Proceedings of the 5" European BSD Conference

November 10-12, 2006
Novotel Milano Linate, Milan, Italy

EuroBSDCon 2006

Proceedings of the fifth European BSD Conference
November 10-12, 2006

Novotel Milano Linate, Milan, Italy

Event organization:

WillyStudios.com
1-20040, Carnate (Milano)
Via Carducci 9

Copyright © 2006 WillyStudios.com di Stucchi Massimiliano Andrea. All rights reserved. Printed in
Italy.

Published by WillyStudios.com di Stucchi Massimiliano Andrea
Via Carducci, 9
[-20040 Carnate (Milano)

Tel. +39 02 44417203
Fax. +39 02 44417204

email. Info@willystudios.com

http://www.willystudios.com

The copyright of the papers remains to the respective authors.

WillyStudios.com does not assume any responsibility for any omission, error, or for damages
resulting from the use of information contained herein.

The Program Committee is composed by:

Giuseppe Maxia: Program Chair
Matteo Riondato: FreeBSD

Jan Schaumann: NetBSD

Jeffrey Hsu: DragonFlyBSD

Greg Lehey: Expert at large

Guido Sintoni: Freelance Journalist

Massimiliano Stucchi: Conference Organizer

Add IPv6 support for IPFW2 and DUMMYNET for FreeBSD

Raffaele De Lorenzo, Luigi Rizzo, Mariano Tortoriello

October 14, 2006

Abstract

We illustrate how to build a firewall and a traffic
shaper for the FreeBSD system (including Releng 4.x,
5.x, 6.x) with enhanced IPv6 filter capabilities com-
pared to standard IPv4 capabilities. IPv6 will become
soon the new standard Internet Protocol, and it differs
radically from IPv4 Internet Protocol. New security
policies are needed for all systems that currently use
(or will use) the IPv6 protocol. As far as compatibility
is concerned, the new protocol can coexist with the old
one, since they can work independently. Therefore, it
will be possible to move gradually from IPv4 to IPv6.
The goal of this paper and related codes is the imple-
mentation of the IPv6 protocol inside existing firewall/-
traffic shaping programs (IPFW2/DUMMYNET) sup-
porting only IPv4. In this way, compatibility is pre-
served. In the first section we describe in detail the
IPFW2 Firewall and DUMMYNET Traffic Shaper, in-
cluding functionality and rule structure. We also de-
scribe the technical implementation and the hook with
the IPv4 FreeBSD Kernel stack. In the second sec-
tion we describe the Internet Protocol Version 6 (IPv6),
the main differences with respect to IPv4, and how
IPv6 is included in the FreeBSD kernel (IPv6 stack).
In the third section we describe our implementation
aimed at making IPFW2 and DUMMYNET working
with IPv6 rules. We describe in detail the hooking
with the FreeBSD IPv6 stack, crucial for a correct
implementation. Tests are described in the last sec-
tion. On April 18th 2005 this code was committed
in FreeBSD CURRENT by Brooks Davis (via Luigi
Rizzo). See http://www.freebsd.org/news/status/report-
Jjan-2005-mar-2005.html for more info.

1 Ipw2 and Dummynet

Starting from version 4.x:ipfw2, FreeBSD has had a
very reliable Firewall. The Ipfw2 is an advanced fire-

wall, very powerful and versatile. You can use the ipfw
with a dummynet traffic shaper for a nearly absolute
security of your systems. However, the security is not
absolute because there is no IPv6 support for ipfw and
dummynet.

IPFW2 and Dummynet - General Working

Layer IPv4,1Pv6 Etherneth

R
’ @ Filter
Packe!

WFQ+ Delay Fixed Rate

m
m

N
§ Copy Packet J——t-s3

Dummynet Mod:

Yes:

Queue Queue Queve i
¥——Y——-—) s No
No el

Yes ¢

IPFW2 Mod

H
H
H

'

Figure 1: Package Management with Dummynet and Ipfw2

In FreeBSD 4.x the IPv6 entrusts the IPv6 traffic to
ip6fw, a firewall based on the old *ipfw’. The ipfw does
not have the advanced features of ipfw2. For example,
the ipfw works on static/dynamic rules rather than on
traffic shaping. Ipfw2 and Dummynet sources are very
nice ’c’ codes, more flexible for changes and adds on.
We will discuss the following steps that have led us to
the realization of the new firewall and traffic shaper:

o Adapting IPFW2 Firewall module

o Adapting DUMMYNET Traffic shaping module

e Adapting FreeBSD's [Pv6 stack

The most relevant add-on in Ipfw2 was the introduc-
tion of a new pool of rules for IPv6, based on those

already present in IPv4, while for Dummynet we intro-
duced a hook to the IPv6 stacks and some adapting of
the structures. In the user module we introduced a new
parsing method for the new IPv6 rules. These rules are
syntax-based like in the IPv4, and preserve the com-
patibility with all the existent releases. Finally, we in-
troduced Ipfw2 and Dummynet hooks in the FreeBSD
IPv6 stack, in a similar way used for the FreeBSD 1Pv4
stack. We will first describe the operative function of
Ipfw2, Dummynet, and FreeBSD IPv6 stack (developed
by the Kame project). Then, we will describe in detail
all the add-ons we made and the results of the testing.

2 IPFW2, The Firewall

In the last few years, the Internet has expanded ex-
ponentially, and the world networking traffic is con-
tinuously increasing. Methods for checking the inter-
net traffic (Firewalls) and for controlling communica-
tions flows (Traffic Shapers) are needed. A Firewallis a
packet analyzer set, which operates between the packet
operative management (like fragmentation, CRC check,
...) and the true packet management. Flow control is
practically all dependent on the Firewall policies.

Ipfw2 can be split into two parts: the first half
is operative and the second half is for control. The
control part dials up with the user (root) through a
user interface. The user can also interact with Ipfw2
trough sysctl variables (see manual pages) that con-
trol the entire firewall behavior. The operative part
is the core of Ipfw2 and it is the routine called for
checking-in the rules. This operation is a sequential
scan of all the rules in a descent mode, from the first
until the last rule which says default rule: The first
rule that matches with the arrived packet is applied.
The sequence number of the rules is automatically in-
creased, or you can insert a preferred sequence num-
ber when you define the rule. The default rulehas a se-
quence number 65535 and it is special, because it can-
not be erased/modified! This is policy-compiled and
it can be IPFIREWALL_DEFAULT_TO_ACCEPT un-
derstanding like to accept all packets from all or IP-
FIREWALL_DEFAULT_TO_DENY instead. How is
Ipfw2 invoked, and who calls it? The firewall is called
in some points of the IP/ETHERNET stack (see Fig. 2),
and Ipfw2 can be called more than once. You can see
from this picture that the Ipfw2 works fine in input and
in output and can protect from external attacks. How-
ever it can also limit the traffic requests to exterior, and

is useless in the flow control of the inside system.

Device

)
i
i
H
|
H
H

netlink ether.brifae iofw=1l! .o e %
{——t1

T

i

D
2
2
&
®

net.fink ether.ipfyws)

35
—
[}
<
o
han §

net.inet.ip.fw.enable=l !

llemall4 ZMddi

anduy
ndine”d
[}
Y

T'ranspo 3
. layer |

Figure 2: How ipfw2 and Dummynet are invoked

2.1 Structure of rules

Rules are organized in a list called struct ip_fw.
The relevant part of this structure is the body of rules,
which is structured as a set of micro-instruction blocks
all related to some IP/TCP packet parts and their ac-
tion policy. The micro-instruction core is the struc-
ture ipfw_insn that contains the micro-code and identi-
fies the instruction type, and it has the dimension value
of the microcode. This structure is very small and not
adapt for complex parameters, but is scalable. If you
need some complex parameters, you must include them
in the base structure. Their dimension will be added to
the dimension parameter value. Some rules were cre-
ated in this way, in order to have some special type for
fast and comprehensive programmer code. Structure of
the rule is:

1. action

2. policy filter

Both parts have one or more structures ipfw_insn
followed by other parameters related to the operation
encoded by the microinstruction. The supported op-
codes are listed in enum ipfw_opcodes and have built-in
the same classes discussed above. The filter rule
has one or more micro-instructions that are analyzed
by the firewall in some blocks for packet-matching.
Microistructions can discriminate all parts of a packet,
like the IP header (for example source address and
source destination), the IP payload, of the high protocol
header (TCP ports,UDP ports...). Some frequently used
commands have a dedicated type in order to simplify
the programmer code, for example ipfw_insn_sa is

a structure dedicated to the IPv4 socket while the
structure ipfw_insn_ip is used for the IPv4 address
and the relative netmask. You can see how these
structures follow the Structure of rulebecause they are
built with a structure ipfw_insn and the type struct
sockaddr_in (for the first example) and struct in_addr
(for the second one). The idctionof rule describes the
real firewall action when the analyzed packet matches
with the filtered commands. Typical actions are
"DENY","ACCEPT","DIVERT","FORWARDING".

The actions that divert the packet to DUMMYNET are
(O_PIPE and O_QUEUE). These microinstructions
have the same structure of filtered microinstructions
but differ from them slightly because the action is
easier and needs only the structure ipfw_insn. The
structure ipfw_insn_cmd in the rule is the first filter
command and eventually other commands are allocated
contiguous. Their dimension is defined by parameters
created by the module. The same method is used for
dctionsy but the first action offset is a free parameter
inside a basic structure for fast use. The strength-point
of Ipfw2 is the easier expansion of rules and the easier
creation of new rules (for the last operation you must
insert a new opcode and a new dedicated structure).

2.1.1 Ipfw2 Control Part

The control part is an interface that links a com-
munication socket with the kernel module (pointer
ip_fw_ctl_ptr that references the function ipfw_ctl) and
organizes the rules. With this instrument you can ob-
tain:

1. List of free rules
2. Add/Remove rules
3. Groupping rule set
4. Reset or view rule’s counter
When you insert a new rule, the control part makes a

simple check that consists of measuring the microsin-
struction dimension.

2.1.2 Ipfw2 Operative part

The operative part is called by the ipfw_chk function
through ip_fw_chk_ptr and it takes filtered operations.
The hooks that call Ipfw2 are posted at the points

1. Ethernet stack (if_ethersubr.c and bridge.c)

2. [Pv4 stack (ip_input.c and ip_output.c)
The Operative part is invoked by some parameters that
are stored in a structure called args. This structure con-
tains the packet that will be processed and some param-
eters like a pointer to the last rules if the Ipfw2 was

called before. This is important if the sysctl variable
net.inet.ipfw.one_pass is set, because it makes faster the
checking rule process. The operative part, when is in-
voked, collects some information from the packet that
will be used for filter operations. Next, it checks and
matches all microinstructions that build the rules. If
these operations are true, actions will be runned.

3 Dummynet: the traffic shaper

Dummynet is the module that allows to mould the
IP traffic that runs thought the net interfaces. Using
the ipfw control part you can configure how to model
the traffic throught available policies. It works in a
very simple way: every traffic rule can be seen as a tap
that can be opened or closed by the same rule. The
water flow is the matched bandwidth. Dummynet al-
lows for different kinds of data flow control. For every
queue and for every parameter, Dummynet can decide
the modality of the traffic. The queues can be of 3 dif-
ferent kinds

1. Fixed rate Queue
2. Delay Queue
3. WF2Q+ Queue

The fixed rate queue is used for setting up the band-
width permanent to a single rate. The delay queue is
used for slowing down the speed of packets. These two
kinds are also called pipe. A queue WFQ2+ (Worst-
case Fair Weighted Fair Queueing) policy is an effi-
cient variant of the WFQ policy. The queue associates a
weight and a reference pipe to each flow, and then to all
the backlogged (i.e., with packets queued) flow, and fi-
nally to all backlogged, proportionally to their weights.
Note that weights are not priorities; a flow with a lower
weight is still guaranteed; a flow with a lower weight is
still guaranteed to higher weight if is permanently back-
logged. In practice, pipes can be used to set hard lim-
its to the bandwidth that a flow can use, while queues
can be used to determine how different flows share the
available bandwidth.

If we add some Dummnynet rules, the relative packet

flow is shown in Fig. 4
Similarly to Ipfw2, we can divide the structure of
Dummynet in three parts

e Control part
o Operative part

o Interface

3.1 Dummynet Control Part

Like for Ipfw2, the control part is used to create and
configure pipe/queue throught the function ip_dn_ctl.

Dummynet Working schema

Dummnynet
Delay Queus
7N
I] From Module
éTo Catiing Module - ’g‘wnng
SR Tratfic Shapi
Fixed Rave Queve

Figure 3: How Dummynet work

More common configuration for Dummynet are

1. mask: Used for data flow control throught identification mask
that is composed of parameters from TCP/IP/UDP/ICMP pro-
tocols.

2. plr: Is the packet loss ratio, a probability parameter for packet
loss

3. red/gred: Are algorithms for traffic flow.

The first flow type (pipe) corresponds to some param-
eters

1. bw: Is the bandwidth assigned to the flow

2. delay: Is the delay for slowing the packets flow.

To configure a queue, you can use these parameters
1. pipe: A pipe to redirect the flow to some filters

2. weight: A weight used for the fair queuing algorithm.

All configurations parameters were stored in the
structure dn_pipe.

3.2 Dummynet operative part

The committed work by Dummynet operative part
is a regular run slice determined by the kernel vari-
able HZ. Therefore this variable determines the Dum-
mynet queues wake-up. The operative part runs actions
to packets in queues; in fact inside all the queue struc-
tures there are some temporal policies. The routine
dummynet sends get-ready packets (stored in dn_pkt)
to the interface (stored in flag dn_dir). These pack-
ets are back grabbed by dummynet_io, according to an
algorithm for traffic flow (red/gred). Next the packet
(tagged by DUMMYNET first) is passed to the IP/Eth-
ernet layer and is re-inserted to the Ipfw2 and, accord-
ing to the sysctl variable one_pass, is re-filtered.

4 Internet Protocol Version 6

IPv6 (see rfc2460) will replace the actual IPv4 pro-
tocol for the new network needs (like multimedia flow
traffic, and simply the end of IPv4-addresses). IPv6 use
128 bit for addresses space and unicast, multicast and
anycast classes. These address classes are used for ser-
vices coming out of some hosts. IPSEC has a native
support in IPv6. The IPv6 header is illustrated in Fig. 7
(see rfc2460). The IPv4 header is illustrated in Fig. 6.
Notice that the IPv6 header is simpler (therefore faster)
than IPv4,

IP Version 4 - Header scheme

o 4 8 18 19 £}
Vo (4) l"’“‘“’i TOS (8) Length (16)
ident (163 Flags | Offset (13)
TTL(8) | Protocol (8) Checksum (16)

Source Address (32 bit)
Destination Address (32 bit)
Option (Variable) | Pad (Variable)

Payload

NAVANVEQY

Figure 4: IPv4 Header

These are the main differences between IPv6 and
1Pv4.

Traffic Class: Used by router for identifying the same
traffic class (priority packets). Flow Label: Data flow

(like the same for ATM Protocol), used for real-time.

Notice that in the IPv6 header the checksum field
was removed for service reasons. The header lenght
field was removed because the dimensions of header are
fixed to 40 byte. The payload length is 16 bit fixed but
this is too small for higher capacity LAN; this is why
the jumbogram field was used. The options field was
removed because IPv6 uses a list of extension-headers
for options. The extension-headers are six and are in-
serted next to the IPv6 header. The routers forwarding
are very fast because they do not analyze it (payload,
see rfc2460). The order for the IPv6 extension-header
is

e header IPv6;

IP Version 6 - Header scheme
] k3]

Flow label {20 bit)
iwnmmbm ! Hop Limit (8 iy

Ner (4 b0) I Tratiic class (8 b4y]
Payload ienght (16 bit)

b Source Address (128 bit) -

- Destination Address (128 bit)]

Payload

Figure 5: IPv6 Header

e hop by hop option header

o destination option header

e routing header

e fragmentation header

e authentication header

e encrypted security payload header

e destination option header

e upper layer header (es. TCP o UDP).

Schema Extension Header IPv6
0 8 16

[Ext Type l

Figure 6: IPv6 extension header

The fields for fragmentation are removed, because
this was made by extensions-header. In IPv6, the frag-
mentation is no more made in routers, and is very fast.
The true MTU for transmission is calculated by a MTU
Discovery procedure. In IPv6, the MTU has a mini-
mum value of 1280 bytes. For compatibility, IPv6 uses
an encapsulated runneling procedure for IPv4 packets.

5 1IPv6 stack in FreeBSD

FreeBSD IPv6 are made by the Kame group. The I/O
part are controlled by ip6_input and ip6_output func-
tions.

6 Userspace interface

There is a unique interface for both Dummynet and
IPFW2, and the main command is ipfw. You can see
more details in the man page [2]. The main goals of
the ipfw command line are

o rule management: modify all rules in the ipfw2 ruleset

o rule statistics: perform visualization of rule status and statistics
for the administrator

o dummynet management. add dummynet specific rule in the

ruleset

The command interface is designed to create directly
the structure needed by ipfw2 and to send it to the ipfw
daemon. The syntax used is backward-compatible with
the ipfw1 ruleset, at least for the basic rules. Due to the
increase of capabilities, some command were added to
the interface.

The command line interpreter takes each option writ-
ten by the user and creates the related micro-op. The
rule is created simply by acquiring the commmands in
writing order. This a very simple way to perform packet
filtering and it permits to develop a very complex ruleset
that can be interpreted at the start time of the deamon.
The ruleset can be considered as a network language
that ensures the security of the system. Once the in-
terface has completed the creation of the rule, it opens a
socket with the control part of ipfw2 and it performs the
operation by sending an appropriate structure of com-
mand and rule.

The structure of a command can be summarized as
follows

ipfw main_command [rule_body]
the main command encodes the behavior of the inter-
face, some common main commands are
e add/delete: ipfw2 rule management

e list or show: performs visualization of the firewall statistics and
ruleset

® pipe/queue: dummynet management
the rule body depends on the main command but it re-

flects the ipfw2 rule structure described above, and can
be divided in

action protocol from source_address to
destination_address [option]

in the following example we could identify a first part in
which we encode the action and a second part in which
we store the match criteria for the IPv4 packet

ipfw add deny ip from 192.168.0.1 to 192.168.0.20

some other actions could be, for instance,
e allow/permit/accept/pass

o deny/drop

The introduction of the IPv6 caused some changes in
the address interpreter, in the protocol interpreter, and
in the statistic output. However, the global structure of
the command line was kept. The structure of the rules
was maintained in both IPv4 and IPv6 environments so
the flexibility and power of ipfw2 ruleset is available for
both technologies.

ipfw add allow ip from 192.168.0.1 to 192.168.0.20

e sy o i oA el
opcaie: (& AMLCW-- | ! apeoge: O_IP_SRC oo 016 DS
w e : - ' :

AR s 1AL g et 17RO ot ety

Rule Setup

T e
T Al e st sy H —

Control Part il -

Firewall rules Archive

‘m o sa
Lowtien 2
‘o x
Yt s
7‘0’. ﬂﬂm‘l
i:-»-)
P *
19210020 oot dermats
ety
wivee DAL
Ll]
-

Figure 7: Translation of 1Pv4 rule

In addition to this simple syntax there are a lot of
commands and option by which is possible to modify
the behavior of the firewall during the ruleset analysis.
For example it is possible to modify the sequence of
the scanning, deactivate some rules, support additional
statistics, create sono rule on the upper layer protocol
i.e. TCP/UDP port. Some of these commands could be
the following

¢ ipfw enable debug
o ipfw show

e ipfw pipe show

o ipfw flush

The traffic shaper Dummynet uses the same basic struc-
tures and commands, but has some particular feature to
configure its own capabilities. Dummynet can be used
only with ipfw2 because they share the scanning en-
gine. We can say that dummynet is a particular action
that a matching packet must follow. The importance of
dummynet is so relevant that some dedicated command
were developed in the ipfw2 interface. However, the

main program remains the ipfw2 core. The following
example illustrate how to limit all the IPv4 bandwidth

e ipfw add pipe 1 ip from any to any

o ipfw pipe 1 config bw 30Kbit/s

For details please see [2] and [3].

7 Adding IPv6 Support

7.0.1 Add IPv6 support to Ipfw2

For adding IPv6 support to Ipfw2 and Dummynet we
made the following interventions :

1. IPFW2: Add interception of 1Pv6 packets and creation of new
filtered rules for it.

2. ipfw: Adduce user interface parser to new IPv6’s opcodes.

3. Dummynet: Add support for IPv6 pipe/queue and moreover,
support to calling the IPv6 stack.

4. ip6_input,ip6_output: Adding Ipfw2 hooks and Dummynet’s
packets management.

7.0.2 IPv6 support for IPFW2

The first intervention was the interception of packets
from the IPv6 layer inside the function ipfw_chk. In the
same way of IPv4, FreeBSD store network packets in a
kernel of fixed arrays of struct mbuf:

/+ Identify ipvé packets and
+ fill up variables. «/
if (pktlen >= sizeof (struct ip6_hdr) &&
(largs->eh ||
ntohs (args->eh->ether_type)
==ETHERTYPE_IPV6) &&
mtod (m, struct ip *)->ip_v == 6)

the variable pktlen has the IP header dimension grabbed
from mbuf struct, but the mtod(m,struct ip*) grabs the
header from mbuf. Notice that the management of Eth-
ernet packets differs from the management of IPv4/IPv6
packets, because in the first case there is also the ether-
net header. The flag is_ipv6 was set if the IPv6 protocol
was found, and next it will be used for separating the
IPv4 code-flow to the IPv6 code-flow. We must also
grab the higher protocol header(ICMPv6,TCP,UDP),
for collecting information that will used for matching
rules.

/* Search extension headers to
find upper layer protocols

*/
while (ulp == NULL) (
switch (proto) {

case IPPROTO_ICMPV6:
PULLUP6 (hlen, ulp,
args->f_id.flags =
break;

struct icmp6é_hdr);
({struct icmp6_hdr =)

If Ipfw2 finds the fragmentation header, it does not
grab the higher protocol header while it will not have
all packet information (defragmented packet). One of
new the rules inserted in IPv6 was the filtering from ex-
tension header. Therefore you can see the flag ext_hd
(bit vector) used for this intention. The pointer ulp was
used for pointing the header of the higher protocol. Af-
ter Ipfw?2 stores some information, they are used by the
filtered rules and Dummynet:

args->f_id.src_ip6 = mtod{(m, struct
ip6_hdr =*)->ip6_src;
args->f_id.dst_ip6 = mtod(m, struct

ip6_hdr *)->ipé_dst;

args->f_id.src_ip = 0;
args—>f_id.dst_ip = 0;
rgs~>f_id.flow_idé =
(m,

ntohs (mtod
struct 1ip6é_hdr «)->ip6_flow);

7.0.3 Add on for static rules

Now Ipfw2 checks the static rules throughout some
opcodes for matching the information grabbed from the
packet; if it has a good match then it sets the flag match.

switch (cmd->opcode) {

case O_ICMP6TYPE:
match = is_ipvé && offset == 0 &&
proto==IPPROTO_ICMPV6 &&
icmpé6type_match (
((struct icmp6_hdr x)ulp)->icmpé_type,
(ipfw_insn_u32 x)cmd);
break;

ICMPv6 packets was matched by this function

static __inline int
icmpétype_match (int type,
{

ipfw_insn _u32 «cmd)
return (type <= ICMP6_MAXTYPE &&
(cmd->d[type/32] & (l<<{type%32))));

case O_IP6_SRC:
match = is_ipvé6 &&
IN6_ARE_ADDR_EQUAL (&args—->f_id.src_ip6,
& ((ipfw_insn_ip6 +)cmd)->addre);

The last two opcodes are used for filtered packet sent
from/to localhost (called "me6” to distinguish it from

IPv4 "me"). This operation is made by the function
search_ip6_addr_net, which gains the local IPv6 ad-
dress and matches it with the packet address.

static int
search_ip6_addr_net
{

struct ifnet *mdc;

struct ifaddr smdc2;

struct iné_ifaddr xfdm;

struct in6_addr copia;

TAILQ FOREACH (mdc, &ifnet, if_link)

for (mdc2 = mdc->if_addrlist.tgh first; mdc2;
mdc2 = mdc2->ifa_list.tge_next) {
if (!mdc2->ifa_addr)
continue;
if (mdc2->ifa_addr->sa_family == AF_INET6)
fdm = (struct iné_ifaddr *)mdc2;

copia = fdm->ia_addr.siné_addr;
/* need for leaving scope_id in
* the sock_addr +/
in6é_clearscope (&copia);
if (IN6_ARE_ADDR_EQUAL (ip6_addr,
return 1;

&copia))

}
}

return 0;
Other OPCODES....

case O_FLOW6ID:
match = is_ipv6 &&
flow6id_match(args->f_id.flow_ids,
(ipfw_insn_u32) cmd);
break;

The opcode O_FLOWG6ID is used to filter from IPv6
packet flow_id field. This operations is made by
flow6id_match function.

static int

flowé6id_match(int curr_flow,

ipfw_insn_u32 *cmd)
{
int 1i;
for (i=0; 1 <= cmd->o0.argl; ++i)
if (curr_flow == cmd->d[i])
return 1;

return 0;

7.0.4 Add on for dynamic rules

Dynamic rules are supported by IPv6 in according to
this changes/add on:

e Adapting lookup_dyn_rule function used for
search the rule and eventually the expiretion time.

(struct iné6_addr * ip6_addr)

if (IS_IP6_FLOW_ID(pkt)) |
if (IN6_ARE_ADDR_EQUAL (& (pkt->src_ip6),
& (g->id.src_ip6)) &&
IN6_ARE_ADDR_EQUAL (& (pkt->dst_ip6),

& (g->id.dst_ip6)) &&
pkt->src_port == g->id.src_port &&
pkt->dst_port == g->id.dst_port) {
dir = MATCH_FORWARD;
break;
}

if (IN6_ARE_ADDR_EQUAL (& (pkt—>src_ip6),

& (g->id.dst_ip6)) &&
IN6_ARE_ADDR_EQUAL (& (pkt->dst_ip6),
& (g->id.src_ip6)) &&

pkt->src_port == g->id.dst_port &&
pkt->dst_port == g->id.src_port) {
dir = MATCH_REVERSE;

break;

}

e Adapting lookup_dyn_parent function used for
adding new dynamic rule.

static ipfw_dyn_rule x
lookup_dyn_parent (struct ipfw_flow_id *pkt,
struct ip_ fw xrule)
{
ipfw_dyn_rule xq;
int i;
(is_vé6 &&
IN6_ARE_ADDR_EQUAL (& (pkt->src_ip6),
& (g->id.src_ip6)) &&
IN6_ARFE_ADDR_EQUAL (& (pkt—->dst_ip6),
s&(g->id.dst_ip6))) ||
(lis_v6 &&
pkt->src_ip == g->id.src_ip &&
pkt->dst_ip == g->id.dst_ip)

e Adapting hash function hash_packet, used to store
dynamic rules.

static _ _inline int

hash_packet (struct ipfw_flow_id =*id)
{

u_int32_t i;
IS_IP6_FLOW_ID (id)
(id->dst_ip) " (id->src_ip)
(id->dst_port) ~ (id->src_port);
i &= (curr_dyn_buckets - 1);

return i;

}

i =

~

static __inline int
hash_packet6 (struct ipfw_flow_id =*id)
{

u_int32_t 1i;

i= (id->dst_ip6.__ u6_addr.__u6_addr32[0]) ~

? hash_packet6 (id) :

(id->dst_ip6.__u6_addr.__u6_addr32[1]) ~
(id->dst_ip6.__u6_addr.__u6_addr32(2]) ~
(id->dst_ip6._u6_addr.__ué6_addr32[3]) ~
(id->dst_port) ~ (id->src_port) *
(id->flow_1id6) ;

i &= (curr_dyn_buckets - 1);

return i;

}

7.0.5 Other changes

The check_ipfw_struct function is used for checking
the validity of opcode. We added some new opcodes for
IPv6 and they need to check inside this function.

case O_IP6_SRC:
case O_IP6_DST:
if (cmdlen != F_INSN_SIZE(struct in6_addr)
+ F_INSN_SIZE (ipfw_insn))
goto bad_size;
break;

Antispoof algorithm implemented for IPv4 was repli-
cated for IPv6 in the same way.

static int
verify_rev_pathé (struct iné_addr =*src,
struct ifnet xifp)
{
static struct route_iné ro;
struct sockaddr_iné =dst;

dst = (struct sockaddr_in6é x)&(ro.ro_dst);
if (! (IN6_ARE_ADDR_EQUAL
(src, &dst->sin6_addr))) |

bzero(dst, sizeof (xdst));

dst->sin6_family = AF_INET6;
dst->siné_len = sizeof (xdst);
dst->sin6_addr = *src;

rtalloc_ign((struct route «)é&ro,
RTF_CLONING | RTF_PRCLONING) ;

}
if ({(ro.ro_rt == NULL) || (ifp == NULL) ||
(ro.ro_rt->rt_ifp->if _index !=
ifp->if_index))

return 0;
return 1;

}

7.0.6 Changes for Ipfw2 header

The first change to Ipfw header (ip_fw.h) was adding
the new IPv6 opcodes in ip_fw_opcode structure

O_IP6_SRC,
O_IP6_SRC_ME,
O_IP6_SRC_MASK,
O_IP6_DST,
O_IP6_DST_ME,
O_IP6_DST_MASK,
O_FLOW6ID,
O_ICMP6TYPE,
O_EXT_HDR,
O_1IP6,

We also defined some codes for Extension Header, used
for matching-filtered rules.

/*
* The extension header
* presence using a bit
= with a flag for each
*/

#define

#define

#define

#define

#define

are filtered only for
vector

header.

EXT_FRAGMENT 0x1
EXT_HOPOPTS 0x2
EXT_ROUTING 0x4
EXT_AH 0x8
EXT_ESP 0x10

The structure ipfw_isn_ip6 is used for matching rules
for source/destination address.

/+ Structure for ipvé */
typedef struct _ipfw_insn_ip6 {
ipfw_insn o;
struct in6_addr addré;
struct iné6_addr maské6;
} ipfw_insn_ip#6;

In the new ICMPv6 protocol we need a new struc-
ture called ipfw_insn_icmp6, you can see the new im-
plementation of ICMP in rfc2542. The "types" of
ICMPv6 codes are many more and are defined in
netinet/icmp6.h, and now they are 203 types. A bit vec-
tor structure permit to filterer multi ICMPv6 types in
the same rule.

#define IPFW2_ICMP6_MAXV 7
typedef struct _ipfw_insn_icmp6 {
ipfw_insn o;
uint32_t d[IPFW2_ICMP6_MAXV];
} ipfw_insn_icmp6;

The structure ip_fw_flow_id is used to distinguish IPv4
addresses and IPv6 addresses, therefore the structure
ip6_dn_args is used to store some parameters used by
Dummynet (see later).

7.0.7 IPv6 support for Dummynet

The relevant changes for Dummynet are related to the
1/0O sections. They also build new pipe/queue for IPv6
packet and a new hash table function for IPv6 packets.
The I/O section is composed by two functions:

e trasmit_event: It is invoked when Dummynet need
to insert the packet in a queue. This function is
periodically called also by the scheduler, in accor-
dance to policies. We have inserted it in the call-
ing to IPv6 stack through ip6_input and ip6_output
functions.

static void
transmit_event (struct dn_pipe *pipe)

case DN_TO_IP6_IN:

ip6_input ((struct mbuf =)pkt) ;

break ;
case DN_TO_IP6_OUT:

(void) ip6_output ((struct mbuf «)pkt,

NULL, NULL,0, NULL, NULL, NULL);

rt_unref (pkt->ipéopt.ro_or.ro_rt) ;
break ;

o dummynet_io: This function is used to insert or
create the pipes for IPv6 packets.

static int
dummynet_io (struct mbuf sm, int pipe_nr,
} else if (dir == DN_TO_IP6_OUT) {
memcpy (& (pkt->ip6opt.ro_or),
& (fwa->dummypar.ro_or),
sizeof (fwa->dummypar.ro_or));
if (fwa->dummypar.ro_or.ro_rt)
fwa->dummypar.ro_or.ro_rt->rt_refcnt++;
if (fwa->dummypar.dst_or ==
(struct sockaddr_iné =*) &
(fwa->dummypar.ro_or.ro_dst));
fwa->dummypar.dst_or =
(struct sockaddr_iné =*) &
(pkt->ipéopt.ro_or.ro_dst);
pkt->ip6opt.dst_or =
fwa->dummypar.dst_or;
pkt->ipé6opt.flags_or =
fwa->dummypar.flags_or;

If you have an output pipe, then you must store
routing parameters, like the entire structure ro, the
source address, the destination address, and the in-
terface (ifp) where the packet is from. This is nec-
essary because Dummynet grabs the packet from
stack and store it in internal queue. In according
to policies Dummynet re-inserts the packet later
but in this delay the routing parameters stored in
the routing table can be lost. If we do not save
these parameters we will be in trouble because
when Dummynet will re-insert them the packet
stack will cause a kernel panic!!!

7.0.8 Dummynet - other changes

A new hash packet function was inserted for IPv6
packets, in the same way of the IPv4 function; this
change is implemented in the find_queue function,

if (is_vé) |
APPLY_MASK (&id->dst_ip6,

&fs->flow_mask.dst_ip#6);
APPLY_MASK (&id->src_ip6,
&fs->flow_mask.src_ip#6);
id->flow_id6 &= fs->flow_mask.flow_id6;
i ((id->dst_ip6.__ué_addr. u6_addr32[0])
& Oxffff)~
((id->dst_ip6.__u6_addr.__u6_addr32[1])
& Oxffff)~
((id->dst_ip6.__u6_addr.__u6_addr32[2])
& Oxffff) "
((id->dst_ip6. u6_addr._ ué6_addr32([3])
& Oxffff)~
(id->dst_port << 1) (id->src_port)
(id->proto) ~*
(id->flow_id6);

~ ~

7.0.9 Dummynet - Header changes

The changes to Dummynet header was some added
parameters in dn_pkt structure for IPv6 management.

struct dn_pkt {

#define DN_TO_IP6_IN
#define DN_TO_IP6_OUT
dn_key output_time;
struct _ip6édn_args ipéopt;

Vi

We added the ‘“direction” to IPv6 stack
(DN_TO_IP6_IN e¢ DN_TO_IP6_OUT) and to the
ip6opt structure. This structure contains the routing
information saved before inserting the packet in the
Dummynet queue.

struct _ipédn_args {

struct route_iné ro_or;

int flags_or;

struct ifnet+ ifp_or,origifp_or;
struct sockaddr_inéx dst_or;

bi

7.1 Hooks to IPv6 stack

We have added in ip6_input and ip6_output some in-
formation that permits compatibility between Ipfw2 and
Dummynet. The intention of this work is:

. Intercept the IPv6 packets in input and output and
next, calling Ipfw2 to make they destiny.

. Send the packets to the Dummynet queue and re-
insert them next.

7.1.1 Changes to ip6_input

/+* now check with the firewall ipfw2 «/
if (fw_enable && IPFW_LOADED) {
goto passé6;
if (DUMMYNET_LOADED &&
(i & IP_FW_PORT_DYNT_FLAG) != 0) {
/+ Send packet to the appropriate pipe */
ip_dn_io_ptr{m, i & Oxffff,
DN_TO_IP6_IN, &args);
return;

When you extract the mbuf structure (we remind that
the mbuf structure in FreeBSD contains packet infor-
mation), you copy it in the args structure used by Ipfw2
by calling it. The Ipfw call returned code decides if the
packet will be accepted or dropped. If Dummynet was
loaded and there is a correspondent rule for the packet,
then i variable has stored the number of pipe/queue for
it. When Dummynet will re-insert the packet from the
queue, it TAGs the packet.

case PACKET_TAG_DUMMYNET:
args.rule ((struct dn_pkt =*)m)->rule;

break;

*/

}

}

KASSERT (m !'= NULL && (m->m_flags & M_PKTHDR) != 0,
("ip6_input: no HDR"));

if (args.rule) {/* dummynet already filtered us */

ip6 = mtod(m, struct ip6_hdr =*);

hlen = sizeof (struct ipé_hdr);

goto send after dummynet ;

When ip6_input receive a packet, it searches the ex-
istent "TAG" generated by Dummynet or Ipfw2 and if
this is true, it forwards it. You can see that the packet
never cycles out of this scheme.

7.1.2 Changes to ip6_output

if (fw_enable && IPFW_LOADED &&
struct sockaddr_iné xold dst;
args.m = m;

targs.next_hop)

args.next_hop = (struct sockaddr_in *) dst;
args.oif = ifp;

off = ip fw chk_ptr(&args);

m = args.m;

dst = (struct sockaddr _in6 *) args.next_hop;
if (DUMMYNET_LOADED &&

(off & IP_FW_PORT_DYNT_FLAG) != 0) {

args.dummypar.ro_or = xro;
args.dummypar.flags_or = flags;
args.dummypar.ifp_or = ifp;
args.dummypar.origifp_or = origifp;
args.dummypar.dst_or = =*dst;
args.flags = flags;

error = ip_dn io ptr(m, off & Oxffff,

DN_TO_IP6_OUT,
goto done;
}
}

passb6:

&args);

ip6_output saves the mbuf structure in the args struc-
ture and then calls Ipfw2. The Ipfw2 returned code
decides the destiny of packet, and if Dummynet was
loaded, the packet flow will be the same of the ip_input.
Ip6_ouptut, before calling Dummynet, saves the rout-
ing parameters of packet (ro), the network interface pa-
rameters(ifp,orig_ifp), and the destination socket (st).
These parameters are very important!! When Dum-
mynet will re-insert the packet, it will restore the param-
eters, otherwise ip6_output can not forward the packet
and will cause a kernel panic.

case PACKET_TAG_DUMMYNET:

opt = NULL;

ro = &((struct dn_pkt *)mO)->ip6opt.ro_or;
flags = ((struct dn_pkt »)m0)->
ipéopt.flags_or;

iméo = NULL;

origifp = ((struct dn_pkt *)m0)-—>
ip6opt.origifp_or;

ifp = ((struct dn_pkt »)m0)->ipéopt.ifp_or;
dst = & ((struct dn_pkt *)m0)->ip6opt.dst_or;

args.rule=((struct dn_pkt =*)m0)->rule;

if (args.rule != NULL)
printf ("Collecting parameters\n");
break;
if (args.rule) { /* dummynet already saw us */
ip6 = mtod(m, struct ip6_hdr »*);
hlen = sizeof (struct ipé_hdr) ;
if (ro->ro_rt)
ia = ifatoiaé(ro->ro_rt->rt_ifa);
bzero (&exthdrs, sizeof (exthdrs));
ro_pmtu = ro;

goto send_after_dummynet;

When the ip6_output receive a packet it searches for
existent "TAG" generated by Dummynet or Ipfw2. If
this is true, first it restores the routing parameters, the
interface flag, the socket flag, and saved MTU value,
then it forwards them. You can see that the packet never
cycles in this scheme.

7.2 Test phase

The tests were performed to verify the new features.
We built some rules in a network that support IPv6, and
we checked the response from Dummynet and Ipfw?2.
The tests for the user interface (practically the parser),
was simply the insertion of rules from the shell done.
The various tests consisted of adding new rules for the
corresponding case and verifying it by building network
traffic flow in the same way. The good insertion of
rule granted the successful test for parser. Now, if the
counter of rule increment said that ip6_input/output was
working fine, this is a successful test for the hooks to
IPv6 stack. The tests for static rule was

1. Test for filtering single address: We has inserted
a rule like this:
ipfw add deny ipv6 from fe80::250:baff fe78:5941 to me
The shell output is:
00100 deny ipv6 from fe80::250:baff:fe78:5941 to me6

We have tested the rule taking access from the ma-
chine fe80::250:baff:fe78:5941 to localhost, like
telnet for TCP,ping for ICMPv6, ssh (TCP with
SSL), and traceroute for UDP, and next we veri-
fied that the traffic passed from the other address.

. Test for filtering multi address: We inserted a
rule like this:
ipfw add deny ipv6 from fe80::250:baff fe78:5941,
Jfe78::250::fe78:3342 to me
You can insert an arbitrary number of addresses
for it. The test was the same of the previously
rule.

. Test for filtering address with some subnet-
mask: We inserted a rule like this:
ipfw add deny ipv6 from fe80::250:baff:fe78:5941/80 to me
The shell output is:
00100 deny ipv6 from fe80::250:baff .fe78:5941/80 to me6
The test was the same of the previously rule but
now we have distinguished the hosts from the sub-
net mask.

. Test for filtering me6 option: See the previously
rules.

. Test for filtering higher protocol (TCP/UD-
P/ICMPv6): For testing TCP packet filtering we
inserted the rule:
ipfw add deny tcp from fe80::250:baff:fe78:5941/80 to me
The shell output is:

00100 deny tcp from fe80::250:baff:fe78:5941/80 to me6

The tests was the same of the previous
rules but in this case the ping6é (ICMPv6)
and traceroute (UDP) packets sent from
fe80::250:baff:fe78:5941/80 was passed, but
telnet and ssh (TCP) were not.

For testing UDP packet filtering we inserted the
rule

ipfw add deny udp from fe80::250:baff fe78:5941/80 to me
The tests was the same, but in this case only
Traceroute (UDP) packets from the host were
dropped, and the other packets passed.

For testing ICMPv6 packet filtering we inserted
rules like:

ipfw add deny icmp6 from fe80::350:baff fe78:5941/80 to me
ipfw add deny icmp6 from fe80::250:baff fe78:5941/80 to me
icmpGtypes 16,127

The tests was the same, but in the first case all
ping6 packets from the host were dropped, all the
others passed. In the last case only ping6 packet
typed 16 and 127 were dropped.

6. Test for filtering IPv6 flow-id: For testing the
flow-id filter we inserted a rule like this:
ipfw add deny ipv6 from any to any flow-id 20,30,50
This rule blocks all datagram that have a flow id
specificated. We developed a little program for
testing this functionality. The program opens a
UDP socket with the host and sends it to a data-
gram with the desired flow id.

7. Test for filtering IPv6 Extensions-header: For
testing extension-header filters we inserted a rule
like this:
ipfw add deny ipv6 from any to any ext6hdr frag
This rule drop all datagrams that was fragmented,
you can insert some options like flow id.

The other tests are for dynamic rules and they are related
to the limit in the the number of connections TCP/UDP
from/to host. So, to test this we inserted rules like:

ipfw add allow tcp from fe80::250:baff:fe78:5941 to me setup limit
src-addr 4

ipfw add allow udp from fe80::250:baff:fe78:5941 to me setup limit
src-addr 4

This rule limits the number of connections between
TCP and UDP to only 4 from the host. The tests
was to take some TCP/UDP access from the machine
fe80::250:baff:fe78:5941 to localhost, and then verify
that if the number of connections is above to 4 they will
be dropped.

12

The tests for Dummynet verify the functionally for

these rules:

e Testing Pipe rules: We has inserted a rule like this:
ipfw add pipe 1 ipv6 from me to any
ipfw pipe I config bw 30Kbit/s
This rule creates a IPv6 pipe and sets the flow
speed to 30Kbit/s. From the delay value of ping6
you must verify the correct flow speed.

o Testing Queue rules: We inserted the rule:
ipfw add pipe 1 ipv6 from me to any
ipfw pipe 1 config bw 64Kbit/s queue 10Kbytes
This rule creates a IPv6 pipe and sets a flow speed
of 64Kbit/s, then it configures a pipe that limits the
traffic flow to 10KBytes.

AUTHORS

RAFFAELE DE LORENZO received the Laurea
degree (5 years) in Computer Science Engineering
from the University of Pisa (Italy) in 2003. He is
currently a System Network and Security Engi-
neer with famous Italian bank trough important
society of IT, where he develops network security
for the Bank.

LUIGI RIZZO received a Ph.D. degree in Elec-
tronic Engineering from the SSSUP S. Anna in
Pisa, Italy in 1993. Since 1991 he has been with
the Dipartimento of Ingegneria dell’Informazione
at the University of Pisa,where he currently is
Associate Professor.

MARIANO TORTORIELLO received the Laurea
degree (5 years) in Computer Science Engineering
from the University of Pisa, Italy, in 2003. He is
the executive director of a small mechanical engi-
neering company.

References
[1] Paolo Valente - Sviluppo di un sistema di Fair Queuing
in ambiente Unix, Tesi di laurea, Ottobre 2000

ipfw2 manual: man ipfw
http://www.FreeBSD.org/cgi/man.cgi’query=ipfw

(3]

dummynet manual:man dum-
mynethttp://www.FreeBSD.org/cgi/man.cgi?query=dummynet.
[4] C. Patridge. Request for Comment 1809: Using the flow
label field in IPv6, Giugno 1995.

[5]

[6]

[7

—

8

—_

9

—

[10]

[n

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

(20

(21]

[22]

(23]

[24]

[AB, IESG. Request for Comment 1881: IPv6 Address
Allocation Management, Dicembre 1995.

Y. Rekhter, T. Li. Request for Comment 1887: An
Architecture for IPv6 Unicast Address Allocation,
Dicembre 1995.

R. Elz. Request for Comment 1887: A Compact
Representation of IPv6 Addresses, Aprile 1996.

R. Callon, D. Haskin. Request for Comment 2185:
Routing Aspects Of IPv6 Transition, Settembre 1997.

S. Deering, R. Hinden. Request for Comment 2460:
Internet Protocol, Version 6 (IPv6) Specification,
Dicembre 1998.

A. Conta, S. Deering. Request for Comment 2463:
Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification,
Dicembre 1998.

M. Crawford. Request for Comment 2464: Transmission
of IPv6 Packets over Ethernet Networks, Dicembre 1998.

D. Haskin, S. Onishi. Request for Comment 2465
Management Information Base for IP Version 6: Textual
Conventions and General Group, Dicembre 1998,

D. Haskin, S. Onishi. Request for Comment 2466:
Management Information Base for IP Version 6:
ICMPv6 Group, Dicembre 1998.

D. Johnson, S. Deering. Request for Comment 2526:
Reserved IPv6 Subnet Anycast Addresses, Marzo 1999.

D. Borman, S. Deering, R. Hinden. Request for
Comment 2675: IPv6 Jumbograms, Agosto 1999.

R. Hinden, B. Carpenter, L. Masinter. Request for
Comment 2732: Format for Literal IPv6 Addresses in
URL'’s, Dicembre 1999.

R. Gilligan, E. Nordmark. Request for Comment 2893:
Transition Mechanisms for IPv6 Hosts and Routers,
Agosto 2000.

B. Haberman, D. Thaler. Request for Comment 3306:
Unicast-Prefix-based IPv6 Multicast Addresses, Agosto
2002.

R. Draves. Request for Comment 3484: Default Address
Selection for Internet Protocol version 6 (IPv6),
Febbraio 2003.

R. Gilligan, S. Thomson, J. Bound, J. McCann, W.
Stevens. Request for Comment 3493: Basic Socket
Interface Extensions for IPv6, Febbraio 2003.

R. Hinden, S. Deering. Request for Comment 3513: IPv6
Addressing Architecture, Aprile 2003.

W. Stevens, M. Thomas, E. Nordmark, T. Jinmei.
Request for Comment 3542: Advanced Sockets
Application Program Interface (API) for IPv6, Maggio
2003.

R. Hinden, S. Deering, E. Nordmark. Request for
Comment 3587: IPv6 Global Unicast Address Format,
Agosto 2003.

B. Wijnen. Request for Comment 3595: Textual
Conventions for IPv6 Flow Label, Settembre 2003.

13

[25] J. Rajahalme, A. Conta, B. Carpenter, S. Deering.
Request for Comment 3697: IPv6 Flow Label
Specification, Marzo 2004.

[26] Larry L. Peterson & Bruce S. Davie. Computer Networks
- A System Approach Second Edition. Morgan Kaufmann
Publishers (S. Francisco, California).

[27] The Kame Project - http://www.kame.org

What’s new in NetBSD in 2006 ?

Emmanuel Dreyfus

October 24, 2006

Abstract

NetBSD is known as a highly portable operating system, but its strengths are not limited to
being available on many platforms. NetBSD goals also include security, performance, standards
conformance and clean design. Development of innovative features also occurs.

In this paper, we will have a look at the new features that have been integrated into
NetBSD this year.

1 NetBSD in the news

1.1 Dead or irrelevant?

Thanks to the numerous and valuable contributions from Slashdot’s anonymous coward, we
are now all aware that *BSD is dying [1]. While the recurrent Slashdot troll gave us strong
warnings about FreeBSD’s and OpenBSD’s imminent deaths for years, NetBSD was often
omitted. Did that mean NetBSD was already dead?

The EuroBSDCon 2005 social event was called "the night of the living dead", in reference
to the Slashdot troll. That was an attractive point of view, since it implied that dead projects
like the *BSD could be alive and kicking after all. Unfortunately, NetBSD did not show any
sign of life that night, as it was even outperformed by DragonFly BSD at the beer drinking
contest.

The few people who still remembered an OS called NetBSD were still puzzled about the
death of NetBSD: did it occur while nobody was watching? Fortunately, on the 30th of August
2006, one of the NetBSD project founders sent an insightful message to the netbsd-users@
netbsd.org mailing list [2]. In that message, Charles M. Hannum explained that NetBSD
had increasingly become irrelevant. That post was reported by Slashdot, which drove a lot
of attention to NetBSD. Charles shortly followed up with an interview at OnLAMP.com [3],
entitled "Confessions of a Recovering NetBSD Zealot".

Thanks to Charles, things were clear: the project was not dead, it was just irrelevant, and
every Slashdot reader knew about it. That is not very good news, but at least this had the
advantage of showing that NetBSD was alive enough to upset someone and make the Slashdot
cover page.

As far as I am aware, no news site tried to investigate Charles’ claims by interviewing other
NetBSD insiders about the affair. I assume [have to make a few comments on the topic.

In my opinion, Charles has various valid points. Indeed NetBSD could be better managed.
It could also have more features, fewer bugs, and be more popular. Unless a project is really
dead, people always expect more than what they get. There is always room for improvement.

But Charles’ judgement as NetBSD being now irrelevant is just a personal opinion, and
not everybody shares it. There is still a lot of work done on the project from several dozens of
developers (the activity can be monitored through the source-changes@netbsd.org mailing
list [4]). Obviously that crowd does not consider NetBSD as irrelevant.

The project is also recruiting new developers at a steady rate of few persons per month.
That fresh blood shows that we even have newcomers considering NetBSD as an OS relevant
enough to start working on it.

And finally, we still have a lot of users, as we will see in the next section.

Charles’ detractors will note that his complaints come after years of inactivity as a NetBSD
developer, and at the time the board of the NetBSD foundation decided to evict him [5] because
he refused to sign the NetBSD developer agreement [6]. Charles’ answer to his detractors is
available in the press. This is not a nice story, but the only real bad point I will retain is that
we have lost a valuable contributor to the project. That is not the first time such a thing has
happened, and it will certainly not be the last one: no open source project can retain all its
contributors forever. Let us hope we will not do that too often.

1.2 Bugathons

We have received positive press on the two NetBSD bugathons [7]. These are IRC meetings
where NetBSD developers and users meet to work on resolving problem reports together [8].

The two first bugathons were organized by Elad Efrat. They occurred on during September
23rd-24th [9], and October 7th-8th week-ends [10].

Both events were huge successes. According to Elad’s reports, the first edition gathered 30
developers and 20 users, and resulted in 270 problem reports (PR) being closed. The second
edition gathered 3 times more people and resulted in 310 PRs being closed.

Of course, hundreds of PRs being closed do not mean hundreds of bugs being fixed, as
many open PRs are duplicates or obsoletes, or even come with a bug fix that just needs to be
reviewed and committed. Still, such events are excellent news for the project, as it means we
finally found a way to deal with the never-ending accumulation of open PRs [11].

The other very good point about the bugathons is that it clearly shows that despite the
claims about NetBSD’s irrelevancy, there is still a strong user community around NetBSD.

I hope we will see many more bugathons, and that neither the user community, nor the
developers will get tired of them. The open PR database had gotten way too fat, it was high
time to make it slim again!

1.3 Google Summer of Code

This year, NetBSD was involved for the second time in Google Summer of Code [12]. This
year, 8 projects were started by students [13]:

Support for journaling for FFS : The Berkeley Fast File System (FFS) is NetBSD’s pre-
ferred file system. Adding a journaling feature to it would remove the need for long file
system checks when the system reboots after a power outage. As disks get bigger and
cheaper, the time for a file system check has grown far too long for many users.

Support for MIPS64 : NetBSD runs on a large range of hardware, including MIPS based
machines. NetBSD also has all the necessary infrastructure to run on 64 bit processors
(such as alpha, sparc64, or amd64), but it lacked the machine-dependent bits for running
MIPS processors in 64 bit mode.

PowerPC G5 support in NetBSD : This is about adding the machine-dependent bits to
get the PowerPC G35 processor supported by NetBSD.

Improved writing to file system using congestion control : In a multiuser environ-
ment, several processes can write at once to the same file system, thus causing congestion.
The goal of this project was to establish benchmark tools and to research solutions to
file system congestion problems.

TCP ECN support : Explicit Congestion Notification (ECN) is a set of congestion control
mechanisms described in RFC 3168 [14]. At the TCP level, it works by having the sender
adjust the transmission window size to handle congestion notifications sent by routers.
Supporting this feature would enable NetBSD to perform better on overloaded networks
(provided the routers also support ECN).

FAST_IPSEC and IPv6 : The original IPsec implementations in *BSD kernels was de-
rived from the KAME project [15]. It exhibited poor scalability, and was unable to take

advantage of specialized hardware accelerators to perform the cryptographic computa-
tion. The FAST_IPSEC [16] kernel option was created to deal with this issue, but it lacked
IPv6 support.

pkg_install rewrite for pkgsrc : The NetBSD package collection [17] is based on a set of
tools that have evolved over the years. It seems the tools have reached the point where
a major cleanup is necessary. The goal of this project was to collect the requirements for
pkgsrc tools, and re-implement them based on a new clean design.

Improving the mbuf API and implementation : mbuf [18] is the infrastructure used by
kernel networking code to manage memory. The current programming interface features
many pitfalls, and it is easy to write buggy code that makes wrong assumptions. The
goal of the project was to clean up the programming interface to make it easier to deal
with.

Hubert Feyrer’s press release [13] gives us this year’s result. There has been some successful
stories: PowerPC G5 support, ECN implementation, FAST_IPSEC and IPv6, and mbuf cleanup
project were completed. It is also worth noting that the mbuf cleanup project has opened
the way to a zero-copy I/O implementation in NetBSD/Xen. Once completed, this should
produce a noticable performance win.

pkgsrc infrastructure rewrite and file system congestion control were not fully completed.
While not completely done, the file system congestion control still led to interesting perfor-
mance improvements. On the pkgsrc front, a paper from Joerg Sonnenberger [19] details the
recent changes.

And finally, we had two failed projects: the student in charge of the journalised FF'S project
simply vanished, and the one in charge of MIPS 64 ran into a health problem that prevented
him from completing the work in time.

This year again, we have to thank Google for sponsoring our development. Driving students
to NetBSD is an excellent thing for the project, as it means new contributors and new features
implemented.

1.4 pkgsrcCon 2006

The third pkgsrcCon took place in University of Paris 7 — Denis Diderot [20]. The goal of this
technical conference is to gather developers and users of the NetBSD package system, also
known as pkgsrc. Here is the conference program:

e Stoned Elipot, System Administration with pkgsre [21]

e Joerg Sonnenberger, pkgsrc on DragonFly - or Fighting the Windmills [22]
o Roland Illig, pkglint: Static Analyzer For Pkgsrc (23]

e Roland Illig, Why Pkgsrc Sucks [24]

o Emile Heitor, pkg_select — So Many Packages, So Few Columns [25]

e Thomas Klausner, Roundtable Discussion: Updating Packages [26]

e Adrian Portelli, pkgsrc security one year on... [27]

e Dieter Baron, Thomas Klausner, pkg_install Rewrite [28]

e Johnny Lam, Roadmap for Development [29]

2 A few new exciting features

2.1 Xen

Xen [30] is one of the latest hot topics in the world of virtualization. Virtualization is about
running multiple OSes at the same time on the same machine. It makes system management
easier, as a virtual machine can be easily cloned or migrated to another real machine. Virtu-
alization also offers easier system debugging, and allows hardware resources such as memory
and CPU to be easily shared.

For instance, I use Xen virtual machines to run a virtual network with two hosts and a
Network Address Translator (NAT) on the same machine. I use that setup to quickly make
regression tests on IPsec-tools-based VPN [31] setups.

Virtualization usually works by featuring a host OS, which holds access to the real hard-
ware, and guest OSes, which see virtual hardware. Early virtualization software worked by
catching guest OS access to the hardware through exceptions. This enabled running unmodi-
fied versions of the guest OS but had a huge cost in performance.

Xen reached unprecedented levels of performance by requiring guest OSes to be modified.
The guest OS is now aware it is running on a virtual machine, and accesses the virtual hardware
through a well defined API. That approach removed the costly game of generating hardware
exceptions for any hardware access such as a reading data from a disk. In Xen terminology,
guest OSes are called domU, while the host OS is called dom0. It is worth mentioning, that
domU and domO all run on the top the Xen kernel. Xen delegates hardware management to
the kernel in the dom0 OS. This approach has the advantage of freeing Xen development from
writing drivers.

Performance comparison of Xen versus various competitors is available from the Xen web
site, and from a third party research group [32].

NetBSD 3.0 already implemented support for Xen 2.0, both as a domU and a domo.
Recently, Christian Limpach and Manuel Bouyer implemented support for Xen 3.0, both as
domU and dom0.

Xen 3.0 has a few interesting new features, including:

e Support for up to 32 way SMP guests.

e Hardware-assisted virtualization (Intel VT-x and AMD-V Pacifica), which allows running
unmodified guest OS.

e 64 bit support for the AMD64 architecture (not supported by NetBSD yet).

There has also been a lot of code rewriting behind the scenes, but that is not usually
considered an interesting feature.

Finally, it is worth mentioning that benchmarks showed superior disk 1/O performance of
NetBSD as a dom0, compared to Linux [33].

2.2 iSCSI

iSCSI stands for Internet Small Computer System Interface. It is an encapsulation of the SCSI
protocol over TCP/IP, documented in RFC 3720 [34], used for Storage Area Network (SAN).

