
DeRRLEe
> bb bb
BP Drotoooit

SIMPLIFIED USER’S GUIDE

DATABUS

PROGRAMMING

LANGUAGE

by GERARD CULLEN

Created especially for the business professional and executive

DDL

DATABUS

PROGRAMMING

LANGUAGE

by GERARD CULLEN

©Copyright 1972

Foreword

The Datapoint 2200, from Datapoint Corporation, has established a secure reputation as the

business computer system. Currently, many hundreds of Datapoint 2200 systems are being

used in a wide variety of commercial data applications throughout the world. The 2200 rep-

resents a truly unique combination of capabilities, which are indicated in the terms, “dis-
2 66

persed data processing”, “data communications”, “remote job entry”’, “‘interactive computer

communications,” “dual tape cassettes for program and source data”, and “full line of peri-

pherals including tapes, disks and printers”, all of which are descriptive of the system capa-

bility and work potential of the 2200; but the real key to the Datapoint 2200’s amazing

versatility is discovered in the fact that it is a fully programmable, general purpose computer.

Additionally, comprehensive software support is provided along with system hardware,

which includes the family of DATABUS programming languages. This high-level language is

available in 7 different versions depending upon the individual 2200 system’s configuration.

It enjoys a special status in the family of computer languages because it constitutes a

powerful and sophisticated tool in the hands of a professional programmer and at the same

time permits easy mastery and use by the non-professional programmer — such as a business

executive — for applications germane to his job duties.

This booklet is written primarily for those persons in the latter category — the

once-in-a-while programmers who find it useful, convenient and productive to be able to

communicate directly with a desk-top computer such as the Datapoint 2200. The study of

this text should, in a short time, allow you to create and operate your own programs on a

2200 system and will at the same time give you a much better “feel” for your company’s

total computing operation. Computers are, of course, such an integral part of today’s

business world that it is difficult to function effectively as an executive without knowledge

of how they operate, their potential, and their limitations. The booklet also constitutes an

easy introduction for professional programmers to the language and will provide a basis for

reading the DATABUS Reference Manual which contains all of the booklet instructions for

each DATABUS language.

TABLE OF CONTENTS

Page

Chapter Las ssicle ee setcen sense latiraiece see esesehe 4

Chapter os once: wen ei omnia ve 5

GRAPTCE Se iene we nseceses sisinue Stee SEIS BSE 8

Casper 4 isis orks deans oxene pens wea 14

Chapterts\a9. Wie lecs cue Lasalle ecthortnsecSilemsst 22

Chapter 6: jcc ¢ geac sag aes 2 seis 2 oa 26

Chapte nt) 6 ieracbese esses + ovexens «theses stellate @nere 33

Chapter Sis. <sessis s saials eorarara areca 6 vein aie 42

Chapter 9s scans come 5 seme Saas we ss 48

Chapter 1 cc. sires sates srseiave carla oases 51

Chaptet 11 sccicscie sakes Vetch aia ees 54

How to Use This Booklet

Flowcharting

DATABUS Lesson 1

Displaying on the screen

DATABUS Lesson 2

Keying-in data

Labels

DATABUS Lesson 3

Printing

DATABUS Lesson 4

Arithmetic

DATABUS Lesson 5

Loops

Keyboard and Display Buttons

Beep

Click

DATABUS Lesson 6

Cassette Tape Operations

DATABUS Lesson 7

Subroutines

Linking up with other DATABUS programs

DATABUS Lesson 8 (Advanced Techniques)

Character Manipulations

Communications

Summary of Databus Languages

How To Run a Program On The Datapoint 2200

The Editor

The Compiler

The Interpreter

DATABUS 2 instructions

Chapter |

How To Use This Booklet

Most professional businessmen and women reach a point in their careers when writing a

computer program or demonstrating a computer method becomes important ...or even

essential.

Since its introduction, the Datapoint 2200 has offered computer and systems personnel a

real desk-top computer system. In the past, many business applications demanded that

programs be written in assembly language, the primary (and most time-consuming) computer

language. Unfortunately, this language prevents many management and executive personnel

from using a computer effectively because of its complexity.

Now, with development of a whole family of Databus languages, a person with no previous

programming experience can write English-language programs with just a small amount of

training. Even normally complex operations, such as creating records on magnetic tapes,

printing forms, and communicating via telephone lines can be done with a minimum of
effort.

This booklet does not cover all the capabilities of DATABUS, nor is it intended to make

you an expert programmer. Only fundamental concepts are covered, though enough insights

are given to allow further study. When you are through, you should be able to create a

program of your own for any practical business purpose.

Each of the first five chapters covers some aspect of DATABUS usage. Chapter 11] deals

with editing and “compiling” a program so the Datapoint can accept and run it. It is not

necessary to read the entire book, for instance, if all you want is to display a message on the

screen, The first lesson will arm you with enough knowledge to do that. Then you simply

skip over to the section on compiling and running a program which is Chapter 11.

Read as much as you need. If for some reason, you really get hooked, write for a copy of

our DATABUS Reference Manual and become an expert. There’s a whole family of DATA-

BUS languages, each with specific powers, such as communications ability or extra com-

mands to handle the Disk and reel-to-reel magnetic tapes.The Datapoint Systems Book des-

cribes these other versions of DATABUS. The “Simplified Users Guide’ is intended to give

you a start towards becoming a more confident afd competent Datapoint 2200 user.

And, as you go through the booklet, keep these points in mind:

Probably 50 percent of all work by professional programmers is simply discovering what

management wants done.

People, unlike machines, tend to learn their jobs by osmosis as they work, just as they

learn the internal politics and exceptions inherent to all business systems.

A “loose” business organization will never be so shaken up as when an uncaring and

uninterested computer attempts to learn its rules, since the rules might not be well defined.

And finally, people are the critical ingredient in any computer operation, no matter what

the capabilities of any particular machine might be.

Chapter 2

Flow Charting

Entire books have been written about flowcharting, but we need only deal with the basics.

The concept of schematically illustrating a thought process is the first step in writing an

actual program. Some people attach an aura of mystery to flowcharts, but our goal is to

dispel mystery.

You should be able to define almost any task by using three fundamental flowchart

symbols. If your flowchart contains enough detail, your program should almost be a step-

for-step textual replica. Simple programs will not always require a flowchart but, at the

onset of your programming career, flowchart everything.

The following examples offer some insights into the logical thought processes that make

up a flowchart.

There once was a programmer who became so enamored with the computer’s

required logical way of thinking that his whole life revolved around small diagrams

known as flowcharts.

A DECISION INPUT/OUTPUT

DIAMOND ASTATEMENT RECTANGLE paralLELOGRAM

MISCELLANEOUS START AND

BUBBLE STOP BALLOONS

FOR NOTES

Using these symbols, the programmer could astound his friends by being very lucid

about the things he wanted to tell them. Note that, like computers, no two things are

happening at the same time, and all possibilities are covered. Things happen one after

the other in a step-by-step fashion. No daydreaming is allowed.

FLOWCHARTING

eee ee

FRED’S FLOWCHART MAP

TO HIS HOUSE

STATEMENT BOX

A LOOP!

DECISION

DIAMONDS

Fred could have added more to his flowchart map to cover someone getting lost, or

a flat tire, or another calamity, but enough detail has been shown to demonstrate the

pains one must take to insure clarity and to assure that events are taken in their

logical order.

FLOWCHARTING

Note also that we must take one step after another to make sure our plan fits the task at

hand. If you’re the kind of person who outlined all his school reports before writing them,

you'll have no trouble with programming.

PROBLEM: Flowchart the process of withdrawing money from your checking account.

Check for overdrawing. Use decision diamonds and statement boxes.

Fe a NER SE a |

SOLUTION

Checking account

withdrawal flowchart

Nn

Chapter 3

Databus Lesson 1

Displaying On The Screen

One of the nicest features about the Datapoint 2200, as tar as programmers are con-

cerned, is the similarity of the various models of the system. Memory sizes can vary from 2K

to 16K, but all Datapoint 2200’s have keyboards, display screens, cassette tapes, and of

course, the internal computers are alike as far as the DATABUS language is concerned

whether they are Version I or II.

This provides many advantages over conventional minicomputer systems, where the

system programmer designing a conversational-level language often has no idea what attach-

ments or peripherals will be added to the main system. Knowing the basic configuration as a

constant beforehand has allowed our people to create in DATABUS a language that already

had provisions for the Datapoint’s peripherals.

The Display Instruction

With this in mind, we’ll write a short program to put some text on the screen, which is 12

lines deep by 80 columns wide. You can put your message anywhere you like.

Incidentally, you'll see the word “cursor” frequently. It’s a shorthand word for the across-

and-down position in which the letters will appear on the screen.

Let’s write a short program to put a message on the screen. We can even flowchart it. By

the way, as you study this booklet, leave lots of flowcharts lying around your desk and on

lunch napkins. Before you know it, you'll be considered the staff expert on computers.

DISPLAYING ON THE SCREEN

Now, we have the flowcharts and we'll jump ahead and write the program even before you

know the rules.

DISPLAY +*V1, #H1, *EF, “THIS IS THE MESSAGE.”

STOP \ NI a

THE COMMAND CURSOR ERASE THE
POSITION THE MESSAGE!

SCREEN (NOTE QUOTES)

Not too bad, right? Remember that the computer works from left to right and executes

each operation as it comes to it.

What’s the *H1, *V1 stuff? You’ve probably already guessed that the letters H (Horizon-

tal) and V (Vertical), prefaced by asterisks, tell the computer where to put the first letter of

the message, which must be bracketed by quotes. Basically, it’s just like playing a game of

“Battleship” because you must give the “across and down” number of every shot. Note

where there are commas and spaces and don’t forget to include them.

The command *EF instructs the computer to erase the present cursor position, all

characters from that position to the right side of the screen, and all lines after that. As the

cursor was in the upper left hand corner the entire screen is amazingly cleared including the

cursor position. It’s a good idea to start every message with an erase command to wipe out

old love letters or whatever was left on the screen when you arrived.

The quotation marks around the message itself tell the computer that this is what’s to be

displayed. Since the quotes indicate when to start and stop displaying, you can’t use them as

part of your message or you'll mess things up.

Below is the result of what our short program would produce. Notice that once we have

defined the beginning cursor position, the rest of the message falls into place after it and no

further definition of the cursor position is necessary.

