feature a GEOM class and a corresponding userland utility called GBDE
(GEOM Based Disk Encryption) as early as January 2003 when 5.0-RELEASE came out.
GBDE was specifically designed to operate on the sector level and is therefore able to
encrypt entire partitions and even hard disks or other media.

When the 5.x branch was finally declared -STABLE and therefore ready for
production use, 6.x became the new developer branch, carrying all the new, more
disruptive features. Into this branch added was also a new module and userland utility
called GELI [Dawidek, 2005b]. In addition to containing most of the GBDE features, GELI
was designed to enable the kernel to mount the root filesystem (/) from an encrypted
partition. GBDE does not allow to do this and therefore requires a “detour” in order to
make complete hard disk encryption work.

This paper will discuss the realization of complete hard disk encryption with both
tools without having to rely on programming. GELI is a more elegant solution, because it
was designed with this application in mind. GBDE, on the other hand, has seen more
exposure because it has been available for much longer then GELI and therefore is more
likely to have received more testing. Using GBDE for complete hard disk encryption also
illustrates some interesting problems inherent with the booting process and how these
can be solved.

Which approach is in the end chosen, is left to the user. The following table lists the
most important features of GBDE and GELI [Dawidek, 2005b].

GBDE GELI

First released in FreeBSD 5.0 6.0

Cryptographic algorithms AES AES, Blowfish, 3DES
Variable key length No Yes

Allows kernel to mount encrypted root partition | No Yes

Dedicated hardware encryption acceleration No Yes, crypto(9)
Passphrase easily changeable Yes Yes

Filesystem independent Yes Yes

Automatic detach on last close No Yes

Table 1: the most important GBDE and GELI features

3.2 The problem with complete disk encryption

There are cases in which it is desirable to encrypt the whole hard disk — especially with
mobile devices. This also includes the encryption of the kernel and the boot loader.

Today's computers, however, can't boot encrypted code. But if the boot code is not
encrypted, it can easily be compromised. The solution is therefore to store all code
necessary for booting and then mounting the encrypted hard disk partition on a medium
that can be carried around at all times .

While virtually any removable medium is easier to carry around than a fixed one (or
even whole laptop), USB memory sticks are currently the best solution. They provide
plenty of space at affordable prices, are easily rewritable many times and easy to use
since operating systems can handle them like a hard disk. But most importantly, they are
small and light.

Obviously, putting the boot code on a removable medium instead of the fixed hard

29

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

disk doesn't solve the problem of compromise — the risk is simply shifted toward the
removable medium. But since that medium can be looked after a lot more easily, there is
a considerable benefit to the user.

3.3 Requirements
Independent of whether GBDE or GELI is used, the following things are required:

A bootable, removable medium. It will carry the boot code as well as the kernel.
This medium is preferably a USB memory stick, because it is small, light and
offers a lot of easily rewritable space.

The device intended for complete disk encryption. Is is very important that this
device is capable of booting from the removable medium mentioned above.
Especially older BIOSes may not be able to boot from USB mass storage.
Bootable CDs will probably work on most machines. Although they work
equally well (r/w access is not a requirement for operation), they are harder to
set up and maintain.

In order to set up and install everything, a basic FreeBSD system is required.
The FreeBSD installation discs carry a “live filesystem” — a FreeBSD system
which can be booted directly from the CD. It can be accessed via the
sysinstall menu entry “Fixit”.

All following instructions are assumed to be executed from the aforementioned “live
filesystem” provided by the FreeBSD installation discs.

Before proceeding any further, the user is strongly urged to back up all data on the media
and the devices in question.

Furthermore, it will be assumed that the hard disk to be encrypted is accessible
through the device node /deviad0 and the removable (USB) medium through /dev/da0.
These paths must be adjusted to the actual set-up!

3.4 Complete hard disk encryption using GBDE

3.4.1 Erasing previously stored data

Before a medium is set up to store encrypted data, it is important to completely erase all
data previously stored on it. All data on it has to be physically overwritten - ideally
multiple times. Otherwise the data that has previously been stored unencrypted would
still be accessible at the sector level of the hard disk until overwritten by new data. There
are two ways to wipe a hard disk clean:

dd if=/dev/zero of=/dev/ad0 bs=1m

overwrites the entire hard disk space with zero values. The parameter bs sets the
block size to 1 MB — the default (512 B) would take a very long time with large disks.

dd if=/dev/random of=/dev/ad0 bs=1m

30

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

does the same thing, but uses entropy instead of zero values to overwrite data. The
problem with the first approach is that it is quite obvious which parts of the medium
carry data and which ones are unused. Attackers looking for potential clues about the
encryption key can often exploit this information.

In most cases, however, this should not be a major risk. The downside of using
entropy is that it requires far more processing power than simply filling the hard disk
space with zero values. The required amount of time may therefore be too great a trade-
off for the additional increase in security — especially on older, slower hardware.

3.4.2 Initialization & the lockfile

After the hard disk to be encrypted has been wiped clean, it can be initialized for
encryption. This is done using the gbde (8) command:

gbde init /dev/ad0 -L /very/safe/place/lockfile
Enter new passphrase:
Reenter new passphrase:

The lockfile is very important, as it is needed later to access the master key which is
used to encrypt all data. The 16 bytes of data stored in this lockfile could also be saved in
first sector of the medium or the partition, respectively. In that case, however, only the
passphrase would be required to get access to the data. The passphrase — however strong
it is — will face intensive exposure with mobile devices as it must be typed in every time
the system is booted up. It therefore cannot be realistically guaranteed that the pass-
phrase remains only known to those authorized to access the protected system and data.

But since an additional medium is needed anyway in order to boot the core OS parts,
it might as well be used as a storage area for the lockfile — effectively functioning as a
kind of access token.

With this scheme, two things are required to get access to the data: the passphrase
and the lockfile. If the lockfile is unavailable (lost or destroyed), even knowledge of the
passphrase will not yield access to the data!

3.4.3 Attaching the encrypted medium

After the initialization is complete, the encrypted hard disk must now be attached -
meaning that the user has to provide both the passphrase and the lockfile to gbde,
which in turn provides (or denies) access to the decrypted data.

gbde attach /dev/ad0 -1 /very/safe/place/lockfile
Enter passphrase:

If the passphrase and the lockfile are valid, gbde creates an additional device node in
the /dev directory. This newly created node carries the name of the just attached device
(“ad0”) plus the suffix “.bde”.

- /dev/adO can be used to access the actual contents of the hard disk, in this case
the cipher text

- /dev/ad0.bde is an abstraction created by GBDE and allows plain text access to
the data

All reads from and writes to the .bde-node are automatically de-/encrypted by GBDE
and therefore no user interaction is required once the correct passphrase and lockfile

31

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

has been provided.

The ad0.bde node acts just like the original ad0 node: it can be partitioned using
bsdlabel (8) orsliced with £disk (8), it can be formated as well as mounted.

It is important to keep in mind that once a storage area has been attached and the
corresponding .bde device node for it has been created, it remains that way until it is
explicitly detached via the gbde command or the system is shut down. In the period
between attaching and detaching, there is no additional protection by GBDE.

3.4.4 Partitioning

The next step is to partition the hard disk. This is usually done using sysinstall (8) -
which, unfortunately, does not support GBDE partitions and fails to list device nodes
with a .bde suffix. Therefore, this work has to be done using the tool bsdlabel.

bsdlabel -w /dev/ad0.bde
bsdlabel -e /dev/adO.bde

First, a standard label is written to the encrypted disk, so that it can be edited
afterwards. bsdlabel will display the current disk label in a text editor, so it can be
modified. In order to make the numbers in the following example easier to read, the disk
size is assumed to be 100 MB. The contents of the temporary file generated by bsdlabel
might look like this:

/dev/ad0.bde:

8 partitions:

size offset fstype |[fsize bsize bps/cpg]

a: 198544 16 unused O O

c: 198560 0 unused 0 O # "raw" part, don't edit

Each partition occupies one line. The values have the following meaning:

column description
1 a=boot partition; b=swap partition ; c=whole disk; d, e, f, g, h=freely available
2and 3 partition size and its offset in sectors
4 filesystem type: 4.2BSD, swap or unused
5,6 and 7 optional parameters, no changes required

Table 2: bsdlabel(8) file format

After the temporary file has been edited and the editor closed, bsdlabel will write
the label to the encrypted hard disk - provided no errors have been found (e.g.
overlapping partitions).

It is important to understand the device node names of the newly created partitions.
The encrypted boot partition (usually assigned the letter “a”), is now accessible via
device node /dev/ad0.bdea. The swap partition is ad0.bdeb and so on. Just as adding a
boot partition to an unencrypted disk would result in a ad0a device node, adding an
encrypted slice holding several partitions inside would result in ad0s1.bdea, ad0s1.bdeb

and so on.
An easy way to keep the naming concept in mind is to remember that everything
written after the .bde suffix is encrypted and therefore hidden even to the kernel until the

32

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

device is attached.

For example: adOsl.bdea means that the data on the first slice is encrypted -
including the information that there is a boot partition inside that slice. If the slice is not
attached, it is only possible to tell that there is a slice on the disk - neither the contents of
the slice, nor the fact that there is at least one partition inside the slice can be unveiled.
In fact, the node adOsl.bdea does not even exist until the slice has been successfully
attached, because without having the key (and the lockfile), the kernel cannot know that
there is a partition inside the encrypted slide.

Scenario: multiple operating systems on the same disk
It is also possible to have multiple operating systems on the same disk - each on its

own slice. The slice containing FreeBSD can be encrypted completely, hiding even the
fact that the FreeBSD slice contains multiple partitions inside (boot, swap, etc). This way,
all data on the FreeBSD slice remains protected, while the other operating systems on
the machine can function normally on their unencrypted slices. In fact, they can't even
compromise the data on the FreeBSD slice — even if an attacker manages to get root
access to a system residing on an unencrypted slice.

3.4.5 Creating the filesystem

Now that device nodes for the encrypted partitions exist, filesystems can be created on
them:

newfs /dev/ado0.bdea
newfs /dev/ad0.bded

etc.
Note that the swap partition does not need a filesystem; the “c” partition represents

the entire (encrypted) disk. This partition must not be formated or otherwise be
modified!

3.4.6 Installing FreeBSD

Now that the filesystems have been created, FreeBSD can be installed on the encrypted
hard disk. Usually, this would be done using sysinstall again. But just as
sysinstall cannot partition and format encrypted media, it cannot install the system
on them. The distributions that comprise the FreeBSD operating system, therefore have
to be installed manually.

The FreeBSD installation disc contains a directory that is named after the release
version of the system, for example: 5.4-RELEASE, 6.0-BETA etc. In this directory, each
distribution - such as base, manpages or src - has its own subdirectory with an
install.sh script. The base distribution is required, all others are optional.

In order to install the distributions, the encrypted boot partition (and others, if used
for example for /usr) has to be mounted and the environment variable DESTDIR set to
the path where the encrypted boot partition has been mounted. Then all distributions
can be installed using their respective install. sh script.

The following example assumes that the encrypted boot partition /dev/ad0.bdea has
been mounted on /fixed and the FreeBSD installation disc on /dist (the “live-filesystem”

33

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

default). If the live-filesystem is used, the /fixed directory is easy to create because the
root (/) is a memory disk.

mount /dev/ad0.bdea /fixed

export DESTDIR=/fixed

cd /dist/5.4-RELEASE/base && ./install.sh

You are about to extract the base distribution into /fixed - are you SURE
you want to do this over your installed system (y/n)?

After all desired distributions have been installed, there is a complete FreeBSD
installation on the encrypted disk and the swap partition is also ready. But since this
system cannot be booted from the hard disk, it is necessary to set up the removable
medium.

3.4.7 Preparing the removable medium

As it has already been discussed, this medium will not be encrypted. This means that the
standard tool sysinstall can be used. The removable medium needs one partition of
at least 7 MB. This is the absolute minimum and provides only space for the kernel, some
modules and the utilities required for mounting the encrypted partition(s). All other
modules such as third party drivers need to be loaded after init (8) has been invoked.

If it is desired, that all FreeBSD kernel modules be available on the removable
medium and thus are loadable before init is called, the slice should be at least 25 MB in
size.

The removable medium can be sliced using £disk or via “Configure” - “Fdisk” in the
sysinstall menu. The changes made to the medium can be applied immediately by
hitting “W”. After that, the slice has to be labeled (sysinstall menu “Label”). All the
space on the slice can be used for the boot partition, since the swap partition on the
encrypted hard disk will be used. The mount point for the boot partition does not
matter; this text, however, will assume that it has been mounted on /removable.

sysinstall then crates the partition, the filesystem on it and also mounts it on the
specified location (/removable). After that, sysinstall can be quit in order to copy the
files required for booting from the removable medium. All that is required is the /boot
directory - it can be copied from the installation on the encrypted hard disk:

cp -Rpv /fixed/boot /removable

3.4.8 The kernel modules

User interaction with GBDE is done through the userland tool gbde (8), but most of the
work is carried out by the kernel module geom_bde.ko. This module must be loaded
before the userland utility is called.

Usually, kernel modules are loaded by 1oader (8) based on the contents of the file /
boot/loader.conf - then control is passed over to the kernel. In order to have the GBDE
module loaded before init is executed, it must be loaded in advance by loader. The
following instruction adds the GBDE kernel module to the loader configuration file on
the removable medium:

echo geom bde load=\"YES\">> /removable/boot/loader.conf

In case additional kernel modules are needed at boot time, they must be copied to /
boot/kernel/ and appropriate entries must be added to /boot/loader.conf (this file

34

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

overrides the defaults in /boot/defaults/loader.conf).
In order to save space on the removable medium and therefore also to speed up
loading, all kernel modules and even the kernel itself can be gzipped.

cd /removable/boot/kernel
gzip kernel geom bde.ko acpi.ko

Binary code compresses to about half of the original size and thus brings a noticeable
decrease in loading time. The modules which won't be used or later will be loaded from
the hard disk can be deleted from the removable medium.

It is important, however, that the code on the removable medium (kernel, modules,
etc) is kept in sync with the system on the hard disk.

3.4.9 The problem with GBDE

As discussed earlier, GBDE has been designed with the encryption of partitions and even
entire media in mind. Unfortunately, however, the geom_bde.ko module does not allow
the kernel to mount an encrypted partition as the root filesystem.

This is because the passphrase must be provided through the utility in user space -
even though the module obviously operates in kernel space. So, by the time the kernel
must mount the root filesystem, the user has not even had the possibility of providing
the passphrase and attaching the encrypted device.

There are two solutions to this problem:

The kernel must be modified to allow mounting of an encrypted root filesystem
by asking for the passphrase in kernel space. This way, the device node which
gives access to the decrypted data (the .bde device node) would be available
before init is started and could be specified in /etc/fstab as the root file-
system. The new facility — GELI — has implemented this scheme and therefore
makes it a lot easier than the second solution.

The second solution is not really a solution, but more a “hack”, as the
shortcomings of GBDE are not solved but avoided. The only conclusion is
therefore that the root filesystem cannot be encrypted and that the filesystem(s)
on the hard disk - although encrypted - must be mounted on directories
residing in the unencrypted root filesystem. Attaching and mounting the
encrypted hard disk must be done after the kernel has mounted an unencrypted
root filesystem and started init and subsequently gbde from it.

3.4.10 The memory disk

Since the contents of the root filesystem will not be encrypted, it is best to store on it
only what is needed to mount the encrypted partitions. Mounting the filesystem on the
removable medium as the root filesystemm means that the removable medium would
have to be attached to the computer while the system is in use and therefore face a lot of
unnecessary exposure.

The better solution is to store an image of a memory disk on the removable medium,
which contains just the utilities necessary to mount the encrypted hard disk. The kernel
can mount the memory disk as the root filesystem and invoke init on it, so that gbde
can be executed. After the user has provided the passphrase to the encrypted partitions
on the hard disk, the utilities on the memory disk can mount the encrypted partitions
and then load the rest of the operating system from the encrypted hard disk - including

35

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

all applications and user data.
First, an image for the memory disk must be created on the removable medium.

dd if=/dev/zero of=/removable/boot/mfsroot bs=1m count=10

Then a device node for the image is needed, so that a filesystem can be created on it
and then mounted.

mdconfig -a -t vnode -f /removable/boot/mfsroot
mdl

newfs /dev/mdl

mount /dev/mdl /memdisk

If the output of mdconfig(8) differs from “mdl”, the path in the following
instructions must be adjusted. The assumed mounting point for the memory disk will be
/memdisk.

3.4.11 Populating the memory disk filesystem

Since this filesystem is going to be mounted as the root filesystem, a directory must be
created to serve as the mount point for the encrypted boot partition (/memdisk/safe).

cd /memdisk
mkdir safe

Some other directories also act as mount points and don't need to be symlinked to
the encrypted hard disk. The directory /etc, however, is required, because the rc (8)
script in it will be modified to mount the encrypted partitions.

mkdir cdrom dev dist mnt etc

Now, the lockfile, which is needed to access the encrypted data, must be copied onto
the removable medium - turning it into a kind of access token, without which the
encrypted data cannot be accessed even with the passphrase available.

cp /very/safe/place/lockfile /memdisk/etc/

It is important to remember that the lockfile is updated each time the passphrase is
changed.

3.4.12 The booting process

After the kernel has been loaded from the removable medium it mounts the memory
disk as the root filesystem and then executes init, the first process. init in turn calls
rc, a script that controls the automatic boot process. Since rc is a text file rather than a
binary executable, it can be easily modified to mount the encrypted boot partition before
the majority of the system startup — which requires a lot of files — takes place. The rc
script can therefore be copied from the installation on the hard disk and then be edited.

cp /fixed/etc/rc /memdisk/etc/

The following commands have to be inserted after the line “export HOME PATH” (in
5.4-RELEASE: line 51) into /memdisk/etc/rc:

| /rescue/gbde attach /dev/ad0 -1 /etc/lockfile && \ I

36

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

/rescue/mount /dev/ad0.bdea /safe && \
/rescue/rm -R /etc && \
/rescue/ln -s safe/etc /etc

The four commands first attach the encrypted boot partition, mount it on /safe and
then erase the /etc directory from the memory disk, so that it can be symlinked to the
directory on the encrypted disk.

Obviously, the utilities in the /rescue directory need to be on the memory disk. The /
rescue directory is already part of a FreeBSD default installation and provides statically
linked executables of the most important tools. Although the size of the /rescue directory
seems at first glance to be huge (~470 MB!), there is in fact one binary which has been
hardlinked to the various names of the utilities. The /rescue directory therefore contains
about 130 tools which can be executed without any dependencies on libraries. The total
size is less than 4 MB. Although this fits easily on the created memory disk, the directory
cannot be just copied. The following example uses tar (1) in order to preserve the
hardlinks.

cd /fixed

tar -cvf tmp.tar rescue
cd /memdisk

tar -xvf /fixed/tmp.tar
rm /fixed/tmp.tar

3.4.13 Creating the symlinks

The files required for mounting the encrypted boot partition are now in place and the rc
script has also been appropriately modified. But since the encrypted boot partition will
not be mounted as the root (/), but in a subdirectory of the memory disk (/safe), all of the
relevant directories must have entries in the root pointing to the actual directories in /
safe.

umount /fixed

mount /dev/ad0.bdea /memdisk/safe
cd /memdisk

ln -s safe/*

= = 3+ 3

3.4.14 Integrating the memory disk image

The memory disk image now contains all the necessary data, so it can be unmounted
and detached (if the memory disk image was not previously accessible through /
dev/md]l, the third line must be adjusted).

umount /memdisk/safe
umount /memdisk
mdconfig -4 -ul

In order to save space and to speed up the booting process, the memory disk image
can also be gzipped, just like the kernel modules and the kernel itself:

gzip /removable/boot/mfsroot
If the kernel was compiled with the MD_ROOT option — which is the case with the

37

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

GENERIC kernel - it is able to mount the root from a memory disk. The file that holds the
image of the memory disk must be loaded by the FreeBSD loader. This works almost
the same way as with kernel modules, as the image must be listed in the configuration
file /boot/loader.conf. Compared to executable code however, the memory disk image
must be explicitly specified as such in the configuration file, so the kernel knows how to
handle the file's contents. The following three lines are required in /boot/loader.conf:

mfsroot_load="YES"
mfsroot_type="mfs_root"
mfsroot_name="/boot/mfsroot"

It is also important to note that there is no need to maintain an extra copy of the /
etc/fstab file on the removable medium as the kernel automatically mounts the first
memory disk that has been preloaded. Although this /etc/fstab issue is not a major
problem, it is a necessary measure in order to make this scheme work with GELI - which
is able to mount an encrypted partition as the root filesystem.

3.4.15 The swap partition

Although the swap partition has already been set up and is ready for use, the operating
system does not yet know which device to use. It is therefore necessary to create an entry
for it in the file /etc/fstab. This file must be stored on the hard disk, not the removable
medium.

mount /dev/ad0.bdea /fixed
echo “/dev/ad0.bdeb none swap sw 0 0" > /fixed/etc/fstab

Now, the system is finally ready and can be used by booting from the removable
medium. The modified rc script will ask for the passphrase and then mount the

encrypted partition, so that the rest of the system can be loaded.

3.4.16 Post-installation issues

Since the system on the encrypted disk was not installed using sysinstall, a few
things such as setting the timezone, the keyboard map and the root password have not
yet been taken care of. These settings can easily be changed by calling sysinstall now.
Packages such as the X server, which is not part of the system, can be added using
pkg_add (8) . The system is now fully functional and ready for use.

3.5 Complete hard disk encryption using GELI

This chapter describes the process of setting up complete hard disk encryption using
FreeBSD's new GELI facility. GELI is so far only available on the 6.x branch. It is
important to note that the memory disk approach as discussed previously with GBDE is
also possible with GELI. But since GELI makes it possible to mount an encrypted
partition as the root filesystem, the memory disk is not a requirement anymore. This
advantage, however, is somewhat weakened by a drawback that the memory disk
scheme does not suffer from. This particular issue will be discussed in more detail later

38

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

and ultimately it is up to the user to decide which scheme is more appropriate.

As the concept of having a memory disk with GELI is very similar to having one with
GBDE, this chapter discusses only how to use GELI to boot directly with an encrypted
root filesystem — without the need for a memory disk.

Many of the steps required to make complete hard disk encryption work with GBDE
are also necessary with GELI - regardless of whether a memory disk is used or not.
Therefore the description and explanation of some steps will be shortened or omitted
completely here. The necessary commands will of course be given, but for a more
detailed explanation the respective chapters in the GBDE part are recommended for
reference.

3.5.1 Readying the hard disk

As it has already been mentioned in the GBDE chapter, erasure of previously stored data
on the medium intended for encryption is strongly recommended. The data can be
overwritten by either using the zero or the entropy device as a source.

dd if=/dev/zero of=/dev/ad0 bs=1m
- Or -
dd if=/dev/random of=/dev/ad0 bs=1m

Their respective advantages and drawbacks were discussed in chapter 3.4.1.

3.5.2 Improvements and new problems with GELI

Just as GBDE, GELI must first initialize the medium intended for encryption. GELI's big
advantage over GBDE for the purpose of complete hard disk encryption is that it enables
the kernel to mount an encrypted partition as the root filesystem. This works by passing
the -b parameter to the geli (8) userland tool when the hard disk is initialized. This
parameter causes GELI to flag the partition as “ask for passphrase upon discovery”.

When the kernel initializes the various storage media in the system at boot time, it
searches the partitions on them for any that have been flagged by the user and then asks
for the passphrase of the respective partition. The most important fact is, that this is
done in kernel space - the new device node providing access to the plain text (with the
suffix .eli, analogous to GBDE's .bde suffix) therefore already exists before the kernel
mounts the root filesystem.

Furthermore - as it is possible with GBDE - GELI also allows the key material to be
retrieved from additional sources besides the passphrase. While GBDE uses the 16-byte
lockfile for this purpose, GELI supports the specification of a keyfile with the -K
parameter. The size of this keyfile is not hardcoded into GELI and can be chosen freely
by the user; if '-' instead of a file name is given, GELI will read the contents of the keyfile
from the standard input.

This way it is even possible to concatenate several files and feed them to GELI's
standard input through a pipeline. The individual files would then each hold a part of
the key and the key would therefore be distributed across several (physical, if chosen)
places.

Unfortunately, however, the keyfile cannot be used with partitions which have been
flagged for “ask for passphrase upon discovery”. Using a passphrase and a keyfile to
grant access to the encrypted data would require that a parameter be passed to the

39

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

kernel - specifying the path to the keyfile. This path could of course also be hardcoded
into the kernel, for example that the keyfile must be located at /boot/geli.keys/<device>.
Unfortunately, this functionality does not yet exist in GELIL The ability to mount an
encrypted partition as the root filesystem comes therefore at the price of having to rely
only on the passphrase to protect the data. The memory disk approach that was
discussed in order to make complete hard disk encryption work with GBDE also works
with GELI. Although it is harder to set up and maintain, it combines the advantages of
“something you know” and “something you have”, namely a passphrase and a
lockfile/keyfile. Especially on mobile devices it is risky to rely only on a passphrase, since
it will face intensive exposure as it must be typed in each time the system is booted up.
The choice between better usability and increased security is therefore left to user.

3.5.3 Initialization, attachment and partitioning

Initializing the hard disk with GELI works similarly as it does with GBDE - except that the
partition must be flagged as “ask for passphrase upon discovery” and therefore cannot
(yet) use a keyfile.

geli init -b /dev/ado
Enter new passphrase:
Reenter new passphrase:

Very important here is to specify the -b parameter, which causes the geom_eli.ko
kernel module to ask for the passphrase if a GELI encrypted partition has been found.
The -a parameter can (optionally) be used to specify the encryption algorithm: AES,
Blowfish or 3DES.

Attaching the hard disk is also largely the same, again except that the keyfile
parameter must be omitted from the command.

geli attach /dev/ado
Enter passphrase:

Upon successful attachment, a new device node will be created in the /dev directory
which carries the name of the specified device plus a “.eli” suffix. Just like the “.bde”
device node created by GBDE, this node provides access to the plain text. The output of
geli after successful attachment looks something like this (details depend on the
parameters used and the available hardware):

GEOM_ELI: Device adO.eli created.

GEOM_ELI: Cipher: AES
GEOM_ELI: Key length: 128
GEOM _ELTI: Crypto: software

Since sysinstall cannot read GELI encrypted partitions either, the partitioning
must be done using the bsdlabel tool.

bsdlabel -w /dev/ad0.eli
bsdlabel -e /dev/ad0.eli

Partition management was discussed in more detail in chapter 3.4.4.

40

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

3.5.4 Filesystem creation and system installation

Now that the partition layout has been set, the filesystem(s) can be created, so FreeBSD
can be installed.

newfs /dev/ado0.elia
newfs /dev/ad0.elid

etc.

The actual installation of the system on the encrypted hard disk must also be done
manually, since sysinstall does not support GELI encrypted partitions.
mount /dev/adO.elia /fixed
export DESTDIR=/fixed
cd /dist/5.4-RELEASE/base && ./install.sh

You are about to extract the base distribution into /fixed - are you SURE
you want to do this over your installed system (y/n)?

3.5.5 The removable medium

Since this medium is not going to be encrypted, it can be sliced and partitioned with
sysinstall. The size requirements are largely the same as for GBDE - the minimum is
even a bit lower because there is no need to store the image of the memory disk. With a
customized kernel, this minimum may be as low as 4 MB.

In order to boot the kernel from the removable medium (/removable), it is necessary
to copy the /boot directory from the encrypted hard disk (mounted on /fixed).

cp -Rpv /fixed/boot /removable

All kernel modules except geom_eli.ko (and acpi.ko, if used) can be deleted if space
is a problem. Further, all modules and even the kernel can be gzipped. This saves not
only space, but also reduces loading time.

cd /removable/boot/kernel
gzip kernel geom eli.ko acpi.ko

Just as it is the case with GBDE, GELI also needs its kernel module geom_eli.ko
loaded by loader (8) in order to ask for the passphrase before the root filesystem is
mounted. The following command adds the appropriate entry to /boot/loader.conf.

echo geom_eli load=\“YES\“>> /removable/boot/loader.conf

3.5.6 Mounting the encrypted partition

Because of GELI's ability to mount encrypted partitions as the root filesystem the entire
workaround with the memory disk can be avoided. So far, however, the kernel does not
know which partition it must mount as the root filesystem - even if the device node to
the plain text of the encrypted hard disk has been created by GELI. The memory disk
approach, which is necessary to make complete hard disk encryption work with GBDE,
has the advantage that the kernel will automatically mount the memory disk as the root
filesystem if an image has been preloaded.

In this case, however, it is necessary to create an entry in /etc/fstab, so the kernel
knows which partition to mount as the root filesystem.

mkdir /removable/etc

41

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

echo “/dev/ad0.elia / ufs rw 1 1" >> /removable/etc/fstab

It is important to note that this file must be stored on the removable medium and
serves only the purpose of specifying the device for the root filesystem. As soon as the
kernel has read out the contents of the file, it will mount the specified device as the root
filesystem and the files on the removable medium (including fstab) will be outside of the
filesystem name space. This means that the removable medium must first be mounted
before the files on it can be accessed through the filesystem name space. It also means,
however, that the removable medium can actually be removed after the root filesystem
has been mounted from the encrypted hard disk - thus reducing unnecessary exposure.
It is crucial that the removable medium be always in the possession of the user, because
the whole concept of complete hard disk encryption relies on the assumption that the
boot medium — therefore the removable medium, not the hard disk - is uncompromised
and its contents are trusted.

If any other partitions need to be mounted in order to boot up the system - for
example /dev/ad0.elid for /usr - they must be specified in /etc/fstab as well. Since most
installations use at least one swap partition, the command for adding the appropriate
entry to /etc/fstab is given below.

echo “/dev/ad0.elib none swap sw 0 oY > /fixed/etc/fstab

The system is now ready for use and can be booted from the removable medium. As
the different storage devices in the system are found, GELI searches them for any
partitions that were initialized with the geli init -b parameter and asks for the
passphrase. If the correct one has been provided, GELI will create new device nodes for
plain text access to the hard disk and the partitions on it (e.g. /dev/ad0.elia), which then
can then be mounted as specified in /etc/fstab.

After that, the rest of the system is loaded. sysinstall can then be used in order to
adjust the various settings that could not be set during the installation procedure - such
as timezone, keyboard map and especially the root password!

4 Complete hard disk encryption in context

4.1 New defenses & new attack vectors - again

Any user seriously thinking about using complete hard disk encryption should be aware
of what it actually protects and what it does not.

Since encryption requires a lot of processing power and can therefore have a
noticeable impact on performance, it is usually not enabled by default. FreeBSD marks
no exception here. Although it provides strong encryption algorithms and two powerful
tools for encrypting storage media, it is up to the user to discover and apply this
functionality.

This paper gave instructions on how to encrypt an entire hard disk while most of the
operating system is still stored and loaded from it. It is important to remember, however,
that FreeBSD - or any other software component for that matter — will not warn the user
if the encrypted data on the hard disk is leaked (see chapter 2.3) or intentionally copied
to another, unencrypted medium, such as an external drive or a smart media card. It is
the responsibility of the user to encrypt these media as well.

This responsibility applies equally well to data in transit. Network transmissions are

42

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

in most cases not encrypted by default either. Since all encryption and decryption of the
data on the hard disk is done transparently to the user once the passphrase has been
provided, it is easy to forget that some directories might contain data which is stored on
a different machine and made available through NFS, for example — in which case the
data is transferred in the clear over the network, unless explicitly set up otherwise.

The mounting facility in UNIX is very powerful; but it also makes it difficult to keep
track of which medium actually holds what data.

The network poses of course an additional threat, because of an attacker's ability to
target the machine remotely. The problem has already been discussed in chapter 1. If a
particular machine is easier to attack remotely than locally, any reasonable attacker will
not even bother with getting physical access to the machine. In that chase it would make
no sense to use complete hard disk encryption, because it does not eliminate the
weakest link (the network connectivity).

If, on the other hand, not the network, but the unencrypted or not fully encrypted
hard disk is the weakest link and the attacker is also capable of getting physical access to
the machine (for reasons discussed in chapter 2.4), then complete hard disk encryption
makes sense.

As soon as complete hard disk encryption is in use, it is quite possible that the
weakest link is now the network connectivity again - because compromising the
operating system or the applications in order to leak encrypted data is likely to be much
harder than for example exploiting a buffer overflow in a server.

A key point to remember is that as long as a particular storage area is attached, the
data residing on it is not protected any more than any other data accessible to the
system. This applies to both GBDE and GELI; even unmounting an encrypted storage
area will not protect the data from compromise since the corresponding device node
providing access to the plain text still exists. In order to remove this plain text device
node, the storage area in question must be detached. With GBDE this must be done
manually, GELI has a feature that allows for automatic detachment on the last close -
but this option must be explicitly specified.

Since the partition holding the operating system must always be attached and
mounted, its contents are also vulnerable during the entire time the system is up. This
means that remotely or even locally introduced viruses, worms and trojans can
compromise the system in the same way they can do it on a system without complete
hard disk encryption.

Another way to attack the system would be by compromising the hardware itself , for
example by installing a hardware keylogger. This kind of attack is very hard to defend
against and this paper makes no attempt to solve this issue.

What complete hard disk encryption does protect against, is attacks which aim at
either accessing data by reading out the contents of the hard disk on a different system
in order to defeat the defenses on the original system or by compromising the system
stored on the hard disk, so the encryption key or the data itself can be leaked. Encryption
does not, however, prevent the data from being destroyed, both accidentally and
intentionally.

If it is chosen that the encrypted partition is mounted directly as the root filesystem —
without the need for a memory disk, then it is crucial that a strong passphrase be
chosen, because that will be the only thing required to access the encrypted data.
Choosing the memory disk approach makes for a more resilient security model, since it
enables the user to use a lockfile (GBDE) or a keyfile (GELI) - in order to get access to the
data.

While all these previously mentioned conditions and precautions matter, it is
absolutely crucial to understand that the concept of complete hard disk encryption

43

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

depends upon the assumption that the data on the removable medium is trusted. The
removable medium must be used because most of the hardware is not capable of
booting encrypted code. Since the kernel and all the other code necessary for mounting
the encrypted partition(s) must be stored in the clear on the removable medium, the
problem of critical code getting compromised has, in fact, not really been solved. The
most efficient way to attack a system like this would most likely be by compromising the
code on the removable medium.

It is therefore crucial that the user keep the removable medium with him or her at all
times. If there is the slightest reason to believe that the data on it may have been
compromised, its contents must be erased and reconstructed according to the instructions
in the respective GBDE or GELI chapters.

If the removable medium has been lost or stolen and there was a keyfile or lockfile
stored on it, then two issue must be taken into account:

The user will not be able to access to encrypted data even with the passphrase.
It is therefore strongly recommended that a backup of the keyfile/lockfile be
made and kept in a secure place - preferably without network connectivity.

The second possibility can be equally devastating, since the keyfile/lockfile
could fall into the hands of someone who is determined to break into the
system. In that case, all the attacker needs is the passphrase — which can be very
hard to keep secret for a mobile device. It is therefore recommended that both
the passphrase and the keyfile/lockfile are changed in the event of a removable
medium loss or theft.

4.2 Trade-offs

Complete hard disk encryption offers protection against specific attacks as discussed in
chapter 4.1. This additional protection, however, comes at a cost — which is usually why
security measures are not enabled by default. In the case of complete hard disk
encryption, the trade-offs worth mentioning the most are the following:

Performance. Encryption and decryption consume a lot of processing power.
Since each I/0 operation on the encrypted hard disk requires heavy
computation, the throughput is usually limited by power of the CPU(s) and not
the bandwidth of the storage medium. Especially write operations, which must
be encrypted, are noticeably slower than read operations, where decryption is
performed. Systems which must frequently swap out data to secondary storage
and therefore usually to the encrypted hard disk can suffer from an enormous
performance penalty. In cases where performance becomes too big a problem
it is suggested that dedicated hardware be used for cryptographic operations.
GELI supports this by using the crypto(9) framework, GBDE unfortunately does
so far not allow for dedicated hardware to be used and must therefore rely on
the CPU(s) instead.

Convenience. Each time the system is booted, the user is required to attach or
insert the removable medium and enter the passphrase. Booting off a
removable medium is usually slower than booting from a hard disk and the
passphrase introduces an additional delay.

Administrative work. Obviously the whole scheme must first be set up before it
can be used. The majority of this quite lengthy process must also be repeated

44

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

with each system upgrade as the code on the removable medium must not get
out of sync with the code on the hard disk. As this set-up or upgrade process is
also prone to errors such as typos, it may be considered an additional risk to the
data stored on the device.

This list is by no means exhaustive and every user thinking about using complete hard
disk encryption is strongly encouraged to carefully evaluate its benefits and drawbacks.

4.3 GBDE vs. GELI

FreeBSD provides two tools for encrypting partitions, GBDE and GELI. Both can be used
to make complete hard disk encryption work. If GBDE is chosen, the memory disk
approach must be used, as GBDE does not allow the kernel to mount an encrypted
partition as the root filesystem. The advantage is that it is possible to use a lockfile in
addition to a passphrase. This makes for a more robust security model and should
compensate for the administrative “overhead” caused by the memory disk.

GELI not only makes it possible to use a memory disk too, it also allows the user to
choose from different cryptographic algorithms and key lengths. In addition to that it
also offers support for dedicated cryptographic hardware devices and of course
eliminates the need for a memory disk by being able to directly mount the encrypted
boot partition. The drawback of mounting the root directly from an encrypted partition
is that GELI so far does not allow for a keyfile to be used and therefore the security of the
encrypted data depends solely on the passphrase chosen.

Looking at the features of the two tools, it may seem as though GELI would be the
better choice in any situation. It should be noted, however, that GBDE has been around
for much longer than GELI and therefore is more likely to have received more testing and
review.

5 Conclusion

Mobile devices are intended to be used anywhere and anytime. As these devices get
increasingly sophisticated, they allow the users to store massive amounts of data — a lot
of which may often be sensitive. Encrypting individual files simply does not scale and on
top of that does nothing to prevent the data from leaking to other places. Partition-based
encryption scales much better but still, a lot of information can be compiled from
unencrypted sources such as system log files, temporary working copies of opened files
or the swap partition. In addition to that, both schemes do nothing to protect the
operating system or the applications from being compromised.

In order to defend against this kind of attack, it is necessary to encrypt the operating
system and the applications as well and boot the core parts such as the kernel from a
removable medium. Since the boot code must be stored unencrypted in order to be
loaded, it must be kept on a medium that can easily be looked after.

FreeBSD provides two tools capable of encrypting disks: GBDE and GELI. Complete
hard disk encryption can be accomplished by using either a memory disk as the root
filesystem and then mount the encrypted hard disk in a subdirectory or by directly
mounting the encrypted hard disk as the root filesystem.

The first approach can be done with both GBDE and GELI and has the advantage
that a lockfile or keyfile can be used in addition to the passphrase, therefore providing

45

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

more robust security. The second approach omits the memory disk and therefore saves
some administrative work. It works only with GELI, however, and does not allow for a
keyfile to be used - therefore requiring a trade-off between better usability/maintain-
ability and security.

Under no circumstances does complete hard disk encryption solve all problems
related to security or protect against any kind of attack. What it does protect against, is
attacks which are aimed at accessing data by reading out the contents of the particular
hard disk on a different system in order to defeat the original defenses or to compromise
the operating system or applications in order to leak the encryption key or the encrypted
data itself.

As with any security measure, complete hard disk encryption requires the users to
make trade-offs. The increase in security comes at the cost of decreased performance,
less convenience and more administrative work.

Complete hard disk encryption makes sense if an unencrypted or partially encrypted
hard disk is the weakest link to a particular kind of attack.

References & further reading

Dawidek, 2005a
P.]. Dawidek, geli — control utility for cryptographic GEOM class
FreeBSD manual page
April 11, 2005

Dawidek, 2005b
P.J. Dawidek, GELI - disk encryption GEOM class committed
hitp://lists. freebsd.org/pipermail/freebsd-current/2005-uly/053449. html
posted on the 'freebsd-current' mailing list
July 28, 2005

Dowdeswell & loannidis, 2003
R. C. Dowdeswell & J. Ioannidis, The CryptoGraphic Disk Driver

http://lwww. usenix.orglevents/usenix03/tech/freenix03/full papers/dowdeswell/

dowdeswell. pdf
June 2003

Kamp, 2003a
P.-H. Kamp, GBDE - GEOM Based Disk Encryption
http://phk.freebsd.dk/ dcon-03.gbde.paper.pdf
July 7, 2003

Kamp, 2003b

P.-H. Kamp, GEOM Tutorial

hitp://phk.freebsd.dk/pubs/bsdcon-03.slides. geom-tutorial. pdf
August 19, 2003

Lemos, 2005
R. Lemos, Backups tapes a backdoor for identity thieves
http://www.securityfocus news/11048

April 28, 2005

46

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Leyden, 2004
J. Leyden, Oops! Firm accidentally eBays customer database

http://wwuw.theregister.co.uk/2004/06/07/hdd wipe_shortcomings/
June 7, 2004

Noguchi, 2005
Y. Noguchi, Lost a BlackBerry? Data Could Open A Security Breach
http://lwww.washingtonpost.com/wp-dyn/content/article/2005/07/24/

AR2005072401135.html
July 25, 2005

OpenBSD, 1993
vnconfig - configure vnode disks for file swapping or pseudo file systems
OpenBSD manual page

awogos_o&mangath OggnB§D+Curren
July 8, 1993

Reuters, 2005
Reuters, Stolen PCs contained Motorola staff records

http://news.zdnet.co.uk/internet/security/0,39020375,39203514,00.htm
June 13, 2005

Sarche, 2005
J. Sarche, Hackers hit U.S. Army computers,

http://www.globetechnology.com/servlet/story/RTGAM.20050913.gtarmysep13/

BNStory/Technology/
September 13, 2005

47

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

48

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Improving TCP/IP security through randomization without
sacrificing interoperability

Michael James Silbersack
The FreeBSD Project

Introduction

Over the years, many security problems have been found in the TCP and IP protocols. This
1s not surprising; the authors of these protocols probably did not anticipate their creations
being used on open, chaotic networks like today's internet. Had they envisioned our present
reality, they most certainly would have included provisions to prevent spoofing, modification,
and interception of data.

In the face of attackers that can intercept packets, not much can be done to improve TCP/IP
without moving to IPSec or other protocols which encrypt the entire packet. However, in the
face of spoofing attacks where the attacker has only partial information about the target
connection, some improvements can be made.

Over the past few years, FreeBSD has moved slowly to make changes to our TCP/IP stack
when security issues that required a change in network visible behavior were announced.
There is a simple reason for this — almost every time we have made a reactionary change to
the TCP/IP stack, users have reported compatibility problems.

This paper aims to describe the changes that FreeBSD has made to improve network security
without sacrificing compatibility, and also to propose some new changes that will increase
network security even further.

Four major topics are covered: TCP Initial Sequence Numbers, TCP Timestamps, IP ID
values, and ephemeral port randomization.

TCP Initial Sequence Numbers that there 1s no RFC recommendation on
initial sequence numbers that takes all

The topic of TCP initial sequence numbers security and compatibility issues into

has been written about many times. The account. Additionally, no paper has

Morris worm made news in 1988, Kevin reexamined all operating systems to see how

Mitnick's spoofing attack on Tsutomu effective the response to “Slipping in the

Shimomura made news in 1995, “The Window” has been.

Problem with Random Increments” appeared

in 2001, and Paul Watson's “Slipping in the The importance of unpredictable TCP

Window” made the news in 2004. Despite initial sequence numbers

these events, and the publishing of many

excellent papers on the topic such as [Zal01] The TCP protocol uses a 32-bit sequence

and [Zal02], this is still a topic worth number to track the current state of a

discussing for one main reason: Every connection; this sequence number is

operating system still uses a different method incremented for each octet of data sent over

of ISN generation! the connection, and in response to packets
with the SYN or FIN flags. TCP

This divergence is seemingly due to the fact connections are bidirectional, so there are

49

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

effectively two sequence numbers that must
be tracked per connection, although each is
effectively independent.

There are three categories of attacks that can
be performed if an attacker can guess the
current sequence number of a connection:
Connection spoofing, connection resetting,
and data injection.

Connection spoofing is potentially the most
serious of the attacks, and was described first
in [Mor88]. In order to spoof a connection,
one must send a fabricated SYN packet with
a false source IP address, then guess the
sequence number than the destination system
will respond with in its SYN-ACK packet. If
this value can be guessed and put into a
fabricated ACK packet, the server will
believe that it has established a connection
with the false source IP address. While the
attacker can not receive data from the victim
in this scenario, he can send data. This is a
very dangerous attack when services that can
grant permissions based on IP addresses,
such as rlogin, are attacked.

As connection spoofing requires an exact
guess in order for success to occur,
increasing each initial sequence number by a
random positive increment over the
previously used ISN provides moderate
protection from the attack. If a random
positive increment in the range of one to one
million is used, the attacker must send on
average five hundred thousand packets to
successfully spoof a single connection. Due
to this difficulty and also due to the removal
of IP-based authentication in most programs
today, connection spoofing is not any longer
a serious threat.

Connection resetting attacks have the modest
goal of interrupting an existing connection
between two hosts. As pointed out in
[Wat04], a spoofed RST packet need not be
exact, and must only have a value within the
TCP sliding window. With many operating
systems using a 64K or larger window, this
means that a brute force attack on the entire
sequence space of a connection would only
require 232 / 2716 (65536) packets. When

50

random positive increments are used, and the
general range of a connections sequence
numbers can be narrowed down, the attack
becomes trivial.

Data injection attacks take advantage of the
same TCP flaw/feature, but instead of
sending a RST packet, they send a data
payload. In the case of encrypted
connections like SSH/SSL, this will merely
result in the connection being terminated. In
the case of more free-form protocols such as
telnet, commands could probably be
successfully injected.

Although most connections are too short
lived and unimportant to be worth resetting /
injecting data into, [Wat04] points out that
BGP sessions are valuable enough to be
targeted.

As the result of [Wat04], many
improvements to TCP which would make
these attacks less likely by reducing the
range of sequence values accepted were
proposed. Also suggested was the
randomization of ephemeral ports to add an
additional barrier to the attack.
Unfortunately, the complexity, potential
compatibility issues, and legal issues
surrounding the proposed fixes have caused
many operating systems (including
FreeBSD) to only partially implement them.

Initial Sequence Number requirements

The original TCP document, RFC 793 states:

RFC 793, page 27:

To avoid confusion we must prevent
segments from one incarnation of a
connection from being used while
the same sequence numbers may still
be present in the network from an
earlier incarnation. We want to
assure this, even if a TCP crashes
and loses all knowledge of the
sequence numbers it has been using.
When new connections are created,
an initial sequence number (ISN)
generator is employed which selects
a new 32 bit ISN. The generator is
bound to a (possibly fictitious) 32
bit clock whose low order bit is

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

incremented roughly every 4
microseconds. Thus, the ISN cycles
approximately every 4.55 hours.
Since we assume that segments will
stay in the network no more than
the Maximum Segment Lifetime (MSL)
and that the MSL is less than 4.55
hours we can reasonably assume that
ISN's will be unique.

Other than stating that the sequence numbers
of connections which share the same [P/port
tuple should have non-overlapping sequence
numbers within the same MSL, which is
defined to be 2 minutes, no other
requirements are stated.

The goal of having monotonically increasing
initial sequence numbers of course only
matters when an [P/port tuple is reused
within a short period of time. A system
reboot (or NAT machine reboot) is one
reason this can occur.

Another situation in which port reuse will
occur is when a client machine makes
frequent connections to a server, going
through its entire ephemeral port range in the
process. If the client quickly runs through
this range and reuses the first ephemeral
port, the SYN packet reaching the server will
find a socket still in the TIME WAIT state.
In order to maintain the “quiet time” of the
TIME_WAIT state, but to still allow new
connections on that IP/port tuple to be
accepted, the authors of the 4.2BSD TCP/IP
stack added a simple check. If the ISN of a
SYN packet coming in was greater than the
value of the last sequence number used in the
connection that previously occupied that
[P/port tuple, the old socket would be
discarded and a new connection would be
established. Given the mod 1 arithmetic
used in sequence number calculations and
the 32-bit size of sequence numbers, this
means that any value up to 31 bits in size
greater than the previously used value would
be accepted, and any value up to 31 bits less
in size would be ignored until the
TIME WAIT socket timed out on its own.

This sequence number check, although
originally a quick hack, made its way into

many TCP/IP stacks over the years. An
operating system that ignores this rule and
attempts to send out SYN packets with
random ISN values will find that roughly
50% of connections will fail in situations
where TIME WAIT recycling comes into

play.

An attempt to emulate the monotonic
increase algorithm from RFC 793 while
making sequence number prediction hard 1s
what presumably led to the random positive
increment algorithms used by many
operating systems in the 1990s.

In 2001, as a result of the information in
[NewO1], this author did an ad-hoc survey of
the ways in which open source operating
systems validated initial sequence numbers,
and determined that the BSD-derived
TIME WAIT check is the only actual
requirement imposed on a TCP/IP stack
author. SYN-ACK packets should exhibit a
sequence value greater than the one used by
the previous incarnation of a connection on
that port, but no known operating system
actually checks. Additionally, there is no
requirement that an operating system use the
same sequence space for SYN and SYN-
ACK packets.

An improvement: RFC 1948

In RFC 1948, Steven Bellovin proposed a
ISN generation algorithm that would create
monotonically increasing ISN wvalues that
differed per IP/port tuple:

RFC 1948, page 2 - 3
...Instead, we use the current 4
microsecond timer M and set

ISN = M + F(localhost, localport,
remotehost, remoteport).

It is vital that F not be
computable from the outside,
attacker could still guess at
sequence numbers from the initial
sequence number used for some other
connection. We therefore suggest
that F be a cryptographic hash
function of the connection-id and

or an

some secret data. MD5 [9] 1is a

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

good choice, since the code is
widely available.

The secret data can either be a
true random number [10], or it can
be the combination of some per-host
secret and the boot time of the

machine...

This algorithm performs exactly as expected,
creating a unique value for each [P/port tuple
that is then incremented at a constant rate by
the system time. Unfortunately, there is one
property of this algorithm that precludes it
from being used as is. Since the time
component increases at a constant rate and
the hash component is constant, all future
ISNs for a IP/port-tuple may be perfectly
predicted once a single value has been
observed. This flaw was noted in [Zal01],
but no specific improvement was suggested.

Therefore, the following attack (inspired by
comments from Robert Watson) is possible
when RFC 1948 is used for generating the
ISNs sent out in SYN-ACK packets. A
spammer with a T1 connection he wishes to
keep secret obtains a dial-up connection
from an ISP that does not block connections
to port 25. The spammer than makes
connections from his dynamically assigned
IP address to port 25 on each of his intended
spam targets, logging the ISN returned and
the OS fingerprint detected. Next, the
spammer disconnects his modem, and puts
the observed data into his mass mailing
software. This software then proceeds to use
the obtained data to forge connections to
each of the target mail servers, causing spam
to appear to originate from the dial-up IP
address.

RFC 1948 usage in FreeBSD

In the spring of 2001, the results of [NewO1]
showed that the random positive increments
algorithm FreeBSD was still using was
insecure. As a quick fix, the algorithm used
by OpenBSD was ported over.
Unfortunately, that algorithm created non-
monotonic sequence numbers in SYN
packets, and problems with TIME WAIT
recycling were quickly reported by users.

As a result, this author decided to start from
scratch, and on August 22nd, 2001 the
following ISN generation algorithm was
committed to the FreeBSD TCP/IP stack:

ISN values in SYN-ACK packets are given
random values, as returned by arc4random().

ISN values in SYN packets are generated by
the RFC 1948 algorithm:

ISN = Time + MD5(remoteport, localport,
remotehost, localhost, secret)

Time increments at 1MB/second and the
secret is a 128-bit system-wide secret value
that is seeded when the first outbound
connection establishment occurs.

Two user-adjustable values are present:

net.inet.tcp.strict_rfc1948 — When set to 0
(the default), SYN-ACK values are filled
with random data. If set to 1, the ISNs of
SYN-ACK packets would be generated by
the RFC 1948 algoriti.in.

net.inet.tcp.isn_reseed_interval - This
determines the number of seconds between
reseeding of the system-wide secret value. If
left at O (the default), no reseeding will ever
occur.

Not using RFC 1948 for SYN-ACK packets
was motivated by the predictability issue
described in the section above. Ad-hoc
research of how other operating systems
generated and interpreted SYN-ACK ISNs
showed that no common operating system
actually cared about monotonicity, so the
most secure option was adopted — purely
random ISNs.

On the other hand, SYN ISNs needed to be
monotonic, due to the TIME WAIT
recycling sequence number requirement
discussed above. No secure algorithm other
than RFC 1948 could be found that satisfied
this requirement. After some consideration,
it was determined that prediction of SYN
ISNs would not be a commonly abused
problem. Such prediction would not allow

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

for connection spoofing, but would only
allow for connection reset/data injection.
However, the only connections vulnerable to
this would be ones made from a static-IP
server to the dynamic IP address which the
attacker had previously occupied.

In order to see the results of this
implementation, see the graphs in Appendix
A.

In the four years since this algorithm was
added to FreeBSD, the only major change
that has occurred is the addition of TCP
syncookies by Jonathan Lemon in December
of 2001, as described in [LemO1]. When
enabled, as they are by default, syncookies
replace the random value in SYN-ACK
packets. The algorithm used in SYN packets
remains unchanged.

While the use of syn cookies remains
controversial (no other operating system uses
syn cookies by default), the randomness of
the resulting sequence numbers is not in
question, as shown by the graphs in
Appendix A.

As far as anyone in the FreeBSD project is
aware, there have been no reports of
compatibility problems caused by this
method of ISN generation.

During an audit of the syn cookie code in
2003, one security flaw was found. The
secret value used when generating syn
cookies was only 32 bits in length, allowing
an attacker with a fast processor to perform a
brute force hash attack and find out the
secret. Once found, the secret could be used
to perform perfect connection spoofing
attacks against the victim until the secret
expired (for about 60 seconds.) The flaw
was fixed by simply increasing the secret
size to 128 bits, making the attack infeasible.
There have been no reports of this flaw being
exploited in the wild.

A minor improvement to the FreeBSD
algorithm

One oversight in the algorithm currently
used by FreeBSD to generate SYN-ACK

53

packets is that it tries to be too random.
Specifically, when TIME WAIT recycling
occurs on a socket, a totally new ISN value
is chosen. While this works properly under
normal circumstances, it means that with
certain values of ISN and certain old
duplicate packets on the network, old data
can be injected into the new connection.

As can be seen in the graph in Appendix B,
the proposed change to SYN-ACK
generation uses the existing scheme for ISN
generation, except when a socket in the
TIME_ WAIT state is being recycled. In that
case, a random positive increment from the
previously used sequence number is used.
However, if the TIME WAIT socket
expires, as occurs in the 130 second idle time
shown above, a fresh ISN is once again
chosen. Note that a few ports change their
sequence numbers over the 30 second idle
period; this appears to be the result of the
case where TIME WAIT sockets are created
and expired on the client side of the
connection rather than on the server side.
This will be examined more thoroughly
before the final implementation is
completed.

Improving RFC 1948

During a discussion with Jeffery Hsu, which
unfortunately can not be located, the idea for
an improvement upon RFC 1948 was
developed. The basic idea was this: Use
two MDS5 hashes in RFC 1948, slowly
switching between them by averaging these
values. This would allow the resulting
sequence value to be monotonic, yet
unpredictable over long periods of time.
Such an algorithm would look like this:

md5 1 = MDS (remoteport, localport,
remotehost, localhost, secretl)
md5_ 2 = MD5(remoteport, localport,
remotehost, localhost, secret?2)
ISN = Time +

(md5 1 * (reseed interval -
elapsed_time)) / (reseed interval)
+ (md5_2 * (elapsed time)) /

(reseed_interval)

In order for this to work, a few additional

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

parameters must be specified. The rate of
increase of time must be greater than the
maximum rate of decrease from md5 1 to
mdS_2. If this premise is violated, ISNs will
actually decrease when certain large values
of md5_1 and small values of mdS_2 occur.

