COMAL 80 PROGRAMMING LANGUAGE.

Preliminary proposal

Background.

- - ——— - —— -

The first COMAL language was designed in 1974 by Borge R.
Christensen, State Teachers' Collége, Tgnder, Denmark, and
Benedict Lgfstedt, Department of Computer Science, University
of Aarhus.)

COMAL (COMmon Algorithmic Language) was constructed as an
extension to BASIC, reflecting developments in programming
languages and techniques, such as structured programming.

COMAL was intended primarily for use in public schools, but
the language has found broader applications.

Since 1974 the language has been extended with additional
facilities. Today several different versions of the language
exist, supplied by a number of manufacturers.

In October 1979 a group interested in COMAL, including
manufacturers, school teachers, and university péople, concluded
that a standardization of COMAL, in the form of COMAL 80, was
needed. A working group was formed to write a proposal for

the COMAL 80 language.

The standardization was to contain a nucleus forming the
COMAL 80 language and recommendations for extending the
language.

COMAL 80 Definition 2 03.03.80

i‘is report, written by the working group, is the proposal
r the nucleus of the COMAL 80 language. Recommendations for
extending the language will appear later.

The members of the working group included:

Arne Christensen, International Computers Limited A/S
Berge R. Christensen, Tender State Teachers' College
Steffen Dyhrberg, International Computers Limited A/S
H. B. Hansen, University of Roskilde :
Rolf Molich, Dansk Data Elektronik Aps.

Jorgen Olsen, RC Computer A/S

Jesper Barfod, Digitek Data og Instrumentering

‘Tom &sterby (editor), Technical University of Denmark.

heér manufacturers, companies, and groups have followed the
. work with great interest.

C. 4AL 80 Definition 3 03.03.80

General information.

COMAL 80 is a general purpose programming language intended for
use by non-expert programmers.

CCMAL 80 has facilities for writing structured progrdms.

The COMAL 80 language system is designed to operate in an inter-
active environment. COMAL statements are entered directly from
the user's terminal and checked immediately for syntactical errors.

Execution of programs is also done in interactive mode. Normally
the system will include facilities for debugging. These facilities
are not part of the standard.-

Description of the COMAL 80 languége.

The language is described in the following order - program,
statements, expressions, variables, constants, and characters.
The description of each construction includes a general
introduction, the syntactical format, the effect, and notes.

The syntax is specified by means of Backus-Naur notation,
extended with the following notation:

{ } : meaning zero, one, or more occurrences
[] : meaning zero or one occurrences.

Notes contain remarks concerning use of the construction,
including rules, precautions, operation, etc.

Space characters may be included where it is not specifically
forbidden. '

In the description of the language there are some places where
the effect or result is undefined. An implementation might choose
-tc give an error reaction here.

COMAL 80 Definition y 03.03.80

COMAL programs.

<{comal program> ::= <statement list>
{statement 1list> ::= { <statement> }

<(statement> ::= <unstructured statement> | <strucuted statement>

<unstructured statement> ::= <simple statement> |

<{simple declaration statement>
}

<&tfuctured statement> ::=z <{compound statement> |

<structured declaration statement>

{simple statement)> ::= <assignment statement> | <io statement> |

<goto statement> |
<procedure call statement> |
<end statement> | <stop statement>
<io statement> ::= <read statement> | <restore statement> |
<input statement> .
<print statement> | Kprint-using statement> |

<{select output statement>

<compound statement> ::= <conditional statement> |
{repetitive statement>
<conditional statement)> ::= <if statement> | <case statement>

{repetitive statement> ::= <for statement> | <while statement> |
{repeat statement>
1

; &imple declaration statement> ::= <data declaration> |
{label statement>

{data declaration> ::= <dim statement> | <data statement>
<{structured declaration statement> ::= <procedure declaration>

Input format.

A COMAL program consi;ts of a number of statements. A statement
is written on one or more program lines depending on the type
of statement.

,progr‘am line begins with a line number and may end with a
comment.

COMAL 80 Definition ' 5 ' 03.03.80

The line number is an integer in the range 1 to 9999. The line
numbers determine the order in which statements are stored in
the program. The line number must be followed by at least one
space character. A program line may consist of a line number
only. Execution of such a program line has no effect.

A program line may end with a comment. The comment begins with

two consecutive slashes (//), and may be followed by any

sequence of displayable ASCII characters. A comment is stored, but
has no effect on statement execution. Consecutive prégram lines

in a structured statement must have increasing line numbers.

A <simple statement> must be contained within one program line.
‘A program line may contain only one <{simple statement>.

A <structured statement> may extend over one or more program
lines. In the Backus-Naur description of a structured statement
each line must correspond to a separate program line.

When a program is run the statements in the program are normally
executed in the order in which they are stored. Certain
statements can alter the sequence of execution

Assigment statement.

A statement to assign values to numeric and string variables.

Format

-

<assignment statement> ::= <assignment list>
<{assignment 1list> ::= <assignment> {;<assignment>}
<asSignment> ::= <numeric assignment> | <string assignment>
<{numeric assignment> ::= e C

<left side> := <arithmetic expression>
<left side> ::= <numeric variable> | <procedure identifier>
{string assignment> ::=

<{string variable> := <string expression>

COMAL 80 Definition 6 03.03.80

a. The reference to the variable cn the left side of ":="
is computed. ’

b. The expression, string or numeric, is evaluated.

c. The result of step b is assigned to the variable on the left
side of ':="'. '

d. Steps a, b, and ¢ are repeated "or all assignments in the
assignment list. ‘

1. In an assignment the type of v..iable and expression must
‘. be the same, either numeric or :tring.

2. If <string expression> is long¢r than the string variable,
the string expression is right ’'runcated to the length of
the variable. If the string ex; ~°'ssion is shorter than the
string variable, the string ex; 'ssion is placed left
justified in the string variab®.: or the substring. If
the string variable is not a s.’ string, the rest of the
string variable is filled with haracters indicating
'null' values. If the string v~ iable is a substring, and
the string expression is shortcs than the substring, the
rest of the substring is filled with blanks.