DATAPOINT 2200 DISPLAY SCREEN

1 HORIZONTAL (H) 80

1 @ THis IS THE MESSAGE

The cursor position tells where

the first letter of the message

VERTICAL|(V) will appear.

12

DISPLAYING ON THE SCREEN

If this is still confusing, let’s compare the program to the flowchart. The flowchart re-

mains the same except that it’s now written horizontally.

Ny
DISPLAY *V1, *H1, *EF,“THIS THE MESSAGE”

STOP

Flowcharts can be very helpful, as you can see, if you include enough details. Once you

fully grasp the concept, your flowcharts will be more abbreviated.

There are always two ways to do anything in programming. We can rewrite our program

and accomplish the same end result.

DISPLAY *H1,*V1, *EF

DISPLAY *H1,¥*V1, ‘THIS IS THE MESSAGE”

STOP

The first line of the program erases the screen, and the second displays the message.

Obviously, this involves more work, and you should string things together whenever possible

to save work.

You'll see that most of the example programs have a STOP instruction at the end. This

tells the computer that there are no more instructions and to stop running this program. If

you forget to put it in, the DATABUS compiler* (which will be covered later) will auto-

matically put it in for you.

To illustrate this point, let’s write another program to display a more complex message.

Look at the program and then look at the result.

DISPLAY *H1,*V1,*EF, ‘HELLO THERE! ”, *H20, *V6:

“1 AM THE DATAPOINT 2200”, *H30, *V11, “NICE TO MEET YOU”

STOP

*Compiler — A special software package which automatically allows a program written in

DATABUS to be translated into the basic “language” or symbols understood by the

computer.

10

DISPLAYING ON THE SCREEN

DATAPOINT 2200 DISPLAY SCREEN

1

1

1 20 30 80

HELLO THERE!

1AM THE DATAPOINT 2200

NICE TO MEET YOU

Did you notice that there was a colon (:) at the end of the program’s first sentence? That
colon is a handy little device as it allows you to write instructions that are longer than the
space of a single line. In effect, the colon tells the computer to “keep reading”.

If it weren’t for the colon, we would have had to write it this way:

DISPLAY ¥*H1, *V1, *EF, “HELLO THERE!”

DISPLAY *H20, *V6, ‘| AM THE DATAPOINT 2200”
DISPLAY *H30,*V11, “NICE TO MEET YOU”
STOP

If you’re paid by the word, you can write your programs the long way, but the short
method with the colon works fine.

You're almost finished with DISPLAY, but we should cover one more thing. Every time
the computer finishes a DISPLAY statement, it automatically sends a carriage return (CR)
and line feed (LF) to the screen. The names imply the same operation that occurs when you
hit the return key on a regular typewriter. Unless told otherwise, the cursor jumps to the
beginning of the next line. This example should help explain things.

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

STOP

*H1,*V1,*EF, “MARY”
“HAD”

“EITTEB”

“LAMB”

11

DISPLAYING ON THE SCREEN

DATAPOINT 2200 DISPLAY SCREEN

1 MARY
HAD

A

LITTLE

LAMB

The automatic CR/LF of the

DISPLAY instruction puts each

word on a new line.

12

At some time, you might not want this to happen. You might want to leave the cursor

where it was for one reason or another. If this is the case, end the DISPLAY instruction with

the semicolon (;). This cancels the automatic CR/LF function.

DISPLAY *H1,*V1, *EF, “MARY ‘7;

DISPLAY “HADJ;

DISPLAY “AS”;

DISPLAY “LITTLEO”;

DISPLAY “LAMB_";

STOP

DATAPOINT 2200 DISPLAY SCREEN

1 MARY HAD A LITTLE LAMB

The semicolon deletes the

automatic CR/LF function.

12

DISPLAYING ON THE SCREEN

Naturally, we could have written the sentence on the screen originally by putting the

entire thing in one program sentence, but you can see how the semicolon works. Notice that

each word after DISPLAY has a space after it. This was done so that we wouldn’t end up

with something like Maryhadalittlelamb, which is perhaps economic but aesthetically

unappealing.

None of the examples used the bottom (12) line of the screen, but you should be aware

that if the bottom line is used the screen is automatically “‘rolled up” one line. So if you

write in line 12, whatever was in the top line (Line 1) rolls up and out-of-sight unless you

write a semicolon which suppresses the line roll-up feature in this case.

That’s it. If all you want to do is get something on the screen, jump to Chapter 11.

Here’s a summary of commands we covered and some extras we didn’t.

Chapter Summary

DISPLAY the screen instruction

*H(1-80) horizontal cursor position

*V(1-12) vertical cursor position

*EF erases all after cursor position in left to right, top to bottom order

*EL erases to end of the line only

*R moves all lines up one (rolls up)

the top line is rolled off the screen

“MESSAGE” message must be bracketed by quotes (programmers call this a literal)

i allows instructions longer than one line

5 suppresses automatic carriage return and line feed in DISPLAY instruction

STOP the end of the program. The interpreter program is reloaded.

Problems:

1. Write a program that will erase the screen and then display your name in

the center of the screen.

2. Problem 1, but erase it after you write it, then write it again.

Solution: 4

he DISPLAY VHT, HEF
DISPLAY *V6, *H33, “ATTILLA THE HUN”

STOP

2. DISPLAY ¥*V1, *H1, *EF

DISPLAY *V6,*H35, ‘‘COPERNICUS”

DISPLAY ¥*V1, *H1, *EF

DISPLAY *V6, *H35, “COPERNICUS”

STOP

13

Chapter 4

Databus Lesson 2

Using The Keyboard For Data Entry

If you have ever sat in on any Datapoint demonstrations, you know that the keyboard

provides one of the primary means of communicating to the 2200 what it is you wish done.

You also know that if the program running in the Datapoint’s computer is written so as to

ignore the keyboard, you can pound on the keys to a fare thee well and still have no effect

on the computer’s actions.

It’s evident that, like the display screen, the keyboard must be “recognized” by the com-

puter in order to enter data. The Datapoint’s keyboard is almost identical to that of a

standard office typewriter with the addition of an adding machine keyboard and five special

function keys which we'll cover in another lesson. Upper and lower case letters can be used,

from the keyboard and to the display screen.

The Keyin Instruction

With the DISPLAY instruction, we had our messages all neatly tucked between the

quotes, and we effectively reserved space for the message when the program was loaded into

the computer.

KEYIN — the term for keyboard entered information — is somewhat different. You don’t

know exactly what an operator might type in as a response to a question. But, space must be

reserved to accommodate this incoming data. For instance, if the operator was to answer a

query regarding a person’s name via the keyboard, and that person’s name was Harold Joy

Hupmobile when the longest name you had planned for was Bill Ford, Harold would lose

some of his name because the program would not accept such a long name.

How do we reserve space for incoming data? Simply by taking a claim on some space and

putting a name on it. Many programming books use the analogy of the mailman’s pigeon

hole sorting-case with addresses indicated for each “hole.”

That’s pretty close, and you should keep the idea of a space with a label on it in mind.

We'll get back to the problem of reserving space after we examine the KEYIN instruc-

tions.

KEYIN shares several traits of the DISPLAY instruction so aside from the new concept of

storing the incoming keyboard data, much of this concept will be already familiar to you.

Let’s write a short program to ask the operator to type in his name. Since we’re still fairly

new at this game, a flowchart will help organize the task and will also impress any onlookers

that this must be a very erudite and technical booklet.

14

KEYING-IN-DATA

And, for fun, we’ll display back to the Operator what his name is, as if he didn’t know.

FLOWCHART

To accept
keyboard data

You probably have noticed that this program doesn’t accomplish anything useful but itshould serve as a good example. Look at the instructions:

NAME DIM 40

og DISPLAY *H1,*V1,*EF, “NAME PLEASE?”
THIS IS A LABEL KEYIN *H13,*V1, NAME

DISPLAY *H40, *V12,NAME
STOP

THESE ARE INSTRUCTIONS

KEYING-IN DATA

Now look at the result of the program:

DATAPOINT 2200 DISPLAY SCREEN

1 40 80

1@ NAME, PLEASE? ORVILLE WRIGHT

The program displayed this

The operator typed this in

12 ORVILLE WRIGHT

The arrows indicate what the operator typed in.

Let’s look at the program and find out what happened. Notice the NAME DIM 40 state-

ment. This looks complex, but the end result is a space labeled, NAME, with room for 40

characters. You might think of this as “dimensioning” a space in the computer called NAME

to allow for a typed input of up to 40 characters.

The DISPLAY should be an old friend by now. Note that we cleared the screen with-an

*EF, and asked the question.

Look closely at the KEYIN instruction. There are the *V, *H symbols which are familiar

to you. But, instead of a message in quotes, we now have the label, NAME. Several things

happen here and all are important.

First, the NAME label has been previously defined in the NAME DIM 40 statement and

the KEYIN instruction loads the data into that reserved space.

Secondly, when keyboard data is required from the operator, the cursor actually is visible

as a flashing rectangle beginning at the spot defined by the *V, *H position coordinates. As

the operator types in his name, the flashing cursor automatically moves over to the next

adjacent character position.

Thirdly, if the operator attempts to type in more than 40 characters, including punctua-

tion and spaces, the cursor will halt and an audio “beep” will indicate that the limit of the

space allowed has been reached.

Lastly, the operator tells the computer he’s finished entering his name by tapping the

Enter key. The flashing cursor will disappear, and the name will be loaded into the label,

NAME. Up until the time the Enter key is tapped, the name can be modified by use of the

Cancel or Backspace keys.

16

KEYING-IN-DATA

HORIZONTAL FLOWCHART AND PROGRAM FOR KEYIN INSTRUCTION EXAMPLE.

Awam E DIM 40
DISPLAY *H1,*V1,*EF, “NAME, PLEASE? ”

KEYIN *H13,#V1, NAME

DISPLAY ¥*H40,#V12, NAME

STOP

One more thing. Did you notice that the DISPLAY *H40, *V12, NAME instruction had

no quotes? In this case, we wanted the contents of NAME displayed. No quotes are neces-

sary. They’re only needed when we want a specific message displayed. More on this

later. As you can see, the use of labels provides considerable power. Here are some guide-

lines concerning labels or categories of data since you’ll undoubtedly want to make up some

of your own:

LABEL RULES: a. No more than 6 characters

b. Begin with an alphabetic character

c. Don’t use the same name twice —

you'll confuse the computer

d. All labels must be written at the first part of

program

e. Each KEYIN instruction must have at least one label

GOOD WON'T WORK

ADDRES 73SKDO (begins with number)

TARZAN ADDRESS (too long)

LOOP '! HELP (illegal first character)

C4 44444 (illegal first character)

If nothing else, labels can save a pile of work, and you should become familiar with them.

