

CAPTAIN COMAL GETS ORGANIZED
UPDATE NUMBER 1

PROGRAM ADDITIONS

If you write any programs that work together

with this Disk Organization System, we would be

happy to share them with the many other users.

Each additional program will be Included on a

COMAL TODAY disk and explained In the COMAL

TODAY newsletter. If enough programs are

submitted, a separate disk with these programs

will be made available. We are pleased to report

that David Stidoiph Is already completing a

program to add to the system. His program can

protect a file from being DELETEd, restore a

deleted file, delete files, change a file name,
change a file type, and alphabetize the

directory. We wish David luck in completing this

useful program and look forward to adding it to

our collection. It will be included on the next

available COMAL TODAY disk after we receive the

program and test it.

UPDATES TO PROGRAMS

Any updates to the programs in this book / disk

will be printed 1n the COMAL TODAY newsletter.
This first update will not be in COMAL TODAY,
since it is Included with the book. The programs
on the disk already include ALL of the updates

shown. However, the book was already printed,
and these updates are not included in the book.
Thus, this Is merely for your information. No
need to update any programs on the disk.

PROGRAM :: STARTUP:

We added checking if a Master disk was
formatted, and if so omit asking for the Master
to be inserted:

From.- FORMAT'MASTER

To: FORMAT'MASTER(FORMATTED)
Add: IF NOT FORMATTED THEN

Add: ENDIF after the PRINT "OK"

From: PROC FORMAT'MASTER CLOSED
To: PROC FORMAT1MASTER(REF FORMATTED) CLOSED

Add: FORMATTED:=FALSE

From: FORMAT'IT

To: FORMAT1IT(FORMATTED)

From: PROC FORMAT'IT CLOSED

To: PROC FORMAT'IT(REF FORMATTED) CLOSED

Just before WHEN "Q","q"

Add: FORMATTED:=TRUE
Then From: NULL

To: FORMATTED:=FALSE

PROGRAM :: DOS'MENU:

In procedure DUAL'CHOICE add write protect
check:

Add to DIM: , S$ OF 2

After the DELETE statement add:
S$:=STATUS$

IF S$="26" THEN

FOR X=l TO 30 DO PRINT CHR$(20),

INPUT "TAKE OFF WRITE PROTECT TAB": S$
CLOSE FILE 78

PASS "10" // CLEAR STATUS
ELSE

WRITE FILE 78: DUAL'STATUS //already in program
ENDIF v y

PROGRAM •• MASTER'MAKER:

Add file count for master file maximum:

Add at beginning of program:

MAX'FILES:=3000; FILE'COUNT:=0

In procedure PROCESS'MASTER:
From: ADD'DIRECTORY(ADD'IDS,SHOW'DIR)
To: IF FILE'C0UNT<MAX'FILES-144 THEN ADD'DJREQ

TORY(ADD'ID$,SHOW'DIR) all on one line
Just before the ENDPROC add:
PRINT FILE'COUNT;"FILES IN MASTER FILE."

In procedure ADD'DIRECTORY:

Just after the WRITE FILE ALL'FILE statement:
Add: FILE'COUNT:+1

PROGRAM :: COMPARE'DIR:

In the DIMs change MAX'FILES to MAX'FILES+1

In procedure GET'DIR2:

After READ FILE DIR'FILE: COUNT

Add: IF COUNT>MAX'FILES THEN COUNT:=MAX'FILES

>»» IMPORTANT INFORMATION <««

HOW TO USE THE DISK ORGANIZATION SYSTEM:

Do NOT use the enclosed disk. Make a copy of it,
store the enclosed disk in a safe place, and use

the COPY. Instructions on how to make a disk
copy are enclosed. Label the copy of the

enclosed disk DOS MENU PROGRAM DISK.

You will need one more blank disk in addition to
the backup copy you just made. The SYSTEM will
format it for you. It will be labelled MASTER

DIRECTORY DISK.

>>> Do NOT put write protect tabs on disks.

STARTUP:

Turn off your computer, then back on.
Insert the DOS MENU PROGRAM DISK into the disk
drive and enter the following using unshifted
letters (followed by the RETURN key):

LOAD "BOOT*",8

When the word READY, appears use unshifted
letters to enter the following:

RUN

That's it. To restart the system at any time,
from within COMAL enter the following command:

CHAIN "DOS'MENU"

MENU:

The SYSTEM will present a MENU for you. This
makes it easy to use. The first time you use the
SYSTEM you MUST choose option A to Allocate new
files. You may also choose H for HELP at any
time. The SYSTEM will format a new blank disk
for you to use as the MASTER DIRECTORY DISK.

Follow the prompts provided. Once you have the
files allocated, the next thing you should do is
Update the system by cataloging your disks.
Choose option U to do this. It will ask you to
insert a disk to be cataloged. Try the DOS MENU
PROGRAM DISK. It will read its directory, then

ask you to insert the MASTER DIRECTORY DISK.
Take out the disk and put in the MASTER disk.
The system wi11 catalog the directory of the

previously read disk. Then it will ask you to

insert another disk to catalog. Catalog a few
more of your disks (you can finish cataloging
all your disks later). When done, reply Q for
Quit. You then are sent back to the MENU.

Now, choose option M to make a MASTER file from

all the directories you just cataloged. The

SYSTEM reminds you to choose option M anytime it

is needed. Once the system makes the MASTER

file, you will automatically be sent back to the

MENU.

REVIEW:

You first loaded COMAL.

Then you Allocated files.

Then you Updated directories.

Then you Made the Master File.

NOW:

You now can explore the other options available:

C - Compare two directories. You can now compare

any two directories that are cataloged. You must
know the ID'S of each directory (option S can

help you recall the ID's).

D - Delete any directory from the Master (in

case you lose the disk - or reformat it).

F - Find all the disks that contain a specific
program. Or use the * for wildcard searching.

I - ID Chart or List. This is an easy way to
determine all the ID's currently used so you can

use unique ID's on the next disk's you format.

N - Num^~ of drives. If you switch from a
single drive to a dual drive, this option allows
you to inform the SYSTEM of the upgrade. (Two
single drives are not supported).

P - Print any directory from the Master. The
directory can be printed as an expanded single
column. Or print it in multiple columns.
Printing can be either to the screen or the

printer.