Reseeding is straightforward in this
algorithm. When the elapsed time catches
up to reseed_interval, 100% of the value will
be from md5 2, and 0% of the value will be
from mdS_1. At this point, the contents of
secret2 should be transferred to secretl,
secret2 should be filled with a new random
value, and elapsed time should be reset to
Zero.

To see a visual representation of the ISN
values generated by this dual hash algorithm,
see Appendix B.

Although this algorithm is an improvement
over RFC 1948, it is still predictable until the
next reseed occurs. The possibility of using
a non-linear function to transition between
the two hash values is being investigated.

TCP Timestamps

TCP Timestamp values, as specified in RFC
1323, are intended to improve the
performance of TCP by increasing the
accuracy of RTT measurement, especially in
the case of lost packets, and allow systems to
determine if a wrapped sequence number is
the result of an old packet or a new
connection.

The simplest way to implement TCP
timestamps 1s to use a single global time
value for all connections. This is the basic
implementation that FreeBSD and most other
operating systems use. Unfortunately, this
global counter leaks information in two
ways. First, as this counter is derived from
system uptime, it allows an attacker to know
how long the system has been up. Such
uptime information could be abused in a
variety of ways. A simple scan of a network
reveals which systems have long uptimes —
and are therefore probably behind on
security patches. A more patient attacker

54

who logs this data over a long period of time
could learn that a company performs weekly
restarts and use this information as part of a
timed attack.

The second piece of information leaked by a
global counter is a system's identity. Given
an range of [P addresses, an attacker looking
at timestamp values will be able to determine
which [P addresses belong to independent
systems, and which IP addresses are aliases
belonging to a single machine. This
information could be very useful for an
attacker — if no obvious security holes are
found on one IP address of a machine, he
could search all the other IP addresses of the
machine for weaknesses, confident that he is
still investigating the target machine and not
wasting time on a honeypot or some other
diversion.

There are three simple solutions to these
information leakage problems. First, uptime
monitoring may be partially foiled by
initializing the global counter to a random
value at boot time. Unfortunately, this will
be ineffective if an attacker simply probes
once per day and records his results. As
such, it is an almost useless change.

Solution number two is to switch to using
separate timestamp counters for each TCP
connection, and to initialize a new
connection's timestamp value to 0. This
prevents an adversary from learning about a
system's uptime, or determining if two I[P
addresses are hosted by the same computer.

Solution number three differs from number
two in that the connection counter is
initialized to a random value instead of to
zero each time. This change is intended to
prevent future attacks which might rely on
predicting timestamp values.

While changes number two and three defeat
the information leaks listed above, they also
go against the spirit of RFC 1323, and may
cause problems in certain situations. Section
4 of the RFC discusses how timestamps can
be used for PAWS — Protection Against
Wrapped Sequence numbers.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Section 1.2 of RFC 1323 describes a case
where PAWS would ideally come into play:

(2) Earlier incarnation of the
connection

Suppose that a connection
terminates, either by a proper
close sequence or due to a host
crash, and the same connection
(i.e., using the same pair of
sockets) is immediately reopened.
A delayed segment from the
terminated connection could fall
within the current window for the
new incarnation and be accepted as
valid.

If timestamps are generated from a global
counter, the PAWS mechanism would have
no problem determining that timestamps on
packets delayed in the network are old.
However, if each connection starts with the
timestamp counter at 0, PAWS will be
totally foiled, unable to tell new from old
packets. In the case that random timestamp
initialization is used, PAWS might work in
some cases, but be fooled in others — the
effects would be unpredictable.

Zeroing or randomizing timestamp values
also causes a neat trick used by the Linux
TCP/IP stack to break. In Linux, the
TIME_WAIT sequence number check has
been improved to allow a port to be recycled
if the ISN is greater than the previously used
value or if the timestamp is greater than the
previously used value. This check allows
operating systems that used randomized ISN
values in SYN packets with a standard
timestamp implementation to still recycle
ports. However, an operating system that
has modified ISN values and timestamps will
be out of luck.

The unfortunate part about these changes is
that the incompatibilities they cause might
not be noticed except under carefully crafted
test conditions. While the occurrence of
these problems in actual usage is unlikely,
the probability 1is that the problem will occur
for some users at some time, which is why
these changes have not been implemented in

55

FreeBSD.
Using RFC1948 to improve timestamps

Luckily, there is one potential method of
retaining compatibility with the PAWS
mechanism while still defeating the
information leaks discussed previously. The
solution is simple — use the algorithm
described in RFC 1948 to generate per-
connection timestamps!

Using RFC 1948's algorithm to generate
timestamps is not a perfect solution; as with
1ts use in ISNs, it suffers from the issue that
it is perfectly predictable to someone who
can reconnect with the same [P and port pair.
Therefore a service like netcraft, which
probes on a regular basis, could determine
uptime simply by looking for discontinuities
in timestamp values. Someone attempting to
determine if two IP addresses were hosted on
a single computer could look for matching
discontinuities to determine that a reboot of
that single machine occurred.

The dual hash improvement on RFC 1948
unfortunately can not be wused with
timestamps. The differing slopes of each
connection would make time measurement
more difficult, and the extra math required to
generate each timestamp would slow overall
throughput.

One additional caveat when implementing
RFC 1948 style TCP timestamps is that at
least one heuristic in the Linux TCP stack
compares the timestamp value of an
incoming packet to the timestamp value of
other packets to determine if that packet is
legitimate when a syn flood is in progress.
Assuming that other systems make similar
assumptions, perhaps instead of using
timestamps that are unique per IP/port pair it
would be better to use timestamps that are
Just unique per IP.

resist data

Using timestamps to

reset/injection attacks

If TCP Timestamps are made per-tuple
unique using the RFC1948 algorithm or

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

simply randomized at connection start time,
using timestamps to greatly improve
resistance to blind reset/injection attacks
becomes simple to implement. RFC 1323
specifies in section 4.2.2 that timestamps are
monotonically incremented at a constant rate
between 1 and 1000 ticks per second. This
allows a receiver to interpret the sender's
timestamps, and use them as additional spoof
protection.

Assuming that the sender is following RFC
1323, all a receiver must due in order to
make blind spoofing connections on
timestamped connections very difficult is to
ensure that the following is true for each
received packet:

(idle_seconds < 30) && (abs(TScurrent —
TSlast) <32 * 1024)

This still allows any legitimate packet that is
up to 30 seconds late in arriving in, while
blocking spoofed packets that do not fall into
this window. As this algorithm accepts a
window of 65536 timestamps out of a
possible 2732 at any point in time, an
attacker who attempts to try a brute force
reset/injection attack would be required to
send an additional 2716 times as many
packets. This increases the difficult of any
such attack significantly.

Note that this technique 1s perfectly
compatible with senders using system-wide
timestamps and timestamps zeroed at

connection start time, but will provide very
little added security in those cases.

Unfortunately, the timestamp check must be
skipped on idle connections due to the
possibility of a host rebooting, losing its
timestamp counter, and attempting to
reestablish a connection on the same ip/port
tuple.

IP ID issues

The problems of sequential IP ID values
were described first in [San98] and later in
[Fyo] and other places. As of now, FreeBSD
has not yet implemented any changes due to

56

the perceived lack of importance of this issue
and due to the performance penalties that
would be incurred by some of the solutions.

Three main solutions have been implemented
in different operating systems to solve the
problems of predictable IP ID values.

The simplest option, implemented in Linux,
was to use an [P ID value of zero for all
packets that had the DF (Don't Fragment) bit
set. Unfortunately, while this idea would
work if all network devices were RFC
compliant, it was discovered that certain
network devices would fragment DF packets
anyway, leading to a stream of fragments, all
with an ID of 0. As a result of such
misbehaving devices, the idea of zeroing the
[P ID field has been abandoned.

A second solution, now implemented in both
Linux and Solaris is to track per-IP state,
setting up a seperate [P ID counter for each

IP the system communicates with.
Unfortunately, this solution would be
expensive to implement in FreeBSD;

FreeBSD has moved away from looking up
per-IP state on every packet reception and
transmission. The TCP hostcache, which
now stores per-IP information such as MTU,
RTT, and other information could be used
for this purpose, but it would reduce
performance.

A third solution was chosen by the authors of
OpenBSD's [P stack. They use a linear
congruential generator (LCG) to generate
sequences of IP ID values that repeat only
after the entire sequence has been cycled. So
that the LCG may be reseeded after each
cycle without causing a quick reuse of any
value, the 16 bit space is split into two 15 bit
spaces; the space used is toggled after each
cycle. This system will defeat idlescan
detection, but may not be as effective at
masking packet transmit rate or masking if
two IP addresses are hosted by the same
machine. If one watches how often a system
cycles between the two 15-bit addresses
spaces, rough estimates on traffic rates can
be gathered. If one notices that two IP
addresses always switch [P ID spaces

simultaneously, then they are probably
running on the same machine.

One common goal of all of these solutions is
to make the time before an [P ID is reused as
great as possible. This ideal is mentioned in
many documents discussing the topic of IP
ID abuse. Fyodor mentions in [Fyo], “This
is difficult to get right -- be sure the sequence
does not repeat and that individual numbers
will not be used twice in a short period.”

Despite the pervasiveness of Fyodor's belief,
there is in fact no reason why quick
recycling of [P ID values is a serious
problem.

If two fragmented packets with the same IP
ID value are put onto the wire at the same
time, there are two possibilities that can
occur.

The first possibility is that packet #1 will
arrive intact at the destination before packet
#2. When this occurs, packet #1 will be
reassembled successfully, the reassembly
queue will be cleared out, packet #2 will
arrive, and it too will be reassembled
successfully.

The second possibility is that one of the
fragments of packet #l is lost in transit,
and/or the fragments of packet #1 and #2
arrive in some jumbled order. If any of these
problems occur, the reassembly process will
create a reassembled packet that contains
portions of both packets. This corrupt packet
will then be handed up to either the TCP or
UDP layer, where its checksum will fail
verification, and the packet will be
discarded. The only way a corrupt packet
could be reassembled and passed to an
application is if two fragments happen to
have the same checksum or if the receiving
operating system fails to verify the
checksum.

What this means is that in the case where
two packets to the same destination are sent
with identical IP ID values, the loss of one of
the fragments of the first packet will
effectively result in the loss of the second

57

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

packet as well.

Therefore, using a PRNG to generate IP ID
values may cause a few extra packet drops in
certain unlucky situations where packet loss
already exists. These extra packet drops can
be considered just like any packet loss — a
nuisance, but nothing that TCP and UDP
can't handle.

On the positive side, using a PRNG to
generate [P ID values totally eliminates any
possibility of using a machine as an idlescan
drone, estimating traffic rate, or determining
how many [P addresses belong to a single
host.

Ephemeral Port randomization

In order for a blind spoof attack on a TCP
connection to be successful, one of the
pieces of information that the attacker must
guess is the ephemeral source port used by
the client end of the connection. As most
operating systems sequentially allocate
ephemeral port numbers, narrowing the port
used by a recently established connection is
relatively easy. All the attacker must do is
cause the client to connect to the attacker's
machine and determine the ephemeral port
used. If the client is running services that
perform ident checks, this will be easy to
trigger. Other methods of inducing a
connection may include sending a message
that will bounce to a SMTP server running
gmail, connecting to a ftp server using
passive mode, or forcing the DNS server on
the client machine to perform a TCP DNS
lookup.

Randomizing the order of ephemeral port
allocation is an obvious method of
improving the difficulty of a blind attack.
Due to the randomization, the attacker will
now have to spoof packets from all ports in
the ephemeral port range, rather than just the
last 5 to 10. In the case of OSes using the
classic ephemeral port range (1024 to 5000),
this makes the attack 500 times more
difficult, assuming an attack range of 10
before randomization. Operating systems
that use large ranges of ephemeral ports

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

(possibly as large as 1024 to 65535) will
require an even greater number of packets to
be sent.

Paul Watson's paper “Slipping in the
Window” led to a quick implementation of
port randomization in FreeBSD. This
changed seemed safe, as OpenBSD has
randomized ephemeral ports since July of
1996 (revision 1.6 of in_pcb.c.)
Unfortunately, a few users started reporting
problems soon after the change was made to
FreeBSD.

The problem reported was that an
accelerating webcache that had been
upgraded to include port randomization was
suddenly seeing failed connections to the
backend web server it connected to. One of
the failed connections can be seen in
Appendix C. Both the webcache and the
webserver were running an up to date
version of FreeBSD, and no problems were
experienced once the sysctl to disable port
randomization was toggled off, eliminating
the possibility of an unrelated change that
broke the system.

This failure case was not seen prior to port
randomization because sequential allocation
of ephemeral ports leaves a noticeable
amount of time before a port is reused.
Randomization, due to its nature, will
sometimes cause a port to be reused much
more quickly - less than a hundreth of a
second in the trace shown here.

While the issue shown here is not directly
port randomization's fault something
clearly went wrong in the webserver's TCP
state machine — it is also true that just an
additional second or two before the port in
question was reused would probably have
avoided the problem.

The number of TCP stack interactions that
will see similar problems to the one captured
here is unknown, but these results indicate
that if one were to magically add simple port
randomization to every machine on the
planet at once, many breakage situations
such as the one here would be seen.

58

In order to reduce the likelihood of this
problem while retaining the security benefits
of port randomization, a method to
randomize port use but to ensure that ports
are not reused too quickly 1s needed.
Unfortunately, using a linear congruential
generator to choose ephemeral ports would
not be effective — the length for which a
connection stays open is not constant, so a
port could still be reused quickly if the
previous connection is terminated just before
the LCG cycles through all other ports and
returns to it.

At present, FreeBSD attempts to avoid this
quick port recycling problem by falling back
to sequential port allocation whenever the
machine is making more than 10 outbound
connections per second. This solution is
more of a hack than anything, and has been
slated to be replaced as soon as a better
method can be found.

In discussions with Brooks Davis at BSDCan
2005, a workable system of ensuring that
ports would not be recycled too quickly was
sketched out. The basic concept is to
allocate an array with one slot per ephemeral
port. At the time that a connection is
terminated, the current time and an amount
of buffer time (10 seconds) would be added
and stored in the slot for that port. This
timestamp would make the first time at
which the port could be reused. Port
allocation would occur randomly at all times,
skipping ports which were marked as not yet
ready to reuse. One drawback to this
solution is that it would not allow hosts to
use the same ephemeral port on two different
local IPs simultaneously. As a result, a more
creative solution may need to be found.

This system has not yet been implemented.
Once it has been implemented and passed
preliminary testing, the owner of the troubled
accelerator proxy will be one of the first
users asked to test the change.

Future Work
of the

Preliminary analysis TCP ISN

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

generation systems of other open source
operating systems indicates that they may
not meet the security and compatibility
criteria set forth in this paper. Research into
how these operating systems can be
improved will take additional time, and
unfortunately can not be put into this edition
of the paper.

Also, many of the proposed algorithms in

" this paper have only had proof of concept

implementations, and are not ready for
inclusion in the FreeBSD source tree yet.
After this paper is presented to wider peer
review at EuroBSDCon, work on
incorporating the changes can proceed.

Finally, the attacks discussed in [Wat04] and
[Gont05] have not been addressed in all
operating systems equally, and in some cases
have not been addressed at all. A test suite
similar that can perform all the described
attacks should be created and all operating
systems should be put to the test, including
FreeBSD.

Once additional work is completed, an
updated copy of this paper will be posted at
http://www.silby.com/eurobsdcon05/

Conclusion

This paper has demonstrated that untested
changes to the TCP/IP stack of an operating
system can often cause unexpected
compatibility issues. =~ However, careful
analysis can solve almost any problem,
leading to security improvements which do
not reduce interoperability.

While the new algorithms proposed here
have not yet been tested under a wide range
of circumstances, it is hoped that the release
of this paper will spark a broad discussion on
the topic of TCP/IP security, hopefully
leading to a new round of standardization
that has been sorely lacking in the past few
years.

59

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Appendix A: Graph views of FreeBSD 5.4 ISN values

The graphs in Appendices A and B were generated by running a web server on the machine
acting as the server in each test, and a http benchmarking tool on the client. To force
TIME_WAIT recycling to occur so that the ISN values can be seen per port, the ephemeral
port range on the clients was set from 65535 to 65550. The http benchmarking tool was then
sent to request a very short HTML page roughly S times a second, thereby creating a set of
datapoints which was fed into gnuplot. Points are connected together with lines, which 1s
why the graphs of psuedorandom data appear as a graph of haphazard lines rather than a
cloud of dots.

ISN values in SYN packets from FreeBSD 5 to FreeBSD 7+silby
4.5e+09 T T T T T

4e+09 | .

mmmme—

3.5e+09 1

3e+09

T

XN S S ——— A T S e

2e+09 - 4

1.5e+09

1e+09 | o

5e+08 |- &

Unanswered S}’N packets:)Clonnections per second: 5.01
0 20 40 60 80 100 120

0

ISN values in SYN packets sent from a FreeBSD 5.4 client to a modified
FreeBSD 7 server. Notice how each port has a distinct offset from other ports,
but how all have the same rate of increase.

60

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

ISN values in SYN-ACK packets from FreeBSD 5 to FreeBSD 7+silby

4.5e+09

L
[2]
(=4

+
&
e}

3e+09

256409 |

120

100

80

60

20

The ISN values in SYN-ACK packets sent by a FreeBSD 5.4 server with

0. Arc4random is working properly, and prediction of

sequence numbers is not possible.

net.inet.tcp.syncookies

ISN values in SYN-ACK packets from FreeBSD 5 to FreeBSD 7+silby

packetg: 0 Yon i

i SYN

S\ﬁé

4.5e+09

3.5e+09 -

syn cookies intentionally create

it is evident that the long-term effect is similar to

YN-ACK packets sent by a FreeBSD 5.4 server with

-~
¥
)
3
~ 3
S
~ X
g
s
-~ O
SOh
X Qo=
SN
Vo= A
S48
vmb
2 23
[Z I IR
Voo
= U X
~ <]

randomization.

61

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Appendix B: Graphs of proposed changes to FreeBSD's ISN generation schemes

ISN values in SYN-ACK packets from FreeBSD 7+silby to FreeBSD 5
4.5e+09 T T T T

devOO b 0 O memmm |

3.5e+09 | g

3e+09

2.5e+09

2409 b . me—e——— J

1.5e+09 B

1e+09 -

5e+08

Unanswered SYN packets: 0 Connecfions per second: 1,92

0

0 50 100 150 200 250
65517 —— 65520: ———— 65505; —-—-— 65530; ————
65529 ———— 65509: - 65521: ——-— L

The proposed modification to FreeBSD's SYN-ACK generation is shown. Notice
how sequence numbers are the same across the 30 second idle time, but change
completely after the 130 second idle time.

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

4.5e+09 T T T T T T T T
4e+09 .
3.5e+09 .
/ /
3e+09 E f 4
2.5e+09 b
2e+09 1
1.5e+09 1
1e+09 ! 1
j /
56+08 F / £ // ." 4
Sl s '
0 Una@svﬁr SYN fackéts dprfnectionq p
0 100 200 300 400 900
655615 =w=== 65505 ====' 65520 =+=-= 65527 memwe
65510 ———— 65518 werreeeren 65525 === e

A graph of the SYN ISN values from an implementation of the dual hash variant
of RFC 1948 using a 200 second reseed interval.

62

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

2.5e+10 T T ——— T T T T T
2e+10 .
1.5e+10 b
1e+10 -
5e+09 4
o nanswered SYN packets: 0 Connections per second: 5,00 , R
0 100 200 300 400 500 600 700 800 900
65515 —— 65505 —=--— 65520 —-=—— 66627 ——-—
65510 ———= 65518 rwroreen 65525 === R

A modification to the dual hash graph so that sequence numbers do not wrap at
the 32-bit mark allows for a better view of how the slopes of each port are
distinctly different.

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

4e+07 T T T T T T T T
v —
3.5e+07 [i ! 1
i W\
3e+07) g
......................... X
2.5e+07 | &—qm -------------------------- 4
—A NG \}.. g
————— 5 — -
2e+07 E , 8
!
i |
1.5e+07 |- i | me— | 4
| S
\ o~ -
/
1e+07 | ——— -
S5e+06 -
o Unanswered SYN packets: 0 Connections per second: 5.00 R N
Q 100 200 300 400 500 600 700 800 900

65515 ——— 65505 —~==— 65520 —-=-— 66627 ==e
65510 65518 65525 "

A third way of looking at the results of the dual hash algorithm, the first
derivative of the ISN values for each port is shown. The slight dips noticeable
are due to a glitch in the callout-incremented global time counter.

63

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Appendix C: A failed connection partially due to overly fast ephemeral port recycling

27:32:15.372512 XX.XX.XX.XX.13501 > YY. VY. VY. YY_ 80: S 4253937160:42539372606(0) win 8192 <mss
2460, nop,wscale 0,nop,nop,cimestarp -321935.2 0> (DF)

17:32:15.372642 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: S 1547679919:15476799.9(0) ack 4253937.6L
win 537344 <mss 1460,nop,wsca’e 0,nop,nop,timestamp 295129972 152183511> (DF)

17:32:15.372656 XX.XX.XX.XX.1301 » YY,VV VY YV 80: . ack 1547679920 win 8688
<nop, nop, timestamp .522935.2 29%31.29972> (DF)

17:32:15.372665 XX.XX.XX.XX.2501L > YV . YY ¥YY . YY . 80: P 4253937162:4233937378(2.7) acx 2347679920
win 8688 <nop,nop,:timestarp .52193512 295229972> (DF)

17:32:25.374L52 YY. VY. YY YV B0 > XX.XX.XX.XX.1501: . 1547679920:.547682368(.448) acx
4253937378 win 37920 <nop,nop,cimestamp 295129972 152193512> (DF)

17:32:15.374243 YV VYV VY YV B0 > XX.XX.XX.XX.1501: P 1547681368:.547682422(.034) ack
4253937378 win 537920 <nop,ncp,timestamp 295129972 1521935.2> (DF)

27:32:25.374248 XX XX XX XX.1501 > YY.YY.YY.YY.80: . ack 1547682422 win 7634

<ncp,nop, timestamp -52293515 295129972> (DF)

17:32:25.374253 YY ., YV VY . YY B0 > XX.XX.XX.XX.1501: F 1547682422:2547682422(0) ack 4253937378

win 57920 <nop,nop,timestamp 295129972 152193512> (DF)

17:32:25.374257 XX XX XX.XKX. 1502 > YY.YY.YY.YY.80: . ack 12547682423 win 8688
<nop,nop, timestamp 152183515 295129972> (DF)
17:32:25.374266 XX.XX.XX.XX.1302 > YY.YY.YV.VY.80:

T 4233937378:4253937378(0) ack 1547682423
win 8688 <nop,nop,timestarp 152193515 295129972> (DF)

L7:32:125.374537 YV VY . YY.YY .80 > XX.XX.XX.XX.1501: . acx 42533937379 win 57920
<ncp, nop, timestamp 295129972 152193515> (DF)
27:32:25.389416 XX.XX.XX.XX.1301 > YY.YY.VY.YY.80: S 4232971599:425397:599(0) win 81392 <mss

~460,nop,wscale 0,nop,nop,timestamp 132193543 0> (DF)

Z7:32:25.389598 YY.YY.YY.YY.80 > XX.XX.XX.XX.150L: R 1547682423:2547682423(0) ack 4253937379
win 57920 (DF)

17:32:25.389604 YY.VY.,VY.YY.80 > XX.XX.XX.XX.1501: R 0:0(0) acx 4253971600 win O (DF)

64

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

References:

[RFEC793] “RFC 793: Transmission Control Protocol”, 1981

[RFC1323] Bellovin, Steven “RFC 1948: Defending Against Sequence Number Attacks”,
1996

[Free03] FreeBSD Security Advisory 3:03 — Brute force attack on SYN cookies
[Fyo] Fyodor, “Idle Scanning and Related IPID games”
[Gont05] Gont, F., "ICMP attacks against TCP", September 2005, Internet Draft

[RFC1323] Jacobson, Braden, & Borman “RFC 1323: TCP Extensions for High
Performance”, 1992

[LemO1] Lemon, Jonathan “Resisting SYN flood DoS attacks with a SYN cache”, 2001
[Mor88] Morris, Robert “A Weakness in the 4.2BSD Unix TCP/IP Software, 1985

[New01] Newsham, Timothy “The Problem with Random Increments”, 2001

[San98] Sanfilippo, Salvatore Bugtraq posting: “new tcp scan method”, 1998

[Wat04] Watson, Paul “Slipping in the window: TCP reset attacks”, 2003

[Zal01] Zalewski, Michal “Strange Attractors and TCP/IP Sequence Number Analysis”, 2001

[Zal02] Zalewski, Michal “Strange Attractors and TCP/IP Sequence Number Analysis - One
Year Later”, 2002

65

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

66

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

A Machine-Independent Port of the MPD Language
Run Time System to NetBSD Operating System

Ignatios Souvatzis
University of Bonn, Computer Science Department. Chair V
<ignatios@cs.uni-bonn.de>

20th October 2005

1 Introduction

MPD (presented in Gregory Andrews’ book about Foundations of Multithreaded. Par-
allel. and Distributed Programming[l]) is the successor of SR[2] (“synchronizing re-
sources” }, a PASCAL-stvle language enhanced with constructs for concurrent pro-
gramming developed at the University of Arizona in the late 1980s[3].

MPD as implemented provides the same language primitives as SR with a different
svntax which is closer to C.

The run-time system (in theory, identical) of both languages provides the illusion
of a multiprocessor machine on a single single- or multi-CPU Unix-like system or a
(local area) network of Unix-like machines.

Chair V of the Computer Science Department of the University of Bonn is operating
a laboratory for a practical course in parallel programming consisting of computing
nodes running NetBSD/arm, normally used via PV, MPI, etc.

We are considering to offer SR and MPD for this. too. As the original language
distributions are only targeted at a few commercial Unix svstems. some porting effort
is needed, outlined in the SR porting guide[7] and also applicable to MPD.

The integrated POSIX threads support of NetBSD-2.0 enables us to use library
primitives provided for NetBSD’s pthread system to implement the primitives needed
by the SR and MPD run-time systems. thus implementing 13 target CPUs with a one-
time effort; once implemented, symmetric multiprocessing (SMP) would automatically
be used on any multiprocessor machine with VAX, Alpha, PowerPC. Sparc, 32-bit Intel
and 64 bit AMD CPUs.

This paper describes mainly the MPD port. Porting SR was started earlier and
partially described in [6] (Assembler and SVR4 cases) while only preliminary results
for our new approach could be presented at the conference.

Most of the differences between our changes to SR and to MPD could be done
by mechanically replacing mpd_ by sr_ in the code: because of this. and because the

test machine A B
architecture i386 arm
CPU Pentium 4 SA-110
clock 1600 MHz 233 MHz
cache 2 \MB 16kBI1 + 16 kB D

Table 1: Test machines

67

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Implementation A B
assembler 0.013 ps n/a
..context_u libary calls | 0.138 us | 0.237 ps
SVR4 svstem calls 1.453 us | 9.649 us

Table 2: Raw context switch times

machine-independent parts of the SR and MPD run-time support are identical (ac-
cording to the authors) all results (especially timing results) equally apply to the SR
port. (This has been verified.)

2 Generic Porting Problems

Despite the age of SR, the latest version (2.3.3) had been changed to use <stdarg.h>
instead of <varargs.h>, thus cutting the number of patches needed for NetBSD 2.0
and later by half compared to the original porting effort described in [6]. MPD 1.0.1
contains no traces of <varargs.h>.

The only patches — outside of implementing the context switching routines - were
for 64 bit cleanliness (see also [5

5]).

3 Verification methods

MPD itself provides a verification suite for the whole system; also a small basic test for
the context switching primitives. There is no split between the basic and the extended
verification suite, as in SR.

3.1 Context Switch Primitives

The context switch primitives can be independently tested by running make in the
subdirectory csw/ of the distribution; this builds and runs the cstest program, which
implements a small multithreaded program and checks for detection of stack overflows,
stack underflows, correct context switching etc.[7] This test is automatically run when
building the whole system.

3.2 Overall System

When the context switch primitives seem to work individually. they need to be tested
integrated into the run-time system. The SR and MPD authors provide a verification
suite in the vsuite/ subdirectory of the distributions to achieve this. as well as testing
the the building system used to build MPD, and the mpd compiler, mpdl linker, etc.

It is run by calling the driver script mpdv/mpdv. which provides options for selecting
normal vs. verbose output, as well as selecting the installed vs. the freshly compiled
MPD system.

For all porting methods described below (assembler primitives. SVR4 system calls
and NetBSD pthread library calls), the full verification suite has been run and any
reported problem has been fixed.

68

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Test description i386 ASM | ...context.u | SVRd s.c.

loop control overhead 0.002 us 0.002 pus 0.002 us

local call, optimised 0.011 ps 0.011 us | 0.011 us
interresource call. no new process 0.270 ps 0.260 us 0.250 us
interresource call. new process 0.650 us 4.200 ps 4.350 us
process create/destroy 0.540 ps 4.020 us 4.280 us
semaphore P only 0.011 pus 0.011 us 0.011 us
semaphore V only 0.008 us 0.008 us 0.008 us
semaphore pair 0.019 us 0.019 us 0.019 us
semaphore requiring context switch 0.110 us 0.220 us 1.550 us
asvnchronous send/receive 0.300 us 0.290 us 0.300 us
message passing requiring context switch 0.400 us 0.560 us 1.920 us
rendezvous 0.600 us 0.850 us 4.200 ps

Table 3: Run time system performance, system A (Pentium 4. 1600 MHz). The median
times reported by the MPD script vsuite/timings/report.sh are shown.

4 Performance evaluation

MPD comes with two performance evaluation packages. The first, for the context
switching primitives, is in the csw/ subdirectory of the source distribution; after make
csloop you can start ./csloop N where N is the number of seconds the test will run
approximately.

Tests of the language primitives used for multithreading are in the vsuite/timings/
subdirectory of the source tree enhanced with the verification suite. They are run by
three shell scripts used to compile them, executed them. and summarize the results in
a table.

5 Establishing a baseline

There are two extremes possible when implementing the context switch primitives
needed for MPD: implementing each CPU manually in assembler code (what the MPD
implementation does normally) and using the SVR4-style functions getcontext (),
setcontext () and swapcontext () which operate on struct ucontext: these are pro-
vided as experimental code in the file csw/svr4.c of the MPD distribution.

The first tests were done by using the provided i386 assembler context switch rou-
tines. After verifying correctness and noting the times (see tables 2 and 3), the same
was done using the SVR4 module instead of the assembler module.

These tests were done on a Pentium 4 machine running at 1600 MHz with 2
megabytes of secondary cache, and 1 GB of main memory, running NetBSD-3.0 BETA
as of end of October 2005.

The SVRA4 tests were redone on a DNARD system (for its ARM cpu. no assembler
stubs are provided in either the SR or MPD distributions).

Table 3 shows a factor-of-about-ten performance hit for the operations that require
context switches: note. however, that the absolute values for all such operations are still
smaller than 5 us on 1600 MHz machine and will likely not be noticeable if a parallelized
program is run on a LAN-coupled cluster: on the switched LAN connected to the test
machine. the time for an ICMP echo request to return is about 200 us.

69

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Test description ARM ASM | ...context_u | SVRd s.c.

loop control overhead n/a 0.057 ps 0.056 us

local call, optimised n/a 0.376 us 0.355 us
interresource call. no new process n/a 4.300 us 4.080 ps
interresource call, new process n/a 27.250 pus | 55.900 us
process create/destrov n/a 25.240 pus | 58.780 us
semaphore P only n/a 0.304 ps 0.301 pus
semaphore V only n/a 0.254 s 0.249 us
semaphore pair n/a 0.506 ps 0.487 us
semaphore requiring context switch n/a 1.570 ps | 11.180 us
asyvnchronous send/receive n/a 5.550 us 5.190 us
message passing requiring context switch n/a 6.740 pus | 30.140 us
rendezvous n/a 9.600 ps | 54.000 ps

Table 4: Run time system performance, system B (StrongARM SA-110. 233 MHz). The
median times reported by the MPD script vsuite/timings/report.sh are shown.

6 Improvements using NetBSD library calls

While using the system calls getcontext and setcontext, as the svr4 module does.
should not unduly penalize an application distributed across a LAN, it might be no-
ticeable with local applications.

However, we should be able to do better than the svr4 module without writing our
own assembler modules, since NetBSD 2.0 (and later) contains its own set of them for
the benefit of its native Posix threads library (1ibpthread). which does lots of context
switches within a kernel provided light weight process[8]. The primitives provided to
libpthread by its machine dependent part are the three functions _getcontext _u,
_setcontext_u and _swapcontext_u with similar signatures as the SVR4-style system
calls getcontext, setcontext and swapcontext.

There were a few difficulties that arose while pursuing this.

First. on one architecture (i386) _setcontext_u and _getcontext_u are imple-
mented by calling through a function pointer which is initialized depending on the
FPU / CPU extension mode available on the particular CPU used (8087-mode vs.
XMDM). On this architecture, _setcontext_u and _getcontext_u are defined as macros
in a private header file not installed. The developer in charge of the code has indicated
that he might implement public wrappers; until then, we have to check all available
NetBSD architectures and copy the relevant code to our module csw/netbsd.c.

Second, we need to extract the relevant object modules from the threading library
for static linking (1ibpthread.a) without resolving any other symbols, because normal
libpthread is overloading some system calls thus causing failure of applications not
properly initializing it.

Again, this set of context switch code has been verified by running cstest and the
full verification suite.

The low-level as well as the high-level timings with the new context switch package
have again been collected in tables 2. 3 and 1.

To ease installation, a package for the NetBSD package system has been built for
SR and MPD, available in the lang/sr and lang/mpd subdirectories of the pkgsrc root.

As the NetBSD package system is available for more operating systems than Net-
BSD[4]. a lot more work would be needed to make the packages universal; thus they
are restricted to be built on NetBSD 2.0 and later.

70

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

7 Discussion

Our new approach has raw context switch times that are only 10% of the SVR4 system
call ones. Compared to the assembler routines, they are only slower by a factor of 10
(see table 2).

Table 3 shows three classes of high level operations.

1. Non-context switching operations have the same speed independent of the context
switch primitives used, as expected.

o

The two operations measured requiring a process creation (in the MPD language
sense) are about as fast as in the SVR4-svstem-call case. This was expected. as
the process creation primitive does a system call internally.

3. Context switching operations which do not create a new process (in the MPD
language sense) are slower than in the assembler case, but faster than in the
SVR4-style case. by an amount roughly equivalent to one (semaphore operation.
message passing) or two (rendezvous) context switching primitive times.

The same classification can be done for the 233 MHz ARM CPU (table 1). However.
SVRA4 process creation. destruction and the rendezvous need about one third of the
LAN two-way network latency. thus cannot be neglected anymore. We conclude that
for machines in the 300 MHz range and below, using assembler implementation (where
available) or at least our new implementation of the context switching primitives is a
necessity. This is also expected for even slower machines.

MPD can be compiled in a mode where it will make use of multiple threads provided
by the underlying OS. so that it can use more than one CPU of a single machine. This
has not been implemented vet for NetBSD, but should be.

8 Summary

A method for porting SR and MPD to NetBSD has been shown, for which only pre-
liminary results, and only for SR, were presented earlier.

The SR porting effort was easily adopted for the MPD case. In fact. the run time
system (library and srx/mprx) could probably be factored out into a common run-time
system package.

The new port was verified using the SR and MPD verification suites.

As discussed above, the SVR4-system-call approach, while feasible, creates an over-
head that is clearly visible for non-networked operation of a distributed program: on
our Pentium machine, high level context switching operations are slower by a factor
between 7 and 11 (the raw context switch primitives are slower by a factor of 110).
Even for networked operation. for a 233 MHz StrongArm CPU or slower machines.
context switch latency exceeds one third of the network latency.

The approach using the libpthread primitives is much faster for all but the process
creation/destruction case and should thus be adequate for about any application in
the networked case. and for any in the single-machine case that does not do excessive
amounts of implicit or explicit process creation.

For highly communication-bound problems on a single machine. using the assembler
primitives might show a visible speedup, where available.

7

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

References

1
2]

3]

(5]

(6]

[7]

8]

Gregory R. Andrews. Foundations of Multithreaded. Parallel. and Distributed Pro-
grammang. Addison-Wesley, 2000 (ISBN 0-201-35752-6)

Gregory R. Andrews and Ronald A. Olsson. The SR Programming Language:
Concurrency in Practice, Benjamin/Cummings. 1993

Gregorv R. Andrews, Ronald A. Olsson. Michael H. Coffin. Irving Elshoff, Kelvin
D. Nilsen. Titus Purdin and Gregg M. Townsend, An Overview of the SR Language
and Implementation, 1988, ACM TOPLAS Vol. 10.1. pp. 51 - 86

Alistair G. Crooks, 4 portable package system. in: Proceedings of the 3rd European
BSD Conference, Karlsruhe (Germany) 2004

Martin -~ Husemann, Fighting the Lemmings, in: Proceedings of
the 3rd European BSD Conference. Karlsruhe (Germany) 2004,
http://www.feyrer.de/PGC/Fighting_the Lemmings.pdf

Ignatios Souvatzis. A machine-independent port of the SR language run time sys-
tem to NetBSD. in: Proceedings of the 3rd European BSD Conference, Karlsruhe
(Germany) 2004. http://www.arxiv.org/abs/cs.DC/0411028

Gregg Townsend. Dave Bakken, Porting the SR Programming Language. 1994,
Department of Computer Science, The University of Arizona

Nathan J. Williams, An Implementation of Scheduler Activations on
the NetBSD Operating System, in: Proceedings of the FREENIX
Track., 2002 Usenix Annual Technical Conference, Monterey, CA. USA,
http://www.usenix.org/events/usenix02/tech/freenix /williams.html

72

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

New Evolutions in the X Window System

Matthieu Herrb* and Matthias Hopf'
October 2005

Abstract

This paper presents an overview of recent and on-going evolutions in the
X window system. First, the state of some features will be presented that are
already available for several months in the X server. but not yet widely used
in applications. Then some ongoing and future evolutions will be shown: on
the short term, the new EXA acceleration framework and the new modular-
ized build system. The last part will focus on a longer term project: the new
Xgl server architecture, based on the OpenGL technology for both 2D and
3D acceleration.

Introduction

The X window system celebrated its twentieth birthday last year. After some quick
evolution in its early years, its development slowed down during the nineties, be-
cause the system had acquired a level of maturity that made it fit most of the needs
of the users of graphical work stations. But after all this time, pushed by the com-
petition with other systems (Mac OS X and Microsoft Windows) the need for more
advanced graphics features triggered new developments.

The first part of this paper is going to describe some of these features that
are already available (and have been used) for a couple of years but not necessarily
known by users of the X window system. A second part will address some on-going
work that will be part of the X11R7 release: a new 2D acceleration architecture and
the modularization of the source tree.

In the third part, a complete redesign of the device dependent layer of the X
server, based on OpenGL, will be presented. It will allow a better integration of
accelerated 2D and 3D graphics and make it possible to take advantage of the pow-
erful 3D acceleration engines available today even in low end graphics adapters.

*CNRS-LAAS
tSUSE Labs

73

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

1 Already available new features

This section aims to remind a couple of the already available features, used by some
toolkits to get better user experience with X: client-side font rendering, including
anti-aliasing using Xft2 and fontconfig as well as rendering improvements based
on the Render and Damage extensions.

It also presents the Composite extension and explains how the composite man-
ager can be used to achieve various effects (transparency, shadows,...), taking ad-
vantage of the Render code already present in the existing X server.

1.1 The Render extension

The original X protocol provides a display model based on traditional boolean op-
erations between source and destination. The Render extension was designed to
enhance this model by adding image compositing operations. Image compositing
was formalized by T. Porter and T. Duff [6], and implemented in the Plan 9 window
system by R. Pike and R. Cox. Keith Packard designed and implemented the Ren-
der extension in XFree86 [3]. Porter-Duff compositing adds a pixel opacity value
called “alpha” to its color attributes. This opacity value can be used to represent
two different effects: translucency and anti-aliasing. The effect of translucency is
created when all pixels of an object have their color computed as a combination of
the intrinsic color of the object and the existing background values. Anti-aliasing is
achieved by taking into account partial occlusion of the background by the bound-
aries of an object.

The Render extension implements new primitives for the display of images and
polygons, as well as the basis for a new font rendering system that takes advantage
of the image compositing features to render anti-aliased text.

Some of the core X applications have been extended to be able to use the X
render extension: for instance xclock in analog mode now draws anti-aliased
and translucent clock hands.

The Render extension was developed initially in XFree86 (now in X.org). It
has been adopted by many commercial X providers too and thus can be assumed
as a standard for modern applications.

1.2 Client-side font rendering

When X was originally designed, more than twenty years ago. it was decided that
text display would be done by the X server. In the traditional X world, fonts are a
server-side resource and applications depend on the fonts available in the server.

This approach had the advantage of limiting the amount of data that text-based
applications have to send to the server, but it also caused lots of frustration among
application developers. PDF or Postscript viewers for instance need to be able to
render fonts that are embedded in the document they are displaying.

74

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Moreover applications need access to more than just bitmaps in the fonts spec-
ifications for precise rendering. Attempts to extend the server-based font rendering
model have all failed to solve all problems.

So, together with the introduction of Render, a radical decision has been taken
to move font rendering from the server to client applications. To achieve this, a
new text-rendering library has been designed: it is now at its second revision: Xft2.
A companion library, fontconfig provides support to all font naming, installation
and caching issues.

Fontconfig can, by the way, be used on a broader spectrum of applications
than just X. It could be used by TgX like publishing applications, printer drivers
and so on. Fontconfig uses XML formatted configuration files, located in the
/etc/fonts directory.

Xft2 is based on the Freetype library. It can render several font formats:
the traditional bitmap-based PCF format from the legacy server-side font system,
Postscript Type | and True Type fonts.

Xft2 also provides some enhancements in the font encoding management,
among others it is possible to use UTF-8 encoded text directly with Xft2.

Measurements have shown that the new client-side font rendering scheme has
little to no impact on the overall performance. In many cases, it reduces the num-
ber of round-trips between the application and the server and thus even greatly
improves application startup times.

Like Render, the Xft and fontconfig libraries have been embraced by more
than XFree86 and X.Org. They are now the standard way of displaying text for X
toolkits and applications. The legacy server-side mechanism is obsolete and should
not be used by new developments anymore.

1.3 Composite, Damage, Xfixes extensions and the composite man-
ager

To take the full advantage of the image compositing model provided by the X
render extension, for example to provide translucent windows or to have a window
manager add drop shadows to the windows, there are some bits missing. In the
traditional X model, each application draws its window independently and doesn’t
take care of underlying or overlaying windows.

To be able to implement those eye candies, applications should be redirected
to use off-screen windows, and a specific application, the composite manager, will
work with the window manager and the new Composite extension to compute the
screen’s contents, doing compositing operations to produce translucency, shadows
and anti-aliased polygons and texts.

To make this work, this application needs a bit more information than before
about what is happening on the screen, and it needs this information in an efficient
manner. This is the goal of the the Damage extension: it provides an efficient
way to notify an application of damage done to a region of the screen by another
application.

75

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Figure 1; Composite manager principle: traditional direct on-screen drawing on
the left, vs off-screen drawing & compositing on the right.

Clients display directly on Compositing
the screen manager

Clients display off-screen

The Xfixes extension provides a general framework to extend the X protocol
in order to work around some limitations in the core protocol. It currently contains
five fixes. The more important ones allow better manipulation of the application
cursor and export the region objects from the server to the clients.

xcompmgr is a sample composite manager that can be used with any existing
window manager to provide some eye candy. Figure 2 shows the default OpenBSD
desktop enhanced with xcompmgr and anti-aliased fonts in xterm and firefox.

KDE provides its own composite manager, kompmgr, while some window
managers (Luminocity for instance) are integrating this functionality.

1.4 Cairo

Another important evolution in graphical user interfaces is the growth of vector-
based graphics, as opposed to existing bitmap-based graphics. Vectors offer a bet-
ter representation of screen contents, independent of the actual resolution, allow
producing a perfect-looking printed version of an on-screen document, use less
space for storage, and provide a better base for anti-aliased graphics.

With the introduction of the Render extension, X now has the ability of pro-
ducing high-quality graphics based on vector representation.

76

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Figure 2: Adding eye-candy to the default OpenBSD desktop

NARE
X - @ poftable. network-transparent window system

SYNOPSIS
The X Window System is a network transparent window systes
which runs on @ wida range of CORDUTANG and grapnics
sachines. 1T shouls be relatively straightfonard o
build the X.Org Founcation software distributios on aost
ARSI £ ang POSIX cospliant systems. Uowmercial implesen.
tations are atso available for 3 wade range ot platfores.

The X.0rg Foundaltion requests thet the following numes be
used when refercing fo this software:

X Window Systes

X Version 3L
X Window Sysies, Version:1l
X1y i

X Mindow SysIem 15 3 tradesark of The open Group.

DESCALFYTON .
X Window System servers: run on compulers with bitwap dis-
plays. The server distritiutes user Loput to and accepis
output requests from vaciqus | tlient prograss - through a
H variety of different s
i 1pare xTTCONPAYY . prIY

Cairo! is a library that implements vector based graphics with support for mul-
tiple output devices. Existing back-ends include X with the Render extension, and
image buffers [4]. Experimental drivers include OpenGL (through the glitz library)
and PDF files.

The Gtk+ toolkit as well as some existing applications already started to base
most of their graphics on the Cairo library.

The OpenGL back-end offers some interesting features: on systems with ac-
celerated OpenGL it provides the toolkits and application with a way to do ac-
celerated 2D graphics that almost completely bypass the X libraries and server.
However, this doesn’t provide a solution for the global desktop compositing accel-
eration mentioned above.

2 Ongoing work

The current Xserver is divided in an architecture independent (DIX) and an archi-
tecture dependent (DDX) layer, which in turn loads the relevant hardware driver for
rendering into the framebuffer. In order to accelerate drawing operations, the hard-
ware drivers offer functions that implement certain operations using the graphics

'"http://www.cairographics.org

77

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

hardware. The traditional interface for this is the Xserver Acceleration Architec-
ture (XAA), which mainly focuses on accelerating core X protocol requests.

In contrast to the features described in the previous section most ongoing and
future developments focus on the Xserver framework. These changes will not af-
fect the programmer’s API, as e.g. the Render and Composite extensions did, so all
applications can immediately benefit from their implementation.

This section describes on-going work, which is available in the X11R6.9 /
X11R7 release: the new 2D acceleration architecture EXA and the modulariza-
tion effort. The EXA architecture is aimed at replacing XAA in drivers, focusing
on accelerating primitives used by modern applications based on the render exten-
sion. The modularization effort will be described from an architectural point of
view.

2.1 A new acceleration architecture for Render: EXA

Without composite manager, the performance of the Render extension is decent on
reasonably recent hardware, that doesn’t even deserve the “fast” qualifier. How-
ever, most of of Render computations are done on the main CPU and take little
advantage of GPU acceleration. Render takes advantage of MMX or SSE instruc-
tions when they’re available, and there have been some work done to add basic
hardware acceleration for Render in the radeon driver.

When the composite manager is involved, things get worse, performance-wise.
Even today’s “fast” hardware can feel slow with compositing enabled. It is thus
mandatory to rework the acceleration framework so that Render and Composite
can be accelerated much better.

The currently used acceleration architecture in Xorg (XAA) is unsuitable for
modern desktop usage. As a result of heavily using the card’s 2D engine to accel-
erate mostly rarely used operations (like pattern fills and Bresenham lines) it in-
validates any backing store that the X server might have on a region. Furthermore
accelerating the Render extension using XAA is rather complicated and severely
limited by its memory manager.

EXA (for EXcellent Architecture or Ex-kaa aXeleration Architecture or what-
ever) aims to extend the life of the venerable XFree86 video drivers by introducing
hooks that they can implement to more efficiently accelerate the X Render exten-
sion: solid fills, blits within screen memory and to and from system memory, and
Porter-Duff compositing and transform operations. It has been implemented by
Zack Ruskin in X.org.

A couple of existing drivers have already been converted to use the new
EXA acceleration framework if requested: the i§10 driver for Intel graphics card
adapters, the radeon driver for ATI Radeon cards, the sis driver and the 128 drivers.

78

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

2.2 Source tree modularization

One of the big tasks in the lastest X release has been a complete rework of the X
build system. The existing source tree, built using the imake build system, was
considered as a big monolithic thing in which most developers found themselves
uncomfortable. The need for global releases, updating all drivers at once every six
month or so doesn’t really fit the market of graphics cards that can produce new
models more often than that timeframe.

Based on the experiences of other software projects, it was decided to switch to

a more modular organization of the project, with more or less independent compo-
nents [8]. This new organization will allow drivers maintainers (or others) to make
independent releases, whenever they are needed.

It was decided that the best tools to manage the build of this new modularized
source tree are the GNU auto-tools. They have an existing large user and developer
base, and thus feel easier to use by the majority of developers. Being maintained
outside of the X.Org project is supposed to lower the maintenance burden on the X
developers which are now free to concentrate on their code.

The existing source tree has been split in several components, and each of them
is composed of independent packages. The main components are:

e xproto which holds all the header files describing the actual X protocol and
extensions. There is one package for the core X protocol and one package
per X extension (Shape, MIT-SHM, Render, etc.),

libs which holds all the libraries, one package per library (X11, Xext, Xren-
der, etc.),

e data which holds several data files (bitmaps and icons, XKB data files, X
cursors),

e apps which holds the sample applications provided by X.Org (twm, xcalc,
xedit, xlogo, xman, xwd, etc),

e xserver which provides the different X servers (Xorg, Xnest, Xprint, Xvib),

e drivers which provides the graphics cards drivers, each one in an indepen-
dent package,

e fonts which provides several fonts packages,
e doc for the existing documentation that doesn’t fit a a specific package,

e utils various utilities that help the modular infrastructure, including an auto-
toolized version of imake, for use with third party applications that still
depend on it.

79

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Dependencies and configuration of the new packages is heavily based on the
pkgconfig?” tool.

To make the transition smoother, X11R6.9 and X11R7 share the same source
base, and as far as possible produce the same set of binaries. X11R6.9 is the last
version of the monolithic tree, while X11R7 is the first version based on the new
modular tree. Both releases should be equivalent feature-wise.

Future work will be done in the modularized tree only. Only patches and bug
fixes will be done in the X11R6.9 branch.

3 The future: Xgl

This last section will present the ideas, the rationale and the work already done
to move to a new X server rendering model, based on OpenGL and glitz. This
Xserver, called Xgl’, is mainly developed by David Reveman. Currently it has to
be run on top of a regular Xserver, comparable to Xnest, but first steps have been
made to use Embedded OpenGL (EGL) extensions to make it run stand-alone [7].

3.1 Why use OpenGL

When looking at the current state of the Xserver architecture, several shortcomings
are getting obvious, which we will analyze in detail now:

e XAA does not match current rendering use and is difficult to extend,

o the X server is a mix of high level code (window management etc.) and low
level code (drivers),

o there are little to no ideas how to support modern graphics hardware features
like pixel shaders,

o the driver APl is used by Xserver only,
o the driver API is basically 2D only,
e drivers are difficult to maintain outside of main development tree,

o future graphics hardware won’t have a 2D acceleration core any more.

The current acceleration architecture, XAA, has pretty much reached the end
of its productive life, as it is difficult to implement and maintain, and modern appli-
cations don’t use many core X requests for rendering any more. Many new features
like the Render extension have to be implemented and tested for each driver, which
is a tedious and troublesome work.

*http://pkgconfig.freedesktop.org/wiki/
*http://http://www.freedesktop.org/Software/Xgl

80

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

EXA is one alternative that has already been discussed in the previous section,
but it still has the disadvantage that it keeps the driver code inside the Xserver,
while it would be a worthy goal to have a real driver abstraction layer.

Both acceleration architectures are 2D only APIs, that are used by the Xserver
alone and not by other programs. APIs that are used by only a small number of
programs tend to be less stable and flexible than APIs used by many programs.
While using 2D for a windowing system makes basically sense, there are several
ideas how 3D user interfaces could enhance productivity in the long-term future,
for instance with the project Looking Glass™*.

On the X.Org developer’s conference 2005 all attendants agreed that using the
industry standard 3D graphics interface OpenGL is a worthy investigation for a
driver abstraction layer. David Reveman showed an early version of his Xgl proto-
type, which since then has matured and supports OpenGL based implementations
of most important drawing operations in the Xserver. Additional features have been
contributed by the community, for instance Xegl (Dave Airlie, Adam Jackson, John
Smirl) and XVideo (Matthias Hopf).

Basically, Xgl has shown even in its early state, that using OpenGL for the
drawing operations needed for an Xserver is a viable option, which additionally al-
lows for more advanced compositing operations as it will be shown in Subsect. 3.3.
It also gives easy access to modern features of graphics hardware like vertex and
pixel shaders, and as the API continues to evolve we will see future capabilites
exposed as well. Furthermore, hardware vendors use a lot more transistors and
invest more in the design for the 3D core, so it is very likely to be faster than the
2D acceleration core.

The most important advantage is, however, that finally the Xserver has got rid
of its hardware drivers, which can now be maintained outside the Xserver tree. E.g.
Render is accelerated on every graphics hardware with OpenGL drivers, not just
on the ones that actually implement the required acceleration interface. Having
drivers removed from the Xserver core is especially important with future graphics
hardware, which won’t have 2D acceleration any more, and for which only closed-
source OpenGL drivers exist. While vendors can (and do) implement their 2D
drivers themselves as well, having a stable interface abstraction using a standard
API will certainly improve the driver quality.

3.2 The architecture of Xgl

Figure 3 shows an overview over the Xgl architecture. At the moment Xgl is one
additional DDX in the kdrive Xserver, which is an experimental Xserver mostly
written by Keith Packard. After the Xorg modularization is finished, Xgl will
slowly be integrated into the main stream Xorg server as an additional DDX as
well.

OpenGL is still a relatively low-level AP, so it made sense to create an abstrac-

‘https://1g3d.dev. java.net/

81

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Figure 3: Xgl architecture overview

Application

X11 protocol

Xserver
_DDX
y

Cmds from Xgl

Framebuffer

tion layer that covers the most common graphics operations. As many X operations
are pixmap oriented, texture handling is of particular importance.

Before working on Xgl David Reveman implemented an OpenGL based back-
end for Cairo [2]. The semantic of this backend, named glitz, closely resembles the
Render protocol, and thus was the perfect abstraction layer for Xgl. Basically, glitz
is an OpenGL image compositing library, which provides Porter-Duff compositing
of images with implicit mask generation for geometric primitives. This includes,
but is not limited to, alpha blending and affine transformations, and it has support
for additional features like convolution filters and color gradients, which are not
needed for Cairo. It also abstracts general texture use and the different sorts of
OpenGL buffers.

There are no software fallbacks in glitz, if the hardware isn’t capable of imple-
menting a certain operation, glitz will just report the failure.

Certain operations of glitz require modern OpenGL features, for instance con-
volution filters or color space conversion and resampling for YUV textures both
need pixel shaders. If the hardware isn’t capable of these operations, a general
software fallback inside glitz would result in poor performance, while the upper
layer can easily implement this particular feature (e.g. color conversion) in soft-
ware in an optimized way.

Applications that want to use OpenGL for drawing have to share the drawing
space with the Xserver. As currently there is no way to share textures or frame-
buffers between applications, they currently have to use indirect rendering, i.e. the
Xserver is doing the actual OpenGL calls it gets via the GLX protocol from the
application. On one hand, this can be significantly slower for applications doing a

82

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

lot of memory transfer (video textures or geometry with high primitive count), on
the other hand Xgl is now one of the few X servers capable of doing hardware ac-
celerated indirect rendering, for example for running OpenGL programs remotely,
which isn’t implemented in Xorg yet.