We’ve discussed the DIM or “dimension” labels, and there’s one more that’s very useful.

MESSAG INIT “‘NAME, PLEASE?”

NAME DIM 40

DISPLAY *H1, *V1, *EF, MESSAG

KEYIN *H13, *V1, NAME

DISPLAY ¥*H40, *V12, NAME

STOP

This program produces exactly the same result as the example on page 16. The label MES-

SAG has been “‘initialized”” by the INIT statement to contain a specific message. The DIS-

PLAY instruction finds MESSAG and displays its contents, in this case, the message

“NAME, PLEASE?”

7

KEYING-IN-DATA

At first glance, it appears that there is only a slight difference between the DIM and INIT

statements. It is an important difference, however, and bears scrutiny.

If you write NAME DIM 40 the computer saves 40 character spaces, fills them with the

equivalent of blanks and attaches to them a name, in this case, NAME. We primarily use this

when incoming data is to be stored, such as keyboard inputs.

If we wrote NAME INIT “GEORGE GORDON”, the computer reserves a space of 13

characters and places GEORGE GORDON in those spaces. The INIT statement is very handy

when you might want to display one message many times during a job. By using INIT and

the label, you only have to define it once and then simply call it by its name, which is the

label. Data can be loaded into an INIT space just as with a DIM, but once you’ve done that,

the original message is lost.

MORE ON KEYIN

Most programming languages contain an assortment of shortcuts that allow a system pro-

grammer to produce more work over a given amount of time. DATABUS is no exception.

The following example illustrates a shortcut that can be done by means previously

explained, but if a substantial task is planned, this technique might save time.

By this time you're familiar with our enter-your-name program:

NAME DIM 40

DISPLAY *H1,*V1, *EF, “NAME, PLEASE?”

KEYIN *H13,*V1, NAME

DISPLAY *H40,*V12, NAME

STOP

We can write this same program and save a step by using KEYIN’s power of display.

NAME DIM 40

KEYIN *H1, *V1, EF, “NAME, PLEASE? ", NAME

DISPLAY *H40, *V12, NAME

STOP

That’s pretty strange, right? But the result is still the same as the screen example on page

16. But now we have eliminated one of the DISPLAY instructions and made KEYIN do the

work,

To understand this, simply remember that if you write something between quotes in the

KEYIN instructions, it will be displayed, and the cursor will appear immediately after the

displayed text and await the operator’s response.

Why have this feature in KEYIN? Many application programs involve a fill-in-the-form

technique, and this helps speed up the process. Here’s a short program that asks the name

and address of the operator.

NAME DIM 40

ADDR DIM 40

CITY DIM 40

STATE DIM15

KEYIN *H1, *V1, *EF, “NAME: ", NAME, *H25, “ADDRESS: ",ADDR

KEYIN “CITY:”, CITY, #H25, “STATE: ", STATE

STOP

Aside from the labels, the program uses only one type of instruction. This is confusing but

follow through the KEYIN instruction. Notice that it displays and then waits for the oper-

ator to keyin the information.

18

KEYING-IN-DATA

The result appears as this:

DATAPOINT 2200 DISPLAY SCREEN

1 25 80

1@ NAME: GEORGEJONES ADDRESS: 105 ROCK ST.

CITY: BOULDER STATE: COLORADO

The two KEYIN instructions
yield an effective data entry
program.

We used the display power of KEYIN to show the operator the questions. Note that the

colon used was inside the quotes — don’t confuse it with the colon that allows you to write

instructions larger than one sentence. The second KEYIN instruction has no V&H

commands. Why? The auto CR/LF function put the cursor at the beginning of the next

sentence. Note also that to move the cursor across the screen, it is not necessary to redefine

the vertical (V) position.

DATAPOINT 2200 DISPLAY SCREEN

1 80

1 NAME:GEORGEJONESADDRESS: 105ROCK ST.

CITY: BOULDERSTATE:COLORADO

Be sure to space your questions
out or you'll end up with this bad

example.

This is one of the features which makes DATABUS 0 easy for working up an applications
program.

KEYING-IN-DATA

Chapter Summary

KEYIN

*H

rv;

Label DIM Amount

Label INIT “MESSAGE”

Problems:

Accepts Data From Keyboard And Stores It

In Labeled Areas

Horizontal Location On Screen

Vertical Location On Screen

(See DISPLAY for more features)

Names and reserves space for input data

Allows storage of message and later use by label and name

1. Ask for the data to be typed in as answers to three questions, month?, day?, year?, .

Display the date back in a MO/DAY/YR format.

Solution:

20

PROGRAM

MONTH

DAY

YEAR

KEYING-IN-DATA

DIM 2

DIM 2

DIM 2

DISPLAY *V1, *H1 “MONTH? ”

KEYIN *V1,*H8, MONTH

DISPLAY *V1, *H10, “DAY”

KEYIN *V1, #H14, DAY

DISPLAY * V 1,,;#H18, “VEAR?””

KEYIN *V1,*H24, YEAR

DISPLAY *H1,*V11, MONTH, “/", DAY, “/"", YEAR

2. Write problem Number | using only one DISPLAY instruction. Also, take advantage of

the automatic carriage return and line feed that each KEYIN and DISPLAY instructions

gives to save some work.

MONTH

DAY

YEAR

DIM 2

DIM 2

DIM 2

KEYIN *V1,*H1,*#EF, “MONTH?”, MONTH, *H10, “DAY?", DAY:

*H18, “YEAR”, YEAR

DISPLAY *H37, MONTH, “/" ,DAY,"/", YEAR

STOP

DATAPOINT 2200 DISPLAY SCREEN

1

11

12

10 18 80

MONTH? 9 DAY? 14 YEAR? 72

9/14/72

37

21

Chapter 5

Databus Lesson 3

Printing the Data

Not every 2200 user is fortunate enough to have a printing unit attached to his Datapoint

but, for those who do, this chapter will tell you how to go about getting your programming

creations printed out.

At the time of this writing, four printers are available with the Datapoint 2200 and there

will be more as new devices are introduced. It doesn’t make much difference which printer

you are blessed with except that it affects the line width which is usually either 80 or 132

columns. Columns are the number of spaces across.

You might even have a vintage teletype machine connected with your Datapoint through

a communications adaptor or a high speed line printer. In either case, with the DATABUS

language, the differences are taken care of automatically when you configure the compiler

and the interpreter. All this is explained with striking clarity in Chapter 11.

So, for the moment, all you have to worry about is the number of characters across the

page format of your printer unit and perhaps the availability of such goodies as a top-of-

form feed, which we’ll cover later.

The Print Instruction

If you have read and digested Chapters 2 and 3, this will be familiar stuff to you. The

instruction PRINT follows this general pattern of DISPLAY and KEYIN.

For purposes of discussion, we will assume you have a printer with 132 columns, and

further that it is an impact printer. Impact means the printer works like a typewriter — the

letters are formed by smashing metal letters coated with ink (or through a carbon ribbon)

onto paper. Not that this is of serious concern to us but there must be 50 ways of making

data processing printers. Some squirt liquid ink at the paper while others use a heat techni-

que. So be happy with what you have.

Before we write a program, consider the printer sitting next to you. Observe that there

will be sprocket-holes along the sides, and the paper will be fed by moving the sprockets. Or,

it might have a paper feed mechanism with a rubber roller and operate via friction as does a

typewriter. Most of the expensive types with sprocket-holes contain a feature named “top-

of-form”. If you tell the printer to find the top of the form it will advance the paper a

certain amount so that the printing mechanism will start at the upper left hand corner of the

page. In most cases the paper will have perforations to delineate pages.

If you have the rubber roller friction feed type, then the top-of-form command will be

meaningless to it, and you will have to position the paper manually to guarantee enough

space from the tear-off.

One more thing, the last person to use the printer might not have left the print mechanism

in column number | (the left hand side of the page), so we will want to make sure we get it

over there before doing anything else with the printer.

22

PRINTING THE DATA

Now let’s write a short program to do something with the printer. First, of course, we'll

make a flowchart and then write the program.

PRINT EXAMPLE 1.

PRINT *F

PRINT *20, “DATAPOINT 2200”

SORE

Taking the program line by line we find the PRINT *F instruction first. PRINT tells the

computer to get ready to do something with the printer.

and, like all the DISPLAY AND KEYIN commands, it is

*F is the command for top-of-form

prefaced with an asterisk. Also, like

other instructions, you get an automatic carriage return and line feed unless you add the

colon to suppress them. In this case we get the CR/LF.

The second line again tells the computer to PRINT and the *20 directs the printer to

move to the right 20 spaces before printing the message. The message is “DATAPOINT

2200". There is no Hor V required since the printer can only move across the page. Line

feeds and top-of-form commands are the only way to move the paper up on most printers.

Printing is probably one of the most common data processing operations. Here is an

example that could be useful to you. In this case, we want to type in a customer’s name and

his bank balance and have the printer type out a copy for him. While this is a limited opera-

tion, we will be adding to it later in the booklet.

NAME DIM 40

BALNCE DIM6

KEYIN

KEYIN

PRINT

PRINT

“YOUR

STOP

PROGRAM

*V1, #H1, *EF, “NAME?”, NAME

“BALANCE?”, BALNCE

*F

#10, "MR.”, NAME:

BALANCE IS ”, BALNCE

NOTE: Colon feature was used in PRINT

instruction to conserve space.

Rules are same as in DISPLAY

instruction.

23

PRINTING THE DATA

DATAPOINT 2200 DISPLAY

1 NAME? MR. JOHN JONES

2 BALANCE? $623.23

TOP OF PRINTER OUTPUT

PAGE 10

MR. JOHN JONES YOUR BALANCE IS $623.23

O0000
This program uses all of what you have learned up to now, and hence you should be

familiar with all the workings of the program. The DIM statements are arbitrarily assigned 40

spaces for the NAME and six spaces for the balance, which means five numbers plus the

decimal point. If you anticipate larger balances for more affluent folk, the DIM for

BALANCE should be increased.