The basic idea of a SAN is to have file servers exporting disk space as a block device,
instead of exporting it as a file system, through protocols such as Unix’s Network File System
(NFS), Windows’ Common Internet File System (CIFS), or Apple’s Appleshare File Protocol
(AFP). It frees the server from the burden of maintaining a file system, and allows easier
storage resource sharing and extension.

iSCSI is a hot topic, because it allows building affordable SANs, based on ubiquitous
Ethernet and TCP/IP network infrastructure, whereas SAN have traditionally been using
specialized hardware, based for instance on fibre channel.

In iSCSI terminology, there is an iSCSI target, which exports selected storage as a block
device, and an iSCSI initiator, which accesses the block device exported by the target. Of
course, unless you use some kind of a distributed file system which can be mounted by several
OSes at once, there can be only one initiator using a target at a time.

Alistair G. Crooks worked on integrating the iSCSI target support developed at Intel, and
published a set of HOW-TOs [35], which explain how to set up NetBSD as an iSCSI target,
and how to set up MS Windows XP as an iSCSI initiator that uses it. Alistair also presents a
paper on iSCSI at EuroBSDCon 2006 [36].

The iSCSI initiator code in NetBSD is still a work in progress, and so is the support for
iSCSI authentication mechanisms.

2.3 The build infrastructure now creates ISO images

NetBSD enjoys a unique build infrastructure, which allows extremely easy cross-building from
another OS, or from NetBSD itself [37]. That infrastructure made automatic NetBSD builds
for all NetBSD ports [38] not only possible, but even affordable.

There has been a long-term missing item in this auto build machinery: the only bootable
media it was able to produce were installation floppy disk images. As today’s modern hardware
more and more often ships without a floppy disk drive, the lack of automatic bootable ISO
image was becoming a concern.

That missing feature has been implemented, thanks to the work of various contributors.

First, Daniel Watt, Walter Deignan, Ryan Gabrys, Alan Perez-Rathke, Ram Vedam, and
Luke Mewburn, improved NetBSD’s makefs [39] utility, to support the 1SO 9660 format. The
purpose of makefs is to allow creation of file system images without the need of root privileges.
It was initially developed to create FFS images of the RAM disks used in install kernels, so
that this operation could be performed during the build process.

The second step was to actually use that feature in the NetBSD build infrastructure. Alan
Barrett did the appropriate changes. Thanks to this work, NetBSD is now able to provide
bootable ISO images as part of the regular NetBSD-current auto builds.

For now, the ISO images produced through the auto build machinery just contains the
installation program, and not the installation sets (i.e.. base.tgz, comp.tgz, and so on),
leaving the generation of a stand-alone installation ISO images as a future work.

2.4 WPA

NetBSD supports various IEEE 802.11 wireless devices. Unfortunately, we did not support
the Wi-Fi Protected Access (WPA) protocol [40], which was a shame, since it only left our
users with the alternative of using the Wired Equivalent Privacy (WEP) protocol [41], which
is well-known for being insecure [42], or VPN-based setups, which are much more complicated
to set up.

Thanks to Steve Woodford and Rui Paulo [43], NetBSD now has support for joining a
wireless network protected by WPA. Steve and Rui integrated hostapd [44] and wpa_suplicant
(45] from Jouni Malinen’s WPA for Linux project [46]. That software includes WPA and WPA2
support both when acting as an access point and as a client. Advanced access point features
such as RADIUS are also supported.

2.5 Bluetooth

Bluetooth [47] is a complete stack of wireless protocols standardized by the IEEE 802.15.1
task group for usage in Personal Area Networks (PAN). It is used for communication between
various hand-held devices such as cell phones and PDA, or with devices such as hand-free
headsets.

lain Hibbert worked hard on implementing a complete bluetooth stack on NetBSD [48].
Jain started the work on his own, and was later sponsored by Itronix, Inc.

There is a page on the unofficial NetBSD Wiki [49] that shows bluetooth configuration and
usage for using bluetooth Human Interface Devices (HID), serial links, audio headsets, and
audio hands free devices.

2.6 UDF

Universal Disk Format (UDF) [50] is a file system designed for storing files on optical media.
It is developed by the Optical Storage Technology Association (OSTA), and is also known as
the ISO 13346 standard.

UDF is seen as the successor to the ISO 9660 format. It is used in DVDs, but can also be
used in CD-ROMSs or USB flash memories. As more and more optical disks using this format

appear, not being able to read them was a growing annoyance. Thanks to Reinoud Zandijk’s
work [51], this problem is now solved.

According to Reinoud, the NetBSD UDF implementation is able to read UDF file sys-
tems up to version 2.60 that are found on CD-ROM, CD-R, CD-RW, CD-MRW, DVD-ROM,
DVD*R, DVD*RW, DVD+MRW disks, and it should be able to read DVD-RAM, HD-DVD,
and BluRay disks. Disks do not need to be closed.

Note that support is currently limited to read-only. Read/write support is still a work in
progress.

3 Networking

3.1 CARP

The Common Address Redundancy Protocol (CARP) [52] appeared in OpenBSD as a free
alternative to Internet Engineering Task Force (IETF) blessed Virtual Router Redundancy
Protocol (VRRP) [53] and Hot Standby Router Protocol (HSRP) [54], which are encumbered
by Cisco patents.

CARP allows multiple hosts to share an IP address. The main usage for this feature is to
build redundant firewalls, but it can also be used for load balancing.

Liam J. Foy imported OpenBSD’s CARP to NetBSD [55].

3.2 Link aggregation

YAMAMOTO Takashi committed his implementation of the IEEE 802.3ad Link Aggregation
Control Protocol (LACP) [56]. This allows bonding of several Ethernet interfaces into a single
virtual agr(4) [57] interface.

The current implementation has a few limitations, see the agr(4) [57] man page for details.

3.3 NDIS wrapper

Network Driver Interface Specification (NDIS) is a generic programming interface developed
by Microsoft and 3com for network interface drivers [58]. Most, if not all, network device
vendors will give away NDIS drivers for the products they sell.

The NDIS interface is well defined and NDIS driver are not supposed to access Windows
internals without going through the NDIS interface. That means an NDIS driver designed for
Windows could work on another OS, provided that a translation layer is set up between the
NDIS interface and the native OS.

This is exactly what the NDIS wrapper project is about. By implementing an NDIS
compatibility kernel option, it is possible to use binary drivers built for Windows on other
OSes. Of course, that is limited to drivers built for the same processor, which usually means
i386 only.

NDIS wrapper was first developed for FreeBSD [59], and later adopted by Linux [60].
Thanks to the work done by Alan Ritter during last year’s Google Summer of Code [61],
NetBSD now also enjoys that feature.

For more information on how to use it, see the ndiscvt(8) [62] man page.

4 Storage and file systems

More features beyond iSCSI and UDF:

4.1 tmpfs

tmpfs is a new memory-based file system, which was designed by Julio M. Merino Vidal as a
2005 Google Summer of Code project [63].

The goal of tmpfs is to replace MFS. The problem with MFS is that it is just FFS hacked
to store files in memory instead of on a disk, thus resulting in poor memory usage.

4.2 scan_ffs

Who never erased a partition table by mistake? This error is especially irritating, since your
data is still on the disk, but you cannot reach it anymore.

OpenBSD developed a scan_££s utility to solve that problem. Its purpose is to search the
disk for a FFS file system, so that you have an opportunity to reconstruct your partition table
and recover access to your data.

Thanks to Juan Romero Pardines, NetBSD now also enjoys the scan_ffs(8) [64] utility.
It is worth noting that Juan also added LFS and FFSv2 support to scan_£ffs.

4.3 LFS improvements

LFS stands for Log-structured File System [65]. Traditional file systems have been designed
with the idea that the hard disk seek time was the bottleneck to I/O performances. This is
no longer true if system memory is so big that everything is read from cache, or if the media
is not a hard disk.

The idea behind LFS is to write to the disk sequentially, without doing any efforts so that a
file can be read sequentially. As files are modified, all changes to the files are saved on disk and
mix with each other. LFS write throughput is blazingly fast compared to other file systems.
Another interesting feature is the ability to resize the file system while it is mounted.

The LFS implementation used in BSD systems was not maintained enough to remain
usable. FreeBSD and OpenBSD eventually removed it. Fortunately, Konrad Schroder stepped
in to repair NetBSD LFS and bring it back into a usable state [66].

5 Hardware support

5.1 New ports

NetBSD made a few steps towards total world domination, by adding support for a few more
embedded device platforms:

e Atmark Techno Armadillo-9 [67] is a PC/104 form factor embedded device with the same
size as a floppy disk. It features an ARM CPU, and a large set of 1/O interfaces: USB2,
Compact Flash, IDE, Ethernet and VGA. The evbarm port now supports it, thanks to
Katsuomi Hamajima’s work.

e Also from Atmark Techno, the Armadillo-210 [68] is an extremely small (barely the size
of its connectors) ARM based machine, with VGA and Ethernet (supports Power over
Ethernet). It has 32 MB of memory and 4 MB of flash. Again, brought to the evbarm
port thanks to Katsuomi Hamajima.

e A brand new port, ews4800mips [69]. This brings NetBSD on NEC’s EWS4800 worksta-
tions. The hard work has been done by UCHIYAMA Yasushi and Izumi Tsutsui.

Garrett d’Amore did a huge amount of work around the evbmips port, to support the
following devices:

e the Alchemy Aul550 System-on-a-Chip (SoC) [70] featuring DDR controller, 2 Ethernet
interfaces, 4 serial controllers

e Meshcube [71], a tiny cube with wireless Ethernet, RJ45 Ethernet, USB, 32 MB of flash
and 64 MB of RAM

e Atheros AR5312, a SoC specialized for Wi-Fi appliances which is found in various
wireless devices, such as Linksys WAP55AG 2.0 and WRT55AG, Meraki Mini [78], or
Senao/Engenius 5354AP1 Aries2

More work on embedded ports:

e Steve Woodford added support for the Linksys NSLU2 NAS device to the evbarm port.
The NSLU2 is an external hard disk with integrated Ethernet and USB.

e Shigeyuki Fukushima worked on the evbmips port to add support for OpenMicroServer
400 [72], yet another tiny server from a Japanese manufacturer who does not seem to
have a page in English.

e NONAKA Kimihiro also hacked the evbarm port to add support for a similar Ethernet
and USB enabled external hard disk from I-O DATA, the HDL-G400U.

And because embedded is not everything, we also had new desktop and server ports:

e Sanjay Lal imported initial support for Apple Powermac G5. For now it only works in
32-bit mode (using PowerPC 970 bridge mode), and it requires a serial console. It is able
to boot to multi-user using a NFS root.

¢ And finally, Tim Rightnour improved the prep port to support two IBM RS/6000 models:
IBM 7024-E20, 7025-F30, and 7025-F40, and the Motorola Powerstack E1.

5.2 AC97 modems

AC97 modems are a standardized set of software modems [73], also known as winmodems. A
software modem is in fact a kind of sound card that connects to the phone line. The software
has to perform the appropriate modulation of digital data into an analog signal suitable for
being sent over telephone lines.

Hardware modems are seen as quite standard devices from the operating system. They
are usually attached through a serial line (RS232, serial emulation communication over USB,
over bluetooth), and they can be manipulated using the Hayes command set [74]. Software
modems, on the other hand, need complex drivers that take care of all the modulation details.

The lack of drivers made winmodems quite unpopular on free OSes. It is interesting to
note that they were not popular either in the Windows world, as buggy drivers turned them
into unreliable and slow alternatives to hardware modems.

Jared D. McNeill made some work [75] to support AC97 modems. His contribution is split
in two parts: First, improve kernel drivers to get access to the AC97 modem. Second, port to
NetBSD the Linux slmodemd utility, which is the userland program that implements the soft
modem.

5.3 VESA support

Jared also worked on VESA [76] support in NetBSD. VESA stands for Video Electronics
Standards Association. It is a set of standards for video adapters which is better than plain
old VGA. Most video boards implement VESA today.

The point in supporting VESA is that it allows using the console in graphic mode without
having to get into the horrible details of how the video board works (that will be left to the X
server). The console can therefore be used at higher resolution, and non ASCII character sets
can be displayed.

And just for fun and because it was now possible, Jared D. McNeill added splash screen
capability to the NetBSD kernel boot sequence {77].

54 MIDI

MIDI stands for Musical Instrument Digital Interface [79]. It is a communication protocol
used to interface a computer and an electronic musical instrument.

The original NetBSD MIDI support, developed by Lennart Augustsson in 1998, and the
USB MIDI support added by Takuya SHIOZAKI in 2001, served also as starting points for the
MIDI support currently in FreeBSD and OpenBSD, but then saw little active improvement for
a while, during which the code in the other projects diverged in order to address some bugs
and functional concerns.

Chapman Flack adopted the NetBSD orphan MIDI code and fixed a lot of problems
[80] on many aspects of MIDI support, from the sequencer API to hardware interrupt han-
dling. Among other improvements, USB MIDI throughput problems that resulted in frequent
dropped input data and drastically limited output rate have been corrected, with input, drops
eliminated under test conditions and sustained simultaneous output on multiple ports at the
full MIDI 1.0 data rate. A default behavior for MIDI Active Sensing has been added that
allows applications to detect communication interruptions with much simpler code than to
parse and time out Active Sense messages explicitly, and that leads to reasonable behavior in
pipelines of standard tools that have no knowledge of Active Sensing at all.

Chapman Flack also did a lot of code clean-up, and redesigned the MIDI framework to make
it more machine-independent. The userland API has been clarified in a more detailed midi (4)
[81] and an expanded <sys/midiio.h> [82] that for the first time supplies and documents a
programming interface to the sequencer.

5.5 IEEE 1394

KIYOHARA Takashi imported FreeBSD’s implementation of IEEE 1394 (also known as Ap-
ple’s trade mark FireWire) [83]. That software allows NetBSD to use IEEE 1394 attached
hard disks, and to use an IEEE 1394 link for IP communications.

That import also substantially improves the stability of IEEE 1394 on NetBSD.

5.6 Miscellaneous device driver work
Here is a quick summary of the steady work on device driver support:

e Network controllers
— Damien Bergamini, FUKAUMI Naoki, and Matthias Drochner worked on a driver
for Ralink PCI/Cardbus/USB WLAN adapters.

— Rui Paulo worked on support for ASIX AX88140A and AX88141 Ethernet con-
trollers.

— Juan Romero Pardines imported OpenBSD’s driver for Realtek 8139/8201L Ethernet
interfaces.

— Chuck Silvers imported OpenBSD’s driver for NVIDIA nForce Ethernet controller

— Garrett d’Amore imported HAL 0.9.17.2 from Atheros, to support new SoCs such
as the AR531x

— Rui Paulo added support for RT2661-based wireless interfaces

— Tohru Nishimura developed a driver for Micrel KSZ8842 and KSZ8841 Ethernet
controllers

— Christos Zoulas imported David Boggs’ driver [84] for SBE (previously known as
LMC) Wide Area Network (WAN) cards [85]. Now one can build a NetBSD WAN
router.

— David Young also added support for GCT Semiconductor GRF5101 transceiver/synthesizer.

e Audio controllers

— Juan Romero Pardines upgraded the auich audio driver to support ICH7 and Intel
6300ESB audio controllers.

— TAMURA Kent improved the azalia driver to bring S/PDIF [88] support.
— Chapman Flack upgraded the eap audio driver to use txrdy interrupts for MIDI, and
added the es1373 register definitions, which could be a start for S/PDIF support
e Disk controllers

— Manuel Bouyer imported Joerg Sonnenberger’s work on the driver for ServerWorks
K2 SATA controller from OpenBSD.

e Human Interface Devices (HID)
— KIYOHARA Takashi added support for the touch-panel and LCD screen of PER-
SONA SH3 machines.

— Takeshi Nakayama added support for the the Sharp Telios LCD screen and Battery
unit.

— Christos Zoulas also imported Johan Wallen’s driver for Apple’s 15" powerbook
mouse.
— Peter Postma adopted the Jornada 720 machine-dependent code and worked on
keyboard and power management.
e Serial communication and USB

— Nick Hudson added a driver for Cypress micro controller based serial devices
— Lennart Augustsson imported OpenBSD’s driver for accessing an iPAQ through
USB.

e Power management and hardware monitoring

— Jared D. McNeill imported support for Intel power management technology Speed-
Step PIIX4, from FreeBSD. On the AMD front, Juan Romero Pardines integrated
Martin Vegiard’s work on AMD PowerNow, and imported the Cool'n’Quiet driver
from OpenBSD.

— Juan Romero Pardines also imported OpenBSD’s driver for ITE’s IT8705F, I'T8712F
and SiS’ SiS950 hardware monitors (these devices report temperature, fan speed, and
various other useful information).

— David Young added a driver for AMD Geode SC1100 micro controller’s watchdog
timer.

— Jeff Rizzo imported OpenBSD’s driver for Dallas Semiconductor 1-wire bus [87],
General Purpose [/O (GPIO) and temperature sensors using that bus.

e Video devices

— Steve Woodford developed a driver for the Topfield TF5000PVR range of digital
video recorders [86].

6 Binary compatibility

NetBSD has the capability of running binaries from other OSes that are built for the same
processor [89]. This works with very little overhead, by emulating system calls. When the
foreign binary makes a system call, the NetBSD kernel behaves like the foreign OS kernel
would have. The foreign binary gets appropriate answers from the kernel, and it just works.

With the help of Nicolas Joly, who made a lot of testing with Linux binaries, I improved a
lot the Linux binary compatibility for machines running NetBSD /amd64. The NetBSD kernel
now emulates enough of the Linux Native POSIX Thread Library (NPTL) [90] kernel code to
masquerade as a 2.6 series kernel to Linux processes.

Unfortunately, other NetBSD ports lack the machine dependent code for emulating the
NPTL, and are stuck at emulating the 2.4 Linux kernel.

I also contributed the 32-bit Linux binary compatibility for NetBSD/amd64, which is also
known as the COMPAT_LINUX32 kernel option. Intensive tests made by Nicolas Joly suggest
that it has reached a fair level of usability.

10

7 System Packages

System Packages, or syspkg, is a new infrastructure for packaging the base system in fine-
grained packages. Once syspkg will be fully integrated in the build and installation processes,
an administrator will be able to install a NetBSD system that contains dhclient but not
dhcpd, for instance.

syspkg is still under development. Alan Barrett made some progress, by adding the ability
to generate syspkg .tgz files from the NetBSD build infrastructure. Nothing can be done yet
with the generated files. The next step is to give tools such as pkg_add [91] the ability to
install and upgrade syspkg.

For more information on how to generate syspkg, see the NetBSD build documentation
[92].

8 Security

8.1 News from Security Officers

Since the beginning of 2006 the NetBSD Security Officer team has released 22 security advi-
sories for NetBSD [93]. The advisories cover both issues found in third party software included
in the base NetBSD operating system (e.g. BIND, OpenSSL etc.) and issues found in the
kernel and user land. Included in this was SA2006-019 [94] which documented an issue dis-
covered by two NetBSD developers that was found to impact all BSDs (NetBSD, OpenBSD,
FreeBSD and DragonFly BSD). The severity of issues discovered ranged from denial of service
to privilege escalation attacks.

8.2 News from pkgsrc security team

The pkgsrc Security Team monitors vulnerabilities found in software included as a part of
pkgsrc. In May 2005 the team started using RT [95] to track issues to ensure that vulnerable
packages are identified and updated promptly. In addition to this, the security team also tries
to ensure that pull-ups for any security fixes are applied to the pkgsrc stable branches.

The file used for tracking package vulnerabilities [96] currently has 2183 active entries. At
the start of 2006 it had 1606 entries, this represents 577 entries that have been added since.

For more information on the pkgsrc Security team see the presentations from Adrian Portelli
at pkgsrcCon 2005 [97] and pkgsrcCon 2006 [27].

8.3 Further integration of PaX

The goal of the PaX project [98] is to provide a set of defense mechanisms against attacks that
rely on writing in a process address space. Stack buffer overflows are the best example of such
attacks. The main PaX idea is to prevent process memory to be writable and executable at
the same time. That way, an attacker that uploads executable code through a buffer overflow
will have difficulties to execute it. There are also other tricks, such as Address Space Layout
Randomization (ASLR), which are designed to make attacks less reliable.

PaX was originally developed for Linux, but as usual, good ideas spread to other OSes.
Elad Efrat updated NetBSD’s mprotect(2) [99] to enforce WAX (Write or eXecute, but not
both) policies.

There are always odd programs that need to execute code they produce at run-time. The
Java Just-In-Time (JIT) compiler is an example. The paxctl [100] tool can be used to enable
or disable the WAX policy on a per-program basis.

11

8.4 Kernel authorization framework

Kernel authorization (kauth for short) is work behind the scene also done by Elad Efrat. It
produces few visible features to users, but it is the foundation for very interesting future work
on security.

Authorization mechanisms have always been very simple in traditional Unix systems. Apart
from file system permissions, the only kind of authorization checks that existed was "is the
process running under UID 07"

That meant that the root user had all the privileges, while other "unprivileged” users had
none. Root’s awesome power was loosely delegated through set-UID programs, which exposed
a lot of unexpected security bugs for exploitation.

kauth’s goal is to make kernel authorization much more flexible, so that fine-grained se-
curity policies could be enforced. NetBSD kauth is a clean room implementation based on
Apple’s kauth [101] (the original code from Apple could not be copied as its licensing was too
restrictive for inclusion in the BSD-licensed NetBSD kernel).

For now, NetBSD kauth is just used to re-implement the traditional Unix security model,
but it allows future development of alternative security models. Capabilities [102] are an
example of probable future work.

Elad also presents an article on NetBSD security improvements [103] at EuroBSDCon 2006,
which includes kauth coverage.

8.5 File association kernel programming interface

File association kernel programming interface (fileassoc for short)[104] is another work be-
hind the scenes done by Elad Efrat and Brett Lymn. fileassoc is a Kernel Programming
Interface (KPI) used to store meta-data associated to a file. The first usage of fileassoc
is to store trusted executable signatures for the NetBSD subsystem responsible of verifying
executable integrity (also known as veriexec) [105].

Fileassoc can also be used to store any meta-data, for instance extended file system at-
tributes such as Access Control Lists (ACL).

8.6 Paper on NetBSD security

It would be too bad to close the chapter of security without a word on Elad Efrat’s paper on
NetBSD security [106], published at securityfocus.com. This excellent article tells a lot about
OS security state of the art and alternative that are available to NetBSD.

9 More work behind the scenes

Jason Thorpe added experimental support for storing extended file system attribute on FFSv1
file system. While FFSv2 has provisions to store file system extended attributes, there was no
place to store them on a FFSv1 file system. It is now possible to store them in plain files.

Christos Zoulas merged the duplicated code between 1libc and kernel. There is now a
src/common directory in the source tree that holds the shared code. That change was the
opportunity to use the same zlib (compression algorithms used everywhere in the system)
between kernel and userland. It was also the opportunity to make libc compatibility code
build optional, so that people without the need of backward compatibility can build a smaller
libc. There is a minor side effect: it’s not possible anymore to just check out src/sys and
build a kernel: src/common is now required as well.

On February 2005, I switched our IPsec key exchange daemon (known as racoon) from the
orignal KAME [15] implementation to IPsec-tools [107], a fork made initially for Linux that
was more reactive to features addition. IPsec-tools CVS was hosted at SourceForge, and it
was decided to move it to the NetBSD CVS server. The reasons for the move were a more

12

reliable and more secure CVS, automatic builds, and automatic Coverity [108] scans. While
IPsec-tools HEAD is merged in NetBSD-current, it still remains as a stand alone package for
Linux, FreeBSD and Darwin, so that move changes nothing for IPsec-tools and NetBSD users
(except that NetBSD-current will now always include latest IPsec-tools code).

And finally, Darren Reed, Nick Hudson, and Christos Zoulas completed the work required
so that ktrace and kdump get the ability to report Light-Weight Process (LWP) information.

10 Third party software

NetBSD ships with various third party software integrated [109]. Here is the current status as
of October 2006.

10.1 Removed software

e Sushi [110], the curses-based administration tool. Obviously, it never really found its
users, and it was difficult to maintain.

o Kerberos IV [111] has been removed, in favor of Kerberos V [112]. Both versions were
maintained in-tree for some time, but it is now assumed that all Kerberos IV users have
migrated to Kerberos V.

e Vinum [113] was removed because nobody was interested enough in it to actually maintain
the code. This is probably because NetBSD already had RAIDframe, which provides a
similar set of features (except the volume manager part, for which NetBSD is left without
any equivalent).

o Sendmail [114] suffered a new security issue, but nobody was ready to maintain it. It was
therefore decided to remove it, leaving Postfix [115] as the only mail software in the base
system (previous NetBSD releases contained both Sendmail and Postfix). Fortunately
for Sendmail fans like me, Sendmail remains quite easy to install through the NetBSD
package system.

10.2 Software resurrected from the dead

In January 2002, Caldera released [116] the source for ancient Unix versions up to AT&T UNIX
version 7 [117]. All the critical pieces of Unix have been re-implemented as free software in
*BSD for a long time, but there were a few nifty utilities left that Perry E. Metzger resurrected
from the dead and integrated in NetBSD:

e deroff [118], a tool to remove roff constructs from files
e spell [119], a spell-checker

e ching [{120], the Unix oracle, which answers any of your questions (that one stands in
/usr/games)

10.3 Third party software upgrades

Many contributors did some work on upgrading third party programs bundled with NetBSD.
The third party software distributed with NetBSD page [109] gives details about individual
programs.

e pppd 2.4.4 e file 4/16
e NTP 4.2.2p2 e am-utils 6.1.3
e GCC 4.1 and GCC 3.3.6 (Some ports use e CVS 1.11.22
4.1, others still use 3.3.6) e OpenSSL 0.9.8a
e binutils 2.16.1 o OpenSSH 4.3
e BIND 9.3.2 e OpenPAM 20050616

13

e groff 1.19.2 e Postfix 2.3.2
e [PFilter: 4.1.13 e z1ib 1.2.3
e PacketFilter (PF): from OpenBSD 3.7 e wpa_supplicant / hostapd 0.4.9

And last but not least, the X.org status. NetBSD is committed to switch to X.org [121],
since most, if not all, open source OSes did that move. It is now clear that most development
will come from X.org and not from the XFree86 project [122].

X.org 7.0 code has been imported in NetBSD CVS by Michael Lorenz. It seems no status
has been published, but according to Michael, it it possible to build and run X.org on NetBSD.
Performance is a bit disappointing, as x11perf shows a 10% drop versus XFree86. On the other
hand, X.org memory usage is a bit better.

The next step in X.org migration is to integrate the build in the NetBSD build machinery,
and start using it as the default X implementation for ports where it has some interest. It is
worth noting that a few NetBSD ports with very odd X servers may have no point into moving
from XFree86 to X.org, because the X.org implementation will offer no benefit, and may not
be really maintained. It is therefore possible that NetBSD retains both X implementation for
some time.

Conclusions

Whatever has been said in the press, NetBSD is still a very active project, and giving an idea
of a whole year of activity is not a straightforward task. Of course this paper left some changes
unmentioned. Curious readers might want to take a peek at the raw NetBSD change log [123]
in order to get an exhaustive list.

One recurrent issue when trying to collate a list of significant changes is that too often,
developers tend to neglect telling the world what they did and why it is so cool. The change
log is full of lines which are meaningless for the average user, and even sometime for the
average NetBSD developer. In my opinion, we obviously have some room for improvement
here. Giving more publicity about what is done in NetBSD is one way to stop the rumors that
it got irrelevant, dead, or that it is only useful for running toasters.

Acknowledgments

I would like to thank a few fellow NetBSD developers for reviewing this paper, and taking time
to tell me about the thing they had been working on: Alan Barrett, Christian Biere, Pavel
Cahyna, Elad Efrat, Havard Eidnes, Chapman Flack, M.J. Fleming, Liam J. Foy, lain Hibbert,
Bang Jun-Young, KIYOHARA Takashi, Thomas Klausner Sanjay Lal, Michael Lorenz, Jared
D. McNeil, Greg Oster, Adrian Portelli, Jeremy C. Reed, Antoine Reilles, Tim Rightnour,
Lubomir Sedlacik, Thor Lancelot Simon, Joerg Sonnenberger, Steve Woodford, and Christos
Zoulas.

References

[1] Anonymous coward, *BSD is dying, Slashdot web site
http://bsd.slashdot.org/comments.pl?sid=189013&cid=15569908

[2] Charles M. Hannum, The future of NetBSD, netbsd-users@netbsd.org mailing list
http://mail-index.netbsd.org/netbsd-users/2006/08/30/0016.html

[3] Charles M. Hannum, Confessions of a Recovering NetBSD Zealot, OnLAMP web site
http://www.onlamp.com/pub/a/bsd/2006/09/14/netbsd_future.html

[4] The NetBSD project, source-change@netbsd.org mailing list
http://mail-index.netbsd.org/source-changes

[5] Alistair G. Crooks, Organizational Changes to the NetBSD Project, netbsd-users@netbsd.org
mailing list
http://mail-index.netbsd.org/netbsd-users/2006/09/01/0015.html

14

[6] The NetBSD foundation, NetBSD Foundation Membership Agreement, NetBSD web site
http://wuw.netbsd.org/developers/agreement.txt

[7] The NetBSD foundation, The NetBSD Bugathon: Reloaded, NetBSD web site
http://www.netbsd.org/hackathon/

[8] The NetBSD foundation, GNATS Bug Database Summary, NetBSD web site
http://www.netbsd.org/Gnats/

[9] Elad Efrat, NetBSD Bugathon: Not quite dead, netbsd-anounce@netbsd.org mailing list
http://mail-index.netbsd.org/netbsd-announce/2006/09/25/0000.html

[10] Elad Efrat, NetBSD Bugathon #2, netbsd-users@netbsd.org mailing list
http://mail-index.netbsd.org/netbsd-users/2006/10/09/0002.html

[11] Hubert Feyrer, NetBSD open Problem Reports, NetBSD web site
http://www.netbsd.org/ hubertf/open-prs.gif

[12] Google, Google Summer of Code, Google web site
http://code.google.com/soc/

[13] Hubert Feyrer, Announcing NetBSD and the Google "Summer of Code" Projects 2006, NetBSD
press releases
http://www.netbsd.org/Foundation/press/soc2006.html

[14] K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Congestion Notification (ECN)
to IP, RFC 3168
http://www.rfc-editor.org/rfc/rfc3168.txt

[15] The KAME project
http://www.kame.net/

[16] The NetBSD project, fast_ipsec(4) man page
http://netbsd.gw.com/cgi-bin/man-cgi?fast_ipsec++NetBSD-current

[17] The NetBSD project, pkgsrc: The NetBSD Packages Collection, pkgsrc web site
http://www.pkgsrc.org

The NetBSD project, mbuf (9) man page
http://netbsd.gw.com/cgi-bin/man-cgi?mbuf++NetBSD-current

[19] Jorg Sonnenberger, pkg_install, EuroBSDCon 2006
http://www.eurcbsdcon.org/talks-sonnenberger.php

18

[20] pkgsrcCon web site
http://www.pkgsrccon. org/2006/

[21] Stoned Elipot, System administration with pkgsrc, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/mpkg. pdf

[22] Joerg Sonnenberger, pkgsrc on DragonFly — or Fighting the Windmills, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/pkgsrc-on-df/index.html

[23

Roland lllig, pkglint: Static Analyzer For Pkgsrc, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/presentations/pkglint.html

[24] Roland Illig, Why Pkgsrc Sucks, pkgsreCon 2006
http://wuw.pkgsrccon.org/2006/slides/presentations/why-pkgsrc-sucks.html

(25] Emile Heitor, pkg_select — So Many Packages, So Few Columns, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/pkg_select.pdf

[26] Thomas Klausner, Roundtable Discussion: Updating Packages, pkgsrcCon 2006
http://wwu.pkgsrccon.org/2006/slides/updates.html

[27] Adrian Portelli, pkgsrc security one year on..., pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/pkgsrc-Security-06.html

[28] Dieter Baron, Thomas Klausner, pkg_install Rewrite, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/pkg_install.html

[29] Johnny Lam, Roadmap for Development, pkgsrcCon 2006
http://www.pkgsrccon.org/2006/slides/roadmap. html

[30] University of Cambridge computer laboratory, the Xen virtual machine monitor, Xen web site
http://www.cl.cam.ac.uk/research/srg/netos/xen/

[31] Emmanuel Dreyfus, Remote user access VPN with IPsec, EuroBSDCon 2005
http://pubz.hcpnet.net/rasvpn.pdf

[32] University of Cambridge computer laboratory, performances, Xen web site
http://www.cl.cam.ac.uk/research/srg/netos/xen/performance.html

[33] Martti Kuparinen, Xen Disk I/O Benchmarking: NetBSD dom0 vs Linux dom0
http://users.piuha.net/martti/comp/xendom0/xendom0.html

15

(34]

(35)
(36]
(37]
(38]
(39]
(40]
(41)
(42]
(43]
(44)
(45]
(46]
[47]
(48]
(49]
(50]

(51]

(52]
(53]

[54]

J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, E. Zeidner, Internet Small Computer
Systems Interface (iSCSI), RFC 3720
http://www.rfc-editor.org/rfc/rfc3720.txt

Alistair G. Crooks, NetBSD iSCSI HOWTOs, current-users@netbsd.org mailing list
http://mail-index.netbsd.org/current-users/2006/02/21/0018.html

Alistair G. Crooks, iSCSI - beyond the hype, EuroBSDCon 2006
http://www.eurobsdcon.org/talks-crooks.php

Luke Mewburn, Matthew Green, build.sh: cross-building NetBSD, BSDCon 2003
http://www.mewburn.net/luke/papers/build.sh.pdf

The NetBSD project, Summary of daily snapshot builds, NetBSD release engineering web site
http://releng.netbsd.org/cgi-bin/builds.cgi

The NetBSD project, makefs(8) man page
http://netbsd.gw.com/cgi-bin/man-cgi?makefs++NetBSD-current

Wikipedia, Wi-Fi Protected Access
http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access

Wikipedia, Wired Equivalent Privacy
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

S. Fluhrer, I. Mantin, A. Shamir, Weaknesses in the Key Scheduling Algorithm of RC4, Selected
Areas in Cryptography 2001: ppl-24.

Steve Woodford, WPA support, current-users@netbsd.org mailing list
http://mail-index.netbsd.org/current-users/2005/10/01/0014 .html

Jouni Malinen, hostapd(8) man page
http://netbsd.gw.com/cgi-bin/man-cgi?hostapd++NetBSD-current

Jouni Malinen, wpa_supplicant(8) man page
http://netbsd.gw.com/cgi-bin/man-cgi?wpa_supplicant++NetBSD-current

Jouni Malinen, Host AP driver for Intersil Prism2/2.5/3, hostapd, and WPA Supplicant
http://hostap.epitest.fi/

Wikipedia, Bluetooth

http://en.wikipedia.org/wiki/Bluetooth

lain Hibbert, Bluetooth, tech-net@netbsd.org mailing list
http://mail-index.netbsd.org/tech-net/2006/05/23/0000.html

The NetBSD Wiki, Bluetooth
http://wiki.netbsd.se/index.php/bluetooth

Wikipedia, Universal Disk Format
http://en.wikipedia.org/wiki/Universal Disk_Format

Reinoud Zandijk, HEADS UP: UDF file system added to NetBSD source tree, tech-kern@
netbsd. org mailing list
http://mail-index.netbsd.org/current-users/2006/02/02/0027 .html

Wikipedia, Common Address Redundancy Protocol
http://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol

R. Hinden, Virtual Router Redundancy Protocol (VRRP), RFC 3768
http://www.ietf.org/rfc/rfc3768.txt

T. Li, B. Cole, P. Morton, D. Li, Cisco Hot Standby Router Protocol (HSRP), RFC 2281
http://www.ietf.org/rfc/rfc2281.txt

Liam J. Foy, CARP Committed (correctly presented), current-users@netbsd.org mailing list
http://mail-index.netbsd.org/current-users/2006/05/18/0005.html

Wikipedia, LACP

http://en.wikipedia.org/wiki/LACP

YAMAMOTO Takashi, agr(4) man page
http://netbsd.gw.com/cgi-bin/man-cgi?agr++NetBSD-current

Microsoft corporation, NDIS - Network Driver Interface Specification
http://www.microsoft.com/whdc/device/network/ndis/default.mspx

David Chisnall, Project Evil: Windows network drivers on FreeBSD
http://wuw.pingwales.co.uk/2005/07/16/Project-Evil.html

NdisWrapper for Linux at SourceForge

http://ndiswrapper.sourceforge.net/

Alan Ritter, NDIS on NetBSD

http://netbsd-soc.sourceforge.net/projects/ndis/

Bill Paul, ndiscvt(8) man page
http://netbsd.gw.com/cgi-bin/man-cgi?ndiscvt++NetBSD-current

16

[63) Julio M. Merino Vidal, HEADS UP: tmpfs added, tech-kern@netbsd.org mailing list
http://mail-index.netbsd.org/tech-kern/2005/09/10/0004 .html

[64] Niklas Hallqvist, Tobias Weingartner, scan_ffs(8) man page
http://netbsd.gw.com/cgi-bin/man-cgi/man?scan_ffs+8+NetBSD-current

[65] Wikipedia, Log-structured File System
http://en.wikipedia.org/wiki/Log-structured_file_system

[66] Konrad Schroder, Log-structured File System for NetBSD
http://www.hhhh.org/perseant/1fs.html

[67] Atmark techno, Armadillo-9
http://www.atmark-techno.com/en/products/armadillo/a9/

[68] Atmark techno, Armadillo-210
http://www.atmark-techno.com/en/products/armadillo/a210/

[69] The NetBSD project, ews4800mips port page, NetBSD web site
http://www.netbsd.org/Ports/ews4800mips/

[70] RMI, Alchemy Aul550 Processor
http://www.razamicroelectronics.com/products_alchemy/au1550_overview.htm

[71] meshcube.org, The meshing computing website
http://www.meshcube.org/index_e.html

[72] Plat’Home, OpenMicroServer 400
http://www.plathome.co. jp/products/oms400/

[73] Wikipedia, softmodem
http://en.wikipedia.org/wiki/Winmodem

[74] Wikipedia, Hayes command set
http://en.wikipedia.org/wiki/Hayes_command_set

[75] Jared D. McNeill, Preliminary AC’97 modem support in auich(4), current-users@netbsd.org
mailing list
http://mail-index.netbsd.org/current-users/2005/04/07/0022.html

[76] Wikipedia, VESA
http://en.uikipedia.org/wiki/VESA

[77] Jared D. McNeill, VESA framebuffer console in NetBSD
http://www.invisible.ca/space/vesa-framebuffer-console-in-netbsd

[78] Meraki Networks, Meraki Mini
http://www.meraki.net/mini.html

[79] Wikipedia, MIDI
http://en.wikipedia.org/wiki/MIDI

[80] Chapman Flack, RFC: merge chap-midi branch, tech-kern@netbsd.org mailing list
http://mail-index.netbsd.org/tech-kern/2006/06/19/0003.html

[81] Lennart Augustsson, Chapman Flack, midi(4) man page
http://netbsd.gw.com/cgi-bin/man-cgi?midi+4+NetBSD-current

[82] Lennart Augustsson, Chapman Flack, <sys/midiio.h> header file
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/sys/midiio.h?rev=1.13.4.1

[83] Wikipedia, firewire
http://en.wikipedia.org/wiki/Firewire

(84] David Boggs, 1mc(4) man page
http://netbsd.gw.com/cgi-bin/man-cgi?lmc+4+NetBSD-current

[85] SBE Inc, Products - WAN
http://wuw.sbei.com/index.php/products/wan/

[86] Topfield web site
http://www.topfield.co.kr/

[87] Wikipedia, 1-Wire
http://en.wikipedia.org/wiki/1-Wire

(88] Wikipedia, S/PDIF
http://en.wikipedia.org/wiki/S/PDIF

[89] The NetBSD project, NetBSD binary emulation
http://www.netbsd. org/Documentation/compat.html

[90] Ulrich Drepper, Ingo Molnar, The Native POSIX Thread Library for Linux
http://people.redhat.com/drepper/nptl-design.pdf

[91] Jordan Hubbard, John Kohl, Hubert Feyrer, Thomas Klausner, pkg_add(1) man page
http://netbsd.gw.com/cgi-bin/man-cgi?pkg_add++NetBSD-current

17

[92] Luke Mewburn, Todd Vierling, Procedure for building NetBSD from source
ftp://ftp.fr.netbsd.org/pub/NetBSD/NetBSD-current/src/BUILDING

[93] The NetBSD project, Security and NetBSD
http://www.netbsd.org/Security/

[94] NetBSD Security Officer team, NetBSD Security Advisory 2006-019
ftp://ftp.netbsd.org/pub/NetBSD/security/advisories/NetBSD-SA2006-019.txt.asc

[95] Best Pratical Solutions LLC, Request Tracker
http://www.bestpractical.com/rt/

[96] The NetBSD project, packages vulnerability file
ftp://ftp.netbsd.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities

[97] Adrian Portelli, pkgsrc security, pkgsrcCon 2005
http://www.pkgsrccon.org/2005/slides/adrianp/pkgsrc-Security.html
(98] The PaX project
http://pax.grsecurity.net/docs/pax.txt
[99] The NetBSD project, mprotect(2) man page
http://netbsd.gw.com/cgi-bin/man-cgi?mprotect+2+NetBSD-current
[100] Elad Efrat, paxctl(1) man page
http://netbsd.gw.com/cgi-bin/man-cgi?paxctl+1+NetBSD-current
[101] Apple computers Inc, Technical Note TN2127 Kernel Authorization
http://developer.apple.com/technotes/tn2005/tn2127 .html
[102] Wikipedia, capability-based security
http://en.wikipedia.org/wiki/Capabilities
[103] Elad Efrat, NetBSD Security Enhancements, EuroBSDCon 2006
http://www.eurobsdcon.org/talks-efrat.php

[104] Elad Efrat, Brett Lymn, fileassoc(9) man page
http://netbsd.gw.com/cgi-bin/man-cgi?fileassoc++NetBSD-current

[105] Brett Lymn, NetBSD verified executables
http://www.users.on.net/ blymn/veriexec/

(106] Elad Efrat, Recent Security Enhancements in NetBSD
http://www.securityfocus.com/infocus/1878

[107] The IPsec-tools project
http://ipsec-tools.sf.net

[108] Coverity, automated error precention and source code analysis
http://www.coverity.com/

[109] The NetBSD project, Third party software distributed with NetBSD
http://netbsd.org/Documentation/software/3rdparty/

[110] Tim Rightnour, Sushi - an extensible human interface for NetBSD, BSDCon 2002
http://db.usenix.org/events/bsdcon02/full_papers/rightnour/rightnour.pdf

[111] Kungliga Tekniska Hogskolan (KTH) Kerberos page
http://www.pdc.kth.se/kth-krb/

[112] Heimdal Kerberos page
http://www.pdc.kth.se/heimdal/

[113] Greg Lehey, The vinum volume manager
http://www.vinumvm.org/

[114] the Sendmail consortium, Sendmail home page
http://www.sendmail.org/

[115] the Postfix project, Postfix home page
http://www.postfix.org

[116] Bill Broderick, Caldera license
http://www.tuhs.org/Archive/Caldera-license.pdf

[117] Unix Archive Sites
http://www.tuhs.org/archive_sites.html

[118] deroff(i) man page
http://netbsd.gw.com/cgi-bin/man-cgi?deroff++NetBSD-current

[119] spell(1) man page
http://netbsd.gw.com/cgi-bin/man-cgi?spell++NetBSD-current

[120] ching(6) man page
http://netbsd.gw.com/cgi-bin/man-cgi?ching++NetBSD-current

18

[121] The X.org foundation
http://www.x.org/

[122] The XFree86 project
http://www.xfree86.org/

[123] The NetBSD project, Recent Changes and News
http://www.netbsd.org/Changes/

19

Recent Security Enhancements in NetBSD

Elad Efrat <elad@NetBSD.org>

September 2006

Abstract

Over the years, NetBSD obtained the position of the BSD focusing on portability.
While it is true that NetBSD offers an easily portable operating system, care is also
given to other areas, such as security. This paper presents the NetBSD philosophy of
security, design decisions, and currently offered security features. Finally, some of the
current and future research will be revealed.

1. Introduction

Running on almost twenty different architectures, and easily portable to others,
NetBSD gained its reputation as the most portable operating system on the planet.
While that may indicate high quality code, the ever demanding networked world cares
about more than just that. Over the past year, NetBSD evolved quite a bit in various
areas; this paper, however, will focus on the aspect relating to security.

This paper was written and structured to present a full overview of the recent security
enhancements in NetBSD in an easily readable and balanced form that will satisfy
new, intermediate, and experienced users. References were sprinkled across the text to
provide more information to those who want the gory details, while preserving the
continuity.

Section 2 will present the bigger picture of security in NetBSD: how NetBSD
perceives security, the design decisions of NetBSD software in general and the
security infrastructure and features more specifically. Section 3 will present a detailed
overview of the recent enhancements in the security infrastructure and features of
NetBSD including, where relevant, details about the design, implementation, and
possible future development. Section 4 will present current security-related research
and development in NetBSD, and section 5 will discuss how the described
enhancements work together to provide a more secure platform. Section 6 concludes
the paper, and summarizes availability of discussed features.

2. The Tao of NetBSD Security

We are all familiar with the mantra that security is a process, not a product. When
regarding software development, specifically operating systems, it should be part of
the design, from the ground up. As the descendent of an operating system over 20
years old, NetBSD carries a security model designed and implemented with different
threats in mind; the Internet was smaller, more naive, and less popular.

The following sections will provide background to the approach taken to enhance the
security of the NetBSD operating system: the considerations, existing approaches, and

case-studies.

2.1 Considerations

Licensed under a Creative Commons Attribution 2.5 License 1

When approaching to enhance the security of NetBSD, two of the most important
leading principles were maintaining compatibility and 1nteroperab1hty Presenting
changes that would dramatically impact the user-base was out of question, and careful
planning had to be done. In addition, any change to underlying back-ends had to be
well thought-out so it maintains existing semantics without enforcing them during
design stage.

2.2 Security Approaches

Operating system security is nothing new, and NetBSD is not the first to address the
issue. In designing software — and security software in particular, it is mandatory to
learn from the experience of previous work. Below are some common approaches to
security and real-world case-studies.

2.2.1 Code Auditing

Code auditing addresses security issues by looking for programming glltches in the
source code of the program, often with the assistant of automated tools”. Normally the
work of vulnerability researchers, when done proactively by the programmers
themselves, has the potential of locating and fixing bugs with security implications
before anyone else finds and exploits them.

While some would argue that striving to produce bug-free code is the one true way of
achieving security, this view is a fallacy for two main reasons. The first is that
security issues are not always the result of programming errors; while code auditing
tries to ensure no software bugs will be maliciously exploited because said bugs
would simply not exist, it alone ignores other important aspects, such as configuration
errors and user behavior policies.

The second reason is that it is not possible to write bug-free code’. Over the past
decade, the awareness to writing secure code rose significantly; automated tools
evolved, allowing easy pinpointing of software bugs; open-source software is
available for the review of thousands — if not millions — of people; yet, we still see
new security vulnerabilities on a daily basis. Some of those, ironically, are of the
exact same type that affected us ten or twenty years ago”.

2.2.2 Exploit Mitigation

The unorthodox approach of exploit mitigation addresses bugs from the opposite
direction of code auditing: instead of looking for them in and removing them from
software to make it more secure, it adds bugs to the exploit code to prevent it from
working. While that may be over-simplified, the purpose of exploit mitigation
technologies is to interfere with the inner-workings of the exploit, eliminating the —
often unusual — conditions that make it work.

On one hand, some would claim that exploit mitigation discourages developers from
writing secure code and vendors from quickly responding to security incidents: they

' Two other leading principles — not impacting the system performance and an easy user interface, will
not be discussed in this paper.

2 Coverity, for example, offered its services to various open-source projects, including NetBSD, for
free. See http://scan.coverity.com

? http://www.cs.columbia.edu/~smb/papers/acm-predict.pdf

* http://www.cert.org/homeusers/buffer_overflow.html

Licensed under a Creative Commons Attribution 2.5 License 2

know there's a safety net guarding them, and so they pay less attention to security
when writing code, or taking their time coming up with fixes for security issues.

On the other hand, however, this is also where exploit mitigation technologies excel:
they introduce the concept of preventing the successful exploitation of security
vulnerabilities, even before a fix is available. Moreover, they prevent entire classes of
bugs, and don't require constant updating.

2.2.3 Architectural Integration

So far, the previous two approaches assume the cause of a security breach is a bug in
the code that is being exploited. The first approach tries to eliminate such bugs, and
the second one tries to make it next to impossible to successfully exploit them.
However, some environments require more than just that — for example, the ability to
define detailed usage policies and associate them with entities on the system became a
mandatory part of many security policies. In our context, we can relate that to the
Unix permissions model; simply put, due to the coarse separation between a normal
user and a superuser, it cannot be used to express many security policies as detailed as
may be required.

That led to the research of various modern security models, of which most recognized
ones are fine—grained5 discretionary access controls (DACs) and mandatory access
controls (MACs). To put things simple, DACs focus on the data owner's ability to
specify who can use it and for what; MACs focus on a mandatory policy that affects
everyone.

These systems allow an administrator — and where applicable, the users — to specify
fine-grained policies; effectively, this means that a user or a program can be made to
work with the minimal amount of privileges required for their operation (which, as
implied above, cannot be done with the traditional Unix security model), resulting in
damage containment in case of compromise or otherwise minimized impact from
security vulnerabilities.

2.2.4 Layered security

To itself, layered security6 is not a single approach. Where any of the previous three
took a different route, the layered security approach suggests that maximized security
can only be achieved by combining efforts on all fronts: code auditing is important,
but does not come in place of useful exploit mitigation technologies; and architectural
integration, of course, has little to do with any of them.

Although the above may sound obvious, it is not too often when you see an operating
system that puts an emphasis on all three aspects; it will usually be the case that only
one of the approaches is fully practiced. Following are some short case-studies that
illustrate the importance of each approach by using real-world examples.

2.2.5 Case Studies
Shortly after splitting from NetBSD in 1995, OpenBSD became widely known for its
unique — at the time — approach to security: proactive code auditing. Instead of

’1 emphasize fine-grained because DACs already exist on Unix; however, as noted, they are too
coarse.
® Also known as Defense in Depth.

Licensed under a Creative Commons Attribution 2.5 License 3

retroactively responding to security issues, OpenBSD developers performed thorough
code auditing sessions, sweeping for bugs. This act proved itself more than once, after
vulnerabilities found in other operating systems were already fixed' in OpenBSD.

This, however, did not last too long. In 2002, winds of change blew through the
OpenBSD mindset: the long standmg fort of code auditing fell, adopting exploit
mitigation technologies to its lap®. While the reasons behind the move were not
published, some speculate that it was the release of an exploit allowing full system
compromise of OpenBSD's default configuration’ that finally proved that even a
group of dedicated programmers cannot find all bugs; at least not first.

Said exploit mitigation technologles made their public debut around 1996, with the
appearance of the Openwall'® project, and later evolved dramatically by the PaX''
project in 2000. Research done in both projects formed the basis of today's exploit
mitigation technologies. Another commonality of the two was that they offered an
implementation based on Linux — which only makes one wonder why it was
OpenBSD that was the first to officially adopt these technologies.

Linux, however, took a different direction. First with the addition of POSIX.le'?
capabilities in 1999, fine-grained discretionary access controls, later with SELinux ',
an implementation of mandatory access controls, and finally with the introduction of
the Linux Security Modules framework'?, abstracting the implementation of both,
Linux focused mainly on offering means for an administrator to define a detailed
security policy, hoping to minimize the effect of a vulnerability.

Not lagging behind too much, though, exploit mitigation technologies also appeared
in the official Linux kernel during 2004-2005; in fact, they also made an entrance to
the official Windows world with Wmdows XP SP2'°, and Windows Vista is expected
to include even more such technologles

Simply put, all three major approaches have been practiced by widely used operating
systems at one point or another. It is clear to see that although initially a single
approach was chosen, eventually it was understood that layered security is the key to
stronger defense of computer systems.

2.3 The NetBSD Perception of Security

Learning from others’ experience, the approach taken by NetBSD employs three main

principles:

» Simplicity. There is no point in providing a feature, whether it’s a kernel
subsystem or a userland tool, if it’s not intuitive and easy to use. Furthermore,
overly complex code is harder to audit, which may lead to additional bugs.

7 http://www.openbsd.org/security.html#process

8 http://www.monkey.org/openbsd/archive/misc/0207/msg01977.html

? http://www.securityfocus.com/news/493

10 hitp://www.openwall.com

" http://pax. grsecurity.net

12 http://wt.xpilot.org/publications/posix.1le/

13 http://www.nsa.gov/selinux/papers/module/t 1 .html

' http://www.kroah.com/linux/talks/usenix_security 2002 lsm paper/lsm.pdf

'* http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx
'® http://blogs.msdn.com/michael_howard/archive/2006/05/26/6083 1 5.aspx

Licensed under a Creative Commons Attribution 2.5 License 4

= Layered security. It is well understood that there is no single solution to security.
NetBSD addresses security from a variety of angles, including code auditing,
adequate and extensible security infrastructure, and exploit mitigation
technologies.

= Sane defaults. Accepting that security may not be the highest priority for all
users, NetBSD provides sane defaults to fit the common case. Detailed
supplementary documentation helps enable and configure the various security
features.

Using the above guidelines, a variety of security solutions were evaluated to address
different threat models. With emphasis on implementing a solution that would fix a
real problem and provide an intuitive and easy to use interface (when one is required),
a variety of changes — ranging from tiny hooks, through additional kernel subsystems,
to architectural modifications, NetBSD has made important first steps in improving its
overall security.

3. Overview of Recent NetBSD Security Enhancements

3.1 Kernel Authorization

The introduction of kernel authorization, often referred to as kauth(9), in the NetBSD
kernel has been one of the larger-scale changes ever done in NetBSD. The interface is
modeled after an interface of the same name developed by Apple for Mac OS X',
though unfortunately due to licensing issues it was impossible to make use of existing
code, and so the NetBSD implementation was written completely from scratch.

Kernel authorization redefines the way credentials are handled by the kernel, and
offers a simple and easy to use — yet powerful and extensible — kernel programming
interface to enforce security policies. It is important to emphasize that kernel
authorization does not provide any additional security by itself, but rather provides an
interface on top of which security policies can be easily implemented. The strength of
the security directly depends on the strength of the policy used.

The kernel authorization infrastructure is required for supporting fine-grained
capabilities, ACLs, and pluggable security models among other things. It will allow
NetBSD administrators and users to maintain the existing traditional Unix security
model, offer capabilities to replace set-user-id and set-group-id programs, and allow
third-party developers and appliance manufacturers to implement a custom security
model to either replace or sit on-top of the existing one.

3.1.1 Related Work

Similar infrastructures are Linux's LSM (discussed earlier) and TrustedBSD's (now in
FreeBSD) MAC framework'®. Both have been in use for a couple of years, but like
kernel authorization, are still very young to backup with real-world experiences.

3.1.2 Design
Apple did most of the design work for the kernel authorization infrastructure. A large
part of the design is available online, and it’s merely the implementation that was

' http://developer.apple.com/technotes/tn2005/tn2 127.html
18 http://www.trustedbsd.org/trustedbsd-discex3.pdf

Licensed under a Creative Commons Attribution 2.5 License 5

unavailable. Therefore, most of the design-related work in doing the native NetBSD
port focused on completing the missing parts from the online documentation and
taking care of compatibility issues.

Kernel authorization maps the privilege landscape of the kernel to actions grouped as

scopes. For example, the process scope groups actions such as “can trace”, “can see”,
and “can signal” — which are all operations on processes.

When a request for an operation is made, the action is passed to the authorization
wrapper of the relevant scope, together with related context. The context is variable:
it is different for each request. The authorization wrapper dispatches the request and
the context to the listeners associated with the scope. Each listener can return a
decision — either allow, deny, or defer (indicating the decision should be left to the
other listeners) — and the authorization wrapper evaluates the responses from all
listeners to decide whether to allow or deny the request.

In order for a request to be allowed, no listener may return a deny decision. If all
listeners return a defer decision, the request is denied.

3.1.3 Implementation

The implementation of kernel authorization in NetBSD was done in several stages.
First, the backend was written. This included the majority of the code that worked
behind the scenes to implement the credential memory management and reference
counting, locking, and scope and listener management. It was then tested to ensure all
parts work as a black-boxes, allowing initial integration in the NetBSD code. Part of
that work included merging the contents of the ucred and pcred structs into a single,
opaque (as possible) type called kauth_cred_t.

The next step was a series of mechanical kernel programming interface changes.
Credentials could no longer be allocated on the stack, and so a lot of code had to be
modified to use the kauth(9) memory management routines. Additionally, code that
directly referenced members of the ucred and pcred structures had to be modified to
use the accessor and mutator routines provided by the kauth(9) interface. Existing
interfaces such as suser(9) and groupmember(9) were deprecated in favor of calls to
kernel authorization wrappers, and others such as sys_setgroups(2) and
sys_getgroups(2) were modified to use the new interfaces.

The following step consisted of thorough testing — to ensure transparent integration
and equivalent semantics — which uncovered some bugs with the kernel authorization
code, most of them in the NFS portion of the kernel.

3.1.4 Future Development

While implementing the kernel authorization back-end and making the kernel
dispatch its authorization requests to it was an important ground preparation, there is
more work to be done before declaring this interface useful.

The first step in the integration of kernel authorization was mostly mechanical and
transparent to users, intended to preserve existing semantics. The next logical step is
to examine the kernel to ensure the interface abstracts the security model used in
NetBSD.

Licensed under a Creative Commons Attribution 2.5 License 6

Given its heritage, the NetBSD kernel is too tightly coupled with the Unix security
model, and the concept of a single super-user with a user-id of zero is often hard-
coded. For example, a lot of privileged operations check for an effective user-id of
zero directly in the process’ credentials structure, not making use of the suser(9)
interface.

The next logical step will be to identify these locations, and properly replace these
vague effective user-id checks with calls to the kernel authorization interface,
describing the privilege required to complete the operation. The same applies to any
authorization wrapper calls acting as placeholders, checking for super-user rights.

The above work will result in the complete abstraction of the security model used in
the NetBSD kernel, allowing switching easy as a one-line change in the kernel
configuration between the Unix security model, a finer-grained capabilities model, or
a third-party security model possibly implemented using an LKM.