3. If the string variable is a sul. tring, the start position of
the substring must be less than or equal to the length of the
string plus one (start postion <= LEN(string variable) + 1),
otherwise the result is undefi: d.

READ statement.

A statement, applied to read values from the 1ist defined by
one or more DATA statements, to as='gn values to string and
numeric variables listed in the REZD statement.

Format A '

<{read statement> ::= READ <variable> {,<variable>}
‘,ariable) ::= <numeric variable> | <string variable>

COMAL 80 Definition 7 03.03.80

1. READ statements are always used in conjunction with DATA
statements.

2. The variables listed in the READ statement may be sub-
scripted or simple numeric or string variables.

3. A data element pointer is moved to the next available value
in the DATA statement list as values are retrieved for
variables in the READ statement. If the number of variables
in the READ statement exceeds the number of values in the
DATA statement list, a run-time error occurs.

4, The type (numeric or string) of a READ statement variable
must match the type of the corresponding data element value;
otherwise a run-time error occurs.

5. Reading a value to a string variable follows the same
rules as described in the assignment statement.

RESTORE statement.

A statement to reset the data element pointer to the beginning
of the DATA statement list.

Format

{restore> ::= RESTORE

INPUT statement.

A statement to assign values entered from the user's terminal
during program execution to a list of string and/or numeric
variables.

Format . !

<{input statement> ::=

INPUT [<string constant>:] <variable> {,<variable>} [<cont>]
-{variable> ::= <numeric variable> | <string variable>

<cont> ::=

COMAL 80 Definition 8 03.03.80

tatement execution.

a.

A prompt character is output unless a string constant is
included, in which case the value of the string constant is
output. The standard prompt is a colon (:).

The user responds by typing a list of data items, which

are assigned to the variables listed in the INPUT

statement. The user ends the list of data items by actlvatlng
the 'end-of-input' key.

If <cont> is not specified, the printing and input p051t10n
will be the first position on the next line.

. Data entered must be of the same type (numeric or string)

as the variable in the argument list for which the data is
being supplied. Variables in the argument list may be sub-
scripted or unsubscripted:
A data item supplied for a numeric variable can be typed in
the following form:

[+!-] <real number>
One or more spaces can be typed before .a numeric value.
A separator between two numeric values may be any character
not part of a real number. The separator between a numeric
value and a string is the first character not included in
a real number.
If the data entered does not match the type of the current
variable, an error will take place; the user can then enter
data of the correct type. ’
If the 'end-of-input' key is activated before values have
been assigned to all of the variables in the argument list,
a prompt string will be output, indicating that further
items are expected.
Entering a value for a string varlable follows the same rules
as described in the assignment statement.
'End-of-input' is the only possible separator between two
string values.

COMAL 80 Definition 9 03.03.80

PRINT statement.

A statement to output values on the user's terminal.

Format

<print statement> ::= PRINT [<print 1list> [<print end> 1]
<print list> ::= <print element>

<print element> ::= <aritmetic expression> |

{ <print separator> <print element> }
i

{string expression> | <tab function>

«¢{print end> ::= <print separator>

<print separator> ::= , | ;
‘ " <tab function> ::= TAB (<arithmetic expression>)

The print line on a terminal is divided into print zones.
The width of a print zone is not part of the standard.

If <print separator> is a comma (,) the output of the next
element starts from the leftmost position of the next

zone. If there are no more zones on the current line,
printing continues in the first zone on the next line.

If a print element requires more than one zone, the next
element is printed in the next free zone. A print element

is always printed on one line.

If <print separator> is a semicolon (;), the output of the
next print element starts from the next character position.
A space is printed after a number.

If no <print end> is specified, printing is continued on the
first position on the next line. The effect of a {print end>
is the same as a <print separator> (note 2 and 3).

A PRINT statement with no <print 1list> causes output of an
empty 1line.

TAB(exp) is a function to tabulate the printing position for
an item in the print list to the column number evaluated from
'exp'. Columns on the print line are numbered 1,2,....

If <arithmetic expression> evaluates to a column number
greater than or equal to the current column number and less.
than the length of the print line, the value of the expression
indicates the new column position. If the equations are not
satisfied, the effect of the function is undefined.

—_
.

\L 80 Definition 10 03.03.80

NT-USING statement.

t.atement to output values of items using a specified format.

nat

int-using statement> :::=
PRINT USING <string expression> : <using 1list> [<using’ end>]

.ing list> ::= <using element> { , <using element> }
-ing element> ::= <arithmetic expression>
-ing end> ::=

)
a8S.

{string expression> is used as 'a format string. The charac-
ters in this string are treated in the fbllowing way:
digit position and sign (sign position required only

for negative numbers)

decimal point (only if surrounded by #)
All other characters in the format string are output directly.
The effect of <using end> is the same as descibed in note 4 for
the PRINT statement. 4
String variables may not appear in the using list. However the
value of a string variable can be output by concatenating it
with the string expression.

COMI. 80 Definition 1M 03.03.80

SEL*CT OUTPUT statement.

- s - - ——— - - - - - - -

A statement to control the device to which results from a
pro-.ram (PRINT or PRINT USING statement) shall be directed.

For sat.

{select output statement> ::= SELECT OUTPUT <unit>
<unit> ::= <string expression>

Notes.

R

1. <string expression> specifies the output device. The names
of output devices are not part of the standard.

2. All output from PRINT and PRINT USING will be directed to
the unit specified until a new SELECT OUTPUT statement is
axecuted.

GOTO statement.

A s'.atement to transfer control unconditionally to another part
of ‘he program.

<gcto statement> ::= GOTO <label name>
<lz"el name> ::= <identifier>

1. A GOTO statement must not transfer control to a statement
' which is part of another structured statement or a
procedure declaration. .
2. A GOTO statement transferring control from one or more
structured statements will terminate the structured statements.
3. Execution of a GOTO statement from a procedure declaration
will cause an error.

COMAL 80 Definition

XEC

statement.

12

03.03.80

A statement to activate a procedure defined in a procedure

decl

aration.

Format

{pro
act

<act

Stat

a.