KEYIN uses no new tricks, but be aware of the use of the automatic CR/LF on the

printer. The next PRINT instruction spaces over 10 columns, and MR. is printed beginning

in column No. 10.

If you don’t have a top-of-page feature on your printer, the printer will ignore the *F but

you will get the CR/LF anyway.

PRINT has a few other handy features such as line feed and carriage return. These are

listed in the summary. See examples for proper spacing and placement of commas.

24

re nie eS eae Se ne ee ee re

PRINTING THE DATA

Chapter Summary

PRINT Allows text to be printed. The type of printer to

be used with the Datapoint 2200 can be specified

during Compiler and Interpreter operation.

“MESSAGE” Literal text must be bracketed in quotes

=F Top-of-page

*L Line Feed

*C Carriage Return

Problems

1. Write a program that prints your name in the center of the page.

2. Write a program that asks name and social security number and prints this in the

center of the paper.

Solutions

1.

2. NUMBER

PRINT *F

PRINT #L, #L, *L 2... *L

PRINT *59, “JOHN STEINMETZ”

STOP

DIM 9

DISPLAY #V'1, *H'L, FEF

KEYIN “WHAT IS YOUR SOCIAL SECURITY NUMBER?

PRINT. #F

PRINT #1. b, @Le sy 2 otk

PRINT *60, NUMBER

STOP

“ NUMBER

25

Chapter 6

Databus Lesson 4

Arithmetic

While some computers spend all their time pushing names and addresses and other such

data around, it’s nice if they can do arithmetic too. For instance, if we had known how to

add and subtract in the previous chapter, the problem involving a bank balance could have

been extended to include the actual computation.

Arithmetic is especially easy in DATABUS. The four operations — add, subtract, multiply,

and divide — are demonstrated in the examples below:

ADD ONE TO TOTAL (Addition)

SUB CHECK FROM BALANCE (Subtraction)

MULT DISCOUNT BY PRICE (Multiplication)

DIV NUMBER INTO TOTAL (Division)

The operations are virtual English-language instructions. The labels, such as ONE and

TOTAL, must contain only numbers now and are handled as special cases.

In the previous lessons, space for labels was handled with the DIM and INIT statements.

DIM didn’t mind if we loaded it with numbers, alphabet characters, or punctuation.

With numeric operations, however, the only items allowed in label space are numbers and,

in some cases, a minus sign.

To accomplish this numbers-only label, a new directive is used, FORM.

FORM allows space to be reserved for numeric characters only. The statement AGE

FORM2 allows two digits to be loaded into AGE. If you try to load any more in, a beep will

be heard and the number rejected. The statement PRICE FORM S.2 would allow a number 5

places long to the left of the decimal point and two places to the right of the decimal point

to be accepted. The minus sign counts as one place, also. With this in mind, PRICE FORM

5.2 holds a positive number as large as 99999.99 or a negative number of -9999.99. If the

number to be used did not require a decimal point then we could have said the PRICE

FORM S. In this case, the largest value would be 99999.

FORM also allows space to be reserved and preset to some value. If the program to be

written required use of the value of Pi, then we could write: PI FORM “3.1428” or FIFTY

FORM “50”, ONE FORM “‘1” and so on. You can replace these predefined numbers by

loading them with other values in the program. Keep in mind the space limitations. FIFTY

FORM “50” would allow a new number to replace 50 that is two numerals in length. If you

anticipate replacing a preset FORM value, leave enough space, i. e., define FIFTY FORM

“50.000” would keep the original value the same but open up 3 spaces to the right of the

decimal point for later use.

In most arithmetic operations, one number acts upon another to form a third number, the

answer. Such as:

2X3=6

2X4=8

While these are names for the operators and operands, such as quotient and multiplicand,

there’s no real benefit from defining these unless you’re fond of games of trivia.

DATABUS acts in the same way except that the answer ends up in the space where one of

the numbers was originally. Read the example program:

CAT FORM “2”

DOG FORM “3”

THE ANSWER

ADD CAT TO DOG-«@———_ | |N HERE
DISPLAY *V1,*H1,*EF, DOG

STOP

26

DATAPOINT 2200 DISPLAY SCREEN

ARITHMETIC

The Contents of The Label

DOG Are Displayed Here

DOG is suddenly worth five, right? Yes, because now the answer is there. The original

value of DOG, 3, is gone.

This trait of DATABUS can be handy in carrying totals ahead. The following example

might be used in a checking account application.

ONE

CAT

DOG

TOTAL

FORM: 14

FORM “2”

FORM ‘3’

FORM 2

ADD ONE TO TOTAL

DISPLAY *V1, *H1, *EF, TOTAL

ADD CAT TO TOTAL

DISPLAY TOTAL

ADD DOG TO TOTAL

DISPLAY TOTAL

STOP

27

ARITHMETIC

DATAPOINT 2200 DISPLAY SCREEN

Notice how the value of

TOTAL keeps increasing.

In this example, we used TOTAL to contain the answer, and the display screen reflects

the changing value of TOTAL.

In some cases, you might need to keep both original numbers. We use a slightly different

technique here involving an instruction called MOVE. In effect, the value we want to save is

moved into another location, so that the value we need isn’t disturbed. The example below

illustrates this technique:

TWO FORM “2”

THREE FORM “3”

FOUR FORM “4”

ANSWER FORM 2

MOVE TWO TO ANSWER

MULT FOUR BY ANSWER

DISPLAY *V1, *H1, *EF, ANSWER

MOVE FOUR TO ANSWER

SUB THREE FROM ANSWER

DISPLAY ANSWER

DISPLAY TWO, THREE, FOUR

STOP

28

ARITHMETIC

DATAPOINT 2200 DISPLAY SCREEN

The label, ANSWER, acted as a

temporary storage place so that

labels containing needed numbers

weren't disturbed.

Notice that none of our preset values, TWO, THREE, FOUR were disturbed by the opera-

tions. ANSWER served as a temporary changeable space. We could store up to a two digit

number in ANSWER, as the FORM 2 set that limit. You'll see in the display that the “8”

appears in column 2 since we said ANSWER will be two spaces wide.
Incidentally, all arithmetic as well as other operations must be via predefined labels. You

cannot say MULT 2 BY 5 or use any other numeric values in the instructions. Define every-

thing in labels.

We can take the previous checkbook balance example and make it significantly more use-

ful with arithmetic.

PROGRAM

BALNCE FORM 6.2

CHECK FORM 6.2

KEYIN *V1, *H1, *EF, “WHAT IS PRESENT BALNCE?”, BALNCE

KEYIN “WHAT IS AMOUNT OF CHECK?”, CHECK

SUB CHECK FROM BALNCE

DISPLAY “NEW BALANCE IS $”, BALNCE

STOP

29

ARITHMETIC

Se
FLOWCHART

For checkbook

balance example

LT

The results of this flowchart and program are shown on the following page. Keep in mind

the relation of spaces to numbers as you ask DATABUS to display such things as dollar signs

or question marks. You can make your programs print out as well as your local bank can!

ARITHMETIC

DATAPOINT 2200 DISPLAY SCREEN

WHAT IS PRESENT BALANCE? 680.00

WHAT IS AMOUNT OF CHECK? 24.24

NEW BALANCE IS $655.76Wn

Result of checking account program.

Occasionally, programmers encounter difficulties in using arithmetic instructions; two

simple precautions should overcome most of these problems.

First, be certain you have allowed enough room for the result of the operation. If your

result is larger than the space you have allowed, i.e., a result of 1000 in a FORM 3 space, the

stored answer will be 000; the 1 would be lost and your answer would be misleading and you

would alarm your company treasurer if you were writing an accounting program.

Secondly, in divide operations, be sure the number you're dividing into is larger than the

number you're dividing, both to the left and right of the decimal place, if any. Two (2) divi-

ded into four (4) won’t work. Two (2) divided into zero four (04) will work. If you have
strange answers, open up some space around the number to be divided into.

One more item. When using the FORM label, only numeric characters including decimal

point will be accepted. This is a handy feature to minimize operator errors, as any

non-numeric characters will result ina BEEP sound.

Chapter Summary

Label FORM Number allows a numeric variable of number

to be stored.

Label FORM ‘“‘Number”’ allows a predetermined numeric value

to be stored

MULT Label BY Label Multiplication

DIV Label INTO Label Division

ADD Label TO Label Addition

SUB Label FROM Label Subtraction

MOVE Label TO Label Transfer value from

label to label. Value transferred

remains intact in first label.

31

ARITHMETIC

Problems:

1. Write a program to figure discount prices. Operator keys in price, discount rate, and

sees new price on screen.

Answer }

PRICE FORM 6.2 ‘

DSCOUNT FORM 0.3 iy

TEMP FORM 6.2

KEYIN *V1, *H1, *EF, “PRICE?”, PRICE

KEYIN “DISCOUNT (IN DECIMAL FORM)?”, DSCOUNT

MOVE PRICE TO TEMP

MULT DSCOUNT BY TEMP

SUB TEMP FROM PRICE

DISPLAY “DISCOUNTED PRICE IS $”, PRICE

STOP.

DATAPOINT 2200 DISPLAY SCREEN

1

PRICE? 100.00

DISCOUNT (IN DECIMAL FORM)? .20

DISCOUNTED PRICE IS $80.00wn

32

Pata — |

Chapter 7

Databus Lesson 5

Loops

All of the programs we have written up to this point have done their job and ended. In

many cases we might want to have the program repeat the task over and over. Programmers

call this a loop — loops extend programming capabilities endlessly.

The simplest loop involves directing the program to go to a certain point and start work-

ing from there. The circle on a flowchart can be used to indicate a jump or “GOTO” instruc-

tion. Look over the flowchart below and then read the program that follows it.

FLOWCHART

Program to endlessly

accept and display back

name to operator.

A LOOP

LOOPS

PROGRAM

NAME DIM 40

PRINT #F

DISPLAY *V1, *H1, *EF

BEGIN KEYIN “NAME? “,NAME

PRINT*10 “NAME IS " ,NAME

GOTO BEGIN

STOP

DATAPOINT 2200 DISPLAY SCREEN

1

1§ NAME? FRED SWARTZ

2 NAME? TOM JONES

3 NAME? DUKE OF EARL

Names are entered one below

another due to automatic CR/LF

in KEYIN instruction.