S - Summary of all disks in the Master. This is
a quick overview of your disks, including the
date cataloged, number of files, free blocks,

disk name and disk ID.

V - View a directory of any disk. This option
allows you to see a directory of any disk
without having to catalog it onto the Master.
The directory can be printed to your printer if

you wish.

Q - Quit. Quit the system with this option.

That's it. The SYSTEM is self prompting, so have

fun. The accompanyi ng book shows, how the
programs were constructed. You can write your

own programs to add to the SYSTEM.

Introduction ... 2
Getting Started ... 3

TABLE OF CONTENTS

Designing our Disk Management System ... 12
Design a File Structure ... 13
Master Directory Disk Fies Structure ... 14
Explanation of File System '" 15
Program: VIEW'DIR ... 16

(PAGE, INTRO, DISK'GET, READ'DIR2, READIDIR 'PART2, PRINTER, SCREEN,
MENU)

Program: UPDATE ... 35
(MENU2, SEl'UPDATED, READ'DIR, DUAL'DRIVE, WRITE'DIR, USED, UPDATE)

Program: DOS'MENU ... 47
(SEE, SHIFT 'WAIT, CHOICES, FILE'EXISTS, DUAL'CHOICE, UPDATED,

PRESENT 'MENU, PROCESS 'MENU)
Program: STARTUP ... 57

(FORMAT'MASTER, FORMAT'IT, START'ALLFILES, START 'ALL I STATUS,
START I DIRECTORY, START'DISKIDS)

Program: MASTER'MAKER ... 64
(INIT, MENU3, READ I IDS, SORT I IDS, QUICKSORT, WRITE I SORTED,
PROCESS'MASTER, ADD'DIRECTORY)

Program: PRINT' DIR ... 72
(GET'DIR, TYPE'OF'DIR, PRINT'DIR'REG, PRINT'DIR'LABEL, PRINT'IT
PRINT'ALL)

Program: PRINT'IDS ... 78
(TYPE'OF'LIST, PRINT'ID'LIST, PRINT'ID'CHART, FIX'LINE, SKIP'IDS)

Program: FIND'FILE ... 83
(FIND'WHAT, SEARCH I PRINT, PRINT ' IT2, VERIFIED)

Program: DELETE'DIR ... 88
(DELETE I IT)

Program: COMPARE'DIR ... 91
(GET'DIR2, GET ' ID, DIRECTORY, SORT'DIR, COMPARE, PRINT ' D0, PRINT ' D1
PRINT 'BOTH)

APPENDIX A - HOW TO BACKUP A DISK ... 100
APPENDIX B - HOW TO FORMAl A DISK ... 102

(c) 1984 COMAl Users Group, U.S.A., Limited
Tradelllarks:
CBM and Commodore 64 of Commodore Electronics, Ltd;
PET of COllllOdore Bus; ness Mach; nesi
Captain COMAl of COMAl Users Group, U.S.A., Limited

Material taken from COMAl HAMlBOOK and COMAl TODAY
with permission.

ISBN O-~28411-01-X

Page 1 CAPTAIN COMAL GETS ORGANIZED Page 1

THE AMAZING ADVENTURES OF CAPTAIN COMAL

BOOK 1
CAPTAIN (OMAL GETS ORGANIZED

Welcome to the first of our many amazing adventures. This series of
books will show you how programming in COMAL can be exciting and fun.
Just follow along with me and see how easy it can be. But no skipping
pages. Read this book next to your computer with COMAL ready.

The first step is to transform your primitive BASIC Commodore computer
into a powerful COMAL computer. That is easy! Everything you need is on
the disk that came with this book. Do NOT use the original disk. See
APPENDIX A for instructions on how to make a backup copy of it. Label
the copy DOS MENU PROGRAM DISK. Once you have a copy of the disk you are
ready to go on.

1) Turn on your computer and disk drive. If the computer was already on,
turn it off and then back on.

2) Put the disk into the disk drive.

3) Type in the following line - remember to hit the RETURN at the end to
inform the computer that you are done with the line:

») Always use unshifted letters with COMAL commands and statements «<

LOAD IBOOT*",8

Your disk should start turning and soon your computeT' will be ready for
its transformation into a powerhouse.

4) When the computer is done loading the boot file, it will say
"RI:.ADY. ". Now type in the following line - remember the RETURN key at
the end.

RUN

The CAPTAIN COMAL welcome should cover your screen. Then your disk will
start turning again. After a couple minutes your computer IS

transformation from BASIC into COMAL will be complete. You are then
ready to begin our first amazing adventure.

Most of the programs and exercises from this book are on the disk. You
can be lazy and use them. But you will learn alot more by getting out a

Page 2 CAPTAIN COMAL GETS ORGANIZED Page 2

new disk (properly formatted) and typing in everything yourself. It's
not much typing, and you will enjoy some of the tricks and shortcuts
I'll be sRowing you along the way. See APPENDIX B for instructions on
how to format a disk.

===============
GETT I NG STARTED
===============

Our mission is to design, program and test a series of programs for
organizing disks. It may sound rough - ten long programs! But by taking
advantage of modular programming (made easy with COMAL) we can do it in
a snap.

First, I better explain what a Il modu1e ll is. A module is a number of
program lines that perform a specific task.

A module may also be referred to as a routine, subroutine, procedure, or
function. The best way to understand this concept is to create a simple
module.

All our programs should start out with a greeting of some kind, so let's
design a welcome module. This same module can be used with all of our
programs in this book.

Fi rst, before you start typi ng on the computer, pull out some paper and
a pencil (pencils are better than pens, since you can erase mistakes and
change things around as your ideas get better and better). Now, lets
design our first module.

Write down everything we should do to start off all our programs:

1. Say "Hello, welcome to organization."

Good start. Hmmmm. Maybe we should clear the screen first:

1. Clear the screen.
2. Say "Hello, welcome to organization."

Yes, that's better. But what about screen colors? Don't assume the
current colors are the ones you want. It is easy with COMAL to set up
any colors you want:

1. Clear the screen.
2. Set the screen colors.
3. Say "Hello, welcome to organization."

Page 3 CAPTAIN COMAL GETS ORGANIZED Page 3

Now, you see why we need a pencil - and a big eraser! We changed our
mind twice already, and hardly have started. Mind you - we did NOT make
mistakes! Just improvea an idea.

Now, where were we. Yes, we just provided a warm welcome.