3.3 Composite managers using OpenGL

As already described in Subsect. 1.3, all windows are rendered to off-screen
pixmaps when the Composite extension is active. In the OpenGL case, this means
the Xserver must render to an off-screen framebuffer, which can be provided by
either the pBuffer or the more modern Frame Buffer Object (FBO) extension. Un-
fortunately, pBuffers are not yet widely supported, and implementation of FBOs is
even less common and unstable. In these cases Xgl has to do all rendering to client
windows in software and download the window contents to textures afterwards,
which surprisingly is still quite usable.

Figure 4: Xgl in combination with a composite manager

Application(s) Composite Manager
X11 protocol MESA _render_texture GLX protocol
----------------- VHV
Xserver
DDX | Mesa/GLX
) y Pixmap buffer ID 3D desktop geometry
gz
——“-“ Y Texture ID ¥
_ OpenGL
Texture binding Cmds from CompMgr
... "
‘.' =E“ e
é S| ichiawmre

The pixmaps with the window contents can afterwards be composed us-
ing the Composite extension. An alternative to this is to use GLX to do the
compositing with indirect OpenGL rendering. For this the composite manager
has to be able to bind off-screen pixmaps to textures, which is done with the
GLX_MESA_render_texture extension from Xgl. Figure 4 provides the com-

83

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

plete architectural overview over a session using an OpenGL based composite man-
ager.

With this type of composite manager windows can be arbitrarily placed in 3D,
which leads to pretty exciting rendering possibilities (see Fig. 5). Note that the
pixmaps stay on the graphics hardware all the time, and only the geometry to be
rendered has to be transfered from the composite manager to Xgl.

Figure 5: Fancy desktop switching with GLX based composite manager

S
L “"*
R

P Limkin 2ark- ey
L RUY
8110 Ui plgr g

M R e Liskin.Purk-decat i 10 Rt a;
A free video plagr w4 ¢

Wil
gine Linkin Derkcleouicoy T bzt ov.

faking T Habbit i d

3.4 Caveats and pitfalls

Currently Xgl is working best when run on top of a regular Xserver, comparable to
Xnest. OpenGL provides neither facilities for creating a displayable framebuffer,
nor for changing display modes. Both issues are addressed by the experimental
EGL_MESA_screen_surface extension, which uses the buffer management
ideas incorporated in Embedded OpenGL (EGL). The extension is close to being
submitted to the Embedded OpenGL ARB for review. Right now there exists an
early implementation in Mesa, named Xegl >, for the R 100 and R200 based Radeon
chips from AT], but several hardware vendors want to provide all extensions needed
for Xgl to run in the future.

‘http://www.freedesktop.org/wiki/Xegl

84

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

However, for full functionality, extensions for creating a hardware mouse
pointer, getting monitor information, and setting drivers for different output plugs
are needed as well. These extensions are not specified yet.

One major drawback of Xgl right now is that applications cannot do direct
OpenGL rendering at all. For this an extension for sharing textures between ad-
dress spaces is needed, as the application, Xgl, and the composite manager are all
running in different address spaces. This is the subject of current discussions, but
nothing is specified yet.

During the implementation phase of Xgl, several pitfalls have been encoun-
tered, but for most of them a reasonable solution has been found. First, with many
OpenGL drivers one can easily get namespace collisions, as Xgl needs to be linked
against a software rendering Mesa library for fallback and GLX handling as well as
against the current OpenGL library on the host system. This can be solved by load-
ing the OpenGL backend dynamically, which also allows for the Xegl backend to
be loaded upon availability automatically. Then, frame buffer objects have turned
out to be pretty unstable for many operations, so the code path using pBuffers will
stay around longer than anticipated.

One source for major headaches in the open source community is of course
the lack of open source drivers for modern graphics hardware, which are often
only covered by binary only OpenGL drivers. One notable exception here is Intel,
which has committed itself to providing open source drivers for future chips as
well. Currently, their drivers are not yet equivalent to their competitors with respect
to implemented features, but they are advancing steadily.

3.5 Implementation on BSD systems

Xgl currently runs on any system providing OpenGL, but it is unusable without
hardware acceleration (i.e. without DRI support).

For the longer term, Xegl needs a console driver that provides a graphical mode
with EGL drivers. The first implementations will be done on the Linux framebuffer
driver. NetBSD and OpenBSD share the wscons console driver, on which some
level of support for graphical console is already available. FreeBSD has his own
console driver, syscons, that doesn’t provides a graphical mode yet, as far as we
know.

The integration of these graphical modes with hardware OpenGL acceleration
(and DRI) is required to provide an EGL capable console with support for the
necessary hardware setup extensions.

BSD developers will have to work with Linux DRI developers to make sure
that the direct rendering infrastructure is kept in sync with the Linux DRI with
respect to features like the proposed EGL extensions. A good way to help here
would be to discuss the new extensions on the dri and dri-egl mailing lists so
that no requirements are missed.

In the short term, with these extensions not completely specified, some more
low-level hardware access might be necessary inside the Xserver, and BSD and

85

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

X.org should work closely together as soon as more development efforts are con-
centrated upon Xegl.

Conclusion

After a couple of years of relative stagnation in the world of the X window system,
development has resumed, with the goal of providing rich enough functionalities
for desktop environments which want to provide eye-candy on par with other Desk-
top OSs. The wide availability of cheap OpenGL-capable graphics cards makes
such a new project realistic, although the lack of support for open source systems
by most of the hardware vendors darkens the bright sky of this new technology.

References

[1] S. Nickell. Design fu: Xshots. http://www.gnome.org/~seth/
blog/xshots, March 2005.

[2] P. Nilsson and D. Reveman. Glitz: Hardware Accelerated Image Compositing
Using Opengl. In Usenix 2004 Annual Technical Conference, Freenix Track,
pages 2940, June 2004.

(3] K. Packard. Design and Implementation of the X Rendering Extension. In
Usenix Technical Conference, Boston, June 2001.

[4] K. Packard. Cairo status. http://keithp.com/~keithp/talks/
cairo-exdc2005/, June 2005. European X.Org developpers Meeting,
Karlsruhe.

[5] K. Packard. X Status Report. http://keithp.com/~keithp/talks/
x—rearch-1ca2005, April 2005. Linux.conf.au.

(6] T. Porter and T. Duff. Compositing Digital Images. Computer Graphics,
18(3):253-259, July 1984.

{71 J. Smirl. The state of linux graphics. http://www.freedesktop.org/
~jonsmirl/graphics.html, September 2005.

(8] D. Stone. X.org modularization. "Where to from here?”. http://
people. freedesktop.org/~daniels/exdctalk/, June 2005. Eu-
ropean X.Org developpers Meeting, Karlsruhe.

86

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

= Design and Implementation of
R OpenOSPFD

by Claudio Jeker <claudio@openbsd.org>
Internet Business Solutions AG

Abstract

OpenOSPFD is a free and secure implementation of the
Open Shortest Path First protocol. It allows ordinary
machines to be used as routers exchanging and calcu-
lating routes within an OSPF cloud.

OpenOSPFD is the next major step after OpenBGPD for
full router capabilities in OpenBSD and other BSDs.
Together with OpenBGPD it is possible to re-route traf-
fic in case of link loss resulting in a higher-level of avail-
ability.

87

OpenOSPFD - design and implementation

Overview

11

The Internet is split into regions called Autonomous Sys-
tems (AS). Each AS is under the control of a single
administrative entity — for example a university or an
ISP. The edge routers of these AS use an Exterior Gate-
way Protocol (EGP) to exchange routing information
between AS. Currently BGP4, the Border Gateway Pro-
tocol is the only EGP in widespread use. Routers within
an AS use an Interior Gateway Protocol to exchange
routing information. There are different IGPs. OSPF,
IS-IS. and RIP are the most commonly used. It is possi-
ble and common to have multiple IGPs running inside
one AS.

The Routing Information Protocol (RIP) is a legacy pro-
tocol that is often found on appliances. It is not suitable
for larger networks because the distance vector algo-
rithm used by RIP converges slowly. Especially in the
face of certain network failures (count to infinity). OSPF
and IS-IS on the other hand are both link-state protocols.
The Intermediate System to Intermediate System (IS-IS)
protocol was developed for the OSI protocol suite under
the lead of the ITU.

Routing Protocols

Why not use one protocol for everything, EGP and IGP?
The requirements for an IGP differ from those of a an
EGP. For an IGP it is important to recalculate the routing
table quickly when the network changes. Another factor
is automatic neighbor discovery. On the other hand the
most important feature of an EGP is the ability to
express routing policies. The resulting routing table is
normally cost optimised.

1.2 Algorithms

There are two main concepts to exchange routing infor-
mation. These algorithms are working in a totally differ-
ent ways.

1.2.1 Distance Vector Algorithms

Distance vector algorithms got their name from the form
of the routing updates: a vector of metrics.

In a distance vector algorithm every router exchanges its
routing table with all his neighbors. The neighbors then
walk through the list and compare if their current route
entry is better or not. If not the route is replaced and
redistributed again.

In case of RIP the list of routes and their metric is
exchanged every 30 seconds. This results in a slow con-
vergence because an update propagates only one hop
every 30 seconds. On the other hand the protocol is
simple and robust because every router cares only about
his own neighbors. In other words the information about

88

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

the network topology is distributed. This results in one of
the biggest weaknesses of RIP — the count to infinity
problem — resulting in slow convergence and routing
loops if a network becomes unavailable. There are some
countermeasures against this. The simplest is to pass the
full routing path instead of only the metric. This path
distance vector algorithm is used by BGP. It is easy to
implement routing policies on distance vector algo-
rithms.

1.2.2 Link-State Algorithms

In a link-state protocol every router or node sends out his
current link-states. The link-state advertisements are dis-
tributed to all nodes in the network. The resulting repli-
cated distributed database represents the entire network
topology. Every node uses this connectivity map to cal-
culate the shortest path to every other router. Link-state
protocols have good convergence properties. The biggest
weakness of link-state protocols is the replicated distrib-
uted database. If the database gets out of sync non opti-
mal routes are used and in worst case routing loops are
created. Link-state protocols are more complicated than
distance vector protocols.

OSPF - the protocol

The OSPF routing protocol was developed within the
IETF. The work started in 1987. The current version
(OSPFv2) of the specification was published in 1998 as
RFC 2328.

T~
area 0.0.0.4

(stub)

(av4a)
ASBE é ASBR

ABR
B
i area 0.0.0.0
\area0.0.0.1) \(backbone))
RIP
cloud

\area 0.0.0.5)

Figure 1: Sample OSPF network

: OpenOSPFD - design and implementation

2.1 Architecture

The Open Shortest Path First (OSPF) protocol is a link-
state, hierarchical routing protocol. It is probably the
most used IGP in the world. It is capable of doing neigh-
bor discovery on different types of networks with mini-
mal need for configuration. OSPF encapsulates its
routing messages directly on top of IP as its own proto-
col type (89). TCP connections are not used because the
link-state flooding algorithm already includes its own
way for reliable communications — adding to OSPF's
complexity. Most obvious the massive use of IP multi-
cast in OSPF makes TCP infeasible.

2.1.1 Networks

An OSPF router discovers neighbors by periodically
sending OSPF Hello packets out on all configured inter-
faces. Depending of the interface type different methods
are used. The flooding algorithm depends on the inter-
face type as well.

The simplest interface type is a point-to-point interface.
Neighbor discovery is easy — there is only one neighbor
on the other side of the link — and no special link-state
flooding enhancement is required.

For ethernet and other broadcast networks OSPF uses
multicast to find all neighbors on the segment. The link-
state updates are flooded via multicast as well. To make
the thing even more complicated a designated router
(DR) was introduced. The DR has the duty to enforce the
reliable flooding for all other routers connected to the
same LAN. A backup designated router (BDR) was
introduced to take over in case of a DR failure.

Additionally more flooding procedures where defined
for other important network types like NBMA (non-
broadcast multiple-access) or point-to-multipoint net-
works. Examples include X.25, Frame Relay, or ATM
using full mesh or switched virtual circuits.
OpenOSPFD does not support these exotic networks
mostly because of lack of support by the OS and missing
infrastructure.

2.1.2 Database synchronisation and
reliable flooding

Database synchronisation in a link-state protocol is cru-
cial. The routing calculation ensures a loop-free routing
as long as the database remains perfectly synchronised.
It is no wonder that this is the most fragile part of the
specification. Especially with all the additional complex-
ity added by multicasting of updates and the presence of
DR and BDR routers. A reliable and robust flooding pro-
cedure is very important because a little inadvertence
can result in a major network “meit down” where only a
full reset of all routers cures the situation.

89

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Database synchronisation takes two forms. First there is
the initial database synchronisation. Following it the dis-
tributed copies of the database need to be kept in sync by
reliably flooding updates to all routers in the network.
The initial database exchange is done when two routers
build an adjacency. First a request list is built up through
a TFTP like database exchange phase. In the exchange
phase one of the two neighbors is elected as master of
that session. This router sends a Database Description
packet to the slave and waits for an answer. If none is
received within some amount of time the packet is
retransmitted. A sequence number identifies duplicates.
At any given point in time only one packet can be out-
standing. Afterwards Link-State Requests are sent
between the two routers. The other side then sends the
requested link-state announcement (LSA) back to the
requesting router. A full adjacency has been set up when
the request list is empty. Now reliable flooding needs to
ensure that the databases remain perfectly synchronised.
Every time a link changes state or after a 30 minute time-
out a LSA needs to be reflooded. A LS update received
on one interface needs to be sent out on all other inter-
faces. This simple rule is unfortunately not sufficient
because the flooding would never stop. So the router
checks his database to see if the update was already
received on a different path. In that case the update does
not need to get reflooded. It is also necessary to
acknowledge the updates because an non reliable trans-
port layer was chosen. Additionally implicit acknowl-
edgements and timeouts, throttling the generated LS
updates. help to make the flooding more robust and the
implementation more complex, yet again.

2.1.3 Areas

One problem of a link-state protocol is the computation
cost bourn by every router, particularly in large net-
works. Many routers have an underpowered CPU and so
OSPF areas where invented to divide a large network
into smaller pieces. Every area is connected to a special
backbone area. In most cases inter-area routing goes via
the backbone. Routers that are connected to multiple
areas are area border routers (ABR) and are always con-
nected to the backbone area. If no direct connection to
the backbone is possible, a virtual-link has to be estab-
lished to at least one backbone router. Areas where no
transit traffic is exchanged can be converted into stub
areas, reducing the routing table to a bare minimum.
Stub areas are useful to connect routers with minimal
memory configurations to large OSPF clouds.

LSAs are flooded only inside an area. The ABR has the
duty to reflood the other areas with special summary-
LSAs to inform them of available prefixes inside the
originating area.

2.1.4 Border routers

Besides ABRs another kind of boarder router exists. A
router is automatically an AS border router (ASBR) if it
imports routes from external sources into the link-state
database. External sources are other routing protocols or
manually configured static routes. These routers are on
the boarder of the OSPF cloud but are not necessary on
the real AS border. The external routes redistributed by a
ASBR are special as they are flooded through the full
OSPF cloud instead of per area as all other LSAs. Only
stub areas are left out to avoid overloading those poor
little routers in them.

2.2 Packets

There are five different packet types defined. Every
packet starts with a common 24 byte OSPF header. This
header includes all necessary information for the recipi-
ent to determine if it should be accepted and processed
or ignored and dropped.

Version# | Type | Packet Length
Router ID
Area ID
Checksum | Authentication Type
Authentication Data
Authentication Data

Figure 2: Common OSPF header

The standard IP CRC checksum is used to validate
packet integrity. Multiple authentication procedures are
defined but only one can be considered useful. Only the
cryptographic authentication is enough strong to protect
OSPF traffic. Only cryptographic authentication can pre-
vent spoofing and replay attacks. After the verification
the payload of the packet is examined.

The following packet types are defined:

Table 1: OSPF packet types
Hello
Database Description

Link-State Request
Link-State Update
Link-State Acknowledgement

vifblwinNng| —

90

Claudio Jeker

2.2.1 Hello

Version # | 1 l Packet Length
Router ID
Area ID
Checksum] Authentication Type

Authentication Data
Authentication Data

Network Mask
Hello Interval I

Options | Router Priority

Router Dead Interval

Designated Router
Backup Designated Router
Neighbor

Figure 3: Hello Header

Hello packets are sent periodically in order to establish
and maintain neighbor relationships. Hello packets are
sent to a multicast group to enable dynamic discovery of
neighboring routers. All routers to a common network
must agree on certain parameters. The most important
part of the hello packet is the neighbor list at the end.
The router ID of each router from which a valid Hello
packet has recently been received is added to that list.
Only after the own router ID is seen in a neighbors Hello
packet an adjacency can be formed.

2.2.2 Database Description

Version# | 2 | Packet Length
Router ID
Area ID
Checksum | Authentication Type

Authentication Data

Authentication Data
Interface MTU | Options | Flags
DD Sequence Number

LSA Header

- —

Figure 4: Database Description Header

These packets are exchanged when an adjacency is ini-
tialised. They describe the contents of the link-state data-
base. The initial database exchange is done similar to the
TFTP protocol. For that reason a sequence number is
included in the header.

Additionally the MTU of the outgoing interface is
included to detect possible forwarding issues with large
packets. The rest of the packet consists of a list of LSA
headers. A LSA header contains all information to
uniquely identify a LSA.

|
|

OpenOSPFD - design and implementation

2.2.3 Link-State Request

Version # | 3] Packet Length
Router 1D
Area ID
Checksum | Authentication Type

Authentication Data

Authentication Data

LS Type
Link-State 1D
Advertising Router

Figure 5: Link-State Request Header

After exchanging Database Description packets with the
neighboring router, Link-State Request packets request
pieces of the neighbors LS database that are more up-to-
date. Each LSA requested is specified by its LS type,
Link-State ID, and Advertising Router. This uniquely
identifies the LSA, but not its instance. Link-State
Request packets are understood to be requests for the
most recent instance. It is possible to request multiple
LSA with one LS request packet.

2.2.4 Link-State Update

Version # | 4 I Packet Length
Router 1D
Area ID
Checksum | Authentication Type

Authentication Data
Authentication Data
Number of LSAs

LSA

- —

Figure 6: Link-State Update Header

These packets implement the flooding of LSAs. Each
Link-State Update packet carries a collection of LSAs
one hop further from their origin. Several LSAs may be
included in a single packet. The body of the Link-State
Update packet consists of a list of LSAs.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

2.2.5 Link-State Acknowledgement

Version# | 5 | Packet Length
Router ID
Area ID
Checksum | Authentication Type

Authentication Data
Authentication Data

LSA Header

-

Figure 7: Link-State Acknowledgement Header

In order to make the flooding procedure reliable, flooded
LSAs are acknowledged in Link-State Acknowledge-
ment packets. Multiple LSAs can be acknowledged in a
single Link-State Acknowledgement packet. The format
of this packet is similar to that of the Data Description
packet. The body of both packets is simply a list of LSA
headers.

2.2.6 Link-State Advertisements Header

Each LSA begins with a common 20 byte header. This
header is enough to uniquely identify a LSA. So it is
enough to use the LSA header in LS acknowledgements
and Database Description packets. LSAs are identified
by the LS type. Link-State ID, and Advertising Router
triple. Additionally a LS sequence number and LS age
are included to determine which instance is more recent.
The LS checksum protects the integrity of LSAs. Instead
of the known CRC algorithm specified in many IP proto-
cols a ISO checksum algorithm — also known as Fletcher
Checksum - is employed.

LS age | Optons | LSType
Link-State 1D
Advertising Router
LS sequence number
LS Checksum | Length

Figure 8: Link-State Advertisements Header

Each LSA type has a separate advertisement format. The
LS types defined in the OSPF standard are as follows:

Table 2: LS types
1 Hello

Database Description

Link-State Update
Link-State Acknowledgement

2
3 Link-State Request
4
5

imﬁ OpenOSPFD - design and implementation

Router- and Network-LSA describe the network inside
an area. Summary-LSA are injected by area border rout-
ers (ABRs) and describe inter-area destinations. AS-
external-LSAs are originated by ASBRs to describe des-
tinations external to the OSPF routing domain.

Design

update table

routing socket

updates

runs as _ospfd:_ospfd

flood request
chroot to /var/empty

UNIX socket

Ivarfrun/ospfd.sock
raw |P socket

proto 89

Figure 9: Design of OpenOSPFD

The design of OpenOSPFD is based on the one in
OpenBGPD. The routing daemon is split into three proc-
esses. The privileged parent process handles the kernel
routing table updates. The OSPF engine handles all
incoming packets and the state machines with all the
necessary periodic events and timeouts. Finally the route
decision engine stores the LS database, calculates the
SPF tree and the resulting routing table. This separation
into three processes does not only enhance the security
but also the stability. Even a large database recomputa-
tion in the RDE will not hold up the keep alive packets
sent out by the OSPF engine. The Inter-Process Commu-
nication (IPC) system is almost the same as in
OpenBGPD. The only major difference is the use of
libevent for timers and file descriptor polling instead of
poll(2). The basic imsg framework is still the same.
OpenOSPFD switched to libevent mostly because of the
OSPF engine. The engine is mostly event driven with
many concurrent timers running. OpenOSPFD can be
controlled and monitored via ospfctl. It works very simi-
lar to bgpctl for OpenBGPD.

fetch table

jailed child
runs as _ospfd:_ospfd
chroot to Avar/empty

92

MPsaepdn aynos

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

3.1 Processes

3.1.1 ospfd parent

The ospfd parent process is the only one running with
root privileges. This is necessary to update the kernel
routing table. This process listens on a routing socket for
changes and updates and distributes that information to
the OSPF engine or the RDE. At a later time config-file
reloads will be handled by the parent process too.

3.1.2 OSPF engine

The OSPF engine listens to the network

and processes the OSPF packets. Both

the interface and the neighbor finite state

machine are implemented in the OSPF

engine. This includes the DR/BDR elec-

tion process. Additionally the reliable
\ flooding of LS updates with retransmis-
sion and acknowledgement is done by
the engine.

g..-

x
=

15| 2INqUISIpal

3.1.3 Route Decision Engine

The RDE stores the LS database. calcu-
lates the SPF tree, and informs the
parent process about changes in the
resulting routing table. Premature LSA
aging is done by the RDE as well. Addi-
tionally redistribution of networks is
handled by the process. The RDE syn-
chronises multiple areas if the router is
acting as ABR and refloods summary-
LSA into the different areas if necessary.

3.1.4 ospfctl

ospfctl is the tool to control and monitor OpenOSPFD. It
uses a UNIX local socket to communicate with ospfd.
Over this socket imsgs are passed which encapsulate the
information. There is no command line interface to
OpenOSPFD because it doesn't make sense to write a
clumsy CLI on a UNIX system shipping with very pow-
erful shells and many tools to manipulate the status out-
put. ospfctl is mostly an adapted bgpctl.

OpenOSPFD - design and implementation

Implementation

OpenOSPFD currently consist of around 12'000 lines of
C code. For comparison OpenBGPD is currently a bit
under 20'000 lines. Zebra/Quagga ospfd has almost
40'000 lines of code. And that is just the ospfd directory,
not including the 35'000 lines in lib and the 15'000 lines
for the zebra daemon.

Lets start with a short overview of the source files.

Table 3: Overview of source files

Area handling which is actually
very simple.

area.c

Implementing all OSPF
authentication extensions.
Nobody wants to run a OSPF
network without using
cryptographic authentication.

auth.c

buffer.c buffer handling mostly for the
imsg framework but aiso used to

generate outgoing packets.

control.c ospfctl session management and

message verification.

Code for the initial database
exchange. This is not related the
LS database that is managed by
the RDE.

Generating and parsing of Hello
packets is done here.

database.c

hello.c

imsg framework mostly copied
from OpenBGPD.

Implementation of the CRC16
checksum of the TCP/IP standards.

Interface finite state machine,
event handling and interface
specific functions.

imsg.c

in_cksum.c

interface.c

1SO checksum also known as
Fletcher checksum for LSAs.

Kernel routing socket handling
including the FIB table.

log.c Various logging functions mostly
adapted from OpenBGPD.

Link-State Acknowledgement
construction and parsing.

iso_cksum.c

kroute.c

Isack.c

Link-State Request construction
and parsing, including the
request list functions.

Isreq.c

Link-State Updates construction
and parsing, including the
flooding function and
retransmission lists.

Isupdate.c

Neighbor finite state machine
and event handling.

neighbor.c

93

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Table 3: Overview of source files

ospfd.c Parent process, home of main().

ospfe.c OSPF engine main event loop
plus functions for self originated
LSAs.

packet.c Packet reception and sending.

parse.y Configuration parser.

printconf.c | Configuration dumping used by
the -n switch.

rde.c RDE main event loop plus other
RDE specific functions.

rde_lsdb.c LS database code.

rde_spf.c SPF algorithm and RIB
calculation.

4.1 Important datastructures

There are four main datastructures in OpenOSPFD. It is
important to know what such a structure represents to
understand the code. Most of the time when the term
interface is used, the actual struct iface of that inter-
face is meant. Ditto for neighbor or area.

4.1.1 ospfd_conf

This is the main config of the router. It holds the parame-
ters like the router ID, spf_delay or
redistribute_flags.The lsa_tree and cand_list are
used in the RDE by the LS database and SPF algorithm.
The area_list holds all configured areas. Finally there
is one event handler used for polling the raw socket or
implementing the SPF timer depending on the process it
is used in.

Code snip 1: struct ospfd_conf

struct ospfd_conf {

struct event ev;
struct in_addr rtr_id;
struct lsa_tree lsa_tree;
LIST_HEAD(, area) area_list;
LIST_HEAD(, vertex) cand_list;
u_int32_t opts;
u_int32_t spf_delay;
u_int32_t spf_hold_time;
int spf_state;
int ospf_socket;
int flags;
int redistribute_flags;
int options; /* OSPF options */
u_int8_t rfcl583compat;
u_int8_t border;

bi

4.1.2 area

Area specific configurations are stored in the area
descriptor. There are many parameters that are mostly
used by the OSPF engine. Exclusively for the RDE are
1sa_tree and the nbr_list. The first stores the per area
LS database. The second is a list of all active neighbors
from the RDE perspective. The OSPF engine tells the
RDE when neighbors are created, deleted, or when their
state changes. On the other hand active is only used by

OpenOSPFD - design and implementation

the OSPF engine. active tracks the number of neigh-
bors which are in state FULL. If the number is zero the
area is considered inactive. This counter is used to deter-
mine if a router is an area border router.

Code snip 2: struct area

struct area {

LIST_ENTRY(area) entry;
struct in_addr id;

struct lsa_tree lsa_tree;
LIST_HEAD(, iface) iface_list;
LIST_HEAD(, rde_nbr) nbr_list;

u_int32_t stub_default_cost;
u_int32_t num_spf _calc;
u_int32_t dead_interval;
int active;
u_intlé_t transmit_delay;
u_intlé_t hello_interval;
u_intlé_t rxmt_interval;
u_intlé_t metric;
u_int8 t priority;
u_int8_t transit;
u_int8_t stub;

}i

4.1.3 interface

Every configured interface is represented by a struct
iface. It stores values like the link_state, baudrate,
MTU, and interface type. There are some additional
OSPF specific parameters like the auth_type, list of
keys used for cryptographic authentication
(auth md_list), interface metric and interface state.
Lets have a look at the neighbor list and the three neigh-
bor pointers dr. bdr, and self. dr and bdr are pointers to
the active DR or BDR neighbor or NULL if there is none.
self is used for a dummy neighbor structure that repre-
sents the router himself. Using this dummy neighbor
simplifies many cases but additional care needs to be
taken to not remove it by accident or doing some other
stupid action with it. A back pointer to the parent area
this interface is part of is also included. An interface can
have up to three concurrent timers running and therefore
three different event structures are needed.

Code snip 3: struct iface

struct iface {

LIST_ENTRY(iface) entry;
struct event hello_timer;
struct event wait_timer;

struct event lsack_tx_timer;
LIST_HEAD(, nbr)
TAILQ_HEAD(, auth_md)
struct lsa_head

nbr_list;
auth_md_list;
ls_ack_list;

char name [IF_NAMESIZE];
struct in_addr addr;

struct in_addr dst;

struct in_addr mask;

struct in_addr abr_id;

char *auth_key;
struct nbr *dr;

struct nbr *bdr;

struct nbr *self;

struct area *area;

u_int32_t baudrate;
u_int32_t dead_interval;
u_int32_t ls_ack_cnt;
u_int32_t crypt_seq num;
unsigned int ifindex;

int fd;

int state;

int mtu;

u_intlé_t flags;
u_intlé_t transmit_delay;
u_intlé_t hello_interval;

94

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

u_intlé_t rxmt_interval;
u_intlé_t metric;

enum iface_type type;

enum auth_type auth_type;
u_int8_t auth_keyid;
u_int8_t linkstate;
u_int8_t priority;
u_int8_t passive;

}i

4.1.4 neighbor

Struct neighbor represents the neighbor relationship
from the local point of view. To maintain a session suc-
cessfully a LS retransmission and request list is required
plus a list for the database snapshot. Then a few values —
dd_seq_num, dd_pending, last_rx_options,
last_rx_bits, and master — are only used in the
EXCHANGE phase when Database Description packets
are transmitted. peerid is a unique ID used in all three
processes. The peerid is used in imsgs to tell the recipi-
ent of the message which neighbor is guilty for the just
received message. The interface, over which this neigh-
bor is reached, is stored in iface. The neighbor structure
is per interface so if two routers are connected via two
different networks two different neighbor structures will
be created for the same router but the structures are
added to different interfaces.

Code snip 4: struct nbr

struct nbr {

LIST_ENTRY(nbr) entry, hash;

struct event inactivity_ timer;
struct event db_tx_timer;

struct event lsreq_tx_timer;

struct event 1s_retrans_timer;
struct event adj_timer;

struct nbr_stats stats;

struct lsa_head 1s_retrans_list;
struct lsa_head db_sum_list;

struct lsa head 1s_req_list;

struct in_addr addr;

struct in_addr id;

struct in_addr dr; /* designated router */
struct in_addr bdr; /* backup DR */
struct iface *iface;

struct lsa_entry*ls_req;

struct lsa entry*dd_end;

u_int32_t dd_seq_num;

u_int32_t dd_pending;

u_int32_t peerid;/* unique ID in DB */
u_int32_t 1ls_req_cnt;

u_int32_t crypt_seq_num;

int state;

u_int8_t priority;

u_int8_t options;

u_int8_t last_rx_options;
u_int8_t last_rx_bits;

u_int8_t master;

4.2 Parent Process

4.2.1 Start-up

On start-up ospfd first initialises the log subsystem and
fetches the list of available interfaces. This list is
required for the next step, the configuration file parsing.
The yacc parser used by ospfd is based on bgpds parser
which in turn has his origin in the pf parser. Explaining

OpenOSPFD - design and implementation

the parser goes beyond the scope of this paper. Important
to know is that the configuration is parsed into a hierar-
chy of structures.

The configuration consists of a list of areas and every
area holds a list of interfaces that are part of this area.
Last but not least every interface has a list of neighbors
that is dynamically created as soon as a valid Hello
packet is received from an other OSPF router on that
interface.

After the file got parsed ospfd daemonises and starts the
child processes. Beforehand a set of socketpairs — a spe-
cial sort of pipes — are created. Finally the event handlers
are set up, rest of the kroute structures is initialised and
the parent reports ready for service.

Meanwhile both children have started. First of all both
chroot(2) to /var/empry and drop privileges by switching
to the special user _ospfd. Before doing that the OSPF
engine creates a UNIX local socket for ospfctl and opens
the raw IP socket to receive and send packets to the net-
work. After dropping privileges the OSPF engine initial-
ises the different subsystems, sets the event handlers and
starts the actual work by kicking the interface finite state
machine. The RDE start-up is even simpler as it just has
to initialise the internal structures and event handlers.

4.2.2 Routing socket and FIB

The main purpose of the parent process is to maintain
the Forward Information Base (FIB) and keep the infor-
mation in sync with the kernel routing table. This syn-
chronisation is to be done in both directions.
Additionally link-state changes and arrival or departure
of interfaces are handled via the routing socket as well.
The kroute code maintains two primary data structures.
A prefix tree (kroute) and an interface tree (kif). These
two trees are kept in sync with the kernel through the
routing socket. On start-up fetchtable() loads the
kroute tree and fetchifs() does the same for the kif
tree. Routing changes are tracked by dispatch_rtmsg()
which handles kroute changes directly but off-loads
interface specific messages to if_change() and
if announce(). To modify the kernel routing table
send_rtmsg() is used. send_rtmsg() translates a
struct kroute into a rt_msg structure expected by the
routing socket. The parent process uses kr_change() to
add or modify routes and kr_delete() to remove routes.
These changes are propagated to the kernel routing table
if needed.

Both the kroute and kif tree are implemented as red-
black trees — a balanced binary tree. An API to find,
insert and remove nodes is specified to simplify the tree
manipulation.

Everytime a route is added or removed to the kroute tree
kr_redistribute() is called. This function transmits
possible candidates for redistribution to the RDE. In the
RDE kif_validate() verifies that the nexthop is actu-

95

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

ally reachable. This is a work a round that should be
fixed later as it is currently not possible to track and
handle newly arriving network interfaces at runtime.
Last but not least kr_show_route() and kr_ifinfo()
pass information about kroutes or interfaces to ospfctl.

4.3 OSPF Engine

The finite state machines implemented in ospfd are
simple table driven state machines. Any state transition
may result in an specific action to be run. The resulting
next state can either be a result of the action or is fixed
and pre-determined.

4.3.1 Interface state machine
DOWnJ
LOOPBACK DOWN
Unloopindication
Looplndication
Up Up
POINT-TO-
WAITING POINT
]
£
®
2
DROTHER
Neighbor
Change
DR
Figure 10: Interface FSM
DOWN

In this state, the lower-level protocols have indicated that
the interface is unusable. No protocol traffic at all will be
sent or received on such an interface.

LOOPBACK

In this state, the router's interface to the network is
looped back. Loopback interfaces are advertised in
router-LSAs as single host routes, whose destination is
the interface IP address.

POINT-TO-POINT

Point-to-point networks or virtual links enter this state as
soon as the interface is operational.

WAITING

Broadcast or NBMA interfaces enter this state when the
interface gets operational. While in this state no DR/
BDR election is allowed. Receiving and sending of
Hello packets is allowed and is used to try to determine
the identity of the DR/BDR routers.

OpenOSPFD - design and implementation

DROTHER

The router is neither DR nor BDR on the connected net-
work. In this state the router will only form adjacencies
to both the DR and the BDR. All other neighbors will
stay in neighbor state 2-WAY.

BACKUP

The router is the BDR on the connected network seg-
ment. If the DR fails it will promote itself to be the new
DR. The router forms adjacencies to all neighbors in the
network segment.

DR

The router is the DR on the connected network segment.
Adjacencies are established to all neighbors in the net-
work segment. Additional duties are origination of a net-
work-LSA for the network node and flooding of LS
updates on behalf of all other neighbors.

Only a few events are needed. The events UP, DOWN,
LOOP. UNLOOP are obvious. The other events WAIT-
TIMER, BACKUPSEEN and NEIGHBORCHANGE are
restricted to broadcast and NBMA networks. WAIT-
TIMER and BACKUPSEEN are used to move out of state
WAITING by running the election process. The NEIGH-
BORCHANGE event is issued when there is a change in
the set of the bidirectional neighbors. This event will
force a re-election of the DR and BDR.

The most important actions are if_act_start() and
if_act_elect(). if act start() sets the correct next
state (POINT-TO-POINT or WAITING), initialises the
interface and starts the hello timer to begin with the
neighbor discovery process. if_act_elect() elects a
DR and BDR for a network. This function caused major
problems because of subtle bugs and a sloppy written
RFC.

First a backup designated router has to be elected.

Code snip 5: BDR election

/* elect backup designated router */
LIST FOREACH(nbr, &iface->nbr_list, entry) {
if (nbr->priority == /* not electable */
nbr->state & NBR_STA_PRELIM ||
/* not available */
nbr->dr.s_addr == nbr->addr.s_addr ||
nbr == dr) /* don't elect DR */
continue;
if (bdr != NULL) {
/*

* routers announcing themselves as BDR
* have higher precedence over those
* routers announcing a different BDR.
*/
if (nbr->bdr.s_addr == nbr->addr.s_addr) {
if (bdr->bdr.s_addr ==
bdr->addr.s_addr)
bdr = if_elect(bdr, nbr);
else
bdr = nbr;
} else if (bdr->bdr.s_addr !=
bdr->addr.s_addr)
bdr = if elect(bdr, nbr);
} else
bdr = nbr;

96

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Every neighbor is evaluated, neighbors with a priority of
0 are skipped. Additionally all neighbors that are not in
state 2-WAY or higher plus possible DRs are skipped.
From the remaining set a BDR is selected. Routers
announcing themselves as BDR have higher precedence
0 the code checks if the current neighbor is announcing
himself BDR. The same thing is done with the current
candidate. If both are announcing themselves as BDR or
both are not announcing themselves as BDR
if elect() elects a new candidate. The helper function
if elect() compares two neighbors and returns the
preferred one. In the other two cases no additional com-
parison needs to be done as the next candidate is known.

Code snip 6: DR election

/* elect designated router */
LIST FOREACH(nbr, &iface->nbr_list, entry) {
if (nbr->priority == 0 ||
nbr->state & NBR_STA_PRELIM ||
(nbr != dr &&

nbr->dr.s_addr != nbr->addr.s_addr))
/* only DR may be elected check priority too */
continue;
if (dr == NULL)
dr = nbr;
else

dr = if_elect(dr, nbr);
}

if (dr == NULL) {
/* no designate router found use backup DR */
dr = bdr;
bdr = NULL;

}

Almost the same process is done for electing a DR.
Neighbors that are neither in state 2-WAY or higher or
have a priority of O are skipped again. Additionally all
neighbors that don't announce themselves as DR are
skipped as well, with the only exception of the current
DR itself. This is done because the election process can
be restarted with the current candidates. If no DR was
elected the current BDR is promoted DR. If the router is
involved in the election it has to redo the election.

Code snip 7: final step of election

/*
* if we are involved in the election (e.g. new DR or no
* longer BDR) redo the election

*/
if (round == 0 &&
((iface->self == dr && iface->self t= iface->dr) ||
(iface->self != dr && iface->self == iface->dr) |
(iface->self == bdr && iface->self != iface->bdr) ||
(iface->self != bdr && iface->self == iface->bdr))) {
/*

* Reset announced DR/BDR to calculated one, so
* that we may get elected in the second round.
* This is needed to drop from a DR to a BDR.

*/
iface->self->dr.s_addr = dr->addr.s_addr;
if (bdr)
iface->self->bdr.s_addr = bdr->addr.s_addr;
round = 1;
goto start;

}

Before doing that we set the current candidates in our
own structure so that the second round will actually
modify the behaviour. It is well possible that some
checks are unnecessary or to complex but this current
implementation seems to behave correctly and so we
keep it as is.

OpenOSPFD - design and implementation

After the election process a bit of housekeeping has to be
performed. If the DR or BDR changed, all neighbors
have to be checked if the adjacency is still OK. Addition-
ally it may be necessary to join or leave the A11DRouters
multicast group. In case the router was or is now the DR
an updated network-LSA needs to be reflooded.

Getting the DR/BDR election right was one of the most
difficult parts of the development. Often unexpected
behaviours where found because of small mistakes here
and in recv_hello(). It took multiple retries and many
debugging sessions to get that code where it is now. The
poorly written RFC doesn't help much in clarifying the
issues.

4.3.2 Neighbor state machine

KillNbr
Inactivity Timer
LLDown

DOWN

HelloReceived

1-WayReceived Start

INIT ATTEMPT

HelloReceived

SeqNumberMismatch

BadLSReq 2-WayReceived AGIORY
EXSTART 2-WAY
T
Negotiat;onDone
Snapshqt
SNAPSHOT [S7205"G EXCHANGE
VAN
ExchangeOone
FULL ToadngDone LOADING
Figure 11: Neighbor FSM
DOWN

A neighbor is considered down if no hello has been
received for more than router-dead-time seconds. This is
also the initial state of a neighbor.

ATTEMPT

This state is only valid for neighbors attached to NBMA
networks. Therefore it is currently unused.

INIT

In this state, a Hello packet has recently been seen from
the neighbor. However, bidirectional communication has
not yet been established.

2-WAY

The communication between the neighbor and the router
is bidirectional. Neighbors will remain in this state if
both the router itself and the neighbor are neither DR nor
BDR.

97

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

EXSTART

This is the first step in creating an adjacency between the
two routers. In this state the initial DD sequence number
and the master is selected for the upcoming database
exchange phase.

SNAPSHOT

This state is actually an extension of the state machine
defined by the RFC. Because the LS database is stored in
the RDE, a current snapshot of all LSA headers have to
be requested by the OSPF engine. The database
exchange will start after the snapshot is done.

EXCHANGE

This is the database exchange phase. Additionally all
neighbors in state EXCHANGE or higher (LOADING.,
FULL) participate in the flooding procedure. Starting
from this state all packet types can be received inclusive
flooded LS updates.

LOADING

The state is only entered if the Link-State Request list is
not empty. In that case Link-State Request packets are
sent out to fetch the more recent LSAs from the neigh-
bors LS database.

FULL

The two routers are now fully adjacent. The connection
will now appear in router-LSAs and network-LSAs.
Only in this state real traffic will be routed between the
two routers.

4.3.3 Packet reception

The OSPF engine uses the recv_packet() libevent han-
dler to receive packets from the raw IP socket. The
packet is validated via ip_hdr_sanity check() and
ospf_hdr_sanity check(). Some additional length
checks are done to ensure that no access outside of the
packet is done. It is currently not possible in OpenBSD
3.8 to get the incoming interface via recvfrom(2) so we
need to find the interface the hard way. find_iface()
does this job by walking through all configured inter-
faces and comparing the source address of the incoming
packet with the interface address. This is not optimal and
will be changed soon. The next step is looking up the
neighbor and afterwards the OSPF authentication is run.
nbr_find_id() takes the unique router ID to get the
neighbor structure with all information needed. This is
done before auth validate() because the crypto-
graphic authentication method uses a per neighbor spe-
cific sequence number to immunize against replay
attacks. If necessary auth_validate() does the CRC

OpenOSPFD ~ design and implementation

checksumming of the packet. Finally the packet is
passed on according to its packet type to one of the fol-
lowing functions.

recv_hello()

Every hello-interval seconds a Hello packet is sent to all
neighbors. On broadcast networks this is done with one
multicast packet. The Hello packet is used for neighbor
discovery and to maintain neighbor relationships. As
first step all the common options need to be compared. If
one of hello-interval, router-dead-time, or the stub area
flag differs the packet is not accepted. So all routers on a
common network must have the same configuration for
these values.

Code snip 8: neighbor look up

switch (iface->type) {
case IF_TYPE_POINTOPOINT:
case IF_TYPE_VIRTUALLINK:
/* match router-id */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {
if (nbr == iface->self)
continue;
if (nbr->id.s_addr == rtr_id)
break;
}
break;
case IF_TYPE_BROADCAST:
case IF_TYPE_NBMA:
case IF_TYPE_POINTOMULTIPOINT:
/* match src IP */
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr == iface->self)
continue;
if (nbr->addr.s_addr == src.s_addr)
break;
}
break;
default:
fatalx('recv_hello: unknown interface type");
}
if (!nbr) {

nbr = nbr_new(rtr_id, iface, 0);

/* set neighbor parameters */
nbr->dr.s_addr = hello.d_rtr;
nbr->bdr.s_addr = hello.bd_rtr;
nbr->priority = hello.rtr_priority;
nbr_change = 1;

}

The packet is now accepted and the neighbor is looked
up. Depending on the interface type either by router ID
or by interface address. If no neighbor could be found a
new one is created. A new neighbor is considered a
NEIGHBORCHANGE and the nbr_change flag is set
that an interface neighbor change event can be issued
later.

Code snip 9: bidirectional or not
nbr_fsm(nbr, NBR _EVT_HELLO_RCVD);

while (len >= sizeof(nbr_id)) {
memcpy (&nbr_id, buf, sizeof(nbr_id));
if (nbr_id == ospfe_router_id()) {
/* seen myself */
if (nbr->state & NBR_STA_PRELIM)
nbr_fsm(nbr, NBR_EVT_2_WAY_RCVD);

break;
}
buf += sizeof(nbr_id);
len -= sizeof(nbr_id);

98

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

if (len == 0) {
nbr_fsm(nbr, NBR_EVT_l_WAY_RCVD);
/* set neighbor parameters */
nbr->dr.s_addr = hello.d_rtr;
nbr->bdr.s_addr = hello.bd rtr;
nbr->priority = hello.rtr_priority;
return;

}

Multiple neighbor events have to be generated. First of
all is the hello received event. Next it is checked if there
is already bidirectional communication between the
routers. This is done by walking through the list of
neighbors in the hello packet and compared it with the
own router ID. If no match was found a /-WAY received
event gets issued. If the match is done the first time — the
neighbor is in an embryonic state like INIT — a 2-WAY
received event is generated.

Now the scariest part of OpenOSPFD is coming. Han-
dling fast start-ups and the famous interface event
BACKUPSEEN. This part of the Hello protocol was
rewritten multiple times and the result was always some
other obscure problem in the election process. In the end
OpenOSPFD had to violate the RFC a bit. The RFC is
not very clear about how to handle the event BACK-
UPSEEN correctly.

From the RFC:

* If the neighbor is both declaring itself to be Designated
Router (Hello Packet's Designated Router field = Neighbor
IP address) and the Backup Designated Router field in the
packet is equal to 0.0.0.0 and the receiving interface is in
state Waiting, the receiving interface's state machine is
scheduled with the event BACKUPSEEN. ...

* If the neighbor is declaring itself to be Backup Designated
Router (Hello Packet's Backup Designated Router field =
Neighbor IP address) and the receiving interface is in state
Waiting, the receiving interface's state machine is scheduled
with the event BACKUPSEEN. ...

Now this sounds simple but it isn't. The first case is not
problematic but the second one is. Why? Because it is
not known in which order hello packets are received.
What does happen if we start an election process and the
actual DR neighbor is still in state /-WAY? A major con-
fusion is the result. The election process evaluates the
BDR as DR and himself as BDR or something like this
and the result is a network with too many DR / BDR
routers.

Code snip 10: scary fast start-ups

if (iface->state & IF_STA_WAITING &&
hello.d_rtr == nbr->addr.s_addr && hello.bd_rtr == 0)
if_fsm(iface, IF_EVT_ BACKUP_SEEN);

if (iface->state & IF_STA _WAITING &&
hello.bd_rtr == nbr->addr.s_addr) {
/*
* In case we see the BDR make sure that the DR is
* around with a bidirectional connection
*/
LIST_FOREACH(dr, siface->nbr_list, entry)
if (hello.d_rtr == dr->addr.s_addr &&
dr->state & NBR_STA_BIDIR)
if fsm(iface, IF_EVT_BACKUP_SEEN);

OpenOSPFD - design and implementation

To clear up the situation OpenOSPFD does an additional
check. It verifies that the DR has a bidirectional connec-
tion to the router and only if that is true a backup seen
event is issued. The result is that it may take a bit longer
to establish an adjacency and that some initial Database
Description packet are dropped. But the confusion of too
many DR/BDRs is avoided. The rest of recv_hello() is
simply here to issue the possible neighbor change events
that were detected earlier.

recv_db_description()

While the send_db_description() function ended up
pretty simple recv_db_description() turned out to be
more problematic. Usual sanity checking is done first.
Afterwards additional checks are performed to verify the
MTU and detect possible duplicates because of retrans-
missions. The MTU check is required by the RFC, the
problem is that some OSPF implementations are lying
about their MTU and so only bigger MTUs are consid-
ered a problem.

The code path is dependent on the neighbor state. Pack-
ets received tfrom neighbors in unexpected states are just
ignored. This includes state SNAPSHOT because during
the time the LSA snapshot is done we cannot respond to
a received packet. Funnily it is allowed to get Database
Description packets in state /N/T. In that case some kind
of super fast start-up needs to be done. It looks like it
was simpler to fix the RFC than to fix someone's OSPF
implementation. So both the interface and neighbor FSM
are kicked and afterwards the new neighbor state has to
be checked again. If it is now in state EXSTART a fall-
through into the next case can be done.

In case EXSTART there are two possible scenarios. The
first is the reception of a Christmas packet — one with all
flags tumed on. This is the initial packet and
OpenOSPFD has to evaluate if it is master or slave of the
database exchange phase. The slave will issue a negotia-
tion done event and sends back a packet with just the M
bit set.

Code snip 11: EXSTART scenario 1

/*

* check bits: either I,M,MS or only M

*/

if (dd_hdr.bits == (OSPF_DBD_I | OSPF_DBD_M |

OSPF_DBD_MS)) {
/* if nbr Router ID is larger than own -> slave */
if ((ntohl(nbr->id.s_addr)) >
ntohl (ospfe_router_id())) {
/* slave */
nbr->master = 0;
nbr->dd_seq_num = ntohl (dd_hdr.dd_seq_num);

/* event negotiation done */
nbr_fsm(nbr, NBR_EVT_NEG_DONE);
}

The second scenario — a packet with just the M bit set, is
received. The M bit stands for “more” as in more data.
The master will finally issue the negotiation done event.
So the slave is actually sending valid data ahead of the
master. This is a bit strange but we are used to it.

99

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Code snip 12: EXSTART scenario 2

} else if (!(dd_hdr.bits & (OSPF_DBD_I | OSPF_DBD_MS))) {
/* M only case: we are master */
if (ntohl(dd_hdr.dd_seq_num) != nbr->dd_seq_num) {
log_warnx(‘recv_db description: invalid "
"seq num, mine %x his %x",
nbr->dd_seq_num,
ntohl (dd_hdr.dd_seq_num});
nbr_fsm(nbr, NBR_EVT SEQ_NUM_MIS);
return;

}
nbr->dd_seq_num++;

/* packet may already have data so pass it on */
if (len > 0) {
nbr->dd_pending++;
ospfe_imsg_compose_rde(IMSG_DD,
nbr->peerid, 0, buf, len);
}

/* event negotiation done */
nbr_fsm(nbr, NBR_EVT_NEG_DONE);

}

Afterwards the actual transfer starts or continues. First of
all, packets with invalid flags and options result in a reset
of the session (sequence number mismatch event). If the
slave receives a duplicate packet it has to resend the last
packet. The master does not care about duplicate pack-
ets. Actually the master should never see a duplicate —
the slave will never send a packet by its own. If the
neighbor state is either LOADING or FULL the only
packets received should be duplicates. Anything else is
considered an error and the session is reset. Side effect
of this is that sending a packet with the Initialise (/) bit
set can be used to reset a neighbor relationship. Now the
sequence number is checked. Only the master is increas-
ing the number so the slave receives packets with the
current sequence number plus one. In case of the master
the sequence numbers are equal on receive and after-
wards the sequence number is increased. Our first imple-
mentation was a bit buggy and it took some debugging to
find all the small issues like forgetting to bump the
sequence number in a specific case.

Code snip 13: synchronising part 1
/* forward to RDE and let it decide which LSAs to request
*/

if (len > 0) {
nbr->dd_pending++;
ospfe_imsg_compose_rde(IMSG_DD, nbr->peerid, 0,
buf, len);
}

The received LSA headers have to be sent to the RDE
where they are compared with the LS database. This
resulted in an interesting issue: if the RDE was busy the
OSPF engine could move forward and suddenly think
that no LSAs have to be requested and move the neigh-
bor directly into state FULL. Afterwards the RDE would
send some LSAs to request to the OSPF engine but it
was too late. To solve this race condition the dd_pending
counter was added. It gets increased for each sent data-
base description packet.

OpenOSPFD - design and implementation

Code snip 14: synchronising part 2
ospfe_dispatch_rde()

nbr->dd_pending--;
if (nbr->dd_pending == 0 && nbr->state & NBR_STA_LOAD) ({
if (1ls_req_ list_empty(nbr))
nbr_fsm(nbr, NBR_EVT_LOAD DONE);
else
start_ls_req_tx_timer(nbr);

}

When an IMSG_DD_END message arrives from the RDE
the counter gets decremented. If the counter drops to
zero no DD packets are pending. In case that the neigh-
bor state is now LOADING we actually hit the race con-
dition and so we have to either move to state FULL if the
request list is empty or start sending out LS requests.
Sometimes running a single daemon as three processes
needs some additional work to synchronise the proc-
esses. This is a nice example. Finally the next packet is
prepared for being sent by send_db_description(). If
there is nothing left to send and the received packet has
no M bit set then the exchange phase is mostly done. The
slave is finished but the master has to ensure that at least
one packet without the M bit has been sent and acknowl-
edged. The result is that the slave will always change
state before the master. Why should the end of the
exchange be less strange than the beginning?

recv_Is_req()

Link-State Requests are simply passed to the RDE but
only if the neighbor state is EXCHANGE or higher. In all
other states Link-State Request packets are ignored.

recv_Is_update()

Link-State Updates are simply dropped if the neighbor is
not in state EXCHANGE or higher. Otherwise all LSAs
are extracted from the packet and sent to the RDE one
after the other. While doing that additional length checks
are done to guard against butfer overflows.

recv_Is_ack()

Link-State Acknowledgements are only accepted in
neighbor state EXCHANGE or higher. Otherwise the
packet is dropped. Every LSA header included in the
packet needs to be roughly validated with
1sa_hdr_check() and then possibly deleted from the
retransmission list. In case the interface is in state
DROTHER 1s_retrans_list del() will be called
twice. First it deletes LSAs from the global retransmis-
sion list of updates sent to the Al1DRouters multicast
address. Second the per-neighbor queue is purged in case
the interface state changed lately.

100

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

4.3.4 Packet delivery

send_hello()

send_hello() is called by the if_hello_timer() func-
tion that is run every hello-interval seconds if an inter-
face is not in state DOWN. Sending hellos is pretty
simple so it is a good example how the buffer framework
is used in OpenOSPFD.

Code snip 15: Allocate dynamic buffer

/* XXX READ_BUF_SIZE */
if ((buf = buf_dynamic(PKG_DEF_SIZE,
READ_BUF_SIZE)) == NULL)
fatal("send_hello");

First a dynamic buffer is allocated. Currently a fixed size
of PKG_DEF_SIZE bytes is used but the buffer is allowed
to grow till READ_BUF_SIZE. This is not optimal as pack-
ets should not be fragmented by OSPF. For Hello pack-
ets this is not a big issue because the embedded data is
often very small. Other send functions use a different
approach by limiting the resulting packet size to the
MTU of the corresponding interface.

Code snip 16: Set correct destination

dst.sin_family = AF_INET;
dst.sin_len = sizeof(struct sockaddr_in);

switch (iface->type) {
case IF_TYPE_POINTOPOINT:
case IF_TYPE_BROADCAST:
inet_aton(AllSPFRouters, &dst.sin_addr);
break;
IF_TYPE_NBMA:
IF_TYPE_POINTOMULTIPOINT:
/* XXX not supported */
break;
IF_TYPE_VIRTUALLINK:
dst.sin_addr = iface->dst;
break;
default:
fatalx("send_hello: unknown interface type");
}

case
case

case

The outgoing address needs to be determined. For broad-
cast and point-to-point networks this is the multicast
address A115PFRouters. Virtual links are sent as unicast.
NBMA and point-to-multipoint are special and currently
not supported. For NBMA and point-to-multipoint the
packet has to be sent to all neighbors directly and
send_packet() would be called for every neighbor
once.