1.

cedure call> ::=

EXEC <procedure 1dent1f1er> [(<actual parameter llst>)]

ual parameter listd>::=

<actual parameter> { ,<actual parameter> }

ual parameter> ::=z <simple variable> |

{simple string name> |
<{numeric array name> |
<{string vector name> |

arithmetic "expression> |

{string expression>

ement execution.

The procedure designated by <proéedure identifier> is
activated. Execution is started with the statement after

PROC.

Execution is continued until an ENDPROC statement is
encountered. Then execution is continued with the
statement immediately following the EXEC statement.

The number of actual parameters must he the same as the
number of formal parameters in the procedure declaration.
The rules for substitution of the formal parameters by
actual parameters are the following:

Formal parameter spec.

Actual parameter allowed

<simple variable>

REF <simple variable>
<simple string name>

REF <simple string name>
REF <numeric array name>
REF <string- vector name>

<arithmetic expression>
<{simple variable>
{string expression>
{simple string name>
{numeric array name>
<{string vector name>

:MAL 80 Definition 13 03.03.80

3. An actual paraméter which is a <numeric array name> must
have the same number of indices as specified for the
formal parameter.

ND statement.

1 statement to terminate execution of the program anq to return
ontrol to interactive mode. '

“eand statement> ::= END

‘ote.

1. An END statement will terminate execution of the program.
In an interactive environment a prompt is output on the
user's terminal.

>TOP statement.

" statement to stop execution of the program and to return
ontrol to the terminal in interactive mode.

“stop statement> ::= STOP

1. A STOP statement will terminate execution of the program. A
stop indication, including the line number of the stop
statement, will be output on the-user's terminal.

2. In an interactive environment program execution may be
resumed after a STOP statement.

3. In a batch environment execution of a STOP statement has
the same effect as the END statement.

COMAL 80 Definition 14 03.03.80

’ statement.

A statement to execute one of two blocks of statements depending
on whether the value of a logical expression is true or false.

Format

<if statement> ::=

IF <logical expression> THEN <simple statement> |
IF <logical expression> THEN ' '

o (statement list>

[<else part>]
ENDIF

<else part> ::= ELSE

{statement list>

Statement execution.

b2.

<logical expression> is evaluated.

If the value is true, the <simple statement> after THEN
is executed, otherwise the statement is skipped.

If the value is true, the <(statement list> between THEN
and ELSE/ENDIF is executed.

If the value is false, the <{(statement 1list> after ELSE
will be executed. If ELSE is not specified, execution

will continue at the first statement following ENDIF.

If none of the executed statements causes transfer of

control to another part of the program, execution will
continue at the first statement following ENDIF.

COMAL 80 Definition 15 03.03.80

CASE statement.

A statement to execute one of several blocks of statements
depending on the value of an expression.

Format

<case statement> ::= CASE <expression> OF
{case list element>
{<case list element>]}
[<otherwise part>]
ENDCASE
{case list element> ::= WHEN <case expression list>
{statement list>
{case expression list> ::= <expression> {,<expression>}
<otherwise part> ::= OTHERWISE
{statement list>

Statement execution

a. The expression after CASE is -evaluated. _

b. The expressions after WHEN are evaluated one by one until
a value is found which is equal to the value obtained in
step a.

c. If a matching value is found, the statements in the list are
executed until the next WHEN, OTHERWISE, or ENDCASE. After
this, control is transferred to the first statement ,
following ENDCASE, provided none of the executed statements
cqysed transfer of control to another part of the program.

d. If a matching value is not found, the statements after
OTHERWISE are executed; if OTHERWISE is not present, the
CASE statement has no effect, ahd execution continues with
the statement following ENDCASE.

Note.

1. All <expression>'s in <case expression list> must be of the
same type as <expression> in <case statement>.

COMAL 80 Definition 16 03.03.80

"R statement.

A statement to establish the initial, terminating, and incremental
values of a control variable, which is used to determine the
number of times a statement or a statement list contained in

a loop is to be executed. The loop is repeated until the value

of the control variable meets the termination condition or until

a statement causes transfer of control from the loop. '

Format

<for statement> ::=
FOR <control variable> := <for list> DO <simple statement> |
FOR <control variable> := <for 1list> DO
<{statement 1list>
NEXT <control variable>
{control varizble> ::= <simple numeric variable>
<{for list> ::= <initial value> TO <final value> {STEP <step valued>}
<{initial value> ::= <arithmetic expression>
<{final value> ::= <arithmetic expression>
<{step value> ::= <arithmetic expression>

Statement execution

a. <initial value>, <final value> and <step value> are

evaluated. If <step value> is not specified, it is assumed
. to be +1.

'b. <control variable> is set equal to <initial value>.

c. If <step value> is positive (negative) and <control variable>
is greater than (less than) <final value>, the termination
condition is satisfied, and control paéses to the first
statement following the corresponding NEXT; otherwise step d
is performed.

d1. The statement after DO is executed.

d2. The statement list after DO is executed.

e. <control variable> is set equal to

{control variable> + <step valued:

f. Step ¢ is executed.

COMAL 80 Definition 17 03.03.80

1. After the execution of a FOR statement without trans-
fer of control from the loop, the value of <control
variable> is the first value satisfying the termination

condition.
2. The <control variable> after NEXT is checked against the

<control variable> after FOR; if they are not idgntical,
an error occurs. '

+WHILE statement.

A statement to execute a statement or a statement list .
repetitively while the value of a logical expression is true.

Format

<while statement> ::= . .
WHILE <logical expression> DO <simple statement> |
WHILE <logical expression> DO
{statement list>
ENDWHILE

Statement execution.

a. <logical expression> is evaluated.

b. If the value of <logical expression> is false, the termination
condition is satisfied and step e is performed.

c1. The statement after DO is executed.

c2. The statement list after DO is executed.

d. Step a is repeated. .

e. Control passes to the first statement following the
corresponding ENDWHILE, provided no statement caused trans-
fer of control from the WHILE statement during step c2.

i

COMAL 80 Definition 18 03.03.80

‘PEAT statement.

A statement to execute a statement 1list repetitively until the
value of a logical expression is true.