Well, that is enough! It is always nice to keep our modules small. They
are easier to maintain that way, and easier to combine with others as
well {some people even say that if the module can't fit on your screen,
it is too big - but they had 80 column screens!}. So, our design is
done. Now, lets write it in COMAL.

"Sl ow down!!! II I hear you say. OK! Remember, COMAL likes to do alot of
the work for you. It will provide line numbers for you. It also will
provide nice indenting of your program when you list it, automatically.
But COMAL does not like it when you squish words or commands together.
That may be OK for BASIC. But be civilized! Programs are to be read.
They are not code. "OK OK! II you say. "Enough lectures! ".

First tell COMAL to provide you with the line numbers:

AUTO

Remember to hit the RETURN key after every line. And, don't use the
SHIFT key when typing in commands and COMAL statements. They are listed
in UPPER case only to help you distinguish the COMAL lines from my story
lines. After you typed'AUTO and hit RETURN COMAL responds with your
fi rst li ne number:

0010

COMAL will continue providing you line numbers (0020, 0030, 0040, ...)
as you type in the following program instructions:

PRINT CHR$(147},
BACKGROUND 0
BORDER 12
PENCOLOR 12

clear the screen
o means black
12 means medium gray

PRINT II Hell 0, wel come to organi zati on. II

That's it. Yes, I know. COMAL gave you another line number, and we don't
need it. Just hit return again (like a blank line) and COMAL will know
that we are done with its automatic line numbers. Now, lets have COMAL
show us what it thinks our program looks like (hopefully we typed it in
right!):

Page 4 CAPTAIN COMAL GETS ORGANIZED Page 4

LIST

After you hit the RETURN key COMAL printed the following on the screen:

0010 PRINT CHR$(147},
0020 BACKGROUND 0
0030 BORDER 12
0040 PENCOLOR 12
0050 PRINT "Hello, welcome to organization."

What! You can't get lower case! Ooops! We forgot that the Commodore
computer has two modes, graphics and lower case. We must make sure the
computer is in lower case mode every time we run our program.

So, we found out by trying to implement our welcome module that our
original design could be improved. But don't worry. All is not lost.
Simply pencil in the following line on your design paper right between
1. and 2.:

la. Set the computer into lower case mode.

Don't worry. COMAL is smart. You don't have to start over just because
we changed our design. Let's just add a line in our program between line
10 and line 20 (now you know why COMAL counted by 10 's and skipped some
numbers). Type in the following line:

15 PRINT CHR$(14}, II lower case mode

COMAL will let us put comments into our COMAL program as long as we
start the comment with II. So, to remind ourselves later what we are
doing in this line, we added the comment: II lower case mode.

Now, list the program again:

0010 PRINT CHR${147},
0015 PRINT CHR${14}, II lower case mode
0020 BACKGROUND 0
0030 BORDER 12
0040 PENCOLOR 12
0050 PRINT "Hello, welcome to organization."

That line 15 sticks out like a sore thumb. Later everyone will think we
added it after we wrote line 10 and 20 (which we did, but why should
they know?). So lets tell COMAL to renumber the lines for us:

Page 5 CAPTAIN COMAL GETS ORGANIZED Page 5

RENUM

Hit RETURN and in a split second, COMAL has renumbered the lines. Check
and see for yourself:

LIST

0010 PRINT CHR$(147),
0020 PRINT CHR$(14), II lower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOLOR 12
0060 PRINT "Hello, welcome to organization. II

Now that's better. I know you want to quick RUN the program to see if it
works nicely. But, have patience. First SAVE it on disk. It is a good
guideline to always SAVE a program before you RUN it. Who knows, the
power may fail, or you may forget to SAVE it later. So, let's SAVE the
program now:

SAVE "WELCOMEl"

We called it "WELC<»1E1" instead of "WELCOMP, since we may be changing
it further (next will be "WELCOME2 " , then "WELCOME3", ...). When we are
all finished and it is tested and working, then we will save it as
"WELCOME" .

Now, we can run our program:

RUN

Hello, welcome to organization.

Wow! It worked. Let's see it again. OK:

RUN

Hello, welcome to organization.

Nice! Every time we say RUN it will do exactly what we told it. Do we
like the colors? It's easy to change. Let's try a pencolor of 15 instead
of 12. To do this we simply edit the program. COMAL includes a FULL
SCREEN editor that makes it very easy to edit the program line. If the
"I i ne is on the screen - you can edit it. To get ali ne on the screen
just LIST it (as we have already done before). Or, you can use the
command EDIT instead of LIST. This will be helpful later when we have

Page 6 CAPTAIN COMAL GETS ORGANIZED Page 6

longer programs:

EDIT

0010 PRINT CHR$(147),
0020 PRINT CHR$(14), II lower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOLOR 12
0060 PRINT II Hell 0, welcome to organization. II

First move your cursor up to line 50. Now move the cursor over to the 2.
Simply type a 5. The twelve is now a fifteen. The line looks changed.
But COMAL doesnlt actually change the line until you hit the RETURN key.
It lets you reconsider or make further changes before you decide to
finalize the change. So, hit the RETURN key now. Then: .

LIST

0010 PRINT CHRS(147),
0020 PRINT CHRS(14), II lower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOLOR 15
0060 PRINT II Hell 0, welcome to organization. II

It worked.

Now tryout the program again. Do you like the change? If not, change it
again. I like it. But welre not done yet. What we have now is a program.
What we really want is a module. COMAL lets us name modules and treat
them as a procedure or a function. The module we just programmed is a
procedure. In order to be a function, it must return a value (more about
that later). So lets name our procedure. WELCOME would be an appropriate
name. (The name can be anything up to 16 characters, including letters,
digits, apostrophe ('), square brackets ([]), backslash (\), and
backarrow «-) - the backarrow is converted into an underline by COMAL
when listing the name to a printer) -- only the first character must be
a letter.

So here are the lines to add:

5 PROC WELCCJt1E
70 ENDPROC

That marks the start and end of our procedure. List it and see:

Page 7 CAPTAIN COMAL GETS ORGANIZED Page 7

LIST

0005 PROC WELCOME
0010 PRINT CHRS(147),
0020 PRINT CHRS(14), II lower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOlOR 15
0060 PRINT II Hell 0, welcome to organization. II

0070 ENDPROC

Now, run our procedure:

RUN

What? It doesn't work anymore? Good thing you saved it first (You DID
remember to save it first, didn't you! I shouldn't have to remind you
every time you know!). You probably saved it with:

SAVE IIWElCOME2"

But, no cause for alarm. The procedure is working just fine. However, a
procedure is only executed when it is called. So far, all we did is
define it. To actually see it work simply call it by name (you can do
this in direct mode):

WELCOME

Hello, welcome to organization.