Code snip 17: create Hello packet

/* OSPF header */
if (gen_ospf_hdr(buf, iface, PACKET_TYPE_HELLO))
goto fail;

/* hello header */

hello.mask = iface->mask.s_addr;

hello.hello_interval = htons(iface->hello_interval);
hello.opts = ceconf->options;

hello.rtr_priority = iface->priority;
hello.rtr_dead_interval = htonl(iface->dead_interval);

if (iface->dr) {
hello.d_rtr = iface->dr->addr.s_addr;
iface->self->dr.s_addr = iface->dr->addr.s_addr;
} else
hello.d_rtr = 0;

if

OpenOSPFD - design and implementation

(iface->bdr) {
hello.bd_rtr = iface->bdr->addr.s_addr;
iface->self->bdr.s_addr = iface->bdr->addr.s_addr;

} else

if

hello.bd_rtr = 0;

(buf_add(buf, &hello, sizeof(hello)))
goto fail;

Finally the packet is constructed. First of all the common
OSPF header is added. This is done for every packet type
and so a helper function gen_ospf_hdr() is used. The
Hello specific contents are filled in afterwards and added
with buf_add().

Code snip 18: Add active neighbors

/*

active neighbor(s) */

LIST_FOREACH(nbr, &iface->nbr_list, entry) {

}

if ((nbr->state >= NBR_STA_INIT) &&
(nbr != iface->self))
if (buf_add(buf, &nbr->id,
sizeof (nbr->id)))
goto fail;

The Hello packets include a list of all bidirectional
neighbors (state 2-WAY or higher). Again the neighbor
IDs are added directly with buf_add(). The neighbor ID
is stored in network byte order or htonl() is used to cor-
rectly switch byte order.

Code snip 19: Final step

/* update authentication and calculate checksum */
if (auth_gen(buf, iface))
goto fail;

ret = send_packet(iface, buf->buf, buf->wpos,
&dst);

buf_free(buf);

return (ret);

fail:

log_warn("send_hello");
buf_free(buf);
return (-1);

Last is updating authentication and checksum of the out-
going packet. The interface pointer is passed to
auth_gen() to get the necessary keys and sequence
number for the simple and cryptographic authentication.
The packet gets sent out via send packet(). Before
sending the packet it is necessary to set the outgoing

interface for multicast traffic. This

is done by

if set mcast() inside of send_packet(). Finally the
no longer needed buffer is freed.

send_db_description()

send_db_description() implements the sending part
of the database exchange. It sends out the initial Data-
base Description packet when moving the neighbor state
to EXSTART.

Code snip 20: Allocate fixed buffer

if

/*
if

/*
if

((buf = buf_open(nbr->iface->mtu - sizeof(struct ip)))
== NULL)
fatal("send_db_description”);

OSPF header */
(gen_ospf_hdr(buf, nbr->iface, PACKET TYPE_DD))

goto fail;
reserve space for database description header */
{buf_reserve(buf, sizeof(dd_hdr)) == NULL)

goto fail;

101

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Obvious differences to send_hello() are the use of
buf open() instead of buf_dynamic(). Buf_open()
allocates a fixed size buffer of size nbr->iface->mtu -
sizeof (struct ip) — which is the maximum packet
size that does not get fragmented. Later buf_reserve()
is used on that buffer to reserve sizeof (dd_hdr) bytes.
The rest of the packet can be added and later
buf_seek() can be used to write into the reserved space
like this:

Code snip 21: Usage of buf_seek()

memcpy (buf_seek (buf, sizeof(struct ospf_hdr),
sizeof(dd_hdr)), &dd_hdr, sizeof(dd_hdr});

The remainder of the function sets up the Database
Description header with its bit fields and sequence
number. If in state EXCHANGE, as many LSA headers
as possible are appended. While appending LSA headers
one must keep in mind that the cryptographic authentica-
tion will append MD5_DIGEST_LENGTH bytes to the end of
the packet.

send_lIs_req()

send_ls req() uses like send db_description()
buf open() to get a buffer that doesn't get fragmented.
While filling in the requested LSA headers some addi-
tional space gets reserved for the possible MD5 sum.

Code snip 22: Filling packet with requests

/* LSA header(s), keep space for a possible md5 sum */
for (le = TAILQ_FIRST(&nbr->ls_req list); le != NULL &&
buf->wpos + sizeof(struct ls_req_hdr) < buf->max -
MDS_DIGEST_LENGTH; le = nle) {
nbr->1s_req = nle = TAILQ NEXT(le, entry);
ls_req_hdr.type = htonl(le->le_lsa->type);
1ls_req hdr.ls_id = le->le_lsa->1s_id;
ls_req_hdr.adv_rtr = le->le_lsa->adv_rtr;
if (buf_add(buf, sls_req_hdr, sizeof(ls_req_hdr)))
goto fail;

}

The rest is straight forward and mostly the same as in
send_hello().

send_Is_ack()

Actually we have to start in 1ls_ack _tx_timer()
because send_ls_ack() is just the last step to send out
an ack. send_ls_ack() will add the common OSPF
header and add the data passed to the function to the
packet. The list of acknowledgements is created by
1s_ack_tx_timer() in a not so nice way and therefore it
should not be used as example for other code. Especially
as it will be rewritten soon.

send_Is_update()

Sending out LS updates is easy but the retransmission
list and flooding procedure are a bit tricky.
send_ls_update() will just add a LSA to a buffer
together with a common OSPF header and send the

OpenOSPFD - design and implementation

results out. But there is one thing that must to be done
with the LSA first. It has to be aged with the value of
transmit-delay.

Code snip 23: LSA aging

pos = buf->wpos;
if (buf_add(buf, data, len))
goto fail;

/* age LSA before sending it out */
memcpy(&age, data, sizeof(age));
age = ntohs(age);
if ((age += iface->transmit_delay) >= MAX_AGE)
age = MAX_AGE;
age = htons(age);
memcpy (buf_seek (buf, pos, sizeof(age)), &age, sizeof(age));

First the current write position is stored and the LSA is
added to the buffer. The LS Age is stored in the first two
bytes of the LSA. The memcpy () extracts the age because
a direct memory access could end on unaligned memory.
Then the LSA is aged and written into the buffer with the
help of buf_seek() and the previously stored position.

4.3.5 Control handling

The handling of control sessions is actually a small
UNIX local socket server. There is a listener event
(control listen()) that accepts (control_accept())
connections and creates a per control connection struc-
ture. control dispatch _imsg() reads the request from
ospfctl. First the per connection structure are retrieved
and then the imsg's sent are extracted. They get either
forwarded to the parent, the RDE, or directly answered.
Messages forwarded to the other processes will often
require a response that needs to be relayed to ospfctl
because neither the RDE nor the parent process have
access to the socket. Relaying 1is done by
control imsg_relay(). It has to be called for those
imsgs that need to get forwarded. This is done in the
imsg dispatch functions ospfe_dispatch_main() and
ospfe_dispatch_rde().

4.4 Route Decision Engine

4.4.1 LS Database

The LS database is implemented as a red-black tree —
actually multiple trees exist — one per area and a global
one for AS-external-LSAs. The key is the LS-type LS-ID
advertising router triple. The LSA is part of a vertex
that builds a node of the network connectivity graph.

Code snip 24: struct vertex

struct vertex {
RB_ENTRY(vertex) entry;
TAILQ_ENTRY(vertex) cand;
struct event ev;
struct in_addr nexthop;
struct vertex *prev;
struct rde_nbr *nbr;

struct lsa *1sa;
time_t changed;
time_t stamp;
u_int32_t cost;

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

u_int32_t 1s_id;
u_int32_t adv_rtr;
u_int8_t type;
u_int8_t flooded;

Yi

The vertex contains all necessary information not only
for the LS Database but for the SPF calculation too.
entry and cand are used to put the vertex into the red-
black tree or into the candidate list respectively. The
event ev is for a per-LSA entry timeout for aging. Addi-
tionally stamp is used for aging as well. changed is set to
the time the last modification was done to the LSA.
1s_id, adv_rtr and type are shorthands for the actual
values that are stored inside of 1sa. These are used by
the tree search routine. The flooded flag should indicate
that a LSA was received as part of a flooding. Flooded
LSA are locked for MIN_LS_ ARRIVAL seconds whereas
requested LSA are not. nbr represents the neighbor from
which the LSA was received. nbr has nothing to do with
the actual originator of the LSA. This is only done to
correctly flood out LSAs and sending an acknowledge-
ment back to the neighbor. prev is the parent vertex in
the SPF tree. It is possible to construct the actual path
through the network by following all prev pointers. This
is used to calculate the nexthop. The nexthop is the
address for forwarding packets to that destination. It is
normally the address of the last router-LSA before the
root node.

4.4.2 LSA aging

Before using a LSA that is in the DB it normally needs
to be aged. This is done by 1sa_age() with help of the
vertex time stamp.

Code snip 25: LSA aging

now = time(NULL);

d = now - v->stamp;

/* set stamp so that at least new calls work */
v->stamp = now;

if (d < 0} {
log_warnx('lsa_age: time went backwards");
return;

}

age = ntohs(v->lsa->hdr.age);
if (age + d > MAX_AGE)

age = MAX_AGE;
else

age += d;

v->lsa->hdr.age = htons(age};

Normally it is enough to just add the difference of the
current time and stamp. Nonetheless some additional
care is needed. First of all time() returns the system
time and this can be modified by the user. I remember a
complete network outage at an ISP because the UNIX
time got changed on a Zebra/Quagga router. Afterwards
Zebra/Quagga was no longer working until a reboot on
the changed machines was performed. So by checking
whether the difference is positive it is at least possible to
fail in a save way. The other case that needs to be consid-
ered is that a LSA may never get older than MAX_AGE (|
hour).

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

4.4.3 Comparing LSA

There are two functions to compare LSA. 1sa_equal()
is similar to a mememp() but compares a bit more. One
thing is important to note: LSA with age MAX_AGE are
never considered equal. This comes from the fact that
1sa_equal() is mostly used to determine if a recalcula-
tion of the SPF tree is required or for similar situations.
In that context LSAs with an age of MAX_AGE are always
special and it is OK to force an update.

The other compare function is 1sa_newer() and imple-
ments the RFC specification of newer, equal and older
LSA. It works similar to other compare functions by
returning -1 if the first LSA is older, | if newer and 0 if
equal to the second LSA passed. The function compares
the sequence number, the LS checksum, and the LS age.
Once again a bit care needs to be taken when comparing
ages.

Code snip 26: Comparing ages

alé = ntohs(a->age);
blé = ntohs(b->age);

if (al6 >= MAX_AGE && bl6 >= MAX_AGE)
return (0);
if (bl6 >= MAX_AGE)
return (-1);
if (alé >= MAX_AGE)
return (1);
i = blé - alé;
if (abs(i) > MAX_AGE_DIFF)
return (1 >0 2?2 1 : -1);

return (0);

If both LSA are at age MAX AGE they are considered
equal. If only one has age MAX_AGE that one is newer and
last but not least the LS ages need to be at least
MAX AGE_DIFF (15 minutes) apart to be not considered
equal.

4.4.4 LSA refresh

All LS _REFRESH_TIME seconds a LSA needs to be
refreshed by its originator. The age is reset to the initial
value and the sequence number is bumped. After modi-
fying the LSA the checksum has to be recalculated. The
LSA is flooded and a new timeout event is registered.
Non self originated LSA have the same timer running
but with MAX AGE instead of LS_REFRESH_TIME. If the
timer fires the LSA will be deleted from the LS database
by flooding it out with age MAX_AGE. How to delete LSA
will be explained later as it is fairly complex.

4.4.5 LSA merging

If a self originated LSA changes. for example because a
neighbor relationship is established or lost, an updated
LSA needs to be reflooded. 1sa_merge() takes care of
replacing the LSA in the database with the new one and
sets the LS sequence number of the new LSA to the cur-
rent used number.

Code snip 27: First set sequence number

if (v == NULL) {
lsa_add(nbr, lsa);
rde_imsg_compose_ospfe(IMSG_LS_FLOOD, nbr->peerid,
0, lsa, ntohs(lsa->hdr.len));
return;

}

/t

* set the seq_num to the current one.

* lsa_refresh() will do the ++

*/

lsa->hdr.seq_num = v->lsa->hdr.seq_num;

/* recalculate checksum */

len = ntohs(lsa~>hdr.len);

lsa->hdr.ls_chksum = 0;

lsa->hdr.ls_chksum = htons(iso_cksum(lsa, len,
LS_CKSUM_OFFSET)) ;

Sure if there was no LSA in the database in the first
place there is no need to merge. It is enough to just add
and flood the LSA. When changing the sequence number
the checksum has to be recalculated. The sequence
number is only set to the current value because there is
no need to increase it already. Especially if 1sa_merge()
is used to remove a self originated LSA from the data-
base there is no need to rise the sequence number, it is
sufficient to set the age to MAX AGE.

Code snip 28: Then overwrite and
reflood if necessary

/*
* compare LSA; most header fields are equal
* so don't check them

*/

if (lsa_equal(lsa, v->lsa)} {
free(lsa);
return;

}

/* overwrite the lsa all other fields are unaffected */
free(v->1sa);

v->lsa = lsa;

start_spf_timer();

/* set correct timeout for reflooding the LSA */

now = time(NULL);

timerclear(&tv);

if (v->changed + MIN_LS_INTERVAL >= now)
tv.tv_sec = MIN_LS_INTERVAL;

evtimer_add(&v->ev, &tv);

Now 1lsa_equal() is used to determine whether to actu-
ally reflood the LSA. If the LSA did not change there is
nothing to modify and we're done. Otherwise the LSAs
are exchanged and a SPF recalculation is issued. Finally
the reflooding is prepared. This is done via a timer
because it is not allowed to send out updates faster than
MIN_LS_INTERVAL (5) seconds.

4.4.6 Isa_self()

Identifying self originated LSA is an important task.
This comes from the fact that if a router leaves the net-
work the other routers will not remove the LSAs of this
router until the LS age hits MAX_AGE. If the router joins
the network again — after a reboot for example — the old
LSAs are still floating around. So it is the routers duty to
detect those old self originated LSAs and renew them or
remove them from the database. This task is done by
lsa_self().

OpenOSPFD - design and implementation

Code snip 29: Detect self originated LSA

if (nbr->self)
return (0);

if (rde_router_id() == new->hdr.adv_rtr)
goto self;

if (new->hdr.type == LSA_TYPE_NETWORK)
LIST_FOREACH(iface, &nbr->area->iface list, entry)
if (iface~>addr.s_addr == new->hdr.ls_id)
goto self;
return (0);

First of all the newly received LSA (new) gets classified.
If the router ID is the same or if an interface address
matches the LS ID of a network-LSA the LSA is consid-
ered self originated.

Code snip 30: Remove or update

self:
if (v == NULL) {
/a
* LSA is no longer announced, remove by premature
* aging. The precblem is that new may not be
* altered so a copy needs to be added to the LSA
* DB first.
*/
if ((dummy = malloc(ntohs(new->hdr.len))) == NULL)
fatal("lsa_self");
memcpy (dummy, new, ntohs(new->hdr.len));
dummy->hdr.age = htons(MAX_AGE);
/*
* The clue is that by using the remote nbr as
* originator the dummy LSA will be reflooded via
* the default timeout handler.
*/
lsa_add(rde_nbr_self(nbr->area), dummy);
return (1);
}
/*

* LSA is still originated, just reflood it. But we need to
* create a new instance by setting the LSA sequence number
* equal to the one of new and calling lsa_refresh().
* Flooding will be done by the caller.
*/

v->lsa->hdr.seq_num = new->hdr.seq_num;

lsa_refresh(v);

return (1);

In case of a self originated LSA there are two cases. The
first one is that the LSA is no longer announced. In that
case the LSA gets added to the Database with a LS age
of MAX AGE. The database code will then reflood the LSA
as soon as possible and by doing that removing it from
the database. There is no other way in doing this because
removing LSAs is a complex task that only works if the
LSA is in the database. The other case is much simpler
because there is already a self originated LSA in the
local database but the sequence number is lower then the
new one. In this case the sequence number is bumped
like in the 1lsa merge() case and lsa_refresh() is
called to flood the LSA.

4.4.7 LSA check

Before even accepting a LS update the embedded LSA
has to be verified. Once again lengths are compared and
especially the ISO checksum is verified. Additionally the
LS age and sequence number are checked to be in a valid
range. Per LS type checks follow the generic ones. It is
verified that the packet has the right size for this type and
that values like the metric — which is a 24bit value stored
as 32bit integer is in the correct range. AS-external-

104

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

LSAs that are sent to stub areas get silently discarded.
At the end the LS age is checked and if it is MAX AGE
some special care needs to be taken.

Code snip 31: MAX_AGE handling

if (lsa->hdr.age == htons(MAX_AGE) &&
tnbr->self && lsa_find(area, lsa->hdr.type,
lsa->hdr.ls_id, lsa->hdr.adv_rtr) == NULL &&
‘rde_nbr_loading(area)) {
/'
* if no neighbor in state Exchange or Loading
* ack LSA but don't add it. Needs to be a direct
* ack.
*/
rde_imsg_compose_ospfe(IMSG_LS_ACK, nbr->peerid, 0,
&lsa->hdr, sizeof(struct lsa_hdr));
return (0);

}

If the LS age is MAX_AGE and the LSA is not in the data-
base there is actually no need to add the LSA to the data-
base. However this is a fallacy. there are some additional
checks required. The RFC mentions that if a neighbor is
currently establishing an adjacency — state EXCHANGE
or LOADING - no short-cuts are allowed. Additionally
self originated LSA generated by the OSPF engine have
to be passed. Therefore nbr->self is tested. If all condi-
tions are met the LSA will not be added. Instead only a
direct acknowledgement is sent back.

4.4.8 Deleting LSA

Deleting something from a replicated distributed data-
base is not a trivial task. Especially if there is no LS
remove packet type. Removing is done via the LS age.
LSA with LS age MAX AGE are ready to be removed from
the database. Especially for OpenOSPFD removing
LSAs is even more complicated. To remove a LSA it first
has to be reflooded and all neighbors have to acknowl-
edge the reception before removing it from the database.
In OpenOSPFD the database and the retransmission
logic are in two different processes so additional IPC is
needed. If the RDE tries to delete the LSA either because
it exceeds the MAX AGE age or because of premature
aging — used to clean the database from no longer valid
LSAs — it simply sets the age to MAX AGE and sends a
flood request to the OSPF engine. The OSPF engine will
then start the flooding procedure. The LSA is added to
the LSA cache and the different retransmission lists refer
to the cached LSA. If the last reference to the cached
object drops the following happens:

Code snip 32: Isa_cache_put()

void
lsa_cache_put(struct lsa_ref *ref, struct nbr *nbr)
{
if (--ref->refcnt > 0)
return;

if (ntohs(ref->hdr.age) >= MAX_AGE)
ospfe_imsg_compose_rde(IMSG_LS_MAXAGE,
nbr->peerid, 0, ref->data,
sizeof(struct lsa_hdr));

free(ref->data);
LIST_REMOVE(ref, entry);
free(ref);

OpenOSPFD - design and implementation

The LS age is compared with MAX_AGE and if true a
IMSG_LS_MAXAGE is sent back to the RDE. In the RDE
the message is received and verified. If something is
incorrect the RDE bombs out.

Code snip 33: IMSG_LS_MAXAGE handling

case IMSG_LS_MAXAGE:
nbr = rde_nbr_find(imsg.hdr.peerid);
if (nbr == NULL)
fatalx("rde_dispatch_imsg: "
"neighbor does not exist");

if (imsg.hdr.len != IMSG_HEADER SIZE +
sizeof (struct lsa_hdr))
fatalx("invalid size of OE request");
memcpy (&1sa_hdr, imsg.data, sizeof(lsa_hdr));

if (rde_nbr_loading(nbr->area))
break;
v = lsa_find(nbr->area, lsa_hdr.type,
lsa_hdr.ls_id, lsa_hdr.adv_rtr);
if (v == NULL)
db_hdr = NULL;
else
db_hdr = &v->1sa->hdr;
/*
* only delete LSA if the one in the db isn’t newer
*/
if (lsa_newer(db_hdr, &lsa_hdr) <= 0)
1sa_del(nbr, &lsa_hdr);
break;

If there is still a neighbor in state EXCHANGE or LOAD-
ING the LSA may not be removed. It is possible that the
neighbor may request that LSA just a bit later. Now the
LSA is searched in the database and the entry of the
database is compared with the LSA that should be
removed. If the database entry is newer the entry will not
be removed else it would get finally removed from the
database and freed.

4.4.9 SPF and RIB calculation

The SPF calculation is still a large construction area. The
code should be split up as some steps are not necessary
in all cases. Especially on ABRs this is not optimal and
creates a lot of superfluous load. Worth knowing: RIB
and FIB are terms from BGP and got inherited into
OpenOSPFD. RIB is the Routing Information Base and
FIB is the Forwarding Information Base. The FIB is
mostly the kernel routing table and is stripped from
unneeded ballast whereas the RIB contains all additional
protocol specific informations.

To calculate the routing table three calculations are per-
formed. First the SPF tree gets built. Then the local
LSAs are added to the RIB and finally the AS-external-
LSAs are inserted.

Code snip 34: SPF calculation

/* calculate SPF tree */
do {
/* loop links */
for (i = 0; 1 < lsa_num_links(v); i++) {
switch (v->type) {
case LSA_TYPE _ROUTER:
rtr_link = get_rtr_link(v, i);
switch (rtr_link->type) {
case LINK_TYPE_STUB_NET:
/* skip */
continue;

105

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

case LINK_TYPE_POINTTOPOINT:

case LINK_TYPE_VIRTUAL:

/* find router LSA */

w = lsa_find(area,
LSA_TYPE_ROUTER,
rtr_link->id,
rtr_link->id);

break;

case LINK_TYPE_TRANSIT_NET:

/* find network LSA */

w = lsa_find_net(area,
rtr_link->id);

break;

default:

fatalx("spf_calc: "
"invalid link type");

}

break;

case LSA_TYPE_NETWORK:

net_link = get_net_link(v, 1);

/* find router LSA */

w = lsa_find(area, LSA_TYPE_ROUTER,
net_link->att_rtr,
net_link->att_rtr);

break;

default:
fatalx("spf_calc:
“invalid LSA type");

"

}

cand_list_add(w);

* get next vertex */
cand_list_pop(};
NULL;

v != NULL);

}
/
v
W
(

} while

The loops starts at the root vertex and moves through
one vertex after another. After a vertex is selected all
next vertices that are connected to this vertex are
extracted and added to the candidate list. After all verti-
ces are added the one with the lowest cost is popped
from the list and the loops starts over with this vertex.
Before a vertex is added to the candidate list it is verified
that the connection is still valid.

Code snip 35: the three dots in the previous snip-
pet

if (w == NULL)
continue;

if (w->1sa->hdr.ag
continue;

== MAX_AGE)

if (!linked(w, v))
continue;

if (v->type == LSA TYPE_ROUTER)

d = v->cost + ntohs(rtr_link->metric);
else

d = v->cost;

if (cand_list_present(w)) {
if (d > w->cost)
continue;
if (d < w=>cost) {
w->cost = d;
w->prev = v;
calc_next_hop(w, v);
/*
* need to readd to candidate list
* because the list is sorted
*/
TAILQ_REMOVE(&cand_list, w, cand);

}
} else if (we>cost == LS_INFINITY && d < LS_INFINITY) {
w->cost = d;
w->prev = v;
calc_next_hop(w, v);

}

On leaf nodes — w is NULL — there is nothing to do. If the
next vertex has an age of MAX_AGE it is no longer consid-
ered valid and dropped. The connection between the two
vertices has to be bidirectional and this is checked by

linked (). The next steps calculate the cost to the new
vertex w. There is one important thing to note: only links
into a network have a cost but links from the network to
the router have no cost. The result is that modifying the
cost of an interface will often not change incoming traf-
fic flow only outgoing traffic may be rerouted due to the
change. Before adding a vertex to the candidate list it is
necessary to check if the vertex is already on the list. If it
is. then the calculated cost is compared with the current
one. The new path must be shorter than the current
selected one. In that case the cost and the prev pointer
are modified and the nexthop is recalculated. The vertex
is also removed from the candidate list and later added
back to keep the list sorted. If the vertex is not on the
candidate list then cost and prev pointer are initialised
and the nexthop is calculated. Finally the new candidate
is added to the list of candidates.

Now the RIB needs to be built. To start the area specific
routes are added. First of all. all LSAs with LS age
MAX AGE, a cost of LS_INFINITY. or a zero nexthop
address are skipped. They are invalid. All valid network-
LSAs are added to the RIB and all router-LSAs for
ABRs and ASBRs are added as well. Summary-LSAs
are put into the RIB. On ABRs only for area 0. On non
ABRs there is no limitation. A summary-LSA is only
valid if the ABR was previously added to the RIB. The
last step is adding of the AS-external routes to the RIB.
This is done only once and not for every area. Similarly
to summary-LSAs AS-external-LSAs will do a look-up
of the ASBR router and if the router is not found the
route is considered invalid. When updating the RIB with
rt_update() some order is retained. Intra-area routes
(router and network-LSAs) have highest priority, inter-
area routers (summary-LSAs) follow and Typel and
Type2 AS-external routes have the lowest priority. So if a
network is added multiple times that order will favour
intra-area traffic over inter-area or external routes.

4.5 Workflow

4.5.1 Flooding

The flooding and retransmission of LS updates is
entirely done in the OSPF engine. The RDE sends a
IMSG_LS_FLOOD imsg with the peer ID of the neighbor
from which the update was initially received. The OSPF
engine uses that information to flood out the LS update
to all affected networks.

Code snip 36: flooding part 1

ref = lsa_cache_add(imsg.data, 1);

if (lsa_hdr.type == LSA_TYPE_EXTERNAL) {
/*

* flood on all areas but stub areas and

* virtual links

*/

LIST _FOREACH(area, &oceconf->area list, entry) {
if (area->stub)
continue;
LIST_FOREACH(iface, &area->iface_list,
entry) {

Claudio Jeker

noack += lsa_flood(iface, nbr,
&lsa_hdr, imsg.data, 1);

}
} else {
/*

* flood on all area interfaces on
* area 0.0.0.0 include also virtual links.
*/
area = nbr->iface->area;
LIST_FOREACH(iface, &area->iface_list, entry) {
noack += lsa_flood(iface, nbr,
&lsa_hdr, imsg.data, 1);

}

Before starting the flooding decision process the LS
update is added to the LSA cache. Later, if the LSA is
added to different retransmission queues, only a refer-
ence to the LSA cache is retained. Depending on the LS
type it must be flooded to all areas (AS-external-LSA) or
only to the current area (all other LSAs). 1sa_flood() is
doing the per interface specific part of the flooding.
More about that a bit later.

Code snip 37: flooding part2

/* remove from ls_reg_list */
le = 1s_req_list_get(nbr, &lsa_hdr);
if (!(nbr->state & NBR_STA_FULL) && le != NULL) {
ls_req_list_free(nbr, le);
/*
* XXX no need to ack requested lsa
* the problem is that the RFC is very
* unclear about this.

*/
noack = 1;
}
if (!noack && nbr->iface != NULL &&
nbr->iface->self != nbr) ({
if (!(nbr->iface->state & IF_STA_BACKUP) ||

nbr->iface->dr == nbr) {
/* delayed ack */
lhp = lsa_hdr_new();
memcpy(lhp, &lsa_hdr, sizeof(*lhp));
1s_ack_list_add(nbr->iface, lhp);

}

lsa_cache_put(ref, nbr);
break;

After flooding the LSA out on all affected interfaces an
acknowledgement has to be sent back to the initial
sender of the LS update. In some cases there is no
requirement to send a LS acknowledge back. One of
those cases are requested LSAs — sending back a LSA
ack to an explicitly requested LSA does not make much
sense. However the RFC is not very clear about this fact.
So let's be prepared for some broken implementations
out there. The last step adds the LSA to the LS acknowl-
edge list so that a, possibly delayed, acknowledge can be
sent back. This is only done if an ack is required, the
neighbor where the ack is sent to is not ourselves and
additionally no acks were sent from the BDR to the DR.
Finally the acquired reference of the LSA gets passed
back. Reference counting makes careful programming a
necessity to avoid missing a reference change some-
where.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

¥ OpenOSPFD - design and implementation

Claudio Jeker

Isa_flood()

As mentioned earlier 1sa flood() is used for flooding
on a per interface scope. In particular it loops over all
neighbors and decides if it has to send the update to this
neighbor or not.

Code snip 38: neighbor loop part 1
LIST_FOREACH(nbr, &iface->nbr_list, entry) {

if (nbr == iface->self)
continue;

if (!(nbr->state & NBR_STA_FLOOD))
continue;

First of all self is skipped. Then all neighbors which are
not available for flooding — their state is neither FULL
nor LOADING nor EXCHANGE - are skipped as well.

Code snip 39: neighbor loop part 2

if (iface->state & IF_STA DROTHER && !queued)
if ((le = ls_retrans_list_get(iface->self,
l1sa_hdr)))
1ls_retrans_list_free(iface~>self, le);

if ((le = ls_retrans_list_get(nbr, lsa_hdr)))
ls retrans_list_free(nbr, le);

Afterwards the retransmission lists are searched for an
older LS update for the same LSA. If an older LSA is
found it is removed and replaced later with the new one.
A special queue is used for interfaces with state
DROTHER as explained later on. Because only one
queue is used, redoing this check after the LSA got
queued once results in unexpected behaviour. So this
case is protected by the !queued check.

Code snip 40: neighbor loop part 3
if (!(nbr->state & NBR_STA_FULL) &é&

(le = ls_req_list_get(nbr, lsa_hdr)) != NULL) {
r = lsa_newer(lsa_hdr, le~>le_lsa);
if (r > 0) {

/* to flood LSA is newer than requested */
ls_req list_free(nbr, le);
/* new needs to be flooded */
} else if (r < 0) {
/* to flood LSA is older than requested */
continue;
} else {
/* LSA are equal */
1s_req_list_free(nbr, le);
continue;

}

If the adjacency is not yet full, the LS request list is
examined. If a LSA is found we know the exact LSA the
neighbor has in his database. So if the LSA in the request
list is older than the new one, the requested one is
removed and the new one will be flooded. Otherwise if
the LSA is older than the requested one, there is no need
to flood it to the neighbor and the request list is left alone
so that the newer LSA of that neighbor is requested later.
In case both LLSAs are equal there is no need to request
the LSA anymore. There is also no need to flood the
LSA to that neighbor.

Code snip 41: neighbor loop part 4

if (nbr == originator) {
dont_ack++;
continue;

}

/* non DR or BDR router keep all lsa in one retrans list */
if (iface->state & IF_STA_DROTHER) {

if (!queued)

1s_retrans_list_add(iface->self, data);

queued = 1;
} else {

ls_retrans_list_add(nbr, data);

queued = 1;

}

If the current neighbor is the initial sender of this LS
update there is high chances that no ack has to be sent
back. This decision is done later. At least there is also no
need to flood the LS update back to this router.

Finally the LS update or actually a reference to the LS
update is added to the retransmission queue. Depending
on the interface state. different queues are chosen. If the
interface is not in state DROTHER it will be added to the
neighbor retransmission list. In case of DROTHER only
one global queue is used because all updates go to the
AllDRouters address. For this special case iface->self
is “abused”. Because only one queue is used it is impor-
tant to protect the queue from multiple adds. Currently
there is a known feature in the queuing behaviour of
OpenOSPFD that needs to be solved. In case of the
router being BDR it will queue the update to all neigh-
bors on that interface including the DR. The DR there-
fore is required to send an acknowledge to the BDR.
This will not happen and so one retransmission is done
from the BDR to the DR and the DR will then answer
with a direct acknowledge. This is unnecessary and no
updates to the DR should be queued unless they are self
originated or from a different interface.

Code snip 42: sending LS update

if (!queued)
return (0);

if (iface == originator->iface &&
iface->self != originator) {
if (iface->dr == originator ||
iface->bdr == originator)
return (0);

if (iface->state & IF_STA_BACKUP)
return (0);
dont_ack++;

}

/* flood LSA but first set correct destination */
switch (iface->type) {
case IF_TYPE_POINTOPOINT:
inet_aton(AllSPFRouters, &addr);
send_ls_update(iface, addr, data, len);
break;
case IF_TYPE_BROADCAST:
if (iface->state & IF_STA_DRORBDR)
inet_aton(AllSPFRouters, &addr);
else
inet_aton(AllDRouters, &addr);
send_ls_update(iface, addr, data, len);
break;

o

return (dont_ack == 2);

OpenOSPFD - design and implementation

After inspecting every neighbor and adding LSA refer-
ences to the retransmission lists an initial flooding gets
sent out. If nothing got queued there is no reason to send
the LSA, do a return. In the other cases we send the
update to the correct address. For point-to-point links it
is always Al1SPFRouters. For broadcast networks it is
either A11SPFRouters or AllDRouters to multicast the
update to the correct group. All other interface types use
unicast to send the updates. Before sending out the LS
update a special check is done mostly for broadcast and
NBMA networks. In case the originator of the initial LS
update is on the now outgoing interface more checks
have to be done. First of all if the originator is DR or
BDR there is no need to send an update. The actual
flooding was already done by the DR respectively BDR.
Additionally if the router itself is BDR there is no need
to flood the network. This will be done by the DR. If
none of these two tests where true it is now clear that no
acknowledgement needs to be sent back. Therefore
dont_ack is bumped a second time and so lsa_flood()
will return true.

4.5.2 Retransmission Lists and LSA Cache

Now lets have a look at the retransmission lists. All other
lists — acknowledge, request, and database descriptor list
— are implemented in a similar way. The retransmission
list is a bit more complex because of the LSA cache. To
add a LS update to the request list
ls_retrans_list_add() is used.

Code snip 43: Is_retrans_list_add()

if ((ref = lsa_cache_get(lsa)) == NULL)
fatalx("King Bula sez: somebody forgot to
lsa_cache_add");

if ((le = calloc(l, sizeof(*le}))) == NULL)
fatal("ls_retrans_list_add");

le->le_ref = ref;
TAILQ_INSERT_TAIL(&nbr->ls_retrans_list, le, entry);

if (!evtimer_pending(&nbr->ls_retrans_timer, NULL)) {
timerclear(&tv);
tv.tv_sec = nbr->iface->rxmt_interval;

if (evtimer_add(&nbr->ls_retrans_timer, &tv) == -1)
log_warn("ls_retrans_list_add: evtimer_add
failed");
}

First of all a LSA cache reference is acquired via
1sa_cache_get(). If this call fails we have an internal
program error and the OSPF engine has no way to
recover from that. The reference is added to a list ele-
ment that in turn is added to the retransmission list. And
if there is no timer pending a new retransmission timer is
started.

Removing works in a similar way. First the correct entry
is searched with the help of 1s_retrans_list get()
and afterwards it gets freed if the LSA was the same.
1s_retrans_list_get() uses the known LSA triple to
identify a LSA.

108

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Code snip 44: Is_retrans_list_free()

void
1ls_retrans_list_free(struct nbr *nbr, struct lsa_entry *le)

{
TAILQ REMOVE(&nbr->ls_retrans_list, le, entry);

lsa_cache_put(le->le_ref, nbr);
free(le);

}

ls_retrans_list_free() will not only unlink the LSA
from the request list but hands the LSA cache reference
back by calling 1sa_cache_put (). Again it is important
to take care of those references.

How does this LSA cache work?

The LSA cache is nothing more than a hash list. A
simple hash is built over the LSA header and used to find
the correct hash bucket. In the LSA cache a LSA is iden-
tified not only by LS type. LS ID, and advertising router.
The sequence number and LS checksum is compared as
well. To find a LSA in the cache the internal
lsa_cache_look() function is used.

1sa_cache_get() returns a new reference to an existing
LSA.

Code snip 45: Isa_cache_get()

struct lsa_ref *
lsa_cache_get(struct lsa_hdr *lsa_hdr)
struct lsa_ref *ref;
ref = lsa_cache_look(lsa_hdr);
if (ref)
ref->refcnt++;

return (ref);
}

This function is very simple and the only important step
is not to forget to bump the reference count.
lsa_cache_add() works very similar to
lsa_cache_get(). Again 1sa_cache_look() is used to
find already added LSAs. In that case a bump of the ref-
erence count is enough. Else a new reference object gets
allocated and filled in. There is a timestamp included to
age the LSA when it is sent out. The initial reference
count is set to one because a reference is immediately
returned to the caller.

Code snip 46: Isa_cache_add()

struct lsa_ref *
lsa_cache_add(void *data, u_intlé_t len)

struct lsa_cache_head*head;
struct lsa_ref *ref, *old;

if ((ref = calloc(l, sizeof(*ref))) == NULL)
fatal("lsa_cache_add");
memcpy (&ref->hdr, data, sizeof(ref->hdr));

if ((old = lsa_cache_look(&ref->hdr))) {
free(ref);
old->refcnt++;
return (old);

}

if ((ref->data = malloc(len)) == NULL)
fatal("lsa_cache_add");

memcpy (ref->data, data, len);

ref->stamp = time(NULL);

ref->len = len;

ref->refcnt = 1;

OpenOSPFD - design and implementation

head = lsa_cache_hash(&ref->hdr);
LIST_INSERT_HEAD(head, ref, entry);
return (ref);

}

lsa_cache_put() was only roughly explained in the
MAX_AGE handling. First the reference count is decreased
and if it hits zero the cache is no longer referenced and
can be freed. Now the known MAX_AGE dance comes.
Sending back an IMSG_LS_MAXAGE if the LSA has an age
of MAX_AGE to make it possible to remove the LSA from
the LS DB. Afterwards the cache object is cleaned and
removed.

Code snip 47: Isa_cache_put()

void
lsa_cache_put(struct lsa_ref *ref, struct nbr *nbr)
{
if (--ref->refcnt > 0)
return;

if (ntohs(ref->hdr.age) >= MAX_AGE)
ospfe_imsg_compose_rde(IMSG_LS_MAXAGE,
nbr->peerid, 0, ref->data,
sizeof (struct lsa_hdr));

free(ref->data);
LIST_REMOVE(ref, entry);
free(ref);

4.5.3 Self originated LSA

There are three kinds of self originated LSAs. First
router and network-LSAs — those are generated in the
OSPF engine. Then AS-external-LSAs which are gener-
ated in the RDE with the help of the parent process.
Finally on ABRs summary-LSAs are generated — this
happens in the RDE as well.

To create a self originated LSA in the OSPF engine and
commit it to the LS DB in the RDE is a bit tricky. Let's
have a look at orig_net_lsa() because it is a lot sim-
pler than orig_rtr_lsa().

Code snip 48: originate network-LSA

if ((buf = buf_dynamic(sizeof(lsa_hdr), READ_BUF_SIZE)) ==
NULL)
fatal("orig_net_lsa");

/* reserve space for LSA header and LSA Router header */
if (buf_reserve(buf, sizeof(lsa_hdr)) == NULL)
fatal({"orig_net_lsa: buf_reserve failed");

/* LSA net mask and then all fully adjacent routers */
if (buf_add(buf, &iface->mask, sizeof(iface->mask)))
fatal(“orig_net_lsa: buf_add failed");

/* fully adjacent neighbors + self */
LIST_FOREACH(nbr, siface->nbr_list, entry)
if (nbr->state & NBR_STA FULL) {
if (buf_add(buf, &nbr->id,
sizeof(nbr->id)})
fatal("orig_net_lsa:
"buf_add failed");

"

num_rtr++;

}
if (num_rtr == 1) {
/*

* non transit net therefor no need to generate
* a net lsa
*/

buf_free(buf);

return;

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

/* LSA header */
if (iface->state & IF_STA DR)

lsa_hdr.age = htons(DEFAULT_AGE);
else

lsa_hdr.age = htons(MAX_AGE);

lsa_hdr.opts = oeconf->options;/* XXX */

lsa_hdr.type = LSA_TYPE_NETWORK;

lsa_hdr.ls_id = iface->addr.s_addr;

1sa_hdr.adv_rtr = oceconf->rtr_id.s_addr;

lsa_hdr.seq_num = htonl({INIT_SEQ_NUM);

lsa_hdr.len = htons(buf->wpos);

lsa_hdr.1ls_chksum = 0;/* updated later */

memcpy (buf_seek(buf, 0, sizeof(lsa_hdr)), &lsa_hdr,
sizeof(lsa_hdr));

chksum = htons(iso_cksum(buf->buf, buf->wpos,
LS_CKSUM_OFFSET));

memcpy (buf_seek (buf, LS_CKSUM OFFSET, sizeof(chksum)),
&chksum, sizeof(chksum));

imsg_compose({ibuf_rde, IMSG_LS_UPD, iface->self->peerid, 0,
-1, buf->buf, buf->wpos);

buf_ free(buf);

Once again the buf API is used. First space for the
header is reserved then the network mask is added and
finally a list of all fully adjacent routers is added. The
router itself needs to be added as well but this is no prob-
lem because of the special self neighbor. If there is no
other OSPF router on the network it is not necessary to
create a network-LSA. A stub network entry in the
router-LSA will do the job. In that case the buffer gets
freed and the function returns. Otherwise the LSA
header has to be built. First the correct age is set. To
remove a network-LSA the age is set to MAX AGE else the
initial DEFAULT_AGE is used. Other important fields are
LS type, LS ID and advertising router. Also the sequence
number has to be set but the correct instance number is
only known by the RDE. The RDE uses 1sa_merge()
later on to merge this LSA into the database and
1sa_merge() will take care of the sequence number — so
here we set it just to the initial value. Copy the header
into the buffer, calculate the checksum and finally send
this self originated LSA with the peerid of the special
neighbor self to the RDE.

Originating a router-LSA is done in a similar way. It is
just more complex because many additional informa-
tions are added in the router-LSA. One tricky part is set-
ting the correct router flags.

Code snip 49: originate router-LSA

/* LSA router header */
lsa_rtr.flags = 0;
/*
* Set the E bit as soon as an as-ext lsa may be
* redistributed, only setting it in case we redistribute
* something is not worth the fuss.
*/
if (oceconf->redistribute_flags &&
(oeconf->options & OSPF_OPTION_E))
lsa_rtr.flags |= OSPF_RTR_E;

border = area_border_router (ceconf);

if (border != oeconf->border) {
oeconf->border = border;
orig_rtr_lsa_all(area);
}

if (oeconf->border)

lsa_rtr.flags |= OSPF_RTR_B;
if (virtual)

lsa_rtr.flags |= OSPF_RTR V;

109

OpenOSPFD - design and implementation

There are three bits that have to be set. The E bit indi-
cates that the router is an AS border router and will
announce AS-external routes. The E bit is used in the
SPF calculation and for summary-LSAs. In the SPF cal-
culation routers with E bit set are added to the RIB.
Without setting the E bit all AS-external routes using this
router as advertising router are considered invalid
because the router is not present in the RIB. Similar hap-
pens for summary-LSAs. On ABRs router summary-
LSAs will be generated for every router with E bit set.
OpenOSPFD tricks a bit with the £ bit by setting the bit
as soon as it is possible that a AS-external route is redis-
tributed and not when the router actually redistributes a
route. Other implementations have the same sloppy
behaviour. Even more complex is setting the B bit, which
is used to mark ABRs. As soon as a router is part of two
active areas the B bit has to be set on all router-LSA.
area_border_router() returns true if there are two or
more active areas. If the state of the ABR changes all self
originated router-LSAs in all areas have to be updated.
This is done via orig rtr_lsa_all() which in turn
calls orig_rtr lsa() for all areas but the current one.
Afterwards setting the B bit is no longer a problem. The
last bit that can be set is the V bit. It is used to mark inter-
faces where a virtual link is terminated. Areas where one
router has a V bit set are transit areas. Transit areas need
some special handling in the SPF calculation as example
it is not allowed to send aggregated summary routing
information into a transit area.

4.5.4 ABR and summary-LSA

The code handling ABRs and summary-LSAs is still in
some flux. There are to many work a rounds and some
stuff is still missing. Lets have a look at it anyway. It
actually starts in the SPF calculation. The code that
recalculates the RIB looks currently like this:

Code snip 50: SPF timer

rt_invalidate();

LIST_FOREACH(area, &conf->area_list, entry)
spf_calc(area);

RB_FOREACH(r, rt_tree, &rt) {
LIST_FOREACH(area, &conf->area_list, entry)
rde_summary_update(r, area);

if (r->d_type != DT_NET)
continue;

if (r->invalid)
rde_send_delete_kroute(r);
else
rde_send_change_kroute(r);
}

LIST_FOREACH(area, &conf->area_list, entry)
lsa_remove_invalid_sums(area);

start_spf_holdtimer (conf);

First the RIB is invalidated by flagging routes as invalid.
While doing that old invalid routes are removed from the
tree. Afterwards the SPF calculation is run for every
area. This is one of the things that should be changed.
There is no need to recalculate an area if there was no

110

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

changes in that area. In the next step a walk over the RIB
is done. By calling rde_summary update() for every
area and any route all required summary informations
are generated. Afterwards the kemel routing table is
updated by sending change or delete messages to the
parent process. This is only done for routes that describe
networks. After that old invalid summary-LSAs get
removed from all areas. Finally the hold timer is started.
This is specified in the RFC so that the SPF calculation
does not kill the underpowered routers.

rde summary update() does the decision if it necessary
to create a summary-LSA.

Code snip 51: Is summary-LSA needed?

/* first check if we actually need to announce this route
*/
if (!(rte->d_type == DT_NET || rte->flags & OSPF_RTR_E))
return;
/* never create summaries for as-ext LSA */
if (rte->p_type == PT_TYPEl_EXT || rte->p_type ==
PT_TYPE2_EXT)
return;
/* no need for summary LSA in the originating area */
if (rte->area.s_addr == area->id.s_addr)
return;
/* TODO nexthop check, nexthop part of area -> no summary
*/
if (rte->cost >= LS_INFINITY)
return;
/* TODO AS border router specific checks */
/* TODO inter-area network route stuff */
/* TODO intra-area stuff -- condense LSA 2?2 */

First of all only network routes or router routes where
the E bit is set are summarised into other areas. The E bit
is the same as the one in router-LSAs specifying that the
router is an ASBR. An ASBR has to be added to other
areas so that they can validate the AS-external-LSAs. As
AS-external routes are flooded through all areas there is
no need to create summaries for those networks. The
originating area and all invalid routes are skipped.
Finally there are some other minor but very complicated
things left out for now.

Code snip 52: update summary-LSA

/* update lsa but only if it was changed */
if (rte->d_type == DT_NET) ({
type = LSA_TYPE_SUM_NETWORK;
v = lsa_find(area, type, rte->prefix.s_addr,
rde_router_id());
} else if (rte->d_type == DT_RTR) ({
type = LSA_TYPE_SUM_ROUTER;
v = lsa_find(area, type, rte->adv_rtr.s_addr,
rde_router_id()):

} else
fatalx("orig_sum_lsa: unknown route type');

lsa = orig_sum_lsa(rte, type);
lsa_merge(rde_nbr_self(area), lsa, v);

if (v == NULL) {
if (rte->d_type == DT_NET)
v = lsa_find(area, type,
rte->prefix.s_addr, rde_router_id()};
else
lsa_find(area, type,
rte->adv_rtr.s_addr, rde_router_id());

}

v=>cost = rte->cost;

To update the LS DB 1sa_merge() is used. Before it is
possible to call 1sa_merge() two things have to be done.
First the current database version of the LSA has to be
found. Secondly a new LSA is generated by
orig_sum_lsa(). After merging the LSA it is necessary

OpenOSPFD - design and implementation

to update the cost of the vertex so that a later call to
lsa remove_invalid sums() sees that this vertex is
still in use. In case the LSA was newly added the previ-
ous lsa_find() returned NULL so the search has to be
repeated to get a valid vertex.
lsa_remove_invalid_sums() does nothing more than a
tree walk looking for summary-LSAs with a cost of
LS_INFINITY and removes those by setting their age to
MAX_AGE and calling 1sa_timeout () to flood them out.

4.5.5 Originating AS-external-LSA

To redistribute AS-external-LSA the parent process
sends a list of candidates to the RDE. The RDE uses
rde_asext_get () to convert the kroute into a LSA and
with the help of 1sa_find() and lsa_merge() the LSA
is added to the database. Similarly on remove
rde_asext_put() is used to get the no longer needed
LSA and again lsa find() and lsa_merge() do the
actual job.

rde_asext_put() has a more or less simple job. Find
the kroute, remove it from the list and create a LSA with
LS age MAX_AGE if the LSA was used.

Code snip 53: rde_asext_put()

LIST_FOREACH(ae, &rde_asext_list, entry)
if (kr->prefix.s_addr == ae->kr.prefix.s_addr &&
kr->prefixlen == ae->kr.prefixlen) {
LIST REMOVE{ae, entry);
used = ae->used;

free(ae);
if (used)
return {orig_asext_lsa(kr,
MAX AGE));
break;

}
return (NULL);

On the other hand rde_asext get() has a bit more to
do. It first looks if the route was added already before. In
that case the route needs to be updated, else a new one is
created.

Code snip 54: rde_asext_get() part 1
LIST FOREACH(ae, &rde_asext_list, entry)

if (kr->prefix.s_addr == ae->kr.prefix.s_addr &&
kr->prefixlen == ae->kr.prefixlen)
break;

if (ae == NULL) {
if ((ae = calloc(l, sizeof(*ae))) == NULL)
fatal("rde_asext_get");
LIST_INSERT HEAD(&rde_asext_list, ae, entry);
}

memcpy (&ae->kr, kr, sizeof(ae->kr));

wasused = ae->used;
ae->used = rde_redistribute(kr);

Next task is to find out if the route should be redistrib-
uted. The actual logic is in rde_redistribute() and so
lets have a look at that.

111

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Claudio Jeker

Code snip 55: rde_redistribute()

int
rde_redistribute(struct kroute *kr)
{

struct areararea;

struct iface*iface;

int rv = 0;

if (!(kr->flags & F_KERNEL))
return (0);

if ((rdeconf->options & OSPF_OPTION_E) == 0)
return (0);

if ((rdeconf->redistribute_flags &
REDISTRIBUTE_DEFAULT) &&
(kr->prefix.s_addr == INADDR_ANY &&
kr->prefixlen == 0))
return (1);

/* only allow 0.0.0.0/0 if REDISTRIBUTE_DEFAULT */
if (kr->prefix.s_addr == INADDR_ANY &&
kr->prefixlen == 0)
return (0);

if ((rdeconf->redistribute_flags &
REDISTRIBUTE_STATIC) &&
(kr->flags & F_STATIC))
rv = 1;
if ((rdeconf->redistribute_flags &
REDISTRIBUTE_CONNECTED) &&
{kr->flags & F_CONNECTED))
rv = 1;

/*
* interface is not up and running so don't
* announce
*/
if (kif validate(kr->ifindex) == 0)
return (0);

LIST_FOREACH(area, &rdeconf->area_list, entry)
LIST FOREACH(iface, s&area->iface_list,
entry) {
if ((iface->addr.s_addr &
iface->mask.s_addr) ==
kr->prefix.s_addr &&
iface->mask.s_addr ==
prefixlen2mask(kr->prefixlen))
/* already announced
* as net LSA */
rv = 0;

}

return (rv);

}

First it is checked if we have to redistribute anything.
Afterwards the default route gets handled. The default
route is only redistributed if explicitly enforced via
“redistribute default”. Dependent on the flags it is now
decided if routes gets redistributed. The interface state is
checked and finally all configured interfaces are
inspected to see if the route is not already part of a net-
work-LSA or is announced as a stub network.

After the rde_redistribute() call it is now clear what
remains to be done.

Code snip 56: rde_asext_get() part 2

if (ae->used)
/* update of seqnum is done by lsa_merge */
return (orig_asext_lsa(kr, DEFAULT_AGE));
else if (wasused)
/*
* lsa_merge will take care of removing the
* lsa from the db
*/
return (orig_asext_lsa(kr, MAX_AGE));
else
/* not in lsdb, superseded by a net lsa */
return (NULL);

If the route has to be redistributed a LSA with the initial
LS age is generated and returned. If it is no longer used a
LSA with LS age MAX AGE is generated and returned.

¥ OpenOSPFD - design and implementation

Otherwise the work is completed and function returns.
In case an interface state changes,
rde_update_redistribute() is called and all routes
that depend on this interface are recalculated very simi-
lar to the presented code here. Again going through
rde_redistribute(), orig_asext_lsa(),lsa_find(),
and lsa _merge().

4.6 Issues and other stuff

There are still some problems in OpenOSPFD that have
to be solved. Some features are incomplete and so there
is still a lot of work to be done. Lets look back at the
solved problems. The first problem encountered was
probably the privilege separation because a clever split-
ting had to be done. This is still sometimes an issue — for
example the current redistribute code is partially done in
the wrong place. The result is massive overhead if the
router does “‘redistribute static” with a full view in the
routing table. All ~170'000 routes are passed to the RDE
and evaluated there. It works but is inefficient. Other
problems with privsep were solved like the MAX_AGE or
the database exchange problems explained earlier. A
good example of a work a round is the multicast han-
dling. A real fix for this problem is in progress but some
kernel patches are required to make it fly. At least many
issues and bugs were identified and fixed in the flooding
and database exchange phase — the most important part
of the protocol.

Things that remain to be fixed include the redistribute
code or the missing support for interface aliases. The
ABR code is still not optimal and is not as good tested as
the normal case. Virtual links still need a lot of work to
get them flying — a lot of code is around but some impor-
tant bits are missing. Interface handling should be
improved, like supporting aliases and dynamic inter-
faces. Last but not least there are all those supercool new
features planned but that's a different paper. :)

Bibliography

[1] Moy, J. OSPF version 2. RFC 2328, April 1998.

[2] Moy, J. OSPF: Anatomy of an Internet Routing Proto-
col. Addison-Wesley. September 1998

[3] OpenBSD., http://www.openbsd.org/
(4] OpenBGPD, hitp://www.openbgpd.org/

{51 OpenOSPFD source code. hntp./fwww.openbsd.org!
cgi-bin/cvsweb/srclusr.sbin/ospfd/

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

112

Claudio Jeker

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Remote user access VPN with [Psec

Emmanuel Dreyfus

October 24, 2005

Abstract

IPsec is a set of Internet Protocol (IP) extensions used to bring secure com-
munication to the network level. IPsec can be used in various Virtual Private
Network (VPN) scenarios such as bridging private networks or user remote ac-
cess to a private network.

Remote User access VPN is an area where the the IPsec tools available on
BSD systems were a bit frustrating. In this paper, we describe some require-
ments for a remote user access solution and how the existing solutions based on
IPsec did not fully satisfv the requirements.

We then have a look to the IPsec extensions implemented by other vendors
and how they would match our goals if we had them. The end of the paper tells
how these extensions have been added to NetBSD IPsec stack. and how it led
NetBSD to integrate software from the ipsec-tools project.

It is assumed that the reader is knowledgeable with TCP/IP networking.

1 Virtual Private Networks

A Virtual Private Network (VPN) is a link between two private networks. which
are usually connected through the Internet.

The link is secured so that no one can easily eavesdrop or alter the traffic.
This is why the VPN is said to be private. It also maintains the illusion of
a single private network, without the Internet in between, and this is why we
speak about a virtual network.

Maintaining the security of the VPN is not trivial. Of course the network
traffic must be encrypted and checked against modifications, but the endpoints
must also authenticate each other. If this mutual authentication is not done.
the VPN is left vulnerable to Man in the Middle (MiM) attacks, where an
attacker will impersonate each VPN endpoint and will be able to tamper with
the network traffic.

The VPN can be a set of links between various sites of the same enterprise.
In this situation the network administrator only has to deal with the secure
communication between the border VPN gateways. This situation is quite com-
fortable. since it only deals with mutually authenticating machines. Many tools

113

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Attacker

Attacker
I speak to Alice impersonates impersonates ['speak to Bob

Q-cc B p
=

Secure channel Secure channel

MiM attacker

Figure 1: Mill attack

are available in BSD systems to get the work done.

The remote user access VPN is another scenario where one of the VPN end-
points is not a network but a single machine. It can be a road warrior accessing
the private network from home or from a conference. In this situation. the net-
work administrator is not likely to be the mobile machine administrator. so this
is not just a problem of authenticating a machine - we need to authenticate the
remote user instead.