TOP OF
PAGE 10 PRINTER OUTPUT

NAME IS FRED SWARTZ

NAME IS TOM JONES

NAME IS DUKE OF EARL

The GOTO instruction tells the computer to go to the place indicated by the label, in this

case, BEGIN. The computer then starts following the instructions at that point. You can see

that our program is endless. After one name is printed, it again asks for another name to

print. There is effectively no way out of this loop except, perhaps, pressing the STOP key

(which halts the computer) or pulling the plug. If you decide to run this program, the best

way to halt it would be to press the KEYBOARD and DISPLAY keys simultaneously, which

halts your program and turns control back to the DATABUS interpreter program. Another

way to halt it would be to tap the Restart key which rewinds the back tape and reloads the

operating system, which we’ll cover in the last chapter, so don’t worry about it now.

LOOPS

While endless or unconditional loops are useful in some circumstances, conditional loops

are more practical. A conditional loop or conditional GOTO has limits, or goals, which must

be met before the “jump” can be made. If the conditions are not met, then the computer

ignores the instruction and goes on to the next one.

One of the classic computer operations is the counting loop. In this, the programmer

defines a limit, and the computer keeps on counting until the limit is reached.

To determine when the limit has been reached, an operation called a compare is used. The

computer compares the number against the highest allowable number, the limit, and deter-

mines if they match. After each compare, the computer can tell if the number is less than,

equal to, or greater than the number compared against.

Although other, more complex compare operations are possible in DATABUS (See

Chapter 10 — Advanced Databus), we’ll confine our discussion to two types: COMPARE and

MATCH.

Recall that we have used two types of data to store under labels: general mixed characters

and numerics only. The DIM and INIT statements allow any type of characters to be stored

under them while FORM takes only numerals. Much the same happens with the compare

instruction. MATCH will compare two labels containing general text (DIM and INIT labels).

COMPARE will only work with numeric labels (FORM labels).

The following example illustrates the use of a COMPARE instruction with a conditional

GOTO. Note that the GOTO is ignored unless the condition is met.

PEELS NS SP TE CLS OB SC Pa a IO Ee ZS

FLOWCHART

Counter and

limit checking program

THE LOOP

35

LOOPS

PROGRAM

ONE FORM “1”

LIMIT FORM "5"

COUNTR FORM "0"

DISPLAY *V1, *H1, *EF

ADDR ADD ONE TO COUNTR

DISPLAY COUNTR

COMPARE LIMIT TO COUNTR

GOTO ADDR IF NOT EQUAL

DISPLAY “THEY ARE NOW EQUAL”

STOP

DATAPOINT 2200 DISPLAY SCREEN

1 80

1 1

2

3
4

5

6 THEY ARE NOW EQUAL

In this program, we started out with the label, COUNTR at zero and kept increasing it by

the value of 1 until the LIMIT is equal to COUNTR. Next, if the two are not equal, the com-

puter is asked to go back to another label, ADDR, and keep going. After five loops around

ADDR, the value of five is attained, and program finds the two are equal and ignores the

GOTO command. The message appears, and the program ends. Remember that the COM-

PARE works with numerics only.

While numerics are nice, you might want to use characters in the form of a name or

answer. We could create an imaginary situation where people passing by are asked to type in

their name and ask the computer to find someone named Hershel.

This use of general mixed characters involves use of the MATCH instruction. This

instruction can compare the contents of two character DIM or INIT labels where the

COMPARE instruction worked only with numerals.

36

LOOPS

FLOWCHART

Program Using Character

MATCH Instruction

PROGRAM

NAME DIM 8

HERSHL INIT “HERSHEL”

NUNAME KEYIN *H1, *V1, *EF, “WHAT IS YOUR NAME?”, NAME

MATCH NAME TO HERSHL

GOTO NUNAME IF NOT EQUAL

DISPLAY “WE HAVE FOUND HERSHEL!”

STOP

37

LOOPS

DATAPOINT 2200 DISPLAY SCREEN

1 WHAT IS YOUR NAME? HERSHEL

WE HAVE FOUND HERSHEL!

The question keeps on appearing

until the correct name is keyed-in.

Note that we used the MATCH instruction. This takes the contents of the two labels and

matches the first letter to the first, second to the second, and so on. If all the letters match,

then the labels are declared equal and the next GOTO instruction can make use of this con-

dition.

Use Of Keyboard And Display Buttons

In the lower right hand corner of the 2200’s keyboard there are two push buttons named

Keyboard and Display. These names are purely arbitrary as the functions have no direct

relation to either the screen or keyboard. The buttons provide a handy means, however, of

signaling the computer that you wish to do something.

The buttons can be used for almost any purpose, such as calling up a new screen format or

performing some other task. An “equal” condition is created when one of the buttons is

pushed if the instruction DSENSE or KSENSE precedes the conditional instruction. These

two instructions might be interpreted as “sense the Keyboard switch” or “sense the Display

switch”. Sense means, in this case, to see if someone has pushed the button. The following

program will give you an idea of how these work.

38

LOOPS

PSS SL eo SSS ERS ROS EE ED ER Ss a EE

FLOWCHART

To see if Display

or Keyboard buttons

are pushed.

YES

NO}_

YES

NO

Se

PROGRAM

DISPLAY *#V1, *H1, *EF;

DSBUTN DSENSE

GOTO KBBUTN IF NOT EQUAL

DISPLAY “YOU PRESSED THE DISPLAY SWITCH!”

KBBUTN KSENSE

GOTO DSBUTN IF NOT EQUAL

DISPLAY “YOU PRESSED THE KEYBOARD SWITCH!”

GOTO DSBUTN

STOP

LOOPS

DATAPOINT 2200 DISPLAY SCREEN

1

2

YOU PRESSED THE DISPLAY SWITCH!

YOU PRESSED THE KEYBOARD SWITCH!

40

-

LOOPS

The use of the switches can be left pretty much up to your imagination. It’s much easier

to have the operator push these buttons than to type in a certain word and then do a

MATCH instruction to see what was typed in.

Beeping and Clicking

The 2200 can make quite a racket upon command by use of two DATABUS instructions,

Beep and Click. It can give the operator an audio clue as to what’s happening.

Beep elicits about a second’s worth of audio tone from a hidden speaker inside the 2200.

This tone could be used for audibly indicating the end of a job or an error.

Click, likewise, elicits a click. All KEYIN operations are automatically accompanied by

this click to give the operator an audio assurance that the computer is accepting the

incoming data, but you might want to use it for other functions also.

Programming Beep and Click is easy. Just write Beep or Click.

BEEPER BEEP

CLICK

GOTO BEEPER

STOP

This is a good program to use if you like to be alone. You can drive everyone screaming

out of the office, as the machine will alternately Beep and Click forever, although you might

be kind enough to program in a halt via the Keyboard and Display switches.

Problems:

1. Write a program that examines a person’s name and age. Set the program up to see ifa

man named George, age 28, is using the Keyboard.

2. Add the steps necessary for the program to CLICK when the correct name and age are

typed in.

GEORGE

NAME

N28

AGE

Qi

FINDER

INIT “GEORGE”

DIM 6

FORM “28”

FORM 2

KEYIN *V1, *H1,*EF, “NAME, PLEASE?” ,NAME

MATCH NAME TO GEORGE

GOTO Q1 IF NOT EQUAL

KEYIN “WHAT IS YOUR AGE, GEORGE?”, AGE

COMPARE AGE TO N28

GOTO FINDER IF EQUAL

DISPLAY *V5,¥*H1, “YOU’RE THE WRONG GEORGE — SORRY!”

GOTO Q1

DISPLAY *V5,*H1, “GEORGE, YOU'LL BE OVER THE HILL IN 2 YEARS!”

CLICK

BEEP

STOP

41

Chapter 8

Databus Lesson 6

Cassette Tape Operations

Having a built-in storage medium such as the cassette tapes provides the Datapoint 2200

user with the capability to generate and maintain a group of records (sometimes called a data

base) within the Datapoint itself. In some situations the operations used in program genera-

tion involve simply “pulling” various programs off the rear cassette tape and using them.

However, in most business applications, only one or two programs are routinely stored and

used, and the remainder of the cassette tape space is used for storage of data, either for local

use or for transmission via communications channels to another site.

With Databus, we can easily record and retrieve data without regard for the usual com-

plexities of programming a mechanical storage device. The language takes care of all the

intricate detail automatically.

The front tape deck, the one closest to the keyboard is deck number two, and the rear,

number one. Although you know that during Databus operation, the Interpretive Tape is in

the rear deck, you still may record information on it. The program has enough sense to find

out where the program area of tape number one ends, and uses the remainder of the tape for

storage.

Use of the tapes involves only several logical steps and adherence to two or three rules.

First, the tape should be rewound, in order to assure a common beginning place. Make

sure that the clear portion of the tapetrack leader is not showing, by manually moving the

tape with a pencil in the sprocket holes. It is possible for the tape to be rewound all the way

to the wrong end, as there is clear leader at each end of the tape.

Second, after writing all your data be sure to tell the tape that this is the end of the data.

An WEOF (Write End of File or Data) mark should be written.

Third, “TRAPS” should be set when reading data such that the End-of-File mark can be

detected to notify the program that there’s no more data.

After each WRITE instruction, the tape chosen will advance and the data will be recorded

in a serial fashion, label after label. You’ll need to remember the sequence of labels because

they’ll be needed in reading back the data. A group of recorded labels is often called a

“Record”, while a group of Records is known as a “File”’.

Before we do an example, try to think of these operations as comparable to recording on

an audio tape data such as your name, address, age, and telephone number, and all your

friends’ names, addresses, and phone numbers. You would get the first name and details,

press the record button, and say Harry Aardvark, 149 Maple, Sod House, Idaho. Now,

release the button and look up the next name. Later, when you're looking for an address,

you would listen to the tape until the sought-for name came up and take note of the

information.

In effect, we do exactly the same operation with the Datapoint 2200 except that the

recording method uses digital signals rather than audio signals.

42

CASSETTE TAPE OPERATIONS

Enough of the analogies — let’s write a name and address program. First, a program to
write the names on tape and then one to search for a particular name:

sess ReR ee SL SEL SNE OT EERE ET GS SEE SI STG

FLOWCHART

Program to write

data on cassette tape.