The procedure was executed. Nice work! Now, anytime you type in WELCOME,
COMAl will remember to execute your procedure named WELCOME.

I changed my mind. I think I like the PENCOlOR better as 12. Here is how
to edit it (I remember that it is line 50):

EDIT 50

0050 PENCOlOR 15

Now simply move the cursor up on top of the 5 of 15 and type in a 2 to
make it 12 again. Hit RETURN and that's it.

I think we have our final procedure: designed, written, and tested.

Page 8 CAPTAIN COMAl GETS ORGANIZED Page 8

II WAIT II , I hear someone say. They then start lecturing me on how to
properly start a program. They said we can't just start every program
saying exactly the same thing. How will the user know which program is
running?

I agree. But we don't have to start over. We just modify what we have.

But how can we INDIVIDUALIZE the module so it works, UNCHANGED, with ALL
our programs. A dilema. But don't lose hope.COMAL is a very capable
language. The solution to this problem is one of COMAL's specialties -
parameters.

We can pass a parameter to any procedure (and the procedure can pass one
back to the program as well). One way to individualize the introduction
to each program would be to print a TITLE on the top of the screen. The
module would always print a title, but the title could be different each
time, indicating what program was running - depending on the parameter
passed into the module.

The parameter in a procedure can be an array or a simple variable. It
can be a string, integer or real number. There can be one parameter, or
many parameters - limited only by the 80 column line length. For now we
will only be using one string parameter. So, let's modify our WELCOME
procedure to become the more individualized INTRO procedure. First, list
the procedure as it now stands:

EDIT

0005 PROC WELCOME
0010 PRINT CHR$(147),
0020 PRINT CHR$(14), Illower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOLOR 12
0060 PRINT II He 11 0, welcome to organi zat i on. II

0070 ENDPROC WELCOME

Notice that the last line ENOPROC statement now has a name after. We
neglected to put the name of the procedure that was ending with the
ENDPROC, so COMAL did it for us.

Most of the procedure can stay the same. We only need to change the top
line (called the HEADER), the message printing line (0060) and match the
new procedure name in the ENDPROC (0070).

First, let's create a new HEADER. If we enter a new line numbered 5 it

Page 9 CAPTAIN COMAL GETS ORGANIZED Page 9

will replace the line 5 that exists now (just what we want).

Enter this new line:

5 PROC INTRO(TITLE$)

TITLE$ is the string paramater. It is assigned the value of whatever
string ;s used ;n the statement that calls this procedure. We can use it
in 1 i ne 60:

60 PRINT TITLES

And fix the last line too:

70 ENDPROC INTRO

Now, list our modified module:

LIST

0005 PROC INTRO{TITLES)
0010 PRINT CHRS(147),
0020 PRINT CHRS{14J, //lower case mode
0030 BACKGROUND 0
0040 BORDER 12
0050 PENCOLOR 12
0060 PRINT TITLES
0070 ENDPROC INTRO

OK, looks good. First SAVE it on disk (of course):

SAVE "INTR01"

Now run it:

RUN

Nothing happens. Of course, we have to call the procedure. Try this:

INTRO{ "TESTING")

TESTING

It worked. Any string value passed to INTRO ;s printed at the top of the
screen. Try another:

Page 10 CAPTAIN COMAL GETS ORGANIZED Page 10

INTRO("CAPTAIN CO'1AL WAS HERE")

CAPTAIN COMAL WAS HERE

We now can store its final version on disk. But first lets renumber it
to start with line 9000. This will make it easy later to merge this
procedure with another program already in the computer (the line numbers
are important during this merge). Since our programs will be numbered
beginning with 10, the lines numbered over 9000 will not conflict with
the current program. More on this later.

RENLt1 9000

We also must know how to store this procedure on disk so we CAN merge it
later. If you SAVE it to disk, all you can do with it later is recover
it with a LOAD command. This does not allow you to merge procedures.
COMAL has a second way to store a procedure on disk: LIST it to disk.
Easy! Just add a file name after your list command, and the procedure
will be listed to disk instead of your screen. Try it:

LIST IIINTRO. L II

NOTICE! All our procedures and functions we store on disk with the LIST
command will have their file name end with .L to remind us. To merge a
procedure that was listed to disk use the ENTER command:

ENTER IIINTRO.LIf

But lets have a final review of our first procedure, now that we have
RUN it, executed it, and renumbered it in the 9000 1s:

LIST

9000 PROC INTRO(TITLES)
9010 PRINT CHRS(147),
9020 PRINT CHRS(14), II lower case mode
9030 BACKGROUND 0
9040 BORDER 12
9050 PENCOLOR 12
9060 PRINT TITLES
9070 ENDPROC INTRO

If you have a printer, 1111 show you how easy it is to list this
procedure on your printer. Simply SELECT the printer as the OUTPUT
1 ocati on:

Page 11 CAPTAIN COMAL GETS ORGANIZED Page 11

SELECT OUTPUT "LP:"

The LP: means Line Printer. The colon must be included. If you want you
can omit the word OUTPUT, since COMAL will add it for you. Once you
enter this line, anything normally printed on the screen will be printed
on the printer (with some exceptions, such as error messages, input
prompts, and disk catalogs via CAT). To see for yourself, now enter
this:

PRINT IITESTING II

The word TESTING was printed on the printer. Now enter:

LIST

The procedure now printed on your printer. COMAL automatically returns
the output to the screen after a LIST command. You can do this yourself
if you wish like this:

SELECT OUTPUT liDS: II

This selects the Data Screen as the output location.

DESIGNING OUR DISK MANAGEMENT SYSTEM

Now, on with designing our Disk Management System (OMS). First, let's
review just what we want the OMS to do. Then we can design a structure
for any disk files it will use.

1) The OMS should be able to catalog a whole set of diskettes onto a
MASTER DISK. Thus it will have to be able to read a disk's directory and
store it on disk for future use.