2 Requirements for a remote user access VPN

Let us define the requirement we could have for a remote user access VPN. We
want our remote user access VPN to

e be secure

e use login and passwords for user authentication

be as simple as possible for users to configure

use free software on the server

be compatible with as many client Operating Systems {OSes) as possible

Here is a deeper review of the requirements.

2.1 Security

We want a secure VPN. We do not want attackers to eavesdrop or modify the
traffic, and we do not want an unauthorized user to gain access to our private
network.

2.2 Login and password authentication

There are a few ways of authenticating users. The weakest way is using a group
password, one which is shared by all users. This is lower security because a
shared password does not remain secret very long, as the administrator has no
way to know who disclosed it if it gets disclosed.

114

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Login and password is a bit better. because at least they are personal. We
get a better idea of who is doing what. This is not highest security because
passwords can be guessed or cracked.

A better user authentication is to use digital certificates. This is the highest
security, but it may be impossible to manage in the real world. Certificate
enrollment is not a trivial task and users may not be knowledgeable enough to
manage their digital certificates.

Depending on the situation. login and passwords may be the best balance
between security and usability. We will assume this is the situation here. We
target a security level equivalent to SSHv2 (Secure SHell version 2) using pass-
word authentication: passwords cannot be eavesdropped. but theyv could be
guessed. so we need to regularly check that user passwords are strong enough.

2.3 User friendliness

We want a solution as easy as possible to manage for users. In an ideal world,
the user would only have to configure a VPN gateway IP, a login and a password.
and the VPN connection should be made.

2.4 Free software on the server

For a lot of good reasons. we have a strong bias for using free software. It is
easier to debug, it can be more easily enhanced. and it is free as in beer. So we
would like our VPN gateway to run on a free OS.

2.5 Compatible with as many client systems as possible

We cannot rule out proprietary software on the mobile host. as we assumed
that the network administrator was not managing it. So our solution must be
compatible with Windows systems, for instance. But we also want to avoid
locking out users of free OSes.

3 A short survey of remote user access VPN
techniques

3.1 PPP over SSH

Point to Point Protocol (PPP) over SSH is about running a PPP session over an
SSH tunnel. Security is handled by SSH, and PPP allows us to build a virtual
network.

This solution meets the security and login authentication requirement. It is
easy to implement on a BSD system as all the tools are available in the base
system. It still has major drawbacks.

The first drawback is performance. The network stack when a web page is
fetched through this kind of VPN would be

115

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

HTTP
TCP
IpP
PPP
SSH
TCP
1P

layer 2

We can see that Transfer Control Protocol (TCP) is used twice in the stack.
The two TCP lavers will fight each other when trving to deal with network
bandwidth. resulting in very poor performances.

Second. it is not easy at all to configure for a client running a Unix-like
system, and third. if it is even possible at all, it would be very difficult to
configure for a client running a Windows system.

So PPP over SSH looks like a quick and dirty solution for knowledgeable
user, but it does not fulfill our requirements.

3.2 PPTP

Point to Point Tunneling Protocol (PPTP) is a VPN protocol designed by Mi-
crosoft. Built-in support for it has been available since Windows NT 4.0, and
a few free-software implementation are available for Unix-like systems. Apple
also provides a built-in PPTP capability since MacOS X.3.

PPTP has a long and scary history of security flaws [PPTP], and Microsoft
seems to be adopting Layer 2 Tunneling Protocol (L2TP) over IPsec now. PPTP
does not appear to be a good candidate to build a new VPN solution today.

3.3 Tunneling over SSL

Secure Socket Layver (SSL) is a security layer used on the top of TCP to secure
application layer traffic. It uses digital certificate for mutual authentication and
has provisions for the situation where only the server side uses a certificate. In
that situation, a secure communication can take place where the client knows
it speaks to the server. and the server does not know who it is speaking with.

At that stage, the client can authenticate itself through the secure chan-
nel. This may be done with login and passwords, and the password cannot be
eavesdropped easily.

OpenVPN [OpenVPN] is a free software project that proposes a VPN so-
lution using tunneling over SSL. It supports authentication using login and
passwords, while the server uses a certificate. This meets our security objec-
tive. It is reasonably easy to use and even has a graphical user interface for
Windows and MacOS X. It also runs on a lot of different Operating Systems.

116

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Finally, OpenVPN uses User Datagram Protocol (UDP) as its transport laver,
so it does not suffers the performance issue we described for PPP over SSH.

OpenVPN fulfills our requirements. but we would like some alternatives. Let
us look in the direction of IPsec.

3.4 Plain IPsec

As we said before, IPsec is a set of IP extensions to bring security to the network
laver. On the network protocol front, here is what it introduces:

e An Authentication Header (AH) for IP packets. This IP option is used to
authenticate the host that sent an IP packet and to guarantee the data
and IP header integrity.

e the Encapsulating Security Payload (ESP). This is a layer 4 protocol to
carry encrypted data. The sending host is authenticated and the data
integrity is guaranteed. ESP can be used in transport mode. where it
encapsulates TCP or UDP. or in tunnel mode, where it encapsulates IP.
For a VPN setup. the tunnel mode is used in order to build a virtual
network. Because ESP in tunnel mode guarantee the integrity of the
inner IP header. IPsec VPN do not need AH.

e The IP compression protocol (IPcomp). This is another layer 4 protocol
used to reduce the overload of encryption.

In order to do their cryptographic job. ESP and AH need a shared key on
the sending and receiving host. This key. and the various informations needed
to use it (algorithms, key length...) are known as an IPsec Security Association
(SA). It is stored inside the kernel, in the Security Association DataBase (SAD).
The SAD can be set up manually (using the setkey(8) command for instance),
or kev exchange can be handled by a userland daemon. In that situation, the
who hosts willing to establish an IPsec SA needs to have kev exchange daemons
that speak the same protocol. Today’s protocol for IPsec key exchange is known
as Internet Key Exchange (IKE) protocol, and it is defined in RFC 2409 [IKE].

IKE defines two phases. In phase 1, the peers authenticate each other and
set up a phase 1 Security Association (also known as an ISAKMP SA). The
phase 1 SA is a shared keyv stored in memory by the IKE daemons. It is used
to periodically run a phase 2. which uses the phase 1 SA to produce IPsec
keys (also known as IPsec SA or phase 2 SA). This two-layer system enables
periodical re-keying. where the IPsec SA can be periodically renewed in order
to make the attacker’'s job more difficult.

Static keys may seem easier to manage but if we use them, we lose the re-
keying feature. It is much better to use IKE, and this is what we are going to
do. Let us now focus on IKE phase 1 authentication.

IKE phase 1 authentication can be done by two ways: shared secret or
digital certificate. Both peers have to use the same method. We said that
we did not want user digital certificates, and a shared secret is not the same
thing as a login/password pair. The lack of user credential management tools
seems to always drive network administrators to use a group password as the

117

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

shared secret. The real problem is that IKE phase 1 was mostly designed to
authenticate hosts and not users.

An additional problem is that the configuration on the client side is not easy.
as proper routing entries shall be created to get the private traffic going through
the ESP tunnel.

For those reasons, plain IPsec does not seem to meet our goals.

3.5 L2TP over IPsec

Layver 2 Tunneling Protocol (L2TP) provides the ability to perform a user au-
thentication through a login/password, and it is able to carry several point
to point links on the top of ESP in transport mode. The multiple links can be
used to carry a multi-protocol VPN, doing both IP and AppleTalk. for instance.
L2TP is defined by RFC 3931 [L2TP].

L2TP over IPsec has a login/password authentication. and we have built-in
clients in Windows XP and MacOS X.3. It looks like a nice solution to our
problem but a closer look will show it is not.

The problem is that the L2TP completely relies on IPsec for securing the
user authentication. If the IPsec SA is insecure. then authentication credentials
may be stolen by an attacker. And the IPsec SA is secure only if the IKE
phase 1 SA is secure. And the IKE phase 1 SA is secured by an authentication
which can only use a shared secret or certificates.

Therefore even if L2TP has a user authentication using a login/password. it
can only be made secure using certificates for users. This is not what we want.

4 Some Ipsec extensions

The temporary conclusion to our remote user access VPN survey is that there
is no IPsec solution that meet our requirements. Let us see what other vendors
have done to improve IPsec so that it can get the job done.

4.1 Xauth

Xauth (which has nothing to do with X Window Xauth) is an IKE extension that
introduces a user authentication step between IKE phase 1 and IKE phase 2.
The user authentication can be done through a login and a password. This
solution has exactly the same drawback as L2TP over IPsec: the user authen-
tication is secured by IKE phase 1. and IKE phase 1 can only be secured by a
shared secret or certificates.

It is worth noting that a lot of vendors recommend using Xauth (or L2TP
over IPsec) with a group password as the IKE phase 1 shared key because this is
easier to manage. Such a setup leads to a weak security: anyone that knows the
shared secret can eavesdrop other users’ traffic and steal their user credentials.

Xauth adds a user authentication to IKE, but it does it in a way where a
user certificate is still required in order to have a decent level of security. That
is not very helpful.

118

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Xauth is documented in a dead IETF draft [Xauth], but it is used in various
VPN solutions, such as Cisco VPN.

4.2 Hybrid authentication

Hvbrid authentication is another IKE extension that makes the phase 1 asym-
metric: the VPN gateway authenticate to the mobile host by using a certificate.
and the mobile host does not authenticate in phase 1.

At the end of phase 1 we get a secure channel where the VPN gateway does
not know who it is speaking with, and the mobile host knows it speaks with the
VPN gateway. In this secured channel, a user authentication through Xauth
can safelv take place.

Hyvbrid authentication with Xauth gives us the security level of SSHv2 with
passwords. and this is what we were looking for. We only have to manage a
server certificate, which is easy to do, and users will authenticate using login
and passwords: no user certificate. no group password.

Hybrid authentication is documented in an IETF draft [Hybrid].

4.3 ISAKMP mode config

ISAKMP mode config is another IKE extension used by a mobile host to pull
the network configuration from the VPN gateway. It can also be used by the
VPN gateway to push the network configuration. This extension makes the
user’s life much more easier. as it enable VPN auto-configuration.

Without ISAKMP mode config, the peers must agree some way on the pri-
vate addresses to use for tunneling. This leaves no other choice than manual IP
configuration for each VPN user, which is not very convenient.

ISAK)MP mode config mechanism is also used by Xauth for requesting and
submitting the user credentials.

ISAKMIP mode config is documented in an IETF draft [mode-cfg].

4.4 Nat-Traversal

IPsec VPNs are based on ESP, and ESP has trouble going through firewalls
and Network Address Translators (NAT). There are two problems: first most
network administrators block any traffic and allow only things they know about.
ESP is not widespread enough to be allowed everywhere, and in fact it is blocked
nearly anywhere.

The other problem is that ESP has no ports like TCP and UDP, which makes
it difficult to handle for a network address translator. Most NAT will just not
let it get through.

The solution to this is NAT-Traversal, a set [Psec extensions used to encap-
sulate ESP in UDP datagrams.

There have been many NAT-Traversal drafts, but the final RFC works that
way: IKE starts on standard UDP port 500. After the first exchange, port 4500
is used. After IKE phase 2 is done, the ESP packets are encapsulated in UDP

119

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

packets. The UDP ports used for IKE are used for ESP over UDP. This ensures
that NAT state installed by the IKE exchange can reused by ESP over UDP.
NAT-Traversal also require that keep-alive packets gets transmitted regularly
to avoid NAT state timeout.
NAT-Traversal is defined by RFC 3947 [NAT-T] and RFC 3948 [ESP-over-UDP].
Microsoft claimed to hold a US patent on it [MS-IPR]. but it is not clear that
NAT-Traversal is really encumbered.

4.5 Dead Peer Detection (DPD)

Remote users accessing through a VPN may experience dangling connections.
and it is important to detect when a remote user gets disconnected. Unfortu-
nately, IPsec has no good built-in mechanism to discover that the remote host
crashed or has gone off-line. Such an event is onlyv detected at re-keving time.
If phase 2 cannot complete, the IPsec SA gets killed. But it is not convenient
to use a very short phase 2 lifetime just to detect dead peers.

DPD is yet another IKE extension used to monitor the peer and quickly
detect when it gets unreachable. It works by exchanging probe packets. and if
the peer does not answer for some time, the security associations are killed.

DPD is documented by RFC 3706 [DPD].

4.6 IKE fragmentation

Many network appliances such as DSL routers or home firewalls consider that
UDP is only for DNS and NTP. Big UDP packets are not expected and are
not allowed to pass through. This is a problem for our VPN since IKE tend to
produce big UDP packets.

Of course we could use IP fragmentation to send smaller packets, but un-
fortunately some broken appliance will also consider UDP fragment as an evil
thing that must be blocked.

IKE fragmentation is one more IKE extension used to split a big IKE packets
into smaller fragments, so that they can pass through any network appliance.

IKE fragmentation seems to be a proprietary extension from Cisco and it
seems it is not documented anywhere.

4.7 ESP fragmentation

ESP over UDP suffers exactly the same problem as IKE with network appliances.
This can be fixed without any IPsec extensions, by using a simple trick. For
our VPN, we use ESP in tunnel mode. The packets look this way on the wire:

MAC header:IP:UDP:ESP:IP:TCP:HTTP

And fragmented packets look like this:

MAC header:frag(IP:UDP:ESP:IP:TCP:HTTP)
MAC header:frag(IP:UDP:ESP:IP:TCP:HTTP)

120

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

We know that some network appliance will biock big UDP packets or frag-
mented UDP packets. The idea is to fragment packets at the IP level before
ESP encapsulation takes place. The fragmented packets look like this on the
wire:

MAC header:IP:UDP:ESP:frag(IP:TCP:HTTP)
MAC header:IP:UDP:ESP:frag(IP:TCP:HTTP)

Because the fragmentation takes place inside ESP payload, network devices
in between the mobile host and the VPN gateway have no way to see that the
packet was fragmented.

ESP fragmentation ensures that packets of any size can be sent through the
VPN. There might still be some problems with TCP being unable to perform
Path Maximum Transmission Unit (PMTU). This is addressed by using a well
known fix known as Maximum Segment Size (MSS) clamping.

5 Implementing what we need

With all these new features, we get closer to having what we are looking for.
Using hybrid auth, we get our login and password authentication. and it is
as secure as SSHv2 using login and passwords. Using ISAKMP mode config
and DPD, we get something easy to use for the end-user. NAT-Traversal. IKE
fragmentation and ESP fragmentation make the VPN usable when users connect
from behind a NAT.

But now we want some real software. On the client side. Cisco makes Cisco
VPN client, which implement all the nice IPsec extension we talked about. It
works on Windows and MacOS X, and Cisco gives it for free if you buy a Cisco
VPN 3000, a network device that does the VPN server side.

The Cisco VPN 3000 configuration is something really heavyweight that
relies on a web interface or text-base menus. We said we wanted a VPN gateway
running free software for various reasons (which may also include not using the
VPN 3000 bloated web interface anymore). So let us now have a look on how
NetBSD was enhanced to replace a Cisco VPN 3000.

5.1 The KAME project’s IPsec stack

NetBSD and FreeBSD IPsec stacks were obtained from the KAME project.
KAME's goal was to provide an IPv6 stack for BSD systems. Because IPv6
contains IPsec, KAME also provided [Psec.

The IPsec stack is split into a few components:

incoming and outgoing packet handing in the kernel
e key management in the kernel.

an IKE daemon in userland called racoon

the setkey command used to manipulate SAD and SPD manually

121

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

¢ the libipsec librarv. which is a layer between racoon and the kernel. The
userland/kernel kev management interface is done through special sockets
of type PF_KEY. The interface itself is also called PF_KEY, and it is
defined in RFC 2367 [PF_KEY].

Implementing ISAKMP mode config, Xauth. and hybrid authentication in
racoon was not very difficult. All the protocols are documented by IETF drafts.
so most of the work was done by trying to connect to racoon using the Cisco
VPN client, and filling the gaps each time something was causing a failure.

IKE fragmentation has been more difficult because it was not documented.
Some reverse engineering was required. Fortunately the protocol was rather
simple: each IKE fragment had a small header containing the fragment length.
the fragment index. and a flag for the last fragment.

Once the Cisco VPN client was able to establish an [Psec SA with a NetBSD
machine. it was obvious that the project was going somewhere, and. therefore.
the question of integrating these racoon changes raised. NetBSD racoon was
only an import of KAME racoon. and hence the goal was to integrate the changes
in KAME and import the newer racoon in NetBSD.

Unfortunately. the KAME project has not really been interested by this
work. It was impossible to get it integrated, so the time had come to think
about doing a fork. But managing a fork is never a pleasant plan. because it
means a lot of work. merging future fixes from the original project with code
added in the forked version.

Fortunately, a KAME fork already existed: ipsec-tools

5.2 IPsec-tools

Some time ago, it has been decided that KAME racoon was the way to go
for Linux. Some contributions where done to KAME racoon for adding Linux
support, but that turned into a racoon fork known as ipsec-tools.

ipsec-tools is only a fork of the userland part of the KAME [Psec stack: it
contains setkey, libipsec and racoon. The project accepted the contributions
to restore NetBSD build. and to add ISAKMP mode config, Xauth. Hybrid
authentication. and IKE fragmentation.

ipsec-tools was later further improved to better fit in the remote user VPN
scenario. Support was added to behave as a VPN client for hybrid authentica-
tion, and on the server side, things such as RADIUS and PAM authentication
for Xauth logins were added. Another contributor added DPD.

For a documentation about how to configure a NetBSD system as a VPN
gateway or a VPN client using hybrid authentication, see the how-to in the
NetBSD documentation [HOW-TO].

5.3 NAT-Traversal in NetBSD

ipsec-tools has support for NAT-Traversal in tunnel mode, but that requires
kernel support which was only available on Linux. Some work had to be done
in the NetBSD kernel to get NAT-Traversal working on NetBSD.

122

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

The new code is ifdef’ed by the IPSEC_NAT_T option in the NetBSD kernel.
It sits in four locations:

e in the setsockopt(2), where the IKE daemon tells the kernel that a given
socket can be used for ESP over UDP.

e in the PF_KEY interface: the IKE daemon gives the UDP port number
that is being used by IKE. and that will be used for ESP over UDP.

e in the UDP input function: for sockets tagged as using ESP over UDP,
the UDP payload is transmitted to the ESP input function or to the IKE
daemon in userland. A non-IKE marker is used at the beginning of the
UDP payload to distinguish ESP and IKE packets

e in the ESP output function. data that is to be handled by an IPsec SA
using ESP over UDP is sent to the UDP output function.

The original NAT-Traversal support written for Linux was not able to cope
with the situation where IPsec SA were installed with multiples peers behind a
NAT. This was because the code only used the IP addresses in SPD and SAD.
Because the port information was missing, there was no way of distinguishing
the traffic coming from different machines. NAT-Traversal support in racoon
and in the NetBSD kernel was improved to keep track of port information in
order to fix that.

5.4 Switching from KAME to ipsec-tools

At that time it was clear that ipsec-tools had much more activity than KAME
racoon. Many new features were being integrated into ipsec-tools, while KAME
was too busy on other problems to integrate anything. This led to the decision
to integrate ipsec-tools into NetBSD instead of KAME racoon. The switch was
done in April of 2005. It caused a few minor regressions such as TCP-MD5
lossage and transport mode withovt NAT-Traversal being broken. but those
problems have been fixed.

At the end of April 2005, the KAME project dropped support for racoon
and advised users to use ipsec-tools racoon instead [KAME]. This decision was
made because the primary goal of KAME is to develop IPv6 and not an IKE
daemon. and because there is no point having two projects for racoon.

Conclusions

The need for a particular set of requirement has driven the integration of many
new features in NetBSD IPsec stack. The solution described here is an average
security solution, where some security is traded for usability. But stronger
security setups, where digital certificates are used for user authentication. also
benefited from the new features that were added, such as NAT-Traversal, DPD.
ISAKMP mode config, or IKE fragmentation.

Racoon was also improved on some fronts unrelated to network communica-
tions. For instance. it is now able to run as an unprivileged user and within a
chroot environment.

123

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

In the future. racoon should keep evolving towards being compatible with
more IPsec VPN implementations. There are also some missing features that are
frequently required: NAT-Traversal in transport mode and IKEv2 integration.
As users frustration increase. the odd gets better that someone will implement
these missing features as well

NAT-Traversal in transport mode will require support in the NetBSD kernel.
There is also another point on the road map for NetBSD IPsec: FAST_IPSEC.
This alternative in-kernel IPsec stack is designed to make cryptographic opera-
tion asynchronous so that hardware accelerators can be used. It has not been
modified for NAT-Traversal, and this is another gap that has to be filled.

Thanks to John R. Shannon, Greg Troxel. Greg Oster. and D'Arcy J.M.
Cain for reviewing this paper. Thanks also to Florence Henryv for the help with

LTEX.

References

[PPTP] http://www.schneier.com/paper-pptpv2.pdf
[OpenVPN] http://openvpn.net

[IKE} nttp://www.ietf.org/rfc/rfc2409.txt

[L2TP] http://www.ietf.org/rfc/rfc3931.txt

[Xauth] http://cvs.sourceforge.net/viewcvs.py/
rcheckout»/ipsec-tools/ipsec-tools/src/racoon/rfc/
draft-beaulieu-ike-xauth-02.txt

[Hybrid] http://cvs.sourceforge.net/viewcvs.py/
xcheckout/ipsec-tools/ipsec-tools/src/racoon/rfc/
draft-ietf-ipsec-isakmp-hybrid-auth-05.txt

[mode-cfg] http://cvs.sourceforge.net/viewcvs.py/
xcheckout»/ipsec-tools/ipsec—tools/src/racoon/rfc/
draft-dukes-ike-mode-cfg-02.txt

[NAT-T] http://www.ietf.org/rfc/rfc3947.txt
[ESP-over-UDP] http://www.ietf.org/rfc/rfc3948.txt

[MS-IPR] https://datatracker.ietf.org/public/iprdetail.
show.cgi?&ipr_.id=78

[DPD] http://www.ietf.org/rfc/rfc3706.txt
[PF KEY] http://www.ietf.org/rfc/rfc2367.txt

[HOW-TO] http://www.netbsd.org/Documentation/network/
ipsec/rasvpn.html

[KAME] http://www.atm.tut.fi/list-archive/
snap-users-2005/msg00105.html

124

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Introduction to Multithreading and Multiprocessing
in the FreeBSD SMPng Network Stack

Robert N. M. Watson
rwatson@ FreeBSD.org

Computer Laboratory
University of Cambridge

Abstract

The FreeBSD SMPng Project has spent the past five
years redesigning and reimplementing SMP support
for the FreeBSD operating system, moving from a
Giant-locked kernel to a fine-grained locking imple-
mentation with greater kernel threading and paral-
lelism. This paper introduces the FreeBSD SMPng
Project. its architectural goals and implementation ap-
proach. It then explores the impact of SMPng on the
FreeBSD network stack, including strategies for inte-
grating SMP support into the network stack, locking
approaches, optimizations, and challenges.

1 Introduction

The FreeBSD operating system [4] has a long-standing
reputation as providing both high performance net-
work facilities and high levels of stability, especially
under high load. The FreeBSD kernel has supported
multiprocessing systems since FreeBSD 3.x; how-
ever, this support was radically changed for FreeBSD
5.x and later revisions as a result of the SMPng
Project [1] [6] [7] [8].

This paper provides an introduction to multiprocess-
ing, multiprocessor operating systems, the FreeBSD
SMPng Project, and the implications of SMPng on ker-
nel architecture. It then introduces the FreeBSD net-
work stack, and discusses design choices and trade-
offs in applying SMPng approaches to the network
stack. Collectively, the adaption of the network stack
to the new SMP architecture is referred to as the Net-
perf Project [5].

2 Introduction to Multiprocessors and
Multiprocessing Operating Systems

The fundamental goal of multiprocessing is the im-
provement of performance through the introduction
of additional processors. This performance improve-
ment is measured in terms of “speedup”, which re-
lates changes in performance on a workload to the

125

number of CPUs available to perform the work. Ide-
ally, speedup is greater than I, indicating that as CPUs
are added to the configuration, performance on the
workload improves. However, due to the complexities
of concurrency. properties of workload, limitations of
software (application and system). and limitations of
hardware, accomplishing useful speedup is often chal-
lenging despite the availability of additional computa-
tional resources. In fact, a significant challenge is to
prevent the degradation of performance for workloads
that cannot benefit from additional parallelism.

Architectural changes relating to multiprocessing
are fraught with trade-offs. which are best illustrated
through an example. Figure | shows performance re-
sults from the Supersmack MySQL benchmark [2] on
a quad-processor AMD64 system, showing predicted
and measured transactions per second in a variety of
kernel configurations:

40000

35000

[5] |dealized
[l Predicted
lingar fram

[IMeasured

Transactions/Second

UP SM SM SM SM

P-1 P-2 P-3 P4
Configuration

Figure 1: Speedup as Processors Increase for MySQL
Select Query Micro-Benchmark

A number of observations can be made from these
performance results:

e There is a small but observable decrease in per-
formance in moving from a UP kernel to an SMP

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

kernel, even with the SMP kernel compiled to run
only on a single CPU. This is due to the increased
overhead of locked instructions required for SMP
operation; the degree to which this is significant
depends on the workload.

An “optimal™ performance figure in these results
is extrapolated by predicting linear improvement
from the single-processor case: i.¢., with the ad-
dition of each processor, we predict an improve-
ment in performance based on each new CPU ac-
complishing the amount of work performed in the
single processor case. This would require that the
hardware and OS support increased parallelism
without increased overhead, that the work per-
formed by the application be improved linearly
through added parallelism, and that the applica-
tion itself be implemented to use available par-
allelism effectively. As suggested by the graph.
speedups of less than | are quite common.

The graph also includes a predicted speedup
based on linear improvement at the rate measured
when going from a one-CPU to a two-CPU con-
figuration. In the graph. the move from two to
three processors accomplishes close to predicted:
however, when going from three to four proces-
sors, a marked decrease in performance occurs.
One possible source of reduced performance is
the saturation of resources shared by all proces-
sors, such as bus or memory resources. Another
possible source of reduced performance is in ap-
plication and operating system structure: that cer-
tain costs increase as the number of processors in-
creases, such as TLB invalidation IPIs and data
structure sizes, resulting in increased overhead as
CPUs are added.

This benchmark illustrates a number of important
principles, the most important of which is that multi-
processing is a complex tool that can hurt as much as it
helps. Improving performance through parallelism re-
quires awareness and proper utilization of parallielism
at all layers of the system and application stack, as well
as careful attention to the overheads of introducing par-
allelism.

2.1 What do we want from MP systems?

Multithreading and multiprocessing often requires sig-
nificant changes in programming model in order to be
used effectively. However, where these changes are ex-
posed is an important consideration: the SMP model
selected in earlier FreeBSD releases was selected on
the basis of minimal changes to the current kernel
model, and minimal complexity. Adopting new struc-
tures and programming approaches offers performance
benefits with greater software changes. The same de-
sign choice applies to the APIs exposed to user applica-

126

tions: in both earlier work on FreeBSD’s SMP imple-
mentation and the more recent SMPng work, the goal
has been to maintain standard UNIX APIs and services
for applications, rather than introducing entirely new
application programming models.

In particular, the design choice has been made to of-
fer a Single System Image (SSI). in which user pro-
cesses are offered services consistent with executing
on a single UNIX system. This design choice is of-
ten weakened in the creation of clustered computing
systems with slower interconnects. and requires sig-
nificant application adaptation. For the purposes of
the SMPng Project. the goal has been to minimize
the requirement for application modification while of-
fering improved performance. In FreeBSD 5.x and
later, multiprocessor parallelism is exposed to applica-
tions through the use of multiple processes or multiple
threads.

2.2 What is shared in an MP System?

The principle behind current multiprocessing systems
is that computations requiring large amounts of CPU
resources often have data dependencies that make per-
forming the computation with easy sharing between
parts of the computation cost effective. Typical alterna-
tives to multiprocessing in SMP systems include large
scale cluster systems, in which computations are per-
formed in parallel under the assumption that a com-
putation can be broken up into many relatively in-
dependent parts. As such, multiprocessor computers
are about providing facilities for the rapid sharing of
data between parts of a computation, and are typically
structured around shared memory and 1/O channels.

Shared Not Shared |
System memory | CPU (register context,
PCI buses TLB. on-CPU cache, ...)
I/O channels Local APIC timer

This model is complicated by several sources of
asymmetry. For example, recent Intel systems make
use of Hyper-Threading (HTT), in which logical cores
share a single physical core, including some compu-
tation resources and caches. Another source of asym-
metry has to do with CPUs having inconsistent perfor-
mance in accessing regions of system memory.

2.3 Symmetric Memory Access

The term “symmetric” in Symmetric Multiprocessing
(SMP) refers to the uniformity of performance for
memory access across CPUs. In SMP systems, all
CPUs are able to access all available memory with
roughly consistent performance. CPUs may maintain
local caches, but when servicing a cache miss, no piece
of memory is particularly favorable to access over any
other piece of memory. Whether or not memory access

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

is symmetric is primarily a property of memory bus ar-
chitecture: memory may be physically or topologically
closer to one CPU than another.

Environments in which uniform memory access is
not present are referred to as Non-Uniform Memory
Access (NUMA) architectures. NUMA architectures
become necessary as the number of processors in-
creases beyond the capacity that a simple memory bus,
such as a crossbar. can handle, or when the speed of
the memory bus becomes a point of significant perfor-
mance contention due to the increase in CPUs outstep-
ping the performance of the memory that drives them.
Strategies for making effective use of NUMA are nec-
essarily more refined, as making appropriate use of
memory topology is difficult.

Traditional two. four. and even eight processor Intel-
based hardware has been almost entirely SMP-based.
Until relatively recently, all low-end server and desk-
top systems were SMP. and NUMA was largely found
in high-end multiprocessing systems, such as super-
computers. However, with the introduction of the
AMD64 hardware platform, NUMA multiprocessor
systems are now available on the desktop and server.

2.4 Inter-Processor Communication

As suggested earlier, communication between proces-
sors in multiprocessing systems is often based on the
use of shared memory between those processors. For
threaded applications. this may mean memory shared
between threads executing on different CPUs; for other
applications, it may mean explicitly set up shared
memory regions or shared memory used to implement
message passing. Issues of memory architecture, and
in particular, memory consistency and cache behavior,
are key to both correctness and performance in multi-
processing systems. Significant variations exist in how
CPU and system architectures handle the ordering of
memory write-back and cache consistency.

Also important in multiprocessor systems is the
inter-process interrupt (IPI), which allows CPUs to
generate notifications to other CPUs, such as to notify
another CPU of the need to invalidate TLB entries for a
shared region, or to request termination, signalling, or
rescheduling of a thread executing on the remote CPU.

3 SMPng

Support for Symmetric Multi-Processing (SMP) has
been a compile-time option for the FreeBSD kernel
since FreeBSD 3.x. The pre-SMPng implementation
is based on a single Giant lock that protects the entire
kernel. This approach exposes parallelism to user ap-
plications, but does not require significant adaptation
of the kernel to the multiprocessor environment as the
kernel runs only on a single CPU at a time.

The Giant lock approach offers relative simplicity of
implementation, as it maintains (with minimal modifi-

127

cation) the synchronization model present in the uni-
processor kernel which is concerned largely with syn-
chronizing between the kernel and interrupts operat-
ing on the same CPU. This permits user applications to
exploit parallism to improve performance, but only in
circumstances where the benefits of application paral-
lelism outweight the costs of multiprocessor overhead.
such as cache and lock contention.

The FreeBSD SMPng Project, begun in June, 2000,
has been a long-running development project to mod-
ify the underlying kernel architecture to support in-
creased threading and substitute a series of more fine-
grained data locks for the single Giant lock. The goal
of this work is to improve the scalability of the ker-
nel on multiprocessor systems by reducing contention
on the Giant lock. resulting in improved performance
through kernel parallelism.

The first release of a kernel using the new kernel ar-
chitecture was FreeBSD 5.0 which offered the removal
of the Giant lock from a number of infrastructural
components of the kernel as well as some IPC prim-
itives. Successive FreeBSD 5.x releases removed Gi-
ant from additional parts of the kernel such as the net-
work stack, device drivers, and the majority of remain-
ing IPC primitives. The recently released FreeBSD 6.0
also removes Giant from the UFS file system and re-
fines the SMPng architecture resulting in significantly
improved performance.

SMPng was originally targetted solely at SMP
class systems, but with the increased relevance of
NUMA systems, investigation of less symmetric mem-
ory architectures has become more important for the
FreeBSD SMPng Project. Figures 2 and 3 illustrate
prototypical Quad Xeon (SMP) and Quad AMD64
(NUMA) hardware layouts relevant to the FreeBSD
SMPng Project. Figures 4 and 5 illustrate Graphical
Processing Unit (GPU) and cluster architectures not
considered as part of this work.

Figure 2: SMP Architecture: Quad-Processor Intel
Xeon

3.1 Giant Locked Kernels

Support for multiprocessing in operating systems is ei-
ther designed in from inception or retrofitted into an
existing non-multiprocessing kernel. In the case of

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Figure 3: NUMA Architecture: Quad-Processor

AMD64

Figure 4: GPU Architecture: External Graphics Pro-
cessor

most UNIX systems, multiprocessing support has been
an after-thought, although the degree of redesign and
reimplementation has varied significantly by product
and version. The level of change has varied from low
levels of change (using a Giant lock to maintain single-
CPU synchronization properties and hence single-CPU
kernel architecture), to complete reimplementation of
the operating system based on a Mach microkernel
and/or message passing.

The most straight forward approach to introducing
multiprocessing in a uniprocessor operating system
without performing a significant rewrite of the system
is the Giant lock kernel approach. This approach main-
tains the property that most kernel synchronization oc-
curs between the “top” and “bottom™ halves — i.e., be-
tween system call driven operation and device driver
interrupt handlers, and can be synchronized using crit-
ical sections or interrupt protection levels. In a Giant
lock kernel, a single spinlock is placed around the en-
tire kernel, in essence restoring the assumption that the
kernel will execute on a single processor.

The FreeBSD 3.x and 4.x kernel series make use of a
Giant spinlock which ensures mutual exclusion when-
ever the kernel is running. While the approach is sim-
ple, there are some important details: when a process
attempts to enter the kernel, even the process sched-
uler, it must acquire the Giant lock. This results in lock
contention when more than one processor tries to enter
the kernel at a time (a common occurence with kernel-
intensive workloads, such as network- or storage- cen-
tric loads common on FreeBSD). In the FreeBSD 4.x
kernel, interrupts are able to preempt running kernel
code. However, if an interrupt arrives on a CPU while
the kernel is running on another CPU, it must be for-

128

| P

interconnect Switch

Figure 5: Cluster Architecture: Non-Uniform Memory
via Complex Interconnect

warded to the CPU where the kernel is running using
an inter-processor interrupt (IPI).

3.2 Giant Contention

read() Sleep o Giant read() |
! onl/O completes - acquired returns |
cPU L L1 L 1
0
e~ CPUs spinning waiting
for Giant to be released
grrere————=""""""__ by the other CPU
CPU
1 1 1 B
Giant . socket()
socket()‘ acquired i returns

Running in user space |

idle

; - Executing in kerel
[l Wetting on Giant

Figure 6: Impact of the Contention of a Giant Lock on
Socket IPC

On systems with small numbers of CPUs, Giant
Lock kernel contention is primarily visible when the
workload includes large volumes of network traffic,
inter-process communication (IPC), and file system ac-
tivity. These are workloads in which the kernel must
perform a significant amount of computation, resulting
in increased delays and wasted CPU resources as other
CPUs wait to enter the kernel, not to mention a failure
to use available CPU resources to perform kernel work
in parallel. On systems with larger numbers of CPUs,
even relatively kernel non-intensive workloads can ex-
perience significant contention on the kernel lock, re-
sulting in rapidly reduced scalability as the number of
CPUs increases.

3.3 Finer Grained Locking

The primary goal of the SMPng Project has been to im-
prove kernel performance on SMP systems by replac-
ing the single Giant kernel lock with a series of smaller
locks, each with more limited scope. This allows the
kernel to usefully execute in parallel on multiple CPUs,
potentially allowing more effective use of available

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

: Sleep l 110 \ read() ! ; i
read() on /0 ‘ pompleteJ Lretums | - send0 .
0
Socket buffer mutex /
briefly in contention ~
. Mutex
; acquired
-l
CPU
1 ‘ T 1 [
: f | Wait
" socket() : socket() send() ; ml.:t:xn

returns

[Running in user space

idle

i - Executing in kernel

I Vveiting on mutex

Figure 7: Reduced Lock Contention with Finer
Grained Locking

CPUs by the kernel on multiprocessor systems. This
also has the added benefit of avoiding wasting CPU as
a result of Giant lock contention. This goal requires
that the “interrupt level” synchronization model be re-
placed with one oriented around parallelism, not just
preemption, resulting in a number of significant kernel
architecture changes. For example, as disabling inter-
rupts on a CPU will no longer prevent interrupt code
from executing at the same time as system call code,
interrupts must now make use of locks to synchronize
with the remainder of the kernel. This in turn leads to
a decision to execute interrupt handlers in full thread
contexts (interrupt threads or ithreads).
This strategy has a number of serious risks:

e The new synchronization approaches must be
more mature than the Giant lock approach, as in-
troducing additional locks increases the risk of
deadlocks. They must also address issues relat-
ing to concurrency and locking, such as priority
inversion.

e Kernel synchronization must take into increased
consideration the memory ordering properties of
the hardware, as it has become a true multi-
threaded program.

e Inter-processor synchronization typically relies
on atomic operations and locked bus operations,
which are expensive to perform: by adding addi-
tional locking requirements, overhead can add up
quickly.

e Race conditions previously visible in the kernel
only under high memory pressure are now far
more likely to occur.

On the other hand. the architectural goals also have
a number of significant benefits:

e In adopting synchronization primitives similar to
those exposed by user threading libraries, such as

129

mutexes and condition variables. developers fa-
miliar with process threading will be able to get
started quickly with the kernel synchronization
environment.

e By moving from a model with implicit synchro-
nization properties (automatic acquisition and
dropping of Giant) in 3.x/4.x to a model of ex-
plicit synchronization, the opportunity is provided
for introducing much stronger assertions.

e Adopting a more threaded architecture, such as
through the use of ithreads. increases the opportu-
nities for parallelism in the kernel, allowing ker-
nel computation to make better use of CPU re-
sources.

The new SMPng kernel architecture facilitates the
use of parallelism in the kernel, including the creation
of multiprocessor data pipelines. By adopting an iter-
ative approach to development, removing the depen-
dency for Giant gradually over time, the system was
left open to other development work continuing as the
SMP implementation was improved.

The next few sections document the general imple-
mentation strategy followed during the SMPng Project,
taking a “First make it work, then make it fast” strat-

egy:

3.4 SMP Primitives

The first step in the SMPng Project was to introduce
new locking primitives capable of handling more ma-
ture notions of synchronization, such as priority prop-
agation to avoid priority inversion, and advanced lock
monitoring and debugging facilities.

3.5 Scheduler Lock

Efforts to decompose the Giant lock typically begin
with breaking out the scheduler lock from Giant, so
that code executing without Giant will be able to make
use of synchronization primitive that interact with the
scheduler. The availability of scheduling facilities
is fundamental to the implementation of most ker-
nel services, as most kernel services rely on the the
tsleep () and wakeup () mechanisms to manage
long-running events.

Simultaneously, scheduler adaptations to improve
scheduling on multiprocessor systems can be consid-
ered: IPI's between CPUs to allow the scheduler to
communicate explicitly with the kernel running on
other processors, scheduler affinity, per-CPU scheduler
queues, etc. A variety of such techniques have been in-
troduced via modifications to the existing 4BSD sched-
uler, and in a new MP-oriented scheduler, ULE [13].

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

3.6 Interrupt Threads

Next, interrupt handlers are moved into ithreads, al-
lowing them to execute as normal kernel threads on
various CPUs and use of kernel synchronization facil-
ities. This has the added benefit that interrupt handlers
now gain access to many more kernel service APIs,
which previously often could not be invoked from in-
terrupt context.

3.7 Infratructure Dependencies

With basic services such as synchronization and
scheduling available without the Giant lock, additional
important dependencies are then locked down. Among
these are the kernel memory allocator and event timers.
This includes both the general memory allocator and
specific allocators such as the Mbuf allocator. In
FreeBSD 6.x, a single Universal Memory Allocator
(UMA) is used to allocate most system memory, rather
than using a separate memory allocator for the network
stack [12]. This allows the network stack to take ad-
vantage of the slab allocation and per-CPU cache fa-
cilities of UMA, make use of uniform memory statis-
tics, and interact with global notions of kernel memory
pressure.

3.8 Data-Based Locking

In most subsystems, data-based locking is used. com-
bining locks and reference counts to protect the in-
tegrity of major data structures. Generally, we have
started with coarser-grained locking to avoid introduc-
ing overhead without first determining that finer gran-
ularity helps with parallelism. Typically, the Virtual
Memory system will be an early target as there is al-
most constant interaction between processes and vir-
tual memory due to the need for multiprocessor op-
eration to invalidate TLBs across processors. In this
stage, locking will be applied based on data structures
in a relatively naive fashion, in order to provide a first
cut of Giant-free operation that can then be refined.

3.9 Slide Giant off Gradually

As Giant becomes unnecessary for subsystems or com-
ponents and all of their dependencies. remove the Gi-
ant lock from covering those paths. This has the effect
of reducing general contention on Giant, improving the
performance of components still under the Giant lock.

3.10 Synchronization Refinment

Drive refinement of locking based on lock contention
vs. lock overhead. Make use of facilities such as mutex
profiling and hardware performance counters.

When balancing overhead and contention, there are
a number of strategies that can be used. For exam-
ple, replicating data structures across CPUs can pre-

130

vent contention on locks, if the cost of maintaining
replication is lower than the overhead the contention
would cause. Statistics structures are a prime start-
ing point, as they are frequently modified, so reduc-
ing writing to the same memory lines will avoid cache
invalidations. Statistics can then be coalesced for pre-
sentation to the user: this approach is used for a variety
of memory allocator slatistics.

Likewise, synchronization with data structures ac-
cessed only from a specific CPU can often be per-
formed using critical sections, which see lower over-
head as they need only prevent preemption. not against
parallelism. Another example of this approach is used
in the UMA memory allocator: in 5.x. per-CPU caches
are protected with mutexes due to accesses to the
cache from other CPUs during certain operations. In
FreeBSD 6.x. per-CPU caches are protected using crit-
ical sections, avoiding cross-CPU synchronization for
per-CPU access.

Operating system literature documents a broad
range of strategies for inter-CPU synchronization and
data structure management, including lockless queues
and Read-Copy-Update (RCU). As hardware architec-
tures vary in both performance and semantics. opti-
mization approaches may be specific to hardware con-
figurations.

4 FreeBSD Network Stack

Having reviewed the FreeBSD SMPng kernel archi-
tecture, we will now explore how this architecture
is implemented in the FreeBSD network stack. The
FreeBSD network stack is one of the most complex
components of the BSD kernel, consisting of over
400,000 lines of code excluding distributed file sys-
tems and device drivers. also large subsystems.

The network stack includes a number of service
abstractions, such as network interfaces, communica-
tions sockets, event dispatch, remote procedure calls
(RPCs), a protocol-independent route table, and user
event models. Of particular importance is that data
flows rapidly and continuously across many layers
of abstraction and implementation, requiring careful
consideration of the interactions between components.
These software layers of abstraction often, but not al-
ways, map to layers in protocol construction.

4.1 Introduction to the Network Stack

The network stack contains many large and complex
components:

¢ “mbuf” memory allocator

e Network interface abstraction. including a num-
ber of queueing discplines

o Device drivers implementing network interfaces

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Protocol-independent routing and user event
model

Link layer protocols — Ethernet, FDDI. SLIP, PPP,
ATM, etc.

UNIX Do-
IPSEC, IPX,

Network layer protocols
main Sockets, [Pv4, IPv6.
EtherTalk/AppleTalk. etc.

e Socket and socket buffer IPC primitives

e Netgraph extension framework

e Many netgraph nodes implementing a broad

range of services

System call —

and socket

TcP
e

Link Layer,

Device Driver
Figure 8: FreeBSD Network Stack: Common
Datafiow

4.2 Network Stack Concerns

Introducing parallelism and preemption introduces a
number of additional concerns:

Per-packet costs: network stacks may process
millions of packets per second — small costs add
up quickly if per-packet.

Ordering: packet ordering must be maintained
with respect to flow, as protocols such as TCP are
very sensitive to minor misordering.

Optimizations may conflict: optimizing for la-
tency may damage throughput, or optimizing for
local data transfer may damage routing perfor-
mance.

When using locking, ordering is important — lock
order prevents deadlock, but passage through lay-
ers in the network stack is often bi-directional.

Some amount of parallelism is available by virtue
of the current network stack architecture — intro-
ducing new parallelism is necessary in order to
improve utilization of MP resources, but depends

131

on introducing additional threads, which can in-
crease overhead.

These concerns are discussed in detail as the locking
strategy is described.

4.3 Locking Strategy

The SMPng locking strategy for the network stack
generally revolves around data-based locking. Using
this strategy involves identifying objects and assigning
locks to them; the granularity of locking is important as
each lock operation introduces overhead. Useful rules
of thumb include:

e Don't use finer-grained locking than is required
by the UNIX API: for example, parallel send and
receive on the same socket has benefit, but paral-
lel send on a stream socket has poorly defined se-
mantics, so not permitting parallelism can avoid
unnecessarily complexity.

Lock references to in-flight packets. not packets
themselves. For example, lock queues of packets
used to hand off between threads. but use only
simple pointe references within a thread.

Use optimistic concurrency techniques to avoid
additional lock overhead — i.e.. where it is safe,
test a value that can be read atomically without a
lock, then only acquire the lock if work is required
that may have stronger consistency requirements.

Avoid operations that may sleep. which can result
in multiple acquires of mutexes, as well as un-
winding of locks. In general, the network stack is
able to tolerate failures through packet loss under
low memory situations, so take advantage of this
property to lower overhead.

Also important is consideration of layering: as ob-
jects may be represented at different layers in the stack
by different data structures, decisions must be made
both with respect to whether layers share locks, and if
they don’t share locks, what order locks may be ac-
quired in. Control flow moves both “up” and “down”
the stack, as packets are processed in both input and
output paths, meaning that if locks are simply acquired
as processing occurs, lock order cycles will be in-
trouced as processing occurs in two directions.

The following general strategies have been adopted
in the first pass implementation of fine-grained locking
for the network stack:

e Low level facilities, such as network memory al-
location, route event notification, packet queues,
and dispatch queues, generally have leaf locks so
that they can be called from any level of the stack
including device drivers.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e Protocol locks generally fall before device driver
locks in the lock order, so that device drivers may
be invoked without releasing stack locks.

e Protocol locks generally fall before socket locks
in the lock order, so that protocols can interact
with sockets without releasing protocol locks.

Just as asynchronous packet dispatch to the netisr in
earlier BSD network stacks allows avoiding of layer re-
cursion and reentrance, it can also be used to avoid lock
order issues with an MPSAFE network stack. This
technique is used, for example, to avoid recursing into
socket buffer code when a routing event notification
occurs as the result of a socket event, and prevents
deadlock by eliminating the “hold and wait™ part of
the deadlock recipe. The netisr will processed queued
routing socket events asynchonously, delivering them
to waiting sockets.

4.4 Global Locks

Global locks are used in two circumstances: where
global data structures are referenced, or where data
structures are accessed sufficiently infrequently that
coalescing locks does not increase contention. The fol-
lowing global locks are a sampling of those added to
the network stack to protect global data structures:

132

Lock Description

ifnet_lock Global network interface
list

bpf.mtx Global BPF descriptor list

bridge_list_mtx

Global bridge configuration

if _cloners_mtx

Cloning network interface
data

disc_mtx, faith_mtx
gif_mtx. gre_mtx,
lo_mtx
ppp-softc_list_mtx
stf_mtx. tapmtx.
tun_mtx. ifv_mitx

Synthetic interface lists

pfil_global_lock

Packet filter registration

rawcb_mtx.
ddp_list_mtx,
igmp_mtx, tcbinfo_mtx.
udbinfo_mtx
ipxpeb_list_mtx
natm_mtx, rtsock_mtx

Per-protocol control block
lists

hch_mtx TCP host cache

ipqlock, ip6glock IPv4 and IPv6 fragment
queues

aarptab_mtx. nd6_mtx Link layer address
resolution

in_multi_mtx

IPv4 multicast address
lists

mfc_mtx, vif_mt
mrouter_mtx

IPv4 multicast routing

sptree_lock. sahtree_lock
regtree_lock, acq-lock
spacq-lock

[PSEC

The following is a sampling of locks have been
added to data structures allocated dynamically in the

network stack:

Structure | Field Description

ifnet if_addr_mtx Interface address lists
if_afdata.mtx | Network protocol data
if_snd.ifq-mtx | Interface send queue

bpf_d bd_mtx BPF descriptor

bpf_if bif_mtx BPF interface attachment

ifaddr ifa_mtx Interface address
sorcv.sb.mtx | Socket, socket receive

buffer

socket so_snd.sb_mtx | Socket send buffer

ng_queue | q-mtx Netgraph node queue

ddpcb ddp_mtx netatalk PCB

inpcb inp_mtx netinet PCB

ipxpcb ipxXp-mtx netipx PCB

4.5 Network Stack Parallelism

Parallelism in the FreeBSD kernel is expressed in
terms of threads, as they represent both execution and
scheduling contexts. In order for one task to occur

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

in parallel with another task, it must be performed
in a different thread from that task. In order for the
FreeBSD kernel to make effective use of multiprocess-
ing, work must therefore occur in multiple threads.

A fair amount of parallelism in the network stack is
simply from conversion of the existing BSD network
stack model to the SMPng architecture:

¢ Each user thread has an assigned kernel thread for
the duration of a system call or fault, which per-
forms work directly associated with the system
call or fault. In the transmit direction, the user
thread is responsible for executing socket, proto-
col, and interface portions of the transmit code,
which includes the cost of copying data in and
out of user space. In the receive direction, the
user thread is responsible for primarily for exe-
cuting the socket code. along with copying data in
and out of user space; under some circumstances,
calls into the protocol and interface layers may
also occur.

Each interrupt request (IRQ) is assigned its own
ithread, which is used to execute the handlers of
interrupt sources signaled by that interrupt. As
long as devices are assigned different interrupts,
their handlers can execute in parallel. By default,
this will include execution of the link layer inter-
face code, but a dispatch to the netisr thread for
higher stack layers.

A number of kernel tasks are performed by shared
or assigned worker threads, such as callouts and
timers running from a shared callout thread, sev-
eral task queue processing threads for various
subsystems. and the netisr thread in the network
stack, which is primarily responsible for the pro-
tocol layer processing of in-bound packets.

While multithreading is required in order to experi-
ence parallelism, multithreading also comes with sig-
nificant costs. including:

e Cost of context switching, which may include the
cost of cache flushes when a thread migrates from
one CPU to another and the cost of entering the
scheduler.

e Cost of synchronizing access to data between
threads: typically, a locked or otherwise synchro-
nized data structure or work queue.

Figure 9 illustrates the UDP send path. and possible
parallelism between the user thread sending down the
stack layers. and ithread receiving acknowledgements
from the network stack in order to recycle packet mem-
ory.

Figure 10 illustrates the UDP receive path, and pos-
sible parallelism between the user thread interacting
with the socket layer. netisr processing the IP and UDP
layers, and the ithread receiving packets from the net-
work interface and processing the link layer.

133

sosend() udp_output()i

send() |
1 send() ‘ returns |
| |
netblast >
R A
ip_output() iem_start()
em0
ithread - - !
em_intr() em_intr() |
preempts returns

-em_clean_transmit_intr().

Figure 9: Parallelism in the UDP send path

netreceive
sorecelve()v wakesup
netreceive . [recv()
recv() blocks ‘udp_mput() ‘ ! returns
netreceive
! |
‘ schednetisr() } swi_net() |
J
netisr { >
| em_intr() . * sbappend():
| preempts : ip_input() sowakeup()'
~ em0 o
ithread em_intr()
retums
idle 3 -

I
\em_process_recelve_interrupts() ether_input()

Figure 10: Parallelism in the UDP receive path

5 MP Programming Challenges

Multiprocessing is intended to improve performance
by introducing greater CPU resources. However, un-
like a number of other hardware-based performance
improvements, such as increasing clock speed or cache
size, multiprocessor programming requires fundamen-
tal changes in programming model. In this section, we
consider two important concerns in multiprocessing
and multithreading programming and their relationship
to the network stack: deadlock, and event serialization.

5.1 Deadlock

Deadlock is a principal concern of systems with syn-
chronous waiting for ownership of locks on objects.
Deadlocks occur when two or more simultaneous
threads of execution (typically kernel threads) meet the
following four conditions:

e Attempt to simultaneously access more than one
resource which can be owned, but not shared (mu-
tual exclusion).

o Hold and wait: threads acquire and hold resources
in an order.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e No preemption: once acquired, a resource cannot
be preempted without agreement of the thread.

e Circular wait: threads acquire and attempt to ac-
quire resources such that a cycle is formed. result-
ing in indefinite wait.

The above description is intentionally phrased in
terms of resources rather than locks, as deadlock can
occur in more general circumstances. For example,
low memory deadlock is another type of widely ex-
perienced deadlock.

Deadlock as thread
1 blocks trying to
acquire lock B

Thead 1 acquires fock A

Thread 1

Deadiock

Thead 2 blocks
trying to acquire
lock A

Thread 2

4

Thead 2 acqures lock B

Thread running

Thread blocked waiting on lock
Lock held while holder runs
Lock held while holder blocks

Figure 11: Deadlock: The Deadly Embrace

There is extensive research literature on deadlock
avoidance, detection, and management; however, one
of the most straight forward and easiest ways to avoid
deadlock is simply to follow a strict lock order. Lock
orders indicate that, whenever any two locks can be ac-
quired as the same time. they will always be acquired
in the same order. This breaks lock order cycles, and
thus prevents deadlock, and is a widely used technique.

In order to assist in documenting lock orders and
prevent cycles, BSDI created WITNESS, a run-time
lock order verifier, which was refined by the FreeBSD
Project to support additional lock types and assertion
types. WITNESS can be used as both a tool to doc-
ument a specification for lock interaction through a
hard-coded lock order list, and to dynamically dis-
cover lock order relationships through run-time mon-
itoring. WITNESS maintains a graph of lock acqui-
sition orders, and provides run-time warnings (along
with stack traces and other debugging information),
when declared or discovered lock orders are directly
or indirectly violated.

WITNESS and other lock-related invariants also de-
tect and report a variety of other lock usage, such as
acquiring sleepable locks while holding mutexes or in
critical sections, or kernel threads returning to user
space while holding locks.

FreeBSD also makes use of other deadlock avoid-
ance techniques, including the use of optimistic con-
currency techniques in which attempts are made to ac-
quire locks in the wrong order, and then if this would

134

WITNESS will
warn about
lock cycle

Figure 12: Lock order verification with WITNESS:
Cycles in the lock graph are detected and reported us-
ing graph algorithms.

result in a deadlock. failing back on the defined or-
der. Another technique used in the kernel is the use of
guard locks, acquired before acquiring locks on multi-
ple objects with no defined lock order between them.
By serializing attempts at simultaneous acquire behind
a lock, the lock order of the objects becomes defined
only when they are acquired at once. and no conflict-
ing lock order can be simultenously defined, prevent-
ing deadlock.