3.2 Veriexec

Veriexec is NetBSD’s file-integrity subsystem, allowing the verification of a file's
digital fingerprint before accessing it. Introduced in NetBSD by Brett Lymn in 2002"
and later integrating work from Vexec of the Stephanie project® in 2005, Veriexec
provides means to ensure real-time file integrity and monitoring combined with
intrusion detection and prevention capabilities.

Initially self-contained, Veriexec’s core — the interface for associating meta-data with
files regardless of file-system support using in-kernel memory — was recently
abstracted”’ to form the Fileassoc interface to satisfy similar needs from other
features.

3.2.1 Related Work

Integrity checker implementations have been around for decades. Used for various
purposes such as virus protection in DOS and file changes notifications in Unix, the
concept itself is not new to the security industry. Dr. Fred Cohen's research was
among the first to offer insight about using integrity checkers to protect from
malicious software®. Tripwire23 , presented by Eugene Spafford and Gene Kim,
allowed system administrators to be notified about corrupted or altered files in a
timely fashion.

Yet, while there are numerous products for every computing environment, they all
share a common set of flaws that prevents them from realizing their potential.

First, none of them integrates with the operating system deep enough to provide real-
time protection: most are retroactive tools used to notify after changes were detected.

% http:/mail-index.netbsd.org/tech-security/2002/10/30/0000.htmi

2 http.//ethernet.org/~brian/Stephanie/

2! http://mail-index.netbsd.org/tech-kern/2006/06/08/0007..html

2 http://vx.netlux.org/lib/afc03.html. Dr. Fred Cohen also introduced the concept of integrity shells,
with which Veriexec is sharing some commonalities; no implementation was made available, however,
and therefore it is impossible to tell whether the faults mentioned also apply to them.
 hitp://portal.acm.org/citation.cfm?id=191183

Licensed under a Creative Commons Attribution 2.5 License 7

This approach does not address potential damage that be caused in the time-window
between a file was altered and improperly used since and when the administrator
receives notification of the matter and handles it. It also does not guarantee the
integrity of the integrity checker itself: a successful compromise has the potential of
remaining under the radar.

Furthermore, some implementations use weak algorithms™ to calculate a file's
checksum, or rely on a small data-set for checksum calculation. Other
implementations rely on a file's attributes rather than data to evaluate integrity. The
impact of the above is that a file can be modified in such ways that even if the
integrity checker tries to evaluate it after the change, it will not be able to detect it.
Whether it's by altering the file in a way to defeat the checksum algorithm, or modify
areas of the file that the integrity checker is known to ignore, or even tamper with the
file's attributes — these implementation flaws can all be bypassed by an attacker quite
easily.

And last, they all leave out an important aspect in today's reality: the network. Our
environments become more and more inter-connected; we access files from untrusted
locations on a daily basis; some architectures rely on a networked environment for
everyday operation: centralized storage, backup, and so on. Existing products may
provide a certain level of local protection on a host, but leave an important — and
interesting — question unanswered: how do you cope with the compromise of a remote
resource?

While we cannot deal with all aspects of compromise of a remote resource we use,
and it is certainly not our goal either, it is important to try and address the ones that
can be solved by using an integrity checker integrated in the operating system.

3.2.2 Design

Veriexec was designed to be a file-system independent integrity subsystem protected
from users, including root, by operating solely from the kernel. Recent attacks against
various hashing algorithms once thought secure proven the need for interface
flexibility — such that can be used both for easy addition of support for new hashing
algorithms, as well as future work on digitally signed files.

Careful analysis of the bottlenecks for file access and other file-system semantics
(such as rename and remove) resulted in generic hooks, to be called with the required
context for decision-making and policy enforcement. At the time of writing, it is
impossible to implement the Veriexec policy on top of kauth(9) due to lack of
required scopes.

The design process also took into account various environments for Veriexec — from
workstations, through servers and critical systems, to embedded task-oriented
appliances. Strict levels with varying implications were introduced to support multiple
uses, and were named semi-descriptively to hint for said uses: learning mode (level
0), intrusion detection system (IDS) mode (level 1), intrusion prevention system (IPS)
mode (level 2), and lockdown mode (level 3).

* For example, CRC: https://www.kb.cert.org/vuls/id/25309

Licensed under a Creative Commons Attribution 2.5 License 8

3.2.3 Implementation

The most recent version of Veriexec is implemented using the Fileassoc subsystem
for management of meta-data and file association, greatly simplifying the Veriexec
code, and a device for kernel-userland interaction.

Veriexec is implemented by hooking policy enforcement routines in various parts of
the kernel, monitoring execution of normal executables as well as scripts, opening of
regular files, and rename and remove operations.

When a file is opened or executed, the evaluation routine, is called with the context of
the request (LWP, vnode, filename if any, and access flag indicating how the file was
accessed) to make a decision whether the file can be accessed or not. The result is
cached to speed-up further evaluations of the same file.

3.2.4 Future Development

During research work on Veriexec, Thor Lancelot Simon pointed out a potential
attack”. Although Veriexec ensures integrity of files on local file-systems, where all
access is done via the kernel, it cannot ensure integrity of files located on remote
hosts, imported via NFS, for example.

While Veriexec could be told not to cache the evaluation of such files, the attack
vector is when a process, or part of it, is paged-out and later paged in. Because the
disk read is done by the VM system, and only of pieces (pages) of the program,
Veriexec wasn’t aware of it. If the remote host would be compromised, an attacker
could write malicious data to the on-disk program, force a memory flush, which
would later force a page-in, effectively injecting the malicious data into the address
space of the running process on the Veriexec-protected host.

The remedy to this problem is in the form of per-page fingerprints. During fingerprint
database generation, the administrator can add the untrusted flag to entries located on
remote hosts. Veriexec will generate per-page fingerprints for them, and hook the VM
system so that when a page-in occurs, the fingerprints of the relevant pages will be
evaluated and compared to those calculated previously.

Another natural development for Veriexec would be to introduce support for digital
signatures; that is discussed in subsection 4.2.

3.3 Exploit Mitigation

Exploit mitigation techniques are part of the layered security approach of NetBSD,
complementing code auditing and more traditional security features, not intending on
replacing them.

The purpose of exploit mitigation technologies is to interfere with the exploit code
itself, preventing entire classes of exploits from working by short-circuiting common
exploitation techniques. One popular example is making sure areas of the memory
that are writable, such as the stack and the heap, are non-executable, and vice versa:
areas that are executable, such as the where the program's code is, are not writable.

% http://mail-index.nethsd.org/tech-security/2002/11/01/0010.html

Licensed under a Creative Commons Attribution 2.5 License 9

This prevents exploits that rely on injecting malicious code to a program's memory
from working, because said code cannot be executed.

3.3.1 PaX MPROTECT

For a while NetBSD had support for non-executable mappings®® on hardware
platforms that allow it. However, experienced hackers have found a variety of ways to
bypass them. Two of these are return-to-lib exploits27 and trashing arguments to
mprotect(2) to change the protection of memory.

The PaX MPROTECT? feature was developed to address the latter. It enforces a
policy where memory that was once writable will not be able to later gain executable
permission, and vice versa.

Naturally, this policy may break existing applications that make valid use of writable
and executable memory, such as programs that load dynamic modules. For this
reason, a tool is provided allowing marking executables as excluded from the PaX
MPROTECT policy. It is also possible to revert the policy, applying it only to
executables marked with an explicit enable flag.

While it is possible to modify programs that currently violate the PaX MPROTECT
policy to continue working correctly without doing so, this would be an unfeasible
effort with third-party applications.

3.3.2 SSP (Stack Smashing Protection) Compiler Extensions

Hiroaki Etoh developed SSP (also known as ProPolice) in IBM Research®. Its
purpose is making exploitation of certain buffer overflows harder by placing random
canary values right before the function return address on the stack, as well as
reordering variables on the stack making it harder — if not impossible — to overflow
stack buffers in order to overwrite integers or function pointers, preventing
exploitation even without altering the return address.

First introduced in the OpenBSD 3.4 release, a similar functionality is now available
in the stock gcc 4.1 compiler, recently integrated in NetBSD by Matthew Green.

3.3.3 Future Development

One of the planned features in this area for NetBSD is implementing PaX Address
Space Layout Randomization®'. Also developed by the PaX author, ASLR addresses
exploitation via return-to-lib attacks™ by randomizing the location in memory of
shared libraries used by the application, thus making it a lot harder to correctly guess
the location of library functions within the application address space.

2 http://netbsd.org/Documentation/kernel/non-exec.html

7 hitp://seclists.org/lists/bugtraq/1999/Mar/0004.html

28 See thread http://seclists.org/dailydave/2004/q2/0045.html.

» http://pax.grsecurity.net/docs/mprotect.txt

3 hitp://www.trl.ibm.com/projects/security/ssp/

3! hitp://pax.grsecurity.net/docs/aslr.ixt

32 paX ASLR addresses more than that; it also randomizes stack/heap base addresses for both userland
and kernel threads.

Licensed under a Creative Commons Attribution 2.5 License 10

As expected, hackers found ways to bypass ASLR. The two most commonly used
attacks either combine an information leak bug leading to the disclosure of the
location of libraries®, or brute-force exploitation on respawning daemons in an
attempt to guess the correct address in one of many attempts 4

An ASLR implementation would not be complete without a solution to the latter
technique. Such a solution, developed by Rafal Wojtczuk, is Segvguard” , employing
the basic concept of monitoring the rate of SIGSEGV signals sent to an application in
a given time-frame, in an attempt to detect when a brute-force exploitation attack is
taking place and prevent it by denying execution of the offending application.

A similar monitor will be introduced in NetBSD once ASLR is implemented.
3.4 Misc. Features

3.4.1 Information Filtering

One of the most common requirements from multi-user systems (such as public shell
providers) is that users will not be able to tell what other users are doing — such as
running programs, active network connections, login/logout times, etc.

NetBSD implements the above using the kernel authorization interface, and presents
the administrator with a single knob that can be either enabled or disabled. When
enabled, the authorization wrappers will match credentials of the two objects (the
looker and the lookee) and return the decision.

This abstraction makes it easier to change the behavior of this feature in the future.

3.4.2 Strong Digital Checksum Support

Support for SHA2 checksums has been available in the NetBSD kernel for a while,
mainly for the use of the IPSec network stack. Userland, however, was largely
neglected. Tools such as cksum(1) and mtree(8) were able to make use only of hashes
that were proven weak™. Given mtree(8) can be used to evaluate file-system integrity,
this was rather dangerous.

The recent improvements to Veriexec, allowing it to support SHA2 hashes, amplified
the need for userland support for SHA2 hashes, and were the trigger to adding SHA2
hash routines to libc, as well as support in cksum(1) and mtree(8).

3.4.3 Fileassoc

Fileassoc is one of the latest additions to the NetBSD kernel. It allows associating
custom meta-data with files, independent of file-system support (such as extended
attributes) using in-kernel memory. The interface is the result of research of other
security features that stressed the need for an abstraction of code previously used
exclusively by Veriexec.

3.4.3.1 Design

3 hup://artofhacking.com/files/phrack/phrack59/P59-0X09.TXT (mirror)
 http://artofhacking.com/files/phrack/phrack 58/P58-0X04. TX T (mirror)
35 Ty

~ Ibid.

3 hitp://www.schneier.com/essay-074.html

Licensed under a Creative Commons Attribution 2.5 License 11

The Fileassoc interface extends an already-existing design used by Veriexec. The
requirements for the design were performance — so that using it in performance-
critical code would not cause a notable impact on system performance — and ease of
use. The interface was extended, allowing more than one hook to add its own file
meta-data.

Designed with simplicity in mind, the interface allows multiple subsystems to hook
private data on a per-file and/or per-device basis.

3.4.3.2 Implementation

To achieve the desired goal of near-zero performance impact of entry lookup, the
Fileassoc subsystem makes use of hash tables and linked-lists to resolve collisions.
The interface operates on struct mount * and struct vnode * to identify file-system
mounts and files, respectively. While the internal implementation identifies a file as a
pair of struct mount * and a file-id — the contents of va_fileid after a successful
VOP_GETATTR() call — this is planned to change in the near future (see subsection
3.4.3.3).

In the current implementation, Fileassoc allows four hooks (which can be modified
with a kernel option) to add private data to each file. This is transparent to the users of
the interface, allowing changing in the future, if such is required.

3.4.3.3 Future Development

As previously mentioned, Fileassoc still relies on the va_fileid field as the unique
identifier for files. This is an internal implementation detail, and expected to replaced
in the future with file-handles by using calls to the file-system specific vptofh()
routines.

3.4.4 Password Policy

Administrators often need to enforce a password policy on the system — either a
system-global policy, per-application policy, or even a network-global policy. To
address that issue, the password policy, or pw_policy(3), interface was developed.

With flexibility and simplicity in mind, the pw_policy(3) interface was designed to
allow an administrator to specify password policies via a collection of keywords, and
applying them to named entities.

The interface is part of libutil and is small enough to be used from within any existing
application. It was designed in a modular way, allowing future support for more
keywords and evaluation routines.

4. Current NetBSD Security Research and Development

Discussed so far are solutions already implemented and available in NetBSD. Below
you will find the current goals of the security research done in NetBSD, some of
which are planned to be introduced as soon as the NetBSD 5.0 release.

4.1 Deprecating The Kernel Virtual Memory Interface kmem(4)

The kmem(4) device allows raw reading of kernel memory. It was introduced to allow
programs that needed information from the kernel a way to extract it by reading the
symbol list from the live kernel’s on-disk image and seeking to it.

Licensed under a Creative Commons Aftribution 2.5 License 12

Several issues were raised regarding this device®’, and with 4.4BSD a new interface
meant to replace kmem(4) was introduced, named sysctl. Sysctl allowed structured
and controlled access to kernel information via syscalls carrying a management
information base (MIB). The kernel held a tree-like hierarchy of information it can
provide, and the MIB described what information is looked up.

From a security point of view, the kmem(4) device allows malicious processes
running with kmem or root privileges to directly read or write kernel memory38. The
attack vector here is widely abused® *° mainly to introduce stealth rootkits into
compromised systems.

Currently, NetBSD is doing loose usage of the kmem(4) interface, using it for more
than a few userland utilities. There is an on-going effort to gradually convert
programs using kmem(4) to sysctl with proper kernel support, allowing us to
deprecate daily use of kmem(4) and maintain the interface for debugging needs only,
if required.

4.2 Digitally Signed Files

At the moment, the Veriexec subsystem provides integrity based entirely on data.
While it is strong enough to maintain file-system integrity on servers and critical
systems, it lacks two important features: ability to securely modify the baseline during
runtime, and ability to associate an identity with a file-system object.

Securely modifying the baseline during runtime is forbidden, even for the super-user,
for security reasons: a possible scenario is that the host can be fully compromised and
trojanned by an attacker; preventing the super-user from modifying critical programs
can prevent that.

Associating a digital signature with a file-system object, regardless of
implementation, could solve the above two by allowing an administrator to specify
trusted entities. These could run any programs — as long as they are signed by them.
That would mean that introducing a new program on the system required digital
signing by a trusted entity, rather than a super-user adding its digital checksum to a
database and rebooting.

It is planned to extend the Veriexec subsystem with this capability, in either one of
two possible directions for the implementation; either delegating the digital signature
processing to a user-space daemon, or making use of the BSD-licensed BPG inside
the kernel.

4.3 Access Control Lists

Perhaps one of the longest remaining Unix relics in NetBSD is the file-system
security model. Proven weak over time, modern operating systems implemented file-
system access control lists, or ACLs.

37 “The Design and Implementation of the 4.4BSD OS”, pages 509-510.

*® The use of raw access to bypass a security guard isn't limited to kernel memory: on-disk inodes could
be modified using raw disk access, for example.

* http:/artofhacking.com/files/phrack/phrack58/P58-0X07.TXT (mirror)

40 “Rootkits: Subverting the Windows Kernel”, chapter 7.

Licensed under a Creative Commons Attribution 2.5 License 13

An ACL allows finer-grained file access, extending the owner-group-other scheme
currently used.

There are two main issues when approaching file-system ACLs. The first is where to
store them, and how to associate a potentially variable sized data-structure with a file.
The second is what ACL model to use, which may dictate interoperability with other
operating systems.

For the former, NetBSD provides both the UFS2 file-system®', where extended
attributes were introduced especially to address this issue, as well as the Fileassoc
kernel interface, allowing file-system independent association of meta-data, after such
data has been loaded via a driver.

Given recent standardization in ACL structure between Windows NT, Mac OS X, and
NFSv4, it was decided to go with the same model for the latter, allowing NetBSD to
properly operate in a heterogeneous environment.

4.4 Capabilities

Part of Unix's long-standing weaknesses is the use of set-id programs to elevate
privileges of a normal user, either temporarily or permanently, required to complete
an operation restricted to the super-user — for example, open a raw socket, bind to a
reserved port, and so on.

The above lead to the absurdity that bugs in often trivial and non-critical programs
could result in privilege abuse or even full system compromise.

Introducing capabilities, implemented as a set of kernel authorization listeners, will
replace the role of the set-id bit in today's systems. Providing a fine-grained privilege
model, each program will run with the minimal set of capabilities required for its
operation. Furthermore, associating capabilities with users will allow us to define user
roles, dividing the work-load of the super-user — possibly eliminating it entirely!

While a design for NetBSD capabilities hasn’t been laid out yet, it is expected that
support for capabilities will be provided on the file-system layer, allowing the
association of capabilities with a program using extended attributes, as well as an API
a la OpenSolaris ppriv(3) for dropping unneeded capabilities during runtime, and a
mechanism for associating capabilities with users on the system.

5. Component Interaction

So far the focus was on introducing the new infrastructure and features in NetBSD, as
well as some on-going development. However, no emphasis was put on the
interaction between the various components, and how they all cooperate and
contribute to NetBSD's layered security model.

Throughout this section we'll examine the role of each feature in the layered security
model.

1 http://www.usenix.org/events/bsdcon03/tech/mckusick.html

Licensed under a Creative Commons Attribution 2.5 License 14

5.1 Attack Vectors

Attacks can be conducted on various parts of the system, most commonly exploiting
bugs in services (remote and local), misconfigurations, general program misuse, and
user actions monitoring. Furthermore, post-compromise attacks include implanting
trojan horses, backdoors, and rootkits.

Being a multipurpose operating system, NetBSD's security was designed to also be
flexible and without a single point of failure: acknowledging different needs in
different environments, the various security features are fully customizable, and the
system is configured with sane defaults to ease administration.

5.2 Layer One: Exploit Mitigation and Privacy
In attempt to render an exploitation attempt itself as useless, the exploit mitigation
features in NetBSD provide the first layer of security. The curtain hooks help protect
the privacy of users in a multi-user environment, minimizing the potential of pre-
attack information gathering and reconnaissance.

5.3 Layer Two: Capabilities

As discussed in subsection 4.4, capabilities are planned to replace the set-id bit. This
effectively reduces the amount of privilege each program is running with. Successful
exploitation of programs that today could result in pivoting42 Or super-user account
compromise will result in a less critical privilege elevation in the worst case, limiting
the impact of vulnerabilities on the overall security of the host.

5.4 Layer Three: Signed Files

Mentioned in subsection 4.2, signed files are the natural evolution of Veriexec,
basically associating a signing entity with a file in addition to its digital fingerprint.
The immediate benefit is obviously in introducing trust in networked environments,

where files can be safely exchanged without fear of attacks such as man-in-the-
middle®.

Accessing files — in particular, running programs — that are signed by "trusted"” entities
in the default configuration could help reduce the possibility of running manipulated
binaries even in face of attacks on the digital checksum algorithm. Doing so in the
event of a compromise, combined with Veriexec's lockdown mode, will allow real-
time investigation and remedy.

5.5 Layer Four: File-System Integrity

Interesting uses for Veriexec (presented in subsection 3.2) are its IDS and IPS modes.
With functionality somewhat resembling a fly-frap, Veriexec in IDS mode can be
used to silently monitor operations on critical system files (services, configuration
files) in real-time, preventing any access to them once changed. This can make post-
mortem analysis an easier task. IPS mode can be used to prevent access to these files
altogether and generate proper log-files to help identify the source of the attack.

These two modes of operation can ensure file-system integrity even in the face of a
super-user compromise, making it easier for an administrator to handle an attack

2 Transition from one user to another.
“ Assuming, of course, that the kernel itself cannot be manipulated.

Licensed under a Creative Commons Attribution 2.5 License 15

without fear of trojanned, backdoored, or otherwise modified (via configuration files)
services.

5.6 Layer Five: Protected Kernel Memory

Aimed at preserving kernel memory integrity, the work-in-progress for deprecatin
kmem(4) usage should result in the ability to remove the interface altogether™,
preventing the possibility of kernel memory manipulation by a malicious superuser on
a compromised host. The benefit is obvious: no sophisticated rootkits or kernel-level
backdoors can be implemented™®.

6. Conclusion

Throughout this paper I’ve outlined the recent enhancements in NetBSD security in
terms of infrastructure and features, and how they conform to NetBSD's perception of
security. Finally, I've exposed some on-going research and development, and showed
how it all works together to create a more secure platform

While it is true that a lot of work is still ahead of us, this paper exposed the lot of
work that is behind us. Over the past year NetBSD improved a lot on the security
front, and it is expected that these efforts will pay off — if not already — within the next
major release.

6.1 Availability
NetBSD 4.0 will include kernel authorization*®, PaX MPROTECT*, GCC 4.1 with
ProPolice, the information filtering hooks*®, fileassoc(9) **, and pw_policy(3) *°.

Complete abstraction of the security model using kernel authorization is being
considered for NetBSD 5.0, as well as PaX ASLR and a SegvGuard, Veriexec support
for per-page fingerprints and digital signatures, file-system ACLs, and capabilities.

7. Credits

Thanks to the folks who reviewed this paper, either in part or in whole, helping
improve its accuracy, readability, and quality. Jason V. Miller, Brian Mitchell and the
guys at ISS, the PaX author, and Sean Trifero, Johnny Zackrisson, and Christos
Zoulas.

Thanks to Brett Lymn, the PaX author, Bill Studenmund, YAMAMOTO Takashi,
Matt Thomas, Jason R. Thorpe, and Christos Zoulas for helping with implementing
the features discussed in this paper.

* From most systems. X would still require it without the use of an aperture driver.

+ Unless, of course, a kernel vulnerability is successfully exploited.

*® http://netbsd.gw.com/cgi-bin/man-cgi?kauth++NetBSD-current

*7 http://netbsd.gw.com/cgi-bin/man-cgi?paxctl++NetBSD-current

* See the security.curtain knob.

** hitp://netbsd.gw.com/cgi-bin/man-cgi?fileassoc++NetBSD-current

% http://netbsd.gw.com/cgi-bin/man-cgi?pw_policy++NetBSD-current. No programs were made aware
of the interface yet, though.

Licensed under a Creative Commons Attribution 2.5 License 16

nnpfs File-systems: an Introduction

Kristaps Dzonsons

EuroBSD Conference, 2006

Abstract

Writing a file-system is tricky business. Every kernel has a different
way of operating upon file-system data; every kernel has a different set of
interfaces with which to accomplish these operations. The nnpfs kernel
driver exports file-system operations for a given mount-point to a char-
acter device with a byte-layout specified by an interface. This allows one
to write generic user-land file-systems for platforms supporting the nnpfs
driver, including the BSD family of operating systems. In this document,
we present xfsskel, which demonstrates a simple “null”-like file-system
mounting a loopback file-system sub-tree. The purpose of xfsskel is not,
however, to provide production file-system; it is, rather, a tool to pro-
vide thorough documentation on writing file-systems for the nnpfs driver.
With such documentation, we believe that many pseudo-file-systems miss-
ing across the BSD operating systems may be made available in a clean,
cross-platform manner.

1 nnpfs

The nnpfs driver is provided as part of the arla ! project. arla is a free AFS
implementation available for a variety of platforms. The nnpfs driver allows
arla to operate on diverse systems by providing the user-space with a uniform
interface to file-system changes. Although writing an in-kernel full-system driver
would provide superior operating performance (as demonstrated, for example,
with nfs), the complexity in maintaining in-kernel drivers for multiple platforms
is significant. arla thus produced a generic interface which it set atop a system-
specific driver xfs (since renamed to nnpfs to avoid name collision with other
projects). With nnpfs, file-system operations are provided to a character device
conforming to a set of interface definitions; thus, the arlad user-space daemon
needn’t know about operating system pecularities to function.

Note well that the nnpfs driver is by no means a panacea for writing cross-
platform file-systems. The driver creates significant overhead in exporting file-
system operations, a penalty not taken by in-kernel file-systems. When speaking
of nnpfs’s utility below, it should be noted that this document biases “file-
system” towards “pseudo-file-system”, which may be loosely defined as provid-
ing a service layer above lower-level file-systems. A “file-system”, in this par-
lance, would be ffs or ext3, while a “pseudo-file-system” would be a remote
file-store accessed via ssh(1) or ftp(1).

1.0.1 Supported Platforms

To date, the arla nnpfs driver has been ported to FreeBSD, NetBSD, Linux,
OpenBSD, Mac OS X? and others. It’s an ideal candidate for writing file-
systems in the user-land that span many architectures. This lecture will focus
on the BSD family of operating systems: OpenBSD, FreeBSD and NetBSD?3.

1.0.2 Installation

The nnpfs driver itself is part of the base kernel provided by OpenBSD. On
NetBSD and FreeBSD, it must be downloaded and compiled separately, then
the kernel driver introduced by means of LKM routines. arla may be down-
loaded through the third-party ports collection; in both systems, found under
the net/arla namespace. The arla package is required for both mount_nnpfs(8)
system utility and the kernel module. Consult your operating system’s manual
on how to install third-party utilities, should it be required. Once installed,
you’ll have to introduce the kernel module appropriately.

Note that OpenBSD may also be treated as mentioned- by downloading
the arla sources and compiling the most current module. Although this would

Thttp://www.stacken.kth.se/project/arla/

2See the arla web-site for current systems.

3At the time of writing, OpenBSD is at 3.9; NetBSD at 3.0; and FreeBSD at 6.1. Since
this document is heavily platform-specific, upgrades to systems may result in interface and
naming changes.

bring the OpenBSD installation up-to-date (see the “Caveats” section, below),
we concentrate on the available package in this lecture.

1.0.3 Caveats

The OpenBSD distribution of arla is out-of-date. OpenBSD still refers to the
arla interface with “xfs”, which has since been replaced by “nnpfs”. This doc-
ument will refer to nnpfs exclusively. We’ll take special care to mention when
these naming discrepancies occur, and they’ll occur often. For example, while
NetBSD’s utility for mounting nnpfs points is mount_nnpfs(8), OpenBSD’s
remains mount_x£fs(8). Interface references will use “nnpfs” in naming.

2 xfsskel

The xfsskel project? came about while researching the various tools for ex-
porting file-system operations from the kernel, ostensibly to write a replicating
object file-system operational across the BSD family of free operating systems.
The original requirements were:

1. cross-platform (at least OpenBSD, NetBSD, FreeBSD, and Linux)
2. stable (must not require complex administration)

3. well-documented (low overhead in implementation)

1SS

. free (permissible license for maximum re-distribution)

The immediate candidate was FUSE®, File-system in Userspace. However,
FUSE is limited in its portability. As the time of writing, this is limited to
Linux and FreeBSD. arla’s implementation was found during research for other
freely-available replication agents.

Although nnpfs met most requirements, it had very poor documentation. By
sifting through the arla code and other implementations of the system, we were
able to extract the necessary protocols required to interface with the kernel’s
file-system export routines.

This document will focus on the original research’s target — a replicating
file-system rfs — to describe potential strategies in implementing a user-space
file-system. The rfs has not yet reached a state where demonstrable code is
available; however, since this is used only to posit strategy, source code is not
necessary.

Note that xfsskel refers both to a body of source code and considerable
on-line documentation describing the nnpfs interface. In generally, we’ll refer
to xfsskel as a body of source code.

4http://sysjail.bsd.lv /xfsskel/
Snttp://fuse.sourceforge.net/

2.1 Source Code

The xfsskel system is a simple file-system that mounts another sub-tree within
the operating system at the nnpfs mount-point. For example, one may the
sub-tree /usr/local/ under /mnt/nnpfs/. This is similar to NetBSD’s “null”
file-system (mount_null(8)). The intention of xfsskel is not to reproduce
this function, nor to provide a production-level file-system implementation, but
to provide a source-code (and on-line) reference for interfacing with the nnpfs
driver. To this effort, the code itself is designed with stepping-through in mind:
the path from receiving events on the driver to operating upon them is very
simple to follow.

3 Getting Started

Using nnpfs is fairly simple on all systems. On OpenBSD, the kernel driver and
associated user-space utilities come bundled with the system. On NetBSD and
FreeBSD, one must download the user-space tools separately from the appro-
priate package management tools. You’ll also need to download the xfsskel
package if you wish to examine the operation of the system.

3.1 Kernel Options

nnpfs is a kernel option on the OpenBSD system, where it’s enabled by default;
on FreeBSD and NetBSD, the kernel module must be dynamically loaded. Con-
sult your operating system’s kernel compilation manual for instructions on how
to do this.

Once the kernel has been booted (or module installed) and the user-space
utilities appropriately installed, you’ll have to instruct the kernel to direct all
requests for the mount-point to the nnpfs driver. On OpenBSD, you'll have to
address with the old naming scheme.

/sbin/mount_zfs /dev/xfs0 /mnt/xfs0

/sbin/mount_nnpfs /dev/nnpfs0 /mnt/zfs0

Consult the appropriate manuals (mount_xfs(8) or mount_nnpfs(8) before run-
ning anything. Once executed, the kernel will export messages to this mount-
point to the nnpfs character device as listed. If the device is not opened and
accessed by an appropriate executable, requests for data will immediately fail.

To examine xfsskel, first compile the sources, then execute the foreground
process as follows:

xfsskel
By default, xfsskel will listen on the /dev/xfs0 device and map the / file-
system. To change these values, you’ll have to edit portions of the source code.

4 nnpfs internals

The nnpfs driver exports data to the user-space by a well-defined set of inter-
faces. On OpenBSD, these are exposed in header files at /usr/include/xfs/.
On NetBSD and FreeBSD, you'll have to copy the files manually or point your
Makefiles to the appropriate subdirectories (for compilation). Any system han-
dling the nnpfs driver’s device data will need these interfaces. The most sig-
nificant is xfs/xfs_message.h (nnpfs/nnpfs message.h) (hereafter referenced
with “nnpfs”). In this file are the structures that define the structure of data
events raised through the device.

4.1 Basics

To process requests from the nnpfs driver, you’ll first need to receive events.
This may be accomplished through a standard blocking read(2) on the appro-
priate device (/dev/xfs0 on OpenBSD, /dev/nnpfs0 on FreeBSD and NetBSD)
or, in the event of more complex systems, usage of select(2) or poll(2).
xfsskel uses a simple blocking read(2) call, as it has no other function be-
yond servicing file-system requests.

A system processing events must offer two services. The first is to read
appropriate messages from the kernel driver, and the second is to acknowledge
events and action taken on the events. These may be serviced in any partic-
ular fashion: since service requests contain an acknowledgement key and are
asynchronous, in theory, one could have multiple listening daemons that com-
municate among one another. For example, one can have a daemon that does
nothing but receive messages and modify a shared work queue. These events
could be serviced by another process, in turn modifying another work queue. Fi-
nally, a third process would be responsible for pushing acknowledgements back
into the kernel. Whether this would offer any performance advantage is arguable
- certainly, were the system able to process events in parallel, requests could
be handled in a different processing context. In most file-system implementa-
tions, however, processing is I/O bound and extra processing elements would
add little beyond complexity. xfsskel has a simple, sequential work-flow so
as to keep details as obvious as possible. Unless operations on file-system data
are CPU-bound (hashing, compressing, and so on), the benefits of simplicitly
outweigh negligable increases in speed.

4.2 Interfacing

The main interface to nnpfs lies in nnpfs/nnpfs message.h. This header file
contains the structure of messages as they’re passed from the nnpfs device. The
following code fragments demonstrate the process of reading requests from the
nnpfs device /dev/xfs0. Assume the following variables throughout:

struct nnpfs_message_wakeup wake;
struct nnpfs_message_header xhdr;
char buf [NNPFS_MAX MSGSIZE];

int fd;

First, one must initialise the device.

fd = open(”/dev/xfs0”, ORDWR);

Next, messages may be read from the device as they appear. This fragment uses
a simple blocking read; more complex approaches may be necessary depending
on usage.

read (fd, (void =*)buf, NNPFS.MAX MSGSIZE);
hdr = (struct nnpfs_message_header #)buf;

Messages are passed from the device in a byte-sequence defined by C structures.
These are created when inheriting structures encapsulate a global header (left-
aligned appropriately), so one may read out a generic header, switch on its type,
cast to the appropriate subtype, and descend appropriately. Note well that
messages must be read with a size of NNPFS_MAX_MSG_SIZE; since the underlying
device does not buffer, requests to read smaller requests will yield errors.

switch (hdr—opcode) {
case (NNPFS_MSG_VERSION) :
case (NNPFSMSG.WAKEUP) :
/x Process these requests, etc. x/
}

Assuming that the struct nnpfs_message wakeup wake variable has been ap-
propriately initialised, one may now write a response back to the device.

write (fd, (const void *)&wake, wake.header.size);

The above fragments are all one needs to get started processing messages. At
this point, one must understand the contents of messages and act on their
requests.

4.3 Protocol

The above section defines, in code, the sequence of receiving and acknowleg-
ing kernel messages What if the kernel requests specific information from the
user-space system? If the kernel makes a request for data, it’s the user-space
system’s responsibility to provide the device with necessary structures before
acknowledging the request. When an acknowledgement is passed to the kernel,
it is assumed that the appropriate data has already been supplied. In this light,
the structures defined in nnpfs/nnpfs_message.h are divided into requests from
the kernel and corresponding responses. Note that not all all kernel-user space
requests are symmetric. A general sequence follows:

1. receive requestl from kernel

2. receive request2 from kernel

. response requestl-a to kernel

. response requestl-b to kernel

3
4
5. response requestl-c to kernel
6. ack request2 to kernel

7.

ack request] to kernel

This serves to demonstrate how requests from the kernel are out-of-order and
asynchronous: one may respond to any number of messages before responding.
The dependence is one of context. When one acknowledges a kernel request, it
is assumed that the requested data has been provided. If it has not, the kernel
will likely re-fire. Internally, the device maintains a queue of I/O requests and
sleeps until an acknowledgement is received. At that point the I/O operation
will begin running. It’s the programmer’s job to ensure that the kernel has all
appropriate data before processing.

5 Concepts

To write a system interfacing with nnpfs, one must understand some nnpfs-
specific file-system concepts.

1. How does the driver reference file-system objects?
2. How does the driver signal read(2) and write(2) data?
3. How are access controls handled by nnpfs?

The concepts described below will be explored primarily in words. For “Ob-
ject referencing”, for instance, there are significant supporting in-code structures
that exceed the scope of this document. For a complete reference of relevant
structures and values, consult the nnpfs/nnpfs_message.h header file itself or
the xfsskel web-site, which has a complete listing of structures and their func-
tions.

5.1 Object referencing

Both the kernel and the user-space implementation must agree upon a conven-
tion for addressing file-system objects. For example, the kernel must know how
to query a particular file. To accomplish this, the interface defines a 128-bit han-
dle for each object as defined in struct nnpfs_nnpfs_handle. When referencing
an object (practically, a file; but in theory, any file-system object), the kernel
uses this field. It must be installed only once. In the following paragraphs, the
term “node” refers to an object in the file-system. A node may be any resident
object on a file-system; in the relevant Unix systems, a node may be a named
pipe, a directory, file, block device or so on.

xfsskel has a simple scheme for node handles. It allocates a node object on
the heap (by a data structure containing per-node information, like that main-
tained by an inode) and uses the pointer as the object reference. Thus, when
requests arrive from the kernel, xfsskel simply dereferences the appropriate
object.

It’s of significant note that nnpfs may request multiple nodes for the same
file-system object. For example, the file foo/bar may have several nodes open
on it at once. Caching nodes becomes a series issue when balancing many
simultaneous node requests.

Once a node has been used, the user-space implementation may request
that references to the node are deleted. This is known as garbage collecting a
node. xfsskel does not implement garbage collection at this time, thus in time
it will inevitably run out of memory (assuming one continues to operate the
file-system).

5.2 Data transfer

Data transfer to and from the user-space system is accomplished by file-handles.
File-handles provide a means to access file data while bypassing directory per-
missions: one provides a file-handle to a file path and subsequent operations
(fhopen(2) et al) need not a direct reference to the file. This allows nnpfs
systems to be freed from a particular underlying directory structure. Since not
all systems provide the file-handle utility, nnpfs provides its own version by
means of direct syscall(2). The kernel manages open file-handle objects, so
the user-space implementation needn’t keep track of open file descriptors and
SO on.

5.3 Access control

Since nnpfs does not assume a Unix-like supporting environment, it offers its
own flexible means of access control. As with object nodes, it’s the user-space’s
responsibility to provide and enforce access controls (or, as with xfsskel, pro-
vide none whatsoever).

However, in keeping with the Unix rights-management philosophy, nnpfs
does have a notion of read, write and execute privilege: “rights”. When the
user-space system installs a node, it installs with it an array of credentials and
rights by mapping identities (“PAG”s) to their rights. A special field is reserved
for anonymous rights, should no relevant identities by provided.

When a process accesses the device, it’s by default associated with a creden-
tial containing only its corresponding UID. The PAG is also this UID - although
if the UID changes (say, with setuid(2)), the PAG stays the same. One may
map PAGs through syscall(2) to the nnpfs driver so that, for example, a
user on one system may have the same PAG as a user on another system. The
driver will traffic new PAGs through the system, but it’s the user-space system’s
responsibility to manage and administer PAGs via the system call interface.

6 Implementations

We've discussed xfsskel, a simple user-space file-system atop the nnpfs driver.
Unfortunately, xfsskel is woefully inadequate as a production system. In fact,
its design specifically allows it to exhaust memory. This section discusses some
strategies for designing robust, production-grade file-systems atop the nnpfs
driver.

6.1 Introduction

In these strategies, we’ll examine the replicating file-system as mentioned above:
rfsS. rfs should accept reads and writes to its mount-point and propagate the
operations among participating nodes in a replicating clique with a well-defined
coherence protocol. The system must also accept incoming connections from
other nodes in its clique, and respond to their data service requests as well.
At any time, the system may have enqueued dozens of simultaneous requests
(scaling with the number of participating hosts and the number of local pending
I/O requests). The response time of these requests must be as absolutely low
as possible. We can make no assumptions as to the underlying hardware in the
host. Our only assumption about the underlying host is that it will present a
common set of system interface functions to the executable (as defined in the
Single Unix Specification and available, among others, on OpenBSD, NetBSD,
and FreeBSD). In this document, we’ll consider the practical elements of the
file-system: how it obtains and distributes data. Note that rfs is not designed
to be fast: its foremost priority is reliable replication of data. That said, to
have a too-slow file-system would be impractical.

6.1.1 Theory

This document describes the practical elements of this file-system. That said,
the relevant underlying theories are that the sharing algorithm is pessimuistic,
meaning that the coherence protocol assumes failure until all nodes respond ac-
cordingly. Second, the directionality of reads and writes shall be unidirectional:
a single host maintains a file-lock until changes complete. Following a request
for an object, a receiving rfs server either forwards the request to the appro-
priate holding server or initiates a voting session to claim its own lock. This
becomes significant when examining the schema for object handles.

The term “node” may become confused when discussing “clique node” (as
in member of a replicating clique) or “object node” (as in data structure for a
file-system object). We'll be careful to differentiate between the two.

6.2 Process Layout

Although it’s tempting to build a complex, multi-threaded user-space system to
efficiently manage the possible threads of execution, most of rfs’s execution is

SNote again that rfs is still being researched.

I/0O bound. In fact, there’s very little processing power required. Most time in
execution is spent waiting on data buffers to fill and drain. With this in mind,
it’s simpler and more effective to design the application to be as asynchronous
as possible, and to run within a single thread of execution. While managing fifty
threads is a complex and costly task in terms of resources, it’s relatively simple
to maintain queues of active participants, and serve the I/O requests made
available on an edge-triggered basis. Thus, we’ll settle with a single process
waiting on a dynamic vector of I/O events.

6.3 Servicing events

Events have no priority in our system: events from the nnpfs device are similarly
prioritised as requests from other nodes in the clique (in practice, this is not
necessarily true, but theory details are not relevant to this particular paper).
Our system must respond to events from the nnpfs device and from network
events. Since we’ll describe our system as asynchronously as possible, we’ll use
the UDP protocol for network communication and maintain the status of all
pending connections for retransmission.

Once opened, the file descriptor for the nnpfs device will be added to a
struct pollfd vector for use in pol11(2). Our application will be driven centrally
by a polling call to all readable interfaces (nnpfs and listening sockets). We’'ll
instruct po11(2) to timeout in order to service potential timeouts from pending,
asynchronous waits for acknowledgements in requests for data to other nodes.
These pending events will be described in persistent journals (areas memory-
mapped to files, preferably on a device that buffers as little as possible), allowing
the file-system state to be fully recoverable in the event of system crashes.

6.4 Object References

To identify nodes on a local system (like with xfsskel) is fairly easy. Distributed
systems are somewhat more difficult: one must know where a particular object
resides on the network of participating hosts. As mentioned above, changes
to an object (following a lookup, wherein the node challenges existing locks)
correspond to a unidirectional broadcast from the servicing node within the
clique. Thus, we needn’t maintain a complex address mapping between object
nodes and their content; we can, like in xfsskel, maintain a simple lookup.
We'll delegate most of this complexity to a node cache, which will manage the
cache of available nodes and trigger garbage collection, if necessary.

6.5 Node cache

A node cache must manage the map of node handles to underlying objects. It
must trigger garbage collection on an as-needed basis and provide the correct
data sets for collection. First, we’ll provide a splay tree of object nodes to benefit
from request locality, on the assumption that most accesses will be localised.
As incoming requests for new nodes are serviced, we’ll lookup the node in the

tree with a hash function on the file’s provided name and directory parent. If
found, the node reference count will increase and a pointer will be returned; if
not, a new node will be created and initialised.

The balancing properties of splay trees will ensure that the tree is biased
toward locality. Our garbage collection scheme will base itself on both the tree
size and depth. Garbage collection will be level-triggered when pre-set limits
are exceeded. To provide maximum flexibility, we’ll allow these limits to re-size
given statistical usage (this shouldn’t require more than simple statistical anal-
ysis of growth patterns). For example, setting a maximum number of available
nodes on a file-system that continuously triggers garbage collection by hovering
around the threshold is suboptimal (limits for absolute maxima, of course, will
exist).

6.6 Access control

We want rfs to provide Unix-like semantics to the calling file-system interface.
In deference to simplicity, we make the assumption that each participating node
maintains identical UID databases (or common subset of databases that will
access the system). This frees us up from complex mappings of users and PAGs,
and allows more concentration on the fundamental system underpinnings. In
time, this may extend to a more powerful means of authentication, such as

LDAP.

6.7 Data transfer

As already mentioned, a host servicing a node request is guaranteed to have
a lock on that file. It maintains a file cache on-disc. Although distributing
the file in blocks (as does the most currently version of arla) is attractive and
relatively simple to implement, it does not show an immediate benefit to the
initial implementation of rfs. A more advanced system that must account for
a wider domain of hosts may want to have more flexibility in striping blocks
across hosts. In this scheme, we’ll intercept the nnpfs driver’s notification of
written data (NNPFS_MSG_PUTDATA) and distribute the blocks as appropriate.

7 Conclusion

By using the nnpfs file-system export driver, we’ve managed to design the
concepts for a file-system implementation portable across all systems supported
by the device. By adhering to system interface standards, we're guaranteed that
code will port to any conforming architecture within the set of nnpfs-aware
systems. If rfs complies with all standards, it stands to be ported immediately
to all BSD operating systems, Linux, Mac OS X, and even Microsoft Windows
2000. This provides significant strength to the availability and utility of pseudo-
file-systems.

10

Implementing Lightweight Routing for BSD TCP/IP

Antti Kantee <pooka@cs.hut.fi>

Helsinki University of Technology

Johannes Helander <jvh@microsoft.com>

Microsoft Research

ABSTRACT

The BSD TCP/IP stack is the de facto standard for TCP/IP interoperability. Leveraging as
much as possible of the proven code is beneficial to all parties when considering new
operating platforms. However, the implementation of packet routing within the stack is
targeted for core routers. The code size is huge and presents no benefit for network leaf
nodes, especially embedded systems. Additionally, making matters worse, the implemen-
tation is convoluted and provides no clear interface for alternate implementations.

This paper discusses a lightweight routing implementation for the BSD networking stack.
By replacing the existing routing code by a much simpler implementation the size of the
networking stack was reduced by 20%; this is more than the size of the TCP module. For
leaf nodes, the functionality and performance of lightweight routing is equivalent to the

historic BSD routing code.

1. Introduction

Despite ever-increasing hardware resources,
there are still places where it pays to be as small
as possible. One of these places is on an embed-
ded device, where kilobytes of additional memory
will cost some cents per unit manufactured. Once
this cost is multiplied by the number of millions
units produced, the business motivations in invest-
ing to smaller code become very clear. From a
software engineering point-of-view, however,
smaller code can either have advantages or disad-
vantages. It depends on if the reduction was
accomplished by architectural structurization or
micro-optimization of the existing architecture
and their respective proportions. However, this
paper will not discuss the merits of either way any
further.

While it is relatively easy to write software
to match a specification and a certain size target,
the challenge is that the real world is very real. It
is far from uncommon to see quirks and

workarounds in code which has to interoperate
with counterparts from other vendors. This is due
to specifications being written in spoken language
and always containing too much room for inter-
pretation. Hence, it reasons to say that writing
software interoperable with real world implemen-
tations is difficult.

The BSD TCP/IP implementation has a
proven track record in interoperating with the real
world. In fact, it can be said to define TCP/IP
interoperability. Therefore, when aiming for
TCP/IP interoperability, using the BSD code base
would be a good approach. However, the BSD
code does present some challenges for use. In our
case this is the fairly large code size. Some of it
can be shaved off using trivial modifications, but
taking it beyond a certain point gets hard.

In this paper we present a novel idea for
implementing routing in leaf nodes. We show
how it was implemented for the 4.4BSDLite2
BSD networking stack and discuss why it was

difficult to do. We also attempt to outline future
improvements in the area for a more modular
TCP/IP stack.

The rest of the paper is structured as fol-
lows: Chapter 2 gives a short overview of our
platform, Microsoft Invisible Computing. Chap-
ter 3 presents the current networking stack imple-
mentation and our trivial improvements and
describes the situation with the routing code.
Chapter 4 presents our solution for a major size
improvement in the routing code and discusses its
implementation. Chapter 5 presents the results
and experimental figures for the implementation
and finally Chapter 6 presents our conclusions
and lines out the future work in the area.

2. Microsoft Invisible Computing

Microsoft Invisible Computing [1] is a
research prototype for making small devices part
of the seamless computing world. It provides a
compact middleware for constructing embedded
web services applications and a small component
based Real-Time Operating System with TCP/IP
networking to make middleware run straight on
the metal on several embedded processors. The
goal is to make it easy to build custom smart
devices and consumer electronics, especially bat-
tery operated; and to support research in invisible
computing, operating systems, networking, ubig-
uitous computing, sensor nets, distributed sys-
tems, object-oriented design, and wireless com-
munication.

Due to the deployement scenarios, small
size for the system is an absolute requirement.
Otherwise several interesting cases would be
ruled out because of size limitations.

2.1. Requirements

Our requirements for the networking code
are dictated by our operating environment. The
current target environment is an IPv4-only net-
work. Microsoft Invisible Computing is never
being used in the capacity of an IP router, but
rather as a data processor positioned as a leaf in
the IP network. The system may have multiple
interfaces, but only one of them will be connected
a smart router.

The main requirement for this work was the
reduction of compiled object code size to better
be in line with the target environment hardware
constraints.

Leaf Node in an IP Network

routed
leaf node | » IP router
traffic
’\ \
/ AY
/I AN local, nonrouted
! M traffic
y LY
local local
host 1 host 2

2.2. Size Analysis

For the purpose of keeping the system
small, its size is regularly monitored after a build
to catch any "creeping featurism" early on. This
information is also useful for doing size analysis
on the system.

Microsoft Invisible Computing Module Sizes

Module ROM RAM
BASE 21856 | 272
MACHDEP 5248 1680
NET 77164 | 777
TCP 13276 | 777
XML 12628 | 16
SOAP 52668 | 436
HTTP 22692 | O
DNS 11052 | 344
DHCP 5508 96
WSMAN 6740 0
SOAPMETA | 17248 | 20
CRT 14036 | 32
DRIVERS 11360 | 308

Clearly, the largest individual module in the sys-
tem is the network stack. Therefore it is the best
candidate for reduction. The SOAP module is
also large, but it was already written from ground
up with minimalism in mind.

3. Networking Stack

As was identified in the previous chapter,
the largest individual component of Microsoft
Invisible Computing is the BSD networking stack
and therefore was the ideal candidate for size
reduction.

BSD Routing Code
(photo Patty Geary)

Our target for the project was to make the
networking stack smaller. First off, some trivial
enhancements to the networking stack were made.
These included mostly replacing macros with
function calls' and #ifdef’ing out all unneces-
sary bookkeeping code not required for the
release build.

For example, the memory buffers (mbufs)
used by the network code are written so, that most
operations handling them are macros. This
reduces function call overhead when dealing with
them, but inline expansion plays havok on mem-
ory footprint and cache behaviour. With modern
CPU architectures and their CPU/memory speed
ratio, smaller code is usually faster. Additionally,
macro-style programming usually does very little
to encourage the separation of an interface from
the implementation. It also makes run-time load-
able components an impossibility due to includ-
ing the internal representation already in the "call-
ing" code.

Also, another easy way to micro-optimize
the routing code size is to replace toggles with
inline-#defined values. On RISC architectures,
this avoids a separate load instruction every time
the toggle is referenced. The downside is of
course losing the ability to toggle the values

' VAX is not one of our target platforms.

runtime.

Using simple tricks like these it is possible
to shave several kilobytes off of the networking
stack.

After the abovementioned improvements,
the compiled network stack size was analyzed and
the routing module was found to be the largest
individual component in the networking stack. It
warranted closer attention to decide its usefulness.

3.1. BSD Routing Code

The current "off-the-shelf" BSD routing
code has its roots in 4.4BSD [2]. That code was
written with several targets in mind:

« nodes connected to the network through
a single interface

¢ nodes connected to the network through
multiple interfaces

 routers involved in packet forwarding
* support for multiple address families

» good performance of computer architec-
tures of that era

While it works for all of the above, it contains
extra payload for implementations not needing all
the generic routing capabilities. Also, while the

code is well described in literature [3], it is diffi-
cult to modify because it presents no clear inter-
faces but rather chooses to optimize itself for per-
formance. Even though this was understandably a
noble goal for the original implementation, hard-
ware developments have made most of the
employed tricks unnecessary and sometimes even
counterproductive.

The kernel routing code itself can be
thought of to be divided into three different mod-
ules: routing database, routing socket and in-ker-
nel routing interface. Additionally, link layer
addressing is joint at the hip to the routing code.

The Routing Database

The routing table information within the
kernel is stored within the routing database. This
is implemented as a radix tree in 4.4BSD and is
classically found under src/net/radix.c in
the source tree. It tries to optimize the amount of
bit comparisons required to find the most specific
match? for the given search key from the data-
base.

The interface to this code is optimized more
towards performance than to provide a modular
database interface. For example, the
rn_search() function returns the subtree in
which the key resides - a clear bias toward a tree-
shaped implementation. Also, the address and
netmask arguments passed to the radix code are
void *’s, which conveniently happen to contain
an 8-bit integer representing their length right at
where the pointer points to - a striking resem-
blance to struct sockaddr. And since the
address in the struct sockaddr layout does
not begin right after this, there is per-family offset
into the wvoid * argument in struct
domain’s field dom_rtoffset. This argu-
ment is given to the radix tree when it is initial-
ized.

The routing database algorithm [4] is based
on a modified version of the radix search trie [5].
However, several drawbacks involving modern
hardware architectures have been identified [6],
and clinging on the historic code is not particu-
larly relevant. Even so, it must be kept in mind
that the existing implementation is reasonably
efficient and, above all, it has proven to work in
the real world.

2 The one where the netmask stored in the data-
base has least amount of 0-bits.

Route Request Interface

The interface for requesting routing infor-
mation is implemented in net/route.c. It
essentially supports the following features:

* route query: rtalloc() and rtal-
locl1()

* freeing the allocated route: rtfree()
(note: this does not remove the route
from the database)

* rtdirection handling: rtredirect()

* interface for use by the routing socket:
rtrequest()

The route asked for will be provided in struct
route or struct rtentry. The difference
between these two is that the former contains a
pointer to the latter and a struct sockaddr
describing the destination; we will see why this is
necessary later. struct rtentry itself con-
tains a lot of information, for example the data
storage elements used by the radix tree, the gate-
way, some statistics on the route, the interface
used for the route, and so forth.

The Routing Socket

The 4.4BSD kernel does not implement a
routing policy, it merely forwards packets accord-
ing to a set of rules. Routing policies, i.e. deci-
sion on what the forwarding rules should look
like, are made in userspace®. This means that the
routing policy implementation in userspace must
be able to communicate its decisions to the kernel
and equally the kernel must be able to communi-
cate any routing information it receives to
userspace.

The method for communication is called a
routing socket, i.e. a socket opened using the pro-
tocol family PF_ROUTE. Messages are then
exchanged through it back and forth using
struct rt msghdr to describe each
exchange. It is for example possible to set and
change a route.

The routing messages used by the routing
socket are spread also elsewhere into the kernel,
although the exact message format is contained in
the routing socket code. Other components
involved must be able to receive information
about routes going up or down and must be able

3 Technically it would be possible to do it in the
kemnel also. Userspace programming is just easier
most of the time (unless you happen to be a kernel
hacker who has an attitude toward writing programs
in userspace ;-).

to provide information if their state changes. For
example, if an interface is detached, routing pack-
ets through it is no longer possible and the entire
routing chain must be made to know about this.

Another purpose for routing sockets is to be
a mechanism to communicate over the user-kernel
barrier present in most modern operating systems.
This is something which is not required for sys-
tems operating on machines without any form of
memory protection, as is commonly the case with
microcontrollers and, in this special case,
Microsoft Invisible Computing itself.

Link-layer Routing

In addition to doing network level routing,
the routing code also handles link-layer routing.
This means that for example the ARP cache for
IPv4 Ethernet is tightly coupled to the routing
code.

For all local networks in the system, the
routing table contains a route with the approate
address/netmask as the key and the correct inter-
face as the gateway. These route entries also have
a cloning flag, RTF_CLONING, set. This means
that if the radix lookup produces a route with the
cloning flag set, a route entry for the queried
address should be created and another lookup per-
formed*. After the radix match finds a cloning
route, a link layer resolution is done. As a special
case, the ARP code has additional knowledge
about this resolution process, since the ARP
entries for the whole local network are not
cached, but rather pulled in on a per-demand by
doing an arpwhohas and interpreting the response
(if any).

4. Lightweight Routing for BSD

The first attempt to make the routing code
smaller was to replace the radix tree with a less
complex structure, which would hopefully lead to
reduced code size with equal performance. This
was implemented as a Microsoft Invisible Com-
puting Component Object Binary, COB, so the
original radix code or the new lightweight code
could be preserved.

However, this facile approach produced
very little in the form of results. The new code
was only around 2kB smaller than the original.

* Remember, the radix tree returns the most spe-
cific entry, so if a cloned route was already created
for the address in question, the already-cloned entry
will be returned and no further cloning done.

This was mostly due to the convoluted interfaces,
which still required handling the complex data
structures passed to and from the code. A more
radical stratagem was therefore required.

Our target was to support only end nodes
on the network. This changed the rules for the
routing implementation. Routing on leaf nodes is
actually an oxymoron. A leaf, per definition®,
cannot involve routing, since it is connected to the
rest of the graph only from one point. The rest of
the graph is either accessed through that point or
not accessed at all.

The slight exception to the analysis above is
that our node is only a leaf in the sense of the net-
working layer. As discussed in Chapter 3, the
routing subsystem is also involved in making
decisions about the link layer routing. Our "leaf™
node will still be connected to an Ethernet, so
support for link layer routing must be taken care
of.

Based on the observation presented above,
the conclusion was made: if routing is not done,
code for it is not needed either. Size savings for
non-existent code are quite substantial.

4.1. Lighweight Routing Algorithm

The old BSD routing code uses the routing
table to make several decisions about the packet’s
final destination. This information is encoded in
the radix table and the decision of how to handle
the packet is automatically done during the radix
tree lookup. For example, if the lookup produces
a link layer address, the code knows that the
packet should be sent to a host on the local net-
work, be it the default gateway or just some other
host on the local net. Since we plan to have no
radix tree, this information must otherwise be
encoded into the system.

One important concept to keep in mind to
avoid frequent confusion is the concept of the
packet target in the routing code. While an IP
packet header contains the final destination for the
packet, the routing code is interested only in
where the packet should be sent next. Therefore,
when we are talking about the target, we mean the
IP address of the next hop, not the final destina-
tion. Once the next hop is discovered, the packet
is sent there and it is that host’s problem to look at
the IP header to discover the final destination and
again decide where it should be sent next.

% We mean the computer science definition. This
does not necessarily hold for e.g. bay leaves.

Keeping the existing BSD semantics was a
priority, so we modeled the new routing algorithm
to what the network stack used to do. The analy-
sis lead to the following algorithm for routing a
packet:

» If the target is a multicast address, send
to the destination using a previously
configured multicast IP address as the
source.

e If we have an interface configured for
the target address, send the packet to the
loopback interface.

e If we have a point-to-point interface
with destination address the same as the
target address, send through the point-
to-point interface to the target address.

e If we have an interface with the target
address on the local network, send
through that interface to the target
address.

« Else, target the packet to the default
gateway if one is configured.

* Otherwise, the target packet is discarded
as being undelivarable.

Extracting from the above description, we need
some configuration information to be able to
operate:

* The configuration information for net-
work interfaces

* The default gateway IP address

+ Multicast interface information

4.2. Route Caching and Packet Forwarding

The old code does routing already on the
transport layer and caches a struct route in
struct inpcb. This is done so that lookup
could be done for a certain connection once and
then used thereafter. The other reason is source
address selection: the packet destination must be
known so that a source address for the packet can
be selected.