2) The OMS should be able to list all the disk ID's currently used. Then
you will be able to give a new disk an 10 that will not conflict with
one already in use.

3) The OMS should be able to tell you what disk's contain a specific
program you are looking for.

4) The OMS should be able to quickly list all the programs on any
specific disk. This list should also be easily useable in a program that
would compare the directory of two different disks.

Page 12 CAPTAIN COMAL GETS ORGANIZED Page 12

5) The OMS should be able to delete a disk from the MASTER. If any
programs are added to a disk already cataloged on the MASTER, the DMS
should be able to UPDATE the MASTER to reflect the current status of
that disk.

6) The OMS should be able to list a summary of all the disks in the
MASTER. It should know the date that each disk was cataloged on, how
many files are on the disk, and the number of free blocks on the disk,
as well as the disk name and 10.

All the data will be stored in data files on our MASTER DISK. It is
important that we get our file structures right the first time. Try to
look ahead and envision what we possibly will use the files for. It will
create alot of extra work later if we find that we must change the
structure of a file. All the programs that use it must then be modified
to reflect this change. And there then could be side effects to the
modifications. So let's think carefully about our files.

DESIGN A FILE STRUCTURE

We want to be able to read a disk's directory and write a copy of it on
our MASTER DISK as fast as possible (1). Simply duplicating each disk's
directory as a separate file would work. The file name could be the word
DIRECTORY followed by the 10. Or adding two dots .. in between DIRECTORY
and the 10 would be more readable: DIRECTORY .. ID.

But we also want to be able to scan through all the file names quickly
to find which disk contains a specific program (3). Maybe we should
write the directory of each disk one after another as one big file.

But we want to be able list all the disk ID's currently in use (2). That
would be hard to do quickly with a big file of ALL the directories. So
we may be best off creating an extra file of JUST 1HE DISK lOis.

But we also must be able to produce a summary of all diskls in the
system (6). We could create a special file for this as well. But then it
would be difficult to delete or update a disk. If each disk had its own
file for its directory, and stored the disk's summary information at the
start of the file, we could just open each disk directory file, read the
summary info, print it, close the file and go on to the next directory
file. And if we had a file of just disk lOis we would know exactly what
directory files were on the disk to look at.

Since we want to be able to list all the files on any specific disk at

Page 13 CAPTAIN COMAL GETS ORGANIZED Page 13

any time (4), having the complete directory as a separate file will make
that easy. It would also be easy to delete or update a disk's directory
(5) since it was a separate file.

What files to have seems to be just as important as how to organize the
files. Indeed, I spent several MONTHS contemplating the question of what
files to have and how to structure them. But we donlt have time to go
into all the gruesome details. I will just provide you with the final
file design along with explanation. It will work well with all the
programs in the OMS and is easily adaptable to any OMS extensions you
may write.

MASTER DIRECTORY DISK FILES STRUCTURE

DIRECTORY FILE
FILE USE: Directory file for each disk cataloged, one file per disk
FILE NAME: directory .. NN where NN is the two characater disk ID
FILE TYPE: Sequential READ/WRITE file
File Structure:
Record # Type of record Purpose / Contents

Record 1: String - 2 characters Disk ID
Record 2: Numeric Blocks Free on disk
Record 3: String - 16 characters Disk Name
Record 4: Numeric File Count / number of files on disk
Record 5: String - 6 characters Date cataloged (yymmdd)
The rest of the file repeats of a group of 3 records for each disk file:
First String - 16 characters File Name
Second : Integer File Type (128,129,130,131,132)
Third : Integer Number of Blocks in file

DISK ID FILE
FILE USE: File of all disk IDls in catalog
FILE NAME: disklids.data
FILE TYPE: Sequential READ/WRITE file
File Structure:
One record after another. Each a two character string, representing a
disk ID in use.

Page 14 CAPTAIN COMAL GETS ORGANIZED Page 14

MASTER FILE
FILE USE: File of all file names, file types, and disk ids of all files
FILE NAME: allfiles.data
FILE TYPE: Sequential READ/WRITE file
File Structure:
One record after another. Each a 19 character string. The first 16
characters are the file name, the second two it's disk's 10, and the
last character the file type (p,s,r,u).

EXPLANATION OF FILE SYSTEM

Each disk cataloged into the OMS will have its own file on the MASTER
DIRECTORY DISK. This makes it easy to add, delete, or change a cataloged
disk directory. It makes it easy to print (or just read) any disk's
directory at any time.

A separate file of Disk ID's in use makes it easy to list all the disk
ID's currently cataloged. This file also makes it easy to quickly know
what all the directory file names are, since each file name starts the
same (directory ..) and merely tacks on the 10 for a file name. This
makes printing a summary of all disks in the system much easier.

But to have quick access of all the file names, they should all be in
one large file. This file is created by combining the file names from
all the directories. To make access easiest, the file name and its disk
10 are concatenated into one string record. Plus the file type is
converted to a letter and tacked onto the end. Thus scanning the file
names only involves reading one record per file.

But, each time a disk is added, deleted, or updated, the MASTER FILE
must also be recreated.

We have worked with another OMS system that updated it's MASTER FILE
every time a disk was cataloged. As the file got larger, the system got
slower. Eventually it became VERY SLOW. To avoid wasting your time by
constantly recreating the MASTER FILE, we allow you to quickly catalog
all the disks, then just create the MASTER FILE once.

But how can you remember when you should create a new MASTER FILE? We
made our OMS smart. Any time you add, delete, or update disk, a special
file on the DOS MENU PROGRAM DISK is written. This file contains only
one record, (TRUE or FALSE) indicating whether or not the OMS was
updated since the last MASTER FILE was created. The file is written on
the PROGRAM disk rather than the MASTER DISK since the MENU program will
need to read this record EVERY time it is run. And since the MENU
program disk is already in the drive (it just was loaded) that is the

Page 15 CAPTAIN COMAL GETS ORGANIZED Page 15

best place to have the file.

Information on this special file:

FILE USE: File specifying whether a disk update has been performed
FILE NAME: allfiles.status
FILE TYPE: Sequential READ/WRITE file
Fi le Structure:
Only one record, a numeric record representing TRUE or FALSE.

Now, on with business. We can procede with a clear path now that our
files are defined.

=================
PROGRAM: VIEW'DIR
=================
PRELIMINARY WORK

Since our Disk Management System is based on the file names in each
disk's directory, lets start off by constructing a program to simply
read and display a disk's directory. Let's name this program VIEW'DIR.