Format

<repeat statement> ::= REPEAT
{statement list>
UNTIL <logical expression>

Statement execution.

a. <{statement 1list> is executed. :
b. <logical expression> is evaluated, provided no statement
caused transfer of control from the REPEAT statement

during step a.

c. If the value of <logical expression> is false, step a is
repeated.

d. If the value is true, the termination condition is
satisfied and control passes to the first statement
following UNTIL.

DATA statement.

A statement to provide values to be read to variables
appearing in READ statements.

Format

<data statement> ::= DATA <value> { , <valued}

<value> ::= [+|-] <real number> | <string constant>

1. The DATA statement is non-executable.
‘; The values appearing in the DATA statement(s) form a

' single list. The first element in this list is the first
'value in the first DATA statement. The last element in
“in the 1list is the Yast -value in the last DATA statement.

'

Vs

FOrS

COMAL 80 Definition 19 03.03.80

PROC - ENDPROC statement.

A statement to define a procedure or a function which can
be called by means of an EXEC statement or in an arithmetic
expression.

Format

<procedure declaration> ::=
{procedure head>
{statement list>
<ENDPROC part>
{procedure head> ::=
PROC <procedure identifier> [(<formal parameter llst>)]
<ENDPROC part> ::= ENDPROC <procedure identifier>
{procedure identifier> ::= <identifier>
<formal parameter list> ::=
<{formal parameter specification>
{ ,<{formal parameter specification> }
<{formal parameter specification> ::=
[REF] <simple variable> |
[REF] <simple string name> |
REF <numeric array name> ([,]) |

REF <string vector name> () |

-—
.

A procedure declaration specifies that <{statement list>

is treated as a unit named <procedure identifier>.

2. A procedure can be activated only by an EXEC statement
or as a function call in an arithmetic expression. Return
from the procedure»occufs when an ENDPROC statement is
executed.

3. Transfer of data between the calling program and the
procedure or vice versa can be done using parameters. The
transfer of data can also be done using global variables.

"4, Formal parameters can be used in <{statement 1list> as

simple or subscripted variables;: simple or subscripted

string variables, or actual parameters.

Formal parameters used as numeric array names or string

vector names must specify the dimension of the array in

the following way:

() : one-dimensional array

(,) : two-dimensional array
) .“7‘0' 4

COMAL 80 Definition 20 03.03.80

[2

Whenever the procedure is activated, formal parameters in
{statement list> will be assigned the values of (call by
value) or replaced by (call by reference) corresponding
actual parameters.

Formal specification in the procedure head determines the
choice based on the following rules:

<{formal parameter spec.> equal to

<{simple variable> call by value

REF <simple variable> call by reference

<{simple string name> call by value

REF <simple string name> call by reference

REF <numeric array name> call by reference
~ REF <string vector name> call by reference

The REF before <numeric array name> and <string vector name>’

must be specified to allow for possible .future extensions.
Activation of a procedure can take place as a function call
in an arithmetic expression. A procedure used in this way
should contain at least one assignment statement with the
procedure identifier on the left side of ':="',

<{procedure identifier> after ENDPROC must be the same as
<{procedure identifer> after PROC, ohterwise an error will
occur. _

If the procedure was activated by an EXEC statment,
execution of an ENDPROC statement will cause execution to
continue with the statement after the EXEC statement.

If the procedure was activated by a function call, the
value of the function will be used in evaluation of the
expression in which the call occurred.

Procedures may be called recursively.

Label statement.

A statement to define a label to which control can be trans-

ferred by a GOTO statement.

?

Format

‘abel statement> ::= <label name>
<label name> ::= <identifier>

COMAL 80 Definition 21 03.03.80

Note.

1.

DIM

The label statement is non-executable.

statement.

A statement to define storage for one or more numeric array
variables or string variables.

[

r-Format

<dim statement> ::= DIM <declaration> {,<declaration>}
<declaration> ::= <numeric array decla;ation) i

{string variable declaration>

<numeric array declaration> ::=

<numeric array name> (<max row index> [,<max column index>])
{(string variable declaration> ::=

<simple string name> OF <string length> |

<string vector name> (<max subscript>) OF <string length>

<max row index> ::= <simple numeric variable> | <real number>

<{max column index> ::= <simple numeric variable> | <real number>

<{max subscript> ::= <simple numeric variable>

i <real number>

!
{string length> ::= <{simple numeric variable> | <real number>

Statement execution

a.

1.

Storage space is allocated for the numeric array or the
string variable for each declarapion.

’

A declaration of an array or a string must be executed
before it is used in the program.

A numeric array or a string variable may be declared only
once. Redimensioning of arrays or strings is not allowed.
If the value for <max row index>, <max column index>,
<{max subscript>, or <string length> does not evaluate

to an integer, rounding is applied.

All of the elements in a declared numeric array is set to
a value indicating undefined. A declared string variable
is set to null ("").

LT
. ‘T"'

COMAL 80 Definition 22 03.03.80

.pres_sions .

Expressions are used in a number of different statements and
constructions. An expression may be composed of parentheses,
constants, variables (numeric or string), and functions,
linked together by operators.

Format

<expression> ::= <logical expression> |
]

{arithmetic expression> |
<{string expression>

Logical expressions.

A logical expression is used primarily for making the execution
of a statement or a group of statements conditional, but may
also be used in assignment statements or as actual procedure
parameters. o

Format

<logical expression> ::= [NOT] <l-expression>

‘l-expression> ::= <logical term> | '
. {l-expression> OR <logical term>
<logical term> ::= <logical operand> ;|

<logical term> AND <logical operand>

<logical operand> ::= <relation> | (<logical expression>)
<relation> ::= <string relation> | <arithmetic relation>
<{string relation> ::=

{string expression> <relational operator> <string expression>

<arithmetic relation> ::=
{arithmetic expression>
[<relational operator> <arithmetic expression>]
{relational operator> ::= > | >= | = | &' | <= | <

COMAL 80 Definition 23 03.03.80

1. The logical operators have the following meaning:

NOT: A NOT A
FALSE | TRUE
TRUE i FALSE

OR : A B A OR B
FALSE | FALSE | FALSE
FALSE | TRUE i TRUE
TRUE i FALSE | TRUE
TRUE i TRUE i TRUE

AND: A B A AND B
FALSE | FALSE | FALSE
FALSE | TRUE i FALSE
TRUE i FALSE | FALSE
TRUE i TRUE g TRUE

2. The relational operators have the following meaning:

> : greater than

>= : greater than or equal to
= : equal to B

< : not equal to

<= : less than or equal to

< : less than

3. If the relation between the two expressions is satisfied,
the value of the relation is TRUE, otherwise FALSE.

4, If <relation> contains only an <arithmetic expression>,
the relation has the value TRUE, if the value of the
expression is not equal to zero, otherwise FALSE.