5.2 Event Serialization

In a singlethreaded programming environment, the or-
der of events is largely a property of programmed or-
der, so maintaining the order associated with a data
structure or the processing of data is essentially a prob-
lem of ordering of the program. In a multithreaded
programming environment, concurrency in code exe-
cution means that parallel threads of execution may ex-
ecute at different rates, and that any ordering of events
must occur as a result of planning. If events must oc-
cur in a specific order, programmers must either exe-
cute them in a single thread (which serialized events
into programmed order). or synchronization primitives
and communication primitives must be used so that or-
dering is either maintained during computation, or re-
stored during post-processing after the computation.
This is particularly relevant to the implementation
of the network stack, in which discrete units of work,
typically represented by packets, are processed in a
number of threads. The order of packets can have a
significant impact on performance, and so maintaining
necessary orders is critically important. For example,
out-of-order delivery of TCP packets can result in TCP
perceiving packet loss, resulting in a fast (and unneces-
sary) retransmit of data. Packet ordering must typically
be maintained with respect to its flow, where the gran-
ularity of the flow might include a stream of packets
sourced from a particular network interface, packets
between two hosts, or packets in a particular connec-

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

tion.

In the single-threaded FreeBSD 4.x receive path,
ordering is maintained throughout through the use of
last-in, first out (LIFO) queues between threads, ef-
fectively serializing processing. A single netisr thread
processes all inbound packets from the link layer to the
network layer. Naively introducing multithreading into
a network stack without careful consideration of order-
ing might be performed by simply introducing addi-
tional in-bound packet worker threads (netisrs). Figure
13 illustrates that this might result in misordering of
packets in a simple packet forwarding scenario: two
packets might be dispatched in one order to different
worker threads, and then be forwarded in reversed or-
der due to scheduling of the worker threads.

In FreeBSD 6.x. two modes of operation are docu-
mented for packet processing dispatch: queued serial-
ized dispatch with a single netisr thread, or direct dis-
patch of packet processing from the calling context. In
direct dispatch mode, context switches are reduced by
performing additional packet processing in the origi-
nating thread for a packet, rather than passing all pack-
ets to a single worker thread — for example. in the inter-
rupt thread for a network interface driver. This imple-
ments a weaker ordering by not committing to an or-
dered queue, but maintains sufficient ordering. Weak-
ened packet ordering improves the opportunities for
parallelism by permitting more concurrency in packet
processing. and is an active area of on-going work in
the SMPng Project. One downside to direct dispatch
in the ithread is reduced opportunity for parallelism. as
in-bound processing is now split between two threads:
the ithread and the receiving user thread, but not the
netisr.

| Lk L Netisr |
em0 1 |aver T dispatch
- Link | L
Netisr: IP 4 Layer em1
Single-thread model
S S
VP T |
F Netisr: IP Layer | i em1
 Netisr
dispatch \
Yo o | Unk] .
Netisr: {P Layer | | em1

Naive Multi-Thread Model

Figure 13: Singlethreaded and naive multithreaded
packet processing, in which sufficient ordering is no
longer maintained

6 Status of the SMPng Network Stack

As of FreeBSD 6.0, the vast majority of network stack
code is run without the Giant lock in the default config-

135

uration. This includes most link layer network device
drivers and services, such as gigabit ethernet drivers
and ethernet bridging, ARP, the routing table, [Pv4 in-
put, filtering, and forwarding, FAST_IPSEC. IP mul-
ticast, protocol code such as TCP and UDP. and the
socket layer. In addition, many non-IP protocols. such
as AppleTalk and IPX are also MPSAFE.

Some areas of the network stack continue to require
Giant. and can generally be put in two categories:

e Code that requires Giant for correctness (perhaps
due to interacting with another part of the kernel
that requires Giant). but can be executed with Gi-
ant but an otherwise Giant-free network stack.

Code that requires Giant for correctness, but due
to lock orders and construction of the network
stack, requires holding Giant over the entire net-
work stack when used.

In the former category lie the KAME IPSEC im-
plementation and ISDN implementation. Giant is re-
quired over the entire stack because these code paths
can be entered in a variety of situations where other
locks (such as socket locks) can already be held. pre-
venting Giant from being acquired when it is discov-
ered the non-MPSAFE code will be entered. Instead,
Giant must be acquired in advance unconditionally.

Other areas of the system also continue to require
the Giant lock, such as a number of legacy ISA
network device drivers and portions of the in-bound
[Pv6 stack. In both cases. Giant will be condition-
ally acquired in an asynchronous execution context
before invoking the non-MPSAFE code. A number
of consumers of the network stack also remain non-
MPSAFE, such as the Netware and SMB/CIFS file
systems. With the FreeBSD 6.0 VFS now able to
support MPSAFE file systems, locking down of these
file systems and removal of Giant is now possible; in
the mean time, they execute primarily in VFS con-
sumer threads that will already have acquired Giant,
and not synchronously from network stack threads that
run without Giant, permitting the network stack to op-
erate without Giant.

Components operating with Giant for compatibility
continue to see higher lock contention and latency due
to asynchronous execution. It is hoped that remaining
network stack device drivers and protocols requiring
Giant will be made MPSAFE during the 6.x branch
lifetime.

7 Related Work

Research and development of multiprocessor systems
has been active for over forty years, and has been per-
formed by hundreds of vendors for thousands of prod-
ucts. As such, this section primarily points the reader
at a few particularly useful books and sources relevant

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

to the SMP work on FreeBSD, rather than attempting
to capture the scope of prior work in this area.

Curt Schimmel provides a detailed description of
multiprocessor synchronization techniques and the ap-
plication in UNIX system design in UNIX Systems for
Modern Architectures, including detailed discussion of
design trade-offs [14].

Uresh Vahalia provides general discussion of ad-
vanced operating system kernel architectures across a
number of UNIX systems in UNIX Internals [15].

The FreeBSD SMPng architecture has been signif-
icantly impacted by the design and implementation
strategies of the Solaris operating system, discussed
in Solaris Internals by Jim Mauro and Richard Mc-
Dougall [9].

The Design and Implementation of 4.4BSD by Kirk
McKusick, et al, describes earlier BSD kernel archi-
tecture. and particularly synchronization. in great de-
tail. and makes a useful comparison with The De-
sign and Implementation of the FreeBSD Operating
Svstems, which describes the FreeBSD 5.x architec-
ture [10] [11].

A good general source of information on multipro-
cessing and multithreading programming techniques,
both for userspace and kernel design. are the design
and implementation papers relating to the Mach oper-
ating system project at Carnegie Mellon [3].

8 Future Work

Remaining work on the SMPng network stack falls pri-
marily into the following areas:

Complete removal of Giant requirement from all
remaining network stack code (device drivers,
IPv6 in-bound path, KAME IPSEC).

Continue to explore improving performance and
reducing overhead through refining data struc-
tures, lock strategy, and lock granularity, as well
as further exploring synchronization models.

Continue to explore improving performance
through analyzing cache footprint, inter-
processor cache interactions, and so on.

Continue to explore how to further introduce use-
ful parallelism into network processing, such as
additional parallel execution opportunities in the
transmit path and in network interface polling.

Continue to explore how to reduce latency in pro-
cessing through reducing queued dispatch, such
as via network interface direct dispatch of of the
protocol stack.

It is expected that the results of this further work will
appear in future FreeBSD 6.x and 7.x releases.

136

9 Acknowledgments

The SMPng Project has been running for five years
now, and has had literally hundreds of contributors.
whose contributions to this work have been invaluable.
As a result, not all contributors can be acknowledged
in the space available, and the list is limited to a subset
who have worked actively on the network stack parts
of the project.

The author greatfully acknowledges the contribu-
tions of BSDI. who contributed prototype reference
source code for parts of a finer-grained implemen-
tation of the BSD kernel. and specifically, network
stack. as well as their early development support for
the SMPng Project as a whole. The author also wishes
to recognize the significant design, source code de-
velopment, and testing contributions of the following
people without whom the Netperf project would not
have been possible: John Baldwin, Antoine Brodin,
Jake Burkholder, Brooks Davis, Pawel Dawidek. Ju-
lian Elischer, Don Lewis, Brian Feldman, Andrew Gal-
latin, John-Mark Gurney, Paul Holes, Peter Holm. Jef-
frey Hsu, Roman Kurakin, Max Laier. Nate Lawson.
Sam Leffler, Jonathan Lemon. Don Lewis, Scott Long,
Warner Losh, Rick Macklem. Ed Maste. Bosko Mile-
kic, George Neville-Neil, Andre Oppermann, Alfred
Perlstein, Luigi Rizzo, Jeff Roberson, Mike Silber-
back, Bruce Simpson, Gleb Smirnoff, Mohan Srini-
vasan, Mike Tancsa, David Xu, Jennifer Yang, and
Bjoern Zeeb.

Financial support for portions of the Netperf Project
and test hardware was provided by the FreeBSD foun-
dation. The Netperf Cluster, a remotely managed clus-
ter of multiprocessor test systems for use in the Netperf
project, has been organized and managed by Sentex
Communications, with hardware contributions from
FreeBSD Systems, Sentex Communications, IronPort
Systems, and George Neville-Neil. Substantial addi-
tional testing facilities and assistance have been pro-
vided by the Internet Systems Consortium (ISC), Sand-
vine, Inc., and Yahoo!, Inc. The author particularly
wishes to acknowledge Kris Kennaway for his ex-
tended hours spent in testing and debugging SMPng
and Netperf Project work as part of the FreeBSD pack-
age building cluster.

10 Conclusion

The FreeBSD SMPng Project has now been running
for five years, and has transformed the architecture of
the FreeBSD kernel. The resulting architecture makes
extensive use of threading, fine-grained and explicit
synchronization, and offers a foundation for a broad
range of future work in exploiting new hardware plat-
forms, such as NUMA. The FreeBSD SMPng network
stack permits the parallel execution of the network
stack on multiple processors. as well as a fully pre-
emptive network stack. In this paper, we’ve presented

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

background on MP architectures, an introduction to the
SMPng Project and recent work on SMP in FreeBSD,
and the design principles and challenges in adapting
the network stack to this architecture.

11 Availability

The results of the SMPng Project began appearing in
FreeBSD releases beginning with FreeBSD 5.0. The
FreeBSD 6.x branch reflects further completion of
SMPng tasks, and significant refinement of the work
in FreeBSD 5.x. General information on the FreeBSD
operating system. as well as releases of FreeBSD may
be found on the FreeBSD web page:

http://www.FreeBSD.org/
Further information about SMPng may be found at:
http://www.FreeBSD.org/smp/
The Netperf project web page may be found at:
http://www.FreeBSD.org/projects/netperf/

References
[1

BALDWIN, J. Locking in the Multithreaded FreeBSD Kernel.
In Proceedings of BSDCon'02 (February 2002). USENIX.

2] BOURKE. T. Super smack.
http://vegan.net/tony/supersmack/.

[3] CARNEGIE MELLON UNIVERSITY. The Mach Project Home
Page.

http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

{4] FREEBSD PROJECT. FreeBSD home page.
http://www.FreeBSD.org/.

[51 FREEBSD PROJECT. FreeBSD Netperf Project.
http://www.FreeBSD .org/project/netperf/.

[6] FREEBSD PROJECT. FreeBSD SMP Project.
http://www.freebsd.org/smp/.

[7]1 Hst.J. Reasoning about SMP in FreeBSD. In Proceedings of
BSDCon'03 (September 2003), USENIX.

[8] LEHEY. G. Improving the FreeBSD SMP Implementation. In
Proceedings of FREENIX Track: 2001 USENIX Annual Tech-
nical Conference (June 2001), USENIX.

[9] MAURO. J.. AND MCDOUGALIL, R. Solaris Internals: Core
Kernel Architecture. 2001.

[10] McKusICK, M.. BosTiC, K., KARELS, M.. AND QUAR-
TERMAN, J. The Design and Implementation of the 4.4BSD
Operating System, 1996.

{11] MCKUSICK, M.. AND NEVILLE-NEIL, G. The Design and
Implementation of the FreeBSD Operating System, 2005.

[12] MILEKIC, B. Network Buffer Allocation in the FreeBSD
Operating System.

http://www.bsdcan.org/2004/papers/Network BufferAllocation. pdf.

[13] ROBERSON, J. ULE: A Modern Scheduler for FreeBSD. In
Proceedings of BSDCon'03 (September 2003), USENIX.

[14] SCHIMMEL. C. UNIX Systems for Modern Architectures,
1994.

[15] VAHALIA, U. UNIX Internals: The New Frontiers, 1996.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Failover Mechanisms
for Filtering Bridges on the BSD's

An overview of the technologies available to make your
bridged network fault-tolerant

Massimiliano Stucchi, WillyStudios.com

(stucchi@willystudios.com)

INTRODUCTION

There seems to be much appreciation of bridges when a network topology is
already set, since they offer an easy way of integrating a a firewalling or traffic
shaping device without compromising what's already in place. We all know
that a rule of thumb of the network- or sysadmin is not to touch something
that works, so bridges help us in this case.

In this simple work of replicating packets across interfaces, bridges can
represent a weak point of failure we put in our topology, and can easily lead
to outages, isolating entire network segments in a matter of seconds.

So, what can be done to avoid this in environments where high availability is
needed?

INITIAL PROBLEMS

| started thinking about this some time ago, but found no way, so | avoided
bridges until | could get a grasp on the issue. Bringing up the topic at a
dinner with Luigi Rizzo and Gianmarco Giovannelli also lead to nothing.
Rizzo mentioned the Spanning Tree Protocol as a means of achieving this,
but he also reported he had a thesis proposal for its implementation in the
FreeBSD TCP/IP stack, so it was far away from the real possibility of having
it, and the necessary mix of time and knowledge to do so was not there.
There were also rumors about a quad-ethernet card which turned itself into a
hub when losing power from the CPU, thus losing filtering or traffic shaping
capabilities, but preserving network functionalities in case of a hardware
failure, but searches on google and to hardware wharehouses didn't expose
any product. It seemed as there was no applicable solution to redundancy in
the bridging world, excluding complicated solutions which involved BGP and
multihoming, which are not affordable for the SMB our services aim at.

139

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

THE ACTUAL SITUATION

A few months ago, when having to start a new big project which involved
focusing on network communication and security for a large installation, |
went back to see if the situation had changed in the meantime, since using
bridges was an appealing way of achieving exactly what we needed.

CASE STUDY

The project was about setting up a VolP infrastructure for a mid-sized
telecom company who wanted to get into the internet telephony market, and
approached us with the request of implementing an extension to their
network, with the idea of switching completely to VolIP in less than a year.
Given the budget restrictions, the challenge was made bigger by the fact that
we had to use the same infrastructure the telco already had in place for their
hosting, housing and colocation services. This involved having to deal with
bandwidth usage issues, and finding a way to deal with realtime
communications required by VolP services, tied with the applications already
in place.

The idea was to use FreeBSD to host the VolP services, while we we went
out to see what operating system, always from the BSD family, could be
adopted for firewalling and filtering purposes.

WHAT IS AVAILABLE

The BSD's, deriving from the same codebase, share large pieces of code, old
and new, and software written for one of the variants is often ported to the
others in a matter of days. This was the case for PF, the OpenBSD Packet
Filter, CARP, if_bridge and many others which are now spawned in every
project. There are, however, cases where particular features are hard to port
from one flavour to the other, and this is why we had to carefully look at the
alternatives offered by the market before choosing the solution to implement.

CARP

CARP Stands for Common Address Redundancy Protocol. As described in
its manpage, CARP allows multiple hosts on the same local network to share
a set of IP addresses. This means you can have a cluster of machines doing
transparent failover using a single IP address, and managing states of the
hosts inside the cluster.

CARRP is able to do failover and load balancing at the same time, and can be
configured to handle situations with a master machine along with some
slaves. When the master machine goes down, one of the slaves takes its
place and starts answering requests. Working between OSl levels 2 and 3,
CARRP creates a “group” of hosts which share the same MAC address, thus
giving the chance to have more redundant IP's on the same cluster, and
being at the same time able to address both IPv4 and IPv6.

Like in other failover management software, the master machine in the cluster

140

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

sends out periodic announcements to other machines, using the CARP
protocol (IP protocol 112) and multicast. If the backup machines do not hear
these announcements, they promote themeselves — currently, only one at a
time — to be master. The time that it takes for the backup machines to react
to missing announcements, and the priority in which machines have to be
promoted, are highly configurable. Communications between machines in the
cluster are all encrypted using SHA-1 HMAC, and every host has to know a
password to enter the cluster, so CARP is to be considered generally safe to
use.

Load balancing, a feature that can be combined with failover, is achieved by
means of a configuration keyword to issue at the time of creation of the
interface. However, load is not distributed equally accross machines, nor it is
done using round-robin assignment, but a hash of the originating ip address is
used to determine which host is going to take care fo the communication.

But CARP, in its vanilla incarnation, is not able to handle bridged
configuration, having the need for the interface it is enabled on to already
have an IP address. For this purpose, the carpdev keyword was introduced
by Ryan McBride — one of the original authors of CARP - by the end of 2004.

CARPDEV

The carpdev keyword, as stated before, allows for the use of CARP over
interfaces without an IP address, as it is common in bridged configurations.
While it was introduced some time ago in the OpenBSD tree, this feature is
still not present on FreeBSD, nor it seems to be on NetBSD.

| have set up a test environment to look over the possibility of porting the
feature to FreeBSD, but time constraints and lack of knowledge are making
this task require more time than expected. However, OpenBSD with this
feature enabled behaves really well in bridged environments, and constitutes
a good choice.

PFSYNC

PFSync is to be considered an add-on for CARP environments, since its goal
is to provide a means to synchronize connection states between machines in
a failover cluster. It is very useful in accordance to the aforementioned
protocol, in order to achieve high levels of redundancy and at the same time
giving administrators the certainty that connections will not be dropped in
case a machine goes down. PFSync exchanges connection states data
between machines in the cluster, and if one of them becomes unreachable,
the others can take care of the connections it was handling, without a glitch in
the mechanism.

IF_BRIDGE

The bridge interface was originally written by Jason Wright, as an
undergraduate independent project at the University of Carolina at
Greensboro. It was then imported into NetBSD by Wasabi Systems, where it
was renamed if_bridge, and it was recently ported to FreeBSD from thie latter
work. It is mainly an interface which provides bridging capabilities along with

141

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

some more features than the ones provided from older implementations,
especially the bridge facility in FreeBSD, which lacked support for adding
filtering mechanisms, and it needed too much tweaking in order to be able to
do so. if _bridge allowed FreeBSD to do filtering using PF in bridged
environments. At the same time, if_bridge added a failover functionality to the
field, giving the chance to use spanning tree on bridged interfaces.

THE SPANNING TREE PROTOCOL

The Spanning Tree Protocol is often used on network equipment to enable
link redundancy and failover. It generally works by using a mix of greedy
algorithms to learn about the surrounding network, interpreting the data
through a shortest path algorithm, and determining possible loops in the
network topology. If a link goes down, it is also able to adjust itself and adapt
to the new environment transparently.

The empirical difference between Spanning Tree and CARP resides mainly in
the time needed for the failover mechanism to come into play and adjust the
configuration. While with CARP it can take up to 12 seconds, STP has an
average of 25 to 30 seconds to adapt. STP can give you better results by
tweaking the source in if_bridge.c, but there is no configuration variable that
can be modified without recompiling to influence this behaviour.

TRUNK

The trunk interface was recently added to the OpenBSD tree. Its main goal is
to enable the creation of a virtual interface out of multiple links on multiple
network interfaces, thus giving the chance to load balance traffic on multiple
interfaces.

While not designed with failover features in mind, the trunk interface can
provide some sort of failover mechanisms using the failover option. While
this can be effective in case of network problems on a switch port or on an
interface card, it doesn't add any failover capability to a normal bridged
environment, where a hardware fault compromises the topology.

NETGRAPH

A word of mention can also go to the Netgraph framework. Netgraph
modules can easily be created out of this framework, and can do nearly
anything. In the base FreeBSD tree — to which netgraph is specific — we can
find modules that range from bridging (ng_bridge), to vlan management
(ng_vlan), to port trunking (ng_one2many), similar to the trunk interface.
Although not widely known, netgraph modules can be an easy and effective
way to implement network features that are missing or that are needed in
particular environments.

142

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

OUR CHOICES

After some tests with different implementations, we summed everything, and
came to the conclusion that CARP and carpdev on OpenBSD was the
solution we needed. However, after some discussions, we all agreed that
keeping an homogeneous network would have been better, since all the
machines already in place had FreeBSD on them, and we also maintain a
local patchset for some ports and some meta-ports with the purpose of
installing config files and copying data accross machines.

We finally decided to pursue the FreeBSD way, and to try to develop in.house
support for what we needed. The actual implementation relies on if_bridge
and STP on EPIA DP10000 boxes for our firewalling needs, and since we
haven't had any problem since the day we set them up, we are not putting
much effort in bringing the new feature in FreeBSD. We are, however,
working on that.

143

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

144

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

DVCS or a new way to use Version Control Systems for
FreeBSD

Ollivier ROBERT
<roberto@FreeBSD.org>

25th October 2005

Abstract

FreeBSD, like many open source projects, uses CVS as its main version control system (VCS),
which is an extended history of all modifications made since the beginning of the project in 1993.
CVS is a cornerstone of FreeBSD in two ways: not only does it record the history of the project,
but it is a fundamental tool for coordinating the development of the FreeBSD operating system.

CVS is built around the concept of centralised repository, which has a number of limitations.

Recently, a new type of VCS has arisen: Distributed VCS, one of the first being BK from Bit-
Mover, Inc. Better known from the controversy it generated when Linus Torvalds started using it,
it has nonetheless changed the way some people develop software.

This paper explores the area of distributed VCS. We analyse two of them (Arch in its Bazaar[1]
incarnation and Mercurial[2] and try to show how such a tool could help further FreeBSD devel-

opment, both as a tool and as a new development process.

1 Introduction

FreeBSD[3] has been using CVS as its main ver-
sion control system (VCS) tool for as long as it ex-
ists and has now more than 10 years of history. A
few years ago, limitations inherent in CVS design
became too much to workaround and the project
begun using Perforce[4] for projects that needed
to change fast without “polluting” the main tree.

It works well but using two VCS instead of one
is making merges harder than it needs to be and
CVS limitations have become too much even for
the main tree itself. The separation of the reposi-
tory into 4 different ones helped but it is still com-
plicated.

After a bit of history, we will explore how we
could solve this problem.

145

2 A brief history of VCS

2.1 Ancestors

At the beginning, the main tools used to manage
different versions of software were pretty prim-
itive but it was enough for most people during
early stages of development and large pieces of
software were developed using SCCS or later,
RCS.

Both SCCS & RCS uses the same basic princi-
ples to handle changes with a special directory
in the working area, storing the files and the dif-
ferents revisions in a special format with a fun-
damental difference between the two: SCCS uses
a special format called "weave" (see [5]) whereas
RCS stores separate deltas: always storing the lat-
est revision and storing differences down to the
first one.

RCS assumes you will want a fast access to re-
visions close to what we will call the HEAD, the
latest checked-in revision in the main line of de-

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

velopment, the main inconvenience being that as
you add branches and tags, the backend storage
file gets more complicated and the system will
gradually slow down.

AT&T and CSRG at Berkeley both used SCCS
to manage whole versions of UNIX”™ and one
can find in many files the marker for SCCS!.
The what (1) command is used to "reveal” SCCS
strings in binaries. The author even used to em-
bed the SCCS marker inside RCS Id strings
to be able to use either what (1) or ident (1)
from RCS on such binaries.

Both SCCS and RCS use a "locking” model
where checkout means locking a file before being
able to modify it. This model essentially works
because it assumes that a given file will be mod-
ifed by only one person at some point in time.
It is pretty easy to see that it doesn’t scale espe-
cially with teams in different locations, as neither
of them support remote operations. That means
that sharing a tree can only be done using NFS or
an equivalent sharing file system.

What is actually interesting is that among the cur-
rently available VCS (distributed or not), most of
them use SCCS or RCS as the base for its design,
either by copying the User Interface (UI) - SVN
for example — or by extending it in different ways:

e Perforce uses the RCS file format with DB
files for metadata

e BK is more or less a rewrite of SCCS
to allow cloning of repositories/branches
(See the announce posted on the
linux-kernel list [6]).

There is another area where these venerable VCS
don’t work efficiently: binary file support. They
are fundamentaly designed to cope with text files
such as source code; binary files would be stored
as "text" with all the potential loss of information
and any command that tries to display or merge
would generate gibberish on the screen.

2.2 The Golden Age of CVS

In 1986, Dick Grune created CVS with two of his
students as a set of shell scripts over RCS in or-
der to be able to work on pieces of a compiler
independently[7]. His work was then rewritten
in C by Brian Berliner and a paper published in
1990 at USENIX Winter Technical Conference[8].

At first, VS didn’t have remote operations and
thus, to work on a given CVS tree, you would
have to be logged on a machine with "physical”
access to the tree (of course it could be through
NFS2).

The main advantages of CVS apart from being
free — a very useful feature in itself of course —
at that time were:

e A central repository instead of a collection
of small trees each with its own unsharable
RCS directory

e A "no-locking” mode of operation, allowing
concurrent access to the repository through
extraction (also known as checkout) of a
subset of the tree in sandboxes — a pri-
vate workarea from which each developer
can commit his work regularely and merge
his/her modifications with others.

A central repository enables the use of cus-
tom scripts (for sending commit logs by
mail), access control lists and triggers.

For all these reasons and the fact that none others
existed, CVS became the VCS of choice for many
projects, both proprietary® and free ones like all
the BSDs*.

Soon, most if not all FOSS® began using CVS with
the notable exception of Linux, as the Linus Tor-
valds disliked CVS so much that he refused to
use an imperfect product®.

Then CVS gained remote operation support
(through either RSH, SSH or its own pserver
mode) and its adoption by SourceForge[9] and
similar projects repositories really pushed CVS in

'The marker is @ (#) and the RCS equivalent is $Header$

*NFS: Network File System

*The author knows for a fact that the French telco company Alcatel has built its own VCS on top of CVS.
*All 4 of them, not counting TrustedBSD: FreeBSD, NetBSD, OpenBSD and more recently DragonflyBSD

SFOSS: Free and Open Source Software

®How he managed to not use a VCS for so long (1991 - 2000) keeps on baffling the author of the paper. ..

146

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

the open. The various bits of documentation
available first on FTP sites then on the WWW, the
books (see [10], [11] and [12]) and the simple but
effective UI of CVS also helped a lot to lower the
difficulty of using a VCS and thousands of peo-
ple began using it.

2.3 CVS flaws

Nowadays, many developers confess to stum-
bling on one or several misfeatures or design
problems with CVS. Its flaws are now very well-
known:

e Commits are not atomic (i.e. there is no con-
cept of a changeset’), the granularity being
the directory: in a single directory, you get
consistency between the various impacted
files through a lock but if a given com-
mit spans multiple directories, you are on
your own: that’s why the various conver-
tion tools like Tailor[13] or cscvs® have
some difficulties finding all files in a given
changeset.

e You can not rename files and directories.
The only way to achieve that is either by
delete+add — which is very wrong and loses
history - or manually edit the repository to
copy or move the corresponding backend
file.

e CVS has no fine grained access control fa-
cilities and needs to rely on filesystem per-
missions for many things although heavy
users such as the FreeBSD project have de-
veloped customs wrappers and scripts to
add per-branch ACL, review workflow and
more.

e Directories are not versioned meaning that
permissions and ownership is not pre-
served or kept but also that you can not
have an empty directory. That’s not a major
inconvenient and people have been living
without it for a long time but it is desirable.

e Branches are cumbersome to use, especially
when you want to merge bits of this and
bits of that from another branch. As the
main entity versioned is the file and CVS
has no memory of branching, you have to
keep somewhere the exact revision for each
file to be merged or use tags and/or dates
to get this information.

e Third-party code integration and main-
tainance is very cumbersome’ as it is done
through a special branch called the vendor
branch.

The last two points are critical for projects such
as FreeBSD because we have to maintain parallel
branches for STABLE/CURRENT developement
and releases (and security branches). The weak
support for branches is also something that slows
down development in general. It makes work-
ing on specific sub-projects or features more com-
plicated. That’s why a few years ago, FreeBSD
made the choice of using a different VCS for such
cases: Perforce (see below).

Offline work is possible through CVSup (see be-
low) but it is still very limited.

2.4 Enter Subversion

To remove all these limitations, SVN was born.

SVN is often cited as the natural successor to CVS
and looking at it, it is easy to see why:

e It is written by former CVS developers
e It is touted as CVS done right

e Resembling CVS as much as possible is one
of its primary goals (you can alias the cvs
command to svn and get running in no
time — ignoring the differences of course)

It has the same properties we all come to like in a
centralised VCS with many CVS flaws corrected:
atomic commits, easy and fast branching and tag-
ging!?, triggers, ACLs and all that. It has also its
own book [14] and the Pragmatic Programmers
have written one too [15].

’See http://en.wikipedia.org/wiki/Atomic_commit

8 A cvs-to-arch conversion tool. See http://wiki.gnuarch.org/cscvs

The author is also maintainer for the ntp codebase integration in FreeBSD and suffers everytime it is time to upgrade. ..
"It is even the same mechanism here, a tag is just a one time branch

147

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

You can even have a DVCS on top of that through
svk[16].

So what are the problems with SVN?

If we ignore the centralised part (we will look at
these aspects in section 2.5), SVN has still some
important shortcomings (although it gets better
over time):

1. It is a big program, with some large de-
pendencies (like Apache2 to get a web
interface), apr & apr-util (both part
of Apache2). Apache2 is not mandatory
though, there are other ways to access a
given repository (svnserve and SSH are
available)

2. It used to require Berkeley DB as storage
backend for everything (strings contained
in the checked-in files, and so on) and ex-
perience has shown us that BDB is not sta-
ble enough (and in the early days, the DB
schema was changing for almost every re-
lease which was painful). Current versions
use FSFS as default storage method.

3. The way branches and tags are imple-
mented, replication of a given repository
would generate copies of entire files. ..

4. It is snapshot based as opposed to
changeset-based (See [17] for a very nice
description of both types of VCS) which
scale less than the latter ones.

5. In addition to the previous point, it has no
memory of what has been merged overtime
(like CVS).

While both the first and second ones make in-
tegration with FreeBSD rather difficult and the
third one surprises me (but is explained in [18]),
the last point is the worst one. It compli-
cates merging between branches and makes man-
aging third party code (found in for example
src/contrib in FreeBSD) more difficult.

SVK[16] could be a way to work around the
centralised design of SVN but as it does not
change the first and fourth problems and adds a
Perl layer to SVN, making integration even more
difficult although there are good things coming
fromSVK: it is faster and uses less disk space for
the working copy and SVK metadata.

However, when FreeBSD started to look at an-
other tool, SVN was not ready and Perforce was
choosen and we have been pretty happy with it;
it helped a lot getting projects such as SMPng and
others up and running (and finally integrated
into the main CVS tree of course). We also have a
regular export from the Perforce tree in a special
CVS tree to allow people to see what is going on
on these projects!!.

Perforce is a very nice centralised VCS (supports
fast and easy branches, is fast and well sup-
ported) but in that respect, it is even worse than
CVS: all operations are done through the net-
work and one has to be connected to the server
to do anything?2.

Another problem, as we will see in more details
through section 2.6, is that it is closed-source pro-
prietary software and that creates a questionable
dependency for an open source project.

One last bit of information about CVS: after
the last round of CVS security advisories, some
OpenBSD folks have decided to rewrite CVS
completely to get a more secure source code
base, see the OpenCVS website[19]. Some of
the enhancements planned a long time ago for
CVS like atomic commits and rename seem to
be forthcoming but it has not been released yet
(Oct. 2005).

2.5 Enter the distributed VCS

In 1999-2000, Larry Mc Voy, formerly of Sun, Inc.,
started his own company called BitMover, Inc.
around a new product named BitKeeper. Bit-
Keeper (BK in short) was a distributed version
control system based on the venerable SCCS?3,

'Note that it allows external people to get the code but does not give an easy way for them to hack on it and contribute

back.

2The author used to be a Perforce user for 5 years but the lack of easy synchronisation between repositories became too

much and he switched to Arch.

BThe author’s guess is that McVoy used it at Sun and felt it was a good starting point.

148

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

extending it to cope with repository cloning and
merging.

Apart from being close to its ancestor SCCS, it
brings the distributed aspect to revision control
and with it a whole new way of working and
sharing source code.

Up to now as we have seen earlier, developers
had to share code either through a common tree
(CVS, Perforce, and so on) or through the much
more cumbersome way of generating patches.
With BK it becomes as simple as cloning a given
repository and start hacking on it with pull/push
mechanisms to share code and patches.

With its vision of a repository is a branch, generat-
ing a branch is the same as cloning meaning that
you can have as many branches as you want and
that:

e They are cheap (so you can throw them
away if not needed anymore or a dead end),

e It is easy to merge between all these
branches as the system knows where
the branch was created from and which
changesets are present.

The concept is rather new and we should thank
McVoy for pushing the limits for all VCS devel-
opers because it was the starting point of what
we have now. BK really took the lead of DVCS
when Mc Voy, for good or worse, convinced Li-
nus Torvalds to finally start using a VCS for the
Linux kernel.

2.6 The BK debacle

It was a big change for Linus (not so much for
the developers’ community as many of them had
started using CVS for their own trees) and it also
pushed many people towards using a DVCS.

Many people recognise that BK works well, is
reasonably fast and it does the job!%. These peo-
ple also generally agree on two points:

o The license is one of the worst I've seen.
Not only there are many unacceptable re-
strictions (like being prevented to work on
developing any other VCS during the li-
cense validity plus one year and being for-
bidden to reverse engineer the wire proto-
col and product - something one can not
forbid in the EU) but if you wanted a "free"
license, you have to send all your commit
logs to them,

e Worse: all the generated metadata that
makes it interesting (like who branched
what and when and all that) is considered
as proprietary data by BitMover, Inc. even
though it concerns a FOSS project!!>

Add to these the fact that Mc Voy has constantly
been saying on several mailing-lists (mainly the
linux-kernel one) how difficult it was to write
such a product, how costly it would be and don’t
bother trying to reproduce it, it is too difficult and

so onl®.

To add insult to injury, he also said that if anyone
tried to reverse engineer anything related to BK,
he would change the wire protocol and prevent
people to do it.

In the end, what had to happen did: In April,
2005, Andrew "tridge" Tridgell, of Samba fame,
tried to reverse engineer the wire protocol -
which proved to be trivially easy thanks to BK
itself — and BitMover decided to revoke all "free”
licenses therefore putting Linus and other Linux
developers in a difficult position!”.

I will not dive into Linux politics and what hap-
pened but we must see that the whole debacle
was the driving force behind the current trend
of DVCS and spurred development of many sys-
tems now available.

People are now aware of the problems and
caveats of distributed developement and the so-
lutions behind them. We now have several

"The author tends to agree even though there are some questionable things in it like the 65536 limit on the number of
changeset - it is now fixed — and the heavy use of system(3) throughout the binary.

Note that this is very different from Perforce: both are proprietary software but the format of Perforce’s metadata is
known and there is even a Perl p5-vCS module for it meaning that you are not locked by using Perforce.

"It is interesting to note that the development of Mercurial started in March 2005 and is now pretty close to BK feature-

wise in only six months.

7 As it is, BitMover is still trying to stiffle the competition by forcing people not to work on free projects; a major con-
tributor to Mercurial has been recently "asked” not to work on it as long as his company has a commercial BK license.

149

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

very interesting VCS, some close to Linus’ own
git[20] (cogito[21] and in some ways Mercu-
rial) and many others, each with its own set
of interesting features (Darcs and the theory of
patches[22], Monotone([23], and so on).

The second consequence is that people are hope-
fully convinced that using a proprietary VCS as
the main one is a very bad idea.

3 The FreeBSD context:
and processes

figures

The FreeBSD project started in 1993 just after
NetBSD using 386BSD as its base tree. Origi-
nally planning to be 386BSD 0.1.5, it finally be-
came FreeBSD as both Bill and Lynne Jolitz, the
original authors, refused contributions and main-
taining the various patches became too cumber-

some.18

3.1 Figures

The current CVS tree is the second one we have
been maintaining. Due to legal restrictions com-
ing from the AT&T/BSDi/CSRG lawsuit, we
were forbidden to keep on using and distributing
the FreeBSD 1.x repository so a whole new tree
was created in 1994 with the import of 4.4BSD-
lite.

The whole repository was broken up into four a
few years ago to be close to the organisation of
committers: we have src, ports, doc committers
and those who can commit in several or all cat-
egories. The doc committers includes those work-
ing on the www subtree. The following table lists
the sizes as of mid-Sept. 2005:

Repository | Size (MB) Directories Files
doc 183 1653 6171
ports 903 43490 124338
src 1402 9030 60708
www 112 595 3479

I do not have figures about the number of change-
sets as the notion doesn’t exist in CVS but when
P. Wemm did some conversion tests back in 2000

during our evaluation of Perforce, we were al-
ready at more than 75000 changes in the Perforce
converted tree. I estimate the current tree to have
more than 200,000 - 220,000 changesets by now,
all repositories considered (more on these figures
below in 6.2). .

When using CVSup!?, all the repositories can be
combined in a single one through symlinks as it
is easier to work with. Note that of course, hav-
ing the entire repository does not allow to com-
mit (or it would completely mess up with the next
CVSup run). One feature was added to CVSup to
ignore a special branch and allow for local mod-
ifications while syncing the CVS tree but that is
only a hack.

3.2 Development process

Today, the developement process in FreeBSD is
pretty straightforward: committers have access
to all repositories, the main difference between
types of committers will reflect in the commit log.
If a doc committer checks in a change in a man-
page in src/share/man, the commit message
will say at the top that it was done by a doc com-
mitter.

Committers are strongly advised to CVSup the
repository on their local machines, edit, compile
and test and then push to the real one by overrid-
ing the repository path. That way, the network
and the CVS machine are not overloaded and
we can keep disk space at a reasonnable level.
Of course when a commit must be tested on the
FreeBSD cluster with different machines and ar-
chitectures and the committer doesn’t have the
local resources, local checkouts are allowed.

The central repositories are also responsible for
sending the commit logs to the various mailing-
lists (cvs-all has everything but there are
also broken down for specific subtrees such as
cvs-ports and doc); this is an important part of
the process so any system aiming to replace CVS
must be able to offer and support such features.

In day-to-day operations, we see CVS’s flaws in
action when we need to move things around (it

'The complete history of FreeBSD and its relation to the other BSD can be found on the web, I will not reproduce it

here.

19CVSup: CVS-aware replication tool —http://www.cvsup.org/

150

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

can be because a port was not imported in the
right place or in case of code reorganisation);
we have some people called CVSmeisters that are
specifically allowed to manipulate the repository
and execute the unfortunately common repocopy
operation®’. That way, history is not lost.

It is unfortunate that we have to manually edit
the repository fairly often?! but there is no other
way due to CVS’s limitations.

The two products we are going to evaluate have
ways of replicating a given repository to remote
sites but we will keep on exporting all changesets
in a CVS repository for easy duplication through
CVSup, anonymous CVS usage and more gener-
ally because it is so well-known even by some
non-technical people. The nice thing is that con-
verters to CVS are not difficult to implement or
find and it is easier to go from a changeset-based
system to CVS than the reverse.

3.3 Release Engineering

The FreeBSD project maintains several branches
in parallel to support our notions of STABLE and
CURRENT trees. We also have security branches
on which only security fixes are applied (this
happen to all STABLE versions after they have
been released) and they are supported for a lim-
ited amount of time (that varies from branch to
branch and can be more than 18 months). We
have also recently allowed non security fixes in
the release branches (RELENG_x). To help re-
lease builds, we have some period of time dur-
ing which the trees are either completely frozen
or strictly controlled by the Release Engineering
team (also known as the re@ alias) and portmgr
(for the ports tree).

Such freezes happen independently in the src, doc
and ports trees but the goal stays the same: to be
able to have a stable tree to cut a release from.

These procedures are somewhat of a necessary
pain because CVS is not as we’ve said before very
helpful with its branch handling (sometimes the
trees stay semi-frozen for weeks). This is one of
the main reasons not to branch the entire ports
tree for each release: It would be taking too much

time to tag the tree as every single file needs to
be written into and we need to block everyone
through various scripts we have developed over

CVS.

Switching to another VCS requires these issues to
be cleanly handled.

3.4 FreeBSD requirements

From the previous sections, we can extract a set
of FreeBSD requirements that we want a future
tool to handle.

e Atomic commits to get real changesets

e Easy & cheap branches (and merging) and
tags to enable parallel lines of development
(that is essential for projects like SMPng
which have a very big impact on many
source files)

e Fast system for common operations

e Ability to keep and distribute a "reference”
tree, knowing that it should also be ex-
ported to CVS

e Ability to rename files within directories
without losing history

o Ability to help simplify the way we handle
releases (and freezes, slushes, ...) in order
to avoid locking the trees.

¢ Ability to digitally sign revisions or reposi-
tories to avoid file corruption and to detect
unwanted modifications

e Automated or mechanically assisted merg-
ing

e Ability to work offline — like on a plane
- without requiring too much work: not
only being able to list differences but also
to commit

Most of these requirements can be met by cen-
tralised VCS but the second and last points are
those pointing to a non-centralised or distributed
VCS.

D1t is achieved by cp the foo, v file from the old place to the new one.
210n the other hand, manually editing is faisible, which can save your day if you have a repository corruption.

151

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

4 Is Arch/bazaar suited to

FreeBSD?

In this section, Arch is the "protocol” (for lack
of a better word) designed by Tom Lord and
both tla[24] and Bazaar are implementions of
this protocol. Both implementions are compati-
ble with each others (unless you specifically ask
at creation-time for a baz archive which t 1a can
not read) but Bazaar has the backing of a com-
pany (Canonical, Ltd.[25]) and is the only one
currently maintained. Tom Lord has announced
he was stopping all developments on both tla and
revc®.

Arch has some unique features among the DVCS:

e Itis both a VCS and a cataloging system:

Everything is divided into archives,
whose name generally contains the
email address of the developer like in
lord@emf.net--gnu-arch-2004.

Archives contain the equivalent to CVS
modules named here categories. Whereas
most DVCS use as many repositories as you
have branches, Arch still uses a separate
sandbox as workarea.

Categories are the main work unit in
Arch; they can be checked out for edit-
ing, branched (here it means both as a lo-
cal branch and as a remote one) and ver-
sioned. Branches and versions are specified
in the full name of the category, separated
by “~-"likein calife--pam--3.0

The main inconvenience is that you must
type a lot more to refer to something man-
aged by Arch®

e Whereas many modern VCS try to dupli-
cate the well known UI of CVS, tla has
a lot (and I really mean a lot) of different
commands for dealing with archives, cat-
egories, revision libraries, branching and

merging and so on. Bazaar has tried to re-
design the Ul to be easier for beginners but
still, the output of baz help | wc -1
shows 187 lines. ..

e Both tla and Bazaar use weird-looking file-
names for temporary subtrees and file-
names (with ++ or ,, as prefix). The meta-
data directory in the sandbox is named
{arch}. Most VCS use .something (and
_darcs for Darcs[26]) to store that infor-
mation. That is not a big point but it does
confuse newcomers.

o Arch eats a lot of diskspace. In addition
to the archive which contains directories
of changesets, you will need space for the
checked out categories and either a “pris-
tine” copy of the sandbox (a gzipped-tar
file) inside {arch} or a revision library (a
complete tree of hardlinked files for most or
all checked out/merged revisions).?

e Arch needs to uniquely identify all files
managed by it so there are several ways to
generate a unique id and to tell Arch what it
is:

names The filename is the id itself, it is ob-
viously not the recommended way for
normal operations

explicit It is analogous to how CVS works,
you use the add command to baz to
attach an id to the file®

tagline This one is special: Arch will look
into the first and last 1 KB of each file
for a special string® and use that as
unique id.

This unique id enables Arch to track
file/directories renames more or less auto-
matically (which is nice) but also, in the
tagline case, complicates third parties code
as you are not really allowed to modify it.

Zrevc was supposed to be Arch 2.0 with a whole new storage backend (close to git), no more cate-
gories/branches/versions and a different archive format along with an heavy use of SHA-1 checksums everywhere.

3 Fortunately, there are completion modules available for
not live without such a completion module.

the common shells — zsh, bash and tcsh. Trust me, you can

*To be fair with Arch, SVN has also a pristine copy of your files inside . svn.
51t will be stored in a special sub-directory called .arch-ids.

% <comment characters>arch-tag:

<unique-tag>

(people often use UUID[27] for that purpose:

/+ arch-tag: bllc0274-29%ee-11da-9b43-000d93c89990 «/)

152

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

All of these items makes Arch rather compli-
cated to use, especially for beginners (in the VCS
world) but really, I have been very happy with it
for two years. I would even say that the names-
pace issue for categories forces users to think a
bit more on how to organise things in an archive
which is not without value.

If we want to use it for FreeBSD, there
are several things that we need to look at,
mainly because of the design of Arch and
the whole category feature. Do we want
a single category named freebsd, separated
into branches (like freebsd-current and
freebsd-stable) eventually with a version
number or do we want to use a category per sub-
tree?

This is a big point and one that will have an im-
portant impact on Arch speed because it tends to
walk the whole tree several times during commit
and other operations (that is called running an
"inventory" in Arch-speak). A given category is
pretty much independent, if you want to group
categories to form a complete source tree, you
have to use a special mechanism called configs:
you have a category with a special file with all
the other categories you want to include (pretty
much like the CVSROOT/modules does for CVS.)
Then you use the build-config command to
extract all categories and create the tree.

The big problem that comes from configs usage
is that as I said before, the work unit is the cate-
gory. What it implies is that commit also works
on categories, not on a source tree built with con-
figs...Arch has a way to iterate on all categories
coming from a config but:

e It is a bit cumbersome although you will
end up with writing a lot of aliases or shell
scripts to automate this,

¢ The changeset is not global either: you will
have one commit per category.

The second point is pretty much a killer in my
mind. If you want to do a sweeping change in
/usr/ports for example, you want a changeset
of the whole thing, not more than 12000 change-
sets. .. You also don’t want 12000 mails to be sent
to the cvs-all mailing-list.

Another subtle characteristic of Arch: when
merging multiple changesets between archives,
on the receiving end, there will be only
one changeset incorporating all the changesets
(named patch logs in Arch) and users will be able
to see only the summary lines for each embedded
changeset. If the sending archive is available, full
commit messages can be retrieved of course. This
is clearly different from BK and Mercurial where
every remote changeset is included as-is.

Bazaar satisfies one of our requirements: every
commit can be digitally signed with PGP/GPG,
this is an important security feature.

Last but not least: Bazaar is rather complicated
to build; it does not use the autoconf system
but its own home-built system (called package-
framework) and has dependencies on several ex-
ternal packages such as gpgme, Libgpg-error,
neon (for http/webdav access) and very re-
cent versions of various GNU utilities (patch,
diffutils). It does complicate its possible in-
clusion in the main FreeBSD tree. tla is not
as complicated - although it does use package-
framework as well - but tla should now be consid-
ered as dead (and probably not worth maintain-
ing due to the above limitations).

4.1 Common operations

We will take /usr/src? to make most of our
tests, knowing that it is a moderately large tree
(checkout is around 448 MB) with more than
33000 files inside 3766 directories. ..

In order to avoid wasting too much disk space
among developers, each of them having possibly
several checkout copies lying around, we can de-
fine a revision library. This area will hold hard-
linked copies of the checkout files and so only the
modified files will take more space between all
users. Of course it does eat space (but we hope
to reduce the overall diskspace requirement) and
all developers must configure their text editor to
break hard-links to avoid corrupting this revision
library.

At first, we will try to import that as a single cat-
egory because we want changesets to span the

“The main problem is that Bazaar 1.5 keeps on dumping core on my FreeBSD 4.11 system when using /usr/ports

153

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

whole tree. To have Bazaar work as transpar-
ently as possible, we will use the names tagging
method.

The alternative is to avoid using a revision library
but then, Bazaar will generate a complete copy of
the checkout files — called a pristine tree — below
{arch} which does take as much disk space as

Operation Time | CVS equiv. Time }1o checkout tree. . .

baz import 11:21 | cvs import 4:18

baz get src 3:28 | cvs co 14:43

baz commit -s 4:29 | cvs commit 11:52 4.2 NOTE

b tatus 6:05 dat 5:22

2z e : . cve upfare [t must be noted that most of Canonical’s ef-
baz status 3:33 | cvs update idem |

ort has been recently concentrated on the next

NOTES: generation of bazaar: bzr aka bazaar-ng aka

e Thefirstbaz status command generated
a revision library entry while the second
one is just using it.

e The baz get command used the revision
library to hardlink all files in it.

e For some operations, system limits (see
get/setrlimit (2)) had to be raised
(datasize in particular) or baz would dump
core.

Bazaar is clearly faster than CVS but not by a
large margin and some operations require mul-
tiple traversal of the whole tree (the inventory
system) which slows it down. commit can take
an optional list of file names to be considered by
the commit itself but on a very large tree such as
/usr/ports it is really painful to list all modi-
fied files. The correct method is generally to have
a wrapper command around the actual command-
line interface (CLI) that builds this list and hands
it out to the tool when committing.

Disk space requirements must also be considered:
If a given tree is N MB, it will generate N MB
as a revision library entry and gzip(/N) MB in
the archive itself. Commits are stored as com-
pressed changesets so it takes much less space.
For each commit, a plain text version of all mod-
ified files will be added in the next revision li-
brary entry and the rest is hardlinked. Revision
libraries must be pruned regularly of course as
you’ll accumulate revisions you'll probably never
extract gain.

bazaar 2. Version 0.1 of bzr has just been released
(Oct., 11th, 2005), incorporating a very important
change in repository format: it is now using the
weave® format instead of the full-text one previ-
ously used (the same as git). It is too early to
really test bzr as it is pretty young and perfor-
mance is still lacking but it is very promising.

This is an important change and one that will
make Bazaar 2 much more interesting. There will
be an upgrade path from Bazaar 1 to Bazaar 2 but
they are completely different in design

5 Mercurial to the rescue

While working with Arch and trying to see how
to overcome the limitations and design problems
described in 4, I found Mercurial. Following
what we have seen in section 2.6 and the appear-
ance of Linus” git, exploring what have been
started with Darcs and Monotone, Matt Mackall
announced he had started to write a DVCS[28]°.

Another reason to look at Mercurial is that
Bazaar 2 was far from being feature-complete
(without even thinking about performance)
What is really nice about Mercurial is not so much
its speed — although it is important and impres-
sive — but the fact that in a few months, it has
grown into a nearly-mature product, with almost
all features you could ask for a DVCS™.

Add to that:

e A very friendly and open-minded author

BSee http://bazaar.canonical.com/BzriWeaveFormat for a detailed explanation about weaves.
#Mercurial was started because of the BK debacle according to the author.
30Seetheroadmap:http://www.selenic.com/mercurial/wiki/index.cgi/RoadMap
3'Mailman interface: http://www.selenic.com/mailman/listinfo/mercurial/

2Gee http://www.freenode.net/

154

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e A growing community both on the mailing
list’! and on IRC (#mercurial on the Freen-
ode®? network).

e A relatively small and portable system
compared to others like Monotone or
Arx[29]

e Written in Python® without too many ex-
ternal dependencies

You end up with something small, fast and easy
to use and setup. As we will see in the timing sec-
tion 5.2, its handling of large trees is adequate for
most usage and it is evolving without breaking
too many things from one version to the next (no
repository format change is foreseen in the near
future for example, something that other VCS
have done on a regular basis).

Of course there are a few things that need to be
implemented to have a complete system like:

e Better handling of binary files. You can put
binaries in a Mercurial repo but you will not
be able to use hg export to submit; the
only way to doitis either to use the bundle
command that create a binary version of a
set of changesets or to use the push/pull
mechanism.

e Better rename/move support. At the
moment, history is preserved by the
copy/rename operations but it is not
available to the user so it appears to be
lost*

e Better support for managing changesets
within a repo: currently, there are differ-
ent way to revert a changeset or a set of
changesets (undo only reverts the last one).
It means that if you make a mistake, it may
become a bit difficult to undo it.

e Support for digital signature of commits
(most of the infrastructure is there but
needs to be completed and on by default)

e Full permissions are not versioned except
for the 'x’ bit. Permissions are kept but if

you change a file from 600 to 664, it will
not be not taken into account.

e Lack of Internationalisation (i18n) support.
It is necessary to lower the entry bar for
many people.

e More documentation

All these should be corrected for the 1.0 release
around December 2005.

All these reasons made the author choose Mer-
curial first for his own usage and second to in-
clude it in the scope of this paper. The rather
fundamental technical differences between Arch
and Mercurial designs do not have a big impact
on section 6 about processes and policies changes
that are needed when moving from a centralised
to a distributed VCS. These differences will have
an impact on the technical side of the migration
and setup of course.

These main differences between Mercurial and
Arch are:

Arch follows the traditional design with
one side the archive/repository and on the
other side the working trees/sandboxes

e Mercurial does not force a spe-
cific namespace on repository and
module naming (like Arch does in

archive/category—-branch--version)

e In Mercurial, there is no inven-
tory like the one done in Arch, no
tagline /explicit/implicit/names method of
include/exclude files from being versioned.

e The work unit is the tree /branch, not a sub-
set of it

*While Python is not the preferred language of the author of this paper, it is easy to understand and thus to contribute

[to the project]
¥This is true as of version 0.7 released on Sept, 16th, 2005

1585

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

5.1 Technical specifications

Mercurial shares some common characteristics
with the other available DVCS:

e A repository is a branch (this is a simpli-
fication as you can have several branches
within a given repository)

e The working directory is the repository,
there is no sandbox like in CVS or SVN

¢ Branches are cheap and the main way to
replicate (called cloning) repositories

¢ You can lay down tags on a given revision
but with a twist: tags can be either local or
global, the latter means that if you clone a
repository, you will get the tags along the
way.

e You must have a merging tool like kdiff3
or tkdiff to handle any conflict during
merging. It must be noted that merging is
done on a separate branch within the repos-
itory first then you merge the result with
your own local changes. This approach
generally lowers the number of conflicts
when dealing with external sources.

e It has an integrated CVSweb-like interface,
either through a CGI script or through its
own hg serve command.

It has also an interesting technical feature, shared
in principle by Arch, the various files in the .hg
tree are append-only. That means that it is a bit
more robust (compared to the RCS file format
where everything including tags are stored in a
single , v file) and that going back to a previous
revision is done through simply truncating the
file.

The storage method used seems to be pretty ef-
ficient, specially when compared to the default
git backend where full files are stored for a
given revision and various tests done by the au-
thor ([30] for example) shows the differences. Ido
not believe that the fact that hard disks are now
cheap is a good reason to waste that space.

35http: //savannah.nongnu.org/projects/quilt

Something interesting has been available for Mer-
curial for quite some time: an extention to man-
age "stacks" of patches has been written. This
extention, called mq does something similar to
quilt¥;itallow to manage a series of patches by
keeping track of the changes each patch makes.
Patches can be applied, un-applied, refreshed,
etc.

5.2 Tests timing

We take the same /usr/src tree to make com-
parisons with Arch and CVS.

Let’s assume we want to put /usr/src under
Hg, discarding the previous CVS history for the
moment™®.

Operation Time | CVS equiv. Time
hg clone src 3:09 | cvs co 14:43
hg commit -A 512 | cvs import 4:18+14:43
hg commit -m 0:09 | cvs commit 5:32
hg status 0:06 | cvs update 3:30
NOTES:

e clone and co don’t do the same exact
thing as there is no history in co case.

e cvs import creates the repository but we
need a checkout to work; Mercurial doesn’t
need that phase as the working directory is
the repository.

e cvs update isnotstrictly equivalent to hg
status but status is much more verbose.

It is very fast. It is fast enough that we don’t re-
ally care about trying to use sub-trees (see 6.1) as
it gets more complicated to submit patches.

As Mercurial can handle the /usr/ports tree,
here are some timings:

Operation Time | CVS equiv. Time
hg clone ports 918 | cvs co 16:35
hg commit -2 10:34 | cvs import 4:41+16
hg commit -m 0:39 | cvs commit 11:52
hg status 0:52 | cvs update 5:22

Even on a much larger tree - /usr/ports is
more than 124,000 files in more than 32300 direc-
tories — Mercurial manages to stay fast.

*Due to CVS design and misconception, converting a whole tree is rather complicated and very slow.