We already have the introduction finished (remember INTRO). Most of the
modules we write for use by VIEW'DIR will also be used by other programs
in this system. Note how we construct the modules so they can be
"portable" from one program to another without change.

Let's start off easy. How about a module that simply clears the screen:

MODULE: PAGE

We are naming the module PAGE so it will be compatible with the COMAL
KERNAL extensions. The COMAL KERNAL identifies the keyword PAGE to be
used to clear the screen, or to issue a form feed if a SELECT OUTPUT
"LP: II is in effect. To clear the screen you merely issue a PRINT
CHR$(147), statement. That is so easy you may wonder why to even make it
a procedure. Mainly to make your program readable. It is nicer to see
the word PAGE in a program listing. You know what is happening. If you
see PRINT CHR$(147), you may not immediately know. In fact, an APPLE
COMAL user wouldn't know at all.

Before typing in the procedure, clear out any old program lines:

NEW

Page 16 CAPTAIN COMAL GETS ORGANIZED Page 16

Now, start up COMALs automatic line numbering:

AUTO

Now enter these lines:

PROC PAGE CLOSED
PRINT CHR$(147), II CLEAR SCREEN

ENDPROC

Just hit return an extra time to stop the AUTO Line numbers. Then:

LIST

0010 PROC PAGE CLOSED
0020 PRINT CHR$(147), II CLEAR SCREEN
0030 ENDPROC

Adding the word CLOSED to the end of a procedure HEADER makes the
procedure closed. All variables used in it will be considered LOCAL to
the procedure and unknow to the outside program. Likewise, any variables
in the outside program are unknown to the procedure. When designing
modules to be used from program to program without change, you should
strive to make them CLOSED if at all possible. This will remove the fear
of varible conflicts. I know this procedure doesn't even have any
variables used. But it is CLOSED as a HABIT.

Now to clear the screen we just enter:

PAGE

What? The screen didn't clear? Did you type in the lines right?

Oh, I forgot to tell you. You can call a procedure from direct mode any
time AFTER the program is RUN. This is because COMAL compiles the
program first before actually running it (know as a run time compiler).
Thus once RUN the COMAL system knows about EVERY procedure and function
in the program. However, if you add, delete, or change any program line
COMAL forgets all about the procedures and you must issue a RUN command
again. Try it:

Wait !!! Did you save it first: SAVE IPAGEl"

Now try it:

Page 17 CAPTAIN COMAL GETS ORGANIZED Page 17

RUN

Still nothing! That's because the procedure hasn't been called yet. Try:

PAGE

Aha. Now the screen cleared. List the procedure:

LIST

0010 PROC PAGE CLOSED
0020 PRINT CHRS(147), II CLEAR SCREEN
0030 ENDPROC PAGE

Notice that COMAL has put the proc name after the ENDPROC for you. COMAL
is always doing nice things like that for you.

It looks like the procedure is finished. So lets renumber it into the
9000's and LIST it to disk for use later:

RENl.K'1 9000
LIST "PAGE. L"

MODULE: INTRO

Now, I hate to tell you this, but we should now go back and fix our
INTRO procedure. It included a PRINT CHRS(147), statement. We can now
change it into a simple PAGE. First clear out any program lines in the
computer, then retrieve INTRO:

NEW
ENTER "INTRO.L"

LIST

9000 PROC INTRO(TITLES)
9010 PRINT CHRS(147),
9020 PRINT CHR$(14), 1/ lower case mode
9030 BACKGROUND 0
9040 BORDER 12
9050 PENCOLOR 12
9060 PRINT TITLES
9070 ENDPROC INTRO

Page 18 CAPTAIN COMAL GETS ORGANIZED Page 18

Now cursor up to line 9010 and change it to PAGE. It now looks like:

9010 PAGE

While we are fixing this procedure, let's make it CLOSED. Add the word
to the end of the HEADER. Just cursor up to line 9000 and cursor over to
after the) and add CLOSED. It now looks like:

9000 PROC INTRO(TITLES) CLOSED

We may as well make another change while we are at it. Lets CENTER the
title on the top of the screen. And lets make it in REVERSE FIELD. And
draw a line under it for emphasis. Just type in the following lines.

In order to center the title, we need to make some calculations. The
length of the line is 40 characters. First we need to know how long the
title is:

9002 LENGTH=LEN(TITLE$)

Then we merely calculate how many spaces to print before and after the
title in order to center it (yes we must print spaces after it too,
since the top line is supposed to be all in reverse field. So we next
find out the LEFT and RIGHT side spaces:

9004 LEFT=(40-LENGTH) DIV 2

Ooops! We can't use the word LEFT as a variable since it ;s a keyword
(part of the turtle graphics system). Easy to correct. Just insert an
apostrophe after it:

9004 LEFT'=(40-LENGTH) DIV 2

We are using DIV to divide by two with an integer answer. Next the right
side (remember to add the' after RIGHT since it also is a turtle
keyword):

9006 RIGHT'=40-LEFT'-LENGTH

The calculations are done. Merely print the title:

9052 PRINT CHR$(18), II REVERSE FIELD ON
9054 FOR X=l TO LEFT' DO PRINT " ",
9056 PRINT TITLES,
9058 FOR X=l TO RIGHT' DO PRINT II II ,
9060 FOR X=1 TO 40 DO PRINT CHRS(162),

Page 19 CAPTAIN COMAL GETS ORGANIZED Page 19

9062 PRINT CHR$(146), II REVERSE OFF

That's it. CHR$(162) is the nice graphic underline character. Notice how
we rep·1 aced the ori gi na 1 1 i ne 9060 by si mp 1 y typi ng ina new 1 i ne 9060.
Now renumber it and list it:

RENlJt1 9000
LISI

9000 PROC INTRO(TITLE$} CLOSED
9010 LENGTH:=LEN(TITLE$)
9020 LEFT':=(40-LENGTH) DIV 2
9030 RIGH1':=40-LEFT'-LENGTH
9040 PAGE
9050 PRINT CHR$(14), jJ lower case mode
9060 BACKGROUND 0
9070 BORDER 12
9080 PENCOLOR 12
9090 PRINT CHR$(18), /I REVERSE FIELD ON
9100 FOR X: =1 TO LEFT' DO PRINT II II,
9110 PRINT TITLE$,
9120 FOR X:=1 TO RIGHT' DO PRINT" II,
9130 FOR X:=1 TO 40 DO PRINT CHR$(162),
9140 PRINT CHR$(146), II REVERSE OFF
9150 ENDPROC INTRa

Notice that your equal signs were converted into := by COMAL. COMAL
makes a distinction between = meaning a comparison and the := meaning an
assignment. All the = we typed in were assignments, so COMAL added the
preceding colon for us. COMAL is a real buddy.