5. In a <string relation>, the two string expressions are
compared character by character’ (from lower towards
higher subscripts) on the basis of their ASCII decimal
values. If a character in a given position in one string
expression has a higher decimal value than the character
in the corresponding position in the other string expression,
the first string expression is the greater of the two. If the
characters in corresponding positions are identical, but one
string expression contains more characters than the other,
the shorter string expression is the lesser of the two.

CCMAL 80 Definition 24 03.03.80

'iL The priorities of logical and relational operators are:

First : Relational operators
Second : NOT

Third : AND

Fourth : OR

When two operators have the same priority, evaluation proceeds
from left to right. Parentheses can be used to change the
priority of logical and relational operators.

Arithmetic expression.

An arithmetic expression is a rule for computing a value of the
numeric type. It is primarily used in assignment statements,
but may also be used in logical expressions; PRINT statements,
FOR statements and DIM statements.

Format

<arithmetic expression> ::= {<monadic operatof>} {a-expression>
<{monadic operator> ::= + |
{a-expression> ::= <term> | <a-expression> + <term> |
{a-expression> - <term>

<term> ::= <factor> | <term> ¥* <factor> |

<term> / <factor> | <term> DIV <factor> |
‘ <term> MOD <factor>
{factor> ::= <operand> | <factor> 4 <operand>
<operand> ::= (<arithmetic expression>) | <real number> |

<{numeric variable> | <system numeric function> i

<numeric function> | (<logical expression>)

(<string expression> IN <string expression>)
<{numeric function> ::= .

<procedure identifier> [(<actual parameter 1list>)]

COMAL 80 Definition 25 ' 03.03.80

The arithmetic operators have the following meaning:

+ monadic + ' (A + (+B))
- monadic - (A + (-B))
4 : exponentiation (A} B)
¥ : multiplication (A * B)
/ : division _ (A /7 B)
DIV : integer division . (A DIV B)
MOD : modulus calculation (A MOD B)
+ : addition (A + B)
- : subtraction , (A - B)

Exponentiation is standardized only for positive A.

The result of an integer division (DIV) is standardized
only for A >= 0 and B > O .

The result of modulus calculation (MOD) is standardized
only for A >= 0and B > 0

During evaluation a floating point underflow can occur. In
this case the result is set to zero. A floating point over-
flow will cause a run-time error.

A value must be assigned to a numeric variable, before it can
be used as an operand in an arithmetic expression. If this
condition is not satisfied, a run-time error can occur.

The priorities of arithmetic operators are:

First : monadic + and -
Second : 4

Third : ¥, /, DIV, MOD
Fourth : +, -

When two operatorS‘have.the samé priority, evaluation proceeds
from left to right. Parentheses can be used to change the
priority of arithmetic operators.

. . If a logical expression is used, the value TRUE is equivalent

to 1 and the value FALSE to O.

In a call of a <numeric function>, actual parameters

are treated in the same way as &ctual parameters in

an EXEC statement. '

The IN operator (A$ IN B$) gives the index of the first
occurrence of the first string expression in the second
string expression. If the first string expression is not a
substring in the second, the value of IN is 0. If the

length of the first string expression is zero (LEN(A$) = 0),

then IN = LEN(B$)+1.
L .“’,"" .-

COMAL 80 Definition

System numeric functions can be operands in arithmetic
expressions.

The following numeric functions exist:

ABS (X)
ATN(X)
COS(X)
EXP(X)
LOG(X)
SIN(X)
SQR(X)

‘TAN(X)

INT(X)
ORD(S$)
LEN(S$)

Note.

Absolute value of X.
Arctangens of X,
Cosine of X,
E to the power of X.
Natural logarithm of X (X >= 0)
where X is
Square root of X (X >
Tangens of X,
~ Integer value of X.
The ordinal number of
The current length of
:= 0; W$
WHILE W$(LEN+1

result in radians.
where X is in radians.

Sine of X, in radians.

where X is in radians.

the first character in S§$.

"" DO LEN LEN + 1

Identifiers must not be the same as names of numeric
functions. :

‘meric variables.

COMAL includes two types of numeric (real) variables:

variables and subscipted variables.

<{numeric variable>

<{simple variable>
<{subscripted variabile>
<identifier>

{simple variable>

<subscripted variable)>

<numeric array name> (<row index> [, <column 1ndex>])
umeric array name>
ow index>

<{column index>

<{identifier>
ti=. Carithmetic expression>
{arithmetic expression>

-
COMAL 80 Definition 27 03.03.80

1. A simple variable is referred to by using the identifier.

2. A simple variable may not be declared explicitly. The
declaration is made automatically.

3. Subscripted variables are elements in arrays having either
one or two dimensions.

4, Array variables must be declared in a DIM statement before
they are used. Such a declaration contains the name of the
array, its dimension, and the upper bounds for each index.

5. A subscripted variable must satisfy the following:

1 <= row index <= upper bound for first index -
1 <= column index <= upper bound for second index
If not, a run-time error oceurs.
. ' 6. If the arithmetic expression for <row index> or <column index>
does not evaluate to an integer, rounding is applied.

7. The value of a <numeric variable> (except a <system
defined variable>) is undefined before a value has been
explicitly assigned to it. '

String expression.

String expressions are used for assigning values to string
variables (in assigment statements), for output (in PRINT
’ statements), and in relations.