43

CASSETTE TAPE OPERATIONS

PROGRAM

NAME DIM 40

PHONE FORM 11

ANSWER DIM 3

YES INIT “YES”

DISPLAY *V1,¥*H1,*EF, “NAME AND PHONE PROGRAM”

PREPARE 2

TRAP ENDTAP IF EOT2

WRITER KEYIN “NAME: “,.NAME

KEYIN “PHONE: “,PHONE

WRITE 2,NAME,PHONE

KEYIN “IS THIS THE LAST ENTRY?: “

“ANSWER YES OR NO’,ANSWER

MATCH ANSWER TO YES

GOTO FINISH IF EQUAL

GOTO WRITER

ENDTAP DISPLAY “YOU'RE OUT OF TAPE”

BKSP 2

FINISH WEOF 2

BEEP

STOP

DATAPOINT 2200 DISPLAY SCREEN

1 NAME AND PHONE PROGRAM

NAME: HARRY AARDVARK
PHONE 5126964520

IS THIS‘THE LAST ENTRY?ANSWER YES OR NO NO

NAME: JOHN JONES

PHONE: 7135242916

IS THIS THE LAST ENTRY? YES

The operator keyed in these

TAPE FORMAT

713524 512696 | HARRY CLEAR
BLANK EOF | 2416 | JOHN JONES] 4520 AARDVARK | LEADER

44

CASSETTE TAPE OPERATIONS

Notice how the TRAP instruction worked. Nothing happened until the machine found

out the end of tape had arrived. Then the TRAP instruction is allowed to operate. It would

take quite a Christmas card list to fill one side of a cassette. That’s about 1500 names per

side, and more could be stored if we made the records longer and more efficient. The

instruction, BKSP 2 moves the tape backward one record length. In this program if the end

of the tape was encountered, the tape was backspaced one record and an end-of-file was written,

Now, let’s write a program to read the data off the tape.

FLOWCHART

Program to read

data from cassette tape

PROGRAM

NAME DIM 40

PHONE FORM 10

DISPLAY *V1,*H1,*EF, “TAPE READER”

REWIND 2

TRAP DONE IF EOF2

TRAP DONE IF EOT2

READER READ 2, NAME, PHONE

DISPLAY NAME, PHONE

GOTO READER

DONE DISPLAY “THAT’S ALL THE DATA”

STOP

CASSETTE TAPE OPERATIONS

DATAPOINT 2200 DISPLAY SCREEN

1

1 TAPE READER

HARRY AARDVARK 5126964520
JOHN JONES 7135242916

THAT'S ALL THE DATA

The data stored on the tape

will be listed until the EOF mark

is encountered.

In WRITE and READ operations, you get back what you put in, in the same order.

Always check for the End-of-File mark as the tape is read so there won’t be any chance of

reading old data that’s lingering on the tape. That chance is remote because of the inherent

error-checking powers of DATABUS, but we need to know when to finish, so don’t forget to

check.

If you plan to do a great deal of tape work, the DATABUS Reference manual goes into

far more detail than this booklet, and we suggest you order a copy.

Chapter Summary

READ 1 or 2, Labels Allows data to be read from

previously — recorded DATABUS

file.

REWIND 1 or 2 Tape unit is rewound and positioned

to read.

BKSP 1 or 2 Tape is backspaced one record

PREPARE 1 or 2 Tape deck specified is rewound

and prepared for subsequent

writing data.

WEOF| or 2 This instruction writes an

end-of File mark on the tape to

indicate end of data.

WRITE 1 or 2, Labels Allows data in labels to be

written on tape.

46

CASSETTE TAPE OPERATIONS

Problems

1. Combine tape examples to write data on tape and read it back in the same program.

2. In problem one, break the phone number into three areas so that the number is written

as three labels, area code, exchange, and number, 512-696-4520. Modify DISPLAY

instructions to include the hyphen between numbers.

NAME DIM 40

AREACD FORM3

EXCHNG FORM 3

NUMBER FORM 4

NUTAPE PREPARE 2

TRAP ENDER IF EOT2

WRITER KEYIN *V1, *H1, *EF, “NAME? ’, NAME, *H60, “PHONE? ”, AREACO,”—":

EXCHNG,’’—", NUMBER

WRITE 2, NAME, AREACD, EXCHNG, NUMBER

DSENSE

GOTO PART 2 IF EQUAL

GOTO WRITER

PART 2 WEOF 2

DISPLAY #*V1, *H1, *EF, “THE TAPE WILL NOW BE READ”

REWIND 2

TRAP FINISH IF EOF2

READER READ 2,NAME, AREACD, EXCHNG, NUMBER

DISPLAY *H1, *V1, NAME, AREACD, NUMBER

GOTO READER

FINISH DISPLAY *H1,*#V12, “END OF DATA ON TAPE”

STOP

ENDER BKSP 2

WEOF 2

DISPLAY #H1, *V12, “YOU HAVE RUN OUT OF TAPE LAST RECORD ":

“WAS LOST”

DISPLAY *H1, *V12, “PRESS KEYBOARD KEY WHEN NEW TAPE ISIN “”:

“ FRONT DECK”

SENSER KSENSE

GOTO NUTAPE IF EQUAL

GOTO SENSER

STOP

47

Chapter 9

Databus Lesson 7

Using Subroutines

Often a user finds that a particular sequence, or grouping, of instructions crops up quite

frequently in the programs he writes. For instance, in a data entry application a user may

frequently want to erase the screen, display a form, beep and related chores. To have to

write out this identical sequence of instructions each time is burdensome and time con-

suming. Fortunately there exists a handy technique for elimination of this drudgery. This

involves the labeling of these standard sequences that reappear in program writing with dis-

tinctive names and making them available upon request to the program writer. These stand-

ard sequences of instructions are known as subroutines. A user can call for a subroutine

when required, have the repetitive task at hand accomplished, then get back to the main-

stream of the program. To do this we make use of the CALL and RETURN instructions.

To demonstrate this useful feature of DATABUS, let’s assume that you're writing a pro-

gram that is quite lengthy and which requires you to erase and place various messages upon

the screen. The example has no actual application but it will serve to give you the hang of

the subroutine approach. In the following example, note that the CALL instruction jumps to

the instruction containing the label and keeps working on that line of instructions until it

encounters the RETURN instruction. At that point, the computer jumps back to the instruc-

tion immediately following the CALL instruction. The dotted lines indicate instructions that

are not pertinent to the example.

CALL ERASE

CALL DSPLY1

i CALL ERASE
CALL DSPLY1

STOP

ERASE DISPLAY *V1,*H1,*EF

RETURN

DSPLY1 DISPLAY *V6,*H32,"“SUBROUTINE IN USE NOW”

BEEP

CLICK

RETURN

STOP

The arrows show the “leaping around” the computer goes through in finding and execut-

ing the subroutines. You can CALL other subroutines even though you're in one already.

CALLS can be “nested” eight deep. That is, you can say CALL eight times before saying

RETURN. If you nest the subroutines more than eight times, the computer will lose track of

what’s going on and weird things will happen.

Naturally, the advantage of this subroutine feature lies in your being able to write shorter

programs and avoid writer’s cramp.

Another advantage is that shorter programs occupy less space in computer memory than

longer programs. (Memory economy assumes that you use the subroutine more than once or

the space saving benefit won’t hold true.)

48

LINKING

LINKING UP WITH OTHER DATABUS PROGRAMS

At Datapoint’s home facility, 2200’s running DATABUS are used for many business data

processing applications. In some cases, the programs that do such jobs as printing price

sheets often occupy the entire memory space, and it is desirable to have one program fetch

another as soon as it has finished. This eliminates the need for an operator to wait around

and see if a part of a job has finished, so that they can proceed with the next part.

To do this operation, called “chaining,” we make use of the CHAIN instruction. Look at

the example below:

PGM2 INIT “PGM2”

The last step in the program (other than STOP) instructs the computer to go out and find

the program named “PGM2.” If you wrote your program and used a chain instruction, you

would see the rear tape move as the computer found the DATABUS program the chain

instruction referred to and loaded it.

You can even carry forward information in labels as you chain from one program to

another. Let’s suppose that your first program asked for today’s date via a KEYIN instruc-

tion and you wanted to use this date in all other programs you were going to run. Note that

asterisks are used to define what to carry over for use of the next program.

Program No. 1 Program No. 2

MONTH DIM #2 MONTH DIM *2

DAY DIM *2 DAY DIM *2

YEAR DIM *2 YEAR DIM *2

PGM2 INIT “PGM2” sesseceeees

KEYIN MONTH,DAY,YEAR -

CHAINPGM2 eens

STOP STOP

49

LINKING

Using the asterisks and arranging the labels in identical order in the beginning of the pro-

gram you will find that Program No. 2 has the data that was asked for (KEYIN) in Program

No.1.

Be sure to observe the following rules when carrying labels from one program to another

using CHAIN:

1. The program being chained to must be a DATABUS program and be cataloged under

the same name on the rear tape. (See Chapter 11.)

2. The name of the program must be defined in a label using an INIT or loaded into a

DIM during the first program’s operation.

3. Make sure the labels are in the beginning of the program, in the same order, and are

DIM’ed or INIT’ed to the same value if you want to carry label contents ahead.

4. Use the asterisk in the labels to denote that the computer is to carry this instruction

along to the next program.

Chapter Summary

CALL label Transfers operation to instruction indicated by label.

RETURN Label Transfers operation to instruction immediately following last CALL instruction.

CHAIN Label Locates, loads, and runs named DATABUS program.

Label DIM *n Asterisk allows label data to be carried from one program to another.

Label INIT *n

Label FORM *n

50

Chapter 10

Databus Lesson 8

Advanced Databus Techniques

In Chapter 1 of this booklet, we noted that its contents would not cover all of the capa-

bilities of DATABUS. We have covered the fundamental concepts in depth, but there are

several additional features that merit further study and will reinforce your ability to con-

struct a DATABUS program. The DATABUS Reference Manual, of course, contains the

complete story on all the features of DATABUS.

Character Of String Operations

Recall the DIM and INIT instructions which allowed us handy storage places for mixed

alphabetic and numeric data. In some applications, the programmer might wish to examine

the contents of this data. For example, if an operator had entered a part number from the

keyboard, the programmer might have to dissect the part number to see if the third chara-

cter was an “A” or a “Z” or whatever.

This type of operation involves “string” operations. A string being a group of characters;

iie., ABZEKE123 could be a string, and “GOODFELLOW” another.