Now, test it out. Save it first:

SAVE IIINTR03"
RUN
INTRO(IIAM I CENTEREDII}

Ooops! Now we are dependent on our PAGE procedure. This easy to correct.
We merely merge our PAGE procedure into our program. But remember, all
our procedures LISTED to disk have line numbers in the 9000's. So first
renumber INTRO like a program, then merge in PAGE, and test it:

RENlJt1
ENTER IIPAGE. L II
RUN
INTRO("AM I CENTEREDII}

Page 20 CAPTAIN COMAL GETS ORGANIZED Page 20

AM I CENTERED

It worked. So now we can LIST our new final INTRO proc onto disk. But
now we have more than just INTRO, we also have PAGE as part of the
program. No problem. First renumber beginning at 9000, then LIST the
program, noting the start and end lines of INTRO:

RENLt1 9000,2
LIST

9000 PROC INTRO(TITLES) CLOSED
9002 LENGTH:=LEN(TITLE$)
9004 LEFT':={40-LENGTH) DIV 2
9006 RIGHT':=40-LEFT'-LENGTH
9008 PAGE
9010 PRINT CHR$(14), II lower case mode
9012 BACKGROUND 0
9014 BORDER 12
9016 PENCOLOR 12
9018 PRINT CHRS(18), II REVERSE FIELD ON
9020 FOR X:=1 TO LEFT' DO PRINT II II,

9022 PRINT TITLE$,
9024 FOR X: =1 TO RIGHT I DO PRINT II ",

9026 FOR X:=1 TO 40 DO PRINT CHRS(162),
9028 PRINT CHR$(146), II REVERSE OFF
9030 ENDPROC INTRO
9032 PROC PAGE CLOSED
9034 PRINT CHR$(147), II CLEAR SCREEN
9036 ENDPROC PAGE

When several procedures, or a whole program is in the memory, there may
not be enough line numbers available when starting at 9000 and numbering
by 10's (9999 is the largest line number COMAL accepts). So just specify
the interval between lines as 2, and have plenty of room. Now we also
can see that INTRO starts at line 9000 and ends on line 9030. So to list
only INTRO to disk, we merely specify those lines:

DELETE 110: INTRO. L II
LIST 9000-9030, "INTRO. L II

Notice we erased the old file first.

Page 21 CAPTAIN COMAL GETS ORGANIZED Page 21

INTERMISSION

Continuing on with our VIEW'DIR program. Next we construct the modules
used to read a disk's directory. We could have made it all one big
module, but smaller is better, so we broke it up into several modules.
The main procedure is READ'DIR2. It calls DIR'HEADER, NEXT'FILE,
GET'TYPE#, GET 'NAME, GET'BLOCKS#, and CHECK'DIR'CYCLE to accomplish its
task. Any time a directory is to be read, we will use these sub modules,
so let's refer to them collectively as READ'DIR'PART2. They, in turn,
depend upon the four DISK'GET modules, which were written several years
ago, allowing COMAL to access data on the disk (including the directory)
one byte at a time.

First, get the four DISK'GET modules. They are on the original C64 COMAL
SYSTEM DISK as well as on the CAPTAIN COMAL disk (now labeled DOS MENU
PROGRAM DISK) lets get them from there. Insert that disk then:

NEW
ENTER "DISK'GET.L"

Put the disk you are using while working on these exercises back in the
dri ve. Then:

LIST "DISK'GET.L"

Since the DISK GET routines rely on a machine code program, I won't
explain how it works. To use them merely call DISK'GET'INIT first
(before any other DISK'GET routine). Then call DISK'GET,
DISK'GET'STRING, or DISK'GET'SKIP with the proper parameters.

LIST

9000 II
9010 II 4 DISK GET ROUTINES FOLLOW: (code is for a C64)
9020 II
9030 FUNC DISK'GET(FILE'NUM,REF FILE'END) CLOSED
9040 POKE 2026,FILE'NUM II PET ICBM use 636 instead of 2026
9050 SYS 2025 II PET/CBM use 635 instead of 2025
9060 FILE'END:=PEEK(144) II PET/CBM use 150 instead of 144
9070 RETURN PEEK(2024) IIVALUE OF CHARACTER - PET/CBM use 634
9080 ENDFUNC DISK'GET
9090 I I
9100 PROC DISK'GET'INIT CLOSED

Page 22 CAPTAIN COMAL GETS ORGANIZED Page 22

9110 FOR LOC#:=2024 TO 2039 DO II PET/CBM use 634 TO 649
9120 READ V
9130 PQKE LOC#,V
9140 ENDFOR LOC#
9150 DATA 0,162,0,32,198,255,32,207
9160 DATA 255,141,232,7,32,204,255,96 II C64 use this line
9165 IIDATA 255,141,122,2,32,204,255,96 II PET/CBM use this line
9170 ENDPROC DISK'GET'INIT
9180 II
9190 PROC DISK'GET'SKIP(COUNT,FILE'NUM,REF FILE'END) CLOSED
9200 FOR X#:=1 TO COUNT DO Y:=DISK'GET(FILE'NUM,FILE'END)
9210 ENDPROC DISK'GET'SKIP
9220 II
9230 PROC DISK'GET'STRING(REF ITEM$,COUNT,FILE'NUM,REF FILE'END) CLOSED
9240 ITEM$: = 1111

9250 FOR X#:=1 TO COUNT DO ITEM$(X#):=CHR$(DISK'GET(FILE'NUM,FILE'END))
9260 ENDPROC DISK'GET'STRING
9270 II
9280 II END OF DISK GET ROUTINES
9290 II

Now, I know what you are thinking. We are almost done with this book,
and haven't even done anything yet, except clear the screen. But you now
have a good foundation to build on. We can now progress faster, and the
final product will be sturdy. So, the rambling and repetition will
decrease now. I know you can handle it. As the modules are entered, I
will sprinkle in comments and explanations to help you. The AUTO line
numbering will continue of course.