This leads to some complications. First, for
packet forwarding, the information available from
the PCB is unavailable since the packet is not
going through the transport layer at all. This
means that the IP output routine must check if it
has a valid route or not and do routing if it find it
was passed a NULL route. Note, that source
address selection will not be a problem for
routers, since the source address is already always
present in the IP packet.

Second, the cached information is not
always correct. It is possible to send packets to
multiple different addresses from UDP sockets.
Therefore, the cached information in the route
structure much be verified each time cached route
use is attempted and a relookup done if the
cached target did not match the target at hand.

Since we do not concern ourselves with
packet forwarding, the problem becomes slightly
simpler: we can always pass a valid route infor-
mation to the ip output() routine and do not
have to do routing there any longer. However, we
cannot easily move routing completely to the net-
work layer, because we need the local address to
select the right inpcb. It would clarify the struc-
ture greatly, though.

4.3. Multicast Addresses

Using multicast addresses has some special
treatment within the BSD networking stack. For
receiving packets, it must be possible to join and
part multicast groups and to check if we belong to
a multicast group a packet was received for.

We already mentioned earlier that the rout-
ing algorithm explicitly checks for a multicast
destination and instead of using the default gate-
way uses the multicast address as the nexthop
destination. The ARP resolution routine then
translates the multicast address to the respective
ethermulti address and it the packet is handled on
a multicast capable router on the target network.
This is what the old BSD code also did, including
manually checking for multicast destination and
possibly overriding the routing code decision to
send the packet to the default gateway.

For selecting the source interface we use
the same method as the BSD code. It is possible
to set a system-wide default multicast output
interface, although we do not currently provide a
mechanism to set it on a per-socket basis.

4.4. ARP

ARP, on the fundamental level, is a transla-
tion service. An address of some format goes in
and an address of some other format comes out.
In our case these are the IPv4 address of the
packet nexthop destination and the Ethernet
address of the destination. Some caching is also
necessary to avoid doing lookups every time a
packet is sent.

We chose to implement ARP just as is
described above: a very simple lookup database.
Due to the removal of the radix tree code, we

could not use the old solution, where the ARP
cache was kept in the radix tree as well. Instead,
we store all the addresses in a linked list. This
was mostly an accident, as any other data struc-
ture would have worked much better®. The differ-
ence is that the ARP module no longer has any
knowledge about our network-level "routing"
module. Its operation is entirely driven by the
ethernet output routine, which tries to resolve the
link layer addresses of packets as they are being
sent.

The main interface for making ARP
queries, arpresolve(), still exists in our new
implementation. It either returns the translated
address queried for or fires off a query for the
address and creates a new embryonic ARP table
entry. If a reply arrives, the embryonic ARP table
entry is filled out. Since the old ARP code used
the route expiration functionality, we had to
implement similar timers in the new code. The
arp_rtrequest() function, which had a clear
routing socket bias, was replaced with
arp addentry() and arp_delentry()
implementing functionality evident from the des-
ignation.

5. Results & Analysis

To recall, our target was to have equal func-
tionality for leaf nodes with similar performance
and significantly reduced code size.

5.1. Features

Our routing algorithm described in Chapter
4 is able to route packets from a leaf node to the
local network(s) and the default gateway. It sup-
ports sending and receiving multicast packets and
can join and depart multicast groups. This retains
all of the features necessary for us from the old
BSD routing code.

5.2. Code size

We analyze the code size savings by com-
paring the before and after size for the networking
stack (without TCP) on our target platform.

The compiled ROM code size is almost 14kB
smaller. Represented as a percentage, the old
code is over 22% larger than the new code. And
as a comparison, the compiled size for the TCP
code is 13276 bytes. Therefore, using naive logic,

® The problem with lists is that one tends to write
code using them even without thinking ...

Before/After Compiled Size

segment | before (bytes) | after (bytes)
text 77164 63160
data 1316 777

the savings from the routing code rework enable
the inclusion of the TCP code where it was not
earlier possible due to size constraints. Of course
the application using networking would produce
extra overhead here, so this is not a completely
accurate conclusion.

5.3. Performance

To measure the performance differences
between the old and new code, a program which
sends a UDP packet to several consecutive IP
addresses was devised. Every UDP packet sent
will cause a routing lookup because the target
address does not not match the cached address.

We tested two cases: sending packets to the
local network and sending packet to outside of the
local network, i.e. sent to the gateway. All tests
were executed while running Microsoft Invisible
Computing as a regular process on top of Win-
dows XP.

Performance Measurements

test old (seconds) | new (seconds)
local 1 8.98 13.84

local 2 21.38 42.14

remote | 238.36 245.73

The test "local 1" measured sending a packet to
128 addresses on the local network 16000 times,
while "local 2" sent a packet to 256 different
addresses 16000 times. The test "remote" sent a
packet to 67108864 (0x4000000) addresses out-
side the local network. The stack was modified to
only do routing, not actually send the packets, for
the duration of these tests.

For the local network case, performance
difference and be attributed to the difference
between the computation complexity of radix tree
and the O(n) performance of the linked lists of the
new ARP code. If the latter was replaced with an
O(log n) structure, performance would be equiv-
alent.

For the remote case, performance appears
to be the same and the difference in measure-
ments can be attributed to noise because of run-
ning Microsoft Invisible Computing as a process.
This is not surpising, since for both the new and
old versions routing on a leaf node is pretty much
a NOP.

5.4. Implementation

The current implementation is extremely
intrusive and it is not possible to support the old
and new routing code decided by a compile-time
option’. This is mostly due to the implementation
of the original routing code, its involvement in
many different places in the networking stack,
and it leaking too much of its implementation out.
While it is not a tempting idea to be restrained
only to leaf nodes, it is on level with the current
requirements for the networking part of the sys-
tem.

6. Conclusions and Future Work

We presented a method for implementing
routing on IP leaf nodes without implementing an
IP routing table at all. The key was to explicitly
teach the code what kind of routing we want
instead of using routing table entries to express
the same information. The benefit was huge code
savings due to not having to express rules on an
abstract level when they could be expressed on a
concrete level.

The routing code presented works for leaf
nodes, but left a more general approach to be
desired. Support for general-purpose routers
should be investigated as an alternate implementa-
tion. It may not be worthwhile to carry the old
routing code along at all, but rather to start from a
clean slate or the work presented here.

We identified two places within the net-
working stack for a use of a database: IP routing
and ARP translation. These were previously
implemented using the same database, the radix
tree. However, there are many more places within
a kernel that could benefit from a more general
database type of component instead of relying on
ad-hoc data retrieval structures, which more often

7 Of course, it would be possible to write a script
that would wrap all the "-" lines from the diff
behind #ifdef OLDROUTING and the "+" ones
behind #ifndef OLDROUTING, but that would
be an utter maintenance nightmare and therefore
practically impossible.

than not happen to be linked lists®. Even a sim-
ple, lightweight data storage algorithm, such as
A-trees [7], would provide better options for
generic data storage and retrieval when readily
available in all BSD operating systems.

Finally, routing could be considered a more
general-purpose component; there is no need to
artificially separate OS and application routing.

Acknowledgements

We wish to thank Alessandro Forin for
inspirational and insightful conversations and
Sasha Nosov for motivation.

Further Information

Microsoft Invisible Computing, including
the routing implementation described here, is
available as source code under the Microsoft
Shared Source License from the website:
http://research.microsoft.com/
invisible/

References

1. Johannes Helander and Alessandro Forin,
MMLite: A Highly Componentized System
Architecture, pp. 96 -- 103, Eight ACM
SIGOPS European Workshop (1998).

2. Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarterman,
Design and Implementation of the 4.4BSD
Operating System, Addison-Wesley (1996).

3. Gary R. Wright and W. Richard Stevens,
TCP/IP Illustrated, Vol2., Addison-Wesley
(1995).

4. Keith Sklower, A Tree-Based Packet Rout-
ing Table for Berkeley UNIX, pp. 93 -- 99,
USENIX Association Conference Proceed-
ings (1991).

5. Robert Sedgewick, Algorithms in C, Addi-
son-Wesley (1990).

6. André Oppermann, Optimizing the
FreeBSD IP and TCP Stack, Fourth Euro-
pean BSD Conference (not in proceedings)
(2005).

7. Alistair Crooks, The A-Tree - a Simpler,
More Efficient B-Tree, pp. 185 -- 201, Pro-
ceedings of the 3rd European BSD Confer-
ence (2004).

8 We experienced this shameful phenomenon
with our ARP table implementation.

How The FreeBSD Ports Collection Works

Mark Linimon

How New Ports Are Created

Whenever a FreeBSD user finds an application out on the Internet that they find interesting,
often the first thing that they do is to try to create a 'port' for it. (In FreeBSD terminology, a
'port' is the files that allow the application to be downloaded and built directly from the
Internet. These files include a Makefile, which includes a one-line summary of the port's
function, location of the application sources on the Internet, and installation, deinstallation,
and dependency information); a 'distinfo' file that contains meta-information about the
distribution file name and security checksums; a 'pkg-plist' that is a list of files that will be
installed; a 'pkg-descr’ that gives a longer description of the port's function; and, optionally,
other files that include patches to make the application install and run correctly on
FreeBSD, and startup and shutdown scripts to help automate any daemons that are
installed. Furthermore, in FreeBSD terminology, a 'package’ is the resulting pre-built
binary, if such a thing is allowed by the author's license.)

Not only is a port the easiest way for an individual user to install an application, it is also the
most convenient way for any user to install the application. The only real difference
between a one-time use and a completed port is that extra work needs to be done to make
sure the port completely deinstalls itself when requested. The goal is that users should

be able to feel free to test individual ports to see if they are useful for them, without being
concerned that they will clutter up the system with stale files on deinstall.

Users generally create ports on the 1386 architecture, although FreeBSD is seeing increased
interest from users in running amdé64 in native mode. (For purposes of the Ports Collection,
the Intel 64-bit chips that are compatible with the amd64 architecture extensions, are also
considered to be 'amd64'.) Users tend to have the latest mainstream FreeBSD release

(this is currently 6.1-RELEASE, although 6.2-RELEASE is imminent as of this writing).
Support for older releases (in particular, at this time, 5.5-RELEASE) is desireable but a
secondary priority.

How New Ports Are Submitted

New ports are submitted via the same mechanism as that used to report errors, updates, or
other matters: the Problem Report (PR) database. The database that FreeBSD currently
uses, GNATS, is fairly primitive, so some add-on tools have been created to provide other
functions. The FreeBSD Ports Monitoring System ("portsmon", at
http://portsmon.FreeBSD.org) watches the PR database entries for variations of the string
"new port" in the Synopsis, and keeps track of those on a special page. Users who don't use
portsmon can still see the PRs coming in as they are echoed to the freebsd-ports-
bugs@FreeBSD.org mailing list, or browse them via a web interface.

Procedures For Handling Problem Reports About New Ports

Any FreeBSD ports committer can take an interest in the new port and assign it to
themselves in GNATS. (A 'committer' is the FreeBSD term for an individual who has
privileges to commit to the source repository.) It is the committer's responsibility to ensure
that the port fetches, compiles, installs, and deinstalls properly, and also has no security
problems. (While it is not possible for FreeBSD, as a group of volunteers, to vouch for the
security of any application, it is a goal that we try to reach; security considerations are
discussed further below).

Our priorities for ports to function correctly are (roughly):

FreeBSD 6.X on i386

FreeBSD 5.X on 1386

FreeBSD 6.X on amdé64

FreeBSD 7.X (development version) on i386

FreeBSD 4.X on i386

other combinations of major release and architecture (including sparc64)

However, since everyone is a volunteer, these are only guidelines.

If, during testing, a committer finds a problem, he or she should reply to the original PR with
a question for the submitter, and change the state of the PR to 'feedback’. In some cases, it
takes multiple rounds of feedback to get the port ready for committing.

Once the commit is done, the committer is also responsible for hooking the port up to the
build and adding other metadata that the Ports Collection needs to know about (e.g. the
'modules' file). In addition, he or she is also responsible for making sure that the build
process for the entire port dependency generation is not broken. This command, 'make
index', is used to generate a flat-file of metadata (including the dependency information)
used to speed up the automated installation/deinstallation tools.

A periodic process on one of the main FreeBSD machines will catch errors in the index
build, and post them to the freebsd-ports-bugs@ mailing list (together with a list of the most
recent committers).

There is one further note to make about new ports. A guideline has been introduced within
the past year that all new ports must have a listed maintainer to be accepted into the Ports
Collection. What had happened in the past, when this was not the case, is that the number
of unmaintained ports was growing far too quickly. (Note that an "unmaintained” port can
still be updated by any interested contributor; but, the intention is that as much as possible,
there should be at least one person willing to take a sufficient interest in the port to try to
help keep it useful.)

Any committer who agrees to handle a 'new port' PR is expected to either handle itin a
timely fashion, or return it to the general, unassigned, pool so that someone else may take it
up. While there is no fixed period for this, it should be within a few weeks.

A few ports also install scripts to run daemons at system startup time. These scripts need to
be installed into a localized etc/ directory, so the port must also handle installing these files.

The philosophy of the build tools is to not enable the daemon on install or disable the
daemon on deinstall; the user is warned that these steps need to be taken manually.

(The current belief is that there are too many edge conditions to correctly test for, such as,
updating a port in place and possibly having the update fail, and so forth).

Some ports are different versions of existing ports, and these may require special handling.
For instance, if version N+1 is incompatible with version N, and a great deal of other
software depends on version N, then it may be best to maintain two separate ports. In this
case, to preserve the checkin history, FreeBSD performs what we call a "CVS repo-copy" for
"repository copy". Although FreeBSD is currently evaluating alternatives to CVS, this is a
longer-term project. With CVS, copying all the files in the repository to a new location is the
only way to preserve the history.

The preference is to do a repo-copy, rather than an entirely new port with no history, if
version N+1 will eventually replace version N. However, if version N+1 is a complete
rewrite, it may not make sense to preserve the history. This is evaluated on a case-by-case
basis.

After a repo-copy, the committer handling the PR is expected to do a forced checkin to note
the original location, and the reason for the split. There are other technical changes that
should done at this time (portname, distfile information, and so forth) before hooking it up
to the builds.

In general two different versions of ports cannot be installed simultaneously, since they
usually use the same names for files that they install. A mechanism in the ports framework
entitled CONFLICTS tells the installation tools not to allow this collision.

In some cases version N+1 is a "development" version of a piece of software which is
intended for developer debugging only. These ports are similar to the above but by
convention take on a "-devel” suffix in the portname.

Maintainance of Ports

Once a port is added, the easiest part of the work has been done. Applications are constantly
in flux, and updates to the various files need to be made, tested for their ability to install,
tested for their ability to actually run, and tested for their ability to deinstall cleanly. In
addition, changes to the base system in -CURRENT can affect the ability of ports to install
and run correctly. Finally, there are several processor architectures on which we want the
ports to run.

We can divide these tasks into:

Build Failures and Problem Reports

Port Updates

Procedures To Mark Ports "Broken" And Procedures To Mark Ports That Have
Reached Their End-Of-Life

Build Failures and Problem Reports

For each build environment (processor architecture * major OS release), test builds are
continually run on a set of dedicated machines known as the "pointyhat cluster" (after the
name of the machine that dispatches all the jobs. The mythical "pointy hat" is the virtual
dunce cap awarded to FreeBSD committers who commit someting to the source tree that
doesn't work, especially if it doesn't build in the first place.)

Whenever the build cluster notes that a port has failed to fetch, compile, install, or deinstall
correctly, some kind of action needs to be taken. If the port is maintained, email is sent to
the maintainer including either the entire build log, or a pointer to it. (This process is not
completely automated). If the maintainer is able to duplicate, and then fix, the problem,
they are expected to file a Problem Report (PR) containing the fix. If not, they can ask the
community for help (either via mailing lists or IRC).

If the problem cannot be isolated, or the port is unmaintained, the port is marked BROKEN.
This will both prevent the build cluster from attempting to build the port over and over
again, and prevent users from being able to install the port (a warning is issued, and the
install exits). A make(1) variable, TRYBROKEN, exists in the ports framework to override
this setting.

For instance:

make TRYBROKEN=yes install

Users may also file Problem Reports against ports that pass the automated tests, but fail to
run properly, asking that they be marked BROKEN. Although some ports do indeed contain
their own regression tests, in general these are fairly rudimentary. We rely on our users to
advise us whether the ports actually work and are generally useful.

There is a policy that we give maintainers 2 weeks to respond to bug reports, requests for
updates, and so forth. After that time, any committer may step in and make the change at
their own discretion by invoking a "maintainer-timeout". That duration has been chosen to
try to strike a balance between not infringing on a maintainers' prerogative to maintain

a port as he sees fit, and the needs of users to have their problems addressed in a timely
fashion. Maintainers who do not respond to PRs within 3 months may lose the
maintainership of their ports.

In general, we intend that PRs address only the problems involved with running a particular
application on FreeBSD (rather than a problem with the application itself). On occasion we
may recommend that a user needs to open a ticket with the author directly. However, if a
maintainer finds a bug that affects the application everywhere, we encourage sending the
patch back upstream to the author to try to help the larger user community. (This often
happens when a new version of gcc is imported to the base system, for instance). In
general, this produces good results, but not always.

We also encourge maintainers to send the patches that are needed to adapt the application
to FreeBSD upstream to the authors; in some cases they will accept these patches, but in
others they will not, and the patches must remain local to the FreeBSD ports tree.

Port Updates

Software authors are continually updating their software, for reasons including:

+ new features

- fixes for security problems

. fixes for other bugs

- changes necessitated by updates to other software that they depend on
- to keep it running as base-systems (kernels, drivers, etc.) change

- to port it to new OSes and architectures

- changes or additions to documentation

The simplest changes only involve a modification to the port Makefile and the distinfo file to
represent the update. However, it is the responsibility of the port committer to analyze
what's changed before committing: simply saying "distfile has been rerolled" isn't
sufficient. This policy is in place to help guard against trojans being inserted into distfiles.
However, most changes do fall into this category.

More extensive changes may also require changes to the "packing list" which is used to
specify what files to remove on deinstall. Traditionally, the packing list was specified in the
'pkg-plist' file, but for simpler ports it can now be specified in the Makefile.

Unlike OpenBSD and other systems, there is no "staged install" where this step is taken care
of automatically. This can be considered a bug. (To solve the general problem is fairly
hard).

There is currently no perfect system for a port maintainer to be notified when a port update
is available. The two most promising solutions are currently ports/newportsversioncheck
by Edwin Groothuis, and Shaun Amott's portscout, the results for which are available at
beta.inerd.com/portscout. newportsversioncheck allows you to install software on your
machine which will scan through the download pages referenced by a port, and search for
strings that appear to be newer distfiles than the current one. The portscout application has
a similar algorithm but only presents its results.

Since there is no accepted way to catalog the meta-data for an application (e.g. download
location, distfile versioning scheme, dependent applications, and so on), these heuristical
approaches are the best ones we have right now. (The current author also has an alpha-
quality implementation, and can attest to how hard the general problem is).

The disadvantage to all these methods are that they are a "pull" methodology instead of a
"push" one. The long-term solution to the problem is to create a standard for publishing
updates (e.g. via RSS) and have the ability for port maintainers (as well as the various
monitoring programs) to subscribe to them. In fact, there are sites for which RSS feeds are
available for individual ports, but without some kind of aggregation function, the "pull"
methodology currently works best.

The current author doesn't know the percent coverage that these two tools have, but was

surprised to find that even his own naive algorithm was correctly identifying over 70% of the
possible port updates.

Procedures To Mark Ports "Broken" And Procedures To Mark Ports That Have Reached
Their End-Of-Life

Ports that remain marked BROKEN for a period of time will be marked with two more
makevars, DEPRECATED and EXPIRATION_DATE. These are advisory variables only.
However, portsmon sends a report every 2 weeks listing all the ports with an
EXPIRATION_DATE, and includes, among other data, the location of the latest build error;
any PRs against the port. In this fashion we hope to provide "fair warning" for any user who
relies on that port to take some kind of action (e.g. help fix the problem; find another
application; or make a local copy of the last-known working version that they have installed,
if nothing else).

An intended side-effect is that the community feels involved in this process; rather than
stale ports being deleted with no notice, there is now a way for everyone to see that process
as it happens.

Every few weeks, a ports commiter will go through the list and delete the expired ports
(including adding them to a file called /usr/ports/MOVED, which tell the automated tools
that the port has been removed). This, in turn, will cause the port to be removed on a user's
machine during the next run of the automated tool.

Removed ports stay in the MOVED file permanently (unless they are at some point
reinstated, at which time the entry is removed).

There is no one particular ports committer that is responsible for this process; after the
expiration date, anyone may remove the port.

The expiration dates are not intended to be cast in stone; they can be extended if someone
is still actively working on a fix. The intention is simply to reap useless ports out of the Ports
Collection, so that users do not go through the work of installing a port that doesn't work.
This is both frustrating for the users, and detrimental to the reputation of the Project.

Support Resources for People Who Want To Contribute

The main method for distribution of information and sharing ideas is the freebsd-
ports@FreeBSD.org mailing list. General discussion, questions, and proposals are all
welcome here. The experience range is novice to expert. Here you will also find various
HEADS-UP messages about changes to the Ports Collection that most users need to be
aware of. (This information is also expanded upon in a file named ports/UPDATING; all
users should track changes to this file. For instance, if the location or format of a
configuration file changes, this is where that will be documented.)

On occasion, a notice about some particularly important change will be sent onto the
moderated freebsd-announce@FreeBSD.org mailing list. All FreeBSD users should be
subscribed to this low-volume list.

The mailing list freebsd-ports-bugs@FreeBSD.org echoes the contents of ports PRs as they
come in; further discussion about those particular problems also takes place here. Itis a
fairly high-volume list due to the large numbers of PRs (sometimes more than 40 per day).

Sufficiently interested people may also subscribe to the cvs-ports@ mailing list to follow all
the port commits (and, sometimes, ensuing discussion). This is very much like drinking
from a firehose, so be warned.

Many of the FreeBSD ports committers also contribute to an IRC channel on EFNet (name
upon request :-)) While not moderated, this channel stays pretty close to the topic, and in
particular, technical questions about "what's the best way to solve the following problem?"
In this channel, people who are interested in becoming ports committers can learn some
valuable information from those that already are. The experience range is advanced to
expert.

There is a FreeBSD wiki, intended mostly for use by developers, at http://wiki.FreeBSD.org,
that also contains some status information about work-in-progress, and ideas for future
changes. Although incomplete, it is nevertheless a valuable resource.

The most interesting places to learn more about the Ports Collection are:

FreeBSD Porter's Handbook

(http://www.FreeBSD.org/doc/en US.ISO8859-1/books/porters-handbook). This is
the most complete technical reference outside of the ports/Mk files themselves. This
document is large and dense and few people are able to understand it all at first. The
information encompasses both hard-and-fast rules ("you must not break the INDEX
build") as well as "recommended best practices" as advocated by the portmgrs.
There is also some information about "procedures" here, although arugably it should
be in the next document.

The intended audience is port creators, maintainers, and committers; although there
is some information aimed at end-users, it is not well separated from the above.

FreeBSD Committer's Guide

(http://www.FreeBSD.org/doc/en US.ISO8859-1/articles/committers-guide).This is
oriented towards those who have commit rights to the repository, and as such may be
of less interest to users and maintainers. It contains both technical information
about making commits, and documentation of procedures.

FreeBSD Ports Managment Team (portmgr) web pages
(http://www.FreeBSD.org/portmgr). This documents both some technical
background of the Ports Collection (especially about the fact that the tree is not
branched, and the implications thereof); what the portmgr team actually does, both
during release cycles and between them; and explanation of rules such as exactly
how long a maintainer-timeout is.

Contributing To The FreeBSD Ports Collection

(http://www.FreeBSD.org/doc/en US.ISO8859-1/articles/contributing-ports) is

oriented at users and maintainers to suggest how they can help to become involved

with the work of keeping the Ports Collection functioning and up-to-date.

FreshPorts (http://www.FreshPorts.org) is a website that allows anyone to browse the
state of the Ports Collection, search for applications, view the state of the port, read
through checkin messages, and even subscribe via email to notification of port
updates. All port maintainers are encouraged to subscribe. This system is written
and maintained by Dan Langille as a personal project and is not under the auspices
of the FreeBSD Project itself.

The build error system is located at http://pointyhat.freebsd.org/errorlogs. The raw
error logs are posted there under various buildenvs, with URLs that point to the logs
themselves.

portsmon (http://portsmon.FreeBSD.org) is the site that allows users to correlate the
build errors with Problem Reports and other metadata about individual, or groups of,
ports. Itis written and maintained by the current author.

How To Help

FreeBSD is always happy to have new ports contributors. Within the past 2 years, a
large backlog of problem reports for existing ports, and a similarly large backlog of
those for new ports, has been greatly reduced. In that time we have added around 2
dozen new port committers. However, there is always more to do:

There are currently almost 16,000 ports in the collection. Over the years, a large
number of these (4,000+) have become unmaintained. This does not necessarily
mean that they are abandoned; many contributors and committers make periodic
sweeps to make sure that as many ports as possible still fetch and build. However,
having a maintainer almost always guarantees that a port is in better shape than
otherwise. We encourage FreeBSD users to take a look at the above documentation
and see if they can contribute back to the project by taking on one or more ports to
maintain.

Another focus needs to be getting the state of the ports on native amd64 closer to
parity with i386. Although this will never be perfect since some ports include i386
binaries, there are still several hundred ports (in particular, ones more oriented to the
desktop than the servers) which need to see wider use and greater testing.

FreeBSD is currently evaluating the latest gcc, and past gcc version updates have
shown that many ports will need to be modified. (In the past, FreeBSD has been
among the first to adopt new gcc versions, which has led to a large number of patches
being sent back to the authors). The latest experimental run showed over 1,000 ports
that became broken. Several committers are looking through this backlog, but we
need more.

There are always more PRs in the backlog that need to be addressed. The recent low
was 500 PRs (divided up into 1/2 existing ports, 1/4 infrastructure, just less than 1/4
new ports, and a handful of miscellaneous problems). To get there took a concerted
effort from a large number of individuals. However, since then the steady-state

number has drifted up closer to 800. (It is always higher during release cycles).

Since many FreeBSD users build all their ports directly from source, the state of the
binary (pre-built) packages often lags behind. The current author is working on some
tools that will help to identify problems in keeping the binary packages up to date in
between releases to try to bring them closer to parity with the source. Having more
users use, and thus report on problems with, packages would be helpful.

Design and Planning an AFS Cell

Fabrizio Manfredi

fabrizio.manfredi@gmail.com

Contents

ABSTRACT ...ttt ae sttt et e et e e tseaseateeseeeteesessaseassesesnsesesenseesaeenseenenaeeaneen 3
INTRODUCTION ...ttt sttt et eve et e et et eereeseereseesseas et essensesasesseneeneesesaeneenesaeses 3
Andrew File System (AFS) OVEIVIEW.........coouiuiiiieieeecceeeeee ettt seeaeaen 3
HISTOTY .ttt ettt ettt s e et st s et et s st et e e e e e ene e eeeeesaeeees 3
DESIGN ..ottt ettt ettt eatete et antentesseasntesseneenseseneonesneseenseneone 4
SCAIADIIEYoviiieiieeee ettt ettt ettt ettt en e 4
SEOUIEY ...ttt ettt et te s ee e s s e e e st eseses et et e s e st seeseneesseenenentassaeaene 4
Transparent Access and the Uniform NameSPaCe...............c.ccoueeieieeieceiieeieeeeeeeeeeeeeeeeeeeeeea 5
SYStEM MaANAGEMENL ..ottt ettt ettt e et eeene e eaene 6
ARCHITECTURE ...ttt ettt et ettt es ettt e st et e s e e e seeseeseneneaeeenanes 7
SEIVEN MACKINES ..ottt ettt ettt sttt e et eae e 7
ClIENt MACNINES ... ettt st et eeee st e et eaeaeaeas 8
SEIVEL PrOCESS ..ottt et ee ettt s et et se et e et st eeeeereeeseees 8
UDIK. ..ottt ettt ettt b ettt a et s st ettt n st te et eae e netenentonen 9
CONVENTIONS AND BEST PRACTICESoooieteeeeette ettt et eeev e senena 10
AFS file SPACE JAYOULc.ciiiieeeicce ettt e et 10
SEIVET PlANNING.....votiiiiiieieiiiieeiete ettt ettt ee b sess et st esstese st etete e seeneeennene 10
Volume Naming and SCheM@S........ccccviviiiricee ettt 10
Partition Filesystem (iNOde VS NAMEI)cocuiiiiiiiiiieieeeeeeee e 11
USEBINAMES ...ttt ettt se et e s et st e st et sestet st sea st see s ene s eneans 12
BACKUD ...ttt ettt te ettt eae et e et eaeean 12
SECUNtY CONSIABIAtION ...ttt ettt ee e e e s eneaes 12
ClIENt CACRE......c. ettt ettt ettt enns 13
AFS LIMIES ..ottt ettt ae sttt s et s enee st es e s et et see e s esseenes 13
ATIA ettt e et eb e ae e et e et e e et e e eat e e e e aneeeateesteesteenteenteseueesetaenreanas 14
INEEINAIS ...ttt ettt s et e e st ettt st e ean st enenas 14
SUPPORTED PLATFORM ...ttt ettt ettt et b s even s s s esesaanean 15
CASE STUDIES ...ttt ettt ettt ettt aeeae et et eneese et eseessessstes e st este st essetentonsesssaesseneas 16
BUSINESS NEEA ..ottt ettt ettt et neeae st et sesassas e e 16
SOMULION ...ttt ettt et e et et e et essesssae st es et et enseseesesenaneeeens 16
GPL ALTERNATIVES L.ttt ettt ettt a ettt e e eat e e e etseeneeseeenneeneesnne 20
Distributed file SYSIEMS ..ot 20
Distributed fault tolerant file SYSEMSocooiviieeee e 20
Distributed parallel file SYStEMS ...ttt 20
Distributed parallel fault tolerant file SyStemMScooeeveiieicecieeeeeeeeeeee e 20

IN AEVEIOPMENL ...ttt ettt ee et oo e enoneeo 20

ABSTRACT

This paper describes the Andrew File system and the best practices for setting up a new cell. Finally a
case study will be given for evaluation in real world on BSD platform.

INTRODUCTION

Distributed file systems enable users to work in distributes computing in office/engineering
environments. Their utility is obvious, they enhance information sharing among users, facilitate parallel
processing and simplify the administration of large numbers of machine. In many cases, other services
as electronic mail, printing and content delivery are layered on top of this system.

Andrew File System (AFS) Overview

Andrew File System is a distributed file system and was designed to handle terabytes of data and
thousands of users distributed across large networks, the AFS works as a Unix and Windows NT add-
on and replaces the usage of Network File System (NFS). Today AFS has a solid presence in very large
commercial networks.

History

Over the years, AFS has developed a rich and interesting history, In the past The Andrew File System
heavily influenced Version 4 of Sun Microsystems' popular Network File System (NFS). Additionally,
a variant of AFS, the Distributed File System (DFS) was adopted by the Open Software Foundation in
1989 as part of their Distributed computing environment. Some important date:

1983 Andrew Project started at Carnegie Mellon University (CMU)

1987 Coda research work begun (based on AFS)

1988 First use of AFS version 3 First use of AFS outside Carnegie Mellon University

1988 Institutional File System project at University of Michigan - ports of AFS to mainframe,
intermediate servers, disconnected operation, performance/security enhancements

1989 Transarc Corporation founded to commercialize AFS, formed by part of original team
members

1993 Arla project started at Kungliga Tekniska Hogskolan

1998 Transarc Corporation becomes wholly owned subsidiary of IBM

2000 IBM releases OpenAFS as OpenSource (IBM License), run at the Department of
Computer Science at Carnegie Mellon University.

2000 OpenAFS release version 1.0 based on Transarc 3.6

2001 OpenAFS release version 1.2 first release with better support of new operating system and
fix several memory leak

2005 OpenAFS release version 1.4 with a lot of new feature

2005 AFS was discontinued from IBM

The first three version of AFS were developed at Carnegie Mellon University (CMU), today the
Andrew Consortium governs and maintains the development and distribution of the Andrew User
Interface System and give good support for lot's of platform. A very important implementation for
*BSD come from Arla, that have also a distinguish feature in Disconnected Operation.

DESIGN

AFS was deigned to serve the filing needs of the entire CMU campus. Each users was expected to
eventually have their own workstation, implying a scale of nearly 10.000 nodes. This was at least one
order of magnitude larger than any distributed file system built or conceived of at that time. Not
surprising, the scale of the system became the dominant consideration with security ,transparent access
and management.

Scalability

The designers used a client-server architecture to implement Scalability goal. AFS provides location
independence that scales widely and stores and retrieves data transparently across a network of many
computers. Files in AFS are as accessible as any stored locally file system on a personal computer's
hard drive. In fact, AFS stores files on a subset of the machines in a network, called file server
machines. File server machines provide file storage and delivery service, along with other specialized
services, to the other subset of machines in the network, the client machines.
¢ Client Caching
AFS uses client side caching to improve global efficiency. Caching improves efficiency because the
client does not need to send a request across the network every time the user wants the same file.
Network traffic is minimized, and subsequent access to the file is especially fast because the file is
stored locally. AFS has a way of ensuring that the cached file stays up-to-date, called a callback.
All these operations are made by Cache Manager . The Cache Manager reside on client and
determines file location automatically and puts it into the cache (an area of the client machine's
local disk or memory dedicated to temporary file storage), only when the file is saved does the
Cache Manager send changes back to the server.

¢ Replication

AFS enables administrators to replicate commonly-used data (volumes), such as those containing
binaries for popular programs. Replication means putting an identical read-only copy (sometimes
called a clone) of a volume on more than one file server machine. One benefit of replicating a
volume is that it increases the availability of the contents. If one file server machine housing the
volume fails, users can still access the volume on a different machine transparently to users' work, .
Replication permit also a load balance on data access, in this way a server does not become
overburdened with requests for common files (volume access).

Security

The distributed control of machines, widespread access to the network, and relative anonymity of users
make security one of the major concern at large scale. AFS addresses the security problem in three
ways:
e Physically security of server machine
Physically security is ensured by keeping servers in protected rooms and running only trusted
system software on them.

e Authentication and secure communication
Secure connection and authentication phase are arranged through a variant of original protocol of
Kerberos IV (), today is possible to use more secure Kereberos V System. AFS requires mutual
authentication between servers and clients whenever they communicate with each other. Tokens
that pass between them must be recognized as the valid tokens of authenticated users before files

can be accessed and services and software delivered.

Authorization and flexible access control

AFS uses access control lists to determine who accesses information in AFS file space. An ACL
exists for every directory and specifies what actions different users can perform on that directory
and its files. Users themselves control another aspect of AFS security, by creating personal group
and build personal ACL, all that makes it easy for groups of people to share information and work
together in the same directories (folders), no matter where they are located or platform used.
System administrators can also create groups containing client machine I[P addresses to permit
access when it originates from the specified client machines.

Transparent Access and the Uniform Namespace

Like UNIX, AFS uses a hierarchical tree-like file structure (fig.1). Users logged in and authenticated to
AFS will see the /afs root directory in all of their file and directory paths (on windows is mapped on to
disk letter). AFS enables cells to combine their local filespaces into a global filespace, and does so in
such a way that file access is transparent, users do not need to know anything about a file's physical
location in order to access. AFS provides all that with three major component:

/afs/paperopoli.at/italy/groups

AN —y ¥ J S N —

Cell name County Volume Graups volume
Figure 1

Cells

The directories under /afs are cells. Cells are independently administered sites running AFS and
consist of a collection of file servers and client workstations defined as belonging to that cell. A
computer can belong to only one cell at a time. A cell's administrators determine how workstations
and servers are configured for that cell and how much storage space is available to each user,
software package, project locker, etc. Each cell can also connect with the file space of other cells
running AFS.

Partitions and Volumes

The storage disks on a server are sectioned into disk partitions. These partitions are further divided
into volumes, which are "containers" or sets of related files and directories and forming a partial
subtree of the namespace. Volumes have a size limit, or quota, assigned by the system
administrator, but are (by definition) smaller than a partition. The AFS volumes, making it possible
to distribute files across many machines and yet maintain a uniform namespace. Volumes are
important to system administrators that can maintain maximum efficiency by moving volumes to
keep the load balanced.

Mount Points

Access to a volume is provided through a mount point, which indicates the physical storage
location of a volume on a server. Your own volume resides on one of many file servers, and the
mount point is the pointer that AFS uses to find and retrieve it for you. A mount point looks and
Just like a static directory to the user, but it actually navigates the file system and servers to store
and retrieve data transparently and automatically.

System Management

Establishing the same view of filestore from each client and server in a network of systems is useful to
simplifies part of the systems management workload. Systems administrators are able to make
configuration changes from any client in the AFS cell (it is not necessary to login to a fileserver). With
AFS it is simple to effect changes without having to take systems off-line. Administrator have also a
powerful tool for backup operation, they can create a backup volume version to preserves the state of a
read/write source volume at a specified time (snapshot). You can mount the backup version in the AFS
file space, enabling users to restore data they have accidentally changed or deleted without
administrator assistance.

ARCHITECTURE

AFS is composed from servers and client. On the server side we have server machines run a number of
processes, each with a specialized function called server processes, on the other hand Clients do not run
any special processes per se, but do use a modified kernel that enables them to communicate with the
AFS server processes running on the server machines and to cache files.

Server Machines

Server machines store the files in the distributed file system, and a server process running on the file
server machine delivers and receives files. This modular design enables each server process to
specialize in one area, and thus perform more efficiently. Not all AFS server machines must run all of
the server processes. Some processes run on only a few machines because the demand for their services
is low. Other processes run on only one machine in order to act as a synchronization site. We can
identified four principals server machines:

e A simple file server machine runs only the processes that store and deliver AFS files to client
machines. You can run as many simple file server machines as you need to satisfy your cell's
performance and disk space requirements.

[Bos Server !

— :}, fileserver l

volserver

Figure 2

e A database server machine runs the four database server processes that maintain AFS's replicated
administrative databases: the Authentication, Backup, Protection, and Volume Location (VL)
Server processes.

Figure 3

e A binary distribution machine distributes the AFS server binaries for its system type to all other
server machines of that system type.

e The single system control machine distributes common server configuration files to all other server

machines in the cell. The machine conventionally also serves as the time synchronization source for
the cell.

All this function could be hosted on the same system, because the server machines identification is
based on the server process.

Client Machines

Client machines, provide users access to the files stored on the file server machines, as already
mentioned the Cache Manager is the one component in this section that resides on client machines
rather than on file server machines. It is not technically a stand-alone process, but rather a set of
extensions or modifications in the client machine's kernel that enable communication with the server
processes running on server machines. Its main duty is to translate file requests (made by application
programs on client machines) into remote procedure calls (RPCs) to the File Server. (The Cache
Manager first contacts the VL Server to find out which File Server currently houses the volume that
contains a requested file. When the Cache Manager receives the requested file, it caches it before
passing data on to the application program. The Cache Manager also tracks the state of files in its cache
compared to the version at the File Server by storing the callbacks sent by the File Server. When the
File Server breaks a callback, indicating that a file or volume changed, the Cache Manager requests a
copy of the new version before providing more data to application programs.

Server Process
The following list briefly describes the function of each server process.

e File Server, the most fundamental of the servers, delivers data files from the file server
machine to local workstations as requested, and stores the files again when the user saves any
changes to the files .

e Basic OverSeer Server (BOS Server) ensures that the other server processes on its server
machine are running correctly as much of the time as possible. The BOS Server relieves system
administrators of much of the responsibility for overseeing system operations.

e Authentication Server (kaserver)helps ensure that communications on the network are secure.
It verifies user identities at login and provides the facilities through which participants in
transactions prove their identities to one another (mutually authenticate). It maintains the
Authentication Database.

e Protection Server (ptserver)helps users control who has access to their files and directories.
Users can grant access to several other users at once by putting them all in a group entry in the
Protection Database maintained by the Protection Server.

e Volume Server performs all types of volume manipulation. It helps the administrator move
volumes from one server machine to another to balance the workload among the various
machines.

¢ Volume Location Server (VL Server) maintains the Volume Location Database (VLDB), in
which it records the location of volumes. This service is the key to transparent file access for
users.

e Update Server distributes new versions of AFS server process software and configuration
information to all file server machines. It is crucial to stable system performance that all server
machines run the same software.

e Backup Server (buserver) maintains the Backup Database, in which it stores information
related to the Backup System. It enables the administrator to back up data from volumes to tape.
The data can then be restored from tape in the event that it is lost from the file system.

e Network Time Protocol Dacmon (NTPD) is not an AFS server process. It synchronizes the
internal clock on a file server machine with those on other machines. Synchronized clocks are
particularly important for correct functioning of the AFS distributed database technology
(known as Ubik);

Ubik

Ubik is a distributed database. It is really a (distributed) flat file that you can perform read/write/lseek
operation . The important property of Ubik is that it provides a way to make sure that updates are done
once (transactions), and that the database is kept consistent. It also provides read-only access to the
database when there is one (or more) available database-server(s). All servers in AFS use Ubik to store
their data.

CONVENTIONS AND BEST PRACTICES

Step for planning a new AFS installation :
« AFS file space layout
o Server planning
e Volume naming and schemas
« Volume replication
o Username schemas
« Partition Filesystem
» Backup planning
e Security consideration
o Client Cache tuning
« AFS limitations

AFS file space layout

Your cell name is very important because distinguish your cell from all others in the AFS global
namespace. By conventions, the cell name is the second element in any AFS pathname and follow the
ARPA Internet Domain System conventions. The better choice is the company Internet domain name
or kerberos realm if present.

e Max size cell name is 64 characters, but shorter names are better because the cell name
frequently is part of machine and file names.

¢ Cell name can contain only lowercase characters, numbers, underscores, dashes, and periods to
guarantee it is suitable for different operating system. Do not include command shell
metacharacters.

¢ Cell name can include any number of fields, which are conventionally separated by periods

Server planning

In general, you need at least three database server machines for high availability (election algorithm is
used for identify master database) More small Fileserver machine permit better spread the load and
replicate/backup volume for a redundancy, this also permit to increase capacity on demand. Oldest
documentation indicate as limit to client/server rate 200:1, today some cell use 1000 for server. Split
database server as well as the fileserver is useful for performance and security.

Volume Naming and Schemas

One of the problem in AFS cell is to identified volume mount point, for these reason the first step is a
volume naming convention. The naming convention must explain, with the name, what a volume
contains and where it is mounted. Many cells find that the most effective volume naming scheme is to
puts a common prefix on the names of all related volumes. (sample ?)

Volume name restrictions:
* Read/write volume names can be up to 22 characters in length. The maximum length for
volume names is 31 characters, and there must be room to add the .readonly extension on read-
only volumes.

e The .readonly and .backup extensions are reserved word The Volume Server adds them

automatically as it creates a read-only or backup version of a volume.

e The volumes named root.afs and root.cell are used for default (mounted respectively at the top
/afs and for cell /afs/foo.com).

Mount point

Installation with more than a few hundred users sometimes find that mounting all user volumes in a
single directory results in slow directory lookup. The solution is to distribute user volume mount points
into several directories :

e Distribute user home directories into multiple directories that reflect organizational divisions,
e Distribute home directories into alphabetic subdirectories of the home directory

e Distribute home directories randomly but evenly into more than one grouping directory
Volume replication

Replication refers to making a copy, or clone, of a read/write source volume and then placing the copy
on one or more additional file server machines. Replicating a volume can increase the availability of
the contents. best practices is :

e Replicate the root.afs and root.cell volumes because the Cache Manager needs to pass through
the directories corresponding to the root.afs and root.cell for reach all other volume.

e Replication is not appropriate for volumes that change frequently. The synchronization is
manually with vos release command.

e User volumes usually exist only in a read/write version and each user home have its own
volume, for simplify load balance operations (move volume)

e Sometime could be useful for backup volume use the same partition in this way changes
substantially does the read-only volume consume significant disk space (it is a copy of the
source volume's vrnode index)

Partition Filesystem (inode vs namei)

AFS servers and clients use a Unix file system for low-level storage. The first implementation on
server side was access files directly by i-node number, this type of configuration is very fast but its
needs :

e Dedicated partition, isn’t enough a simple directory for /vicepXX

e Special fsck for the system partition
e No journaling file system

e Restore on same filesystem layout (same inode structure)

In OpenAFS id possible decide the old method or a new one called namei, namei use Unix function
that does pathname translation , this method has considerable overhead, advantage of namei are :

e OS fsck
e Filesystem independent, with advantage of journaling
e The aren’t special requirement for /VicepXX, it could be a mounted

e Simply restore operation

Usernames

AFS associates a unique identification number, the AFS UID, with every username, recording the
mapping in the user's Protection Database entry. Every AFS user also must have a UNIX UID recorded
in the local system of each client machine they log onto, for these reason the best solution is
LDAP/NIS backend for account information. One important consequence of matching UIDs is that the
owner reported by the Is -l command matches the AFS username.

AFS imposes very few restrictions on the form of usernames:

Characters, which have special meanings to the command shell
The colon (:), because AFS reserves it as a field separator in protection group names;

The period (.); it is conventional used to identify special username that have administrator
capability (ex. manfred.admin)

AFS UID, 32766, is reserved for the user anonymous.

Backup

Backup solution for AFS can be divided in three major classes:

Native backup system and recovery, AFS can be configured to create a full or incremental
backup

Volume dump, this operation permit to create a binary file with all information of backup
volume

Backup system with AFS support for example Amanda or Bacula (and other commercial
product)

Security consideration

Some possible to hardening of AFS should be :

e User Accounts;

O Kerberos integration with modified login utility, OpenAFS support basic Kerberos 5 (2b
protocol), replace kaserver with Unix Kerberos solution or Windows AD

O including the unlog command in every user's .logout file or equivalent

o Server Machines

O Change the AFS server encryption key on a frequent and regular schedule.

O Particularly limit access to the local superuser root account on a server machine. The local
superuser root has free access to important administrative subdirectories of the /usr/afs
directory.

e System Administrators

O Create an administrative account for each administrator separate from the personal account
and assign AFS privileges only to the administrative account. Set the token lifetime for
administrative accounts to a fairly short amount of time.

Client Cache

AFS client must have a cache in which to store local copies of files. To set up your AFS cache you
must decide:

e Cache Size

o single user machine 128MB
o Multi-user machine 1GB/4GB

e Cache partition
o Directory, the partition must grantee enough space
o Disk partition, better performance (Terminal Server)
AFS Limits

The most serious limitation of AFS has been read/write data availability, in the latest release is present
volume conversion from read-only to read write. Limits present today:

OpenAFS can support a maximum of 104.000 clients per server, in general large cells do not
exceed more few thousand clients per server.

AFS does not support mandatory file locks, byte-range locking, only advisory locks are
supported (work in progress)

AFS does not support UNICODE file names

ACL works only in directories,

AFS does not allow certain type of file, like pipes, device files, sockets

tmpfs no work as AFS Cache, (ramdisk work)

AFS support max 255 partition per server (/vicepa-/vicepiv), no limits in partition size

AFS support 4,294,967,295 volumes per partition (this a limit of VLDB), current limit of
volume is 2TB

Directories can hold a limit of 64,00 files per directories if the filenames are all less than 16
characters. The number decrease if the filenames are upper of 16 characters because there are
64.000 slots per directory each slot takes 16 characters.

Write-on-close, the changes are synchronized only on close operation, for these reason vi create
a temporary file

No integration on Microsoft DFS
No support for files greater than 2GB on windows platform.

ARLA

The original goal of Arla was to have an AFS free implementation. Another important goal is add
support for platforms that don't have AFS support from Transarc or OpenAFS today seplcial way on
*BSD platform. Important feature (and distinguish from standard version) of Arla is the disconnected-
operation,.

Internals

Arla consists of two parts, a userland process (arlad) and the kernel-module (xfs). Arlad is written in
user-space for simpler debugging (and less rebooting). To avoid performance loss as much as possible,
xfs is caching data. xfs and arlad communicate with each other via a char-device-driver. There is a rpc-
protocol currently used specially written for this. Theoretically, xfs could be used by other user-space
daemons to implement a file system. Some parts, such as syscalls, are arla-specific. These parts are
designed to be as general as possible.

Network

User Space

Kernel Space

' SUPPORTED PLATFORM

The OpenBSD support AFS with Arla since release 3.4. Currently Arla 0.35.7 is supplied with OpenBSD

3.9 Release . OpenBSD is one of supported platform from stable release of OpenAFS, (version 1.4.X)
Unfortunately on client side no other *BSD platforms are supported from OpenAFS project , NetBSD
and FreeBSD must use Arla code (last is 0.43)

Official support of OpenAFS 1.4.X:
e AIX42,43,51,52,53
HP-UX 11i (pa-risc), 11.22 (pa-risc), 11.23 (ia64)
Solaris 7 (sparc,x86), 8 (sparc,x86), 9 (sparc,x86), 10
(sparc,x86,amd64)
MacOS X 10.3 and 10.4 (ppc, intel)
Microsoft Windows 2000, XP (x86, amd64), 2003 (x86, amd64),
2003 R2 (x86, amd64), Vista Beta 2 (x86, amd64)
Linux 2.4 kernel: x86, x86-uml, amdé64, ia64, pa-risc, ppc, ppc64,
$390, s390x, sparc, sparc64
Linux 2.6 kernel: x86, x86-uml, amd64, ia64, ppc, ppc64, s390x,
sparc64
OpenBSD (x86) 3.3,3.4,3.5,3.6,3.7,3.8,3.9
NetBSD (x86; server only) 1.5, 1.6, 2.0, 2.1, 3.0
FreeBSD (x86; server only) 4.7, 5.3, 6.0-beta
SGI Irix 6.5

CASE STUDIES

The “company” is nowadays the biggest Italian fully independent forwarding company covering any
service related to transports and logistics with a worldwide agency network. It have Head Quarter (HQ)
in Italy and 21 Branch Office worldwide. The primary operating system was Windows XX on 8
Windows NT Domain for a total of 550 users. The HQ and the branch office are connected with Wide
are Network. They don’t have IT stuff presence on the branch office.

Business need
Primary goals of the project was to reduce cost of Software License and simplify System
Administration task.

Solution

In design phase we identified two main actions: the first was the use of Free Sofiware as desktop
replacement for cost reduction and second was the centralization of user profile and system
management for system administration task. The two areas was divided in three main steps :

e Thin client replacement. The usage of Windows Terminal Server and Linux Terminal Server
Project (LTSP) gave a big license reduction. The thin client has PXE boot for simply the
administration task

e Server Virtualization. The use of virtualization technology for run terminal server image and
other network service reduced a downtime and increase a TCO (with usage of inexpensive
machine). The choice for this step was VMware Server (free available) on Linux platform
(CentOS)

» Storage Virtualization.All the services before explained need a transparent filesystem layout,
with a good manageability and redundancy. The choice for this layer was AFS on OpenBSD
platform.

Servers Virtualization
L] y

I
]i Windows Terminat Imege | | | LTSP image]

VMmachine 1 VMmachine 2 - VMmachine n

| Network Service image- |

E AFS Server n l

Architecture

The architecture was divided in two type HQ and Brach Office. In HQ there were the great majority of
- users (350) and we placed all the main servers. In the biggest Brach Office we placed some server for
better performance.

Head Quarter
e 3 Fileserver Machines with a 120:1 User:Server rate. The read-write information volumes are
replicated with circular schema (the information on Fileserver n are replicated on Server n+1
and so on, the last server is replicated on the first server). The volumes of binary and programs
are replicated on all fileserver. The fileserver are based on OpenBSD 3.9.
e 3 Database Servers installed on the same machine of fileserver, the database server do not
include the kaserver, the authentication system is based on dedicated Kerberos machine.

e 2 Authentication Servers, on this machine are present Heimdal Kerberos with 1dap backend,
Samba for domain controller with ldap backend and Openladp server. The Openldap is used
for authentication and profile information (account home directory).

e 8 VMmachine, the vmserver machine is a simple Linux installation with VMware Server, this
machine can run 3 type of image:
o Linux Terminal Server, this type of server is used as windows desktop replacement.
o Windows Terminal Server, is as workstation replacement.
o Network service, based on OpenBSD with DNS, DHCP, Proxy, Centralized backup and
other network service.

Branch Office
For the branch office with more of 20 users we have installed 2 small servers. The two VMmachines
have Terminal image, AFS fileserver and ldap slave all that for increase performance data access.

Cell name and File space

The cell name was taken from the domain name of the company, same decision was taken for Kerberos
realm name. For the file space structure the decision was to reflect the geographic organization of the
company (similar decision was for LDAP DIT).

/afs/company.it/italy/milano/ ..

A\ -~ A, PN ~ J ~ A
Cellname Countty Volume Branch volume Sub volume

The first level was made with country name, the second level with the city of the branch office, the HQ
has the same structure of a branch office

Volume schema

| The “branch volume” is dedicated to branch office and include 6 volume iies

| user home directory user
Common common
software distribution software
Groups home groups
Apps apps

| VMware image storage (inventory) | image j

Naming example

Directory usage Volume name

User home ' user.username

User home backup user.username.backup
Application apps.applicationname
OS Software software.soname
Groups groups.groupname
VMware image image.osname

Replication schema

Volume type Access type Replication Type

User home RW Only backup replica
Groups home RW Only backup replica
Root.afs RO Replicated on all servers
Root.afs RO Replicated on all servers
Software RW Replicated on all servers
Apps RW Replicated on all servers
VMware image RW Replicated on single server

Home directory mount point
For home user directory we have decide to distribute the homes into alphabetic subdirectories, and
mount each users backup as a backup directory :

/afs/company.it/italy/milano/home/m/manfred/backup
\ ~ A PAN ~ A —~ 1\"\"} \ > AN ~v F
Cell name Country Volume Branch volume Sub volume{SV)SV User volume Backup volume

Partition Filesystem
After some test we decided to use a inode OpenAFS partition backend.

Security

To simplify identity management all users profile are stored in Openldap. The Directory server is used
from Linux with pam_Idap to get user account information, from samba as backend for windows
authentication and from Heimdal for Kerberos authentication. OpenAFS authentication (kaserver) was
disabled and all operation are made by heimdal Kerberos. Advantage of heimdal usage are ldap
backend, afs integration and incremental slave propagation.

Cell auditing

One of the most important task is monitor systems and application status. We have implemented a
monitor for :

All Ubik services

All encryption keys

All ser ver process

Volumes (missing,offline,orphan,size,quota)

Backup

The backup is made with a centralized system based on Amanda software. The Amanda backup can
handle all the features of AFS volume. Amanda works on the backup volumes, these volumes are
synchronized every day before the start of backup.

Hardware

e Fileserver /DbServer: 1GB of RAM, single processor. The disk subsystem is based on 2x36Gb
SCSI RAID 1 for operating system partition and 4x 143GB SCSI RAIDS.

e Authentication server: 1GB of RAM, single processor The disk subsystem is base on 2x36Gb SCSI
RAID 1.

e VMmachine: 4GB of RAM dual processor. The disk subsystem is based on 2x36Gb SCSI RAID 1
for operating system and local vmware image.

Consideration

The result can be: a collection of small number of inexpensive fileservers provides equivalent
performance of “big iron” machine. This approach offers an inexpensive incremental increase in
capacity, better manageability and redundancy. One set of tests using NFS file sharing found that
switching to AFS resulted in several performance improvements. For the same NFS type of workload,
AFS resulted in a 60% decrease in network traffic. The server's load was decreased by 80%, and task
execution time was reduced by 30%.

Benefits: Improved manageability, full disaster recovery protection, reduced software licensing costs
for 150.000 Euro. Result of new distributed system is data accessible from Spain to Singapore with a
Increase performance (Server and Desktop), high security level, Single sign-on and reduced down time.

GPL ALTERNATIVES

Distributed file systems

e Network File System (NFS) originally from Sun Microsystems. NFS may use Kerberos
authentication and a client cache (NFS Version 4).

e Server message block (SMB) originally from IBM (but the most common version is modified
heavily by Microsoft) is the standard in Windows-based networks. SMB is also known as
Common Internet File System (CIFS) or Samba file system.

Distributed fault tolerant file systems

Distributed fault tolerant replication of data between nodes (between servers or servers/clients) for high
availability and oftline (disconnected) operation.

e Coda from Carnegie Mellon University focuses on bandwidth-adaptive operation (including
disconnected operation) using a client-side cache for mobile computing. It is a descendant of
AFS-2.

Distributed parallel file systems

Distributed parallel file systems stripe data over multiple servers for high performance. They are
normally used in high-performance computing (HPC).Some of the parallel file systems may use object-
based storage device (OSD) (In Lustre called OST) for chunks of data together with centralized
metadata servers.

e Lustre from Cluster File Systems. (Lustre has failover, but multi-server RAID1 or RAIDS is
still in their roadmap for future versions.).
Distributed parallel fault tolerant file systems

Distributed file systems, which also are parallel and fault tolerant, stripe and replicate data over
multiple servers for high performance and to maintain data integrity. Even if a server fails no data is
lost. The file systems are used in both high-performance computing (HPC) and high-availability
clusters.

e Gfarm file system uses OpenLDAP or PostgreSQL for metadata and FUSE or LUFS for
mounting. Available for Linux, FreeBSD, NetBSD and Solaris under X11 License.
In development

There are many research on the university on this theme, today the focus are on cache coordination
and peer-to-peer transfer see, Shark, Coral and many others interesting project.

Using Ants to Secure your Network.

Those of us who managed diverse networks of systems, especially those that
sadly include Windows(tm) systems, are constantly fighting different network
intrusions. The catch is that we currently can easily fight only the ones we know
about. What about the ones we do not know about?

One way to look for unknown and undiscovered network attacks is to filter the
output of tcpdump, removing known packets, and leaving one with packets that
might be of interest. Sadly on most networks you are left with masses of data to
scan and grep/perl/awk/human eye just does not work.

This paper will present the preliminary results of a program which scans the pcap
file format written by tcpdump and separates out unusual packets which can then
be examined more closely by a human. It uses techniques from Ant Colony
Optimization so that it is not necessary to predetermine which packets might be
unusual but rather unusual packets are separated out as the result of the program
running. In addition this technique works even for anonymous packets.

Background:

Internet security just is, it can not be improved. -- way long time ago, pre-google so |
can not attribute it.