Format

<{string expression)> ::= <string operand> { + <string operand>}
{string operand> ::= <string variable> { <string constant> |
<{system string function>

<string constant> ::= " | "<{sequence of ASCII characters>"

COMAL 80 Definition 28 03.03.80

‘otes.

1. <string constant> can be empty or a sequence of characters,
which may include letters, digits, spaces, and special
characters except " and non-printable characters. '

2. The string operator '+' denotes concatenation.

System string function.

System string functions can be operand in string expressions.
The following system string function exists:

CHR$ (X) The ASCII character corresponding to the ordinal
number X. ‘

String variables.

COMAL 80 contains a type of variable called a string variable.
The value of a string variable is a sequence of ASCII
characters. There are two types of string variables: simple
string variable and string array variable,

Format

{string variable> ::= <simple string variable> |
) ‘{subscripted string variable>

<{simple string variable> ::= ’

<simple string name> [(<selector>)]
<{subscripted string variable> ::=

<{string vector name> (<index> [, <selector> 1])
{simple string name> ::= <simple string identifier>$
{string vector name> ::= <string vector identifier>$
<index> ::= <arithmetic expression> '
{selector> ::= <start position> [: <substring length>]
<start positiond> ::= <arithmetic¢ expression>
substring length> ::= <arithmetic expression>
‘simple string identifier> ::= <identifier>

string vector .identifier> ::= <identifier>

COMAL 80 Definition 29 03.03.80

1. All string variables contain a dollar sign ($) after the
identifier.

2. Substrings can be used to specify a selector, containing a
start position and the length of the substring. If the length
of the substring is not specified, it is assumed to be one.

3. All string variables must be declared in a DIM statement.

For simple string variables, the maximum length o6f the string
must be specified. For subscripted string variables, the number
of elements and length must be given.

‘4 The following must be satisfied:

1 <= subscript <= maximum number of elements

1 <= start position <= string length

1 <= start position + substring length - 1 <= string length
0 <= substring length :

If not, a run-time error takes place.

5. If the arithmetic expression for <index>, {start position> or
{substring length> does not evaluate to an integer, rounding
is applied.

6. The value of a string variable is zero ("") before a value
has been assigned to it. The value of a substring with a
substring length equal to zero is zero ("").

Real numbers.

Real numbers may be operands in arithmetic expressions.
Number may be expressed as integers, decimal numbers,
or in exponential form.

Format

<real number> ::= <decimal number> [<exponent part>]
<{decimal number> ::= <integer> | <integer>.<integer>
‘ <integer>. | .<integer>
<exponent part> ::= E [+]-] <integer>

<integer> ::=z <digit>{<digit>}

<digit> ::= 0} 1 {2 13 141516171819

COMAL 80 Definition 30 03.03.80

Notes.

1. A real number may not contain space characters.
2. The range of real numbers is not part of the standard.

Identifiers.

Identifiers are used to designate entities in a COMAL 80
program.

<identifier> ::= <letter> {<letter> | <digit> | _ }
{letter> ::= < ASCII letters plus national characters >

1. Identifiers may contain at least 16 characters.
2. Both capital and small letters may be used. No
distinction is made between a capital and a small letter.
3. Space characters are not allowed within an identifier.
4, The character just before and after an identifier may
not be a letter.
5. Identifiers may not be the same as the reserved keywords
‘ or names of system functions.
- 6. Identifiers designate entities in a program. The following
types exist:
- simple variables
- subscripted variables
- simple string variables
- subscripted string variables
- label names
- procedure names
- formal parameters.
]
7. An identifier may designate only one entity in- the
program. '

COMAL 80 Definition 31 03.03.80

Keywords.

| COMAL 80 contains a number of keywords with a fixed meaning.

Format.

<keyword> ::= AND | CASE DATA | DIM | DIV | DO |

|
!
ELSE | END | ENDCASE | ENDIF | ENDPROC |
- ENDWHILE | EXEC | FOR ! GOTO | IF | IN |
INPUT | LET | MOD | NEXT | NOT | OF ! OR
|
0

‘ ' OTHERWISE | OUTPUT | PRINT | PROC | READ
REF | REPEAT | RESTORE | SELECT | STEP |
STOP TAB | THEN | TO | UNTIL | USING |
WHEN WHILE

1. Keywords may be typed using both capital and small
letters.
2. A keyword may not be.used as an identifier for other entities.
Space characters are not allowed in a keyword.
4. The character just before a keyword may not be a letter.
The character just after a keyword may not be a letter or
a digit.

w

SAMPLE PROGRAM,

Program Qritten in ICL COMET version of COMAL 80. This
version is extended with some facilities as compared

to standard COMAL 80,

8010 //THIS IS THE SIMULATOR: SMALL CASINO//
0020 //WRITTEN BY BORGE R. CHRISTENSEN//

0030 //AT THE STATES TRAINING COLLEGE//

0040 //DK—-E270 TONDER, DENMARK//

0050 //DATE OF THIS VERSION: . APRIL, 1980//
0060 //————m———— e /7

0070 //+INITH//

0080 RANDOM

00380 //+#ATTRIBUTES OF GAMBLER ARE INITIALIZED#*/
0100 QUT:=FALSE: REALBAD:=FALSE

0110 WARNINGS:=035 BET:=03 ACCOUNT :=0

0120 //———————————— //

0130 //7+UTILITY STRINGS ARE DECLARED*/

0140 DIM RANSW$ OF S5, COLOUR$ OF E,0OUTCOME: OF E

6150 //—————— e ———— /7 ‘

0160 //+ENDINIT*:/

0170 7/

0180 //+MRINPROGRAM*/

0190 7/

0200 CLEAR

0210 EXEC LINES

0220 PRINT "DO YOU WANT INSTRUCTIONS OF THE GAME C(Y/N)?",
230 INPUT ANSWS

0240 IF ANSWS(1)="Y" THEN EXEC INSTRUCTION

0250 EXEC RCCOUNT

0260 REPEAT

0270 IF NDOT OUT THEN EXEC GUESS .

0z80 IF NOT OUT THEN EXEC BET ‘

0290 IF NOT OUT THEN

0300 EXEC WHEEL

0310 EXEC STATUS

0320 ENDIF

0330 IF OUT THEN EXEC EXIT

0340 UNTIL 0OUT

350 END OF MAIN

0360
0370
0380
0Z90
0400
0410
0420
0430
0440
0450
04E0
0470
0480
04380
0500
0510
0520
0530
0540
0550
05E0
0570
0580
0590
OEOQ
0E10
020
0820
040
0BS5S0
0EEOD
OE70
08B0
0E390
0700
0710
0720
0730
Q740
0750
0760
Q770
0780
0790
0800
oB10
0820
0830
0840
0850
080
0870