156

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Repository overhead is small too, although on
pathologic cases such as /usr/ports with a lot
of very small files, the fact that you have two files
for each versioned files is showing:

Tree Size .hg size
/usr/src 417 MB 227 MB
/usr/ports | 430 MB 358 MB

The nice thing is that as the trees will accumulate
revisions, the way Mercurial does store change-
sets is very efficient: if the delta between the
next version and the original is bigger than some
amount, the new version is stored compressed in
its entirety. It ensures than we don’t need a huge
amount of data to reconstruct any version of a
given file. Add to that the fact that all files be-
low .hg are append-only, you have a repository
that can resist corruption better than others.

The author of this paper would have liked to do
more speed comparisons, especially when work-
ing with older branches (an area where CVS is
rather weak as it needs to go back and forth with
in the repository to reconstruct a branch) but the
difficulties with repository conversion prevented
that. The author would like to point out that due
to its design, Mercurial would probably shine in
that respect because generating an older branch
is consist of merely cloning (something which is
fast) the given reference tree. ..

6 How to get this to work: pro-
cesses and policies

A tool, however powerful, is not enough to sup-
port a whole project running and do it that way in
a reasonable form, especially when dealing with
volunteers. A project this size (more than 300
people, working around the world with different
timezones) has to have some kind of processes
and policies.

Since the beginning of the FreeBSD project, ev-
erything has been built upon CVS and upon its
features and flaws. In particular, almost all the
constraints we have now for Release Engineering
and the whole set of policies of freezes, slushes

and al. have their roots in CVS in one way or an-
other.

It is the opinion of the author of this paper that
it is time to review them, classify them as CVS-
specific (or not) and see how they would have
to evolve if the FreeBSD project was to switch its
VCS over to Mercurial®”.

A distributed or decentralised VCS enables a
more parallel way of working, facilitates work-
ing in different trees and branches without the
fear of a complicated merge and without playing
with patches. The fact that it enables offline work
is a very much needed feature; likewise, merg-
ing from offline trees is no different from merging
different branches and is as easy.

We should also note that some software would
have to be written or changed to adapt to the new
VCS as some assumptions coming from a CVS-
oriented world are not true anymore: a central
server with all the related aspects like pre-commit
checks, post-commit triggers and so on.

6.1 FreeBSD environment

If we look at the FreeBSD requirements in 3.4 and
try to answer them, we will see that the first three
are easily met by Mercurial as they are part of its
design. The last one is the key point what we will
concentrate on. The point here is not to disturb
the developers too much.

Let’s see what would be needed to reproduce a
CVS-like environment:

o A 'reference" tree that people can clone
from just like people use CVSup now to get
the official source tree.

e A way to handle either merge requests from
the various developers or a way to queue
patches sent through various sources (email
for example) for integration in the "refer-
ence" trees aka a patch queue manager®.

e A way to generate commit messages to be
sent to various mailing-lists; if we have
the above request satisfied, then the patch

¥Note that most of what we will say there is applicable to any distributed VCS, the key here is distributed.
®Like the one used by Canonical - http://mirrors.sourcecontrol.net/

robert.collins@canonical.com-general/

157

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

queue manager (PQM) is the obvious can-
didate for this.

When one wants to make some modifications to a
given tree, he/she will clone the repository, hack
on it and then submit the changesets to the PQM.
One easy way to do this is to have a cloned tree
that is only updated through hg pull, serving
as a local reference tree and the developer will
clone this one at will for specific purposes.

To maintain coherency with these cloned trees,
he/she will regularely merge from this reference
tree into the other ones. This is where having
a fast VCS is interesting because having to wait
half an hour just to be able to edit something is
not really productive.

Even though Mercurial is fast for cloning big
trees, it still takes some time. A possible solu-
tion to this problem could be to create sub-trees
on demand: when you want to do a small modi-
fication, you just go to the sub-tree, hg init fol-
lowed by hg commit -A to import the sub-tree
in a little repository. It is then very fast and easy
to generate a diff and submit it to the main tree
(then forget the sub-tree with rm -rf .hg). Of
course, it would be for small modifications which
don’t require you to keep the repository.

As for the patch queue manager, PQM has al-
ready been modified to work with Bazaar 2 and
ArX so I think that adding Mercurial support
should not be too difficult.

One area where things become easier is Release
Management: there is no real need for ports/src
freezes/slushes as it is just a matter of cloning the
"reference” repository into a branch/release one,
making it available through the PQOM and use dif-
ferent rules for merging.

Likewise, there is no need to manually edit the
repository, no more repocopies or tag sliding®,
thus simplifying the whole repository adminis-
tration.

6.2 Repository conversion

The problem of converting the history of the
project is a complicated one as the tools we are

coming from and the one we would use are com-
pletely different in several ways, the major one
being that having a repository for each branch
complicates conversion as the tool used for that
should be aware of branches and should gener-
ate a different repository when it comes across a
branch tag. At the moment, none of the avail-
able tools support that. Tailor can convert whole
branches into a given repository but we would
have to manually do it for each branch starting at
the branch point. It can only follow a given path,
not descend in other branches.

Other complicating factors includes encoding of
commit messages (do you want to convert every-
thing from ASCII or ISO into UTF-8 or UTF-16?),
tags (the notion of tags varies betweeen VCS, ...

To give everybody an idea of what repository
conversion is about, the /usr/ports tree al-
ready mentioned has 138696 changesets (mid-
October 2005) which is a lot. /usr/src isaround
117233 changesets. Last time the author tried to
convert /usr/src, it took 3 hours for less than
700 changesets (estimating the total time is left as
an exercise for the reader) and consumed close to
1.2 GB of memory.

7 Conclusions

It is clear for the author that such a migration
should be carefully planned over a few months
and that the different issues mentioned before
should be fixed. Mercurial itself is still lacking
features but is evolving quite fast. Other tools
were outside the scope of this paper and maybe
should be evaluated but at the moment, only
Mercurial has enough features and is stable and
fast enough for our purposes.

The infrastructure still needs to be written or
adapted to Mercurial and the big question on how
to import the previous CVS history is something
that should worked upon.

The problem with the repository conversion tools
may mean that we would have to maintain both
CVS and Mercurial as long as we support older
branches or finding a way to partially convert
them.

¥Tags are static in CVS and references a specific file revision. When preparing a release, a critical bug can be fixed and
the release/branch tag be modified to reference the fixed revision. This is manual intervention in the repository.

158

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

A not-so-minor point to consider: Mercurial is
not written in a language that we have in core
FreeBSD so the question becomes do we want
Python in the core OS or can we accept that our
main VCS will force people to install Python from
ports. From a pure maintainability point of view,
ports is easier.*”

The learning curve of the new tool and the new
ways of working are also important. The Ul is a
big part of that and Mercurial tries to mimic the
old but well-known CVS one (where applicable
of course).

Meanwhile, there are some advantages coming
from the distributed part of the new tool:

e There is no need to have such complicated
pre-commit and post-commit tools such as
the ones we have now in CVSROOT, the
PQM will manage all that.

e You don't need a central server with SSH
keys, Kerberos or any form of access con-
trol; people just clone the "reference” reposi-
tory and work from that. Access will still be
needed at the PQM level of course to distin-
guish between committers, developers and
users.

e The new capabilities of Mercurial could
open the way to new working-styles like
task-oriented branching and merging (like
we do in Perforce now). With a possible
link to the bug report database, we could
think having a PR automatically closed
when a task is done.

It is the wish of the author of this paper to help
the FreeBSD Project to start thinking about a pos-
sible switch. It will be up to the FreeBSD Project
to decide whether this is a worthwhile project to
engage ourselves into of course.

8 Thanks

The author would like to thank Phil Regnauld,
Mark Murray, Anton Berezin and Robert Watson
for reviewing this paper over a rather short pe-
riod of time. Much appreciated folks!.

References
[1] Various authors at Canonical, Inc,
Bazaar, an Arch implementation.

http://bazaar.canonical.com/.

[2] Matt Mackall, Mercurial, a distributed SCM.

http://selenic.com/mercurial/.

[3] The FreeBSD Project, FreeBSD, The Power to
Serve. http://www.FreeBSD.org/.

[4] Inc. Perforce, Perforce,
ware Configuration Management
http://perforce.com/.

The Fast Soft-
System.

[5] Mark J. Rochkind. The source code control
system. In IEEE Transactions on Software En-
gineering (Vol. SE-1, no. 4), December 1975.

[6] Larry McVoy, SCCS & Source mgmt. 1997.
http://lkml.org/1lkml/1997/5/23/105.

[7]1 Dick Grune, Concurrent Versions System CV'S.
1986. nttp://www.cs.vu.nl/dick/
CVS.html#History

[8] Brian Berliner. CVSII: Parallelizing software
development. In Proceedings of the USENIX
Winter 1990 Technical Conference, pages 341-

352, Berkeley, CA, 1990. USENIX Associa-

tion.
[9] Sourceforge team, Sourceforge soft-
ware development hosting system.

http://www.sourceforge.net/.

[10] Karl Fogel and Moshe Bar. Open Source De-
velopment with CVS. Number 1-932111-81-6

in ISBN. Paraglyph Press.

[11] Andy Hunt Dave Thomas. Pragmatic Version
Control Using CVS. Number 0974514004 in

ISBN. Pragmatic Programmers, 2003.

[12] Per = Cederqvist, Version ~ Manage-
ment with CVS (‘official’ manual).
http://ximbiot.com/cvs/manual/.

[13] Lele Gaifax, Tailorpy, A tool to
migrate changesets between VCS.

http://www.darcs.net/DarcsWiki/Tailor.

Tc] and Perl were both at some point in time part of core FreeBSD and they were both removed.

159

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

C. Michael Pilato Ben Collins-Sussman,
Brian W. Fitzpatrick. Version Control with
Subversion. Number 0-596-00448-6 in ISBN.
O'Reilly, 2004.

Mike Mason. Pragmatic Version Control using
Subversion. Number 0-9745140-6-3 in ISBN.
Pragmatic Programmers, 2005.

a decentralized ver-
using Subversion.

ChiaLiangKao, svk,
sion control system,
http://svk.elixus.org/.

Martin Pool, Integrals and derivatives. July
2004. nttp://sourcefrog.net /weblog/

software/vc/derivatives.html.

C. Watson B. Robinson, J. Hess
and ISHIKAWA Mutsumi, De-
bian X Strike Force Hackers” Guide.

http://necrotic.deadbeast.net/xsf/
XFree86/HACKING. txt.

OpenBSD, OpenCVS, a FREE implemen-
tation of the Concurrent Versions System.
http://www.opencvs.org/.

Linus Torvalds, Linus’ own wversion control
software’. http://www.kernel.org/pub/

software/scm/git/.

Cogito, a version control system layered on top
Ofgit. http://www.kernel.org/pub/

software/scm/cogito/.

[22]

[23]

[24]

(25]

(26]

[27]

[28]

[29]

[30]

160

David Roundy, Theory of patches.
http://www.abridgegame.org/darcs/

manual/node8.atml#Patch.

Monotone, a free distributed version control sys-
tem. http://venge.net/monotone/.

Tom Lord, tla, a revision control system.
http://www.gnua.org/software/gnu-arch/.

Ltd. Canonical, Canonical main web site.

http://canonical.com/.

David Roundy, Darcs, a revision control sys-
tem. http://www.darcs.net/.

ISO (International Organization for Stan-
dardization). Information technology - Open
Systems Interconnection - Remote Procedure
Call (RPC). ISO organisation, 1996.

Matt Mackall, Mercurial
minimal scalable distributed
http://www.ussg.1iu.edu/hypermail/
linux/kernel/J504.2/0670.html.

v0.1 - a
SCM.

ArX, an easy to use distributed revision control
system. http://www.nongnu.org/arx/.

Matt Mackall, Patch: Mer-
curial 0.3 vs git benchmarks.
http://lwn.net/Articles/133594/.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Porting NetBSD/evbarm to the Arcom Viper

Antti Kantee
<pooka@cs.hut.fi>

Helsinki University of Technology

ABSTRACT

NetBSD is best and foremost known for its portability. This paper examines that
claim in the light of porting NetBSD to an ARM XScale-based single-board computer.
The paper starts with a general discussion on NetBSD code organization and attempts to
identify components common to all porting tasks. After that this particular porting effort
is investigated in more detail, outlining what needs to be done to add support for new
hardware to NetBSD/evbarm and describing the problems and respective solutions in the

effort.

1. Introduction

The definition of port in NetBSD is a very
loose one. Sometimes a port consists of only a
single type of machine with self-contained CPU
support, such as NetBSD/pc532, sometimes it can
consists of a single machine with "outsourced"
CPU support such as NetBSD/shark, or some-
times it is simply a collection of hardware that
seems to fit nicely under a common umbrella, say
NetBSD/hpcsh. In the good old days all machines
under one port used to be able to boot a common
kernel and use auto-detection to figure out what
kind of hardware was available, but in modern
times things are different. In "consumer hard-
ware", such as PCs or Macs the ability to have a
single distributed kernel for all machines is still
important, but in ports featuring embedded sys-
tems, such as evbarm, a special-purpose kernel
for each machine is acceptable.

Adding support for a completely new CPU
has been discussed in the AMD64 porting effort
[1] and a similar effort of adding machine support
where CPU support exists already has been docu-
mented in adding support for the JavaStation to
NetBSD/sparc [2]. This paper’s contribution, in
addition to being full of (non-)amusing anecdotes,
aims to be to explain the porting effort and outline
the involved steps in terms which are hopefully
understandable to an audience without experience

in kernel hacking.

It should be noted that the discussion is
quite specific at some parts, and can be guaran-
teed to hold only for the evbarm port of NetBSD,
and even there sometimes only for the Viper hard-
ware support. Other ports have other conventions
as dictated by the hardware and do things differ-
ently. Some parts do apply to NetBSD in general,
but no attempt is made to separate the specifics
from the generics.

1.1. The hardware

The Viper is a single-board computer built
around the PXA255 Intel XScale™ RISC proces-
sor. Features hardware include a Compact-
FLASH socket, TFT connector, audio device.
serial ports, USB, 10/100BaseTX Ethernet,
PC/104 expansions bus and the usual set of GPIO
pins. However, at this date NetBSD supports only
the necessary hardware for bringing the system up
to multiuser in an NFS-root configuration. As is
typical for an ARM-based system, there are no
fans or other noise-generating components
involved. In other words, for home use the sys-
tem would make a nice MP3-player, even though
the physical size is quite large by modern stan-
dards. Of course professional use is another com-
pletely different story.

161

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

1.2. NetBSD/evbarm

The NetBSD port for ARM evaluation
boards is quite simply a collection of mostly inde-
pent hardware support for development and proto-
typing boards which feature some version of the
ARM processor'. These independent pieces of
support code consist of:

» low-level startup. This code is written in
the assembly language and takes care of
setting up an acceptable memory map-
ping for the rest of the bootstrapping
process.

* machine-dependent C-language initial-
ization routines. It is the responsibility
of these routines to set up the console,
initialize the memory management
information in the CPU-specific pmap
and machine-independent UVM ready
for prime-time, coerce the CPU into the
mode we want it to operate in and ini-
tialize machine-dependent vectors.

* device driver frontends. NetBSD has
most hardware support readily available
in machine-independent format. Only a
small amount of glue code is required to
attach the MI driver to specific bus
behind which the device (or a bus itself)
is sitting.

In addition to the machine-specific imple-
mentations. an important part of the port is the
shared ARM code located under sys/arch/arm. It
is this shared code that enables to add support for
a new machine with relatively minor effort.

2. The Porting Effort

All efforts for writing support for hardware
consist more or less of the following tasks:

* Locating documentation for the hard-
ware, reading the documentation and
understanding the documentation. As
usual, since time is of the essence, there
is a great danger of trying skimp at this
stage. It will have consequences later
on-.

"'It can be likened to a support shelter for various
homeless pieces of hardware with no other place to
go ... if that is a comparison I am allowed to make.

2 For example, if your question is answered with
the words: "read ARM ARM (3] Chapter 1.1.1.".
you know you should have read the documentation
more carefully. It is left as an exercise to the reader
to figure out if this is a purely fictional example.

» Creating a kernel configuration file, and
if required the necessary auxiliary files
to match the set of hardware that should
be supported.

+ "Filling in the blanks", i.e. writing the
necessary glue code where required.

* Setting up the development environ-
ment. This includes building a cross-
compiling toolchain, setting up a place
where the system can boot from (usually
over network), cross-compiling the tar-
get system kernel and useriand and con-
figuring the svstem firmware to fetch
and execute code from the desired loca-
tion. These actions will not be discussed
in this paper any further.

2.1. Documentation

The documentation for the Viper consists of
documentation which deals with the specific hard-
ware [4], generic documentation on the ARM ISA
(3] and finally documentation dealing with the
XScale [5] processor family. Contrary to the
usual situation with modern hardware, the above
mentioned documentation is available from the
Internet without any need for NDAs or other
lawyerly trickeries.

In addition. documentation for various
chips on the evaluation board can usually be
found from the manufacturers of those chips. A
popular trick for accomplishing this is to punch
the chip number into Goo"H"H"Ha search engine
and see what happens. Usually the documenta-
tion will present itself. Sometimes documentation
for the original chip might be difficult to find, but
it might be possible to find the documentation for
another chip which is compatible with the one
that documentation is sought for.

Finally, it is a good idea to know how the
firmware works to get a kernel loaded and the ker-
nel execution under way. The Viper features Red-
Boot firmware, for which documentation [6] is
available from the Internet. In light of the porting
effort it is also nice to provide the relevant infor-
mation for users in the NetBSD Installation
Guide. This way potential users have a consistent
set of sources and matching documentation avail-
able from one source and do not have to go hunt-
ing around the Internet for various bits and pieces
to figure out how to get the system up and run-
ning.

162

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Entry to NetBSD
/*
* You are standing at the gate to NetBSD. --More--
* Unspeakable cruelty and harm lurk down there. --More--
* Are you sure you want to enter?
*/
mov pc, r8 /* So be it */

2.2. Writing the Configuration File

BSD systems decide what to include in ker-
nels and how to probe the device-tree with the
help of a configuration file [7.8]. A good idea for
creating a configuration file for some specific
machine is to copy a similar configuration file and
modify that. In this case the definition of "simi-
lar" was "another board based on PXA255".

The only piece of information specific to
the Viper in the current supported hardware con-
figuration is the Ethernet controller:

SMC91C1l11 Ethernet
sm0 at pxaip0 addr 0x08000300 intr O

The above tells the system autoconfiguration that
sm0 can be probed as a child of the pxaip0 bus at
address 0x08000300 and that the device will inter-
rupt at interrupt level 0. This information will be
used by the driver. Note that in this special case,
since, as we soon shall see, the networking driver
frontend is written specifically for the Viper, pro-
viding the address and interrupt in the config file
is not strictly necessary. The information could
be hardcoded into the driver as well. However,
since using the configuration file to contain con-
figuration information is the correct approach as
opposed to hardcoding the information into vari-
ous drivers all around the source tree, we use that
approach.

In addition to the configuration file itself,
the following files need to be modified:

» confffiles.machname
e conf/mk.machname
e conf/std. machname

The configuration file itself makes sure that ver-
sions of the above files specific for this hardware
are used by including szd.viper.

files.viper

This file specifies all the devices and source
files specific to the Viper. Currently it tells the

system to include the file viper_machdep.c in the
kernel and, as presented below. informs of the
possibility to attach the sm driver at the pxaip bus:

SMSC LAN91C111

attach sm at pxaip with sm_pxaip

file arch/evbarm/viper/if sm_pxaip.c \
sm_pxaip

The information about the sm driver is a system-
level counterpart of what was written in the con-
figuration file and keeps the config-file author
from having to know details about the actual
implementation of the driver.

mk.viper

As the name suggests, this file deals with
the viles of the kernel Makefile framework. The
current significance is specifying the kernel base
address and object format copy used in linking the
kernel image. In addition, the first object file
linked into the kernel image is specified here.
This object file should. at the beginning of it, con-
tain the kernel entry point.

std.viper

The file contains the standard config
options you cannot live (or run) without. These
include for example support for execution of ELF
binaries and the config option for specifying that
the system uses the PXA-specific interrupt han-
dling implementation.

2.3. Low-Level Startup Code (viper_start.S)

For a programmer with previous experience
in programming XScale CPUs, writing the low-
level code is mostly a walk in the park. In case
you are not familiar with ARM assembly, the
MMU and such, it is more involving, but only
slightly. By no means can it be likened to black
magic.

163

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

NetBSD/evbarm Initialization Sequence

viper_start

initarm()

sys/arch/evbarm

start

sys/kern

main()

The level of ARM assembly programming
prowess required for writing the first stage initial-
ization code is not very spectacular. One has to
have the knowledge on how to read and write
memory, do simple arithmetic-logical instruc-
tions. and how to write loops and jumps. In addi-
tion one needs to know how to talk to the the
MMU. This level of skill, of course, results in
non-optimal code, but a microsecond more to the
boot time and a few hundred bytes more code are
probably not an issue. If they are, feel free to
increase your skill levels beyond the description
given above.

Most evbarm machines accomplish the low-
level init by first turning the MMU off, jumping to
the physical memory address of the loaded kernel,
and then proceeding to configure the memory
map and other CPU information, and finally turn-
ing the MMU back on. This is a good way to pro-
ceed, since there is no need to worry about protec-
tion levels, cache flushing and other complex
issues related to the MMU. However, this
approach did not work for some reason on the
Viper, no matter how careful one tried to be.

The problem, or more specifically the
effect, was the system going totally dead after
turning the MMU off. This might have been a
simple bug in the physical address calculation
routine, which made the kernel jump to hyper-
space instead of jumping to the physical address
of the code as it was supposed to. Or it might
have been some really complex interaction
between multiple variables. Nevertheless, the

author was left perplexed after around 200
attempts to work around the problem. Finally, it
was decided to do the initialization with the
MMU on.

The decision of doing the initialization with
the MMU active morphed the steps of low-level
init into the following:

* Build an identity VA mapping for VA ==

PA. It is easier to copypaste code® from

other sources later on if this assumption
holds.

* Map the system physical memory to
0xc0000000 and up. For 64MB of
memory present on the Viper, this spells
mapping memory up to 0xc4000000.

* Map devices used during the bootstrap
process.

¢ Relocate the kernel to the location we
want it at.

Building mappings

The XScale MMU deals with memory
mappings on multiple levels. The first level. or
L1, page table entries are 1MB, or 0x100000
bytes, in size while L2 entries describe a single
page of memory. This standard multilevel
approach makes it possible to map large chunks
of memory easily and with little overhead (both
space and coding effort) while still allowing for a

1 .
“ Yes, so we all sin every now and then.

164

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

fine-grain per-page description. The page table is
described on the XScale by a continuous set of
memory, with the first four bytes in the table
describing L1-sized chunk of memory at at virtual
address 0x0, the second the virtual address
0x100000, and so forth. For L1 mappings, each
entry contains the significant bits of the physical
address in addition to the protection levels of that
particular table entry. For L2. the physical mem-
ory address of the relevant L2 descriptors is indi-
cated. The mappings are modified by modifying
the memory contents of the correct offset in the
page table. And of course it is possible to instruct
the MMU to switch to use a different mapping ta-
ble located at a different address.

Per the NetBSD convention, we load the
kernel at 0xc02000000. Per the same conven-
tion, physical memory is also mapped starting
from 0xc0000000 onward. This leaves room to
allocate bootstrap memory from the two
megabytes before the kernel load address. Per a
different conversion, physical memory is assumed
to have an identity mapping during the C-level
bootstrap process. So we map also from the vir-
tual address 0xa0000000 onward to physical
memory.

To be able to use various devices during the
startup sequence. or at any point during execution
for that matter, the devices need to be mapped
into the memory so that accessing them is possi-
ble. During later stages of execution mapping
devices in and out is fairly easy, since we have C-
level convenience functions available for manag-
ing the mappings, but during the very first steps
we must manually build the necessary mappings
in assembly. Technically it would be enough to
map a few simple bytes of memory window to
operate the devices. However, since dealing with
them is a fuss in assembly, we map an entire L1
entry for each device*.

Kernel relocation

Kernel relocation sounds much more diffi-
cult than it actually is. It simply involves just a
size calculation and a load-store loop. The kernel
image consists basically of text followed by data.
We know that the kernel entry point is at the
beginning of the kernel® and we also know that

* And feel slightly guilty about wasting many
megabytes of virtual address space... well, no, not
really. We'd much rather feel guilty for eating
creme brulee with chocolate sabayon.

¥ That’s what we specified in mk.viper.

the end of the data segment is marked by the sym-
bol _edata. The size of the kernel image for
copying is a simple operation: end_address -
start_address. This is rounded up to the next four
bytes, since the load-store loop is done one word
at a time.

And now for something C-pish

After having done all machine-specific ini-
tialization, viper_start calls start located under
sys/arch/arm. This routine is responsible for set-
ting up an initial stack for running C code and
calling initarm(), which once again is a routine
specific to the Viper.

2.4. Low-Level debugging

Another annoying part of writing the low-
level init is that no console is available, and one
must resort to various forms of trickery for debug-
ging. A popular approach is to blink LEDs
attached to the system to give hints on where and
how the code is executing. The only downside to
this method is that one must be bothered to con-
nect the LEDs to some available ports and also to
figure out a way to toggle those ports.

The RedBoot firmware is nice enough to
contain a debugger. namely gdb over serial. This
means that instead of taping LEDs to the back of
the board, most cases can be solved by simply
examining the mess at hand in gdb. Because we
are not yet running C code, the mess will simply
present itself in assembly language. A useful
trick is to load idle machine registers with rele-
vant information on system state and upon a crash
(or explicit bkpt instruction) examine the system
state with the gdb command info regis-
ters.

It should also be noted, for sake of being
complete, that you need to run a version of gdb
compiled for the target system, not the host sys-
tem. Luckily NetBSD makes this easy, and you
can build a cross-gdb simply by giving the argu-
ment -V MKCROSSGDB=yes to build.sh [9]
when building the cross toolchain used for devel-
opment.

2.5. initarm()

After a long struggle with the assembly lan-
guage low-level init, the platform-dependent C
initialization code was almost a piece of cake to

165

handle.

First of all, the device mapping we gener-
ated in start must be described to the C code so
that the correct mapping can be built later on.
This is done by building a table of pmap_devmap
structures, each entry containing the virtual and
physical address, mapping size, protection level
and caching attributes; the contents are similar to
what we used in the assembly code tor building
the device mappings.

Second, we want to initialize the console
device so that we finally gain the ability to do
debugging-by-printf. After having mapped the
console serial port to memory, attaching the con-
sole is a job of calling the machine independent
comcnattach() to specify where the console port
is found and what its parameters are. If all goes
well, the console will work after that. And lo,
there was printf.

After this, initarm() performs memory
management initialization. Since that code was
refactored in®, discussion on it will be skipped.
The code looks straightforward, but since the
code was not written by the author, authorative
comments on how straightforward it was to write
and get working originally cannot be made.

As its final act, initarm() returns the new
stack pointer, which is put into use by start.
Finally. start calls the machine independent ker-
nel entry point: main(), which takes care of the
rest of initialization tasks, such as device autocon-
figuration based on information in the config file.

2.6. Networking

Although it would have been entirely possi-
ble to include a root disk image in the kernel and
therefore accomplish a "full" boot. a system these
days is not really usable without networking, so
the development direction was adding networking
support.

The networking chip in the Viper is an
extremely common chip designated
"SMCOICI11". Support was merely a question
of a frontend for the existing driver in
sys/dev/ic/smc91xx.c.

The frontend driver is divided into two
interface functions: a match function which tells
the system autoconfiguration if the probed device
is present and an attach function which readies

§ Which is just a realty fancy way of saying that
it was copypasted.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

the driver (but not necessarily the device itself)
for operation.

Match & Attach

The easiest way to write a match function
for hardware that is always present is to return
success in all cases. This is also the common lazy
idiom for writing match-functions for devices
which are non-detachable and somehow non-
detachably integrated into a certain system. How-
ever, this is possible of course only if match is
called for only the device in question. Since the
PXA interrupt controller probes through all the
devices under pxaip. matching every caller as the
network device is not a good idea: the interrupt
controller did not function very well as the NIC.
This was fixed making the match check against
the device physical address before deciding if it
was the right driver for the job. Since the fron-
tend driver is currently specific for the Viper, this
is something we are allowed to do, even though it
might not be considered as something very pretty
to do.

The attach routine contains three parts.
First of all, bus_space_map() is called for the
device to generate a bus_space_handle for it.
Second. smc9lcxx_intr() from the MI driver is
established as the interrupt handler by calling
pxa2x0_gpio_intr_establish(). Finally, the fron-
tend is attached to the MI driver by calling
smc91lcxx_attach().

The Trouble with Tuples

As fate usually has it, even though the
driver should, according to theory, have been
working flawlessly after writing the frontend,
NFS mounting root was still not successful. After
running tcpdump the problem was revealed:
£ff:45:67:64:2e:ef >
01:ff:ff:ff:ff:£f£f. The query was not
properly broadcast to the Ethernet broadcast
address because some mysterious "01" had man-
aged to mangle itself into the middle of the
packet. But the mysteriousness of the mystery
became much more fathomable once the on-wire
Ethernet protocol was recalled after some hours
of banging ones head against The Wall: on-wire
the destination comes before the source, tcpdump
just decides to print them the other way around.

This revelation lead to careful analysis of
the Ethernet chip documentation. The length of

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

an Ethernet frame is specified to the hardware by
writing the frame’s length in 16 bits to the chip
prior to writing the packet contents. The original
MI part of the driver did this write in two one-
byte pieces. However, due to the 16bit bus on the
Viper, the chip got two 16bit values instead of two
8bit values containing the lower and upper bytes.
The chip proceeded to interpret the high-order
byte of the length as data bound for the network
and a chaos was ready to ensue. Changing from
two wrong writes to one right write fixed the
problem.

Buffer Space, The Final Frontier

Having root on NFS places a fair deal of
stress on the networking subsystem right after
mountroot. This is because NFS tries to send
maximal size UDP’ packets to transport the bina-
ries to the client system.

Some Ethernet chips have only a tiny
amount of buffer space available, such as the 8kB
specimen on the Viper. If the buffer is filled
before the operating system has a chance to
offload frames from the Ethernet chip into operat-
ing system memory (there is no DMA), the nature
of Ethernet is to lose frames. Getting a full
default size 8kB UDP packet through up to the
application level without dropping a single one of
the Ethernet frames that make up the fragments is
something closely akin to winning the lottery®:
the timings are really critical. If a single frame is
dropped, the UDP packet can never be reassem-
bled and therefore the data does not reach its des-
tination. NFS deals with this by requesting the
same information again, but it is very likely that
the resent data will not reach its destination any
better than the original.

A simple workaround for the problem is to
set the NFS read and write sizes to a low default
by specifying the parameter options
NFS_BOOT_RWSIZE=1024 in the kernel con-
figuration file. Since 1024 bytes is less than the
Ethernet frame size, dropped UDP fragments are
not a problem. The real solution is immensely
more complex involving a soldering iron and
some really steady handywork.

7 Assuming we are using UDP as the transport in
NFS., of course.

8 But, if I could choose, I would rather choose to
the win the lottery.

3. Conclusions

For someone, namely the author, who had
no previous experience in working with the
evbarm port and only a limited number of
encounters with the ARM CPU and no real back-
ground in writing ARM assembly, porting
NetBSD/evbarm to a new platform proved to be
extremely easy. Out-of-the-box cross-buildability
proved its usefulness once again. since a toolchain
for development was available after typing in one
command. One of the really big surprises was
that after fixing all the bugs in initarm(), the ker-
nel managed to bootstrap itself all the way up to
mountroot() without a single error. The battle
preparations for weeding through Viper-induced
bugs and glitches in the machine-independent
code were completely unnecessary.

Acknowledgements

This paper and the code imported to
NetBSD was reviewed by Steve Woodford. The
Viper hardware for development was provided by
Data Respons OY.

References

1. Frank van der Linden. Porting NetBSD to
the AMD x86-64: a case study in OS porta-
bility, pp. 1-10, Proceedings of BSDCon
*02 (2002).

2. Valeriy Ushakov. Porting NetBSD to JavaS-
tation-NC, pp. 161-165, Proceedings BSD-
Con Europe 2002 (2002).

3. ARM Architecture Reference Manual, Addi-
son Wesley. ISBN 0-201-73719-1.

Arcom, Viper Technical Manual.

5. Intel XScale(R) Microarchitecture for the
PXA255 Processor User Manual (March,
2003). Order number 278796.

6. eCosCentric Limited and Red Hat. Inc.,
RedBoot User’s Guide.

7. Chris Torek, Device Configuration in
4.4BSD (December 17, 1992).

8. config -- the autoconfiguration framework
“device definition” language. NetBSD Ker-
nel Developer’s Manual.

9. Matthew Green and Luke Mewburn,
build.sh: Cross-building NetBSD, pp.
47-56, Proceedings of BSDCon ’03 (2003).

167

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Appendix 1: Kernel bootlog

RedBoot> load -r -b 0x2000000 netbsd.kaesi

Using default protocol (TFTP)

Raw file loaded 0x02000000-0x0224bleb, assumed entry at 0x02000000
RedBoot> go

NetBSD/evbarm (viper) booting

initarm: Configuring system ...

init subsystems: stacks vectors undefined page pmap

Loaded initial symtab at 0xc03dba58, strtab at 0xc0413018, # entries 13244

pmap_postinit: Allocated 35 static L1 descriptor tables

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
The NetBSD Foundation, Inc. All rights reserved.

Copyright (c¢) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.

NetBSD 3.99.3 (VIPER) #255: Sun Jun 5 22:07:00 EEST 2005
pooka@brain-damage.localhost.fi:/sys/arch/evbarm/compile/obj/VIPER

total memory = 65536 KB

avail memory = 59092 KB

mainbus0 (root)

cpul at mainbus0: PXA255/26x step A-0 (XScale core)

cpul: DC enabled IC enabled WB enabled LABT branch prediction enabled

cpu0: 32KB/32B 32-way Instruction cache

cpul: 32KB/32B 32-way write-back-locking Data cache

pxaip0 at mainbus0: PXA2x0 Onchip Peripheral Bus

pxaip0: CPU clock = 396.361 MHz

pxaintc0 at pxaip0 addr 0x40d00000-0x40d0001f: Interrupt Controller

pxagpio0 at pxaip0 addr 0x40e00000-0x40e0006f: GPIO Controller

sm0 at pxaip0 addr 0x8000300 intr O

sm0: SMC91C111, revision 1, buffer size: 8192

sm0: MAC address xX:xxX:xx:xx:xX:xx, default media MII (internal PHY)

sqphy0 at sm0 phy 0: Seeq 84220 10/100 media interface, rev. 0

sqphy0: using Seeqg 84220 isolate/reset hack

sgphy0: 10baseT, 1lObaseT-FDX, 100baseTX, 100baseTX-FDX, auto

com0 at pxaip0 addr 0x40100000-0x4010001f intr 22: nslé550a, working fifo

com0: console

coml at pxaip0 addr 0x40200000-0x4020001f intr 21: nsle550a, working fifo

com2 at pxaip0 addr 0x40700000-0x4070001f intr 20: nsl16550a, working fifo

saost0 at pxaip0 addr 0x40a00000-0x40a0001f

saost0: SA-11x0 OS Timer

clock: hz=100 stathz = 64

168

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Appendix 2: Devices in the configuration file

The main bus device
mainbus0 at root

The boot CPU
cpul at mainbus?

peripherals
pxaip0 at mainbusO

interrupt controller & gpio pins
pxaintcO at pxaipoO
pxagpio0 at pxaipO

serial ports

options COM_PXA2X0

options FFUARTCONSOLE

com0 at pxaip0 addr 0x40100000 intr 22 #
coml at pxaip0 addr 0x40200000 intr 21 #
com2 at pxaip0 addr 0x40700000 intr 20

these two are not hanging off of pxaip,

FFUART
BTUART

not really tested either

#com3 at pxaip0 addr 0x14300000 # COMS5
#com4d at pxaip0 addr 0x14300010 # COM4

SMC91C111 ethernet
sm0 at pxaip0 addr 0x08000300 intr O

MII/PHY support

sgphy* at mii? phy ? # Seeq 80220/80221/80223 PHYS

169

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

170

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

New Networking Features in FreeBSD 6.0

André Oppermann
andre@FreeBSD.org

The FreeBSD Project

Abstract

FreeBSD 6 has evolved drastically in the
development branch since FreeBSD 5.3 [1] and
especially so in the network area. The paper
gives an in-depth overview of all network stack
related enhancements, changes and new code
with a narrative on their rationale.

1 Internal changes — Stuff under the
hood

Mbuf UMA

UMA (Universal Memory Allocator) is the
FreeBSD kernels primary memory allocator for
fixed sized data structures. It is a SLAB type
allocator, fully SMP aware and maintains per-
CPU caches of frequently used objects. All
network data is stored in Mbufs 0f 256 bytes and
Mbuf clusters of 2048 bytes which can be
attached to Mbufs and replace their internal data
storage. When a cluster is attached the Mbuf
serves as descriptor for the cluster containing all
associated Mbuf and packet information for the
kernel and protocols. To use UMA for efficient
Mbuf allocation some enhancements have been
made to it. Most important is the packet
secondary zone holding pre-combined
Mbuf+cluster pairs. This allows protocols to
save one memory allocation by directly obtaining
a large data structure instead of allocating an
Mbuf and then attaching a separately allocated
Mbuf cluster. The secondary zone is special as it

171

is only a cache zone and does not have its own
backing store. All mbuf+cluster combinations in
it come from their own original Mbuf and cluster
zones. Mbuf UMA provides good SMP
scalability and an accelerated allocation path for
frequently used Mbuf+cluster pairs. For more
information see [2], mbuf(9) and uma(9).

SMP Locking

SMP locking of network related data structures
is the main theme of FreeBSD 6. Locking is
necessary to prevent two CPUs accessing or
manipulating the same data structure at the same
time. Locking gives exclusive access to only one
CPU at a time and makes them aware of each
others work — it prevents CPUs from stomping
on each others feet. Generally it is desirable to
break down locking into fine-grained portions to
avoid lock contention when multiple CPUs want
to access related but independent data structures.
On the other hand too fine-grained locking is
introducing overhead as each locking and
unlocking operation has to be reliably
propagated to all other CPUs in the system. The
first go on fine-grained network locking in
FreeBSD 5 has been greatly enhanced and
refined for excellent SMP scalability. For single
processor machines all performance regressions
due to locking overhead have been eleminated
and FreeBSD 6 reaches the same speed in heavy
duty network streaming as the FreeBSD 4 series.
For more information see [3], mutex(9) and
witness(4).

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Socket Buffer Locking

Every active or listening network connection is
represented as a socket structure in the kernel.
The socket structure contains general
bookkeeping on the socket and two socket
buffer for transmitted and received packets.
Protocols (TCP, UDP, IPX, SPX, etc.) extend
the socket structure with their own bookkeeping
to track connections state and other vital
information. Many of these structures are linked
forth and back and among each other. This
makes proper locking complicated. Additionally
the socket data structure may be accessed and
manipulated at any time either from an
application writing, reading or closing the socket
or from the kernel itself when it has received
data, retransmits or error messages for that
socket. FreeBSD 6 implements a multi-level
locking strategy to efficiently cope with these
constrains. Each socket structure has a general
lock and two separate send and receive socket
buffer locks. Thus sending and receiving may
happen concurrently. Any operation that changes
the state of the entire socket (ie. connection tear
down) has to obtain the general lock. On the
protocol side (using TCP as example) two more
locks are embedded. One protects the IN and
TCP control blocks which contain IP protocol
and TCP specific information, such as the
addresses of the end points and the state of the
TCP connection. The other lock protects all IN
control blocks as a whole. Locks with such a
global scope are normally frowned upon but here
it is necessary to prevent changes in the control
blocks while searches and lookup’s are
performed on it. A search and lookup happens
every time a packet is received from the
network. While this is not optimal it has shown
to express only modest contention.

Protocol Locking

Since early 2005 the entire network stack is
running without any global and exclusive lock.
All Internet protocols and IPX/SPX have been
individually locked and thus made fully SMP
aware and scalable.

172

Network Interface Structure Locking

An area of particular concern for proper locking
was the ifnet structure. The ifnet structure
contains all information the kernel knows about
network interfaces. In FreeBSD network
interfaces drivers may be loaded and unloaded
any time as KL.Ds (Kernel Loadable Modules) or
may arrive or depart as hot-plug interfaces like
PCCARD:s in laptops. Allowing these actions to
occur in a SMP-safe way has required significant
work and re-work of the ifnet structure and its
modes of access. For example some fields in the
structure were holding flags manipulated by the
network stack and the driver. Each of them had
to obtain the lock for the full structure to change
its own fields and flags. This lead to contention
and limitations on parallelism for access to the
physical network. Any such unnecessary
contention point has been identified and each
party has got their own field which they can
manipulate independently without stalling the
other. For more information see ifnet(9),
netintro(9), [4] and [5].

2 Netgraph

Netgraph is a concept where a number of small,
single-job modules are stringed together to
process packets through stages. Many modules
may be combined in almost arbitrary ways.
Netgraph may be best explained as an assembly
line with many little functions along a conveyor
belt versus one big opaque machine doing all
work in one step. As part of the network stack
netgraph has received fine grained locking too.
Depending on the function and task of the
module it was either locked as whole or every
instance of it separately. For more information
see netgraph(4), netgraph(3) and ngctl(8).

Module ng_netflow

Ng_netflow is a new module for accounting of
TCP and UDP flows in ISP (Internet Service
Provider) backbones. It accumulates statistics on
all TCP and UDP session going through the
machine and once one has finished (FIN or RST

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

for TCP) sends a UDP packet in the Netflow 5
format to a statistics collector for further
processing. The node can either run in parallel to
the normal IP forwarding and packet processing,
in this case it gets a copy of every packet, or all
packets are passed through it unmodified. For
more information see ng_netflow(4).

Module ng_ipfw

Ng_ipfw is a new module providing a way for
injecting arbitrary matched packets into netgraph
using ipfw. It works very much like an ipfw
divert rule diverting the packet to netgraph
instead of a divert socket. This allows, for
example, to send by ipfw filtered or rejected
packets to netgraph for further analysis or to
capture certain types of IP packets for further
netgraph manipulations. The packet matching
capabilities of ipfw are very powerful i this
context. For more information see ng_ipfw(4),

ipfw(8) and ipfw(4).
Module ng_nat

Ng nat is a new module providing netgraph
access to the kernel-level libalias for network
address translation. Libalias used to be a
userland-only application library but was written
with in-kernel use in mind. For ng nat is got
imported into the kernel. For more information
see ng_nat(4) and libalias(3).

Module ng_tcpmss

Ng_tcpmss is a new module changing the MSS
(Maximum Segment Size) optoin of TCP SYN
packets. Many broadband users are behind DSL
lines with a reduced MTU (Maximum
Transmission Unit) of 1492 bytes. The normal
size for ethernet is 1500 bytes. If a packet does
not fit the MTU of link is has to be fragmented —
it gets split into two packets. This 1s a CPU
intensive process and to be avoided if possible.
Normally the TCP path MTU discovery
mechanism is supposed to automatically detect
smaller MTUs along the way but over-zealous
firewall administrators often block the ICMP

173

MTU adjustment messages. As workaround a
router along the path of the packet scans for
TCP SYN packets and manipulates it to reduce
the MSS to fit the lower MTU. For more
information see ng_tcpmss(4).

3 IPv4
DHCP Client

The most visible change is the new DHCP client.
It is a port of the OpenBSD dhclient and adapted
to FreeBSD specific needs. It has many security
features like privilege separation to prevent
spoofed DHCP packets from exploiting the
machine. Additionally it is network interface link
state aware and will re-probe for a new IP
address when the link comes back up. This is
very convenient for laptop users who may
connect to many different networks, be it wired
or wireless LANs many times a day. For more
information see dhclient(8), dhclient.conf(5) and
dhclient.leases(S5).

[PFW Firewall

IPFW has received many visible and invisible
modifications. The most prominent visible
changes are IPv6 rule support and ALTQ
tagging of packets. The IPv6 support is further
discussed in the IPv6 section. ALTQ is an
alternative queuing implementation for network
interfaces. Whenever an output interface doesn’t
have enough bandwidth to forward all waiting
packets immediately queuing happens. Excess
packets have to wait until earlier packets are
drained and capacity is available again. Standard
queuing strategy is a tail queue — all new packets
get appended to the tail of the queue until the
queue is full and any further packets get
dropped. In many situations this is undesirable
and for QoS (Quality of Service) it should treat
various types of packets and traffic differently
and with different priorities. ALTQ allows to
define different queuing strategies on network
interfaces to prioritize, for example, TCP ACKs
on slow ADSL uplinks or delay and jitter
sensitive VoIP (Voice over IP) packets. IPFW

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

can be used as packet classifier for ALTQ
treatment. IPFW has another packet queue
manager called DUMMYNET which can
perform many of ALTQ function too. However
it is more geared towards network simulations n
research setting than to general network
interface queuing. Under the hood of IPFW the
stateful inspection of packet flows has been
converted to use UMA zones for flow-state
structure allocation. For more information see
ipfw(8), ipfw(4), altq(8), altq(9) and
dummynet(4).

[PDIVERT

The IPDIVERT module is used for NAT
(Network address Translation) with [IPFW. It is
now a loadable module that can loaded into the
kernel at runtime. Before it always required a
kernel re-compile to make it available. For more
information see divert(4).

[P Options

[P Options are a sore spot in the entire 1Pv4
specification. IP Options extend the [P header by
a variable size of up to 40 bytes to request and
record certain information fromrouters along the
packets path. IP Options are seldom used these
days and have essential zero legitimate use other
than Record Route perhaps. IP Options handling
in the kernel is complicated and was handled
through a couple of global variables in the [P
code path. Access to these variables had to be
locked and it prevented multiple CPUs from
working on IP packets in parallel. The global
variables have been moved into mtags attached
to mbufs containing IP packets with IP Options.
This way all CPUs can work on IP packets in
parallel without risk of overwriting information
and the IP Options information always stays with
the packet it belongs to. Even when one CPU
hands off the packet to another CPU.

IPFILTER Firewall

IPFILTER 4.1.8 was imported and provides
proper locking of its data structures to work in

174

SMP environments. For more information see

ipf(8). ipf(5) and ipf(4).
NFS Network File System

NFS has been extensively tested and received
numerous bug fixes for many edge cases
involving file access as well as some network
buffer improvements.

ICMP

ICMP Source Quench support has been removed
as it is deprecated for a long time now. Source
Quench was intended to signal overloaded links
along a packet path but it would send one
Source Quench message per dropped payload
packet and thus increased the network load
rather to reduce it. It is not and was never used
in the Internet. For more information see [6].

ICMP replies can now be sent from the [P
address of'the interface the packet came into the
system. Previously it would always respond with
the IP address of the interface on the return path.
When the machine is used as a router this could
give very misleading error messages and
traceroute output. For more information see

icmp(4).
ARP Address Resolutions Protocol

Many ARP entry manipulation races got fixed.
ARP maps an IPv4 address to a hardware
(MAC) address used on the ethernet wire. It
stores the IP address of each machine on all
directly connected subnets as a host route and
attaches their MAC address. ARP lookup’s and
timeouts can happen at any time and may be
triggered at any time from other machmes on the
network. In SMP environments this has led to
priority inversions and a couple of race
conditions where one CPU was changing parts of
an ARP entry when a second CPU tried to do the
same. They clashed and stomped on each others
work leading to incorrect ARP entries and even
crashes sometimes. An extensive rework and
locking has been done to make ARP SMP-safe.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

[P Multicast

[P Multicast had many races too. Most of them
related to changes of [P addresses on network
interfaces and disappearing interfaces due to
unload or unplug events. Proper locking and
ordering of locks has been instituted to make IP
Multicast SMP-safe.

IP Sockets

An IP_MINTTL socket option got added. The
argument to this socket option is a value
between 1 and 255 which specifies the minimum
TTL (Time To Live) a packet must have to be
accepted on this socket. It can be applied to
UDP, TCP and RAW IP sockets. This option is
only really useful when set to 255 preventing
packets from outside the directly connected
networks reaching local listeners on sockets. It
allows wuserland implementation of 'The
Generalized TTL Security Mechanism (GTSM)'
according to RFC3682. Examples of such use
include the Cisco I0S BGP implementation
command "neighbor ttl-security". For more
information see ip(4) and RFC3682.

The IP_ DONTFRAG socket option got added.
When enabled this socket option sets the Don’t
Fragment bit in the IP header. It also prevents
sending of packets larger than the egress
interface MTU with an EMSGSIZE error return
value. Previously packets larger than the
interface MTU got fragmented on the IP layer
and applications didn’t have a direct way of
ensuring that they send packets fitting into the
MTU. It is only implemented for UDP and RAW
IP sockets. On TCP sockets the Don’t Fragment
bit is controlled through the path MTU discovery
option. For more information see ip(4).

4 TCP Transmission Control Protocol
SACK Selective ACKnowledgements
SACK has received many optimizations and

interoperability bug fixes. For more information
see tcp(4).

175

T/TCP Transactional TCP

T/TCP support according to RFC1644 has been
removed. The associated socket level changes
however remain intact and functional. FreeBSD
was the only mainstream operating system that
ever implemented T/TCP and its intrusive
changes to the TCP processing made code
maintenance hard. It primary feature was the
shortening of the three-way TCP handshake for
hosts that knew each other. Unfortunately it did
this in a very insecure way that is very prone to
session spoofing and packet injection attacks.
Use of it was only possible in well secured
Intranets. It never enjoyed any widespread use
other than on round trip time sensitive satellite
links. A replacement is planned for FreeBSD 7.

TCP Sockets

The TCP_INFO socket option allows the
retrieval of vital metrics of an active TCP session
such as estimated RTT, negotiated MSS and
current window sizes. It is supposed to be
compatible with a similar Linux socket option
but still experimental.

Security Improvements

The tcpdrop utility allows the administrator to
drop or disconnect any active TCP connection
on the machine. This tool was ported from
OpenBSD. For more information see
tepdrop(8).

The logic processing of TCP timestamps
(RFC1323) has been improved to prevent
spoofing attempts.

TCP Path MTU Discovery has been improved to
prevent spoofing attacks. It now checks the
entire TCP header that is quoted in the ICMP
Fragmentation Needed message to ensure it
matches to a valid and active TCP connection.
For more information see [5].

Port Randomization led to some problems when
applications with very high connection rates

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

came close to exhaust the port number range.
The randomization function was calculating
random ports numbers which were most likely
already in use and fell into an almost endless loop
as the odds of finding a free port at random
dropped constantly. If exhaustion is near it now
switches to normal allocation for 45 seconds to
make the remaining ports available with little
overhead. For more information see [6].

UDP

All global variables have been removed to
prevent locking contention and allow for parallel
processing of packets.

5 IPv6
[PFW Firewall

[PFW now supports IPv6 rules and allows all
available actions for IPv6 packets too. The
previously separate ipfw6 packet filter is to be
retired. The primary advantage of this merge 1s a
single code base and packet flow for [Pv4 and
[Pv6 without duplication or feature differences.
For more information see ipfw(8) and ipfw(4).

KAME netinet6 Code

Many bugfixes and small improvements have
been ported from the KAME codebase.

6 IPX

IPX/SPX is still in use at a non-negligible
number of sites and some significant effort has
been made to lock SPX data structures and to
make them SMP-safe.

7 Interfaces

CARP Common Address Redundancy Protocol
CARP is a special network interface and
protocol that allows two or more routers to

share the same [P address. Thus for all hosts
using that router any fail-over from one to

176

another one is transparent and no service
interruption occurs. Routers in a CARP system
may do hot-standby with priorities or load-
sharing among them. CARP has been ported
from OpenBSD and is similar in functionality to
VRRP from Cisco. For more information see

carp(4).
Ethernet Bridge if bridge

If bridge is a fully fledged ethernet bridge
supporting spanning tree and layer 2 or layer 3
packet filters on bridged packets. If bridge has
been ported from NetBSD and replaces the
previous bridge implementation of FreeBSD.
Spanning tree is very important in bridged
networks because it prevents loops in the
topology. Ethernet packets do not have a TTL
that is decremented on each hop and all packets
in a looped bridge topology would cycle for an
infinite amount of time in the network bringing it
to a total standstill. For more information see

if_bridge(4).
[EEE 802.11 Wireless LAN

The Wireless LAN subsystem has been enhanced
to support WPA authentication and encryption in
addition to WEP. It may be operated in client
(Station) mode or AP (Access Point) mode. In
both modes it supports the full WPA
authentication and encryption set. The
availability of the AP mode depends on the

wireless LAN chip vendor, obtainable
documentation (w/o NDA) and driver
implementation. All cited features are

implemented in the ath driver for Atheros-based
wireless cards which have the best
documentation available. For more information
see ieee80211(4), wlan(4), wlan_ccmp(4),
wlan_tkip(4), wlan_wep(4), wlan_xauth(4),
wpa_supplicant(8), wpa_supplicant(1),
hostapd(8), hostapd(1) and ath(4).

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Interface Polling

The network interface polling implementation
has been re-implemented to work correctly in
SMP environments. Polling is no longer a global
configuration variable but enabled or disabled
individually per interface if the driver supports it.
Most commonly found network drivers support
polling. For more information see polling(4).

NDIS Compatibility — Project Evil

Binary compatibility with Windows NDIS
miniport drivers. The NDIS compatibility layer
emulates the Windows XP/Vista kernel network
driver interface and allows Windows network
card drivers to be run on FreeBSD. It supports
wired and wireless LAN cards. Many parts have
been rewritten and updated as more Windows
drivers could be tested, better documentation
became available and a more throughout
understanding ofthe NDIS nits developed. It has
been updated to work in SMP systems. While
NDIS emulation works well it 1s only a last
resort when all attempts of obtaining network
chip documentation have failed. A FreeBSD
native drivers is always preferred to using
Windows drivers through the NDIS emulation
layer. For more information see ndis(4),
ndis_events(8), ndiscvt(8), ndisgen(§).

Network Driver Locking

Network drivers have to set up and maintain a
couple of internal structures. Examples of the
structures include send and receive DMA rings
and MII information from the PHY. Whenever
packets are sent or received the CPU must have
exclusive access to the these structures to avoid
clashes and confusion. Many drivers had to be
re-worked to make them SMP-safe as originally
multi-access wasn’t a concern. Depending on the
network card the driver got a single lock
covering all aspects of its operation. Sometimes
an even more fine grained approach was taken to
have a lock for each send and receive direction
plus global state manipulations. Separate send
and receive locks provide the best efficiency in

177

SMP systems as two CPU may simultaneously
receive and transmit packets.

References:

[1] FreeBSD 5 Network Enhancements, André
Oppermann, September 2004,
http://people.freebsd.org/~andre/FreeBSD-5.3-

Networking.pdf

[2] Network Buffer Allocation in the FreeBSD
Operating System, Bosko Milekic, May 2004,
http://bmilekic.unixdaemons.com/netbuf bmile

kic.pdf

[3] Introduction to Multithreading and
Multiprocessing in the FreeBSD SMPng
Network Stack, Robert N. M. Watson,
November 2005

[4] TCP/IP Illustrated, Vol. 2, Gary R. Wright
and W. Richard Stevens, Addison-Wesley,
ISBN 0-201-63354-X

[5] The Design and Implementation of the
FreeBSD Operating System, Marshall Kirk
McKusick and George V. Neville-Neil 2004,
Addison-Wesley, ISBN 0-201-70245-2

[6] ICMP attacks against TCP, Fernando Gont,
October 2005, IETF Internet Draft
draft-gont-tcpm-icmp-attacks-05.txt

[6] Improving TCP/IP Security Through
Randomization Without Sacrificing
Interoperability, Michael J. Silbersack,
November 2005

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

178

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Embedded OpenBSD

Niall O’Higgins <niallo@openbsd.org>
Uwe Stiihler <uwe @openbsd.org>

EuroBSDCon, 2005

Abstract

OpenBSD is often overlooked in the embedded computing domain. In this
paper we will highlight some of the features which make OpenBSD an ex-
cellent choice as an embedded operating system. We will give real-world
examples from small i386 systems and the Sharp Zaurus. Finally, we will
discuss the technical issues involved in starting a port to a new platform.