We currently approach computer security a few ways:

- We firewall or similar. The goal here is that outsiders are bad, insiders are good.
In the case of firewalls we restrict assorted bits of our connections to and from the
outside. This worked somewhat well until the web. Now everything gets wrapped
up over port 80 and most of us do not have the heart (or job security) to block port
80. Combine that with the the assorted bugs and design features of browsers and
you get a disaster. Note that your status of an insider or outsider is known by your
physical position relative to the firewall. If per chance your physical position
changes then your status changes as well. This causes problems with wireless
access points and/or complex network designs.

- Virus/spyware/whatever checkers. These accept the fact that some less well
designed systems can be compromised. Either a program is known to be bad, or it
is ok. Note the binary distinction again.

- The Unix way. root is all powerful, and you work very hard to keep users away
from root and each other. OpenBSD works to be the peak of this but most of the
rest of the world does a pretty good job.

A few features stand out in the three above cases.

- Itis very binary. Therefore it is easy to tell who is good and who is bad.

- You must have prior knowledge about who is good or bad, ie, port 1434/UDP is
probably bad to keep open, no password on root is considered poor form, and
opening email on a windows system claiming to be from your good friend with
pictures of some star without clothes is likely to be a bad idea, especially if your
email reader likes to help you out by running programs.

- As aresult of the prior knowledge problem above there is a (possibly long) delay
from the production of a security exploit and your fixing of the exploit.

While this has worked moderately well in the past this will work less well in the
future for two reasons:

- The reasons for breaking into systems have changed. It used to be for bragging
rights, interesting files, cpu time or disk space. These last two are very cheap these
days. Now it is increasingly for money or information to be sold for money.

- Many of the "break-ins" look less like break-ins these days. The user willingly ran
the program, they just did not know about all of the program's interesting features.

This last point deserves more than just casual dismissal, ie, / am smart enought not
to run those programs that catch the less experienced users, right?. Maybe not.
Most people run some sort of web browser. Surely you all have read and
understood ALL of Firefox, right? Now go read about the Underhanded C Contest.
Are you SURE that Firefox is not sending out private data on you? You can
partially solve this on reasonable systems by having different users for different
classes of web access, i.e. one user for banking, one for amazon/ebay/others, and
one for general browsing. Still, how many of us do this?

Overview:

This paper will take a step back. We will not care what actually runs on the
individual computers. That is not to say that is not a problem, just that is not the
problem we are going to look at. What we are interested in here is the
communication to the outside. Why? | care greatly who gets my banking details
and so on. | care greatly that Sony installed a root kit on the kids computer.

| care much less that someone's windows system is slow. |, of course, do care

about my main SPARCstation 20 slowing down, but, that should be pretty easy to
debug. It is slow after all.

Our Assumptions:

- *YOU* do not know everything running on your computer. Works well for 99% of
the world. The remaining 1% is probably mistaken unless they run a very limited
set of programs. This limited set can not include a web browser.

- You may or may not have "less secure" systems on your network.

- You allow at least port 80 access out of your network.

- You are willing to do some manual digging.

- You can set up tcpdump to grab samples of your network.

Thinking, "how hard can this be" you set one of your switches to forward all of your
outbound traffic to some computer, start tcp dump on that interface, and wait.

Now, what are you going to do with the Gigabytes of pcap data you just captured.
Well, you could run tcpdump on them and parse them through various pattern
matches, likely in Perl, until you get a subset of packets that are suspicious and/or
know to be bad. This is a good start but:

- You have to get a rule set.

- You have to trust the rule set.

- You have to keep it up to date.

- And on and on...

And you have basically the problem described above. Before you can catch
suspicious packets you first have to know that they are bad.

A Partial Solution:

What | am proposing is a softer approach. You basically run a sort of the different
packets and then throw away the big batches which are similar. You then can look
at the odd ball ones. What this does is reduce the number of packets you have to
go through. The sort is a special type of sort that, unlike deterministic sorts, is
similar to how ants sort larvae.

It is also possible to reverse the algorithm if you think you have some massive
attack, but, this is normally less interesting because when you have a lot of packets
the bad ones are easier to find with simpler and less cpu intensive techniques.

What's good about this?

- No pre knowledge. You will not have to filter out all those port 80 packets to
cnn.com, foxnews.com, and google.com since they will be grouped together and
ignored. This does not sound like such the advantage until you remember that
accessing one of those pages hits a half dozen other sites, some with odd names,
just for usage tracking and ads. Which sites they redirect you to for ads might
change hour by hour. You likely do not care and want to skip those sites for now.

- The technique can work on packets that have different parts hashed. As long as
all the packet parts hash consistently then you can find the original packets. The
technique does not depend on the fact that you know or do not know that this
packet was sent to cnn.com. In addition, the current implementation does not look
at the data portion of the UDP or TCP packet. This means that it could be zeroed or
thrown away thus increasing privacy. Note that it's possible that future versions will
need this data. This is still being researched.

| will note that "just the headers" are considered fair game these days in the US and
many businesses in less enlightened areas consider these to be business data
and their property.

- It can soak up all that spare CPU you have sitting around.
What's not so good?

- If your CEO visits spankme.com at 10:00am every morning those packets will
probably stand out. You do not want the output of this technique going to an
automated system, but, rather, to a person who can make judgements. Do
remember that you are looking at data that most of your users consider a bit private,
and, may even be protected by privacy laws.

- It will soak up what every cpu time you have to spare.

- It points out suspicious packets but it is not exact. Think of this as being the eyes
of a policeman. Good police walk or drive around a town and have a "gut" feeling
about situations. They then investigate. Most often it is nothing, but, sometimes it
is important. PckSwarms helps to point out places to investigate.

- Sensitive to probability settings. Get the settings wrong and the algorithm does
not converge or, converges too quickly to a local minimum so that you do not get
good results.

- This is a NP-Complete problem. Ergo we do not solve it, we use a heuristic. You
might not get a good answer. You can think of each packet as being a node on a
graph, with the edges connecting to similar nodes via weights. This is a very highly
connected graph. The NP Complete problem is similar to finding a clique, with the
added glitch that we are trying to minimize the edge weight in our clique. This is
similar to a graph partitioning problem as well.

Description:

The basic algorithm is quite simple. You should basically imagine a bunch of ant
larvae sitting in a nest, and, a bunch of ants walking around, possibly picking up a
larva, and, sometime later, possibly dropping the larva. The key to the algorithm is
that the ants each make some sort of judgment about how self similar the larva
they are carrying and the larvae where they are standing. Note that it is similarity,
not exactness that is important here.

In this implementation each individual pcap record is a larva. These are distributed
around a field and then ants are created. Each ant has a direction and a speed.
The ants are then moved about the field, and at each step possibly picking up a
larva or dropping a larva.

As a result, over time, pcap records which are similar start collecting close to each
other in the field. After a number of steps we pass over the field finding the peaks,
and remove the larvae which are at or close to those peaks.

The remaining packets are "interesting." Note that if you used anonymous
packets the only real data you have to go on is the time stamps from the pcap file.
You would have to give a list of timestamps to the custodian of the pcap data and
they could retrieve the records.

It's quite possible that post filtering might help to make this a more automated
process. If you know that your CEO likes spankme.com then you might as well filter
those out so that you do not have to spend time chasing those leads down.

Current Results:

The program runs and does find odd packets, but, it does not converge as fast as
desired. Work continues on tuning the parameters to get better convergence and
better results. Come and listen to the EuroBSDCon 2006 presentation for more
information or check the current status at http://edoneel.chaosnet.org/
PckSwarms.html.

Implementation:

Since this is a spare time project | used what | was comfortable with, ie, Common
Lisp. | started with clisp and reading the pcap data files directly rather than using
libpcap. | switched to ECL (Embedded Common Lisp http://ecls.sourceforge.net)
so that it would work on my "fast" systems, the 300 and 400mhz Sun Ultras. Even
on an older system (200mhz SPARCstation 20) it runs in a reasonable time for one
run.

Reference:

Please see Swarm Intelligence: From Natural to Artificial Systems (Santa Fe
Institute Studies on the Sciences of Complexity) by Bonabeau, Dorigo, Theraulaz,
Section 4.2, Cemetery Organization and Larva Sorting.

Bruce O'Neel has worked many years in different bits of the computer world. His
non-paid work these days concentrates on OpenBSD.

Third-party software management under BSD
Andrew Pantyukhin <infofarmer@FreeBSD.org>
EuroBSDCon 2006

Preface

hen 1 set out to write this paper in July 2006 1 was a FreeBSD ports committer, determined to find something new in
penBSD ports, NetBSD pkgsrc, as well as in a number of software management systems for Linux. I was hoping to find a
ay for the BSD community to exchange ideas with each other and to learn a lot from our Linux colleagues. Now, three
onths later, I'm still a FreeBSD ports committer, and I'm still hoping for us to work together, but I sure have gone a long
ay, longer than I ever expected to. The thing is, software management is developing so rapidly, you can never expect
ything from it until you go and see for yourself what's happening.

July T was pretty sure what I am going to write about, but a few weeks after I started the research, I was abashed by the
fluence of information and I knew it was impossible just to describe solutions and discuss their implementation. In this
aper, in addition to some factual background, in a clumsy, but purposefully informal and easy-going way, I try no more but to
nvey my own impressions from my venture into the world of package management.

Introduction

perating systems come bundled with software. As removable media grows in size, leaving developers, trying to fill it up with

de, far behind, we can fit more and more on a CD, DVD, Blu-ray Disc and what not. But while it seems to many end-users
at somewhere there's a perfect combination of tools to cater to all their needs, they fail to see some simple points, exposing
is illusion:

® However huge data storage is and however fast it grows, the number of software projects is overwhelming. With over
130 thousand projects at SourceForge alone, and many similar repositories amassing dozens of thousands more, it is
absolutely clear why we just cannot jam everything into one distribution and present it to somebody other than a
football-field-sized data center owner.

® We can greet a user with gigabytes of the most popular software in the world, and many Linux distributions do just
that. But in our naturally heterogenous IT world, there's always a great deal of unsolved problems. And once some
piece of software answers a need, users want it. They won't wait until the next version of the whole distro, they won't
wait until the packagers actually notice the new tool, the want it here and now.

® We can't pretend every user has enough resources to install a multigigabyte chunk of software just like that. There's
embedded market where you need to enjoy your life on a shoestring, there are users with legacy hardware, there are
users multibooting in 10 different systems, there are virtual private servers - and in each case any piece of software
can be required, but it's not possible to install all the software at once.

ence packages. Traditionally, package management can be integrated into packages themselves, or into the operating
vironment. The first way is decentralized by design, and popular among commercial closed-source software vendors. They
on't like to conform to cheaply advertised standards or to wait for anyone to accept their package into a repository, so they
st bundle their programs with installers, and sometimes deinstallers, and make it available as an executable. That's the way
ost packages come on proprietary desktop operating systems and many proprietary packages on other systems, and
nfortunately that's the way to give your system administrator nightmares. The other way usually involves some guidelines,
hich package developers, or packagers, have to take into account in order to build a conformant package. Such packages are
sually easy to install, deinstall and upgrade through a common interface.

History
Package management in UNLX

efore package management existed, as we know it now, developers preferred spending their time troubleshooting installation

ssues to thinking about deinstallation. This approach became deeply rooted, and remains so to this day, in the Windows
vorld. Back then a user usually had to get a file archive, extract it, optionally hack it and compile it, and install it.
»urprlsmgly, today some administrators, especially those dealing with more obscure proprietary systems, regard this routine as
{uxte straight and normal. Additionally many operating systems came bundled with all the software you were supposed to ever
eed

}'hat's the way BSD systems went, coming with rich userlands so that users might have a chance to never think about anything
hird-party. That's the way early Linux distributions were - it was all OS developers' job to decide what's important, compile it,
ntegrate it and give you a nice versatile bundle.

3ut of course it couldn't stay that way for long. Eventually Unix got its System V (Solaris) PKG format and users started using
inary packages, which they didn't have to hack or compile, or even extract. A simple pkgadd command would "transfer" the
ackage to their system, and pkgrm would remove it. Pkginfo and half a dozen extra tools were also there to constitute one of
he first Package Management Systems (PMS).

Package management in BSD

In August 1993 Jordan Hubbard committed his package install suite, and almost exactly a year later he presented us with his
new ports make macros, also known as bsd.port.mk. NetBSD imported the pkg tools in summer 1997 and later that year they
adopted the ports technology under codename pkgsrc (because the word "port" already meant a hardware architecture in
NetBSD). OpenBSD inherited pkg_install suite and ports from NetBSD; pkg tools were rewritten in Perl by Marc Espie in
2003, but this new version has remained limited to OpenBSD to this day.

Initially the FreeBSD ports system was just a facility to ease building binary ports, a collection of macros written in make,
which later became a vital part of all three major BSD OS's.

Package management in Linux

Year 1993 welcomed Slackware, Debian, RedHat and Bogus distributions to the scene - and each came with its own PMS. By
mid 1994 there were Slackware packages, a modestly-named PMS system in Bogus, RedHat RPP and Debian dpkg solutions.
RedHat later developed a new system called RPM, which are, together with Debian packages the two most popular PMS for
Linux today.

When Gentoo Linux 1.0 was released in 2002, it came with a system called Portage. Based on FreeBSD ports, it was powered
by bash and python instead of make and shell. With over 11000 of official separate packages, it is one of the most
comprehensive centralized repositories of third-party software for Linux.

Today

Today there are dozens of systems, allowing to manage software on Unix-like systems in one way or another. They can be
divided into binary-based, where you only deal with binary packages, source-based, where you install everything by compiling
from source and hybrid, where you can do a little bit of both. In fact, all systems deal with source code at some point and all
systems deal with binaries when the software is installed, so the real difference is how they manage to compile software,
install it, remove it, and perform other management tasks.

Early PMS did not provide much help in compiling the code. More often than not, you were required to compile it by hand,
move binaries to a special place - and use some tool to archive it along with some metadata into a package. That wasn't a very
pleasant job, especially if you consider the wealth of open source software and the frequency of updates. Ports makefiles, RPM
recipes, Debian control files, Portage ebuilds - are all there now to ease the task by automation and modularization of common
actions.

You can hardly imagine building thousands of packages by hand, if you take into account that you have to do that for several
versions of an OS, multiplied by several hardware architectures. Today in the FreeBSD ports system less than a megabyte of
uncompressed core make macros make it possible for the other 375 megabytes of package-specific code perform this task with
excellence, compiling over 15000 pieces of software, which amount to tens of gigabytes of non-bloatware source code, into
packages.

BSD ports and especially Portage have very advanced macro systems, while RPM and dpkg mostly utilize separate packages
to perform common actions. All these systems deal with pristine sources, i.e. they store all the information needed for the
original upstream source code to be compiled into a package. Lots and lots of portability issues have resulted in many macros,
which effectively unburdened thousands of software developers, and let us compile code written without much portability in
mind with no showstopping trouble.

Of course, compilation is only a part of the whole picture. We can't just throw binaries at users, we have to make installed
software easily available. For plain old console apps it just means placing binaries in a PATH-exposed directory. For daemons,
we have to help user stop and start them at reboot automatically. For X11 apps we may have to install some Gnome- or KDE-
specific files. And things just get more complicated when it comes to web- and SQL-based software, and other modern
software usage paradigms, like virtualization, clustering, and so on. Some of these issues are solved in many PMS, others are
not even planned to be alleviated or even not recognized as problems, but believed to be there to entertain system
administrators.

We'll now look at some popular contemporary PMS, at issues and solutions, at what users and porters expect from the
infrastructure, and we will try to understand why there is so little collaboration between very similar projects and how people
can start working together.

FreeBSD ports

Most of us know how FreeBSD ports system works in general. It's written in make and shell with every port having its own
Makefile along with some other files, like patches and checksums, but the way we see it as multiple files in multiple multilevel
directories is only a matter of organization. In fact, we could have had everything fit into a handful of makefiles and specify
what port we're going to operate on every time we invoke make. There are countless ways to organize these hundreds of

negabytes of code. With shell and make being comparatively simple languages, we've seen snippets ported from one to the
ther and back.

“ore ports macros are located in a special Mk directory. They can be used by ports directly, or through the main macro
ackage, bsd.port.mk, also located there, by setting special USE_XXX flags. A number of additional macros is located
oughout the ports tree. In theory, you can create a port without using a single macro package, but macros ease the task
mensely. You would have to program all the actions manually, from fetching, building and installing the software to
reating a standard package. While most actions can be redefined, no port ever required to redefine all of them (there are over
hundred actions defined in just bsd.port.mk).

hanks to macros most of the work is already done for you. In many simple cases, all a porter has to do is to write down a
ame, version, and download URLs for a piece of software, along with a short description and a list of files it installs - and a
ort is all ready. You can install it, remove it, make a package and submit it for inclusion into the official ports tree. But you
nly begin to experience the power of the ports system when you have some trouble with an app. You can solve most
roblems with a couple of tweaks, but there are hard nuts, when you spend hours trying to figure out what to patch and why
oes it segfault at start. There's always room for automation, though. Many porters find themselves doing the same hacks over
nd over again, - and only reluctant to automate it all because it's not that easy. Portage has a well thought-out eclass system to
ncourage streamlining all kinds of hacks, we'll look at it later.

NetBSD pkgsrc

any users think that OpenBSD and FreeBSD ports are very similar, because they are both "ports", and NetBSD pkgsrc is
omething alike, but still different, because it sounds very different. In fact, like we said a bit earlier, pkgsrc would probably
ave been called ports if only the word "port" had not already had an entirely different meaning in the NetBSD project. It's a
hallenge to find out whether it was OpenBSD or NetBSD who has done more work on ports, but at first sight pkgsrc feels
ore like FreeBSD ports than OpenBSD ports do. It is probably because OpenBSD guys had rewritten the pkg install suite
om scratch (and renamed it to pkg_add to avoid a directory name clash during the transition). Along the way, they introduced
any improvements into the infrastructure, as we'll see in a minute.

ow NetBSD still uses the original pkg_install suite, although John Kohl has contributed to the code and many of the
finements made it back to FreeBSD. Pkgsrc also got many interesting features, to name a few random ones:
® licensing notion - ports refer to license names, which are located in a separate common directory. A user can restrict
available ports to a subset of known licensing options

® print-PLIST target - simple, but nice automatic plist generation tool, it uses "find -newer" and some awk/mtree magic

® good documentation - pkgsrc.txt is a comprehensive guide for users, porters and developers

® buildlink3 - symlinks required libs and headers into WRKDIR at pre-build

® builtin.mk - decide if system or installed lib should be used

® pkginstall framework - some common tasks for install/deinstall scripts have been automated, like user/group creation
and dealing with config file

® pkg options framework - options have been reworked to allow for easy customization

® more flexible subst framework

® policy-prodded unique dist_subdirs for rerolled distfiles

OpenBSD ports

ike 1 just mentioned, OpenBSD ports infrastructure seems to have changed a lot since it was inherited from FreeBSD. The
ct is it might have experienced much less development than pkgsrc has, but the changes affected it in a more visible way.
nd that's what any infrastructure should probably be aiming at - little changes in the core producing much positive effect in
€ consurmers.

® fake build environment - when you install a port, it is first installed into a wrkdir called fake root, then package is
built and only then is it installed

® immaculate documentation - many comments made it from makefiles into manpages, many concepts are now
described in dedicated manpages

options reworked into flavors, a little less flexible, but a lot cleaner mechanism

multi-packages - building several packages from a port the smart way

packages with different options or different subpackages in a multi-package have different filenames
you can act on several ports in a go, grouped by package name, category or maintainer
locking-supported parallel builds

built-in updating support

he whole pkg_install suite has been rewritten in Perl, and became arguably a lot smarter. I won't discuss it right now, but the
Itimate target of OpenBSD ports developers is to integrate most package management tasks into the base system.

Other Worlds

Many of us remember that there's much more to operating systems than BSD, some even recognize the word Linux when they
hear it. Apart from BSD ports there are three big package-management players in the Unix-like world: RPM (RedHat, SuSE),
dpkg (Debian, Ubuntu) and a rising star named Portage (Gentoo). And there are dozens of other most diversified approaches,
which I won't discuss in detail, but will mention when I talk about some interesting features.

RPM is probably the best-known package format in the world. It is associated with a package manager of the same name.
RPM manager can run on most Unix-like systems and has been employed as a built-in feature in many Linux distributions.
Binary RPM packages are built from source ones, which usually contain pristine sources, patches and a spec file, much like a
BSD port's makefile. There is no central repository of macros, so packagers are restricted to RPM built-in functionality. Binary
packages from one system are usually unusable on another, or even on a different version of the same. Unfortunately, source
packages usually obey the same rule, which limits RPM in its success as a universal package manager. When vendors publish
packages, they usually have to provide one for each OS it is supposed to run on. There are efforts under way, most
prominently Linux Core Consortium, which is behind Linux Standard Base, to alleviate the problem of incompatible packages.

Dpkg approach, also known for it's .deb packages, is a lot like RPM, but thanks to rigorous packaging practices has much
fewer compatibility issues. Binary packages from one Debian-based system usually run on another one. Lately there have been
some issues with Ubuntu, the most popular Debian derivative, about package compatibility. We can only hope that Ian
Murdock, Debian founder and ex-leader, will do everything he can to prevent RPM chaos from coming into Debian family
(he's also working on LSB), while we discuss some other dpkg highlights. Documentation is extensive and quite impressive,
leaving no room for questions from a novice, but the thing packagers profit the most from is probably debhelper suite, and
lately Common Debian Build System (CDBS). Debhelper is a collection of tools which can be called from rules files -
makefiles controlling how package is built. CDBS is a collection of macros packages, much like dot.mk files in BSD
infrastructures. They can be included into rules files to use predefined targets and other handy make macros. CDBS builds on
debhelper, and together they can bring packagers even more convenience then ports currently do.

Last but not least is the youngest, most vigorous system named Portage, as a tribute to BSD ports. Its original developer,
Daniel Robbins, took a foray into FreeBSD and later used his impressions to design a new PMS in Bash and Python, which is
now the heart of Gentoo Linux. He did a great job at studying what other systems did, so he laid out a pretty slick design and
implemented it successfully. Somewhat like RPM, Portage uses Bash scripts, named ebuilds, to control the building process.
To provide debhelper and CDBS functionality, he designed a system of eclasses, also Bash scripts, which are a lot more fun to
use than make macro packages. All in all, Portage does not introduce any revolutionary practices in PMS world, except for
bringing it home that source-based PMS can be a success on Linux, but its straightforward design and the power of Bash at its
core attracted many developers and made it grow as fast as no one could expect.

Why Bother?

So there are BSD ports, Linux packages and a lot of other systems. Maybe we could take a look and learn something new, but
at any rate, we should probably try to save our individuality and leave other projects well enough alone; diversity is good,
right? Well, the problem is that no package management system of today can cope with users' demands. Whatever OS you use,
you'll always meet some mishaps and shortcomings. First of all, there is enormous amount of open source projects. Whenever
we tell a user "you'll find everything you need right here in our collection" we are lying. He'll be lucky to find a few most
popular percent of currently available software, and he'll be very lucky to find that most of them are up to date and usable. And
by only exposing the most popular programs, we are actually raising barriers for them to become popular in the first place.
And by saying "you don't need that and that anyway" we begin to dictate our opinion.

And the problems are not just in the numbers. It's a topic for another pile of papers, whether it's right or wrong to present users
with a zillion of useless tools, whether diversity on its own is vile or virtuous. But there is so much more to both qualitative
and quantitative metrics describing the way PMS serves its purpose. In a minute we'll start looking at some issues and
solutions, and will hopefully discover that no project alone can embrace even a list of problems it would want to solve.
Sometimes users are so loyal they mistake shortcomings of the systems they use for the way things should be, or even consider
them advantageous. For instance, those who use binary-centric systems exclusively often frown upon source-based ones,
because they are unaware of the problems which they can solve. And the other way around.

The interesting thing about packaging is that we all use the same software. At the operating system level, all we might care
about is interoperability standards; implementation can work in ten different ways under the hood. But when it comes to third-
party software - we're actually using the very same source code on all the different platforms. So while developers might pride
on their distinctiveness and isolationism, packagers just can't do that. Be it FreeBSD, Linux or Mac OS, we should look for
ways to work together, or we'll end up thinking that we're doing great when in fact we're suffocating both our users and
software vendors. And the current situation of three BSDs working on three separate ports systems is just inconceivable. We're
so close together we could fall on each other - and yet we find it much more comfortable to tweak things on our own.

We shall consider how to meet each other halfway later on, and now let's take look at what's bothering us, and what PMS
projects are having fun about.

What's up?

Scalability - Package Building

ne of the main problems in any PMS is package building. Most porters acknowledge this, and the FreeBSD portmgr team
ould probably write an epic about it. Basically, FreeBSD package building cluster is a bunch of donated boxes. When
uilding the whole tree takes desperate amounts of time, we ask for more hardware resources - and sometimes we even get
em. As a result we've got one of the most up-to-date PMS trees out there and one of the most outdated package collections.
ost Linux distributions don't seem to have these problems, but in reality they are just cheating. Fedora builds only the core,
fficial packages, plus a generous amount of extras, - and lets users go find all the software they need anywhere else. Portage
nly builds at release times. Debian allows porters to build and upload packages themselves. BSD ports might have something
learn from each of them.

irstly, traditionally we always try to build the whole tree, but we really don't have to. When it comes to a point when we just
an't handle more package building, we either don't accept new ports or don't build them. Whichever is lesser evil is a hard
uestion, but while we can handle a lot more code in our VCS there's no reason not to allow it to be added.

econdly, also by tradition, we keep package building centralized. Centralization is always a two-edged sword. It keeps us
om wasting coding efforts on redundant solutions, i.e. encourages collaboration, but it also demands non-trivial hardware
sources when it comes to hungry tasks. At this point we can't just let porters build packages themselves and upload them,
ecause it's a commonplace to customize build environments, but it's possible to automate standards-compliant builds, and in a
ay less painful than tinderbox to set up. Once porters can build standard packages, it can be automated. Everyone takes the
orts he maintains and builds them on whatever archs he can, pkg_adds them, tries to run, uploads. Once the building part is
utomated, we can distribute tasks among both porters and non-porters. And distribution of hardware-hungry tasks seems to
Iways solve the problem. Of course, there are security ramifications to be thought about, but in general, we have to trust
eople. Package signatures will be a must, though.

System Resources: Using, Keeping Track

a way, every PMS solves a problem of managing system resources, like disk space, file namespaces, user names, etc. It's
st that few people put it this way. When we think about a program which requires a specific user name, we imagine a script
create it at install, remove it at deinstall, spit out some warnings if the user already exists in our system and so on. Why
on't we call it a resource and acknowledge that the app needs it. We might have one and we might not; some resources, like
ser names, can be shared between a number of different programs; some, like a TCP port at a specific IP address, usually
an't. Whatever we should call a resource depends on our imagination.

o reiterate, among the things that can be actually spent or saved or wasted, programs usually require:

disk space - this is ignored much too often, but it's far too important. A PMS of the future should probably provide a means
f package-specific runtime disk space quotas, which are requested at pre-install time and prevent programs from filling up
ar with logs and other similar issues. A user should also be able to view requirements of the packages he has installed, is
stalling or is planning to install, so that he can decide on his hard disk layout, or what to share via NFS, or numerous other
oints of administrative design.

directory/file namespaces - facing a problem of having multiple instances of the same packages (of one or several different
ersions) installed at the same time, we should think about naming problems.

user/group names/ids - many programs require a dedicated username (and for security reasons we might want to encourage it
here it is optional), some share it with other programs (e.g. many webapps share user/group with webserver programs), but
ere's always a problem when it comes to adding/removing user accounts. There are ways to run a program under whatever
ser we like, so we should avoid hardcoding user id's or specific username.

TCP/UDP ports - we are accustomed to seeing ports as some hardcoded property of a program. In fact, almost any network-
nable program provides a way to specify what port it should use. And we should leverage it in order to automate installation
f several similar apps on one box.

CPU, RAM, disk throughput, number of processes, number of open files, etc. - of course it would be cool if we could
istribute performance based on priorities, softhard limits or otherwise between all the packages we have installed.
nfortunately, few operating systems have enough built-in functionality to implement that. Of course, we could employ some
lever wrapper scripts or other hacks, but an efficient solution would still require OS support.

There's more to Resources

ow that we've seen how packages consume resources, why don't we allow packages to provide resources? Databases, virtual
osts, pixel-based on-screen real-estate, client connections to some persistent antivirus engine - you name it. Is it possible to
utomate it in a safe way? - Why not? And who could possibly do it in a better way than the maintainers themselves, who
sually know more about their particular piece of software than most other users do. Of course, there are security issues to
onsider, but in fact many administrators choose less secure configurations in favor of more complicated ones - just because
ey haven't got enough time or zest. Apache runs chrooted on OpenBSD by default, it's not a port, but that's an
ccomplishment all the same. 1 doubt half of FreeBSD users chroot Apache by hand, in spite of all the security benefits. And
hat does it take porters to automate this setup? Probably less than it would take a new Apache user to do it the first time.

Of course, flexibility issues arise when porters try to make mandatory decisions for users. Well, it usually only takes one "if"
clause to make some action optional. Moreover, porters should try to allow for many common choices. Let users prefer
Postgres to MySQL, or database on another host to local one, and let applications take that preferences into account.

Customization

Resource management is tightly coupled with a more general problem of software customization, from setting preferences to
applying useful functionality-enhancing patches. I must have installed phpMyAdmin for a hundred times and almost each time
I had to edit the configuration file to make the very same change - enable cookie-based authentication and set a blowfish
secret. It would probably take less than an hour to implement some "with_" variable and automate the whole process. Many
other webapps offer generous web-based installation wizards, but they always ask almost the very same questions. What
would it take to let user say "I've got this database on this host with these admin credentials, please manage db/user creation
for me"?

Sometimes programs require particular settings tweaked in other programs. A well-known example is php.ini settings. Should
we make user deal with it herself or should we outline requirements and automate all the necessary tweaks if some super-
manual-override mode has not been enabled in make.conf?

User interface

Most PMS have a unified interface to perform all the tasks related to software management. Here the simplicity of
management contradicts flexibility and complexity of operation. I've always liked the way VCS clients deal with the problem.
One main program, comprehensive easy-to-use help system, orthogonal switches, dozens of completely different functions
performed by intuitive concise incantations. OpenBSD has taken pkg_install suite there (by rewriting it in Perl from scratch),
Portage has emerge, Debian - apt. For a long time now FreeBSD has relied on portupgrade. Doug Barton has been working on
a new tool called portmaster, written in shell, so that it can be integrated into the base system. But we have still to see a tool to
let us customize ports. The way users are asked to set options now is strange to say the least. There is a tool named portconf,
but it's more of a hack than a solution.

Choosing what (not) to install

Most users crave an easy way to say, what he wants to be installed, what he considers OK to be installed and what he doesn't
want to be installed at all. At any given time, the PMS should know which of the installed packages are actually required by
the user and which are installed as requirements for other packages. Sometimes it's important to be able to mark packages not
to be installed under any circumstances. For example, a user might not want X.Org libraries on a server with constrained
resources - or just to keep system clean for that matter - and he would prefer some graphic app failing to install instead of
having a bunch of heavy-weight packages installed.

Where do the old versions go?

FreeBSD ports pride upon being one of the most current repositories of open-source software in the industry, without having
too much of stability hassle. This makes it possible for all kinds of users to stay on the edge. But a lot of users require much
more than just that. There are countless situations when an earlier version of a program is required. Most PMS, including BSD
ports, try to solve this problem by providing several major versions as separate branches of a package. But what if a user
requires an earlier version on a branch? Currently the only two solutions are to hunt for old packages or to downgrade the
infrastructure itself. Both are good ways to mess up your system.

Portage has a lazy, but a better way to deal with it. They keep several versions of ebuilds (counterparts of our Makefiles) in
directories of many ports. It's not very VCS-friendly, and they have to maintain each of the ebuilds, but it works.

Multiple problems arise when we talk about multiversioned ports and packages. To introduce full support into packages, we
would have to redesign the whole concept of package dependencies. For the time being we might be better off leaving
packages well enough alone, depending on a single version of each required package. The versions might be explicitly
specified, designated as default in the dependency itself, or just the latest ones.

Metadata storage, as well as distfile storage are of particular interest. With metadata (makefiles, distfiles, patches and so on)
we might go the Portage way and keep different versions in separate files. A more efficient solution might be to keep them on
different branches in our VCS. As for distfiles - we may choose to drop support of unavailable versions, or, much better,
mirror older distfiles. Of course, just to mirror them would put a substantial strain on disk space resources of our mirrors.
Therefore, we should consider a possibility of keeping distfiles on vendor branches, also in out VCS. By all means, this
repository may be separate from the one where we keep the OS and ports sources, but in fact it won't create much pollution in
a change-set based VCS. Every update is just one changeset. As for digests, we'll have to keep per-file ones in addition to per-
distfile ones. A successful solution will probably require extensive checkout capabilities, so that users could get a .tar.bz2
archive via http or ftp, containing all the sources of a particular version. It's not impossible, though again places additional load
on the mirrors. On the other hand, per-file digests will make it possible to choose new compression algorithms in a trouble-free
way. Some hosts might choose to offer LZMA-compressed checkouts, which will help users cut down on their traffic.

Repository-based PMS is not news. RPath, Inc. presented a system named Conary back in 2004. Conary implements a new
vision of package management, proudly called software provisioning. It is based on the concepts of DVCS, peering far into the
uture. There's even a Linux distro called Foresight based on Conary (not to mention rPath's own Linux of the same name).
Unfortunately, Conary is not very active right now, but it has already generated a wealth of documentation for us to learn

Fetching sources

peaking of distfiles, there are more ways today to get them than just fetch(1). People make software available in form of
CS files, anonymous VCS access, p2p shares and metalinks. We make porters deal with that by providing traditional
rchives via http and ftp links. Some distfiles can not be downloaded automatically because of licensing restrictions. In such
ases we usually weed out the lazy users by telling them to go to such and such URL, register and download a file with such
nd such name. Instead we could present him with a text browser window and even a preregistered bugmenot-like account.
ot that we should encourage the use of non-free software, but we don't make life much easier for users when we strongly
iscourage that.

Incremental distfiles

ome users still have very slow and/or expensive bandwidth. Many of them look at the rate our OpenOffice port is updated at
d wish they could always have the current version, but they just can't afford downloading 300 Mb several times a month.
at if users could update their distfiles incrementally? A bzip2-compressed diff between OO0 2.0.4 RC1 and RC3 is about 1
b, which could result in 300 times less traffic consumed for the upgrade. And we already have a solution which takes care of
he ports collection itself - portsnap. It's not an easy task to marry portsnap's concepts to distfile updates, and again, we have
he problem of keeping the distfiles in a versioned environment. We even have a highly efficient bsdiff binary diff solution
om Colin Percival, and some room for its improvement in a doctoral thesis by the same author, just in case we decide to
ersion-control closed-source or non-textual data.

Functionality providers

any PMS (like Debian and Portage) implement so-called virtual packages, where several programs with similar functionality
e.g. mail clients, or web servers) are united into one, "provide" the virtual package. Several "providers" can be installed at the
ame time, one of them presented to the user via a uniform wrapper script, or a symlink (e.g. type "mail" and one of providers
whichever priority is highest - will be launched). Not only is this a user-friendly way to present some functionality, but also a
onvenient paradigm when it comes to other programs depending on some kind of facility, e.g. a webserver or a MTA.

Multiple instances of the same program

ortage has a feature called slots, where multiple versions (branches) of the same package with different slot numbers defined
an coexist on one system. FreeBSD also has this feature in form of version-suffixed port and package names. A little bit
arlier we were talking about how cool it would be to have access to all versions of an app at once. Indeed, this is especially
e in high-availability environments where you can't afford downtime and should test every new version before deploying it.
ile a separate sandbox is always advisable, why not just allow to install the new version on existing system without
eleting the old one? This way a roll-back will only take a few seconds. Moreover, no matter what app we're talking about in
ost cases you'll be able to provide users with access to both versions at the same time.

obias Oetiker, the man behind the ubiquitous RRDtool and MRTG, has once been challenged with package management
cross 400 Unix workstations. Of course, he developed his own system named SEPP and his users were happy ever since. The
act is that whenever an upgrade took place, they always could launch the old version of a program. And before each upgrade
ey were given a chance to try out the new version. In fact they could keep all the versions they wanted for as long as they
iked. Nowadays this has many security implications, but we'll talk about security later and now let's just say there's Debian
hich almost always applies security patches to older versions, so it's not impossible in practice. SEPP installs programs into
ersioned directories. Inter-package dependencies are supported, but Tobias recommends keeping everything a program
equires in one package. It's impractical in most cases, but in some cases this approach can be beneficial. There are wrapper
tub scripts and symlinks making software available to users, keeping statistics and providing for some additional run-time
onfiguration.

ere are other systems that keep packages installed in separate subdirectories. Keeping them versioned solves many issues,
uch as file namespaces we were talking about. There is system integration to think about - manpages, rc.d scripts can all be
ade versioned, but require non-trivial design decisions to be made. Last but not least, if we allow several versions of a
ackage to be installed simultaneously, why not allow same versions to be installed in the same fashion. It would not require
uch more - just a special instance identity to augment versioning and avoid name clashes. If we couple this functionality with
esource management, running three daemons of the same version but with different patches applied will become a hassle-free
peration.

s for running several instances of the very same binary - it can be also be achieved by launching it with different options.
is has a benefit of run-time configuration as opposed to build-time in multiple instancing with different binaries.
Unfortunately, some apps have hard coded values. They will have to be either patched to be run-time configurable or

configured at compile-time only.
Movable packages

Whether installed into private subdirectories or not, it would be great to allow user to relocate a package installation from one
place to another without disrupting it. The problem is reconfiguring it at runtime so that it is not surprised by new paths.

More runtime customization

Post-installation resource management is very important in dynamic environments. You have a webserver listening on port 80,
you install a new version and it listens on port 81. Once you verify that the new version works OK, you have to be able to
exchange resources between the servers. Apart from port numbers, there might be different document root paths, database
users and so on. Of course, we can make the user to just reinstall the daemon, but while a runtime reconfiguration should only
take a few seconds, a reinstallation might require much more time.

Non-privileged package management

Non-root installation is advertised as one of the Holy Grails in the new breed of user-friendly clickety-clack systems, such as
Klik and Zero Install. Any PMS could benefit from this functionality. Hacky solutions can be based on running PMS in a
chrooted environment, but a real solution should introduce a notion of user installs into the core of PMS. ldeally users should
be able to choose what to depend on: only system-wide packages, only user-installed ones or both. And runtime relocation and
customization facilities should be able to make a user-specific package system-wide and the other way around.

Smart techniques could be employed to watch if more than one users install the same package and save disk space in some
way. An even smarter, but a lot more security-encumbering solution would be to install all packages in system wide locations,
but mark them available per-user and deal with per-user customizations. This would save space by default. VDS and shell
providers will appreciate this kind of functionality.

Click!

One simple feature most users come to appreciate very much is the ability to do powerful clicks. 1.e. you see a nice icon on a
website, you click on it - and the next thing you know is a full-blown application installed and launched on your computer.
The security implications will probably make some people pant, but smart design should yield some decent insulation. The
matter is too many new packaging systems attract users with this kind of features. Even Microsoft gave in to the tide and
announced its ClickOnce solution where there's no setup.exe, but only a mouse, a click and a working application.

Appliances

RPath, the company behind the aforementioned Conary system, advertises a concept of software appliances. Their marketing
materials are quite vague, but the idea is simple. Instead of distributing your application alone, trying to make sure that it will
work in many environments, you can marry it to an operating system, and distribute it as one package, guaranteed to work on
most hardware configurations. RPath provides solutions for bare hardware based on their own Linux distro, virtual appliances
to be used on virtual hardware and hardware appliances which is software appliance bundled with a computer. If we're talking
about FreeBSD, we can extend this concept to jail appliances. You plug them in - and they just work. And you can plug a lot
of them in a single system. Sounds exciting and in fact not staggeringly difficult to implement.

Distcc/ccache

Portage and pkgsrc have built-in support for both distcc and ccache, two solutions to speed up the builds. Problem number one
is getting ports to respect the designated compiler. Two is looking for issues that inevitably happen due to parallel compilation.
Many users also report problems with ccache, apparently results of configuration issues. Built-in support means hassle-free
automation, so all configuration problems should be sorted out with all kinds of environments in mind. Problem three is distcc
on heterogenous systems, i.e. setting up an old box running FreeBSD 4.x/i386 do all the building on a fast 6.x/amd64 system,
or even on machines running another OS. This brings us to cross-compilation.

Cross-compilation

It has been accepted as a fact that whether distcc is involved or not, cross-building packages is not an easy task. Nevertheless,
Krister Walfridsson, presented a new concept at EuroBSDCon 2004 and implemented it in NetBSD pkgsrc in 2005. His idea is
to substitute the calls to some programs during the build process with calls to emulated programs. Granted, this depends on
NetBSD emulation framework, but a similar solution might be feasible on FreeBSD.

Security
Vulnerability and exposure tracking is one of the most underdeveloped processes today. There are literally dozens of

commercial, community and governmental security trackers, aggregators and copycats, but they are trying so hard to keep at a
distance from each other that there's no reliable source of security-related information. Fortunately there is the CVE dictionary

acked by the Mitre Corporation and the U.S. Department of Homeland Security. Most of the time it provides us with useful
eferences so that we can say "a-ha, we are talking about the same issue". But neither does it provide comprehensive
nformation about each particular issue, nor does it cover them all.

here is still no centralized community-based security database and PMS need it bad. Until such a facility appears, we'll
ontinue maintaining our project-specific databases, which is not a completely lost, but mostly a wasted effort. When the
jatabase comes, each project can choose how to use it. You can either put references to fixed issues directly into packages or
ou can maintain a database with very simple entries: a reference to the issue in the central DB and affected packages. No
escriptions, no reference hunting - these are centralized. But until version numbers and package names will become
tandardized, which I doubt will ever happen, PMS will have to maintain thin compatibility layers.

Porter perspective

PMS does not only serve users, it's also there for the sake of those who actually make software available to users, ie.
orters, packagers, uploaders and whatever we might call them. Ideally, everything that can be automated, should be
utomated. If a program requires a library, it must be easy to designate it, without research into the current state of PMS. If a
rogram needs a dedicated username, UDP port and or a SQL DB, a porter should be spared the effort to reinvent all the
utomation tricks and knacks. We have already mentioned a need for resource management, that's something both users and
orters will profit from. Now, how about -

Dependencies reloaded

irst of all, we can go ahead and say dependencies are also a special kind of resource, always reusable and never depletable.
e problem is how we define them. First, whatever type of dependency we're talking about, most often than not we can
ccurately guess what port to depend on by looking at what we really need. Be it a library, an executable or a package, it's not
n impossible task to automatically find the port we need. RPM has applied this approach from start by depending on files
stead of packages. This proved to be a big headache, and by all means should be avoided, but the concept is sane. Even if we
an't come up with a bright idea about how to implement it, let's face, it would be nice if we only had to say that we need this
inary and have the infrastructure look up all the necessary stuff for us.

nd like they say, the Beastie is in the detail. Poor porters have typed the word ${PORTSDIR} in the dependency specs for
ver 21000 times. OpenBSD for one inserts it automatically if the port origin is not absolute. And the way we depend on Perl
orts is a joke. Perl ports have long been our blemish and a scapegoat, much undeservedly, too. I'm sure there are lots and lots
f scripts scatter all over mailing-lists, written to ease the pain of doing something as simple as porting a fully automated
"PAN module in such a routine way. From time to time we even hide a module inside of the port of another one - just to
atch how a porter will port it, get a pointy hat and remove it.

en a shared lib updates its major version, it's a special treat. If you're lucky, you'll only have to bump portrevisions for a
ew ports. A few hundred if you're not. And it only takes a single include file with a list of all the current major/minor versions
d some very simple magic to spare the whole effort.

Automating hacks

any if not most of the ports contain some kind of hacks. With only a few dozens of ports I maintain, sometimes I find myself
olving the same problem all over again just because I forgot that I've already done it, or have no time to look through all my
orts, and I never take time to document little hacks. And porters never do document them either. What kind of reusable code
an we talk about if there's no way to know about it, or if it's unreasonably difficult to find what you need. Discussions on IRC
elp, but that's just a handful out of all ports committers participating, and we obviously need something more outreaching.

riting up every trick in the Porter's Handbook is very difficult, not only because some have no wish to learn DocBook, but
Iso because it's a Handbook, not a Cookbook. In my opinion, a wiki would suit us, but then again we should consider
ncouraging modularization of hacks. If everyone put every hack, however inconvenient it may seem, in Mk/hacks, with
roper comments, then it would be much easier to find what you need and reuse it.

peaking of collaboration problems inside our project, we've approached a general topic of cooperation in package
anagement, when it comes to multiple projects across multiple environments.

Collaboration

Education

MS developers should take an active interest in other projects. That starts with learning about them. There are not numerous
nough to bury you under piles of white papers, manuals and guides. Of roughly a hundred projects only a couple of dozen
ave decent documentation. The thing is not only that we shouldn't reinvent the wheel, but that some decisions we are going to
ake might have already proven to be ruinous in other systems. Also, whatever project we consider, its developers should
ecognize that the bulk of users are happy with other tools. Ports might be a natural monopoly in FreeBSD, but however
conceivable it may seem to some of us, our users are just a subset of the Unix-like user base. Each PMS is only known to a
action of users, which also means that most development and advances are happening outside. While some isolation seems to

rectify our own in-house practices, which are so dear to us, it can only hurt by filtering all the most important outsider
information. Recognizing the need for more sources of input is often a non-technical problem of developers' attitudes.

Spirit

This is a complicated topic. It's known for a fact that every good engineer has an itch to implement everything to his own
liking, not out of vanity, but perhaps because you can easily accept imperfections only when you're the one that's responsible
for them. Anyway, most PMS founders at one point in time felt that they would be better off writing something new from
scratch or forking off a seemingly stagnant project, than talking to the developers of existing systems and trying to do
something together. While this has unerringly resulted in most wonderful diversity, we're still at the point of having no
solution to cater to even basic user demands.

So in order to move forward developers should probably accept, at least temporarily, that (1) it's not the time to start a brand-
new project that is doomed to follow in others' steps and only stand out thanks to a shiny website or a few catchy taglines; (2)
it's not the time to burn a bridge and fork, this will lead to either a suffocating dead-end where there are neither interested users
nor developers,or to another bridge left burning by yet another generation of successors; and (3) it's not the time to keep
isolated and work on your own. Learning from each other's mistakes and successes while looking through a wall of glass, but
without interactivity little progress will be made.

But even as we reach for each out, we'll find much controversies in our opinions, the same disputes that lead to forks, splits
and other quarrelsome counterproductive events. We have to be prepared for that and we have to find a way to deal with it. It
means FreeBSD will be working with DragonFlyBSD, NetBSD with OpenBSD, BSD with Linux, Solaris, and other Unix-like
systems, and so on. And instead of standing on what we can't agree on we'll have to find solutions to problems some of us still
have.

We all use the same software, the very same source code. We don't need to write something new, just to discuss how we can
all use what has been written already. That's why I think we'll succeed through all our differences - because we are all doing
the same thing, we just need each other's help to do it properly. If our cooperation gives life to some common portable
implementation - great, but tools are not nearly as important as design points.

In any case, we can't claim we are able to change how people are, so we'll just have to find people in other projects that are
willing to communicate.

Communication

A decade ago a newsgroup, a mailing-list, or some kind of other centralized communication method would probably do it.
Today, it's hard to put such conventional limitations on the processes inside wide-scale highly-distributed communities. We
have seen task forces, working groups, standardization committees proposing brilliant guidelines which were ignored
altogether, because people are just too busy. Package management does not tolerate stagnation. With hundreds of updates out
each day, we're like some news clerks, running around without looking sideways. But paying attention to what's happening
over the hedge does not only help us find solutions in our everyday routine, it also makes us want to respond, to take part in
foreign discussions. If we accept that we're part of the same process, subscribe to each other's mailing-lists, make comments in
blogs, contribute to bug-tracking systems - and, most importantly, make acquaintances, get to know our colleagues by names -
then it will truly be communication.

Afterword

I tried to insinuate in the Preface that we couldn't possibly cover even the most important issues in a limited amount of time.
There are countless more technical and non-technical problems, we would hopefully enjoy to discuss, and I hope we will,
eventually.

On the dark side of my message it is written that in spite of relentless activity, FreeBSD ports have not moved much forward
during the last few years. On the bright side it says that we have always had fun doing whatever seemed right for us and our
friends and users, and we have never been shy to expose our shortcomings, to acknowledge mistakes, to look into the future.

Let us look at the world and understand what has changed and what is changing. Let's accept the changes and react to them.
Let's talk and listen to people we don't know, but who do the same work we do. Let's value each other's ideas, respect
constructive action. And most importantly, let's have a great lot of fun doing it all together!

References

http://www .FreeBSD.org/doc/en_US.ISO8859- 1/books/handbook/ports.html

- FreeBSD Handbook: Installing Applications: Packages and Ports
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/index.html
- FreeBSD Porter's Handbook

http://www.NetBSD.org/Documentation/pkgsrc/

- The pkgsrc guide

ttp://www.OpenBSD.org/porting.html

Building an OpenBSD port

ttp://www.OpenBSD.org/ports.html

OpenBSD Ports and Packages
ttp://www.DragonFlyBSD.org/docs/goals.cgi#packages
DragonFly BSD Design Goals: Dealing with Package Installation
ttp://www.Gentoo.org/doc/en/handbook/handbook-x86.xml
‘Gentoo Linux x86 Handbook: Working with Gentoo
ttp://www.Gentoo.org/proj/en/devrel/handbook/handbook.xml
Gentoo Developer Handbook: Guides, Policies
ttp://devmanual.Gentoo.org/

Gentoo Development Guide
ttp://www.Gentoo.org/proj/en/portage/index.xml

Gentoo Linux Portage Development
ttp://www.Debian.org/doc/FAQ/index.en.html

The Debian GNU/Linux FAQ: Basics of the Debian package management system and other chapters
ttp://www.Debian.org/doc/debian-policy/

Debian Policy Manual
ttp://www.Debian.org/doc/manuals/developers-reference/index.en.html
Debian Developer's Reference: Managing Packages, Best Packaging Practices and other chapters
ttp://www.Debian.org/doc/manuals/maint-guide/index.en.html
Debian New Maintainers' Guide
ttp://www.Debian.org/doc/manuals/apt-howto/

APT HOWTO

ttp://slacksite.com/slackware/packages.html

Slackware Package Management
ttp://kitenet.net/~joey/pkg-comp/

Comparing Linux/UNIX Binary Package Formats
ttp://www.rPath.com/technology/techoverview/
Repository-Based System Management Using Conary
ttp://www.freestandards.org/en/LSB

Linux Standard Base

ttp://www.pathname.com/fhs/

Filesystem Hierarchy Standard
ttp://www.rpm.org/max-rpm-snapshot/

Maximum RPM (development snapshot)
ttp://fedora.redhat.com/docs/drafts/rpm-guide-en/

RPM Guide by Eric Foster-Johnson
ttp://fedoraproject.org/wiki/Packaging/Guidelines

Packaging Guidelines by Tom 'spot' Callaway
ttp://www.sepp.ee.ethz.ch/

SEPP - Software Installation and Sharing System by Tobias Oetiker

ast, but not least - dozens of Wikipedia articles on package management and related topics; over a hundred of manpages from
SD, Linux, Solaris and other operating system, as well as those coming with third-party tools; countless discussions in
ailing-lists archives; popular interviews, memoirs, essays concerning package management.

Interrupt filtering

Paolo Pisati
Dip. Scienza dell’Informazione
Universita Statale di Milano
Milano, Italy
Email: piso@FreeBSD.org

Abstract— Adapting the FreeBSD operating system to
scale with the growing parallelism of today systems con-
sisted of major redesign of its architecture. In particular,
the kernel evolved around the concept of multithreading,
with threads being used in every subsystem. Interrupts
were threaded too but this selution, even if proved to
be reliable and orthogonal with the rest of the system,
showed different problems and thus others models were
investigated.

Index Terms— Operating system, interrupt, thread,
Unix, FreeBSD

I. INTRODUCTION

The UNIX operating systems was not designed to
run on SMP hardware, and FreeBSD was not an ex-
ception. The first approach to make FreeBSD run on
SMP hardware was really simplistic [1], and consisted
of a global spin-lock called the *Big Kernel Lock’. The
BKL covered the entire kernel space, and every processor
trying to enter the kernel had to acquire it and, in case
of contention, spin on it.

Obviously, the Big Kernel Lock was a big bottleneck
for multiprocessor system, and with the growing paral-
lelism in today systems, grew the necessity to replace the
global lock with a better mechanism/policy to exploit the
exceeding cpu resource available.

That’s why, in 2001, building on the experience of
other operating systems like BSD/OS and Solaris, the
FreeBSD project started a major redesign of its source
code with the ultimate goal to improve the parallelism
inside the kernel through the addiction of fine grained
locking: this project was called SMP Next Generation
(or SMPng in short).

With SMPng, the FreeBSD kernel went under a major
overhaul, and many subsystems changed significantly. In
particular, the interrupt handling moved from a low level
approach based on interrupt level rising/lowering, to a

Work partially supported by Google Summer of Code™ 2006

solution based around threads that better integrates with
the rest of SMPng project.

Unfortunately, even if the interrupt thread model
proved to be a reliable solution, its performance was
not on par with the preceding scheme, that’s why other
solutions were investigated.

In the rest of this paper, i will focus on the evolution
of interrupt handling in FreeBSD, how it changed as
the kernel moved from a monothread to a multithread
architecture, what were the advantages of every model
and in the end i will introduce a new interrupt handling
scheme designed around a two-level approach.

II. PRINCIPLES OF OPERATION: INTERRUPT
HANDLING, IN GENERAL

While the hardware changed significantly with time
passing, the principles behind interrupt handling didn’t,
and we could roughly summarize the steps necessary to
serve an interrupt as follow:

« whenever a device needs attention, it generates an
interrupt rising the level on the irq line

« a low level routine(ISR) associated to that line is
run

o the IRS performs some janitorial work, and call the
real interrupt handler

o the interrupt handler serves the interrupt and return

o the interrupt is turned off at the controller level
(ACKed)

The ISR and the interrupt handler usually run in
the context of the interrupted thread (but this changed
lately with SMPng as we will see later), and the mask-
ing/unmasking of interrupts is omitted from the above
explanation because it’s implementation dependent.

What really changes across the different schemes
presented below, is the synchronization mechanism used
between the asynchronous part of a driver (the interrupt

handler) and the rest of the kernel, and which mech-
anisms are employed to avoid races between the two
parts.

III. INTERRUPT HANDLING IN 4.X

When FreeBSD had still a monothread nonpreemptive
kernel (and hence only a processor was allowed to be in
kernel space), the entire interrupt handling process was
governed with the masking/unmasking of interrupts at
different level. Through the accurate usage of a series of
functions of the sp!/ family, the kernel manipulated the
interrupt priority level of the cpu, preventing interrupt
handlers at a lower level to run.

With this mechanism based on lowering and rising of
the interrupt level, the asynchronous part of a driver (the
bottom half) and the synchronous part (the top half) were
able to rule out each other from processing the same data
structure at the same time, achieving this way a crude
(but functional) synchronization.

A. Device Polling

Handling interrupts is not an overhead-free process be-
cause every time an interrupt arrives, the CPU has to save
and restore its state, switch context, and pollute/flush
caches around the invocation of the interrupt handler.
Moreover, it’'s compulsory for the interrupt handler to
serve the event that generated the interrupt before return-
ing, because a second interrupt won’t be generated for it.
This scheme has the drawback that interrupt handling is
not an upper bounded process, and in case of a frequently
interrupted system, the kernel could consume most of
the cpu time handling interrupts with little or no time
left for user land tasks. In particular, a situation where
the system is frequently interrupted arises when there’s
a high network traffic, and to cope with exactly this
situation, a new interrupt handling scheme called “device
polling” was introduced [2].

With device polling, the system saves the context
switch time that occur during interrupt handling because
the operating system can check frequently interrupting
devices when it’s already in kernel context (during a
timer interrupt or at the end of a trap handling), turning
interrupt handling from an asynchronous driven mech-
anism to a synchronous one. Moreover, device polling
give the system the ability to carefully choose how much
time to devote to handling interrupts, limiting the time
spent handling a single event, and returning to it later
after some user land processing.

IV. INTERRUPT HANDLING IN THE SMPNG ERA

The main goal of the SMPng project was to increase
the parallelism inside the FreeBSD kernel, and to achieve
that, a fine grained locking scheme was applied to the
entire system, replacing the aging BKL [3], [4]. Unfor-
tunately, the new locking scheme was not compatible
anymore with the interrupt synchronization mechanism
based on spl, and in particular, on SMP systems, masking
an interrupt on a cpu doesn’t prevent the other cpu to
serve the same interrupt, and thus having two different
threads running on two different CPU racing on the same
data structure. Moreover, even if masking/unmasking
interrupts between CPU was technically feasible, the
solution would cost too much in terms of cpu time, and
that’s why a new solution had to be found.

Following the path already taken by the Solaris operat-
ing system [5], [6], FreeBSD decided to adopt a private
thread context for interrupt handlers, giving them the
ability to block (if necessary). Moreover, with threaded
handlers, the distinctions between kernel threads and
interrupt handlers ceased to exist, and all the mechanisms
and policies previously developed for normal threads
could be easily adopted for interrupt threads too:

1) locking mechanisms: to synchromize a kernel
thread and an interrupt handler, a normal lock
variable (like a sleep lock) could be used, turning
a piece of code that previously required direct
manipulation of the interrupt controller, into a pair
of simple locking operations.

2) priority influence: to reduce the interrupt response
time, the priority of interrupt threads was raised to
real time.

3) cpu accounting: as well as all the threads in the
system, even for interrupt threads it’s finally pos-
sible to know how much cpu time they consume,
through normal cpu accounting.

A. Kernel preemption

The interrupt threading approach used in FreeBSD is
defined "heavyweight’, because to serve an interrupt a
full context switch from the currently running thread
to the interrupt thread is necessary, and this adversely
affect the interrupt response time. In particular, in case
the running thread is in kernel space, the interrupt thread
had to wait until the interrupted thread would relinquish
the cpu spontaneously(sleep) or exit the kernel, because
threads running inside the kernel were unstoppable. |

To mitigate the delay the interrupt thread could po-
tentially incur, the kermnel was made preemptible: when
a new thread is made runnable, the scheduler checks the
priority of this new thread, and if the priority is higher
then the priority of the currently running thread, the
currently running thread is stopped and the new thread
can execute.