//
//+*PROCEDURES*/
//
PROC GUESS
PRINT
OK:=FALSE
REPEAT
PRINT
EXEC LINES
PRINT "WHAT COLOUR DO YDOU WANT TO BET ON*
PRINT " (BLUE/GREEN/YELLOW/BLACK/RED)? *,
INPUT COLOURS$
CASE COLOURs OF
WHEN "NONE"Y
OUT:=TRUE
WHEN "BLUE", "GREEN", "YELLOW", "BLACK", "RED"
OK:=TRUE
OTHERWISE
EXEC LINES :
PRINT "“OPERATING ERROR! IMPOSSIELE SITURTION!'*®
PRINT "DD YOU WANT INSTRUCTIONS (Y/N)>? *,
INPUT ANSW$
IF ANSW$C1)="Y" THEN EXEC INSTRUCTION
ENDCASE
UNTIL OUT OR OK
ENDPROC GUESS

/)= e /7
/ /+*BANKERS TASKS#/
f)—mm e /7
PROC ACCOUNT

REPEAT

OK : =TRUE

EXEC LINES

PRINT “HOW MUCH DO YDU WANT TO INVEST?",

INPUT INVEST

EXEC LINE1

IF INVEST(O THEN
PRINT "KEEP YOUR FALSE MONEY - yDu!'!"

WARNINGS:+13 OK:=FALSE ’

ELIF INVEST=0 THEN

PRINT "I HAD THE IMPRESSION, YOU MEARNT THIS SERIDUSLY!'®
WARNINGS:+135 OK:=FALSE)

ELIF INVEST<{(1 THEN

PRINT "ND SIR!! NOT THAT CENT STUFF. REAL MONEY PLERSE!'"
WARNINGS:+135 OK:=FALSE

ELIF INVEST () INTCINVEST) THEN

PRINT "TIPS' YOU A R E GENERDUS, SIR'"
INVEST : =INT (INVEST) ’

ENDIF :

IF WARNINGS)=4 THEN 0OUT:=TRUE

UNTIL OK OR OUT
IF OK THEN ACCOUNT:+INVEST

0880 ENDPROC ACCOUNT

0890

/)= e /7

0900 PROC EXIT

0910
03920
0930
- 0940
03930
0360
0970
0820
0990
1000
1010
1020
1030
1040
1050
10E0
1070
1080
1090
1100
1110
1120
11320
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

EXEC LINES
IF WARNINGS<{(4 THEN
PRINT "THANKS FOR THE GAME"
IF WARNINGS(Z THEN PRINT "IT’S EEEN A PLEASURE"
PRINT "COME AGRIN SOME OTHER DAY" '
ELSE
EXEC BOUNCER
ENDIF
IF ACCOUNT () O THEN :
PRINT "THE CONTENTS OF YOUR ACCOUNT, TOTAL % ", ACCOUNT
PRINT "IS RETURNED FROM THE DESK AT THE ENTRANCE.
ENDIF

ENDPROC EXIT

PROC STATUS

EXEC LINES
IF COLOUR$=0UTCOMES$ THEN
ACCOUNT : +BET#FACTOR
PRINT "CONGRATULATIONS!!'"
PRINT “YOU HAVE WON $ ", BET+FACTOR
PRINT "AND YOU NOW HAVE $ ",ACCOUNT." AT YOUR DISPOSAL. "
EXEC WRITS .
ELSE //YDOU HAVE LOST//
ACCOUNT : —BET
PRINT "“SORRY' YOU HAVE LOST YOUR BET OF % “,BET
PRINT "BETTER LUCK NEXT TIME."
PRINT "YOU NOW HAVE % ", ACCOUNT," AT YOUR DISPOSAL."
EXEC WAITS
IF ACCOUNT=0 THEN
PRINT "DO YOU WANT TO INVEST MORE MONEY (Y/N)?",
INPUT ANSW$
IF ANSW$(1)="Y" THEN
EXEC ACCOUNT
ELSE //NO, I’VE HAD ENOUGH//
OUT:=TRUE
ENDIF
ENDIF
ENDIF

1290 ENDPROC STATUS
1z00 //—————————————— //

1310 PROC BET

1320 REPERT

1330 OK:=TRUE

1340 - EXEC LINES

1350 PRINT “HOW MUCH DD YOU WANT TO BET?",
1280 INPUT BET

1370 EXEC LINEl

180 IF BET)ACCOUNT THEN

1380 OK:=FALSE

1400 EXEC BADBET

1410 ELIF BET O INTCBET) THEN

1420 PRINT "THIS IS NO GAME OF CENTS. MEANY!"
1430 WARNINGS:+13 OK:=FALSE

1440 ELIF BET (=0 THEN

14350 PRINT “DON’T WASTE OUR TIME!'"

14€E0 WARNINGS:+15 OK:=FALSE

1470 ENDIF ’

1480 IF WARNINGS)=4 THEN OUT:=TRUE

1490 UNTIL OK OR OUT '

1500 ENDPROC BET

is510 //———— === //

1520 PROC BRDBET

1530 IF REALEBAD THEN

1540 WARNINGS:=

1550 ELSE

1560 PRINT "YOU HAVEN'T GOT THAT MUCH MONEY!'"
1570 REPERT '

1580 PRINT "DO YOU WANT TO INVEST SOME EXTRA MONEY (Y/N)?",
1380 INPUT ANSW$ -

1600 IF ANSW$(1)="Y" THEN

1610 EXEC ACCOUNT

1620 IF BET)ACCOUNT THEN

1830 PRINT "YOUR BET STILL EXCEEDS YOUR ACCOUNT!®
1640 PRINT "THE CARSINO DDES CERTAINLY NOT APPROVE OF"
1630 PRINT "SUCH MANNERS!!"