DATABUS is well-equipped for these operations. While space prohibits a detailed explana-

tion, we will briefly outline these features in case you are asked to examine in detail the

contents of a label.

Suppose a program contained a label thusly

NAME DIM 40

STOP

and the operator keys in “Jack Jones.” The label now contains a “‘string” and some other

things you weren’t aware of before.

FORM-= LENGTH POINTER JACK JONES END-OF-TEXT Fs

The length tells us how much data the label contains, and we can adjust the formpointer

to point to any of the characters in the string. Using this technique, there are a whole group

of instructions that allow examination of this data. The Reference Manual should be your

guide for further study in this area.

Communications

Many Datapoint systems are installed with the end purpose of transmitting cassette data

via telephone lines to another distant 2200 which will record the data upon its own cassette

or perhaps on an industry- compatible magnetic tape. In conventional mini-computer sys-

tems the communications programming is usually written in binary machine language and

can be very complex. To ease this chore, a version of DATABUS was written to include

English-language instructions capable of transmitting and receiving data.

This version, DATABUS 3, allows a 2200 equipped with a 1200 baud modem of Data-

point manufacture to communicate over standard telephone lines.

ADVANCED DATABUS TECHNIQUES

The Cassette tape data could be generated by any of the DATABUS family of languages.

We could use, for instance, our DATABUS 2 program that recorded names and phone num-

bers on tape to generate the data file.

We can then take a DATABUS 3 program and transmit this data to another terminal as

the cassette information is compatible between the two versions of DATABUS. Why didn’t

we simply write the whole job in DATABUS 3 since it contained the communications

instructions needed? It’s possible but bear in mind that these two versions of DATABUS

vary in some key features. To put all these features into one version of the language would

require very large machine memory. In DATABUS 3 you will find considerably less arithme-

tic power than in DATABUS 2. So, if you aren’t using much arithmetic, the entire job could

be written in DATABUS 3.

As we’ve noted, considerable communications power is incorporated into DATABUS 3.

We'll list some of the features and their instructions.

AUTOMATIC DIALING NMBEAR1 INIT “1 *512-696-4520”

DIAL NMBER1

(asterisk provides 2 second

pause in dialing sequence)

AUTOMATIC ANSWERING RING

DATA TRANSMISSION AND RECEPTION SEND (labels), RECEIVE (labels)

AUTOMATIC ERROR CONTROL PARITY

AND RETRANSMISSION

DUAL CODE CAPABILITY ASCII, EBCDIC

If you plan on a specific communications application with your Datapoint System, send

for a copy of the Databus Reference Manual and Communications Reference Manual.

SUMMARY OF THE CASSETTE TAPE OPERATING SYSTEM DATABUS

LANGUAGES

DATABUS | This powerful high-level language provides

full arithmetic, file handling, keyboard

High Level input, screen display formatting, and printer

Language formatting capability.

DATABUS 2 This version of Databus provides all the

features of Databus | plus full character

Expanded String _ string handling capabilities. Although user

Commands space is slightly smaller than Databus 1,

this version has a most versatile command structure.

DATABUS 3 Known as the communications-oriented version,

Databus 3 contains commands to operate the

Communications — 2200-402 (1200 baud modem) enabling trans-

Oriented mission and reception of cassette or other data.

This version has all the capabilities of Databus

2 except full arithmetic. Databus provides in

addition, capability to use two 9 channel mag-

netic tape units.

Programs using other versions of Databus may

load data on cassettes for transmission by

Databus 3, as all Databus programs are cassette-

format compatible.

52

ADVANCED DATABUS TECHNIQUES

DATABUS 4 Designed for Datapoints with less than 8K of

memory, this version will run in a minimum of

Small Memory 4K memory and up. An 8K machine is required to

Requirement compile the interpretive code and this may be

then loaded into a 4K or larger machine.

Databus 4 provides file handling, keyboard, CRT

display, and cassette tape I/O as well as limited

string and numeric operations.

DATABUS 6 Often called the “super keypunch emulator,”

Databus 6 programs will operate in a 2K Datapoint

Keypunch and offers a highly sophisticated keypunch re-

Replacement placement.

The programs provide high-level operations of

punching, editing, verifying and transmitting data,

via a communication channel. 6 control cards may

be used.

The system is programmed via ‘“‘control cards” by

the operator and requires no compiling.

The Disk-based language, DOS (Disk operator System) Databus

A disk memory added to the Datapoint 2200 increases the computer’s capability until it

becomes hard to differentiate between the throughput of the Datapoint compared to much

higher priced conventional business computers.

The disk adds a large amount of high-speed memory to the system. This memory can be

used for storage of data and programs. The DOS (Disk-operating System) DATABUS

language allows the user to take full advantage of the disk’s power without complex

programming. The DOS Databus language also provides a completely dynamic and

open-ended file storage capability. A user can create, expand, delete or move the disk files

without regard to space or linking problems.

DATASHARE (Multi-user Databus)

To expand the capabilities of the DOS Databus, a version is available to allow one Data-

point 2200 (Version II) and a Disk to service up to eight users, each with a display terminal,

such as a Datapoint 3300 or Datapoint 3360, or a teletype. This version of Databus effect-

ively expands the power of a 2200 eight times, giving each user the power of his own 2200

and Disk.

With this system, each user can run his own Databus program and access private or public

data files on the disk. Two users may simultaneously use the same file.

A typical business application would involve one user running a payroll, another updating

an inventory and accounts receivable or payable being run. Each application program may

use the entire 16K or memory of the Datapoint.

The eight terminals may be local or remote and have attached terminal printers. A high-

speed system printer is also available at the Datapoint 2200.

53

Chapter 11

Getting a Datapoint 2200 To Run The Program

If you’ve gotten this far, you probably have a program scratched out on the back of an

envelope that you would like to try, or perhaps you might first try one of the examples in

the booklet.

In any case, arm yourself with the following items:

1. Datapoint 2200 Version I or II with at least 8K of memory.

2. Some kind of Datapoint printer (not absolutely essential, but very handy).

3. A complete set of DATABUS 2 tapes. (At the time of this writing, tape numbers

274 and 276 are the current ones. Your local sales office will know if there are more

recent releases.) There are seven versions of DATABUS — you need DATABUS 2.

C00274 — DATABUS Program Generation System

a. DBEDIT — DATABUS Editor

b. DB2CMP — DATABUS 2 Compiler

c. DB2CC — DATABUS 2 Compiler Configurator

C00276 — DATABUS 2 Interpretive System

a. DB2INT — DATABUS 2 Interpreter

b. DB21C — DATABUS 2 Interpreter Configurator

c. MASTER — the Cataloger

4. At least one blank tape (called, in the trade, a scratch tape).

The sequence of events used to take the program from a concept to an actual running

computer program is fairly involved. Don’t let the number of the programs listed above scare

you off, though. Read and follow the directions carefully — success will be yours. At your

next cocktail party, you can look coolly at a Director of Data Processing in attendance and

modestly say, “Sure, I’ve written a little software.”

Before fame and glory are yours, however, we have to get the program in the machine and

running. The following table lists the sequence of events.

Type in the program and load it on the front cassette tape. (Editor)

Convert your program into computer code. (Compiler)

Catalog your program on Tape No. 276. (Interpretive System)

Run it. (Good Luck)

Doesn’t run the way you would like? Fix it. (Editor) Back to Step No. 2.ABWN
Step 1

Databus Editor Operations

Sit in front of the 2200. Relax. Observe that there are two cassette tape decks on top of

the machine. Pull the black handles toward you and the cassette tape carriers jump up. Get

the feel of loading and unloading the cassettes. Insert the cassette back end first — that is,

with the side exposing a small section of tape toward you. Push the carrier down and slide

the black handle to the rear. You should feel and hear a nice, solid clunk as the cassette goes

in place.

You can use both sides of a cassette, so mark which side you’re going to use on the blank

cassette so you won’t later put it in upside down. The DATABUS tapes have stickers indicat-

ing which tape it is. These stickers go face up into the 2200.

Take your practice tape out and turn the machine on. The switch has been hidden from

view along the right-hand lower edge.

Find the DATABUS 2 Program Generator Tape (the one with DBEDIT on it) and load it

in the rear deck. Press the RESTART key — after the tape stops clicking and moving, the

screen should come up with something like this:

READY CTOS 3.1

Type in CAT (short for CATALOG) and press the ENTER key. All CTOS (Cassette Tape

Operating System) operations are initiated when the Enter key is pressed. This mark means

hit the Enter key.)

54

DATABUS EDITOR OPERATIONS

Now you will see:

CAT}

DB2CC DBEDIT DB2CMP

READY

This now assures us that the programs we’re going to need are on tape.

The program we are interested in at this point is the Editor, DBEDIT, and we will ask the

computer to find this program and run it by typing the following:

RUN DBEDITy

The back tape will move to find this program and load it into memory. After loading, a

message indicating that the DBEDIT program is running will appear and ask you if you want

to edit a new or old tape or if you want to duplicate a tape. Note that all instructions to the

DBEDIT program are prefaced with a colon (:).

Place the blank tape in the front deck and close the carrier. Now, type: NEWy This tells the

Editor program that the tape you placed in the front deck can be considered blank. Later

on, if you have a program in the front deck you want to save and you type: NEWpyou’ve lost

it. That’s what :OLDyis for, but we'll get to that later.

After the back tape has stopped moving, the screen will clear, and you will see the blink-

ing cursor waiting for your next more.

Your move, of course, is to get your program onto the front tape. Let’s get the feel of the

DATABUS Editor first. By the way, the Editor program has nothing to do with green eye

shades and cub reporters. Editor, in the computer business, is a program allowing text entry

(your program) and the later modification of the text, in case you blow it.

To make life easier, the DBEDIT program has preset tabs for labels and instructions. Tap

the space bar and note that the cursor jumps right about 10 spaces. Most instructions don’t

have labels, so this provides a convenient means of skipping that area. The drawing below

shows what your program should look like as you type it in. Be sure to use only upper case

(Caps) letters for the instructions.

THEARROWHEAD AREAFORLABELS AREA FOR INSTRUCTIONS

[
y Ee

>) NAME DIM 40
AGE DIM2

KEYIN “NAME, PLEASE ", NAME

DISPLAY “YOUR NAME IS “, NAME

KEYIN “AGE, PLEASE ", AGE

DISPLAY “AND YOU ARE ", AGE, “YEARS OLD”

STOP

TAB 1 TAB 2

(LEFT EDGE)

REMEMBER TO TAP THE ENTER KEY AFTER EACH LINE!