For performance reasons, the preemption implemented
is not a full preemption but a simplified version, and
two aspects in particular were modified from the pure
‘theoretical model:

\

1) preemption works only for real time priority

| thread: currently running thread will be preempted
only in case the new thread has a real time priority.

2) preemption works only on local cpu: to avoid
thrashing caches with a ping-pong effect across
different cpu, preemption won’t move threads on
different processors even if a better scheduling
situation would result.

B. Time critical handlers

Even with a preemptive kernel, the latency of interrupt
threads was too high for some time critical handlers,
that’s why some handlers were modified to run directly
in the context of the interrupted thread: these handlers
are called “fast handlers”. Fast handlers don’t have to
wait for a new thread to be scheduled, and thus they
can serve an interrupt quicker. On the other hand, fast
handlers share the context with other threads so they
can’t do any operations that could potentially block (like
allocating resources) nor use any blocking locks.

C. Lightweight context switch

A further optimization that could be implemented to
reduce the overhead of a full context switch, consist in a
lightweight switch mechanism called “context stealing”.
Since an interrupt thread runs in kernel context, it can
borrow the vmspace of any interrupted threads without
any restrictions. Thus, when an interrupt arrives, the
interrupt thread instead of performing a full context
switch, could just borrow the vmspace of the interrupted
thread saving a considerable amount of time in the con-
text switch process. Obviously, while using the vmspace
of the interrupted thread, that thread is not allowed to
execute (to avoid the vmspace to disappear) until the
interrupt thread either blocks or finishes execution. In
case the interrupt thread blocks, when it’s resumed, it
will use its own thread context, releasing the vmspace
of the interrupted thread.

Context stealing is an attractive optimization that in
theory could help to further reduce the time necessary
for an interrupt thread to start servicing the event, but so
far the benefits of this approach are still undemonstrated
and further work is needed.

V. PROBLEMS WITH THE THREADED MODEL

Threaded interrupts represented a reliable solution
while the kernel moved from a monothread to a mul-
tithread design, but some aspects of this solution were
less than optimal.

In particular, some of the issues presented by threaded
interrupt handlers were:

« high response latency: with fast interrupt handlers
unable to perform any blocking operation (and
hence relegated in their usage to clock and serial
interface handlers), all the other device drivers were
converted to use a fully threaded handler, that
allowed the driver to perform blocking operations,
but on the other hand, introduced an high latency
due to the action of scheduling a new thread every
time an interrupt came in.

« contention with shared interrupt line: pci bus en-
courages sharing of interrupt lines, and this trans-
lates into different interrupt handlers contending for
the same interrupt thread. A device driver sharing
the same interrupt line with other drivers, poten-
tially would have to wait all the other handlers to
run/block/sleep before it has a chance to serve its
interrupt event.

+ no feedback from interrupt handlers: handlers don’t
return any information about the status of event
processing back to the system, and this could be
a real problem when hardware misbehave or when
an unexpected event happens (like a stray interrupt).

A. Interrupt masking at the controller level

Last but not least, a problem that arised with the
transition to interrupt threads, regards the acknowledging
of interrupts at the controller level.

Pci interrupts are level triggered, that means before
returning from the ISR, interrupt must be turned off or
masked, else the irq line will stay triggered and the
system will suffer an interrupt storm (and possibly a
live lock). While this situation is not a problem when
the interrupt is fully served before ISR returns (like in
fast handlers case), it’s an issue when the system has
to schedule an ithread, and to wait for completion of

the ithread before turning off the interrupt. To solve this
situation, it was decided to mask the interrupt line at the
interrupt controller level before ithread scheduling hap-
pens, and unmask it after ithread has completed to run.
This decision avoided to move interrupt handling in the
drivers itself (and so it avoided modifying a lot of code),
but proved to be unfortunate: due to buggy hardware,
or simply interrupt controllers that don’t fully employ
specifications, sometimes it happens that masking an
interrupt line provokes an ’aliasing effect’ on another
pin, while other times the controller simply ignores the
masking command, and leave the line asserted.

To overcome the problems of threaded interrupt han-
dlers listed so far, other solutions were investigated, with
interrupt filtering being one of that.

VI. INTERRUPT FILTERING

While the concept of a multilevel interrupt handling
scheme was already present in Mac OS X [7], details
about the implementation were absent and the advan-
tages of this approach were not obvious.

The rationale behind interrupt filtering is really simple,
and we can summarize it here:

given a device driver, divide it’s logic in two distinct
parts (the filter and the handler). The filter runs in
primary interrupt context, and its goals are to analyze
the arriving interrupt, decide if it belongs to this de-
vice driver and, if possible, serve the interrupt. In case
potential blocking operations are needed for interrupt
handling, the filter will ask the system to schedule the
handler in a new interrupt context, allowing it to block
if necessary.

This scheme, with a two-level logic gives the best mix
of advantages of the previous schemes, giving the driver
writer the ability to perform some operations with little
delay directly in the filter (like the fast handlers did),
and later schedule a new thread to perform any other
operations remaining and with no context restrictions
(like a normal ithread).

A. Modification to the code base

The actual implementation of interrupt filtering in
FreeBSD had the ultimate goal of exporting the new
API while preserving all the code written so far, and to
achieve that i tried to limit at minimum the modification
to the source tree:

» fast handlers become filters: first and foremost, all

the handlers that registered itself like INTR _FAST,
were modified to have a return value.
The possible return values for a filter are:

- FILTER_STRAY: the filter analyzed the inter-
rupt event, and it decided it doesn’t belong to
this device driver.

— FILTER_HANDLED: the filter handled the
interrupt, the operating system can acknowl-
edge the interrupt line at the interrupt controller
level, and go on processing the next event.

- FILTER_ SCHEDULE _THREAD: the filter
recognized the event but further processing is
needed, so it asks the system to schedule the
handler in the ithread.

No other return values are allowed together
with FILTER STRAY, and if a filter
wants to schedule the ithtread, it has to
return the value FILTER HANDLED |
FILTER_ SCHEDULE _THREAD. In case
all the filters on an interrupt line returned
FILTER STRAY or there were no handlers
registered at all, the line will be deasserted and
masked at the interrupt controller level.

newbus’s bus_setup_intr() was extended: to accom-
modate the presence of a new function being part of
a device driver, bus_setup _intr() grew a new param-
eter of type driver filter_t. The new bus_setup _intr()
now looks like (from svs/kern/subr_bus.c):
int
bus_setup_intr (device t dev,
struct resource =*r,
int flags,
driver filter t filt
driver intr_t handle
void =*arg,
void ++cookiep

)
and driver_filter_t looks like (from sys/sys/bus.h):
typedef int driver filter t(voidx);

INTR_FAST was retired: with the introduction of
the filter argument to bus_setup_intr(), it’s now
possible to define an handler running in the
interrupt context (previously called INTR_FAST
handler) without using any additional flag, so
the INTR_FAST flag was retired. Moreover, the
PowerPC architecture that implicitly marked any
INTR_FAST handler as INTR_EXCL too (then

forcing to have no more than one INTR_FAST han-
dler per interrupt line) was fixed to support sharing
the interrupt line by different interrupt handlers.

e part of interrupt handling logic turned into
MI code: part of the interrupt handling logic
that previously was machine dependent code (i.e.

sys/i386/i386/intr_machdep.c: :intr_execute_handlers()),

was pushed into kern/kern_intr.c in the function
intr_filter _loop() and is now machine independent
code, and an attempt to turn more interrupt
handling code into MI code is undergoing.

o stray storm mitigation: in case an interrupt appears
on a line with no handlers, the system wouldn’t
know how to handle it, and to avoid the line to
stay triggered (and hence the subsequent interrupt
storm), the system would mask the irq at the in-
terrupt controller level. To mitigate this situation, a
new mechanism kicks in every time an interrupt
fires on a line with no handlers. The new logic
will simply unmask the irq line after a period of
time, and check for a new handler that could take
care of the event. In case a new handler is found,
the line is unmasked and the handler can serve the
interrupt. Otherwise, in case no handlers reclaim the
interrupt, the line is masked again and the check will
be repeated later.

« interrupt turned off before ithread scheduling: to
prevent problems with interrupt controller misbe-
having, after the execution of the filter function,
the interrupt is acknowledged at the controller level,
circumventing the necessity to mask the interrupt
line (and thus avoiding the problems listed above
about the interrupt controller).

VII. CONCLUSION

In conclusion, with the introduction of interrupt filter-
ing, FreeBSD now has the following methods to handle
interrupts:

o FILTER (replace fast interrupt handlers): runs in
interrupt context, low latency but it can’t perform
any blocking operations (no sleep lock, no mal-
loc(WAITOK), etcetc). Mainly used in time critical
handlers like clock or serial line handlers.

« ITHREAD: runs in the interrupt thread context,
doesn’t have any restriction on operations, incur
in high response latency and contention in case of
shared interrupt lines. So far, the majority of drivers
used this mode.

o FILTER+ITHREAD: the filter runs in interrupt
context, while the rest of the handler (if needed)
run in the interrupt thread context. Low latency
response, no contention for shared interrupt line and
a better handling of interrupt controller.

VIII. FUTURE WORK

While interrupt filtering is an improvement over the
plain ithread model, it’s not a perfect solution and two
aspects of interrupt handling could be further improved:

1) context stealing: even if a lot of work went into
ithread scheduling, it’s still an heavy task that
adversely affect performance. In this scenario, a
technique like context stealing could help, but
it’s effectiveness and its benefits are still to be
demonstrated.

2) preemption effectiveness: preliminary analysis of
the interrupt handling process showed a limited
impact of preemption on thread scheduling latency,
but a weird behavior when it came to reschedule
the preempted thread.

IX. ACKNOWLEDGMENTS

Thanks to John Baldwin and Scott Long for mentoring
and helping me with this project.

REFERENCES

[1} C. Schimmel, UNIX Systems for Modern Architectures: Symmet-
ric Multiprocessing and Caching for Kernel Programmers, 1994.

[2] L. Rizzo, ‘Device polling support for freebsd.” [Online].
Available: http://info.iet.unipi.it/ luigi/polling/

[3]1 G. Lehey, ‘Improving the freebsd smp implementation,” in
Usenix, 2001.

[4] J. H. Baldwin, ‘Locking in the multithread freebsd kemel,” in
BSDCon, 2002.

[5] J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner,
A. Shivalingiah, M. Smith, D. Stein, J. Voll, M. Weeks,
and D. Williams, ‘Beyond multiprocessing: multithreading
the sunOS kernel,” in Proceedings of theSummer
1992 USENIX Technical Conference and Exhibition, San
Antontio, TX, USA, 1992, pp. 11-18. [Online]. Available:
citeseer.ist.psu.edu/eykholt92beyond.html

[6] S.Kleiman, J. Voll, J. Eykholt, A. Shivalingiah, and D. Williams,
‘Symmetric multiprocessing in solaris 2.0,” in COMPCON ’92:
Proceedings of the thirty-seventh international conference on
COMPCON. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1992, pp. 181-186.

[7] L. G. Gerbarg, ‘Advanced synchronization in
Mac OS X: Extending UNIX to SMP and
real-time,” 2002, pp. 37-45. [Online]. Available:
http://www.usenix.org/publications/library/proceedings/bsdcon02/gerbarg.]

The Kylin Operating System
Qingbo Wu, Huadong Dai, Xiaojian Liu, and Hua Feng
(Department of Computer Science, National University of Defense Technology, China)
Abstract
Kylin is a server operating system focusing on high performance and security. It was first funded by the
Hi-Tech Research and Development Program (863) of China in 2002. In this paper, we proposed a hierarchical
kernel structure for Kylin operating system. In this structure, Kylin is organized as two layers. The basic kernel
layer is responsible for initializing the hardware and providing basic memory management and task management.
And the system service layer is based on FreeBSD 5.3 providing UFS2 file system and BSD network protocols.
Kylin has been designed to comply with the POSIX standards and is compatible with Linux binaries. First we
discussed the motivation of this novel hierarchical operating system kernel model. Then we introduced the kernel’s
infrastructure and key techniques about its security guarantees. Last, we presented the performance comparison of

Kylin, Redhat 9.0 and FreeBSD 5.3 with standard benchmarks. Finally, we discussed our future directions.

1 Introduction
Operating system has made a considerable progress in the theory and practice since it was born in 1960s. With the
emergence of Multi-core CPU [and new I/O architecture, computer hardware becomes more and more powerful
and the nature of operating system becomes more complex. It is large amount of hardware resources and complex
software levels that lead to complexity control of operating system and make OS technologies face enormous
challenges. The Kylin Operating System’s hierarchical kernel structure can effectively meet the high scalability,
high performance and high security demands of network server operating system applications. It was funded by the
Hi-Tech Research and Development Program (863) of China in 2002. Kylin is compatible with Linux binaries and
can make full use of the rich application software from open source community to expand the application range.
This paper mainly studies how to improve the performance, security and scalability of Kylin from the
structure design view of the operating system kernel. The rest of the article is organized as follows: section 2, the
OS kernel technology; Section 3, hierarchical kernel design; Section 4, the security design; Section 5, performance

analysis; Finally, conclusion and future work.

2 Related work on OS kernel structure

As the foundation of operating system, the structure of the OS kernel has a direct impact on performance, security
and scalability of an operating system. The study of OS kernel structure has been a hot topic in the area of
operating system.

There are two major server operating system kernels: monolithic kernel and micro kemnel structure.
Monolithic kernel is represented by traditional UNIX and Linux OS. These OS usuaily have a big kernel which
includes almost all the functions, such as task management, memory management, file system, network and device
drivers. And all of the functional modules share the same address space. Monolithic kernel OS is powerful and
efficient, but its scalability is inadequate and unsuitable for network computing environment or the future
requirements of distributed computing environment.

Compared with the monolithic kernel, Mach®! and L4, as representatives of the micro-kernel operating
system, provide only the simple functions, such as basic memory management, basic task management and
inter-process communications. While other system functions, such as file system and network service, are provided
by servers that running in user space. Micro-kernel structure is flexible, scalable and robust. It is also applicable to
distributed computing environment. But due to frequent user/kernel space switch, micro-kernel OS usually run in

lower efficiency than those with monolithic kernel. For the reason of efficiency, Microsoft, Apple and other

companies have been doing optimization and improvements against micro-kernel structure. In their newly coming
products, such as Windows Vista and Apple's Mac OS , they put corresponding services originally running in user
space into kernel space in order to improve the kernel performance.

3 Hierarchical kernel structure designs

Kylin operating system makes reference to other OS kernel technology, such as commercial UNIX, Linux,
FreeBSD “l, Mach and K42 P\ It satisfies the needs of high performance computing, network services and
application security. Moreover, it takes the advantages of monolithic kernel and micro-kemel into consideration.
Kylin uses hierarchical kernel structure composed of the basic kernel layer and the system service layer, as

illustrated in figure 1.

4 wer wate

S
serons bavar

fasie hrrmd
tarer

g e,

Figure | The structure of Kylin Operating System

The basic kernel layer is responsible for basic hardware initialization, basic task management, basic memory
management, interrupt and exception handling and cryptographic services framework. The basic kemel layer
provides abstract management system for hardware platform. It also supports functions of task management,
interrupt processing and storage management for system service layer. The basic kernel layer uses modular design
methods. With features of clear structure, weak dependence between modules and condensed kernel, it facilitates
the maintenance and portability of the operating system kernel.

The system service layer makes improvement and optimization on FreeBSD. It provides users with industrial
standard network and file system interface. It includes Linux binary compatibility module, high availability
module, and various security mechanisms. At the same time, it fully maintains the stability and rich industry
standard interface of BSD operating system.

The root environment is based on GNU/Linux. It uses X-Window as the basic graphics environment to
support KDE or Gnome desktop environment. It is designed in Windows style desktop and control panel,
providing simple and friendly installation interface. Besides, it provides graphic management tools and a variety of
Chinese character input methods.

The basic task management module of the basic kernel layer is composed of main task scheduling, clock and
timer, critical resource management. It provides the system service layer with a management interface for creation
and destruction of tasks. The interface supports displaying tasks and setting scheduling parameters. The main task
scheduling module provides resource reservation, scheduling interruptions, triggered scheduling, task distribution
and context switching functions. Clock and timer module provides system clock, scheduling events production and
timing response mechanism. Critical resource management module supports correct critical resources competition

between multiple tasks, providing spin lock, mutex, condition variable and semaphore mechanisms, as shown in

figure 2.

basic kernet fayer
tark wanagumect

Figure 2 Basic task management

The hardware interrupt is captured and received by the basic kernel layer, and then is forwarded to the basic
service layer or specific tasks of the basic kernel layer according to interrupt handling request. The basic kernel
layer manages interrupt descriptor table which associates each interrupt vector with the address of the
corresponding interrupt handler. To support efficient mechanism for transmitting the interrupt, the basic kernel
layer of Kylin operating system introduces an optimized event mechanism to transfer interrupts. The basic kernel
layer generates basic events, as well as SMP IPI events. The interrupt and exception handling mechanism of Kylin

operating system is shown in figure 3.

USEr ~5Dase Orocsss }

fast exception
system servics
layer
transferred
except ion
Basic kernel
layer

Hardware platform

Figure 3 Interrupt and exception handling

The basic kemnel layer and system service layer share the same address space by using a global mapping of
physical address to linear addresses. The basic kernel layer provides page table update verification mechanism. But
it does not support user level Pager to ensure efficient memory management. The system service layer has only
read attributes to page table, all page table update operations must be validated by the basic kernel layer.

Cryptographic service framework is located in Kylin OS kernel, across the basic kernel layer and system
service layer. Upwardly, it provides Encryption File System (SFS), SSL and other security services with
cryptographic service through the API. Downwardly, it supports encryption algorithms development with a unified
interface through the SPI. Framework that located in the basic kernel layer includes the dispatcher, Crypto-SPI,
hardware cryptographic service provider and pure software cryptographic service provider. The system service
layer is composed of Crypto-API, virtual cryptographic device driver and cryptographic service daemon. These
two parts are blended into a whole to provide interfaces that include Crypto-API, Crypto-SPI and virtual crypto

device.
4 Security design
The Kylin first implements traditional operating system security mechanisms. On the other hand, it designs and

implements characteristics security mechanism The structure of Kylin security system is shown in figure 4

Fine-grained acccss control TDA

’ Role-based authorization

Capability strategy

¥

2 o Trusted data authorization
— TE

§ Identification and authentication

£ Type execution

F . MLS

] ¥ Multi-level security
& CAP

i

2

g

Mandatory access control framework i

Security data
r\ Security audit |‘ """"""""" protection

Security oce: Credible path [[Objects reusef| Lntegrity checking || Covert Channel
(SFS) control (MEC) (SAK) (OBR) || ool (Tripware) ||Analysis (CCA¥

Figure 4 Security structure

The Mandatory Access Control Framework is constituted by RBA and MAC with the combination of MLS,
CAP, TE and TDA strategy. AUDIT is responsible for the security audit: activating audit services, completing audit
records. ACL uses access control list to achieve fine-grained access control. OBR reuses memory and hard disk
objects. IDENT is in charge of user identifier and authentication for RBA and ACL. SFS manages encryption data
of file system. MEC can control the process image loading when process is running. Trust path provides safe
attention key SAK and starts trust login process. Tripware is a tool for file integrity checking. SDP protect
cryptographic data, including audit data, mandatory access control attributes and user authentication data. SMT
provides security management tools for easy security configuration and management which includes mandatory
access control management, defining role security strategy attribute, defining file mandatory access control
security attribute, defining file access control list, defining audit configuration and audit log files. CCA analyzes
and processes the convert storage channel. Next, we will introduce two characteristics security mechanism in our
security structure.
4.1 Encrypted file system
Encrypted File System introduces the encryption service for file system to prevent the lost of hard disks and other
problems. Kylin integrates encryption services into file system so that the file can be automatically encrypted and
decrypted. And the encryption and decryption process is transparent to users. If the unencrypted files are copied or
moved to encrypted directory, then they will be automatically encrypted. The encrypted files will be unencrypted
when legal users use them.

The Encryption File System framework is shown in figure 5. It mainly consists of two modules: safe deposit
box management module and encryption filter module. Safe deposit box management module provides users with
safe management functions (create, delete, update, etc.) through proprietary system call interface. While
encryption filter module embeds in VFS layer through several hook functions. It automatically identifies if the files
operated by users are in safe deposit box. If true, encryption is made before writing or decryption is made after

reading according to safe deposit box attribute.

Applications

!

[General system call I

I3

User Mode

I

'
1
1
H
.

Kemel Mode !
E Deposit box
]
]

manage

Encryption
filter

Wa)sASAfIg A1mof

Figure 5 Overall framework of encryption file system

Encrypted File System segregates users by providing a key (public and private key) for each active user. The
public key is stored in the system, while the private key can only be seen by its owner and can be stored in a smart
card. Each encrypted file has a key that is generated randomly. And the key is encrypted by public key and is
stored in the file’s extended attributes.

4.2 Role based authorization

Kylin design role based authorization with privilege and user with role. Different from traditional RBAC, Kylin
associates RBAC with mandatory access control. A role’s privilege includes CAP attributes which determines role
privilege and MLS attributes which determines role security level that is the top confidential information
represented by a role. In addition, the current role of our system may influence the conversion of process type in
TE strategy.

Through role based authorization control, there is no super user in Kylin who can do whatever he want. The
privileges of super user are split into three types: system manager, security manager and audit manager. System
manager is responsible for the daily management such as user management and network management. Security
manager is responsible for the work related to safe configuration and management, including creation and deletion
of the role, setting and modifying role’s privileges, setting and modifying of the user role, modifying file security
attributes, distributing and managing smart cards. Audit manager is responsible for work that related to security
audit work.

Role based authorization control structure is shown in figure 6. Chain initialization functions read role
definition file and role attribute file to construct global role authentication chain in kernel initialization, and read
user role configuration file to construct global user role chain. The PAM module will read these two global chains
to set label of session process when a user logins in. And it will determine the MAC label of a process through
process label setting functions when the user is executing commands. The external interface operates on role
authentication chain and user role chain by calling role configuration and user role correlation functions. It also

deals with role definition file, role attribute file and user role configuration file.

Through role based authorization control technology, security manager can create new system role such as
roles with different privileges to satisfy the needs of certain role privilege and roles with different security level to

satisfy certain role security during runtime of Kylin operating system. Through role based authorization control

role process label setting
19| role configure ft- role
privilege role definition file function authorization ;“m‘*‘d r‘l
i i module
sefting role attnbute file 4o . {., ‘_i chain [i
] - I
Y.
session
label setting
chain initiation function
!_._.._m'_..__.
ser ! session structure —'
p—>)
role userrole ——l user role » user role /
R configuration association chain process label
associate file functi .
S nction - setting function ||+
v
external interface
process MAC labe!

Figure 6 RBA structure

technology, Kylin implements a flexible user authorization.

5 Performance Analyses

Kylin operating system has made some progresses. This section shows the analysis of basic performance

evaluation of Kylin. We also test and analyze the web performance.

5.1 Basic performance tests

LmBench is a set of utilities to test the performance of a UNIX system and is very famous in open source
community. It includes a series of benchmarks, i.e., integer floating-point operation time, system call overhead, file

system and virtual memory, system bandwidth, context switch time and so on. The test results are running on

two-way Xeon 1.7GHZ, 1G DDR memory, 36G SCSI disk, and 100M net card.

Tine u3¢

Integer 2loaling poim Gpexralion

| 3 o2

E-K Y

|

a) Integer floating-point operation time, the smaller the better

nz)

Tiae

sysiem call

epe

1431

3T

31N

203

b) System call latency, the smaller the better

System (ool
o
n
[
é
v
-
k]
—u— Evlis 11 233 203 N 2 E
—a— Kkilad 14 3 31 11 N 3 1
[T 1 5 1 K] 13 1

[z
[==
| P

¢) System overhead, the smaller the better

File & W
un seescmy
we
we
- "
w
= e
-~ m
o E L
> n
ki p]
T
L]
[N LN e Pzotced hy L]
| — T L 3.1 it @1 11t ULl 118
| E—YTT =3 3.1 us €. 113 T Tit
[[T 18 S [¥FY e [T3)
A)

d) File system and virtual memory latency, the smaller the better

Syxte amdwidih

A s

or Fate ™

Powprt Yewr " “
- - nd - ad Adkat hsad -l A1)

aopee Rodaa 3n 333 e e sare wa, 2y IR Y]
il 3 FITY £ el asve 3 LY i TY Eell] [ITE)
Lmadid atme 313 e YY) e 1 LITE] sen s X}

e) System bandwidth, the bigger the better
As the result shows, Kylin 2.0 is better than RedHat 9.0 and FreeBSD 5.3 in integer floating-point operation.

They are almost the same in system bandwidth. Kylin 2.0 is as better as FreeBSD 5.3 in system call, file system
and virtual memory latency. But there is still a gap between RedHat 9.0, the causes are as followings: 1) Kylin 2.0
and FreeBSD 5.3 adopt UFS2 file system, but RedHat 9.0 use Ext 3 file system; 2) Kylin 2.0 didn’t directly use
SYSENTER/SYSEXIT instructions that provided by X86 architecture. We will further optimize the file system
performance and system call interface according to LmBench test results.
5.2 Web server performance test
SpecWeb99 is a benchmark for web server that is developed by Standard Performance Evaluation Corporation
(SPEC). It measures the largest number of concurrent connections of web server that meets specific throughout
and request-response rate. It will be vailid if Baud Rate of concurrent connections is in the area of 320Kbps to
400Kbps. The server is configured with 2-way 2.4GHz Intel Xeon, 2GB DDR memory, 36GB 1000 RPM SCSI
disk, and 1GB net card. The client is equipped with 2.4GHz Intel Pentium IV, 512MB DDR memory, 40G disk,
and 100 Mb network card. We use gigabit switching network.

Test results are shown in following tables. The weighed bandwidth is computed by integrating sub-weighed
bandwidth that is synthesized with all kinds of requests by SpecWeb99. Its data units is bits per second. Each
connection can be understood as a separate user. Valid connection means the ratio of incorrect responses is

relatively low, and invalid connection means that of incorrect responses is too high.

Apache partcamance

Rean vesponse 11ae
s

4 smmuseianil sldae: senesribel sidiuds ddadtet sldands
w Srdie 23 [ITY 3t
L™ 303 RN 3 25 <2
o _tendszs s Jaes FTR]

a) Mean response time, the smaller the better

Lpac he perteamanc e

Thps -

S00000
=
-
B 30000
B 200000
T
£ Do
-
® [
300 wnasnmmand wsarsudbomlt 3 oLdouda | o #3 «ldaodo| W0 4 $9 <dacade
LA™ I38tennz Jre-n 3 1e002134
LI ITIGAR 4 5T dses AL 1]
D Pawedid NIt M 16493 -1 ALY TS

b) Weighed bandwidth, the bigger the better

€ Apache pertoawam ¢
~
] E 1500 T
- 00 :
iy
500
L
H 0
I rom o coIReMONT I A 3| N commxx it conmetionTt] (x| LaVA com M conmctionzt) (kw3
] 1] pll] (1] s
- kdlad pLL) i "t
O e pi1] (1] 3
c) Valid concurrent connections, the bigger the better
< Apache patoawance
H
gz
A
iy ©
g "
< ¢ 3
A .
= e
|l Solid
|- Tamitn
d) Invalid concurrent connections, the smaller the better
Apache paatoawance
14w
A
H s 0o
v ®
¢ 00 commucet mascxtions + 2 cliemz 0 commxcnt u:diux +3 clknz|um commxx st ..13 % cliemz
[=_ FIs) w p.3
| El=TT [] []
(e BucED] o I

¢) Confirmed connections, the bigger the better

Apache patoawarn e

i

e

Oprmilone K2
=cel

[w_wan -) o
L] - k. ™
B _tuas & ™ k-]

f) Operations per second, the bigger the better

From the test results, it can be seen that Kylin 2.0 is superior to Redhat 9.0 and FreeBSD 5.3 in Web
performance.

6 Conclusion and future work

Kylin’s hierarchical structure takes advantages of monophonic kernel and micro-kernel. It provides better
scalability, stronger security, high availability and so on. Hardware initialization is implemented in the basic kernel
layer. By using modular design methods, it can be easily ported to a new hardware platform. The traditional

micro-kernel operating system provides small abstract core primitives, so the system service layer will be more

complex. Different from micro-kernel operating system, the basic kernel layer of Kylin provides richer interface
primitives, and can flexibly support the services layer according to different needs.
The code of the basic layer of the hierarchical kernel structure is small which facilitates the formal

verification ¥, It can construct trusted platform by combining with future trusted hardware platform 161

or
security BIOS. And it shares the same idea with New Generation Computing Platform (NGSCB) of Microsoft.
Currently existing security attacks tends to be directed against a specific operating system. For example, in the first
half of 2005, the number of new virus that against Windows reaches nearly 11,000, which increased by 48% over
the second half of last year. The hierarchical kernel structure of Kylin operating system can effectively defense
against security attacks towards a specific operating system.

The basic kernel layer of our proposed hierarchical kernel structure is condense, while the system service
layer is more complex. But the latter can be adjusted according to the application requirements, which is adaptable
to current trend of advanced server architecture development, such as IBM’s Capacity on Demand and Intel’s
Adaptive Server Architecture. Kylin meets the needs of dynamic resource allocation and Customization services of
high-performance server, and forms a good foundation for realizing self-management and self-adaptive server
system.

Now Kylin research group is improving the system performance and hardware adaptability. Our future
research work includes dynamic resource management mn higher available system 1 and higher security Bl to
achieve high reliability and high performance in developing server operating system platforms.

References

1 Alexandra Fedorova, Margo Seltzer, Christopher Small and Daniel Nussbaum. Performance of Multithreaded
Chip Multiprocessors and Implications for Operating System Design. USENIX’05, 2005

2 The L4Ka Project Home Page. http://www.14ka.org

3 The Mach Project. http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html

4 Marshall Kirk McKusick, George V. Neville-Neil. The Design and Implementation of the FreeBSD Operating
System. Addison-Wesley Professional, ISBN: 0201702452. 2004

5 Jonathan Appavoo, Marc Auslander, Maria Burtico, .K42: an Open-Source Linux-Compatible Scalable
Operating System Kernel. IBM Systems Journal, pp. 427-440, Vol. 44, No. 2. 2005

6 Harvey Tuch, Gerwin Klein, and Gernot Heiser. OS Verification—Now!. HotOS X, Tenth Workshop on Hot
Topics in Operating Systems. 2005

7 J. Jann, L. M. Browning, R. S. Burugula. Dynamic reconfiguration: Basic building blocks for autonomic
computing on IBM pSeries servers. IBM Systems Journal, Vol. 42, No 1. 2003

8 Martin Rinard, Cristian Cadar, Daniel Dumitran, et al.. Enhancing Server Availability and Security through
Failure-Oblivious Computing. 6th Symposium on Operating Systems Design & Implementation. 2004

9 Tal Garfinkel, Ben Pfaff, Jim Chow, et al.. Terra: A Virtual-Machine Based Platform for Trusted Computing.
19th ACM Symposium on Operating Systems Principles. 2003

A Scalable Framework for
Compact Flash Booting NetBSD Network Appliances

FINAL DRAFT: 10/16/2006

Brian A. Seklecki <lavalam iritual-machines.org>

Collaborative Fusion, Inc. <bseklecki@collaborativefusion.com>

Table of Contents

13V g L] 013 OO PP P PP PPPROPPPTRP 1
B T3 2 = 0 T 4
YN L1 =Yat (T = RO TET ot U =31 o) o VO 9
B Tl 1 o] = O PP 16
[0 L=1 (= L= T PRSP 17

BSD has long served as the reference platform for many new networking technologies. The first
implementations of TCP/IP were developed on BSD and BSD led the way on IPv6 development. NetBSD set the
Internet2 Land Speed World Record. Today BSD has the most robust, stable, secure TCP/IP stack of an F/OSS
operation system. BSD development models and practices are the watchword of network security. Traces of
BSD technology are found in dozens of commercially sold products. So why are organizations so slow to
deploy BSD based network appliances internally?

First we must identify what defines a “Network Appliance”, then we must explore why organizations
prefer commercial products to internally developed solutions, and finally examine a project in progress to
meet some of the existing challenges.

Challenges to Adoption

The challenges that exist to wide spread adoption of BSD based appliances by small to medium sized
businesses are numerous. They range from availability of appropriate hardware platforms to political and
policy conflicts within IT departments. A variety of BSD-based products on the market can be purchased,
however non-commercial solutions tend to be excluded from consideration in all but a few F/OSS oriented
organizations. When SMB IT managers consider solutions, arguments in favor of F/OSS adoption go unheard in
light of counter-arguments in favor of commercial product features. This due in great part to the fact that the
well known benefits of F/OSS software do not necessarily translate into quantifiable features that can easily be
compared to those of equivalent commercial solutions on the market.

Appliance Defined

In the network hardware industry, the definition of “Network Appliance” is as loosely applied to both
commercial and home-grown solutions as the term “Firewall” is applied to systems capable of forwarding
TCP/IP packets. It is sufficiently ambiguous to describe any single/multi-function product a vendor choses to
market. The term must be more clearly defined. For the purposes of this document, we will examine the
attributes which we believe are differentiating factors:

® Class of hardware: Frequently OEM, low profile, compact or sub-compact server class hardware

@ Nature of the operating system: Frequently a customized, embedded OS

® Style of administration: Frequently exposure to the underlying OS is restricted from the end user by
a graphical user interface; often jointly administered by both the end user and the vendor.

® Functions performed and/or services delivered: Frequently delivers a discrete, specialized
service, possibly on an ongoing subscription basis.

With the advent of web services, the definition of “appliance” is changing. Examples of appliances on
the market today: E-Mail SPAM Filtering, Anti-Virus, Token Authentication, Intrusion Detection, Web Searching,
& GIS. These devices are essentially compact, high-end servers installed within an organization's private
network to function as a localized delivery point for a subscription service. However, for the purposes of this
discussion, the term “BSD Appliance” will refer to a more discrete device.

Any combination of OEM hardware and a *BSD OS that serves in the place of a variety of traditional
commercial network device (e.g, Router, Firewall, Access Point, etc.)

Hardware Challenges:

In preparation for, the out outcome of a proposal to, or following the arbitrary decision to deploy a BSD
appliance, a delivery platform that exceeds the expectations of the equivalent commercial product is needed.
It helps to examine a very typical scenario an SMB IT professional may encounter if proposing or given
authorization to deploy a BSD appliance within at their organization.

Firewall Requirements:

® Serve as the CPE for the WAN configuration
connection (T1) ® Transmit Syslog, IDS data, and

® Provide stateful firewall SNMP traps to a central remote
inspection server destination

® Provide NAT+PAT and public ® Provide IPSec tunnel transit to
Internet connectivity the company headquarters

® Support dial-on-demand backup ® Provide QOS and Traffic Shaping
ISDN connectivity or out-of-band ® |Integrate with centralized
remote dial-in administration authentication (LDAP, RADIUS,

® Support HSRP LAN gateway etc.)

The defined appliance is acting in three traditional roles: A 'perimeter :
router’, a stateful inspection 'firewall', and as an IPSEC 'VPN' termination point. !
However, note the lack of other LAN support services : DHCP, DNS, Transparent ‘
Proxy. This suggests that there is another host on the network already providing
these services. The *BSD OS easily meets the software features requirements. !

An SMB will frequently contact server hardware vendors and enter into the '
competitive bidding / solicitation process to acquire a hardware delivery platform.
The end result of this process tends to be the acquisition of the most cost- ‘
effective server class hardware available. As a byproduct, the acquired hardware
is a often a suboptimal choice for the delivery platform. Consider the obvious i
technical concerns: |

\
|

Hardware Concerns

® Excessive RAM capacity, CPU speed, and Fixed Disk storage resources for
the functions services delivered

@ Consumes more space than necessary for the number of physical
interfaces provided

® Consumes excessive power, Generates excessive heat, Omits excessive
noise

Moreover, consider the scalability and management concerns that this ad-hoc hardware acquisition process
might may have on growing businesses” IT department:

® Hardware Reliability & Cost of Ownership: Because server hardware is deployed as a network
appliance, it is fallible to all of the standard hardware component deficiencies a standard server is:
power supplies, hard disks, chassis/CPU fans, etc. Component failures, high MTBF rates, and support
contract costs are integral to hardware vendors™ business model. Component-level redundancy is
assumed by server vendors, where as network vendors assume device redundancy. Network vendors
often offer discounts for active/standby fail-over bundle purchases. Pricing of server hardware is also
normally oriented around a different average product ownership life cycle. Pricing reflects related
support contracts the vendor expects to incur; thus unit cost of the hardware platform is not apt for
deployment in a large scale, specifically in redundant configurations.

® System Administration Style: Because the OS is installed onto fixed disk storage and administered
in the fashion of a traditional UNIX-like server, it is vulnerable to the same attack vectors of a BSD
server. Those include poor system administration practices and administrative neglect of patching and
updating. This can result due to increased demand placed on IT staff due to additional installations
and the overhead associated with synchronizing security policies across a potentially large volume of
new systems.

® Vendor OEM Hardware Continuity: Because large server vendors frequently do not control the
manufacturing processes at OEM manufacturers, there is no guarantee that the server vendor will not
substitute underlying integrated hardware components and begin selling new systems with the same
major model number under a minor revision (e.g., the onboard Ethernet controller could change).
Such a change might inadvertently effect deployment schedules to accommodate for additional
development and Q&A time. It may also compel discontiguous software revisions to be deployed
where homogeneous systems are desired.

Commercial Products Advantages Contrasted

Hardware delivery platform limitations are obvious, however there are other general concerns that
should be identified and addressed. The standard BSD system has historically been developed for use on
server class hardware for use and installation onto fixed-disk based systems, therefore certain natural
disadvantages must be overcome.

® Hardware-optimized Network Operating System (NOS): Commercial network operating systems
(NOS) have the natural advantage of having been developed in a customer/profit oriented 'cathedral’
model® to run as binary-only code optimized for a custom hardware platform. The combination of
custom hardware and the specialized NOS constitute the product. In contrast, because BSD is a
standards-driven, multi-platform system designed to run on a variety of platforms, much work to
“profile” the system is required.

® Reduced Memory Usage: With commercial NOS, the memory footprint of the NOS is significantly
smaller than the POSIX equivalent because only the kernel and a small CLI need to be loaded into main
RAM. Secondary OS support services (such as NTP, SMTP, Syslog, etc.) are compiled as binary-only
code and run as child processes of the kernel outside the contro! of the user. Moreover, utilities
needed to manipulate and configure kernel interfaces and services can be omitted and replaced with a
singular CLI. However, with all POSIX based systems deployed as NOS, a UNIX file system must also
be loaded as a RAM-disk into system main memory. Steps must be taken to offset the impact by
reducing the size of the utilities that must reside on such a RAM disk.

® Unified Administration and Debugging Interface: Another natural advantage of commercial NOS
is that only a CLI is needed to configure all services. Most vendors™ CLI configuration syntax is
standardized syntactically in structure for all services within a single unit using similar nomenclature
(e.g., the same ACL syntax is used to accomplish traffic filtering, define VPN peers, restrict SSH access,
apply QOS policies, etc.). The CLI is also homogeneous across disparate products lines, permiting for
simplified administrative tasks such as configuration-comparison, backup & recovery, and replication.
Additionally, the debugging mechanism is also unified, guaranteeing the ability to easily debug any
service in a unified manor. Unfortunately, due to the 'evolutionary' nature of POSIX systems, almost
all system services have a different style of configuration syntax and debugging mechanism. Attempts
to create abstraction layers and unified configuration repositories (such as GUIs and macro-languages)
tend to restrict configuration flexibility.

® Configuration Abstraction: NOS vendors strive to limit end user awareness of the underlying
operating system internals. Via the CLI, the end user is only aware of the configuration and the 0S
version installed onto permanent storage. The operating system usually consists of one binary image
file and the configuration in ACSII format. This creates an abstraction between “configuration data”
and “operating system”. This arrangement eases deployments of similar or identical configurations.

® Proprietary Hardware Acceleration Technology: Commercial vendors unconcerned about
hardware/software interoperability outside of a product line are at their discretion to move certain
software functions from software to hardware, such as accelerated Ethernet packet switching using
specially designed ASICs and system-in-a-chip design for kernel function offload. An excellent example
of a platform-neutral hardware/kernel interfaces have been developed for accelerated IP/UDP/TCP MD5
network checksumming, VLAN tagging, cryptography, and other functions. Future work may look for
ways to accelerate stateful packet inspection.

® High Availability (HA) and Advanced Features: Modern BSD systems feature many of the
features previously only found in commercial projects: VRRP, stateful packet filtering, packet
sanitation, integrated routing/bridging, state table synchronization, IPSec SA synchronization, VLAN
routing, QoS, interface aggregation, WAN interfaces, serial console, BGP/OSPF routing, modularized
authentication, cryptographic acceleration, VolP support. Where features are lacking are in the realm
of “administrative mechanisms” that commercial NOS excel at (e.g, SNMP MIB for specialized data
structures, SNMP traps, unified debugging mechanisms)

@ Standards Compliance: Commercial products are subjected to rigorous scrutiny during the product QA
process to ensure that they meet industry and government security and reliability guidelines
standards. Fortune 500 Enterprise clients and, Telcos, and Government agencies may also stipulate
compliance in order to bid for contracts. Examples include DoD Security Guidelines, NEBS
environment, RoHS hazardous materials, FCC interference, EIA/TIA etc. Some of these issues can be
addressed by choosing the proper delivery platform, others require long and involved application and

testing.

® Training & Certification: Most NOS vendors feature a variety of professional certifications curricula
to help customers address the human resource challenges of network growth. The result of a lack of a
Unified Administration Interface and Configuration Abstraction is a BSD environment is a demand for
highly specialized administrative talent: UNIX administrators familiar with network technology. Larger
organizations concerned about ongoing human resource support needs for specialized technology may
tend to shy away from adopting technologies for which a dearth of talent may exit. As an offset,
projects such as the BSD Certifications project can offer companies a train and guage by which
potential employees exits.

Summary:

Given the challenges (hardware platforms, operating system optimization, cost of ownership, life cycle
management, scalability, manageability, platform homogenization, service assurance) the decision often
becomes one of vendor loyalty. However, if an organization has sufficient resources to allocate, many of these
competitive arguments can be addressed and resolved. No single project can address all of the challenges,
however this project tackles a select few. It is the combined responsibility of the members of BSD community
who have a vested interest to ensure the going viability of the system.

The System

This document outlines a set of technologies developed to adopt the NetBSD operating system into a
NOS optimized for Compact Flash booting network appliances. The resulting network operation system
optimized for routers, firewalls (stateful policy routers), access points, IDS Sensors, DNS slaves, Terminal
Servers (RAS/Console), Environmental Sensors, NAS, and other network appliances.

Background: Original soekris256 Project

The original soekris256 scripts'’ simplified the process of translating the file systems for the target CF
booting OpenBSD system into “RD” and “CF” file system images using the vnd(4) mechanism. However, they
did not:

® Provide a mechanism to automate the building of file-system hierarchies that would reside within said
images.

® Provide a mechanism for stateful configuration data (the ability for changes to /etc/* and /usr/pkg/etc/*
to persist through reboots)

These two limitations are addressed using native mechanisms within BSD.

Primary Goals:

@® Address previously outlined deficiencies and concerns that give commercial products a competitive
edge
Identify OEM hardware solutions that address the outlined hardware deficiencies
Develop a framework of utilities to simplify deployment and management of code
Optimize the system to realize the advantages of Compact Flash storage
Implement [0S-like “configuration” v.s. “system” abstraction
nd oals:
® Minimize the customizations and deviations from standard installed NetBSD system

® Integrate as much work as possible back into the NetBSD project minimizing the number of
manual patches that must be maintained and re-applied when deploying a system. Where
possible, add functionality as optional features in the main source tree.

® Provide for a semi-stateless operating system which can be administered in a manor similar to
that of a commercial NOS and yet is not foreign to BSD administrators.

® Simplify upgrade and maintenance process by allowing for binary updates.
® Reduce the maintenance involved in adapting new code trains by minimizing userland / kernel
deviations and documenting such changes where possible

Terminology Reference:

® SMB: Small to Medium Size Business

® soekris256 - a set of scripts written by Gray Watson for booting OpenBSD diskless on a Soekris
hardware platform and the origin of rd_image.sh and cf image.sh. The original inspiration for this
work.

® RD/MD (Ram Disk / Memory Disk) - rd(4) is the OpenBSD in-kernel root file system, md(4) is the
NetBSD equivalent; used interchangeably here to refer to a systems that boot from an image.

® CF - Compact Flash

® NOS - Network Operating System

® build.sh - The NetBSD system bootstrap system

® $DESTDIR - directory defined in NetBSD src/build.sh build system as specified by the “-D” flag
Format Reference:

® $VARABLE - An environmental or mk.conf(5) variable

® manpage(4) - A reference to any object in the system: config file, command, API, system call, C
function, etc, by its respective man page entry.

® /path/to/dir/filename - Any file system path
o

command
[output] - Interactive commands and results to stdout.

® “-Z"-flagtoa command

OEM Hardware Delivery Platforms:

Commercial vendors feature highly customized hardware solutions for their products. At present,
however, the major BSD projects exhibit a dearth of information and resources for helping ISVs, Systems
Integrators, and SAs to use as a reference hardware platforms. The result is the Server-as-a-Router
conundrum described in the scenario above. Fortunately, there is no shortage of comparable hardware
available; many OEM vendors develop custom chassis to enclose single board computers (SBCs).

Frequently these SBCs are based on next generation low-power CPUs designed for industrial and
embedded applications: Intel Xscale, Pentium-M, VIA C3, AMD GEODE, and SIS 55x. OEM vendors
provide an array of services such as chassis branding and customization, OS image burning, and global
distribution channels. Specifically, vendors offer products ideal for deployment in both Commercial (19" rack-
mount) and residential environments (low profile set-top enclosures).

For set-top, residential class appliances, pricing can be cost prohibitive when compared to equivalent
commercial products. Large commercial entities are able to use market power to implement low-cost
manufacturing and distribution processes and save costs. This situation is unlikely to change due to the
business structure of such companies.

For commercial grade solutions, however, hardware pricing is extremely competitive. Moreover, OEM
solutions offer the features resellers expect from commercial class network devices:

® Commercial hardware and support ® 19" EIA/TIA Rack Mounting
and service availability ® RS232 Serial Console
® High interface density ® DC Power Capable

® Modular hot swap components: ® Standards Body Certification, Safety

Power Supplies, Interfaces, Feature Standards, and Regulatory Compliance
Cards | ® Guaranteed interoperability in a

® Low Power, Fanless (set top) CPUs | homogeneous vendor environment

® Flash Storage/Booting @ Predicable and tested MTBFs

® Resiliency to hostile environments

Note: SBC/OEM hardware frequently feature smaller maximum memory capacities than server class
hardware of the same CPU family, but comparable limitations to commercial network hardware.
However, OEM hardware RAM (industry standard DDR frequently) is significantly less expensive than
RAM for commercial systems. Memory pricing for commercial network hardware is frequently
determined based on discrete capacity limitations of users/sessions/features/software versions that exist
at certain memory installation sizes.

Commercial network hardware vendors tend to price hardware based on associated costs: ongoing
support, interface modules, major software features. With OEM/SBC hardware platforms, associated costs are
limited hardware replacement support and staffing human resources needed to maintain software. Hardware

costs can savings offset any NOS feature deficiencies.

A Booted System

To understand the system, it helps to examine the output of dmesg(8) and df(1):

>> NetBSD/i386 BIOS Boot, Revision 3.2
> booting hdOa:netbsd
6392696+10868324+313008 [354272+323612]=0x116983¢c
Copyright (c¢) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
NetBSD 3.0_STABLE (CFRDMDROOT.MPACPI) #0: Sat Jun 17 01:16:42 EDT 2006
root@thunderwing:/nbsd/objdir/sys/arch/i386/compile/CFRDMDROOT .
MPACPI
total memory = 511 MB
[...SNIP...]
boot device: wd0
root file system type: ffs
NetBSD Pre-0S MD/RD Bootstrap Starting:
Running version: $rc.patch 55 2006-07-05 11:40:45Z seklecki $
Image Built: Fri 07/28/06 08:29:55 -0400 EDT by root
Re-mounting /dev/md0a as / (root/slash) in RW
Making /usr MFS filesystem
Checking /dev/wd0Oa
** /dev/rwdOa
** File system is clean; not checking
Mounting /dev/wdOa on /cf
Populating static /usr from archive on wd0a
100% |**************************i******i*l 150 MB 3_63“3/5 00:00
ETA
Checking /dev/wdOb
** /dev/rwdOb
** File system is clean; not checking
Mounting /dev/wd0b on /shadow
Resuming standard startup rc(8):
Sat Jul 29 17:25:34 EDT 2006
[...SNIP...]
NetBSD/i386 (sin) (console)
login:

A disk capacity df(1) output from a booted system illustrates the general file system layout. The
booted file system system appears visually identical to a traditional system, however a few foreign mount
points are visible here. The mount table is cluttered due the necessity of both md(4) and mfs(4):

$ df -h

Filesystem Size Used Avail Capacity Mounted
/dev/md0a 9.6M 8.8M 296K 96% /

mfs:16 194M 167M 18M 90% /usr
mfs:413 1.8M 512B 1.7M 0% /tmp
/dev/wd0a 489M 182M 282M 39% /cf
/dev/wd0Ob 465M 376K 441M 0% /shadow

Note: Near-capacity file systems are not a concern because (/) and /usr will
not actually sustain write activity. Additional customizations are made to
prevent growth of the file system.

Unlike the original soekris256 project, this system divides the CF media into two UFS slices within a
single NetBSD MBR partition. The first slice (“a”) is 256 or 512MB, sufficient in size to hold:

® the RamDisk enabled Kernel
® usr.tgz,
® the 1%, 2™ stage boot loaders.

The second slice (“b”) contains the directory hierarchy mounted on the live system as /shadow (both usr.tgz
and /shadow described later)

Memory Demands

The above system illustrates an entire NetBSD distribution loaded into an large MFS /usr mount. In
design theory, this is an egregious misappropriation of system resources and is shown here only to illustrate
one major shortcoming: the demand for RAM traditionally unneeded in commercial NOS envirocnments. The
kernel, the system's primary service processes, the file |/O cache, and the MFS mount are forced to share the
commodity resource of RAM.

Fortunately:
® File systems growth is controlled

® The md(4) and mfs(4) file systems contents can be pruned precisely for your environment,
eliminating any wasteful allocation of memory to MFS file systems.

Persistent Configuration Data

With the exception of a limited few security conscious deployments'®, a solution is needed to address
the static /etc file system in the original soekris256 system. When utilizing md(4), /etc/* resides within a read-
only file system image embedded into the kernel. Without the ability to have persistent configuration data,
system administration becomes very cumbersome as a new CF image must be burned for every subtle
configuration change.

The /shadow file system provides a location to mirror the read-only /(root) and /usr mount points of the
MFS/RD file systems with limited read-write abilities. The contents of the MFS /etc and /usr/pkg/etc consist of
symbolic links to their equivalents in /shadow/${path}, thereby certain system-specific configurations will be
persistent across reboots. Specifically network configuration, authentication, startup settings, daemon setting,
etc.

An illustration of symlinks:

1avalamp@deadset /% 1s -laF /etc /usr/pkg/etc |egrep -i “\@"

Trwxr-xr-x 1 root wheel 24 Jun 21 02:38 daily.conf@ -> ../shadow/etc/daily.conf
lrwxr-xr-x 1 root wheel 24 Jun 21 02:38 dhcpd.conf@ -> ../shadow/etc/dhcpd.conf
“lrwxr-xr-x 1 root wheel 19 Jun 21 02:38 fstab@ -> ../shadow/etc/fstab

ilrwxr-xr-x 1 root wheel 19 Jun 21 02:38 group@ -> ../shadow/etc/group

|Lrwxr-xr-x 1 root wheel 19 Jun 21 02:38 hosts@ -> ../shadow/etc/hosts

“Trwxr-xr-x 1 root wheel 24 Jun 21 02:38 ipsec.conf@ -> ../shadow/etc/ipsec.conf
lrwxr-xr-x 1 root wheel 29 Jun 21 02:38 localtime@ -> ../usr/share/zoneinfo/ESTSEDT
lrwxr-xr-x 1 root wheel 22 Jun 21 02:38 ntp.conf@ -> ../shadow/etc/ntp.conf

lrwxr-xr-x 1 root wheel 20 Jun 21 02:38 passwd@ -> ../shadow/etc/passwd

lrwxr-xr-x 1 root wheel 21 Jun 21 02:38 pf.conf@ -> ../shadow/etc/pf.conf

lrwxr-xr-x 1 root wheel 21 Jun 21 02:38 rc.conf@ -> ../shadow/etc/rc.conf

lrwxr-xr-x 1 root wheel 25 Jun 21 02:38 resolv.conf@ -> ../shadow/etc/resolv.conf
lrwxr-xr-x 1 root wheel 25 Jun 21 02:38 sysctl.conf@ -> ../shadow/etc/sysctl.conf ‘
lrwxr-xr-x 1 root wheel 25 Jun 21 02:38 syslog.conf@ -> ../shadow/etc/syslog.conf i
lrwxr-xr-x 1 root wheel 29 Jun 21 02:45 ntpd.conf@ -> /shadow/usr/pkg/etc/ntpd.conf }
‘lrwxr-xr-x 1 root wheel 30 Jun 21 02:45 snmpd.conf@ -> /shadow/usr/pkg/etc/snmpd.conf

1rwxr Xr-x 1 root wheel 27 Jun 21 02:45 sudoers@ -> /shadow/usr/pkg/etc/sudoers

NOTE: /shadow is mounted read-write with the “noatime” flag to reduce write
operations.

",

Mount Table (some lines omitted) from mount(8) w/ “-v

/dev/md@a on / type ffs (local, root file system, reads: sync 6321 async 0, writes: sync 228 async 106)
mfs:16 on /usr type mfs (synchronous, local, reads: sync 227694 async 0, writes: sync 86929 async 232)
mfs:413 on /tmp type mfs (synchronous, local, reads: sync 6 async O, writes: sync & async 2)

/dev/wdOa on /cf type ffs (read-only, noatime, local, reads: sync 5 async 0, writes: sync @ async 0)
/dev/wd@b on /shadow type ffs (noatime, local, reads: sync 101 async 0, writes: sync 3 async 4)

NOTE: Notice the low read-to-write ratio on /shadow.

There are two major limitations to /shadow (both of which are explored later):
® chroot(2) environments
® Database-Style Persistent Configuration Data

Read-Only Compact Flash & I/0O Operation Reduction

With any compact flash booting system, it is critical to minimize the number of write operations to the
CF media as to extend the life of the media. Newer CF media is more resilient to write operation induced
failures®, however it is still not advisable to have a live UFS file system operating upon it considering the
overhead of physical memory paging/swapping and atime modification.

The operating system boots from the CF media and populates the root file system into an MFS read-
write partition, after which the boot partition it is mounted read-only for administrative purposes only.

Database type Persistent Data

Some data (such as runtime databases) is constantly being written to/from disk. An example would be
the dhcpd(8) / dhclient(8) lease database, the ntpd(8) drift file, the Net-SNMP snmpd(8) exec-cache, and
the ISC BIND named(8) slave zone cache. In these cases, a traditional symlink out of /var to /shadow would
incur too many write operations on the CF media.

As an alternative solution, periodic event-based synchronization of and in-MFS copy with the on-CF
copy in /shadow occurs. The rc.d/ script mechanism provides a convenient way to move the respective copy
to temporary/permanent storage upon a startup/shutdown event. This approach is illustrated in dhclient.diff
and dhcpd.diff (abridged below). For named(8), the automatic re-retrieval of all slave zones at boot time and
incremental updates based on “NOTIFY” messages suffices.

A diff(1) against /etc/rc.d/dhcpd:

--- /home/nbsd/src/etc/rc.d/dhcpd 2004-08-13
14:08:03.000000000 -0400

@@ -13,7 +13,39 @@

pidfile="/var/run/${name}.pid"

+

+shadow_path=/shadow/var/db

+local_path=/var/db

+filename=dhcpd. leases

+

+#required_files="/etc/${name}.conf /var/db/$(name}.leases"
+required_files="/etc/${name}.conf S{shadow_path}/${filename}"
+

+start_precmd="dhcpd_precmd"

 +stop_postcmd="dhcpd_postcmd"

I+

'+dhcpd_precmd () |

+

+ cp -fp ${shadow_path}/${filename}
${local_path}/${filename}

+

+ if [$? -gt 0]; then

+ echo "Failed to copy on-disk copy into MFS RD."
t+ fi

+}
+
+dhcpd_postcemd () {
[....]

4

This example illustrates a locally-maintained diff that utilizes the routines provided by rc.subr(8) can
easily overcome the problem of Database-type Persistent Data. The disadvantage to his approach involves
data loss in the event of a non-graceful shutdown. In that event, cron(8) can be used to periodically
synchronize.

System Resources and Binary Only Code

A side-effect of running diskless, fanless, low-power hardware is that traditional system administration
tasks, such as on-host software compilation, do not apply due to resource limitations (disk, CPU, memory).
This compels the use of binary-only redistributed packages for tasks such as patching and upgrading
components of the system. The system designed to simplify generation of binary images is described in the
System Architecture section.

Mount: /cf and Remote Upgrading Procedures

The /cf mount point is a legacy idea from the original soekris256 scripts. On the new system, however,
it provides two important functions. It eliminates the need to maintain a copy of the kernel file in the /(slash)
of the MFS file system by allowing /netbsd to be a symbolic link to /cf/netbsd:

mount -o update,rw /dev/wdla /cf

$ 1ls -alF /netbsd

| lrwxr-xr-x 1 root wheel 12 Jul 28 08:29 /netbsd@ -> ../cf/netbsd ‘
|$ 1s -al /cf |
total 343243

l-r—-r--r-—- 1 root wheel 53820 Jul 27 15:55 boot

—-r—-r—--r—- 1 root wheel 6144 Jul 27 15:53 bootxx_ffsvl
-r——r--r-—-— 1 root wheel 512 Jul 27 15:50 mbr i
—I'WXI—XI—X 1 root wheel 18056720 Jul 28 09:39 netbsd |
—rw-r—-r-- 1 root wheel 157495296 Jul 28 08:34 usr.tgz i

Note: This is important because the the average profiled NetBSD kernel size (2mb) becomes
significantly bloated when an mdsetimage(8) appends a vnd(4) to it.