1660 WARNINGS:+235 OK:=FALSE

1870 ENDIF

1680 ELSE //NO, YOU BET I WON'T//

1830 PRINT “THEN YOU'LL HAVE TO BET LESS, "

1700 PRINT "YOU ONLY HAVE $ ",RACCOUNT." IN THE BRNK."
1710 PRINT “DON'T TRY TO OVERDRARW YOUR ACCOUNT. "

1720 PRINT "THIS IS AN ULTIMATE WARNING!'"

1730 © WARNINGS: +1

1740 REALBAD:=TRUE3 BET:=0

1750 ENDIF

1760 DUT: =(WARNINGS) =4)

1770 UNTIL BET(=ACCOUNT OR OUT

1780 ENDIF .
1790 ENDPROC BADBET

1800 //—————~————————//

1810 //+END OF BANKERS COMPONENTS#/
1820 //-————————m—m——m /7

1210 PROC BET

1320 REPERAT

1330 OK:=TRUE

1340 - EXEC LINES

1350 PRINT "HOW MUCH DO YOU WANT TO BET?",
1260 INPUT BET

1370 EXEC LINE1

1Z80 IF BET)ACCOUNT THEN

13380 OK:=FALSE

1400 EXEC BADBET

1410 ELIF BET O INTCBET) THEN

1420 PRINT “THIS IS NO GAME OF CENTS. MEANY!™
1430 WARNINGS:+135 OK:=FALSE

1440 ELIF BET (=0 THEN

1430 PRINT “DON’T WASTE OUR TIME!'!"

1460 WARNINGS:+15 OK:=FALSE

1470 ENDIF

1480 IF WARNINGS)=4 THEN OUT:=TRUE

1490 UNTIL OK OR OUT '

1500 ENDPROC BET

1510 //————————""7—= //

520 PROC EADBET

1530 IF REALEAD THEN

1540 WARNINGS: =

1550 ELSE

1560 PRINT "YDOU HAVEN'T GOT THAT MUCH MONEY!"
1570 REPEAT

1580 PRINT "DO YOU WANT TO INVEST SOME EXTRA MONEY (Y/N)>?%,
18980 INPUT ANSWE .

1E00 IF ANSW$(1)="Y" THEN

1610 EXEC ACCOUNT

1620 IF BET)ARCCOUNT THEN

1630 PRINT "YOUR BET STILL EXCEEDS YOUR ACCOUNT!"Y
1640 PRINT "THE CARSINO DOES CERTAINLY NOT APPROVE OF"
1650 PRINT "“SUCH MANNERS!!"Y

1660 WARARNINGS:+235 OK:=FALSE

1670 ENDIF

1680 ELSE //NO, YOU BET I WON'T//

1690 PRINT “THEN YOU’LL HAVE TO BET LESS, "

1700 PRINT "YDU ONLY HAVE % ",ACCOUNT." IN THE BANK.*
1710 PRINT "DON’T TRY TO OVERDRAW YDUR ACCOUNT. "

1720 PRINT "THIS IS AN ULTIMATE WARNING!"

1730 ~ WARNINGS: +1

1740 REALBAD:=TRUE; BET:=0

1730 ENDIF

1760 OUT:=(WARNINGS) =4)

1770 UNTIL BET<{=ACCOUNT OR 0OUT

1780 ENDIF .
1790 ENDPROC BADEBET

1800 //—————————m————— //

1810 //+END OF BANKERS COMPONENTS#*/
1820 //-—————=———————m— /7/

1830
1840
1850
1880
1870
1880
1890
1900
1910
1920
1930
13940
1950
1980
1970
1980
1990
2000
2010
2020
2030
2040
2050
=080
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
21390
2200
2210
2220
2230
2240
2230
2260
2270
2280
2230
2300
2310

PROC WHEEL
:=RND
IF N<(1/3 THEN
DUTCOME$:="BLUE"3 FACTOR:=
ELIF N<(3/5 THEN
ODUTCOME$:="GREEN"3 FACTOR:=Z
ELIF N<4/5 THEN
OQUTCOME®:="YELLOW"3 FACTOR:=4
ELIF N(14/15 THEN
DUTCDME%'“"BLQCK"' FACTOR: =&
ELSE
DUTCDME$=="RED"3 FACTOR:=1Z
ENDIF
EXEC DISPLAY
ENDPROC WHEEL

PROC BOUNCER

CLERR

CURSOR 1.8

PRINT "YDUR PRESENCE IN THE CARSINO IS NOT WANTED"
PRINT "PLEASE LEAVE THIS HOUSE WITHOUT ANY TROUBLE."
OUT:=TRUE
ENDPROC BOUNCER

PROC INSTRUCTION

CLEAR

PRINT "NOT INSERTED"

PRINT "PLERASE READ ARTICLE" .

PRINT "IN 7 PEOPLE'S COMPUTERS’. MAY-JUNE 1978."
PRINT “STRIKE RETURN TO CONTINUE *“,

INPUT ANSW$
ENDPROC INSTRUCTION

PROC DISPLAY
CLERAR
FOR J:=1 TO 5
CURSOR 20, &
PRINT SPC%(&4)
CURSOR 20,8
PRINT OUTCOME®
FOR I:=1 TO 300
NEXT 1
CURSOR 1.8
PRINT SPC#%(&4)
FOR I:=1 TO 100
NEXT 1
NEXT J b
ENDPROC DISPLAY
l/—————————— = //

PROC LINE1

CURSOR 1,1

FOR I:=1 T0 &4
PRINT SPC#(&4)

NEXT I

CURSOR 1,1

ENDPROC LINE1L

PROC LINES

CURSOR 1,8

FOR I:=1 70O 4
PRINT SPC$(&4)

NEXT 1

CURSOR 1,8

ENDPRDOC LINES

PROC WRITS

FOR I:=1 TO Z500
NEXT I

ENDPROC WAITS