55

COMPILING THE PROGRAM

After completing a line the Enter key is tapped and the next line begun.

What if you make a mistake? If you make it while typing, the Backspace key will rub out

the offending character and the Cancel key will obliterate the entire line.

Now that you've finished typing in the program, let’s suppose that several errors myster-

iously escaped your attention. This will give us a chance to show some of the power of the

Editor program.

Notice the small arrowhead ()) in the left-most column. Press the Keyboard and Display

keys one at a time and watch the arrowhead move up and down. By fiddling with these two

keys, you can point out any line of code on the screen. So fiddle around and point to the

line with the error.

Now, with the cursor in the left-most position at the bottom of the screen, you can type

in the Editor commands to get at the error. All Editor commands are prefaced with a colon.

Unless you do this colon thing, the Editor will assume it’s just another line of the program.

:DEL (Delete) Blots out the entire indicated line and

lets you try again.

‘INS __ (Insert) Opens up a space between two lines so

that another line may be squeezed in.

:MOD_ (Modify) This command lets you change individual

characters or a group of characters. Suppose in the line

you accidentally typed DSPLAY and didn’t notice it.

Point the arrowhead at the line and type :MOD DSPLAY <DISPLAY.

The line will now contain the proper word.

DSPLAY ¢ eed

(OLD) |(NEW)

(REPLACES)

All this will be somewhat hazy until you have some experience hammering away at the

keyboard. One last step — when you've got everything so it looks good, stop. Contemplate

the divine mysteries. And then type the last and most important Editor command.

:END (End of Program) Indicates to the Editor that the

programmer is done and to write a complete, perfect copy

of his program to the front tape.

Write this instruction all over your notes and ask the secretary to remind you to type

‘END. If you don’t, and skip to the next step, the 2200 will laughingly toss your program to

the electronic winds, and you'll have to painstakingly type in the program again.

After :END has been typed in, the tapes will move and after some time CTOS 3.1

READY message will reappear. Don’t get anxious — wait until the message comes back.

Step 2 — Compiling The Program

When the CTOS 3.1 READY (or whatever number of CTOS you have) comes up, type in

RUN DB2CC). This program, the DATABUS 2 Compiler Configurator, enables you to

specify what type of printer, if any, is attached and how much memory is in the 2200. You

only have to do this once unless you change the memory or printer.

Object Machine size: 8, 12, 16 K -type in 8 if you aren’t sure.

Compiler machine size: 8,12, 16 K - type in 8 if you aren’t sure.

Printer — Remote or Local:

a. 2200/Printer is Local

b. 2200/Line Printer is Local

c. 3300/Thermal Printer is Remote, 300 Baud speed

d. Teletypewriter is Remote, 110 Baud speed

56

COMPILING THE PROGRAM

e. Anything hooked up through a Communications Adaptor is Remote.

Take characters-per second-speed, multiply that times 10, and

you have the Baud rate or speed in bits/second, in most cases.

f. If you don’t have a printer, type L anyway. Remember in later

operations not to ask for a print-out, or the machine will halt!

Once this is done, the tapes will move again and CTOS 3.1 will come back.

Now we'll convert your program from text to computer code, or, as programmers would

say, compile it. The compiling operation adds a computer-readable version of the text on the

front deck. In effect, there will now be two files on the front tape after compiler operation

The text version you produced with the DBEDIT (Editor) program and the computer’s

version of that text (object code) produced by the compiler.

Now we'll convert your program from text to computer code, or, as programmers would

say, compile it. Type RUN DB2CMP and more questions will appear.

DISPLAY?: YES
PRINT?: YES (Only if you have a printer attached)

CODE?: NO

Now stand back and watch as your program is compiled. Compiling adds another shorter

section to the tape. The tape will look something like the drawing below after the operation

is complete.

= Y FILE 1 FILE 0 y)

f COMPUTER'S VERSION =" TEXT” VERSION OF /
END OF OF PROGRAM PROGRAMFROM BEGINNING OF
FILES AFTER COMPILER FINISHES EDITOR TAPE

While the compiler works, it displays and prints-out your program. At this time, it may

also point a disapproving finger at errors by adding small “‘Flags” to the extreme left of the

screen or printer.

Here’s an example of typical programming error:

ERROR FLAG LOCATIONS VIA SCREEN OR PRINT-OUT

O NAME DIM 40
Oo AGE DIM 2

\ DSPLAY *V1, #H1, *EF, “HELLO THERE!”

feyae KEYIN “YOUR NAME?

THESE ARE

ERROR FLAGS

57

CATALOGING THE PROGRAM

DISPLAY IS SPELLED WRONG AND KEYIN lacks the last set of quotation marks. The

complete list of errors is below:

1. D:The D flag means DOUBLE DEFINITION. It is flagged if a label or variable has been

defined to more than one value during compilation. In that case, it has the first value.

2. I: The I flag means INSTRUCTION MNEMONIC UNKNOWN. The instruction was not

an acceptable instruction.

3. E: The E flag means that an error has occurred in the operand field of a statement or

some unrecognizable character appeared in the wrong place.

4. U: The U flag means UNDEFINED SYMBOL. It is used whenever a symbol is

referenced and is not defined.

If your program has error flags, the faults must be corrected before going any further. Go

back to Step 1 and run Editor. Be sure to say :OLD when it asks, or the text program on the

front tape (your program) will be erased. Once the tapes have stopped moving, press the

Keyboard and Display keys simultaneously to see the contents of the tape (your program)

roll by on the screen.

Step 3 — Cataloging The Program

No errors? Good. Now remove the Program Generator Tape and insert the DATABUS
Interpretive tape. Hit the Restart key and wait for CTOS 3.1 READY to come up. Type in

RUN DB21C } the Interpreter Configurator, and fill in with the questions just like you did

with the Compiler Configurator.

After that’s done, CTOS 3.1 will come back. The Compiler version made a copy of our

program that can be transferred from the front tape to the back tape and placed in the

catalog. Up to 14 programs may be cataloged on the back tape.

Dream up a name for your program following the same rules for labels. RUNNER might
be a good name for an example. Now type IN RUNNER Yand the tapes will do quite a bit of
moving back and forth. Be patient. CTOS 3.1 will reappear when the cataloging finishes.

Let’s review that sequence again. Before we transfer the program we can find out the
current contents of the tape by asking for a catalog:

CATY

DB21C DB21NT MASTER

READY

Now, by using the IN command we can load in our program

IN RUNNERY

READY

Now the catalog will show our program

CAT)

DB21C DB2INT MASTER RUNNER

There’s proof it’s now in the catalog on the back tape deck.

58

FIXING THE PROGRM

Step 4 — Running The Program

Remove your tape from the front deck. If the program you wrote calls for writing on the

front deck, find another blank tape and load it in. You wouldn’t want to overwrite your

program tape.

CTOS should still be on the screen and the cursor blinking at you. Type RUN DB2INT:

and finish your coffee while the 2200 runs out on the tape and finds the interpreter. The

message:

You type this in
DATABUS INTERPRETER et where it's indicated

Program Name: RUNNER

will show. Type in your program’s name, in this case, RUNNER, and a few seconds later the

results of your labors will be known. Your program will run. When it encounters the stop

instruction the DB2INT program will reload. Congratulations.

Step 5 — Fixing The Program

Most programs require some degree of tinkering with before the user becomes completely

satisfied with the screen format, etc.

Replace the blank tape in the front deck with the tape with your program on it and begin

at step 1. Be sure to type: OLD when the Editor comes up.

Depressing the Keyboard and Display keys simultaneously will display the contents of

your program tape, and you can watch as it scrolls by on the screen. Lifting the keys will

cause the search to stop and the portion of the program displayed on the screen can be

modified, or deleted as desired.

General Hints

1. Try an example program in the book to get the hang of all steps.

2. Make sure the printer is turned on if you’re going to use it.

3. If you have an unexplanable problem, give your Datapoint Systems Engineer or

salesman a call and they’ll try to advise.

59

Appendix

Datapoint Business Language 2 (Databus 2) Definitions

condition The result of an arithmetic operation: OVERFLOW,

LESS, EQUAL ZERO, EOS.

character

string Any string of alphanumeric characters.

event The occurence of end-of-file, end-of-tape, a data type error,

or a program chain failure: EOF], EOF2, EOTI, EOT1, FORM1,

FORM2, CFAIL.

list A list of variables or controls appearing in an input/output

type of instruction.

label A name assigned to a statement.

nvar A label assigned to a directive defining a numeric string variable.

svar A label assigned to a directive defining a character string

variable.

sval A label assigned to a directive defining a character string variable,

or a quoted alphanumeric character, or a number.

The number may be octal or decimal as long as it is between 0

and 12710.

unit A number defining a tape deck. 1 (defining the rear deck),

1 (defining the front deck).

456.23 Refers to any decimal number.

See DATABUS reference manual for further information

60

TRAP

GOTO

GOTO

GOTO

CALL

CALL

CALL

RETURN

RETURN

RETURN

STOP

STOP

STOP

CHAIN

BRANCH

STRING

CMATCH

CMOVE

MATCH

MOVE

MOVE

MOVE

APPEND

RESET

RESET

BUMP

ENDSET

TYPE

CHAIN

EXTEND

CLEAR

LOAD

STORE

ARITHMETIC

ADD

SUB

MULT

DIV

(label)

(label)
(label)

(label)

(label)

(label)

(label)

IF

IF NOT

IF

IF NOT

(svar)

(nvar)

(sval)

(sval)

(svar)

(svar)

(svar)

(nvar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(sval)

(sval)

(sval)

(sval)

IF

IF

IF NOT

IF NOT

IF NOT

(condition)

(condition)

(condition)
(condition)

OF

FROM

INTO

TO

FROM

BY

INTO

(event)

(condition)

(condition)

(condition)

(condition)

(label list)

(sval)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

(nvar)

(nvar)

(sval)

(sval)

(sval)

(sval)

DATABUS 2 INSTRUCTIONS

OF (svar list)

OF (svar list)

61

BD Datapoint

DATAPOINT CORPORATION

9725 Datapoint Drive

San Antonio, Texas 78284

(512) 696-4520

Sales Offices in Principal Cities

0374-5

PRINTED IN U.S.A.