/cf is normally mounted read-only, however it also provides a mechanism by which the system can be

self-upgraded by simply pushing/fetching new out a new version of files: /cf/netbsd and /cf/fusr.tgz. This allows
bug fixes and minor updates to be applied without the need for an on-system toolchain. This also partially
implements system v.s. configuration abstraction.

Architectural Discussion

Choice of NetBSD System

NetBSD was chosen over OpenBSD and FreeBSD for the initial development of this project for a

number of reasons, but mostly due to maximum flexibility and modularity of the system. This flexibility
reflects the wealth of collective knowledge gained from historical development oriented toward embedded
platforms. Those feature will be expounded in greater detail:

Embedded Platform Availability: NetBSD's emphasis on platform independence makes it the
watchword of portable F/OSS operating systems. “Production Quality” ports of NetBSD to embedded
architectures such as ARM, XScale, PowerPC, MIPS, Super-H, and i386 clones makes it an optimal
choice for ISVs.

build.sh Cross-Build Bootstrap Environment: The build.sh cross build environment allows for
development of code for embedded CPU platforms to be cross-compiled for the target platform on
high-speed development systems saving costly licensing fees for embedded system development tools
and compilers (eg., Altera, ARM).

Three-Tier Release Engineering Tree: The tree-tiered release engineering branch gives systems
integrators an increased variety of options for tracking the NetBSD development cycle against their
internal release engineering cycle.

Formal Security Process: The formal security process including a security officer and formal, well
tested advisories are an important step in tracking of security issues and integrating fixes into
internally maintained CVS trees

Pkgsrc: Pkgsrc offers the perfect balance of stability and variety of 3™ party software package
systems.

System Size: All BSD systems are extraordinarily minimalistic, specifically NetBSD and OpenBSD
citing size as a project primary goal, however NetBSD provides additional mechanisms to further
reduce build size of the kernel and userland.

Default $DESTDIR sizes w/o kernel for various *BSDs with generic build environment:
System Size
FreeBSD/i386 6-STABLE 149M ‘

NetBSD/i386 203M

3 0_STABLE

OpenBSD/i386 3.9- 209M W
STABLE |

,,,,, - i

Note: These sizes reflect du(1) on $DESTDIR after “make buildworld”, not an extract
of release tarballs on a live system.

Even with the kernel, userland, and a number of Pkgsrc packages, the entire system could easily reside
in an MFS partition read from a tarball archive on the CF medially totaling less than 150MB.

Build Size:

® Dynamically linked userland: The conversion to a dynamically linked userland in the 2.x
branch conserved a significant amount of space

® Minimal 3™ party in-tree / mk.conf(5) modularity: A number of 3rd-party packages
compose the default “base userland” of the system. Additional some kernel sub-systems and

respective in-userland utilities are imported from 3™ parties as well. A significant number of
these can be “conditionally” compiled:

NetBSD 3™ in Tree Party Packages :

GNU/Dist/Contrib Sub-System
scbHCP Pve
.IVéC Sendmail 7Kewfberos 7
1SC Bind/libresolv(3) RAIDFrame
'GNU CVS / RCS LFS

TCPDump of(4)
'GNU GCC, GDB, Binutils Systrace
GNU grep, groff, diff IPF

Bzip2 ISDN4BSD
Postfix dcecp
NTP OpenPAM

® FreeBSD: could provide for a small environment using the very granular “system packages”
offered in a release CD, however reduced size is not one of the primary goals of the FreeBSD
project. FreeBSD does however have a comparable number of make.conf(5) system
conditional build time components.

® OpenBSD: Although OpenBSD's greatly enhanced packet filtering engine pf(4), compiler
security enhancements, improved ipsec(4) API, and a great many other desirable features,
OpenBSD lacks a graceful mechanism, other than $SKIPDIR in make.conf(5), by which to
disable superfluous 3™ party default in-tree packages (Apache, Lynx, Perl, Sudo, etc.). These
packages gain significant security enhancements by being maintained in-tree, however they
present size concerns.

Pivot_Root() v.s. MD/RD+MFS

Original project goals called for a modified kernel and rc(8) that would bootstrap the system from a
minimal md(4)/rd(4) then transition to a root /(slash) which would reside entirely in an mount_mfs(8) file
system thus eliminating the need to use both md(4) and mfs(4). However, after researching and
experimentation, it was determined that due to the lack of a functional pivot_root() sysctl, this is not feasible.
Unfortunately, one cannot force-dismount the the “root_device” post boot (or technically, post init(8) process
creation).

Chicken & Egg Scenario: You cannot create and MFS, populate it, and dismount the previously
mounted “root_device” in one step!:

® Mounting MFS as /(slash) overlaying “root_device” manually with /etc/rc alienates all userland utilities
required to continue the MFS root boostrap (pax(1) of usr.tgz, sh(1) /etc/rc) by making /bin and /sbin
unavailable.

® During research, experimenting with overriding sanity checks in sys/kern/vfs_syscalls.c in
sys_unmount(). It was found that attempting to accomplishing the “one-step” work in C system calls
at the end of sbin/newfs.c is impossible because you impair init(8)'s ability to operate when
attempting to force-dismount /(slash) when you call umount(2) because you revoke jnit(8)'s VNODE.

A minimal RD/MD image and a working pivot_root() would be ideal because it would require only a
few utilities (mount_mfs(8), fsck(8), pax(1), gzip(1), progress(1), etc.). The entire system could reside in
MFS and the clutter in fstab(5)/mount(8) would be controlled after force-dismounting the original
“root_device”. Unfortunately, until pivot_root() is available®, the original soekris256 layout remains with
/(slash) residing in RD/MD and /usr residing in MFS. Very little code will change to adopt from “usr.tgz” to
“system.tgz”.

Another compelling reason for pivot_root() is that there are size limitations to the size of the MD/RD

image that can reside within within an OpenBSD/NetBSD kernel. If the kernel file size exceeds that, the image
will not boot. However, there are no such limitations on mount_mfs(8), only available system resources
(RAM).

Size Reduction: Prune v.s. Build System

The technique used by original soekris256 scripts called for conserving space by identifying unneeded
files to be manuaily pruned out using rm(1). This approach creates a great deal of manual administrative
overhead. Such a list needs need to be manually synchronized with the ongoing release engineering process
of the NetBSD system as binaries, libraries, man pages are added and removed. Doing so would involve close
scrutiny of CVS commit logs.

A better approach is to slim down the $DESTDIR size using in-tree hooks to remove unneeded
components. NetBSD provides this through the mk.conf(5) system. Regretfully, even with the existence of
all of these mechanisms, some pruning of /etc, /sbin, and /bin must still be done out of necessity. As an
example, several utilities in the “-rnetbsd-3” release engineering branch exist that aren't applicable to an MFS
booting NetBSD appliance that cannot be pruned out of $DESTDIR using mk.conf(5) hooks:

/bin/systrace
/bin/csh
/sbin/dump_Ifs
/sbin/vinum
/etc/mtree/*
/etc/X11/*

These 5 paths alone total 1.2mb conserved in the /(slash) partition in RD/MD (for which only 9.5mb is
allocated), which is a significant savings. The decision to include certain modules of the system must be
weighed against hardware resources (limitations / budget), booting speed, environment expectations.

Populating $DESTDIR:

The first and preferred option for building a robust system that most-closely resembles a booted
NetBSD environment is to utilize the $DESTDIR from build.sh release target in combination with mk.conf(5)
flags and the manual pruning listed above. The other option is to use the tarballs resulting from “make
release”.

® The mk.conf(5) + prune method: Compare “make distribution” target $DESTDIR output du(1)
sizes for CVS branch “netbsd-3-0" as of datespec “-D 07/25/06 16:21:56 EDT":

mk.con ‘MKPOSTFIX MKPOSTFIX= MKPOSTFIX=n MKPOSTFIX= ;MKPOSTFIX=n MKPOSTFIX=n MKPOSTFIX=n MKPOSTFIX=n

f =no no o no 0 0 0 0
Flags MKSKEY=no MKSKEY=no ‘MKSKEY=no MKSKEY=no MKSKEY=no MKSKEY=no MKSKEY=no
; MKUUCP=no |MKUUCP=no MKUUCP=no MKUUCP=no MKUUCP=no MKUUCP=no
(Def.) MKYP=no MKYP=no MKYP=no MKYP=no MKYP=no
MKHESOID=n MKHESIOD=no MKHESIOD=no MKHESIOD=no MKHESIOD=no
| ‘ o MKNLS=no ‘MKNLS=no MKNLS=no MKNLS=no
| ‘ | : USE_INET6=n USE_INET6=n USE_INET6=n
: : o 0 0 |
i MKINET6=no MKINET6=no }MKINET6=no
| | ! MKMANZ=yes |MKSHARE=no
Size: 194M 196M {194M 193M 187M 186M 163M 1108M
203M : |
Saving | -8432k }+1276k 1-1636k -718k - -6752k i-648K -23324K -56534k

s ,"LA,A,, ; -

® The $RELDIR + flist Method: As an alternative or hybrid method, “system packages” (as
featured in the Sysinst program) may be utilized to build a $DESTDIR by un-pax(1)'ing “feature set”
archives from a complete “Release Build”. The “base” and “etc” packages would provide a $DESTDIR
sufficient for many environments.

System Package Sizes:

S P N — S

_b“ése 122 >64 (60 w/o resiéure')

rcomp 21 77 |

(misc 2.8 o1 ’
games 2.9 7.3

L S - R
Symbolic Links

During the rd_root/ and cf_root/ directory hierarchy bootstrap/preparation process on the host build, a
number of symbolic links are built facing /shadow or ../../shadow (on the destination host system). However,
some complications arise and their work-around are described here:

Note: there is inconsistency in the scripts' use of relative v.s. absolute symbolic links. Some of links
are relative to temporary MFS mounts anchored at the $homedir, some are absolute (to /shadow on
the build system) which causes pollution to the build system.

Symlinks: init(8), getpwent(3), and etc/rc.d/passwd

A stock $DESTDIR /etc/spwd.db and /etc/pwd.db are required to be present when init(8) exec's via the
kernel. Originally during research, /etc/passwd, /etc/master.passwd, /etc/spwd.db, /etc/pwd.db would be
symbolic links to /shadow. These links did not resolve until after rc(8) started. However, init(8) requires the
ability to resolve UID O to user root otherwise it drops into single-user mode.

As a solution, the stock spwd.db/pwd.db are installed into rd_root/ as real files (no symlinks as
expected) and are used at boot by init(8). A custom etc/rc.d/ script is then needed later to rebuild the system
{.master}.passwd(5) from the /shadow/etc/{,s} pwd file system. The script has to be run early in the
rcorder(8) process to ensure any localized users that are not in the stock password file are available (such as
those that system daemon process may reduce user privileges to or run Privilege Separated as - ntpd, apache,
named, isakmpd, syslog, etc.)

/etc/rc.d/passwd is a localized script to rebuild the /shadow/etc/master.passwd by simply calling
pwd_mkdb(8) script and rebuilding /etc/{,s} pwd.db (which is not persistent, nor does it need to be). It must
be called very early on in the boot sequence because some system service daemon users are included in
addition to administrators that do not exist in the stock $DESDIR/etc/{,s}pwd.db

Symlinks: etc/rc.d/root and /etc/rc modifications

The original soekris256 scripts modified OpenBSD /etc/rc slightly to fsck(8), mount(8) critical CF file
systems prior to executing of /etc/rc. Further modifications in rc.patch provide a manually mounted /cf and
/shadow, thus resolving symbolic links, specifically /etc/fstab and /etc/rc.conf.

This method works in NetBSD, however rcorder(8) step five (/fetc/rc.d/root) attempts to force-
umount(8) /(slash) after our /etc/rc modifications have already been run. It makes these assumptions
because traditionally the NetBSD kernel would mount the root file system temporarily as “root_device” based
on the boot-disk from the 2" stage boot loader and/or the kernel config file “config root on ? type ?...” stanza.

A patch to avoid this behavior is provided in make_dir_mdrd.sh. These steps must be worked around
but not disabled entirely. /etc/rc.d/mountcritlocal should honor the contents of our /etc/fstab with the
exception the /, /usr, /shadow, and /cf, which we've already pre-mounted in r¢(8). To avoid issues with
services that attempt to start prior to all non-critical file system being mounted (such as mount_null(8) type),
$critical_filesystems_local is utilized.

Symlinks: MFS /tmp and /var/tmp

/tmp and /var/tmp need to be consolidated with a symlink. Although the NetBSD system clearly
designates them for different uses in several places, they have many historical differences on different
platforms, the best administrative approach is to make /tmp a small MFS mount outside of MFS /usr and RD
/(slash).

Symlinks: named(8) & chroot(2) v.s. /shadow, & mount_null(8)

The symlink configuration file strategy conflicts with the desire to run ISC BIND9 in a chroot(2)
environment (/var/chroot/named) where symlinks to /shadow cannot be resolved outside of the chroot(2)
directory. A work-around is implemented by mounting /shadow/var/chroot/named/etc against
/var/chroot/named/etc using mount_null(8).

This approach assumes that you require only /var/chroot/named/etc/ to be available for stateful

configuration (such as query-only DNS slave that transfered zones from a central server master). If you are
slaving a significant number of zones from a master server, you may wish to mount your “cache/” or
“secondary/” directory as an MFS of appropriate size.

df -h

| /shadow/var/chroot/named/etc 465M 376K 441M 0% /var/chroot/named/etc
i /shadow/var/chroot/named/master 465M 376K 441M 0% /var/chroot/named/master

Note: The downside to this approach is name space clutter in fstab(5) and mount(8) with lots of MFS
and NULL file system mounts.

Moreover, the default rcorder(8) results cause rc.d/named to be started before r¢c.d/mountall, thus to
work around that, /var/chroot/named/etc must be added to $critital_filesystems_local in rc.conf(5) so that it is
mounted in rc.d/mountcritlocal (before NETWORKING).

Populating /usr/pkg with Pkgsrc packages

The pkg_{add,info,delete}(8) “-K” and “-p” flags can be used on the build system against
$usr _root/pkg/ and $rd root/var/db/pkg to install packages into the director hierarchy on the build machine
that will constitute the target live file system. This is accomplished in make_dir cfrd.sh based on the contents
of pkg_list.txt

Note: A caveat is that the build environment is almost always required to be running the same branch
to be able reliably build binary packages for the target system.

Pkgsrc and Build System mk.conf(5) for Cross-Building

It may be impractical to build NetBSD releases and Pkgsrc packages using an identical environment to
the destination system. Your build system will want to be as generic as possible to avoid problems building
NetBSD releases.

Moreover, Pkgsrc cross-platform building is generally not conceptually possible even with a cross-
target toolchain due to the need to the frequent need of packages to run their own code during the build
process. The advantages would be obvious however: compiler optimizations for the native platform (CPU
Flags) and guaranteed compatibility due to linking problems running your customized NetBSD release with any
optional subcomponents stripped out can ensure.

As an example, pkgsrc/net/net-snmp probing INET6 or pkgsrc/security/sudo probing Kerberos on the build
system.

Pkgsrc does provide an insulation mechanism to avoid problems. Pkgsrc-specific mk.conf(5) flags on
the build system must be updated to reflect the build flags of the destination system (see above on space
conservation) using $PKG_DEFAULT_OPTIONS and $PKG_OPTIONS.${pkgname}=.

Example:
If:
USE_INET6=no
MKINET6=no
...is set for the system build.sh, then the following

Pkgsrc options should also be set:

PKG_DEFAULT_OPTIONS+= —inet6
PKG_OPTIONS.net-snmp= —-inet6

To ensure that, although INET6 may be available on the build system, it is not configured into
packages built for the destination system. However, this requires the Package maintainer to be aware of GNU
Autoconf flags and macros that apply.

Burning the Image
The image is burned with dd(1):

dd if=cf_image of=/dev/rwd0d
bs=2048k &
pkill -INFO dd

Note: Block size may vary depending on your IDE controller's performance and negotiated speed with
your CF/IDE adapter. NetBSD requires the use of the “D” slice to ensure the first block offset is the

first block of the physical disk and not the MBR partition. In OpenBSD this would be the “C” slice.
Compact Flash Adapters: wd(4) v.s. umass(4)

Some CF media will detect with entirely different geometries for the same CF media depending on
whether it is connected via umass(4) style USB->CF adapters instead of EIDE->CF wd(4) style adapters,
however the latter is not hot swappable and requires a reboot to install.

Moreover, some EIDE->CF adapters have difficulty trying to negotiate UDMA mode. | have noticed this
behavior is not limited to any particular IDE controller (including viaide(4) or ICH6 piixide(4)), CF media
manufacturer or model, or IDE->CF adapter:

wd0 at atabus0 drive 0: <CF500>
'wd0: drive supports l-sector PIO transfers, LBA addressing
deO: 1968 MB, 7872 cyl, 16 head, 32 sec, 512 bytes/sect x 4030464 sectors
wd0: 32-bit data port
wd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 2 (Ultra/33)
wd0 (viaide0:0:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA)
viaide0:0:0: bus-master DMA error: missing interrupt, status=0x21
wd0: transfer error, downgrading to Ultra-DMA mode 1
wd0 (viaide0:0:0) : using PIO mode 4, Ultra-DMA mode 1 (using DMA)
wd0d: DMA error reading fsbn 0 (wd0 bn 0; cn 0 tn 0 sn 0), retrying
viaide0:0:0: lost interrupt

type: ata tc_bcount: 512 tc_skip: 0
wd0: transfer error, downgrading to PIO mode 4

File System Growth from Periodic Scripts

In light of the previous notes about conserving space, the /(slash) file system (where /var and /etc
reside) has a tendency to grow in usage in the first 72 hours of instailation due to periodic scripts that perform
mtree(1) related checks and selective /etc/* backups, as well as makewhatis(8) and locate.updatedb(8).
Due to the nature of our system, we can safely disable these in security.conf(5) and daily.conf(5) in favor
of the system-level IDS service which will be written to R/W CF.

/etc/security.conf:
check_mtree=NO

/etc/weekly.conf:

rebuild_locatedb=NO

Network syslog(4), newsyslog.conf(5), and Net-SNMP w/ Transport Mode
IPSec

Additional growth of /var can be controlled by diverting copies syslog(4) messages to a remote host
while maintaining a very limited cache (256k) locally.

letc/syslog.conf:

localQ.* /var/log/named.log
local0.* @syslog.remote
'locall.* /var/log/samhain.log
locall.* @syslog.remote

To maintain only a small syslog cache that does not cause /(slash) to fill, newsyslog.conf(5) must be
granularly adjusted:

‘# logfilename [owner:group] mode ngen size when flags
/var/log/authlog 600 1 64 * Z
'/var/log/maillog 600 1 64 * Z
‘/var/log/messages 644 1 64 * Z
/var/log/samhain. log 644 1 64 x A
/var/log/named. log 644 1 64 * 7
/var/log/wtmp root :utmp 664 7 * 168 ZBN
/var/log/wtmpx root:utmp 664 7 * 168 ZBN

Note: This example will rotate the logs at 64K each, ensuring that at any given time,
there are only 192k of uncompressed logs.

Additionally, utilization of an agent SNMP is a feature of most network appliances. However,
traditionally, SNMP would only ever be run across a “trusted private administration network”, even with
SNMPv3 “encryption” enabled. Both protocols (Syslog and SNMP) use clear text UDP. Moreover, the appliance
in question may be remotely deployed at a data center without a “administration VLAN"

IPSec is recommended. Establishing a Transport mode IPSec SA with a central management server is
recommended for transmitting Syslog and SNMP traffic. It is important to install port-level IPSec SA policies
that catch any traffic to a management node (which will prevent/block outbound traffic in clear text when the
SA is not active/installed).

fetc/ipsec.conf:
j?;;dadd 153?47énmptrapshosf[176727]7any -P out ibrs’ec esp/transbbrt//require:
-spdadd snmptrapshost[162] 1.2.3.4 any -P in ipsec esp/transport//require;
spdadd 1.2.3.4 sysloghost[514] any -P out ipsec esp/transport//require;
'spdadd sysloghost[514] 1.2.3.4 any -P in ipsec esp/transport//require;

Sendmail aliases:

As part of the boot strapping on the host system during make_dir_mdrd.sh, the aliases file in the
shadow_root/etc/mail is rebuilt. A special sendmail.cf must be called with the following:

location of alias file
0 AliasFile=/home/fsimages/shadow_root/etc/mail/aliases

Note: Hopefully future versions will have sendmail(8) removed in favor of Postfix. This will save
space by eliminating the need for M4,

Starting local services from Pkgsrc (/usr/pkg/etc/rc.d/*)

It is important to declare $rc_order_flags="/usr/pkg/etc/rc.d/*"in rc.conf(5) to ensure that Pkgsrc
entries are calculated in the startup rcorder(8). This setting assumes that /usr is not a separate file system.
However, in our case, it is indeed a separate file system, however our /etc/rc patch properly mounts /usr prior
to the sourcing of /etc/rc.conf and/or execution of rcorder(8). In other systems, a /etc/rc.d/localpkg (FreeBSD
mechanism), rc.local(8) stanzas, or forced installation of pkg/rc.d/ scripts into /etc/rc.d are required.

gzip(1), progress(1) and usr.tgz issues

Because gzip(1) and compress(1) are located /usr/bin, they are not available to new code in /etc/rc
because /usr does not become available until /cf is mounted and /cf/usr.tgz is extracted. During initial testing,
usr.tgz was actually not a zlib(3) compressed archive because of the unavailability of gzip(1) to pax(1).

Because of the choice not to prune /usr down excessively, usr.tgz is approximately [65+] MB:

® The archive can take some time to extract thus delaying boot speeds even to an MFS partition due to
not necessarily to the size or the CPU overhead of decompression, but because of the numerous
number of smaller sized files.

® |t also results in a larger memory footprint for MFS once extracted; -- approximately 190 MB
depending on the Pkgsrc packages added.

® Progress bar and optiona!l gzip compression could be added with specially compiling versions of
pax(1)/tar(1)/gzip(1) that do are:

® Not statically linked
® Are dynamically linked against /lib instead of /usr/lib
® Do not depend additional superfluous libraries such as libbz2

® A work-around to compile progress(1) correctly:
By default, progress(1) is linked against the libc.s0.12 in /usr/lib, which is actually a symlink to the
real libc.so file in /lib:

| # |dd /usr/bin/progress
/usr/bin/progress:
-lc.12 => /usr/lib/libc.s0.12

® #Is-al /usr/lib/libc.s0.12
Irwxr-xr-x 1 root wheel 21 Dec 18 19:15 /usr/hb/llbc .S0. 12@ -> /lib/libc. so. 12.128.2

To compile against /lib, two variables must be set in src/usr.bin/progress/Makefile and
src/usr.bin/gzip/Makefile which adjust src/share/mk/bsd.prog.mk and src/share/mk/bsd.own. mk';

o : ol

SHLINKDIR= /libexec
'SHLIBDIR= /lib

As well in src/lib/libbz2/Makefile;

{SHLINKDIR= /libexec
SHLIBDIR= /lib

Init(8) with RD/MD FS Root(src/sys/dev/md_root.c)

By default, the kernel will pass the single user boot flag to init(8) if the root disk is an md(4) file
system image. In order to avoid that check, must declare the following kernel options in your MD/RD kernel:

optlons MEMORY_DISK_HOOKS

options MEMORY_DISK_IS_ROOT
options MEMORY_DISK_SERVER=0
options MEMORY_DISK_ROOT_SIZE=21000 # 9 MB, negotiable
options MEMORY_RBFLAGS=0

'USE_SHLIBDIR= yes
|

Error Handing in Build Scripts (good2go() function)
The scripts are “batch files” that execute a series of commands in sequence and they lack a great
amount of structure and uniformity, however there are a number of notable issues:

® The good2go() function nicely checks $? codes and increments the iteration step counter if called
immediately after a step is executed.

® However, some “steps” are actually a “series” of commands that constitute a single step, so

® A re-write of the function to use a bitwise boolean that can be called several times by
commands in the same step, each of which can flip the bit, and success will be evaluated by
the status after the next set of commands are executed.

® Some commands need to possibly call a cleanup function after certain other steps are executed which
may leave the build environment dirty (lock files, MFS mounts, vnd(4) devices configured, incomplete
tar balls, etc.), which they do not yet.

® The original Soekris256 scripts are interactive while my new make_dir* scripts are not, consistency
should be addressed.

® The scripts should be consolidated
® cf.conf which globally defines all of the variables all four scripts

Outstanding Problem Reports (PRs) Associated with Project:

Send-pr # Description ” Status
bin/14563 Syslogd binds udpéockets on all interfaces ‘open
'pkg/33755 'Kernel lacks a VFS/Disk 10 Stats API for pkgsrc/net/net snmp m,',b_A;,, Tclbsed
moduIe ucd- snmp/dlsklo (snmptable disklOTable)
misc/33758 checkfhst sh fails when MKSHARE=no on -rnetbsd- 3 due to flists o open”
; bin/34733 tcpdump(8) reqwres aéfault snaplen > 68 for pflog(4) o doipern

The Scripts
make_dir_mdrd.sh make_dir_cfrd.sh

make_dir_mdrd.sh mimics the series of steps undertaken in make_dir_cfrd.sh prepares the file system hierarchy that will

'the NetBSD sysmst instéll process. The resulting rd_root/ reside on slice 'a' of the CF image, as well as assemble the
1 directory contains the /(slash) directory of an installed and contents of the target MFS
‘configured system minus /usr. |

The steps are: ‘ @ create a usr.tgz from ${DESTDIR}/usr

® pax(1) in the contents of $DESTDIR minus /usr ® create a /usr/pkg from pkg_fist.txt

@® copy local etc/rc.d/ scripts from

® prune selective contents (necessary evil) share/examples/rc.d
® build /dev/* with MAKEDEV.SH ® symlink local configs from usr/pkg/etc/ to
® make directory anchors (/usr /cf /shadow /tmp), shadow/usr/pkg/etc
create temporary MFS mounts ® pax(1) append usr_root/ to usr.tgz
® make relative symbolic links of localized configs in . ® copy bootblock, mbr, 2™ stage boot to $cf _root

/etc to ../shadow/etc MFS mount

® set the time zone with a sym link
(/usr/share/zoneinfo/*)

® generate SSH RSA/DSA host keys with ssh-
genkey(8)

® rebuild aliases(5) with “sendmail -bi”

1 ® sync, unmount, vnconfig -u
|

® patch files in /etc, install localized additions to i
fetc/re.d ‘

® any other systems-specific changes to /var or
/(slash)

rd_image.sh cf_image.sh

rd_image.sh takes the contents of the rd_root/ directory and ‘ cf_image.sh prepares the two file systems that will actually
creates a UFS/FFS in-kernel RAMDisk image. using vnd(4) reside on the CF media. Unlike the original soekris256, this
which can be called as an argument to mdsetimage(8) and model divides the CF disk into two slices, one reserved for

installed into a md(4) enabled kernel file: R/O mounts, and one reserved for R/W shadow mounts (See
details later).
@® prompt for the kernel file ® prompt for geometry of the CF media
® prompt for the image size from ® prompt for the ¢f_root/ path
MEMORY_DISK_ROOT_SIZE= in the kernel ® dd(1) the a file image from /dev/zero
configuration
® prompt for the rd_root/ path ® vndconfig(8) it
® dd(1) the image file size from /dev/zero into o Impaln::_tr'\(e:lBR partition table on /dev/rvnd0
image_rd using fdisk(8)
® vnconfig(8) the image file into /dev/vnd0 i ® disklabel(8) the /dev/rvnd0 into two slices
® disklabel(8) it with one slice ® newfs(8) both
s @ installboot(8) the 1* stage boot loader on slice ‘a’:
®
newfs(8) slice 'a of the vnd(4) disk image
® mount(8) it ® pax(1) cf_root/ (usr.tgz, netbsd, boot etc.) into 'a’
® pax(1) in the contents of rd_root/ slice \
@® umount(8) && vnconfig(8) -u ® pax(1) shadow_root/ into 'b' slice ‘
® Call mdsetimage(8) against the kernel file ® unmount(8) && vnconfig(8) -u
References
1. *“Soekris on OpenBSD Running Diskless”, http://256. r ocs/soekri
2. A white paper from Sandisk Corp. addresses some compact flash life expectancy concerns:
ttp://www.sandisk.com/Assets/Fil M/WhiteP AndBrochures/RS-
MMC/WPaperWearlevelvl.0.pdf
3. Thanks to Ted Unangst, Hannah Schroeter, David Young, Adrian Steinmann for the help on this issue.
Adrian Steinmann <ast@marabu.ch> is working on a pivot_root() sysct! for FreeBSD that should be

easily portable to the other *BSD VFS layers.

4. Thanks to Bill Moran <wmoran@potentialtech.com> with for the help teething through the Makefiles
to track down where the extra Id(1) “-R” flags were coming from.

5. Those projects should utilize a “halted system” architecture, which is not what this project provides.

Cisco I1SO is Copyrighted Cisco Systems Inc, 1992-2006

The redesign of pkg_install for pkgsrc

Jorg Sonnenberger

October 15, 2006

Pkgsrc is a framework for building third party software on a
variety of systems. It is the system of choice on DragonFly and
NetBSD.

Pkgsrc was originally derived from FreeBSD ports and many fea-
tures were added to that foundation. One central component is
“pkg_install”, a collection of small programs to install and remove
packages and other related tasks. While it has been extended over
time, the original code base is still mostly present, together with a
number of limitations.

During Google’s Summer of Code 2006 program this component
was rewritten to better fulfill the needs of pkgsrc:

Integrated archive handling.

Full specifications of file formats and algorithms.

Versioned, extensible meta data.

e Better integration of the install framework.

In the paper a comparison of the old approaches, the new solution
and the rationale, as well as the state of integration in pkgsrc and
of the conversion tools are given.

1 Introduction

The NetBSD Packages Collection or “pkgsrc” is a framework for building third
party software. Over the years it was extended to support not only NetBSD,
but a great variety of Operating Systems, ranging from Apple’s MacOS X to
Interix (Microsoft Services for Unix). Beside NetBSD, pkgsrc is the system of
choice on DragonFly.

The pkgsre infrastructure is originally derived from FreeBSD’s ports frame-
work. Many features like the wrapper system and buildlink were added over
the years. One specific piece is “pkg-install”, a collection of small programs
to install and remove packages and manage related tasks. While it has been
extended over time, the original code base is still mostly present.

Several problems have shown up with different severity, like

e use of external programs for the extraction of packages,

e use of a temporary directory during extraction, followed by moving/copy-
ing every file to the real location,

e missing documentation of file formats and precise syntax,
e redundancy of installation/deinstallation scripts,
e advanced updating facilities,

e incoherencies between packages built from source and those installed via
binary packages,

¢ difficult interaction with high-level tools.

The Google’s Summer of Code 2006 project provided an opportunity to
work on redesigning “pkg_install” to fix most, if not all of the aforementioned
problems.

This paper discusses the results in comparison with the older approaches and
looks at the state of integration into the pkgsrc system.

2 Package metadata

2.1 Package patterns

The ability to match package names is needed in a number of situations. This
includes dependencies and conflicts, but also checks for security vulnerabilities.
In pkgsrc four different pattern types are currently used:

e Plain package names form exact matches.

o Dewey patterns like “gdm>=2.14<2.14.8” consist of the package base
name and relation operations. Version numbers are parsed according to
a complicated rule set modeled after common practice.

e Fnmatch patterns allow shell-like wildcards (“pear-5.0.[0-9]*”) and are
most commonly used to match any version of a package.

e Csh-style alternatives (“sun-{jre,jdk}<1.3.1.0.2”) are expanded to ele-
mentary patterns. If any of those matches, the alternative itself is match-
ing.

All four types have at least one major limitation. Plain matches are ac-
tively discouraged, since they can’t even deal with local patch versions (“estd-
0.5nb1”), making them almost useless.

Csh-style alternatives are needed to handle multiple packages providing com-
mon functionality like ghostscript-afpl and ghostscript-gnu.

Dewey patterns are the most expressive pattern, but can’t represent a match
to all versions. Matching e.g. all sub-versions of 4.3 is a problem as well, since
release candidates and patch level complicate the matter. Dewey pattern only
work well, when upper or lower bound are precise. The old implementation also
had some interesting validation bugs, e.g. “php<5>4” is matched by “php-4”.

Fnmatch patterns have the downside of matching more than intended. If
there’s ever a PHP module which name starts with a digit, the common “php-
[0-9]*” pattern for the PHP interpreter itself would match the PHP module as
well.

The situation is complicated further as multiple patterns are sometimes used
to reduce the number of matching packages. A dependency on PHP 4.x for
example introduces at least two patterns: “php-4.4.*” to match the API and
“php>=4.4.1nb3” to specify the ABI. The evaluation order by “pkg_add” for
missing dependencies is critical. When the second pattern is evaluated first,
PHP 5 would be installed and the first pattern would be unsatisfiable as PHP
4 and PHP 5 conflict with each other.

To reduce this mess a way to unify the four styles was needed. One more de-
sirable criterion exists, which wasn’t satisfied by the existing rules. “pkg_add”
has to choose a package, when more than one package matches a pattern. As
long as they have the same base name, a built-in rule is used (see PHP 4/5
earlier) which selects the highest available version. There’s no deterministic
rule for csh-style alternatives though. User interaction can be used to resolve
such conflicts, but they are often either undesirable or unavailable (e.g. au-
tomatic package installation during bulk builds). The order should therefore
follow explicitly from the pattern.

As most of the patterns in pkgsrc follow the Dewey-style it was useful to keep
it as base. The generalized version consists of a package base name and zero
or more operator/version pairs. Zero operators provide a full wildcard match
and each pair is processed in order as long as they match. This means the

incorrectly parsed pattern “php<5>4” now is valid and behaves as expected.
Beside the normal relational operators “<”, “textless=" and so, “”” is intro-
duced as prefix match. “php 4.4” matches “php-4.4”, but also “php-4.4pl1”
and “php-4.4rc1”. Finally multiple of this simple patterns can be joined using
“/” to form alternatives. Ordering of two matches is done by the first matching
alternative first and by ordering the versions themselves if they match the same
one.

While the given rules allow easy merging of two basic patterns, it gets more
complicated, when alternatives are involved. As this is not typically used in
pkgsrc (yet), the problems are left unresolved for now and will be revisited
later. A possible solution is to consider a package version as matching only if
it matches all requirements.

2.2 Dependencies, conflicts and compatibility

Packages often need other packages to function properly, e.g. because they
are dynamically linked against them or call a program from them. In a similar
way, some packages can’t work when installed at the same file. Historically two
packages has to be marked as conflicting, when the package content overlapped,
as the “pkg_add’ program didn’t handle it as failure.

Another use case of patterns are explicit compatibility hints. In pkgsrc the
buildlink framework knows two kinds of dependencies — for ABI and API.
The latter are the classic way to describe that a certain {minimal) version is
needed by a package, e.g. because a new functionality was added in it. ABI
dependencies are more complicated though. As dependencies are normally
open-ended (all later versions match), it is hard to describe properly when the
interface is compatible.

To solve this a package can explicitly specify what it is compatible to. So
instead of requiring “libfoo>=1.0", an exact match can be used by packages
depending on libfoo. The maintainer of libfoo is now responsible for specifying
what the oldest compatible version is. This can be used for ABIs as well as
module interfaces in scripting languages like Python. Support for maintaining
the compatibility list based on ELF “sonames” or libtool archives is planned.

2.3 Package lists

The heart of a package are the files within. The package list (plist for short)
contains all the files in the package, which are supposed to be “static”. For each
file a checksum is stored and it can be used to detect undesired modifications.
The old plist format also contains modifiers to remove directories on removal

and execute single line commands. The functionality to specify permissions or
ownership existed, but was never used.
The old plists had three major issues:

e It contains some package metadata, but not all. The ability to execute
commands was mentioned already. Another example is that dependencies
and conflicts are listed in the plist. The on-line description, the full
description, install and deinstall scripts, the package maintainer and all
the other information are stored separately though.

Checksums have been added as afterthought using special comments.

e Commands don’t belong into a plist, that’s what the install/deinstall
scripts are for. Firstly, it increases the number of places to audit and
secondly, it also provides a different environment.

e Handling of shared directories is flawed as it is often impossible or very
unpractical to factor out a base package to "own” the shared directories.
In the past most common directories have been created using mtree from
a template and were considered sticky (e.g. never to be removed).

For the new “pkg.install”, @exec and @unexec are no longer supported by
unanimous consent. All non-plist rated information have been moved and the
other statements have been made local to each entry. A field for checksums
has been added as well as a field to tag entries to belong to specific classes.
The latter allows special scripts to run on the tagged entries e.g. to register a
font with fontconfig or add a texinfo page to the local index.

The second important change is the classification of entries. Inspired by the
Solaris package tools, other types of plist entries beside simple files are support.

Configuration files are first-class entries. When the file does not exist at
install time, it is copied from a template or created as empty file (e.g. for
logfiles). On removal, the management tools can either keep it as is, remove it
on user request or archive it for later use.

Similar to configuration files, volatile files have a template. They are not
archived or even checked for modification, but instead assumed to be modified
by the package at vim. This is useful for fixed indices like texindex’s info/dir
file.

Beside files directories can be contained in the plist as well. As the new
“pkg_add” creates them on demand and “pkg_delete” removes them when no
other package is referring to them, this is seldom needed. It is needed when
empty directories should be part of a package or when special permissions are
required.

Two special kinds of directories are also supported. Configuration directories
can contain only configuration files and directories as entries and are a way to
mark a whole directory hierarchy as containing only configuration files. They
are supposed to be handled as whole (e.g. archived). Exclusive directories
place a directory under the sole control of a package. No further plist entries
are allowed and the system doesn’t care about the content. The package is
responsible for removing the content at deinstall time. This makes it possible
to properly handle e.g. shared-mime-info’s share/mime.

Last but not least are symbolic and hard links recorded. The former should
not change its target and the latter might be converted down to a symlink if
necessary, e.g. when target and plist entry are not on the same filesystem.

2.4 Essential and non-essential metadata

Some of the data attached to a package has been mentioned already — the
package name, the list of dependencies and conflicts, the plist. Other items
are:

The prefix a package is installed to and which it is supposed to stay in
with some exceptions,

How to reach the maintainer of the package.

e The OS version and architecture the package was built.

e The license(s) it can be distributed under.

e The short and long descriptions, both in English and local languages.

All this data can be classified as essential or as non-essential. The former
category describes what directly affects “pkg_install” and the basic user expe-
rience. Having translated descriptions is nice to have, but the English version
will always be authoritative and required. Just because a field is essential
doesn’t mean that it has to be present though. A typical example is the license
field which will be missing for most packages, but is critical for determining
whether a package can be distributed.

The separation between both classes is useful as it reflects the need of cor-
rectly managing and preserving the meaning of a field. As the list of metadata
will change in the future, backwards-compatibility will be needed. At the very
least it must cover all the essential fields and those have be updated as easily
as possible. To achieve this, each field has strong validation rules, which are
relaxed for the non-essential metadata.

2.5 Package format

The old “pkg_install” just compressed tar archives containing all files in the
plist and normally one file for each of short and long description, the plist,
install and deinstall script, size infos. The latter set is also the metadata kept
in the package database (typically /var/db/pkg or .pkg in the prefix).

For a typical installation this easily takes a few thousand inodes. To avoid
the associated overhead, a format to keep them in one file was needed which
doesn’t compromise the extensibility. Two generic markup languages were
considered, namely XML and YAML. Since white-space handling in XML is
awful and YAML is also much human-friendlier, it was preferred by the author.

The serialized package content uses a shallow hierarchy which emphasizes
the importance of the various fields. The package itself and the plist entries
are explicitly tagged and thereby also versioned. This allows the package tools
to easily detect and convert older versions when necessary.

Binary packages are still (compressed) tar archives. The content is different
though. In the top level directory, there’s an index file containing the serialized
package description (as above). This is also required to be first entry of the
archive. Signatures will be stored as second entry, but as no light-weight gpg
verifying exists and X.509 certificates don’t play nicely with the (current) setup
of pkgsrc bulk builds, this is not finalized yet. After the index file the normal
files from the plist are stored in plist order. The files are stored with the
relative path under a directory named like the package. All other plist entries
are synthesized during extraction.

Enforcing a strict order on the packages makes it possible to extract a tarball
with minimal buffering and read the content without having to process more
than the index size (up-rounded to compression blocks). The construct of using
a subdirectory for the actual file allows later bundling of multiple packages into
a single archive, with minimal changes.

3 The programming interface

The implementation of “pkg-install” consists of a library core and small bind-
ings on top. The core consists of four major components: the pattern related
functions, the package-related functions, the plist-related functions and the
package database functions.

3.1 Pattern functions

The pattern API provide simple accessor functions for easy access in common
situations. Both matching a pattern against a package name and ordering two
package names with regard to a pattern are supported. The allocation and
freeing of resources are kept internal.

The convenience functions are wrappers for the full implementation. Parsing
of a package name or pattern is a separate task to allow later reuse. Functions
to extract to the base package name or the list of matched base package names
for a pattern are provided. Those are useful e.g. for a bulk build as they
can reduce the quadratic runtime in the number of packages and patterns to
linearly.

3.2 Package functions

The package functions deal with in-memory package description and related
functions. Functions to create one from scratch or destroy it with freeing all
associated resources are provided as well as functions to get or set the meta-
data. Multi-value fields can be read either using a temporary array or an
iterator interface.

The finished package description can be validated either for basic compliance
or for the full package conformance. Descriptions which pass the latter can be
serialized using a callback interface. In the same way package descriptions can
be read back and parsed. A function to create a binary package from a package
descriptions and the files relative to given prefix completes the interface.

Errors are classified depending on whether they are input-related or inter-
nal. For internal errors like failing memory allocations or violations of the
API contract, the program can provide a callback which is called with the
current package descriptions, a failure code and optional context-depending
arguments. The callback is expected to terminate the application, otherwise it
is abort(3)ed. For input-related and other ”soft” errors, a different concept is
used. The error callback has the same arguments, but can return a value to de-
cide whether or not the processing should continued. This is a ternary value-on
error the processing can continue as long as it makes sense to diagnose further
problems, but the initial error is sticky. Alternatively the processing will di-
rectly bail out. The callbacks are provided on package creation or parsing, it
is not yet intended to modify them.

3.3 Plist functions

The plist APT allows the addition and removal of individual entries. The inter-
face is strongly typed and each type has independent accessor functions. The
implemented makes heavy use of the preprocessor to keep redundancy in code
minimal. Similiar to the generic package interface, the plist access is mostly
done using iterative callback interfaces.

3.4 Package database functions

The database functions are still in the progress of being revamped. The desired
interface has three components:

o Functions to query the database. This should be generic enough to work
with package repositories as well.

e Functions to regenerate all internal state like the hash databases of all
files and the forest of packages and their relationship.

e Functions to modify the database as set of add/remove operations.

The first category is rudimentary implemented by providing an iterator in-
terface over all packages. The requirement for generalization is important here
as the same functions to decide whether a dependency is installed can be used
to find the best match in a binary repository. Most query functions should
work on binary package repositories as well as the package database.

The second category is implemented, but has to be moved from the stan-
dalone command into the library.

The third category is the most challenging. Single add and remove operations
work, but impose a severe limitations. Updates of non-leaf packages would have
to either remove all depending packages or leave the database temporarily in
an inconsistent state. To solve this, complex updates should be done as sets
of add and remove operations, which are atomic from the point of the package
database.

The downside is that the logic for verifying whether all dependencies are
resolved, no conflicts are present and the plists of all to-be-installed packages
are non overlapping gets a lot more complicated. As the use of index databases
is still necessary for installations with multiple hundred packages, the usage of
memory to keep the changes in memory is increasing as well.

It is open whether it is possible and helpful to split such transactions into
minimal blocks, which keep the database in a consistent state. It will not help
when e.g. xorg-libs changes, but is useful for the generic “update-my-system”
case.

4 Integration and conversion

4.1 Staged installation

The first step for the integration of the new “pkg_install” is the elimination of
direct installation into the prefix. This makes it much simpler to ensure that
all directories created are either requested by the administrator or handled by
the framework.

Another important desire is to ensure consistent permissions as many pack-
ages don’t use the pkgsrc INSTALL_* variables, but random combinations of
cp, pax/tar and install.

Therefore the facilities to install into a subdirectory of the working direc-
tory were added. As pkgsrc already provided just-in-time su, it was desirable
to allow full user package builds. Many packages just use default ownership
for files and the aforementioned override directives can be used to provide the
functionality even in the old “pkg_install”. Some care had to be applied for
packages which install setuid/setgid binaries as the access permissions are ex-
tracted by tar and the ownership is later changed by “pkg_add”, removing the
setuid/setgid bits as side effect.

4.2 Pattern conversion

The need to convert old patterns to the new style is an independent effort.
Both for the integration and the conversion patterns have to be converted, but
it can mostly be done on demand.

As written in section 7?7, esp. fnmatch patterns are often not precise. A
perfect automatic conversion is therefore not possible, but the intent of most
patterns can be accurately represented.

The conversion mechanism is based on type-specific rules. Csh-alternative
style patterns are expanded, each expanded pattern is converted and the list
joined with “|”. Simple package names are converted by replacing the last
hyphen with “==". Dewey patterns are unchanged as they are a subset of the
new grammar. The edge cases are working as humans would expect them. so
the change in functionality is justified.

The most difficult case is the conversion of fnmatch patterns. For those a
number of heuristics are used. The pattern is matched against regular ex-
pressions representing common use in pkgsrc. For example, when “(.*)-\[0-
9]*$” is matched, it means that the patterns applies to any version of the
captured first sub-expression. As such it is converted simply to the that sub-
expression. Other cases which are handled automatically are “php-4.4.[0-9]*”

10

and “php-4.4.¥”, which are converted to “php 4.4;=4.4". “php-4.4nb*” are
“php-4.4nb[0-9]*” are converted to “php 4.4nb”.

The given rules can be used to convert all but 30 patterns used by packages
in the “pkgsrc-2006QQ2” branch and the rest are all somewhat bogus special
cases. It is not clear, whether they will end as hard-coded special cases or are
left for human intervention.

4.3 The new pkg flavour

In preparation for better support of multiple packaging systems Johnny Lam
refactored the package installation and creation code over the last summer.
This dramatically simplifies the initial efforts needed for integrating a different
“pkg_install” implementation. Using compatibility wrappers for “pkg_info” and
“pkg-admin”, the changes are concentrated to two places:

e mk/flavour/pkg or a copy thereof
e mk/pkginstall

The former code has to be modified to use the new calling conventions and
use individual arguments for each dependency instead of a space-separated list.

The latter code provides the install/deinstall script framework. Most of
the functionality has to conditionally tag corresponding items for the new
“pkg-install’ instead of expanding the shell scripts directly. This will be done
incrementally to allow better testing.

As the interface of the package management commands is not finalized, the
implementation of this code is still a work-in-progress and not part of the pkgsrc
tree.

4.4 Converting existing packages and installations

The creating of package descriptions for testing a new implementation is tire-
some and with the implementation of “pkg_create” a shell script for converting
existing packages was written. This script has been extended over time to stay
in sync with the feature set of “pkg_create”.

The biggest missing item right now is the handling of old install scripts.
Those fall in one of two categories. Either they are created from the in-
stall /deinstall script framework or they are custom rules for a specific package.

The first class is relatively easy to handle as the scripts create individual
entries in the package tarball or package database. The metadata can be ex-
tracted from the bottom of each file to handle appropriately.

11

The second class is more involved as there are no fixed marker in the scripts to
annotate the beginning or ending of the common fragments (which are already
handled). A second problem is that the scripts work both as pre-installation
and post-installation scripts and the calling convention has to be emulated.
It is an open question how far and in which an automatic conversion can be
successful.

5 Conclusion

The redesign of “pkg_install” allowed fixing many of the problems of the old
implementations. The installation of packages can be done in-place. The
toolchain itself is much more self-contained, typically not requiring external
programs, but for additional features. Building blocks for better high-level up-
date mechanisms are provided. The modular architecture will allow further im-
provements and extensions with minimal redundancy and in a straight-forward
fashion.

As side-effect of this work, pkgsrc itself has been improved in a number
of ways. During the development of the pattern conversion tools, many bogus
dependencies have been fixed. The staged installation has been desired for years
and allows catching up with OpenBSD’s ports system in that area. Beside the
ability to build packages entirely as normal user, it will allow pkgsrc to sub-
packages as well.

12

How to Make Sure That Nobody Will Ever
Use My Excellent Software (Twice)

Benedikt Stockebrand

Abstract

One of the greatest successes that a coder can achieve is writing a piece of excellent software and
at the same time ensuring that nobody will ever use it—or nobody will ever use it twice.

This talk presents a number of real-world highlights that show how minimum effort can achieve
maximum devastation, teaching even the most stubborn user or administrator a lesson it deserves—a

lesson to stay away from my software.
Understanding the Enemy

As in any battle the first step to victory is a thor-
ough understanding of the enemy. For our purposes
it pays to distinguish four different subspecies: The
end user, help desk staff, administrator and man-
agement; they all have different vulnerabilities and
should therefore be treated specifically.

The End User

The most clueless victim is the end user. It has the
least possible grasp of technology and notoriously
refuses to read documentation of even error mes-
sages, usually either complaining of “techno bab-
ble” or pointing out that it doesn’t understand En-
glish documentation. The end user comes in two
varieties: Private and business end user.

The private end user is easy to handle; if we
just frustrate it enough it gives up using our soft-
ware quite quickly.

The business end user is usually told by its man-
agement what to do and can’t just give up on our
software. Dealing with it directly can be fun be-
cause it can’t really defend itself, but usually we
can only teach it to be terrified of our software, but
can’t really make it stop using it.

The Helpdesker

The business end user is usually supported by a
help desk team. The helpdesker usually has a bet-
ter grasp of the English language, sometimes en-
abling it to read and understand end user docu-
mentation. It is technically marginally clueful and
tends to gather quite a bit of experience from deal-
ing with all the problems its end user has.

Like the end user, the helpdesker generally
doesn’t have much of a choice of the software it has
to support. Unlike the end user, the helpdesker is

a notorious job hopper, so it is feasible to convince
it to hop its job even faster than usual if we write
our software accordingly.

The System/Network Administrator

Beyond the help desk hides the system and net-
work administrator. It is at least semi-clued; in
some cases it may even have developed basic cod-
ing skills. It tends to understand even technical
documentation, even if it is written in English.

The admin is usually overworked and has to deal
with a wide range of systems. It usually doesn’t
have time to get into all the details of all the sys-
tems it take care of and therefore spends a ridicu-
lous amount of time searching documentation over
and over again for details it needs to solve the prob-
lem at hand.

A major part of its working hours the admin
spends troubleshooting. This gives it an enormous
routine to stay cool even in an “exceptional failure”
situation——it is just daily business to the admin. A
good admin works with great care even in a ma-
jor emergency situation where every minute costs
dearly (but bad admins won’t).

At least the senior admin may occasionally be
trusted to decide which software to use by its man-
agement. So at least in some cases we must consider
it a direct target throughout our efforts to prevent
it from using our software.

Management

The ultimate target however is management. The
Manager isn’t even proper business end user by
qualification because it has its underlings to do the
business end using. But it is the one who is “in
charge” and in many cases it will decide for an en-
tire company to stay away from our software.

This is a blessing for us. Since the manager
doesn’t have the technical competence to realize
that our software is excellent, we can achieve our
goal without sacrificing any of the excellence of our
software.

The only problem with management is that it is
hard to reach. But once it gets alarmed it is bound
to make some heavy-handed decisions against using
our software, no matter what its technical qualities
are.

The Software Lifecycle:
A Monetary View

The key strategy to deterring the prospective en-
emy from our software is hitting it where it hurts
it most: at its wallet. If we hit hard enough and
at the right moment, then we can’t but succeed in
our mission.

Hitting hard is a matter of the tactical weapon
we use; we'll take a look at our armory in the next
section. But hitting in the right moment is even
more important than the way how we hit. This
leads to a brand new sort of software lifecycle, one
that focuses on what happens when the software
gets shipped to the enemy and how it relates to its
money.

On a side note: There is a common strategy
pursued by certain “consulting companies” which
“do the IT projects” for an IT-illiterate customer.
Then run up such a huge bill that the customer’s
management can’t possibly admit to the sharehold-
ing public that the “consulting company” delivered
an entirely useless heap of junk, so they declare
the project a “success” for “political reasons”. The
result is almost exactly the opposite of what we
want to achieve: They make their customers use
disastrous software, while our intention is that we
want to make the enemy not use our excellent soft-
ware. Both strategies do have one thing in common,
though: Both will drive the admin crazy and quite
likely away from that company.

Evaluation

When a data center intends to install new software,
it usually starts with an evaluation of the various
alternatives available.

At this point it is generally easy to deter our
prospective enemy: Bad documentation and pos-
sibly some wanton flaming in the support mailing
lists explicitly set up for the new enemy usually do
the trick.

At this point it is also surprisingly difficult to
deter the prospective enemy in the long run: There
is little money and time involved yet, so the enemy

may decide to give our software another try later
on.

Installation and Configuration

At the end of the evaluation phase the enemy
chooses a software. During the following installa-
tion and configuration phase we can apply a variety
of attacks.

But generally this is not the best time for an
attack since there is still too little money involved.
Instead we should keep a low profile, try to ap-
pear helpful and give the enemy the impression
that there won’t be any problems with our soft-
ware. The installation and configuration phase is
the last chance for the enemy to retreat without
major losses.

Only if the installation and configuration phase
is managed as part of a software project with the
customarily infeasible deadlines, then some stealthy
tactics to delay the installation and configuration
may be worth a thought.

Production

After the initial installation and configuration
phase the enemy finally places itself at our mercy.

Sometimes it realizes this and tries to negotiate
its surrender through a “pilot phase” that it doesn’t
consider regular operations. Often the administra-
tor is particularly vigilant when then it puts a sys-
tem into production. But hurting the enemy is pri-
marily about hitting its wallet, so at this point the
enemy can’t possibly escape our wrath any longer.

There are three basic attack lines relevant to
production systems: We can make regular oper-
ations excessively expensive, create havoc during
upgrades including security patches, and lay some
fatal traps that only bite the enemy when it already
struggles with another problem.

Regular Operations

To attack the enemy during regular operations we
must make operations as expensive as possible. If
we make the software difficult to use, then the
end user is the first to give up, causing excessive
workload to the helpdesker which needs additional
manpower which costs the management additional
money.

Similarly, we can make administration more ex-
pensive than necessary. Any software that makes
daily operation a tedious routine job or requires
extensive knowledge and experience in widely dif-
ferent and unrelated areas will be considered an
excessive expense by our involuntary accomplice in
management, which calls itself “controlling”. While
this may sound fairly unexciting to a software de-
veloper, the sums involved can be large enough to

drive the enemy manager to despair and therefore
away from our software.

Another useful strategy related to regular oper-
ations are excessive requirements for service down-
times. While these can be scheduled in advance,
they still put a burden on many installations.
Again, the financial losses during downtimes can be
substantial enough to convince th enemy manager
to convert to an inferior software.

Finally, problem hiding is a way to drive the
enemy to despair: If it never really knows if ev-
erything works as expected or if some problem is
quietly creating some yet unseen havoc, then it will
quickly decide that it doesn’t want to use our soft-
ware anymore: The admin is permanently stressed
from worrying if everything works and the manager
considers the software as well as the admin unreli-
able, which is reason enough for either one to look
for an alternative to our software.

Upgrades

The enemy is even more vulnerable during up-
grades. Of course it knows about this and avoids
upgrades whenever possible. But if growing sys-
tems, increasing reliability requirements, exciting
new features, support for new hardware or ending
support for older software versions don’t convince
the enemy to face the upgrade, then an exploitable
security hole will.

The only defense it has is extensive pre-
production testing. A reasonably experienced en-
emy will avoid haphazard upgrades and rather
spend time and money on preliminary tests. But
duplicating an entire datacenter environment dou-
bles the expenses, so in many cases the enemy only
has a limited test environment used for multiple
software installations in turn. So a pre-upgrade test
works like this: Somebody decides that an upgrade
is necessary, then a time slot for the test environ-
ment is allocated, a large number of tests are done
in short time and afterwards the enemy will still
worry if it missed the one crucial thing to test that’ll
blow up in its face. If we don’t leave it a chance
to revert to the old version this situation will make
the enemy grow old way before its time.

With desktop machines the situation is differ-
ent: A test environment doesn’'t need as many
desktop machines as there are desktop machines
in use, which saves some money on the test hard-
ware. But rolling out an upgrade to several thou-
sand machines running a large variety of applica-
tions is quite similarly scary.

The obvious strategy of throwing a monthly
batch of updates plus the occasional “extra urgent”
security fix at the enemy is well-known and has
proven useful over and again. It does however re-
quire an unacceptably low level of software excel-

lence to be applicable, so it is less useful to deter
the enemy from using our excellent software.

Still, there are other means to send the enemy
to the upgrade hell; we’ll see examples below.

System Failure

Finally, there is the ultimate victory scenario, the
one scenario that strikes the very heart of the en-
emy.

The new junior admin, which was just hired
three weeks ago, is on weekend call duty for the
first time. On Sunday morning, 03:00, its mobile
phone rings. The admin answers, only to hear “ma-
chine XY Z doesn’t work, come here and fix it im-
mediately”. Of course, it has never ever heard of
machine XY Z, but it drives to the data only to be
welcomed by an unscheduled meeting of the man-
agement board with the words: “Do you actually
realize that every minute of this costs us 50 000 €7”

Of course, the very same scenario applies to se-
nior admins in large enterprises if the 50 000 € are
substituted by a more adequate number. The sky
is the limit here: Occasional rumors claim that the
Deutsche Bank will be bankrupt within 24 hours
if their entire IT breaks down. For the recent
two-hour failure of the Spanish top level DNS do-
main no numbers seem to be available, but at a
national economic scale the losses caused by this
might just possibly exceed 50 000 €/minute, or
3 000 000 €/hour—by a few orders of magnitude.

This scenario is so valuable for a variety of rea-
sons. Of course, the immediate economic impact is
obvious: we hurt the enemy where it hurts most—
at its wallet. Besides that, we score multiple severe
psychological hits: The end user gets upset because
it can’t work. The helpdesker gets upset because it
has to answer the phone calls of the end user while
it doesn’t really know what’s going on. The admin
feels seriously embarrassed because it appears inca-
pable of keeping its systems up and running. The
manager feels helpless because it has no idea what’s
going on or how long it will take to fix, but a rea-
sonably precise idea of the huge losses per minute.