179

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

1 Advantages of OpenBSD

Before we talk about the advantages of OpenBSD, it is important to acknowledge
the limitations and caveats concerning its usage in the embedded space. OpenBSD
is a general purpose UNIX-like operating system. It is not designed specifically
for embedded systems, and as such lacks certain niche features these systems may
require.

1.1 Documentation

It is not unreasonable to assert that OpenBSD lacks some of the kinds of doc-
umentation typical to commercial embedded operating systems. For example,
there is no single centralised “OpenBSD developer’s guide”, nor is there a step-
by-step guide for embedded systems development using OpenBSD. Commercial
embedded operating systems such as QNX Neutrino and VxWorks offer frankly
much more comprehensive documentation both on the system overview level and
HOWTO-style articles from the most basic “Get started with Hello World!” to
more advanced topics such as “Develop a device driver”.

However, OpenBSD has documentation in the form of books, manual pages,
FAQs, mailing lists, and papers/slides. It should be mentioned that OpenBSD,
as a descendent of the original Berkeley Software Distribution, has over 30 years
of history and as such has a very mature and widely-understood architecture.
Much of the information in books such as “The Design and Implementation of
the 4.4BSD Operating System”[?] is still relevant today. As a POSIX-compliant
UNIX-like operating system, you can pick up any good UNIX software program-
ming book and start writing programs for OpenBSD. Furthermore, the manual
pages are meticulously checked for consistency. Most library function manual
pages include concise examples and in some cases where there are security is-
sues they specifically mention improper usage idioms which should be avoided.
A good example of this is the snprintf(3) function. Of course, the ultimate re-
source available to the programmer is the source code, which is freely available
along with the CVS history which can yield insight into the reasons behind certain
pieces of code or design decisions.

1.2 Realtime Systems
At this time, because OpenBSD does not preempt processes executing in kernel

mode, realtime response to events is dependent upon the amount of time spent in
each system activity. Additionally, processes have no way to determine which of

180

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

their pages are resident, so they have no way of ensuring that they will be able
to execute a sequence of instructions without incurring one or more page faults.'
Since the system guarantees no upper bounds on the duration of a system activity,
OpenBSD is decidedly not a realtime system[1].

Soft realtime systems are those where it is acceptable to miss a deadline occasion-
ally. The most obvious examples are digital video and audio processing systems.
It is theoretically possible to add soft realtime capabilities to OpenBSD.

RTMX Incorporated sell addons to OpenBSD which add POSIX realtime exten-
sions for messaging, signals, named and un-named semaphores, shared memory,
realtime / memory mapped files, message queues and fixed priority tasking. This
source code has in fact been donated to OpenBSD and may be integrated into the
official release at some point.

Hard realtime systems are systems where a deadline cannot be missed, or cannot
be missed by more than a fixed amount of time. OpenBSD cannot offer hard
realtime capabilities. However, this is not necessarily a problem, because these
features can be provided by dedicated hardware.

1.3 Filesystems

OpenBSD uses the Berkeley Fast File System (FFS), which is very robust and
mature. It uses a notion of ’cylinder groups’, comprising one or more consecu-
tive cylinders on a disk. FFS tries to allocate new blocks on the same cylinder
as the previous block in the same file - optimally these blocks will also be rota-
tionally well positioned. Thus, cylinder groups minimise seek times and maxmise
throughput. To offset the space wasted by the relatively large 4k block size, indi-
vidual blocks can be split into “fragments” to optimise storage utilisation - partic-
ularly important on UNIX-like systems where there are typically large numbers
of sub-4k files in existence.[2]

While FFS is very well suited for use on hard disks, it was not designed with flash
memory in mind. As such, many of the optimisations and allocation strategies
employed by FFS merely constitute overhead when used with flash memory. Ad-
ditionally, flash memory has some particular qualities, such as long (1 second)
erase times in the case of NOR memory or the expectation of bad blocks in the
case of NAND memory.

Of special importance is the fact that both types of flash have a limited number of
erase/write operations due to wear on the insulating oxide layer around the charge
store mechanism used to store data. Typical NAND flash memory wears out after

I'This problem can be avoided by not specifying a swap device.

181

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

1,000,000 erase/write operations. This causes problems on UNIX-like systems
because every file has a time of last access associated with it, so even read-only
operations incur write operations to flash memory - thus your flash memory could
die very quickly. Fortunately, OpenBSD supports the “noatime” mount(8) option
which disables updating the last access time of files unless the last data modifica-
tion time or last file status change is being changed as well, greatly decreasing the
number of writes to the filesystem.

Also of concern to embedded computing environments - where the system can
be expected to resume operation very quickly after sudden power loss or unclean
shutdown - is the requirement to perform a filesystem integrity check (fsck(8))
before mounting a dirty FFS filesystem as writable. This integrity check can be
both a time and memory consuming process. Fortunately, there are workarounds.
Many embedded systems need only to write data relatively infrequently, for ex-
ample to update a configuration file every few days. In cases such as these, it
is feasible to keep the filesystem mounted read-only, mounting as writable only
when write operations are necessary. Thus, the window where sudden powerloss
or unclean shutdown could force a filesystem integrity check is reduced to at most
a couple of seconds while the write operation completes. In the future, we hope
to greatly reduce the time and memory requirements of fsck(8), possibly through
the addition of a mini-journal to our FFS implementation.

In addition to FFS, OpenBSD also has support for the Andrew File System (AFS),
Linux (EXT2/EXT3), ISO-9660 (CD-ROM), MS-DOS (FAT/VFAT), Network
File System (NFS), NTES (read-only) and UDF (DVD-ROM) filesystems. Of
particular interest to those working with embedded systems is likely the MS-DOS
filesystem support. This is because most flash media used by devices such as
MP3 players or digital cameras is formatted as MS-DOS for compatibilty pur-
poses. OpenBSD can read, write and format these kinds of partitions natively.
The newfs(8) program can perform this formatting by supplying the command
line option -t msdos.

1.4 Memory

Like most general purpose UNIX operating systems, OpenBSD requires a CPU
with a Memory Management Unit (MMU). For mass-produced or low profit mar-
gin applications where you have a choice between different CPUs, this could add
unnecessary expenditure. However, modern embedded architectures with MMUs
are available at affordable prices. The unit price fora ARM720T CPU with MMU,
running at 80 Mhz could well be below 15 € by now, even in small quantities.

As with CPU prices, the total cost of memory can be an issue in some applications.

182

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

OpenBSD requires a relatively modest amount of memory for a general-purpose
desktop or server operating system. In its default configuration, OpenBSD typi-
cally needs 16 MB RAM, and the base system requires at least 128MB free space
in the filesystem to install, but just about everything can be stripped out (of course,
this is no longer an officially supported configuration).

However, memory requirements can be reduced dramatically, at the expense of
having to develop and maintain an unsupported system configuration. People use
CompactFlash cards with capacities of less than 64MB in Soekris machines to run
OpenBSD, and a minimal system that can act as a router can theoretically be fitted
on a 1.44MB floppy, using the same compression techniques that are also applied
to create the official installation floppy images.

Again, for mass-produced or low profit margin applications, RAM usage can be
greatly reduced by stripping out unneeded device drivers and other components
from the kernel. For an ARM machine like “cats” we have been able to create
a kernel that comprises only about IMB of read-only code and data, needs only
IMB RAM for its data structures during startup, and runs directly from read-only
memory. This configuration included only the needed device drivers, optional
generic features such as TCP/IP networking (only IPv4 on purpose), multiple
filesystem support, and the kernel debugger ddb(4).

1.5 Portability

It is one of the expressed goals of the OpenBSD project to support multiple
platforms.[3]

Naturally, an operating system supporting different hardware platforms is advan-
tageous to its users. It allows them to switch hardware freely and works against
vendor lock-in.

Having multiple platforms is also an advantage for the entire codebase; leading to
better machine abstractions and causing bugs to be uncovered in subsystems like
bus_dma(9)*. Of course, the plethora of endian-ness, 64-bit, pointer length, and
alignment issues being found and fixed by having platforms that differ in these
areas increase code quality throughout the tree.

OpenBSD is already a very portable operating system. For example, 95% of the
kernel source code is machine-independent, even for big ports like “sparc”. The
port consists of 76,000 lines of code, but more than 1,300,000 lines are currently
machine-independent. Many hardware platforms are supported by the existing
ports, and new ports are constantly being worked on.[4] Furthermore, because

?Machine and bus independent DMA transfer interface

183

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

OpenBSD - as a descendant of NetBSD - has much infrastructure in common
with that operating system, new ports can still be based on one of the NetBSD
ports.

In section 3 of this paper we will dwell a bit on porting.

1.6 Completeness

The BSD centralised development model, which produces a complete working
operating system, is inherently advantageous to embedded projects. In addition
to a good kernel, you get a complete userland. Not only all the standard utilities
you would expect on a UNIX-like system, but many useful daemons and libraries
ready out of the box.

Examples of third-party software that come “bundled” with OpenBSD are: Perl,
OpenSSH, Sudo, Sendmail as a mail server and filter, BIND DNS server with
security-related improvements, Apache (1.3.x) web server with many security-
related improvements, and of course the X Window System from X.org.

Whatever else is missing for your application can be installed via ports and pack-
ages. Especially if you have to create a very small distribution, the OpenBSD
ports tree will help you to create and maintain your own versions of packages.
Packages can even be installed on a system where perl(1) and the pkg(1) tools are
not available due to space constraints.

1.7 Security

OpenBSD is well known for its security, very briefly here is a short list of some
of the techniques used:

e On OpenBSD, gec(1) comes with the “ProPolice” stack protection exten-
sion, which is enabled by default®; kernel, userland and just about all pack-
ages are compiled with this.

e Randomness is cheap; use it everywhere we can to mix things up for the
attacker: randomise address space allocated with mmap(2) or malloc(2),
use randomness in the TCP/IP stack, load shared libraries in random order.

e W"X memory protection on many platforms - on some (e.g. ARM) it is not
possible unfortunately.

3See gee-local(1) for a list of other OpenBSD-specific modifications.

184

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e Privilege separation in network daemons.

e Source code auditing, e.g. replacement of unsafe string handling functions
like strepy(3) and sprintf(3) with safe variants.

Developers of small embedded systems who are not accustomed to using a com-
plete operating system may be in doubt as to whether security features such as
mmap(2) randomisation truly helps their product. Some may argue that ran-
domness makes it harder to track down problems, but random memory adresses
combined with strict memory protection in fact greatly improves software qual-
ity. This is because it detects out of bounds memory accesses much earlier in
the development cycle. Essentially, it forces you to deal with the bug immedi-
ately in order to proceed with the development of the program, instead of notic-
ing it much later when it has become orders of magnitude more difficult to track
down. Features like this and others such as the new malloc(3) implementation
which crash a buggy program early effectively add a significant degree of “self-
monitoring” to the system. Furthermore they encourage fault-tolerant application
design and emphasise program correctness in general by making the run-time en-
vironment much stricter and less forgiving. It should be noted that unforgiving
environments are not uncommon for embedded systems; related fault-tolerant de-
sign concerns include the capacity to deal with sudden power loss and maintaining
consistent application state. Finally, tools such as watchdogd(8) are now shipped
with OpenBSD which can trigger a reboot if process scheduling fails.

1.8 Licensing

Some of the commercial operating systems are enormously expensive, and the
vendors use “inconvenient” license models, to say the least. If the operating sys-
tem source code is made available at all, then you can usually not afford it.

OpenBSD is extremely strict about the licensing of source code it integrates. We
want to make available code that anyone can use for any purpose, with no restric-
tions. Having undergone numerous license audits, OpenBSD should add minimal
legal headache to your embedded project.[5]

185

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

2 Real-world Examples

The machines we describe below are not embedded systems as such, but embed-
ded systems could make use of similar hardware. One of the main differences
between Soekris and the Sharp Zaurus is that Soekris appliances can use the ex-
isiting OpenBSD/i386 port whereas the Zaurus required a whole new port. Of
course, the Zaurus was able to build upon the existing OpenBSD/cats port, as too
would any products based on an ARM processor.

2.1 Soekris

Soekris machines are small 1386 architechture computers based on a 100/133 Mhz
AMD ElanSC520 486-class CPU or a 233/266 Mhz NSC SC1100 586-class CPU.
Soekris Engineering sell various models to accomodate different numbers and
types of peripheral devices; eg PCMCIA cards, Mini-PCI cards, etc. However,
they all share some fundamental characteristics:

e Hardware watchdog. This is supported by the watchdog(4) driver; it can
be used to automatically reset the machine in case of system overload or
freeze.

e Serial BIOS. This removes the necessity for any kind of VGA adapter, mon-
itor or keyboard, making the case much more compact. Remote adminis-
tration is simplified since the BIOS can be accessed easily along with the
bootloader for system upgrades or maintenance.

e PXE boot ROM. This enables diskless booting, useful not least for first-time
operating system installation.

e One user-programmable LED. This is accessible through the gpio(4) frame-
work and is useful for indicating status at a glance. For example, the LED
could be used to indicate the connection status of a VPN gateway, or to
quickly tell which machine is master in a carp(4) configuration and which
are backups.

186

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e Some number of GPIO pins. These can be connected to simple devices
such as more LEDs, thermal sensors, relay controllers, etc - they can even
be used to drive SD card readers/writers in SPI mode.

Furthermore, the systems are completely passively cooled removing the need for
any fans. Power consumption is low, in the order of 10 or 15 Watts. In fact, since
the Soekris takes DC electricity it is actually possible to provide power to it via a
battery.

The most obvious use for a Soekris machine is as a router or firewall, using pf(4).
They can be fitted with a power-over-ethernet adapter which is very useful if you
are installing the computer in a place where it would be infeasible or even im-
possible to supply power separately. Thus they are well-suited for use as wireless
routers, since such machines typically need to go in out-of-the-way places in or-
der to maximise signal coverage. OpenBSD’s inclusion of the authpf(8) gateway
authentication program makes OpenBSD on Soekris an appealing choice for wire-
less network access provision.

Another example of a role suited to Soekris machines is a low-traffic VPN router
with ipsec(4). Add another machine and some carp(4) and sasyncd(8) and you get
IPsec failover. The Soekris can be fitted with various hardware encryption accel-
erators which are supported by OpenBSD and may help performance somewhat,
but other important bottlenecks will remain.

However, while Soekris machines are useful in many situations, their capabili-
ties should not be over-estimated. The onboard sis(4) NICs are not very efficient,
generating lots of interrupts and the CPUs are underpowered for dealing with sub-
stantial quantites of network traffic. Realistically, they are a low to mid level
networking device, on par with proprietary “soho” routers - but much more con-
figurable and flexible of course.

2.2 Zaurus

The Zaurus is effectively a miniature laptop, taking technology from the embed-
ded systems domain - at its core is the XScale PXA27x processor, a SoC design
- and scaling it up into a fully featured personal computer, albeit a very small
one. Sharp has designed it as a PDA and ships it with Trolltech’s Qtopia running

187

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

on a custom Linux kernel, plus some additional PDA applications. Yet, many
customers who use it more like a mini laptop run an alternative operating system.

The PXA27x processor is a very interesting CPU, with just about everything inte-
grated on-chip. It almost makes the Zaurus a perfect example of a truly embedded
system - but not quite. This is because the functionality of the Zaurus has not
been constrained as much by its hardware design or resources as is typically the
case with embedded systems. The initially targeted C3000 and C3100 models run
at 416Mhz, contain 64MB RAM and a 4GB CompactFlash hard drive internally.
The biggest weakness is perhaps the lack of a floating-point unit.

Additionally, the Zaurus has many useful interfaces: a high-resolution LCD screen.
a touch-sensitive screen surface, an infrared serial port, a regular serial port (with
an adapter cable), a USB 1.l-compliant interface for host and client mode (se-
lected via an adapter cable; client mode is not yet supported by OpenBSD), a
SDIO card socket (not supported by OpenBSD yet), a CompactFlash socket (reg-
ular PCMCIA cards can also be used with an adapter), keypad buttons that can be
accessed when the lid is closed and of course a 3.5mm headphone jack.

Except for the touch-screen, keypad and the audio CODEC, all of the above men-
tioned interfaces are essentially controlled directly by the PXA27x. Other on-chip
peripherals are used only underneath the surface (memory-, DMA-, GPIO- and in-
terrupt controllers, real-time clock and high-resolution timers), or to communicate
with a few supporting chips on the board (I?C, I?S and SSP units).

Its capabilities now include the ability to boot multi-user, run the X Window Sys-
tem, act as a USB 1.1 host, play audio, suspend and resume much like a laptop.
Many of the thousands of ports also compile and run well, including games like
Doom and applications such as Kismet.

188

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

3 Porting OpenBSD

Making a port requires, first and foremost, motivation and persistent work. It is
important to recognise what is feasible and what is not. A port which kind of,
sort of works in a half baked way with a ton of caveats and bugs is not much use
to anybody. For a port to become a fully supported OpenBSD port it must meet
a certain standard of quality. Full support means that the release install media
is known to work, that the architecture can compile itself and that most of the
basic tools exist on the architecture. Furthermore, releases with pre-compiled
application packages should always exist, and there should be attempts to make
snapshots available on a regular basis.[4]

To maintain full support for any architecture, about 20 developers should run ma-
chines of that architecture to find, discuss and fix bugs, review and test diffs, build
packages, keep documentation up to date and so on. A substatial number of users
are also required in order to expose the port to many different machine configura-
tions, usage patterns and to help with development in general.

The rest of this section should give an impression of what steps are involved in the
porting process. Much more detail can be found in Porting BSD UNIX to a New
Platform[6]. It is somewhat outdated, but still valuable reading.

3.1 Preparation

The first step in the porting process is to become familiar with the architecture of
the target hardware. The more documentation about the CPU and other compo-
nents, the better. It is simply not practical to start a port entirely from scratch, one
always picks an existing port and works from that.

When choosing a port as the basis for another, it is best to choose one for a ma-
chine that has as many things as possible in common with the target machine. One
may find that some port’s CPU is similar to the target CPU, but some other port
supports a machine architecture that is closer to the target machine architecture
(with respect to busses, external interfaces, and other subsystems). In such cases,
a judgement call is required.

3.2 Development Environment
To create a working development environment for building a kernel - unless there

is already a similar machine running OpenBSD which uses the same CPU family
as the target machine - it is necessary to use cross-compilation.

189

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Obviously it is not feasible for a project like OpenBSD to develop a complete
compiler toolchain. This gap is filled with software from the Free Software Foun-
dation - GNU binutils and the GNU Compiler Collection (GCC). However, this
makes it difficult to port OpenBSD to a CPU architecture which is not already
supported by GNU binutils and the GCC.*

OpenBSD provides the “cross-tools” and “cross-distrib™ targets in the top-level
Makefile for the purpose of setting up an initial cross-development environment
on another OpenBSD system and to build a minimal distribution for the target
system. Although they may work like a charm on some combination of host and
target machines, these makefile targets are only considered to be porting aids and
are not as well supported as native builds are. Since native builds are a good stress
test for any new machine and port, OpenBSD developers usually switch to native
builds as soon as possible.

3.3 Boot Loader

The boot loader can be as simple as 50 lines of assembly code, or a complete C
program. If the CPU supports JTAG?, it may be convenient during initial devel-
opment to use it to load the whole kernel image directly into the target RAM and
start execution from there.

In the long run, its a good idea to port OpenBSD’s boot(8) program® to the ma-
chine. It acts as a first- or second-stage boot loader that provides a convenient way
to load the kernel and to test the hardware. Generally it initialises console devices,
loads kernel images from supported storage or network devices, passes informa-
tion about the machine to the kernel, and provides an interactive command line.
Porting boot(8) is fairly straightforward - it is not necessary to deal with the full
kernel build infrastructure. The source code is spread across the sys/stand,
sys/lib/libsaand sys/arch/machine/stand subtrees.

In cases where a feature-rich BIOS or firmware is lacking but an operating system
is already running on your machine, one could significantly speed up the process
of porting boot(8) by running it from that other operating system and replacing
the running operating system in RAM with a loaded OpenBSD kernel image on
the fly. This is what has been done on the Zaurus.

*In theory though, a different toolchain could be used.
3Joint Test Action Group, IEEE 1149.1
Traditionally it is called the stand-alone kernel.

190

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

3.4 Building the Kernel

The main kernel configuration files are located in sys/arch/machine/conf
and other files are included by them. The config(8) program sets up a kernel build
directory given a particular kernel configuration file in the files.conf(5) format.

The GENERIC configuration defines a kernel that includes all drivers considered
to be stable for any hardware that could possibly be present in a particular ma-
chine. The RAMDISK configuration may include less device drivers and may
use different options to produce less code. In particular, devices which are not
essential for a system installation may not be supported in the RAMDISK config-
uration. A certain amount of space in the resulting kernel image is reserved for
embedding the root filesystem containing the system installation tools.

Compiling the RAMDISK configuration is as simple as compiling the GENERIC
configuration, but additional steps are required to embed the actual filesystem into
the resulting kernel image bsd. Programs to be included must be built in a com-
pressed form because the filesystem is small. A filesystem image of the correct
size should be created and written into the reserved space within the bsd kernel im-
age. Two more build tools are therefore required: crunchgen(1) and crunchide(1)
for building the compressed programs. Either “elfrdsetroot” or “rdsetroot” can be
used to patch the filesystem into the kernel image. Only the crunch tools must
be built and installed manually from the distrib/crunch subtree. The Make-
fileindistrib/machine/ ramdisk already takes care of compiling a kernel,
preparing the filesystem image, and patching the kernel using the rdsetroot pro-
gram.

3.5 Startup Code

For every machine or CPU architecture there is a routine called start() to which the
boot loader jumps after loading the kernel. It is the start() routine’s responsibility
to:

Disable interrupts,

Bring the CPU into a predictable state (depends on boot loader),

Initialise the MMU by setting up preliminary page mappings or disabling
the MMU (also depends on the boot loader),

Set up an initial C program stack,

Pick up boot arguments from the boot loader,

191

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

e Initialise the interrupt controller so that device drivers can register their own
interrupt handlers,

e Initialise system timers at some point for delay() to work,

¢ Optionally initialise the console device early - it is done again later by con-
sinit(),

e Probe for available RAM,

e Set up and activate the kernel memory maps, including mapping or relocat-
ing the kernel image,

e Set up the permanent kernel stack(s),

e Set up a permanent exception vector or trap table.

After start() has finished setting up the MMU and the initial stack it may call
other C functions, like initarm() on machines with an ARM CPU. Finally, it jumps
to the C function main() defined in sys/kern/init_main.c. The machine-
independent startup carried out by main() again involves several machine-dependent
steps: initialising the console with consinit(), completing initialisation of the main
CPU with cpu_startup(), configuring device drivers with cpu_configure(), finding
the boot disk with diskconf() and finally starting secondary processors on multi-
processor systems with cpu_boot_secondary_processors().

3.6 Subsequent Work

The next steps after writing the missing device drivers are roughly to boot the
machine multi-user, build the compiler toolchain natively and recompile the whole
system natively.

Once the port is running natively, plenty of work still remains if it is to be official:

¢ Fix most annoying bugs,

Port boot(8),

Document the boot process (boot_zaurus(8), ...),

Document already supported devices (intro(4), ...),

Build snapshots, announce the port and make it available,

192

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

-~ Update web pages,

— Set up a mailing list,
e Write and document new device drivers,
e Fix more bugs,

e Make the ports tree aware of the new platform, e.g. create “plists”.

It’s very important to get other people involved with the port as soon as possible.
This is to polish documentation and find more bugs and corner cases. Some kind
of user community is essential to ensuring the long term survival of the port.

4 Conclusion

At the end of the day, using OpenBSD in an embedded system is entirely vi-
able from a technical perspective but developers must be prepared to use a wide
range of resources to find the information they need, including reading source
code and possibly involving contacting the developers themselves or consulting
mailing lists. One can say that much more independent thinking is required ver-
sus commercial solutions. Ultimately, however, developers of embedded systems
who choose OpenBSD are rewarded with greater indepdendence and flexibility.

193

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

References

[1] Marshall Kirk McKusick, Samual J. Leffier, Michael J. Karels, John S. Quar-
terman, The Design and Implementation of the 4.3BSD UNIX Operating Sys-
tem, Addison-Wesley (May, 1989), ISBN 0-201-06196-1, pages 90-91.
|
|

[2] Marshall Kirk McKusick, William N. Joy, Samual J. Leffler, Robert S. Fabry,
A Fast File System for UNIX, Computer Systems, Volume 2 number 3
(1984), pages 181-197.

[3] OpenBSD Project Goals, http://www.openbsd.org/goals.html.
[4] OpenBSD Platforms, http://www.openbsd.org/plat.html.
[51 OpenBSD Copyright Policy, http://www.openbsd.org/policy.html.

[6] Lawrence Kesteloot, Porting BSD UNIX to a New Platform, Lawrence
Kesteloot (June 28, 1995), available online in several formats,
http://www.teamten.com/lawrence/291.paper.pdf .

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

rthreads: A New Thread Implementation for OpenBSD
Ted Unangst

Abstract

The next generation thread library for OpenBSD will be rthreads. Based on the rfork()
system call, rthreads improve the performance, robustness, and scalability of OpenBSD's thread
support. In contrast to other recent threading models introduced to BSD systems, rthreads is not
based on scheduler activations.

The existing userland pthreads has carried us a long way but it's been showing its age
recently. As more applications place more demanding requirements on the thread library its
shortcomings become more apparent. This paper will explain these problems, highlight how
rthreads resolve them, and then continue with an overview of the rthreads implementation.

Threads

Briefly, threading opens up a new programming model for a developer to use, instead of
asynchronous I/O or an event loop. While POSIX defines an API for threads, called pthreads,
several implementations are possible. The core of any threading implementation needs to
provide two fundamentals, concurrency and synchronization. Concurrency allows a programm
to accomplish multiple tasks, while providing the programmer with an abstraction that only one
task need be addressed at a time. Synchronization permits multiple threads to interact in an
orderly manner.

Userland Threads

One way to implement threads is entirely as a userspace library. The userlandapproach
has two advantes. First, it works on operating systems which don't natively support threads.
Second, for some tasks, it offers good performance. By not involving the kernel, syscall
overhead is avoided.

By the same token, however, the kernel is unaware of the thread library's intentions.
This means that it is subject to inoppurtune scheduling by the kernel. There's no true
concurrency, but the only illusion of concurrency, achieved by replacing potentially blocking
I/0 calls with nonblocking calls. In practice, however, nonblocking I/O has a tendency to
block, notably when reading from the filesystem. select() and poll() will always indicate that
data is available, even when it isn't in the buffer cache. If one thread blocks waiting for data
from disk, all threads in the same process block. This drawback severely handicaps the ability
of any userland thread library to provide concurrency.

Kernel Threads and Scheduler Activations

To alleviate these shortcoming, support for threads was added to many systems' kernels.
Now, the kernel can schedule another thread from the same process to run while one thread
waits on disk, and a third thread can be running on a different CPU. A userland library still
exists to provide the API, but many tasks, such as thread creation or synchronization, are
delegated to the kernel through new syscalls.

The next stage of evolution for many thread implementations was a technique called
Scheduler Activations. Originally developed by Anderson, et al, SA expands the
userland/kernel thread interface to include a message passing system for all scheduler events.
Instead of the kernel scheduler selecting a new thread to run when the currently running thread
blocks, a message is sent to the library which then performs the task switch. SA were designed

195

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

to improve the performace of operations like thread creation by avoiding a syscall, and increase
the flexibility of the userland scheduler, by placing it in full control of thread scheduling.

OpenBSD and Threads

At the current time, the only supported thread model for OpenBSD is a userland library.
It suffers from the typical set of problems. Anyone who has used a threaded media player on
OpenBSD has likely discovered for themselves that when one thread blocks, they all block.

The introduction of SMP support for the 1386 and amd64 architectures also highlighted
the fact the because libpthread only utilizes one process, and therefore one scheduling entity, it
could not take advantage of multiple CPUs. Several applications such as MySQL are written to
utilize threads in an attempt to improve performance.

Rthreads

To address these issues, it was clear that kernel support for threads was required.
Instead of an approach based on scheduler activations, implementations of which can be found
in both FreeBSD and NetBSD, a direct 1:1 mapping of user threads to kernel threads was
selected. The already existing rfork() system call provides a means to create multiple processes
that share an address space - in effect, threads. In some ways, this is similar to the
LinuxThreads library, particularly the FreeBSD port of which used rfork() as well. However,
LinuxThreads relied on an extra control thread, and the kernel was unable to properly
distinguish threads from processes.

Kernel Modifications

rfork() typically creates full fledged processes, not threads. Building a thread library
directly on rfork() with no additional kernel support is possible; however, this leads to artifacts
such as every thread appearing independently in the output of utilities such as ps and top. A
new flag to rfork() was added, RFORK_THREAD, to indicate to the kernel that the new process
should be considered a part of the parent. A linked list is maintained of threads for each
process, similarly to the process sibling list. No separate thread structure has been created in
the kernel. Threads are just processes with a special flag set.

All threads created so contain a thread parent pointer, which points to the struct proc for
the process. The thread parent pointer for non-threaded processes is initialized to point back to
itself. In this way, any access to data which particularly needs to address the process can be
done through the thread parent pointer.

The advantage of this approach is that the kernel was made "thread-aware" with only
changes to a few files - those dealing with process creation and exiting. When a thread of a
process calls exit(), the kernel iterates over the list of sibling threads and also calls exit() for
them. A new syscall was added to allow a single thread to exit. No other changes were initially
necessary. As time goes on, more changes have been and will be made to more naturally
integrate thread awareness into the kernel.

One disadvantage of the approach is that some of the struct proc fields are redundant for
a thread. Future work will consider the feasibility of restructuring. In the mean time, the
lossage even for thousands of threads measures only a few dozen KB.

In contrast to the schedular activation approach, the direct 1:1 mapping simplifies
scheduling. Under SA, when a thread blocks in the kernel, a complex dance of interactions and
upcalls is performed to find a new thread. This operation also occurs whenever a timeslice
expires. Because an rthread is implemented as just another process in the kernel, nothing
special need happen when it blocks. A new process is selected to run and the kernel performs
its usual context switch operation.

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Syscalls

The sys_rfork() system call is not new, but a modified version of sys_exit() needed to be
provided so that one thread could exit by itself. The new syscall, sys_threxit(), simply calls
exitl() with a special flag set to indicate only this thread intends to stop. Other threads may
wait for an exiting thread using wait() like any other process. sys_getthrid() is the equivalent of
sys_getpid(), although it does not map all threads to the parent process's pid. To support
voluntary yielding, sys_yield() was added.

In order to support userland mutexes and semaphores, it was necessary to add two
additional syscalls, sys_thrsleep(long ident, int timeout, void *lock) and sys_thrwakeup(long
ident). These functions export the tsleep() and wakeup() kernel functions to userland.
sys_thrsleep() is used to inform the kernel that the current thread wants to cease execution for
an extended period (extended really only meaning more than a clock tick). The ident value is
entered into a list of idents for the current process, and then tsleep() is called on the address of
the list node. This enables the userland process to sleep on any address, much as a process on
the kernel can block waiting on any address, while assuring that every process has a unique
ident space and without requiring the kernel to interpret userland data. sys_thrwakeup() finds
the node with the matching ident, then calls wakeup() on its address. A timeout may be
specified to sys_thrsleep() to control the maximum sleep time. The final address is intended to
be a spinlock currently held by the calling thread. The kernel will release just before calling
tsleep(). It can be used to ensure that a second thread doesn't call sys_thrwakeup() before the
first thread is fully asleep.

Library Code

Binary Compatible

The rthreads library is binary compatible with the pthreads library it replaces. The
design of the original pthreads library was such that all exposed types are really pointers to
opaque types. This means that compiled programs are agnostic to the size and organization of
such types.

MD Code

The majority of rthreads code is machinde independent. On a per architecture basis,
pieces of machine dependent code must be provided. The first is the rfork thread(int flags, void
*stack, void (*fn)(void *), void *arg) function. This function calls rfork(flags) and returns the
thread id of the child to the parent. The child does not return. Instead, it has its stack pointer
adjusted and jumps immediately to fn, passing it arg.

The second function is _atomic_lock(_spinlock lock t *lock) which performs an atomic
compare and swap operation. This function is used to implement the userland spinlock
functions.

Synchronization

pthreads includes several types of synchronization operations and data structures, such
as simple mutexes, reader-writer locks, and condition variables. In rthreads, these are all
implemented as layers on top of semaphores.

The semaphores are implemented using a combination of userland and kernel code.
Spinlocks are used to protect the counter that indicates whether the semaphore is available. In
the simple acquistion case, the count is adjusted and the spinlock released. In other cases, the
thread must block until the semaphore becomes available. Blocking requires finding a new
thread to schedule, so on rthreads a syscall is involved to inform the kernel. The blocking

197

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

thread calls sys_thrsleep(), passing it both the address of the semaphore and the address of the
semaphore's spinlock. The kernel then atomically releases the spinlock, and finds a new
process to run or enters the idle loop.

The first thread will remain waiting on the kernel's wait list until a second process
increases the semaphore count. If the current semaphore count is 0, the thread calls
sys_thrwakeup().

Scheduling

One of the advantages often credited to SA is that the scheduling of threads is under
control of the process and not subject to the kernel. Unfortunately, this flexibility comes at the
cost of considerable complexity. At present, librthread has only limited control over the kernel
scheduler. Ideally, some new syscalls can be added to expose more control to userland without
undue complexity. Otherwise, it's possible for a running thread to yield the CPU at designated
sequence points.

Future Work

Quite simply, signal handling 1s one the most complicated aspects of threads to get right.
I'd also like to explore re-using kernel threads to improve performance, instead of calling
threxit() immediately when finished. Some paradigms create a new thread to acomplish every
small task and eliminating two or three syscalls will likely be a remarkable improvement.

Conclusion

The majority of the code and complexity with the old pthreads code dealt with trying to
fake nonblocking /O and scheduling. The requirement to perform the first has been eliminiated
entirely, and the second task is now the responsiblity of the kernel. For this reason, rthreads is
implemented using only a fraction of the amount of code previously required. rthreads is both a
better and simpler replacement.

Thanks

Of course, any discussion of libpthread needs to mention John Birrel, its original author,
and all the other FreeBSD developers who worked on it. All the OpenBSD developers,
especially anyone who has worked on improving libpthread and who now face adapting many
of those changes to librthread.

Bibliography

Anderson, et al. “Scheduler Activations: Effective Kernel Support for the User-Level
Management of Parallelism”, ACM Transactions on Computer Systems, 1992.
Drepper, Ulrich and Ingo Molnar. “The Native POSIX Thread Library for Linux.”

Evans, Jason and Julian Elischer. “Kernel-Scheduled Entities for FreeBSD”

Williams, Nathan. “An Implementation of Scheduler Activations on the NetBSD Operating
System”, USENIX 2002.

198

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An
implementation walkthrough and
usefulness example

Matteo Riondato
matteo@FreeBSD.org

Copyright © 2005 Matteo Riondato
July 2005

FreeBSD is a registered trademark of the FreeBSD Foundation.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTone and The Open Group are trademarks
of The Open Group in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this document, and the Author was aware of the
trademark claim, the designations have been followed by the “™” or the “®” symbol.

Jails are probably one of the best known features of FreeBSD, not only between the BSD aficionados, but
also between external people. Introduced in FreeBSD 4.0 by Poul-Henning Kamp, they were greatly
enhanced in 5.x and 6.x and became an useful and flexible sysadmin tool.

Although jails’use is widespread in a moltitudo of different tasks, the documents describing their features
are mainly out-of-date, due to the fast development that jails undertook in the last year. Therefore, the
purpose of this paper is to give an insight view of jails’ implementation and a complete description of the
sysadmin’s tools for managing them. At the end, a proof of concept of jails'usefulness is proposed.

1. No jails implies free criminals

UNIX® was born to share resources between users, not to keep them separated from each other. Although this
design decision was obvious twenty years ago, when users were trusted and no menace could come from the outside,
today the situation is completely different: always more UNIX systems serve just one local user but their being
connected to the Internet makes them vulnerable to remote attacks.

The traditional UNIX model for privileges separation doesn’t help to improve the security of the system; on the
contrary, having an omnipotent user like root, can be a serious threat to the security: once an attacker has gained
super-user powers through an insecure application running with root privileges, he can do everything on the system.

199

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

To workaround these design choices, many different solutions were implemented to offer a more granular access
control over system resources but most of them resulted in a mixture of access lists and similars so difficult to
administer that the time needed to configure them made their advantages insightful.

At the same time. other solutions were created to limit the disastrous effects of a succesful privilege escalation. The
chroot(2) system call and its omonymous user-space companion are an example. What chroot does, is changing the
root directory of a filesystem sub-tree so that processes running in the chrooted environment can not access outside
resources. Implemented in 4.2BSD, over the years, chroot revealed its weaknesses both in a security and in a
flexibility point of view: ways to escape from a chrooted environment were found and the limitations in terms of
system administration became evident.

Jails were created not just to unify the advantages of both solutions without taking the disadvantages of them. but to
solve the problem of fine-grained security in a simple yet powerful way.

A jail can be thought as a FreeBSD system inside another FreeBSD system: it has its own / directory (heritage of
chroot(2)), its own root super user, its own IP address. In a sense, the concept of jail is similar to the concept of a
virtual machine, although jails does not emulate hardware resources. Due to this and other limitations, the root user
of the jail has not that illimitated power that makes his corrispondent in the host system so peculiar: he cannot
change the IP addess, cannot create device nodes, cannot run some services and, what is more, cannot shutdown his
own jail. Anyway, these limitations havJe proved not to restrict jails'usage.

2. "Go to Jail. Do not pass Go'" (Monopoly)

As many other FreeBSD features, the jail system consists in a kernel part and in an userland one. The kernel part is
mainly represented by the jail(2) system call, while the userland part is the jail(8) binary. In the following sections
the implementations of both are described, although, for the jail(8) binary we’ll speak more about its usage rather
than about its implementation in terms of code.

2.1. The jail(8) binary

The jail(8) binary resides in /usr/bin/ and is the main consumer of the jail(2) syscall, so we start our jail system’s
implementation description from it. The source for this program resides under /usr/src/usr.sbin/jail/ and
consists in the jail.c file, distribuited under Poul-Henning Kamp’s Beerware License. The main task of this ~150
lines file is to fill a jail struct (included from <sys/jail.h>) with the command line arguments provided by the
user and to call the jail(2) syscall. The jail struct has just four fields:

struct jail {
u_int32_t version;
char xpath;

char *hostname;
u_1int32_t ip_numer;

}

The last three fields are self-explainatory: a filesystem subtree path, an hostname and an ip address are associated to
each jail and by default they cannot be changed neither from inside nor from outside the jail during jail’s life.The
version is set to O when the jail is created and it is just an identifter for the API version.

Once jail(8) has filled the jail struct, it calls the jail(2) syscall as follows:

200

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

struct jail 3;

(]
i = jail(&3);

To complete the creation of the jail environment, jail(8) forks and his child process executes the command specified
by the user on the command line:

argv + 3) != 0)

if (execv(argv([3],
s", argv([3]);

err(l, "execv:
exit (0);

]

jail(8) has now completed its tasks and can exit without errors (returning 0).

2.2. Are jail and prison the same thing?

The answer is: "No. they aren’t” but let’s proceed with order.

In the previous section we analized how jail(8) works but, as the reader probably understood, the dirty job is
accomplished by the jail(2) system call, so its implementation is, without doubts more interesting.

The file /usr/src/sys/kern/kern_jail.c contains the majority of jail-related kernel code: the jail(2) syscall is
implemented in this file, together with security. jail sysctls and other routines strictly connected with jails’
usage.

Although sysctls’ code comes earlier in the file, we start our description from the jail(2) syscall’s implementation:

int
jail (struct thread =*td, struct jail_args =»uap)

As you can see, the declaration for the syscall requires that two arguments should be passed, while, when called from
the userland, just one is needed. This hidden first argument is present in every FreeBSD’s syscall’s code and
represents the caller thread. The second argument too is different from the one expected: it is not a pointer to a jail
struct, but to a different structure jail_args. This structure, defined in <sys/sysproto.h>, is just a fake
structure that incapsulates the struct jail pointer passed at call time.

After having examined how the arguments list changed, we can concentrate on the code. The first operation
accomplished by jail(2) is copying the jail struct from user- to kernel-space:

error = copyin(uap->jail, &j, sizeof(3]));

Before going on with the next step, a new structure should be introduced: prison. As the name suggests, this
structure is strongly related to the jai1 one: it’s defined in the following way in <sys/jail.h>:

/%
* Lock key:
* (a) allprison_mtx
* (p) locked by pr_mtx
* (c) set only during creation before the structure is shared, no mutex

201

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

* required tc read
* (d) set only during destruction of jail, no mutex needed
*/
#1if defined(KERNEL) || defined(_WANT_PRISON)
struct prison {
LIST_ENTRY (prison) pr_list; /* (a) all prisons x/
int pr_id; /% (c) prison id =/
int pr_ref; /+ (p) refcount =*/
char pr_path [MAXPATHLEN] ; /* (c) chroot path «/
struct vnode *pr_root; /+ (c) vnode to rdir =/
char pr_host [MAXHOSTNAMELEN] ; /% (p) jail hostname =/
u_int32_t pr_ip; /% (c) ip addr host =/
void »pr_linux; /% (p) linux abi */
int pr_securelevel; /* (p) securelevel =/
struct task pr_task; /* (d) destroy task =/
struct mtx pr_mtx;

}i

The fields are clearly explained by the comments and some of them are just the correspondants of other struct
jail’s fields but others need at least a quick description. The kernel maintains a double linked list of existing jails,
or better, of existing prison structs: the first field of the struct is, in practice, a pointer to this list. The pr_id
identifies the jail in a unique way, since this field is set at jail’s creation time and never changed thereafter. pr_ref is
a counter for jail’s process and is fundamental during the jail’s lifetime: this counter is set to 1 at creation time and is
incremented each time a process is created inside the jail and decremented once it dies. When it reaches a value of
zero. the hooks in the process creation and destruction code free the entire prison structure. More on this later. A jail
can have the Linux Binary Compatability Layer enabled and, if this is the case, the pr_1inux field will point to a
linux_prison struct (defined in /usr/src/sys/compat/linux/linux_mib.c) containing infos about the
compatability layer (e.g. version). Kernel securelevels are one of the strongest forms of security, since they can
affect he ability to apport crucial modifications to the system. A jail may have a securelevel different from the
one set in the host system; obviously, for processes inside the jail, the higher is used. Jail’s securelevel is setin
the pr_securlevel field which, at creation time, is equal to that of the host system. In the end, pr_taskisa
pointer to the task structure that will be initialized and used when the jail needs to be destructed and its components
freed. The pr_mt x is obviously the mutex protecting the prison structure and some of its fields.

Let’s go back to the way jail(2) works: after having copied the jail structure in kernel space, it initializes a prison
struct and fill it with the right values, either taken from the jail struct or set with a default value. At this time, the
jail infrastructure is ready, but it must be conncected to the system; this is done by calling the jail_attach(2) syscall
from the jail(2) syscall:

error = jaill_attach(td, &jaa);

The td argument is a pointer to the current thread, while the second argument is a pointer to a st ruct
jail_attach_args containing only one field, jid, to identify the jail. The action of jail_attach(2) consists of
putting the process which the td thread belongs to in the new root directory as specified in the prison structure. It
then modifies some fields of the proc structure so that the process gets the correct user credentials. jail_attach(2)
returns to the caller jail(2) which in turns, if everything went right, returns to the calling process. The jail is now
ready and the jail(8) binary can execv(3) the user specified command to start it.

202

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

2.3. Other jail guards

kern_jail.c contains the code for routines others than jail(2) and jail_attach(2), such as prison_find and
prison_free, but their implementation is straight-forward so it will not be disscused here. At the beginning of the
file, many sysct1s are defined in the following way:

SYSCTL_DECL (_security);
SYSCTL_NODE (_security, OID_AUTO, jail, CTLFLAG_RW, O,
"Jail rules");

int jail_set_hostname_allowed = 1;

SYSCTL_INT(_security_jail, OID_AUTO, set_hostname_allowed, CTLFLAG_RW,
&jail set_hostname_allowed, O,
"Processes 1in jail can set their hostnames");

Only one of them is presented here, since the code for the others is pretty similar. Actually, the first part of the code.
creates the security sysctls’ class, while the call to SYSCTL_NODE creates the security.jail sysctls
subtree, or better, creates the root for it. The first argument is taken from SYSCTL_NODE is the parent sysct1 tree
and it can be seen as the mount-point for the sysct1 subtree’s root. The second argument, OID_AUTO is a magical
number and its use will not be explained here; please note that nearly every FreeBSD sysct1’s code has this number
as second argument. jail, the third argument, is the name for the subtree that is going to be created. CTLFLAG_RW,
the fourth argument, means that the values of the sysct1s can be changed by the user. The fifth argument should be
an handler, that is, a pointer to a routine that should be called when more sysct1s are added behind it. Here it is set
to 0 because it is not needed. The last argument is a short description for the sysct1.

Now that both security and security. jail exist, children sysct1 can be created with calls to SYSCTL_INT.
This routine takes seven arguments: the mount point for the newly created sysct1, the magic 0ID_AUTO number,
the new sysct1's name, the flag that specifies wether the value can be changed, a pointer to the variable which to
store the value in, the default value and a short description of the sysctl.

The sysctlscreated in kern_jail.c are:

+ security.jail.sysctl_name. default_value

¢ security.jaill.set_hostname_allowed: 1

¢ security.jail.socket_unixiproute_only: 1

¢ security.jail.sysvipc_allowed: O

* security.jail.enforce_statfs: 2

*» security.jail.allow_raw _sockets: 0

* security.jail.chflags_allowed: 0

* gsecurity.jail.jailed: O

The use of each sysct1 will be explained in Section 3.3a later section

Apart from kern_jail.c, many filesin /usr/src/sys/kern/ contain jail-related code. Many of them control the
creation and the distruption of processes and, to accomplish their tasks, they must control wether the new process’
parent is jailed or the dying process was in jail. One way to do this is calling the jailed (struct ucred *cred)
routine defined in kern_jail.c: it returns 1 if the examined thread is in a jail, 0 otherwise.

Other checks for jailed processes are present throughout the code in many files. grep(1) can help finding them.

203

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

2.4. Future Developements

"There is always room for improvement" (Anonymous). Although the jail subsystem seems fairly
complete and its implementation straight forward, it can be improved in many ways. First of all, a jail can have only
one IPv4 address and this can be restrictive. Pawel Jakub Davidek has patches for this in his pjd_jail branch on
the FreeBSD Perforce Repository (http://cvs.freebsd.org/). Another feature that should be implemented is a clean
way to shut down a jail: jails’ start sequence is clearly documented and implemented, but a jail cannot be thought as
a complete system when it comes to shutdown.

Together with the implementation of new features, code auditing is a must and should be performed on the totality of
the FreeBSD code, since information leaks can exist everywhere.

3. The perfect Daemon County Jail Director (or "How to
build, run and administer a jail under FreeBSD")

In the first part of this paper, the implementation of the jail subsystem was described in depth. This section is
addressed to system administrator and users who want to understand how to make jails work.

3.1. Building the jail
As the jail(8) man page clearly states, building a jail requires the following steps:

D=/here/is/the/jail

mkdir -p $D @

cd /usr/src

make world DESTDIR=SD @

make distribution DESTDIR=SD ©
mount_devfs devfs $D/dev @

Then the jail can be started. The meaning of the above steps should be understood to anyone having even little
experience with FreeBSD, anyway, they are quickly explained here.

O Obviously, the first thing to do is to decide where the jail will physically reside in the host system. A good
choice can be /usr/jailn, where v is a number identifying the jail. /usr/ usually has enough room for the
jail filesystem, which is, in practice, a replication of every file present in a default FreeBSD installation.

® This command will populate the directory chosen for the jail filesystem subtree with the necessary binaries.
libraries, man pages and so on. Everything is done in the typical FreeBSD’s style: first build/compile, then
install. This command alone can also be used to upgrade a previously created jail.

® The distribution for make installs every needed configuration file, so in poor words, it copies
/usr/src/etc/ to $D/etc/.

O To work, a jail does not need devfs to be mounted in it. However, any, or quite any, application requires access
to at least one device. It is really important to control access to devices from inside a jail, as improper settings
could bypass the jail sandboxing.Refer to the devfs(8) man page for more info.

204

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

Final hint about building a jail: there are two kinds of jails, the complete and the minimal. The difference between the
two is that a complete jail is really an FreeBSD system inside a real system, while a minimal jail just has the binaries
and the libraries needed to run a particular program, usually a daemon. The easiest way to build a minimal jail is to
start from a complete jail and then remove the unnecessary parts of it. Be conservative in what you remove.

3.2. Starting the jail

As said before, the jail(8) command is used to start a jail. It takes a variety of arguments and only some of them will
be examined here, so please refer to the man page for additional info.

jail(8) is usually invoked with four parameters as follows:

#jall path hostname IPaddress command

The meaning of each argument should be clear. A little note about the IPaddress argument: it should be an alias to
network interface configured in the system. To set this up, proceed as follows:

ifconfig ifX inet alias aliasIPaddress

The command argument too may need some clarifications. If you are running a minimal jail, you should pass the path
of the deamon you want to be run inside the jail. On the contrary, if the jail is a complete one, the best choice is to
have the /etc/rc script run, as it will replicate the starting of a real FreeBSD system, setting up services and
applying configuration settings.

Usually jails are started a boot time and the FreeBSD rc mechanism provides an easy way to do that. First of all, a
general section about jails should be added to /etc/rc.conf. It contains instructions for enabling jails’ starting.

jail_enable="YES" ¥ Set to NO to disable starting of any jails
jail_list="www" # Space separated list of names of jails

Together with this, an entry similar to the following should be added to /etc/rc.conf for each jail to be started
and the /etc/rc.d/jail script, called at boot-time, will start it.

jail_www_rootdir="/usr/jail/www" # Jail’'s root directory
jail_www_hostname="www.domain.com" # Jail’s hostname

jail_www_ip_="192.168.0.10" # Jail’s IP number

jail www_exec_start="/bin/sh /etc/rc" # command to execute in jail for starting
jail_www_exec_stop="/bin/sh /etc/rc.shutdown" # command to execute in jail for stopping
jail_www_devfs_enable="YES" # mount devfs in the jail
jail_www_fdescfs_enable="NO" # mount fdescfs in the jail
jail_www_procfs_enable="NO" # mount procfs in jail

jail_www_mount_enable="NO" # mount/umount jail’s fs
jail_www_devfs_ruleset="www_ruleset" # devfs ruleset to apply to jail
jail_www_£fstab="" # fstab(5) for mount/umocunt

The /etc/rc.d/jail script can be used to start or stop a jail by hand, if an entry foritis in rc.conf. The
following statement shows an example of this feature:

/etc/rc.d/jail
start

205

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

3.3. Managing the jail from inside and outside

As they reside entirely in a real FreeBSD system. jails can be administer from outside, by the super user in the host
system, and from inside, by the jail’s root. It was already mentioned that they have different levels of powers and
this is reflected in the administration of the jail. In the following subsection jail’s administration is covered both from
the outside and from the inside.

3.3.1. Jail’'s Administration from outside

The root user of the host system can deeply influence the powers of the jail’s superuser. These can be accomplished
thanks to many sysctls and others tools.

Jail-related sysct 1 were presented in a previous section and their use is accurately described in the jail(8) man page.
so please refer to it for additional information.

Some tools useful for jail administration are included in the base system, while others, less useful, are in the ports
collection. jls(8) and jexec(8) are the ones in the base system: the first prints a list of active jails and their
correspondant jail identifier (JID), IP address. hostname and path. More useful than jls(8) is surely jexec(8), which
allows the root in the real system to run programs inside the jail environment, as if he was the superuser of the jail.
This is expecially useful when the root want to cleanly shut down a jail.

Among the many suites of tools for jail administration that can be found in the ports collection, the probably most
complete and useful is sysutils/jalutils (http://memberwebs.com/nielsen/freebsd/jails/jailutils/), a set of small
applications that help the administrator in jail management. Refer to the web page for more info.

3.3.2. Jail’'s Administration from inside

Administering a jail from inside is not too different from administering a real FreeBSD system. In this section, we
will cover more what the jail’s root can not do than what he can.

Obviously the main limitations to the jail’s superuser are kernel-related ones and those that come from sysct1s’
setting done by the external root. The superuser inside the jail is not allowed to mount filesystems nor to unmount
them. He can not change devfs(8) ruleset as the in-jail mounted device filesystem was mounted from the outside. He
can not set firewall rules and is not allowed to do many other administration tasks that requires modifications to
in-kernel data.

Limitations imposed by the kernel root using sysct1s were covered in the previous section.

3.4. Shutting down the jail

As said before, a clean way to shut down a jail is not available at the moment as commands normally used to
accomplish the shutdown cannot be used inside a jail. The least ugly way to halt a jail is to run

sh /etc/rc.shutdown

from inside it or using jexec(8). More info on this can be found in the jail(8) man page.

206

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

FreeBSD Jails in depth. An implementation walkthrough and usefulness example

4. A Proof of Concept for Jail Usefulness

This part will be outlined during the talk.

5. Conclusions

Jails are a powerful and flexible tool that every system administrator should know and use. Their widespread usage in
environments with high security requirements demonstrates how much they can be trusted. Their usefuiness can be
applied in many different environments, from UNIX courses for students to SSH account servers, to hosting. The
future for them is clear and shiny, with the promise of new features’ addition that would make them even more
powerful.

Bibliography

The Design and Implementation of the FreeBSD Operating System, pp. 123-129, Marshall Kirk McKusick and
George V. Neville-Neil, Addison-Wesley, 2004.

Jails: Confining the omnipotent root. (http://docs. freebsd.org/44doc/papers/jail), Poul-Henning Kamp and Robert
Watson, The FreeBSD Project, 2000.

Using Jails in FreeBSD for Fun and Profit (http://www.usenix.org/publications/login/2002-06/pdfs/hope.pdf), Paco
Hope, USENIX Association, June 2002.

Inside Jail (http://www.daemonnews.org/20010%jailint.html), Evan Sarmiento, Daemon News, September 2001.
jail(2) man page, The FreeBSD Documentation Project, The FreeBSD Project.

Jjail(8) man page, The FreeBSD Documentation Project, The FreeBSD Project.

207

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

208

EuroBSDCon 2005 - Proceedings of the Fourth European BSD Conference

Conference Sponsors

Conference Venue:

Universitat Basel
Petersplatz 1, CH-4003 Basel
http://www.unibas.ch/

Silver Sponsor:

The FreeBSD Foundation
7321 Brockway Dr., Boulder, CO 80303, USA
http://www.freebsd.org/

Bronze Sponsor:

HOSTPOINT AG
ZUrcherstrasse 2, CH-8640 Rapperswil
http://www.hostpoint.ch/

GENOTEC Internet Consulting AG
Hegenheimermattweg 119a, CH-4123 Allschwil
http://www.genotec.ch/

Sponsor:
Improware AG
Zurlindenstrasse 29, CH-4133 Pratteln

http://www.imp.ch/

BSD Consult

Rued Langgaardsvej 7, 5D-19, DK-2300 Copenhagen S

http://www.bsdconsult.dk/

209

We thank our

U
BA

The FreeBSD
Foundation

[S] HOSTPOINT

THE DATA RESIDENCE

oogenotec

ImproWare AG
L%

www.imp.ch

1\ Diefiteleluitels
sndronsir @ T |
T Druckerei Dietrich AG
IT Security CH-4019 Base, Pfarrgasse 11
= Tel. 061 639 90 39