Even in situations far less dramatic than those
mentioned it is quite simple to make our software
so expensive to use that the enemy will eventually
give up and leave our software alone; we just need to
make system failures expensive. We can make fail-
ures happen often, and we can make them last long.
Beyond that we can make it impossible to repair
the system completely by introducing inconsisten-
cies during the failure; this will make it necessary
to roll back to the last working backup, losing all
data changes since then. All three approaches can
be combined and put enough economic pressure on
the enemy to convince it quickly to use some other,
less excellent software than ours.

If we want to keep the level of excellence of our
software, we can’t resort to causing the problem
within our software; instead we must ensure that
the “cause” of the problem lies outside, usually ei-
ther within the system environment or the user or
admin operating it.

Masterpieces of Deterrence

Now that we understand the enemy and its vulner-
abilities, we can understand and assess the various
tactics available to us. After so much theory we now
follow a more practical approach and take a closer
look at successful examples of enemy deterrence.

Documentation

Documentation-based deterrence measures are
quite common, often because documentation isn’t
really considered part of the software and thus ex-
empt from the goal of excellence. But even if we
consider documentation part of the software, there
are some excellent tactics available.

The most obvious tactic related to documenta-
tion is used by various low-budget hardware ven-
dors: Write the documentation in whatever lan-
guage we are unfamiliar with, then run it through
babelfish to translate into Albanian, and then have
a native Chinese speaker translate the result into
English. As long as we don’t consider documenta-
tion part of our software, this approach is generally
known to work as expected. Unfortunately, the en-
emy will quite likely notice this during evaluation,
so the impact is very limited.

A more effective, diametrally different approach
involves a native English speaker linguist specializ-
ing in classic English literature polishing the doc-
umentation to unsurpassed beauty: While the lan-
guage of Shakespeare, Melville and Thoreau may be
most elegant and stylish, it is impossible for a non-
native speaker with a more limited grasp of English
to understand any of this.

The Debian! project came up with a nice way
to deal with missing documentation: There is
an undocumented(7) man page that the package
maintainers generously use as a substitute for non-
existing man pages. The subtle psychological effect
of this is quite remarkable: The enemy will almost
invariably interpret this helpful note as “I know I
let you down; sue me.”

Beyond that, Debian Woody made generous use
of the Linux-specific ip command to configure its
network, rather than the ifconfig, route, arp and
various other commands commonly used with Unix.
The documentation available came in three vari-
ants: IATEX source code with more than 80 chars

10K, “Debian GNU/Linux”, if you insist.

per line to make it less readable on a text console,
DVI intermediate output and PostScript. The sub-
tlety of this is brilliant: During the evaluation, in-
stallation and regular operation it is quite likely
that the enemy will simply use this documentation.
Only when a problem occurs that drops the enemy
into text mode only will it realize that it can’t any
longer read the documentation it desperately needs.

FreeBSD 6.1 installs with a file IMPLEMENTATION
in /usr/share/doc/IPv6 which states right at the
beginning that it doesn’t relate to the KAME IPv6
stack integrated with NetBSD 1.5.1, but might still
be useful. Following that the table of contents has
an entry “7.2 Multipath Routing Support”. Ex-
cept of course that chapter 7 covers coding style
and there is no section 7.2. So if the enemy doesn’t
bother to test for multipath routing support during
the evaluation period but relies on the assumption
that it can use multipath routing later on because
it was mentioned in the table of contents, then the
enemy will stumble over this only when it tries to
use multipath routing when the system is hopefully
already in production.

The man page for dig with FreeBSD 6.1 shows
a date of June 30, 2000. During the last six years a
variety of changes to the dig command have found
their way into the source code. It takes a very close
look to realize that only the date hasn’t been up-
dated in the man page but everything else has. In
a high stress situation like troubleshooting this tiny
little lapse will easily extend the downtime by sev-
eral minutes; the average enemy admin tends to
be overly careful when working in production ma-
chines and won’t really trust this man page until it
has verified that its contents is actually up to date.

The man page for cvs starts with this note:
“This man page is a summary of some of the fea-
tures of cvs but it may no longer be kept up-to-
date. For more current and in-depth documenta-
tion, please consult the Cederqvist manual (via the
info cvs command or otherwise, as described in
the SEE ALSO section of this man page).” Again
this is a gem: During evaluation and installation
the introductory style, texinfo based manual is gen-
erally preferable over a man page. But when a
problem occurs, then a more concise, reference-style
man page is needed, not a lengthy tutorial-style info
file. And we have shown all the goodwill the enemy
could ask for: We have provided a reference man
page as well—if it assumes that the man page is
unreliable, well, that’s its own decision.

Support

Similar to documentation, support is often not con-
sidered part of the software proper and therefore
lends itself well to various tactics. Some of them

are more commonly seen with commercial software
vendors, but they are still inspiring enough to be
mentioned.

It is common to discontinue support for old soft-
ware versions as soon as possible. Together with
promises of new features, this is a common way
to lure the enemy into upgrade hell and no par-
ticular surprise. Several years ago SUN support
vastly improved this tactic:c Whenever the enemy
tried to open a problem call they would first de-
mand that it updated the system with the latest
“recommended patches”. With this strategy they
managed to force the enemy to deal with a sys-
tem failure while in upgrade hell at the same time.
Unfortunately, the enemy eventually realized de-
veloped a counter-strategy of demanding a written
guarantee that the new, untested “recommended
patches” wouldn’t affect the system adversely but
actually helped to solve the problem at hand.

Open source projects offer another line of tac-
tics: Since support usually isn’t paid for, it is eas-
ily possible to repel the enemy by simply telling the
truth: “If you can’t read the source and figure it out
yourself, then get lost. I can’t be bothered to write
documentation and I definitely can’t be bothered
to tell anyone how to use my excellent software.”
If we do this only after the enemy has reached the
problem-solving state, then a few well-chosen in-
sults will quickly deter it from using our software
once and forever.

Wanton Limitations

Another set of tactics relate to imposing wanton
limitations on the software or the system it runs
on.

Limitations that relate to the software itself are
usually a sign either of bad software or unscrupu-
lous money-making: The various size limits for
IDE hard disks imposed on various generations of
BIOSes are all signs of bad software design; selling
different kinds of system phones to different PBX
systems has been used by phone manufacturers to
force the enemy to replace not only the PBX but
also all the phones in a company as soon as the
company grew beyond the capacity of the old PBX.
Either way, while these tactics are proven to be ef-
fective they can’t be applied to excellent software
too easily.

A more useful and less conspicuous way to im-
pose artificial limitations involves interference with
other software. Back in the Good Old Days[TM]
it was impossible to install both what later became
FreeBSD /NetBSD and DOS on the same hard disk,
simply because BSD didn’t support PC-style parti-
tion tables. Since this will usually be noticed dur-
ing evaluation, the impact on the enemy isn’t too
exciting, but it quite effectively scares it away. Mi-

crosoft has refined this to the “Windows DLL hell”:
If different programs need different versions of a cer-
tain dynamically linked library (DLL, the Windows
equivalent of a shared library), then they can’t run
on the same machine.

Excessive Dependencies and the
Autoconf Trick

Even more useful and less conspicuous are excessive
dependencies.

Solaris 10 offers “zones”, the Solaris equiva-
lent of FreeBSD jails (but with IPv6 support).
These zones can’t be used without installing re-
source pools, which need a Java runtime, which
need X11 even on a server with a serial console and
no video hardware.

Again, this can be improved. The autoconf-
generated configure scripts commonly used by open
source projects can be easily used to create exces-
sive dependencies that we can blame the enemy for:
If it finds KDE, why not use it? And GNOME too,
and a Java runtime and SSL and SNMP and an
OpenOffice programming interface. Now if the en-
emy builds our software on its desktop machine,
then it has no choice but to install all these things
on the final destination machine, too. We can’t pos-
sibly be blamed because our software doesn’t really
“depend” on these dependencies, it just makes use
of them if they are available anyway. And next
time the enemy builds our software again, chances
are that it has installed yet some more software
on its desktop machine and if it installs the newly
built software on the destination machine it will fail
because the enemy hasn’t installed the additional
software there, yet. Beautiful.

All these tricks also open the path for addi-
tional fun with respect to security: If our software
uses some insecure dependency, like the intrinsi-
cally insecure SNMP, or anything with a less-than-
impressive security history, like a certain commer-
cial web browser, then we can use these dependen-
cies to force the enemy into upgrade hell more often
than it can handle.

Configurability

To make software excellent we must make it con-
figurable to the enemies needs. So if we want to
preserve the excellence of our software, we can’t use
configurability as a weapon against the enemy—or
can we?

The Asterisk IP telephony software offers a
highly configurable “dialplan” configuration which
defines the behaviour of the software. Its lines must
be numbered like ancient BASIC programs. Unlike
BASIC programs the line numbers must be con-
secutive. Errors cause a jump to the current line

number plus 101, so if an error in line 7 occurs,
line 108 will be executed next. A local Asterisk
expert summarized this in this way: “If you want
to write a dialplan, then do it in a single day. If
you don’t, then on the second day you won’t un-
derstand what you have done the day before and
start from scratch.” This makes any configura-
tion change later on a nightmare to the enemy; the
first time a change is necessary, it takes all day
and breaks some previously functional features will
quite likely encourage the enemy to look for an al-
ternative solution.

Another example is the traditional
sendmail.cf to configure Sendmail. Besides the
syntax, which is annoyingly difficult to understand,
a Sendmail configuration has to be fairly large.
Writing a sendmail.cf from scratch is quite de-
manding and requires detailed understanding of
the SMTP protocol to keep the result standards-
compliant. Unfortunately somebody made the huge
mistake to write an m4 macro package that gener-
ates a sendmail.cf from a fairly short and readable
configuration file.

The traditional sendmail.cf offered an exces-
sive degree of configurability that virtually nobody
needs anymore today. DECNET, BITNET and
UUCEP are effectively dead, but still Sendmail has
everything necessary to support them. Again, if it
wasn’t for the m4 macros this would serve quite well
to make the enemy switch to Microsoft Exchange
without looking back.

Even with just a few configurable parameters it
is possible to make configuration tedious and error-
prone simply by using bad default settings. Solaris
uses a default prefix length (“netmask”) setting of
/128 for IPv6 addresses even though RFC 4291
and its predecessors explicitly state that the pre-
fix length for all but a few special address ranges
is always /64. Configurations which appear to be
correct, but aren’t, can easily confuse the enemy
for some time.

The Solaris installer creates an /etc/hosts file
which assigns the name loghost to the IPv4 loop-
back address. In an environment that uses a cen-
tral log host and a name server, this leads to an
inconsistent configuration until the enemy fixes ei-
ther the resolver configuration or the /etc/hosts
file. If it has also enabled IPv6 support on the
system, then the same procedure repeats with
/etc/inet/ipnodes for the IPv6 loopback address.

Another tactic is generously applied by most
Unixen: The hostname is often spread all over
/etc, making it a tedious job to just rename a sin-
gle machine.

Configuring a Fedora Core 2 box as an IPv6
router shows how to use an inconsistent con-
figuration syntax to confuse the enemy: In
/etc/sysconfig/mnetwork the lines

NETWORKING_IPV6=yes
IPV6FORWARDING=yes
IPV6_ROUTER=yes

show how mixing underscore and no-underscore no-
tation and prefix and postfix category naming can
be easily applied to confuse the enemy admin. Of
course, if the file was read by a proper parser, then
it could flag parsing errors if the keywords were mis-
spelled. But this file is a shell script, so if one of
the variables is misspelled there won’t be any visi-
ble problems—except that the router doesn’t work
as expected.

Finally, Solaris 10 introduced the “service man-
agement facility” (SMF) as a substitute for init
and the SysV-style init scripts. It speeds up the
boot process, deals with dependencies between ser-
vices and is far nicer to handle than traditional init
scripts—until the enemy needs to change the set-
tings for a service: Then it will face a configura-
tion “data base” that keeps binary representations
of lengthy XML-based “service manifests”. Edit-
ing an XML file with vi is great fun to watch the
enemy do, especially if it is sitting at a VT100 ter-
minal trying to solve a problem that just brought
a system down.

The beauty of all these tactics is that they ap-
pear nothing more than a slight awkwardness. If
the enemy loses time because of them, possibly at
50 000 € per minute, then that isn’t our fault, re-
ally. And it will lose time because of them. Lots of
time.

Change handling and Upgrades

All tactics so far deal with a “static” software that
doesn’t change over time. In practice, virtually all
software is continuously changed, updated and ex-
tended. We can use this to hit the enemy when it
hurts a lot: during upgrades.

Again we can learn from various hardware ven-
dors who sell different components under the same
name. If you have ever seen the enemy trying to
replace a broken network card with a new card of
“the same model” you know the beauty of this plot:
Of course the new card doesn’t work, so the enemy
assumes that something else is the problem. After
replacing virtually everything else in the machine
it might finally “re-install the driver” from the CD-
ROM shipped with the new card and surprise, af-
terwards the machine works again—until the next
major upgrade is mass-deployed to all machines and
this one with the “same model” network card loses
its network connectivity in the process. The loss of
service may sum up to several days in the long run.

The same can be done with software. The
beauty of the BSD ports collections is that they
usually obtain the source files from the original

source of the software. If a source file isater on up-
dated there, then the ports collection makefiles will
reject that source file as “broken” since it doesn’t
match the stored checksum. To rebuild a working
system the enemy will first have to upgrade its ports
tree and then recompile all and everything. If the
timing is right, there will be new releases of KDE,
GNOME, OpenOffice and a variety of other large
packages, causing all sorts of minor problems that
are tedious and therefore expensive to fix.

The BIND name server package did a very
sneaky trick with the upgrade from 8.2.2 to 8.2.3:
They called 8.2.3 a “maintenance release” that
didn’t change any functionality but just contained
bugfixes. Which was perfectly true, except that
they changed the way dig handled the -x option
with IPv6 addresses: Instead of looking up the ad-
dress in the (by then deprecated) bitlabel format,
they changed it to use the (by then re-established)
nibble format. The results to various shell scripts
using dig to query the DNS could have been most
satisfying; unfortunately it was way too early for
pulling this trick, so only a single IPv6 advocate
writing a book on the topic was seriously affected.

In a project that I was involved with some years
ago, the closed-source software vendor forced the
enemy to upgrade to a new release. The software
was meant as a micro-billing system but the enemy
used it as a means to gather statistical data only.
The upgrade involved various reorganizations of the
data bases which the vendor claimed not to require
any additional disk space. The script they supplied
to the enemy to do the reorganization was expected
to run two weeks, during which the system couldn’t
gather any additional billing data. Most unfortu-
nately, the enemy employed a single better-than-
average application admin which managed to first
split the script into about twenty separate steps.
Taking data base dumps after each step it was able
to revert to the results of the previous step after
the occasional failure. In one case it temporarily
doubled the disk space by acquiring a second ex-
ternal storage array before continuing. The entire
upgrade took almost five weeks; afterwards said ad-
min left the project. If the enemy had actually used
this system for its billing, then this plot would have
sent it straight into bankruptcy.

As these examples show, it is both feasible as
well as worthwhile to drive the enemy into upgrade
hell. Watching it squirm, trying to delay the up-
grade while it fully realizes that it can’t possibly
escape it in the long run, is one of the most satisfy-
ing experiences in every software developers career.

Security Aspects

Of course, excellent software is also secure. The
Sony “no other notebook brands are affected” line

concerning their exploding batteries is about as in-
applicable as the as Microsoft’s “our primary goal
now is to improve security” while they still ship
their Internet Explorer with ActiveX support and
Office with VBA. So how can security aspects help
to deter the enemy?

There is a technical tactic that is applicable: We
can add user-configurable support for inherently in-
secure features, like support for SNMP “set” oper-
ations; this leads back to the configurability topic.

As a psychological trick we can simply deny all
alleged security problems in a manner that shows
the enemy that we feel personally offended by its
allegations and no, there is no security issue at all.
Then if there ever is an issue, then the enemy will
deeply distrust the security of our software.

Incompatibilities

Most of todays datacenter environments are highly
heterogeneous. Incompatibilities, ranging from
straight non-interoperability down to slight varia-
tions between different Unixen make life more dif-
ficult to the enemy while there is no single Unix to
blame.

Several years ago [witnessed the enemy buying
three PCI cards of different types to be put in a sin-
gle machine. Any two cards worked together flaw-
lessly, but all three together rendered all available
test machines unbootable. All three card vendors
blamed the others on the problem and refused the
enemy a refund for their respective card.

Back in 1998 a Solaris NFS server and a Linux
NFS client would manage to transmit approxi-
mately 100 kB/s between each other. Solaris-
Solaris or Linux-Linux setups would easily do 1-
3 MB/s. Unfortunately the enemy found ways
to tune the Linux client in a way that raised the
throughput quite significantly, but still the perfor-
mance was less than satisfying.

Simply using different option letters for the
same command makes scripting difficult to the en-
emy and can wreak the occasional havoc that the
enemy admin fears: The netstat command with
both Solaris and the BSDs uses an option -f inet6
to request IPv6-related information; with Linux it
is -A inet6. Various Solaris commands like df use
the -h option not to display a short command syn-
opsis but to render their output in a “human read-
able” style.

So far these incompatibilities are mere nuisances
to the enemy. But a Solaris box in a mostly BSD-
derived environment will eventually embarrass the
enemy admin with a gem that looks basically like

/usr/sbin/shutdown -g 10 -i 5 -y \
Shutting down in ten minutes
System going down in 10 seconds

The ultimate incompatibility example is the
killall command. With Linux and the BSDs it
kills all processes with a given program name but
with Solaris and other true SVR4 Unixen it will do
what its name suggests—it will kill all processes,
shutting down the system the hard way. Linux has
a command kil1lall5 which behaves like the SVR4
killall and Solaris has a command pkill which
behaves similar to the Linux/BSD killall com-
mand. Eventually the enemy will learn to be very
careful about the killall command; usually it will
learn the hard way.

Error Handling

When an error occurs within our software, be it an
internal problem or bad input or a problem with
the environment it runs in, like a full file system,
then we can apply some more tactics.

If we didn’t care about the excellence of our
software, then we could simply send a cryptic error
message of the “General Protection Fault” style to
the enemy and then ask it to decide if it wants to
“Abort, Retry or Continue?” Especially if we don’t
define a default decision for the enemy it will feel
completely lost.

We can also write all logging entries into a sin-
gle file, mixing debugging information, notices and
more or less serious error conditions into a sin-
gle file. If we don’t include time stamps and use
multi-line messages that aren’t even separated by
newlines, then the enemy will have great trouble
to monitor this log file. If we use standard block-
buffered I/0O for this file “for performance reasons”
and “forget” to open the file in append-only mode,
then the enemy can’t add periodic timestamps to
the file, the most recent entries are either missing
or incomplete due to buffering and if the writing
process crashes, then the most vital last entry is ef-
fectively unavailable for cleaning up the mess. The
billing software mentioned above has proved that
this approach is both applicable and effective; un-
fortunately the effects on the excellence of our soft-
ware usually forbid this tactic. Excellent software
uses the syslog(3) API and even sets the priorities
of each log message to a reasonable value.

Similarly, using the assert() macro or simply
dumping a Java backtrace is generally considered
bad style. The rsync(1) command tries to flood
the enemy with information it can’t use; a full file
system at the destination first provides an “XXX
write failed, filesystem is full” message and then
follows up with seven additional lines that the av-
erage enemy can’t understand, including the source
file names and line numbers where the related sec-
ondary errors occurred.

My personal favourite in this category is Debian
and how it deals with the IPv6 configuration in

/etc/network/interfaces. As mentioned above
the prefix length is effectively always 64 bits. So a
configuration like

iface eth0 inet6 static
address 2001:db8:fedc::1

provides all the information necessary to configure
interface ethO for IPv6. Still, the ifup command
will complain that

Don’t seem to be have all the
variables for ethO/inet6.
Failed to bring up ethO.

Only after adding a line netmask 64 to the con-
figuration will the interface configure. The artful
combination-of a grammatical mistake in the er-
ror message, explicitly demanding a constant to be
configured, using an IPv4 term “netmask” for an
IPv6 prefix length and finally denying any hint at
the problem in the error message will make it ab-
solutely plain to the enemy that it isn’t welcome to
use this software.

High Risk User Interfaces

Finally, the ultimate weapon against the most stub-
born enemy is a high risk user interface. This is the
software equivalent of a gun without a safety catch.

This tactic is commonly cloaked by asking the
enemy for explicit confirmation for even the most
simple operations: “Do you really move this file to
trash?” asked for every single file out of five hun-
dred will quickly teach the enemy to confirm what-
ever the system asks. Not only will this result in the
same net effect as not asking for any confirmation
at all, it will also annoy the enemy and, most impor-
tantly, it will make it confirm whatever really dan-
gerous operation it accidentially invokes. Exposing
the enemy to Microsoft Windows will quickly make
it reach this “whatever it asks, just hit Return”
mentality.

Solaris 10, 06/06, first made the excellent zetta
file system (ZFS) available to the public. ZF'S man-
ages multiple file systems within a storage pool. To
remove such a file system from a pool, the command

zfs destroy (file system)

will destroy a file system without further confirma-
tion. But there’s more to it: ZFS supports snap-
shots, which are named ({file system)®@(snapshot).
To remove a snapshot, the command is

zfs destroy (file system)@(snapshot)

and again it doesn’t ask for confirmation. It is only
a matter of time until the enemy wants to release a
snapshot but accidentially nukes an entire file sys-
tem. This example more than compensates the lack

of even the remotest hint of subtlety with the enor-
mous degree of devastation it can cause.

The beauty of high risk user interfaces is obvi-
ous: Whatever happens, it is the enemies fault, not
ours or that of our software.

Summary

We have seen that there is a wide choice of
low-effort, devastating-impact tactics to discourage
even the most stubborn enemy from using our ex-
cellent software. Most of them can be made to
appear “accidential” or “slightly awkward” rather
than intentional and malicious.

With these weapons available and properly un-
derstood we can easily teach the enemy never to
use our excellent software (twice).

About the Author

Benedikt Stockebrand is a BSD-
biased ”generic Unixer” with a
strong background in system ad-
i ministration and large-scale data
center design and operation. He
is working as a freelance trainer,
author, IT journalist and consul-
tant with a current focus on IPv6
operations.

He has been repeatedly charged with offensive
sarcasm but so far escaped conviction.

How the FreeBSD Project Works

Robert N. M. Watson
rwatson@ FreeBSD.org

FreeBSD Project

Computer Laboratory
University of Cambridge

1 Introduction

FreeBSD is a widely deployed open source operating
system. [3] Found throughout the industry, FreeBSD
is the operating system of choice for many appli-
ance products, embedded devices, as a foundation OS
for several mainstream commercial operating systems,
and as a basis for academic research. This is distinct,
however, from the FreeBSD Project, which is a com-
munity of open source developers and users. This pa-
per discusses the structure of the FreeBSD Project as
an organization that produces, maintains, supports, and
uses the FreeBSD Operating System. As this commu-
nity is extremely large, I approach this from the per-
spective of a FreeBSD developer. This necessarily cap-
tures the project from my perspective, but having had
the opportunity to discuss the FreeBSD Project exten-
sively with many people inside and outside the com-
munity, I hope it is also more generally applicable.

2 Introduction to FreeBSD

FreeBSD is an open source BSD UNIX operating sys-
tem, consisting of a kernel, user space environment,
extensive documentation, and a large number of bun-
dled third party applications. It is widely used as an
ISP server platform, including at well-known providers
such as Yahoo!, Verio, New York Internet, ISC, De-
mon, and Pair. It is also widely used in part or in
whole for appliances and embedded devices, includ-
ing Juniper’s JunOS, Nokia’s IPSO, and for commer-
cial operating system products, such as VXWorks and
Mac OS X. The product of one of the most successful
open source projects in the world, FreeBSD develop-
ment work has focused on the areas of storage, net-
working, security, scalability, hardware support, and
application portability.

The highly active FreeBSD development commu-
nity centers on services offered via FreeBSD.org,
which include four CVS repositories and a Perforce
repository. These represent the life-blood of the devel-
opment and documentation work of the Project. There
are over 300 active developers working in CVS, which

hosts the official development trees for the base source
code, Ports Collection, projects tree, and documenta-
tion project. Significant project work also takes place
in Perforce, which supports a heavily branched concur-
rent development model as well as guest accounts and
external projects.

Another defining feature of the FreeBSD Project is
its use of the liberal Berkeley open source license.
Among features of the license are is remarkable sim-
plicity (the license can be fully displayed in an 80x24
terminal window) and its ability to support derived
works that are closed source, key to commercial and
research adoption of FreeBSD.

3 What do you get with FreeBSD?

FreeBSD is a complete, integrated UNIX system. The
core of FreeBSD is a portable multi-processing, multi-
threaded kernel able to run on a variety of hardware
platforms including Intel/AMD 32-bit and 64-bit pro-
cessors, Intel’s Itanium platform, and Sun’s UltraSparc
platform. FreeBSD is also able to run on several em-
bedded platforms based on 1386, ARM, and PowerPC;
a MIPS port is also underway.

FreeBSD implements a variety of application pro-
gramming interfaces (APIs) including the POSIX
and Berkeley Sockets APIs, as well as providing a
full UNIX command line and scripting environment.
The FreeBSD network stack supports IPv4, IPv6,
IPX/SPX, EtherTalk, IPSEC, ATM, Bluetooth, 802.11,
with forthcoming support for SCTP. Security features
include access control lists (ACLs), mandatory access
control (MAC), security event auditing, pluggable au-
thentication modules (PAM), and a variety of cryp-
tographic services. FreeBSD ships with both work-
station/server and embedded development targets, and
comes with extensive user and programmer documen-
tation.

FreeBSD also ships with ports of over 16,000 third
party open- and closed-source software packages, pro-
viding programming and user interfaces such as X11,
KDE, Gnome, OpenOffice, and server software such
as Java, MySQL, PostgreSQL, and Apache.

4 The FreeBSD Project

The FreeBSD Project’s success can be measured
by the extremely wide deployment of FreeBSD-
based systems. From root name servers to major
web hosts, search engines, and routing infrastruc-
ture, FreeBSD may be found at most major service
providers. FreeBSD is also the foundation for a num-
ber of commercial operating systems. The FreeBSD
Project is more than just software, or even software
development: it includes a global community of de-
velopers, port maintainers, advocates, and an exten-
sive user community. Central to this community are
the FreeBSD.org web site, FTP site, CVS repository,
and mailing lists.

Several papers and studies have been written on the
topic of the FreeBSD Project and its development pro-
cess, including a papers by Richards [7], Jorgensen [4],
and Dinh-Trong [1].

5 The FreeBSD Foundation

The FreeBSD Foundation is a non-profit organization
based in Boulder, CO. By design, the Foundation is
separate from the FreeBSD Project. When the Foun-
dation was created, it was not clear that a non-profit
supporting open source development was a viable con-
cept. As such, it was important to the founders that the
Foundation be a separate legal entity that would sup-
port the Project, but that the Project not be dependent
on the long-term viability of a Foundation. It was also
important to the founders of the Foundation that there
be a differentiation between the people managing the
monetary, legal, and administrative matters and those
administering the software development work in the
project. In practice, the Foundation has proved finan-
cially and administratively successful, and plays an im-
portant role in supporting the daily operation and long
term success of the Project.

The FreeBSD Foundation is responsible for a broad
range of activities including contract development (es-
pecially relating to Java), managing of intellectual
property, acting as a legal entity for contractual agree-
ments (including non-disclosure agreements, software
licensing, etc), providing legal support for licensing
and intellectual property issues, fund-raising, event
sponsorship (including BSDCan, EuroBSDCon, Asi-
aBSDCon, and several FreeBSD developer summits a
year), providing travel support for FreeBSD developers
and advocates, negotiating collaborative R&D agree-
ments, and more.

The FreeBSD Foundation is currently managed by
a board of directors, and has one part-time employee
who is responsible for day-to-day operation of the
Foundation as well as sitting on the board. The board
also consists of four volunteer members drawn from
the FreeBSD developer community. The FreeBSD
Foundation Board is in regular communication with

other administrative bodies in the FreeBSD Project, in-
cluding the FreeBSD Core Team.

The FreeBSD Foundation is entirely supported by
donations, and needs your help to continue its work!

6 What We Produce and Consume

The FreeBSD Project produces a great deal of code:
the FreeBSD kernel, user space, and the Ports Collec-
tion. But the FreeBSD Project does not produce “just
source code”. FreeBSD is a complete software prod-
uct, consisting of software, distribution, documenta-
tion, and support:

e FreeBSD kernel, user space
o Ports collection, binary package builds
o FreeBSD releases

¢ FreeBSD manual pages, handbook, web pages,
marketing material

e Architecture and engineering designs, papers, re-
ports, etc

e Technical support, including answering questions
and debugging problems

o Involvement in and organization of a variety of
FreeBSD user events

This would not be possible without support of a
larger community of users and consumers, who pro-
vide certain necessary commodities:

e Beer, wine, soda, chocolate, tea, and other
food/beverage-related vices in significant quan-
tity.

e Donated and sponsored hardware, especially in
racks at co-location centers, with hands to help
manage it.

e Bandwidth in vast and untold quantities.
e Travel grants, developer salaries, contracts, devel-
opment grants, conference sponsorship, organiza-

tion membership fees, etc.

e Thanks, user testimonials and appreciation, good
press.

e Yet more bandwidth.

None of these has a trivial cost-by far the most im-
portant resource for the project is developer time, both
volunteered and sponsored.

7 Who are the Developers?

FreeBSD developers are a diverse team, made up of
members from 34 countries on six continents. They
vary in age between 17 and 58, with a mean age of
32 and median age of 30; the standard deviation is
7.2 years. FreeBSD developers include professional
systems programmers, university professors, contrac-
tors and consultants, students, hobbyists, and more.
Some work on FreeBSD in a few spare hours in the
evening once a week—others work on FreeBSD full
time, both in and out of the office. FreeBSD develop-
ers are united by common goals of thoroughness and
quality of work. Unlike many open source projects,
FreeBSD can legitimately claim to have developers
who have worked on the source base for over thirty
years, a remarkable longevity that would be the envy
of many software companies. This diversity of expe-
rience contributes to the success of FreeBSD, com-
bining the pragmatic “real world problem” focus of
consumers building products with the expertise of re-
searchers working on the cutting edges of computer
science research.

Figure 1: Age Distribution of FreeBSD Developers
(2005)

8 FreeBSD Processes

The FreeBSD Project is successful in significant part
because it encapsulates not just many experienced and
highly competent individuals, but also because it has
a set of well-defined development processes and prac-
tices that are universally accepted and self-sustaining.

o Committer life cycle and commit bits - The pro-
cess by which new developers are inducted into
the community and mentored as new members of
the community is well-defined and successful.

e Core Team - Project leadership is selected and re-
newed via regular elections from the developer

team as a whole, insuring both continuity, contin-
ued engagement, and fresh voices lead the project
over time.

Mailing lists - Through extensive and courteous
use of mailing lists for almost all project commu-
nications over many years, consensus is almost
universal in project decision making, and there
is relatively little “stepping on toes” for a project
that spans dozens of countries and time zones.

Web pages and documentation - A well-designed
and extremely complete set of web pages and
documentation provide access to both the current
condition and history of the project, from tutorial
content for new users to detailed architectural in-
formation on the design of the kernel.

Groups/projects - A hallmark of FreeBSD’s suc-
cess is the scalable community model, which
combines the best of centralized software devel-
opment with project-oriented development, al-
lowing long-term spin-off projects to flourish
while maintaining close ties and involvement in
the central project.

Events - The FreeBSD Project exists primarily
through electronic communication and collabo-
ration, but also through in-person developer and
user events occurring continuously throughout the
year. These include developer summits and in-
volvement in both BSD-specific and general pur-
pose conferences.

Honed development and release cycle - With over
ten years of online development and release en-
gineering experience, the FreeBSD Project has
pioneered many online development practices,
combining professional software engineering ap-
proaches with pragmatic approaches to volunteer-
driven open source development. One of the key
elements of this approach is effective and highly
integrated use of software development tools and
revision control, including the use of multiple re-
vision control systems, CVS and Perforce.

Centralized computing resources - Also key to
the success of the project has been the use of
several globally distributed but centrally managed
computing clusters, organized and maintained by
project donors and a highly experienced system
administration team. The FreeBSD.org infras-
tructure "just works”, providing flawless support
for the daily activities of the project.

Conflict resolution - In any development project,
but especially in widely distributed organizations,
effective management of technical disagreements
and conflicts is critical; the FreeBSD Project’s
history is full of examples of successful conflict
resolution leading to both good technical and so-
cial outcomes.

8.1 FreeBSD Committers

A FreeBSD committer is, in the most literal sense,
someone who has access to commit directly to the
FreeBSD CVS repository. Committers are selected
based on four characteristics: their technical expertise,
their history of contribution to the FreeBSD Project,
their clear ability to work well in the FreeBSD com-
munity, and their having made the previous three ex-
tremely obvious. Key to the induction of new com-
mitters is the notion of a mentor: this is an existing
committer who has worked with the candidate over an
extended period and is willing to both sponsor their
candidacy and also act in a formal role in introducing
them to the project. The mentor proposes the candi-
date to one of the Core Team, Port Manager, or Do-
ceng, who respectively approve commit rights for the
src tree, the ports tree, or the documentation tree. A
typical proposal includes a personal introduction of the
candidate, a history of their background and contribu-
tion, and volunteers to mentor them.

Once approved, typically by a vote, the new commit-
ter is given access to the FreeBSD.org cluster and au-
thorized access to CVS. Mentorship does not end with
the proposal: the mentor and new committer will have
a formal ongoing relationship for several months, in
which the mentor works with the new committer to re-
view and approve all commits they will make, helps
them circumnavigate the technical and social structure
of the project. This relationship often continues infor-
mally in the long term, beyond the point where the
mentor has “released” the new committer from men-
torship. Typically, there is significant technical inter-
est overlap between the proposing mentor and the new
committer, as this will be the foundation on which fa-
miliarity with their work, as well as competence to re-
view their work, will have been formed.

f %t

o 2]

{iowm

Figure 2: Number of FreeBSD committers by commit
bit type (2005)

Committers often begin working in one of the var-
ious trees, and gradually spread to working in others.
For example, it is not uncommon for documentation

committers to expand the scope of their work to in-
clude source development, or for src developers to also
maintain a set of application ports. Some of FreeBSD’s
most prolific and influential kernel developers have be-
gun life writing man pages; “upgrading” a commit bit
to allow access to new portions of the tree is a formal
but lightweight process, in which a further proposal by
a potential mentor is sent to the appropriate team for
approval. As with an entirely new committer, a formal
mentorship will take place, in which the new mentor
takes responsibility for reviewing their commits dur-
ing their earlier work with their new commit bit.

346 Total Committers

B vodeepots 23

Figure 3: There is significant overlap, with many com-
mitters working in more than one area of the source
tree. (2005)

8.2 FreeBSD Core Team

The FreeBSD Core Team is the nine-member elected
management body of the FreeBSD Project, and is re-
sponsible for a variety of administrative activities. His-
torically, the Core Team consisted of a self-selected set
of the leading developers working on FreeBSD; how-
ever, in 2000, the model was changed to an elected
model in order to adopt a more sustainable model.
Every two years, nominces from the FreeBSD com-
mitter team volunteer to be placed on the role, and a
one month online election is held. The FreeBSD Core
Team then appeals for and selects a volunteer to act as
Core Secretary.

While the process of selecting the Core Team is
well-defined, the precise responsibilities of the Core
Team are not, and have evolved over time. Some ac-
tivities are administrative in nature: organizing succes-
sive elections, assisting in writing and approving char-
ters for specific teams, and approving new FreeBSD
committers. Other activities are more strategic in na-
ture: helping to coordinate developer activity, mak-
ing sure that key areas are being worked in by cajol-
ing or otherwise convincing developers they are im-
portant, and assigning authority to make significant
(possibly contentious) architectural decisions. Finally,

the FreeBSD Core Team is responsible for maintaining
and enforcing project rules, as well conflict resolution
in the event that there is a serious disagreement among
developers.

8.3 Ports Committers, Maintainers

The FreeBSD Ports Collection is one of the most ac-
tive areas of FreeBSD work. At its heart, the ports
tree is a framework for the systematic adaptation of
third party applications to FreeBSD, as well as a vast
collection of ported applications. In 20053, there were
158 ports committers working on 16,000 application
ports. In addition to ports committers, the notion of a
ports maintainer is also important: while ports commit-
ters are often involved in maintaining dozens or even
hundreds of ports themselves, they also work to fun-
nel third party porting work by over 1,500 ports main-
tainers into the ports tree. Particularly prolific main-
tainers often make good candidates for ports commit
bits. With an average of 100 ports per committer and
11 ports per maintainer, the ports work is critical to the
success of FreeBSD.

The Port Manager (portmgr) team is responsible
for administration of the ports tree, including approv-
ing new ports committers as well as administering
the ports infrastructure itself. This involves regres-
sion testing and maintaining the ports infrastructure,
release engineering and building of binary packages
across half a dozen hardware platforms for inclusion
in FreeBSD releases, as well as significant develop-
ment work on the ports infrastructure itself. Regres-
sion testing is a significant task, involving large clus-
ters of build systems operating in parallel; even minor
infrastructure changes require the rebuilding of tens of
thousands of software packages.

8.4 Groups and Sub-Projects

The FreeBSD Project is a heavily structured and siz-
able organization with many special interest groups
working in particular areas. These groups focus on
specific technical areas, support, advocacy, deploy-
ment and support of FreeBSD in various languages
and in different countries. Some sub-groups are for-
mally defined by the project, and in some cases,
have approved charters and membership. Others exist
more informally, or entirely independent of the central
FreeBSD.org infrastructure, shipping derived software
products.

8.5 A FreeBSD Project Org Chart

While the concept of an organizational chart applies
somewhat less well to a loose-knit volunteer organiza-
tion than a traditional company, it can still be instruc-
tive.

Figure 4: Lines in this FreeBSD Project Org chart rep-
resent more than just downward delegation of authority
found in commercial organizations.

In a traditional organization chart, arrows would rep-
resent delegation of responsibility. In the FreeBSD
Project organization chart, this is only partially true:
typically arrows represent delegation of authority: i.e.,
the FreeBSD Core Team, the elected management
body of the project has assigned authority, by means of
voting to approve a written chart, for security advisory
and other Security Officer activities to the Security Of-
ficer and Security Officer team. As the organization is
volunteer-driven, delegation of of responsibility occurs
up as much as down: the larger body of FreeBSD com-
mitters select a Core Team to take responsibility for a
variety of administrative activities.

8.6 Derived Open Source Projects

FreeBSD provides components, and in some cases the
foundation, of a large number of derived open source
software projects.

o FreeSBIE, a FreeBSD-based live CD image

o mOnOwall, an embedded FreeBSD-based firewall
package

e pfSense, an extensible firewall package based on
mOnOwall

e PC-BSD, a workstation operating system based
on FreeBSD

e Darwin, the open source foundation of the Mac
OS X operating system, which includes both por-
tions of the FreeBSD kernel and user space

e DesktopBSD, a workstation operating system
based on FreeBSD

e DragonflyBSD, a FreeBSD-derived research op-
erating system project

e FreeNAS, a FreeBSD-based network storage ap-
pliance project

In addition, FreeBSD code may be found in an
even greater number of projects that software compo-
nents developed in FreeBSD; this includes open source
projects such as OpenBSD, NetBSD, and Linux sys-
tems.

8.7 Mailing Lists

Mailing lists are the life-blood of the project, and the
forum in which almost all project business takes place.
This provides a long term archive of project activi-
ties. There are over 40 public mailing lists hosted at
FreeBSD.org, as well as a number of private mailing
lists associated with various teams, such as the Core
Team, Release Engineering team, and Port Manager
team. Mailing lists serve both the developer and user
communities. A great many other mailing lists relating
to FreeBSD are hosted by other organizations and in-
dividuals, including regional user groups, and external
or derived projects.

8.8 FreeBSD Web Pages

Web sites are a primary mechanism by which the
FreeBSD Project communicates both internally and
with the world at large. The main FreeBSD.org web
site acts as a distribution point for both FreeBSD as
software and documentation, but also as a central point
for advocacy materials. Associated web sites for the
mailing lists and mailing list archives, bug report sys-
tem, CVSweb, Perforce, and many other supporting
services are also hosted as part of the FreeBSD.org
web site.

Figure 5: Web sites play an integral role in how the
FreeBSD Project communicates with both users and
contributors.

In addition, there are a number of project-specific
web sites for FreeSBIE, TrustedBSD, PC-BSD, Desk-
topBSD, and others, which are linked from the main

FreeBSD.org web site, but are separately authored and
hosted.

8.9 Events

While electronic communications are used as the pri-
mary method of communication for most on-going
work, there is no substitute for meeting people you
are working with in-person. The FreeBSD Project has
a presence at a great many technical workshops and
conferences, such as USENIX and LinuxWorld, not to
mention a highly successful series of BSD-related con-
ferences, such as BSDCan, EuroBSDCon, AsiaBSD-
Con, NYCBSDCon, MeetBSD, and a constant stream
of local user group and developer events.

As these conferences bring together a great many
FreeBSD developers, there are often Developer Sum-
mits occurring concurrently, in which FreeBSD devel-
opers meet to present, discuss, hack, and socialize.
Summits typically consist of a formal session contain-
ing both presentations and moderated discussion, and
information activities, such as hacking and gathering
at a bar or pub.

8.10 FreeBSD Development Cycle

FreeBSD is created using a heavily branched develop-
ment model; in revision control parlance, this means
that there is a high level of concurrent work occurring
independently. The central FreeBSD src CVS reposi-
tory contains a large number of branches; the main of
these is the HEAD or CURRENT branch, where new
features are aggressively developed.

2L

_SSIABE.

Figure 6: Branching is a key element of the FreeBSD
development model: simultaneous work on several
complete versions of FreeBSD at once allows changes
to be merged from one branch to another as they gain
stability, exposing them to successively wider testing
and use.

A series of STABLE branches contains more conser-
vative development, one per major release series, with
changes being trickled from the CURRENT branch to

other branches as they stabilize; this process is referred
to as “Merged From Current”, or MFC. Minor releases
are cut from STABLE branches at regular intervals,
typically three to six months. Major releases are cut
around every 18 months, although sometimes less fre-
quently, and involve the creation of a new STABLE
branch; this allows extremely large features, inappro-
priate for merge to a STABLE release series, to be re-
leased as part of new major (.0) releases.

In addition to the CURRENT and STABLE
branches, RELEASE branches are used for release cy-
cles as well as for security and errata patches following
release.

7-current cutting edge development
6-stable | active development with releases
S-stable legacy branch with releases
4-stable legacy branch

Branched development is also used extensively dur-
ing early feature development. Due to limitations in
CVS, discussed later, this work typically occurs in
branches in the FreeBSD Perforce server.

8.11 FreeBSD Releases

Release engineering is one of the most tricky aspects
of running any large software project, let alone a large-
scale, volunteer-run open source project. The release
team (RE) is responsible for the coordinating the com-
bination of technical and technical engineering nec-
essary to bring a FreeBSD release to fruition. With
membership approved by the Core Team, RE is given
significant leeway to steer the FreeBSD development
process, including placing administrative limits on de-
velopment in the tree (code slushes, freezes), perform-
ing CVS branching and tagging operations, not to men-
tioning begging and cajoling developers into doing that
which is necessary to make a release possible.

As FreeBSD development is centered on revision
control, the revision control operations involved in a
release are important to understanding how releases
occur. Releases occur in release branches, which
are typically branched from a -STABLE development
branch. In preparation for a release, development on
the -STABLE branch is slowed to a more conserva-
tive set of changes in order that existing new work can
stabilize. First a “code slush” occurs, in which new
features are eschewed, but bug fixing and refinement
occurs largely unhindered; any significant changes for
the release require approval by the Release Engineer-
ing team during this period. After a period of slush, a
“code freeze” is started, after which point commits to
the tree may only occur with the specific approval of
the release am. This change in process increases the
level of review taking place for changes, as well as al-
lowing the Release Engineering team to manage risk
for the release as a whole.

A series of beta test releases will be made during
the code freeze, in which major and minor problems

are incrementally identified and corrected. Once the
Release Engineering team is satisfied with the quality
of the tree, branching of the release branch may oc-
cur, which can allow more active development on the
-STABLE branch to resume. A series of release candi-
dates is used to continue to refine the release, with suc-
cessively more broad testing, especially of the install
procedure, which sees less exposure during normal de-
velopment. Once a final release candidate is created,
the release itself may occur, and the release is tagged.

Coordinated with this process for the base tree is
both a release process for the ports and documenta-
tion trees. Final third party package builds occur prior
to the release candidate series, ensuring testing and
compatibility after significant changes have been com-
pleted in the base source tree. The Port Manager team
also places a slush and freeze on the ports tree, al-
lowing testing of the packages together rather than in
isolation. The documentation tree is likewise tagged
as part of the release process; an important aspect of
the release is preparation of the release documenta-
tion, including the release notes identifying changes in
FreeBSD, finalization of translated versions, and up-
dates to the web site and documentation to reflect the
release.

The release branches continue to serve an important
role after the tagging and release of a FreeBSD ver-
sion. Once the Release Engineering team believes that
there is no risk of a re-roll of the release due to a last
minute issue, it will transfer ownership of the branch
to the Security Officer team, which will then maintain
security patches against the release in that branch. The
Release Engineering team may also coordinate the ad-
dition of errata patches to the branch for major stabil-
ity or functional problems identified after the release.
Freezes requiring approval of the Release Engineering
or Security Officer teams are not released on release
branches.

The FreeBSD 6.1 release process is fairly represen-
tative, in that it contained the typical snags and delays,
but produced a very technically successful and widely
deployed release:

25 Jan 2006 Schedule finalized

31 Jan 2006 Code freeze begins

5 Feb 2006 | Ports schedule, announced
5 Feb 2006 6.1-BETA1

19 Feb 2006 6.1-BETA2

23 Feb 2006 Ports tree frozen

3 Mar 2006 6.1-BETA3

6 Mar 2006 Doc tree slush

14 Mar 2006 | 6.1-BETAA4; ports tagged
5 Apr 2006 RELENG_6_1 branch
10 Apr 2006 6.1-RCl1

17 Apr 2006 | Doc tree tagged, unfrozen
2 May 2006 6.1-RC2

7 May 2006 Release tagged

7 May 2006 Build release

8 May 2006 6.1-RELEASE released

Major (.0) releases occur in a similar manner to mi-
nor releases, with the added complexity of creating a
new -STABLE branch as well as a new release branch.
As this occurs quite infrequently, often as much as
several years apart, the process is more variable and
subject to the specific circumstances of the release.
Typically, the new -STABLE branch is created after
a long period of code slush and stabilization in the -
CURRENT branch, and occurs well in advance of the
formal release process for the .0 release. Critical issues
in this process include the finalization of application
binary interfaces (ABIs) and APIs for the new branch,
as many ABIs may not be changed in a particular re-
lease line. This includes library version updates, kernel
ABI stabilization for device drivers, and more.

Incremental releases of FreeBSD, such as the 6.1
and 6.2 releases, largely require appropriately conser-
vative strategies for merging changes from the CUR-
RENT branch, along with some amount of persuasion
of developers to address critical but less technically in-
teresting issues. Typical examples of such issues are
device driver compatibility issues, which tend to rear
their heads during the release process as a result of
more broad testing, and a few individuals bravely step
in to fix these problems.

Larger releases, such as 3.0, 4.0, 5.0, and 6.0, re-
quire much more care, as they typically culminate sev-
eral years of feature development. These have been
handled with varying degrees of success, with the
most frequent source of problems the tendency to over-
reach., While the FreeBSD 4.0 and 6.0 releases were
largely refinements and optimizations of existing ar-
chitecture, the FreeBSD 3.0 and 5.0 releases both in-
corporated significant and destabilizing architectural
changes. Both resulted in a series of incremental re-
leases on a STABLE branch that did not meet the ex-
pectations of FreeBSD developers; while these prob-
lems were later ironed out, they often resulted from a
“piling on” of new features during an aggressive CUR-
RENT development phase.

The success of the FreeBSD 6.x release series has
been in large part a result of a more moderated devel-
opment and merge approach, facilitated by the heavy
use of Perforce, which allows experimental features
to be maintained and collaborated on without merg-
ing them to the CVS HEAD before they are ready.
Prior to the use of Perforce, experimental features were
necessarily merged earlier, as there were not tools to
maintain them independently, which would result in
extended periods of instability as the base tree ceased
to be a stable platform for development. The more ma-
ture development model leaves the CVS HEAD in a
much more stable state by allowing a better managed
introduction of new features, and actually accelerates
the pace of development by allowing avoiding slow-
downs in concurrent development due to an unstable
base.

8.12 Revision Control

Most major technical activities in the project are cen-
tered on revision control. This includes the develop-
ment of the FreeBSD source code itself, maintenance
of the tends of thousands of ports makefiles and meta-
data files, the FreeBSD web site and documentation
trees (including the FreeBSD Handbook), as well as
dozens of large-scale on-going projects. Historically,
FreeBSD has depended heavily on CVS, but has both
extended it (via cvsup), and made extensive use of Per-
force as the project has grown. The FreeBSD Project is
now actively exploring future revision control options.

8.12.1 Revision Control: CVS

CVS, or the Concurrent Versions System, is the pri-
mary revision control system used by the FreeBSD
Project, and holds the authoritative FreeBSD source
trees, releases, etc. [2] This repository has over twelve
years of repository history. The FreeBSD CVS reposi-
tory server, repoman.FreeBSD.org, actually holds four
separate CVS repositories:

/home/ncvs FreeBSD src

/home/pcvs FreeBSD ports

/home/dcvs FreeBSD documentation
/home/projcvs FreeBSD project

The FreeBSD Project supplements CVS in a vari-
ety of ways; the most important is cvsup, which allows
high-speed mirroring and synchronization of both the
CVS repository itself, as well as allowing CVS check-
outs without use of the heavier weight CVS remote ac-
cess protocol. This permits the widespread distribution
of FreeBSD, as well as avoiding concurrent access to
the base repository, which with CVS can result in a
high server load. Most developers work against local
CVS repository mirrors, only using the central reposi-
tory for check-in operations.

Over time, the technical limitations of CVS have be-
come more apparent; cvsup significantly enhances the
scalability of CVS, but other limits, such as the lack
of efficient branching, tagging, and merging operations
have become more of an issue over time.

8.12.2 Revision Control: Perforce

While CVS has served the project extremely well, its
age is showing. CVS fails to offer many key features
of a distributed version control system, nor the nec-
essary scalability with respect to highly parallel de-
velopment. To address these problems, the FreeBSD
Project has deployed a Perforce server, which hosts
a broad range of on-going “projects” derived from
the base source tree. [6] The most important feature
that Perforce brings to the FreeBSD Project is support
for highly branched development: it makes creating
and maintaining large-scale works in progress possible

through lightweight branching and excellent history-
based merging of changes from parent branches to
children. ‘

Currently, most major new kernel development work
is taking place in Perforce, allowing these projects to
be merged to the base tree as they become more ma-
ture, avoiding high levels of instability in the CUR-
RENT branch. Perforce also makes collaboration
between developers much easier, allowing develop-
ers to monitor each other’s works in progress, check
them out, test them, and modify them. Projects that
have been or are being developed in Perforce include
SMPng, KSE, TrustedBSD Audit, TrustedBSD MAC,
SEBSD, superpages, uart, ARM, summer of code,
dtrace, Xen, sundv, GEOM modules, CAM locking,
netperf, USB, ZFS, gjournal, and many others. CVS
remains the primary and authoritative revision control
system of the FreeBSD Project, with Perforce being re-
served for works in progress, but it plays a vital role in
the growth of the project, so cannot be ignored in any
serious consideration of how the project operates.

8.12.3 Revision Control: The Future

The FreeBSD Project is in the throes of evaluating po-
tential future distributed version control systems as a
potential successor to CVS and Perforce, with the goal
of subsuming all activity from both into a single repos-
itory. The Project’s requirements are complicated, both
in terms of basic technical requirements, as well as
being able to support our development processes and
practices. Primary of these requirements is that the en-
tire current CVS repository and history be imported
into the new repository system, a task of non-trivial
complexity, and that it support the new branched de-
velopment model used heavily in Perforce. Another
important consideration is continued support for the
cvsup infrastructure for the foreseeable future.

8.13 Clusters

The FreeBSD Project makes use of several clusters
scattered around the world, typically located at co-
location centers. These clusters are possible due to
the generous donations of companies using FreeBSD.
One of the most important aspects of these donations is
that they are not just significant donations of servers or
rack space, but donations of administrative staff time
and expertise, including hands to rearrange and handle
new and failing hardware, reinstall and update systems,
and help troubleshoot network and system problems at
bizarre hours of the day and night.

8.13.1 FreeBSD.org cluster

While there are several FreeBSD Project clusters, The
FreeBSD.org Cluster is hosted in Santa Clara by Ya-
hoo!, and is home of many of the most critical systems
making up the FreeBSD.org domain.

hub, mx1, mx2

ftp-master, www

freefall, builder
repoman, spit, ncvsup

Ports cluster pointyhat, gohans, blades
Reference systems | sledge, pluto, panther, beast

Name server nsO

NetApp filer dumpster

Mail servers

Distribution

Shell access
Revision control

All of these systems have been made available
through the generous donations of companies support-
ing FreeBSD, such as Yahoo!, NetApp, and HP. The
systems are supported by remote power, serial con-
soles, and network switches.

8.13.2 Other Clusters

The FreeBSD.org cluster hosted at Yahoo! is not
the only concentration of FreeBSD Project servers.
Three other major clusters of systems are used by the
FreeBSD Project:

e The Korean ports cluster hosted by Yahoo! in Ko-
rea provides a test-bed for ports work.

e allbsd.org in Japan provides access to many-
processor Sun hardware for stress and perfor-
mance testing.

e The Sentex cluster hosts both the FreeBSD Se-
curity Officer build systems, as well as the Net-
perf cluster, a network performance testing clus-
ter consisting of a dozen network booted systems
with gigabit networking. This cluster has also
been used to test dtrace, hwpme, and ZFS.

e The ISC cluster hosts half of FreeBSD.org, as
well as a large number of ports building systems,
the FreeBSD.org Coverity server, test systems,
and more.

8.14 Conflict Resolution

Conflict resolution is a challenging issue for all orga-
nizations, but it is especially tricky for volunteer orga-
nizations. FreeBSD developers are generally charac-
terized by independence, a good sense of cooperation,
and common sense. This is no accident, as the com-
munity is self-selecting, and primary criteria in eval-
uating candidates to join the developer team are not
just technical skills and technical contribution, but also
the candidate’s ability to work successful as part of a
larger global development team. Conflict is success-
fully avoided by a number of means, not least avoiding
unnecessary overlap in work areas and extensive com-
munication during projects that touch common code.
Despite this, conflicts can and do arise: some con-
sist purely of technical disagreements, but others result
from a combination of the independence of spirit of
FreeBSD developers and the difficulty of using solely

online communications to build consensus. Most con-
flicts are informal and self-resolving; on the rare oc-
casion where this is not the case, the FreeBSD Core
Team is generally responsible for mediating the con-
flict. For purely technical disagreements, reaching a
decision by careful consideration (and fiat) is often
successful, relying on the elected authority of the Core
Team to make a final decision. As technical disagree-
ments are often only the trigger in more serious con-
flicts, the Core Team typically selects a mediator (usu-
ally a Core Team member) to help work to improve
communications between the disagreeing parties, not
just pick a “right” technical solution.

8.15 Bike sheds

“Bike sheds” are a very special kind of conflict found,
most frequently, in technical communities. First de-
scribed by Parkinson in a book on management, the
heart of the issue of the bike shed lies in the observa-
tion that, for any major engineering task, such as the
designing of a nuclear power plant, the level of exper-
tise and investment necessary to become involved is
so significant that most contributions are productive;
however, the building of a bike shed is something that
anyone (and everyone) can, and will, express an opin-
ion on. [5] Strong opinions prove easiest to have on
the most trivial details of the most unimportant topics;
recognizing this problem is key to addressing it. Bike
sheds, while not unique to FreeBSD, are an art-form
honed to perfection by the project. Since they have be-
come better understood, they have become much easier
to ignore (or dismiss once they happen). This terminol-
ogy has now been widely adopted by many other open
source projects, including Perl and Subversion.

9 Conclusion

The FreeBSD Project is one of the largest, oldest, and
most successful open source projects. Key to the idea
of FreeBSD is not just software, but a vibrant and ac-
tive online community of developers, advocates, and
users who cooperate to build and support the system.
Several hundred committers and thousands of contrib-
utors create and maintain literally millions of lines of
code in use on tens of millions of computer systems.
None of this would be possible without the highly
successful community model that allows the FreeBSD
Project to grow over time, as well as permitting other
projects to build on FreeBSD as a foundation.

References

[1] DINH-TRONG, T. T., AND BIEMAN, J. M. The FreeBSD
Project: A Replication Case Study of Open Source Develop-
ment. IEEE Transactions on Software Engineering 31, 6 (2005).

[2] FREE SOFTWARE FOUNDATION. cvs - Concurrent Versions
System.

http://www.nongnu.org/cvs/.

[3

—

(4]

[5]

(6]

(7]

FREEBSD PROJECT. FreeBSD Project home page.
http://www.FreeBSD.org/.

JORGENSEN, N. Putting it all in the trunk: incremental software
development in the FreeBSD open source project. Information
Systems Journal 11, 4 (2001), 321-336.

PARKINSON, C. N.
progress. John Murray.

Parkinson’s Law; or, the Pursuit of

PERFORCE SOFTWARE. Perforce, the Fast Software Configura-
tion Management System.
http://www.perforce.com/.

RICHARDS, P. eXtreme Programming: FreeBSD a case study.
In UKUUG Spring Conference and Tutorials: Conference Pro-
ceedings (2006), UKUUG.

Organized by:

WillyStudios.com

I.T. Consulting, Web & VoIP Services

1-20040 Carnate, Milano, Via Carducci, 9
Tel. (+39) 02 44417203 - Fax. (+39) 02 44417204
P.IVA - VAT ID: IT04696330960

info@willystudios.com