NOTE: comments for your benefit are sometimes included to the right of a
program line. You should not type them in. They are just explaining the
flow of the routine.

MODULE: READ'DIR2

PURPOSE: Read a disk's directory and optionally print it.
MODULES REQUIRED: four DISK'GET modules, six READ'DIR'PART2 modules

Now let's construct our READ'DIR2 module (it ends with a 2 because the
main READ'DIR module puts the names into an array, while in this program
it is not necessary). It will be sharing a bit of information with the
main program, so we shouldn't make it CLOSED (all the modules that it
calls will be closed though). We will pass three parameters into this
module: the file number to use, the drive to use (1/0" or 1/1"), and

Page 23 CAPTAIN COMAL GETS ORGANIZED Page 23

whether or not to print the directory as it is read (TRUE or FALSE).
These parameters help to make the procedure portable. The file number
can be changed at will to adapt to any program (two files open cannot
have the same file number). If a 4040 dual drive is used, the procedure
can read either drive 110 11 or drive 11111 (passed as a string to make it
easier on us). And allowing the procedure the option to print the
directory or not allows us to use the procedue to merely READ directory
information without printing anything on the screen. All these flexible
options will be available WITHOUT CHANGING the procedure. It will all be
done with parameters.

NEW
AUTO

0010 PROC READ'DIR2(D'FILE,DRIVE$,SHOW) II NOT CLOSED
0020 RESTORE
0030 DISK'GET'INIT

DISK'GET'INIT reads some DATA statements. The RESTORE allows us to call
it several times (to read different directories) and COMAl will reset
the DATA pointer back to the beginning each time. Make sure no other
DATA statements are ahead of the DISK'GET'INIT routine.

0040 PASS "III+DRIVE$ - initialize the drive
0050 FILE'END:=FALSE needed when using DISK'GET
0060 OPEN FILE D'FILE, II$"+DRIVE$,READ open directory
0070 DIR'HEADER(D'FILE,FIlE'END,DISK'NAME$,DISK'ID$)

Here we call another procedure named DIR'HEADER. All the parameters
except D'FILE are used in reference by DIR'HEADER. Thus it returns
values for these variables back to the calling statement (line 0070 in
this case).

0080 IF SHOW THEN
0090 PRINT "DISK:ll jDISK'NAME$j "ID: "jDISK'ID$
0100 PRINT
0110 PRINT IINlJt1 FILE NAME TYP BlOCKS Ii

0120 PRINT 11--- ---------------- --- ------"
0130 ENDIF
0140 BC:=0j BLOCKS'FREE:=664j FIlE'COUNT:=0 initialize variables
0150 REPEAT
0160 NEXT'FILE(D'FILE,FILE'END,F'NAME$,F'TYPE#,F'BlOCKS#,BC)

Again all the parameters except D'FILE are used in reference. Values are
assigned to them by NEXT'FILE.

Page 24 CAPTAIN COMAl GETS ORGANIZED Page 24

0170 IF F'TYPE#<>128 THEN not a deleted file type
0180 BLOCKS'FREE:-F'BLOCKS#

Notice how easy it is to subtract an amount from a variable. You could
also use: BLOCKS I FREE:=BLOCKS ' FREE-F'BLOCKS# but isn't it clearer the
short way.

0190 FILE I COUNT: + 1 fast i ncrerent by 1
0200 II HERE YOU COULD PUT THE FILE NAME INTO AN ARRAY
0210 ENDIF
0220 IF SHOW THEN
0230 PRINT USING "###": FILE'COUNTj

It is a real joy to use PRINT USING. It right aligns numbers for you.
Merely specify how many digits to allow with a # for each digit. Decimal
points can also be included - great for lining up a column of dollar and
cents amounts. Also note that the line ends with a semi-colon. That
means print one space and stay on the sare line.

0240 PRINT F' NAME$,TAB(22),TYPES(F 'TYPE#)i

The TAB ;s used to keep columns lined up nicely. TYPES is a string
array. It will be dimensioned (DIM TYPES(128:132) OF 3) at the beginning
of the program, and the five file types (DEL, SEQ, PRG, USR, REL) will
be assigned to the appropriate array index. Indexes of 128 through 132
are used since those are the numbers used by the 1541 and 4040 to
indicate file type. COMAL is really nice to allow us to start our array
at 128 instead of 1.

0250 PRINT USING "###": F'BLOCKS#
0260 ENDIF
0270 UNTIL FILE'END continue until end of directory
0280 CLOSE FILE D'FILE
0290 IF SHOW THEN PRINT FILE I COUNT i II FILES AND II j BLOCKS 1 FREE; "BLOCKS FRE"
0300 ENDPROC READ'DIR2

Done. Renumber it into the 9000 's and LIST it to disk:

RENt-'" 9000
LIST "READ'DIR2.L"

Page 25 CAPTAIN COMAL GETS ORGANIZED Page 25

MODULES SET: READ ' DIR 'PART2

SET OF SIX MODULES

Now, the group of modules called by READ'DIR2, which we shall refer to
as READ'DIR 'PART2. We will enter each module, one after another, and
LIST them to disk as a unit:

NEW
AUTO

0010 II READ'DIR'PART2
0020 II SIX MODULES IN THIS SET

We will let the AUTO line numbers continue through all six modules.

MODULE: DIR'HEADER

PURPOSE: Gets the disk name and disk id
MODULES REQUIRED: four DISK'GET modules

0030 PROC DIR'HEADER(D'FILE,REF FILE'END,REF D'NAMES,REF OlIOS) CLOSED

Notice, this procedure is CLOSED. Also note that to use the parameters
in reference the word REF precedes the variable name. This allows the
procedure to assign values to those variables. The matching variables in
the calling statement will receive the new values. You may have noticed
that D'NAMES in the HEADER was called DISK'NAMES in the calling
statement in procedure READ'DIR2. COMAL doesn't mind. As far as it is
concerned D'NAME$ is now the same variable as DISK'NAMES because it is
called in REFerence.

0040 DISK ' GET 'SKIP(142,D ' FILE,FILE ' END)
0050 DISK 'GET'STRING(D ' NAMES,16,D ' FILE,FILE ' END)
0060 DISK'GET'SKIP(2,D'FILE,FILE'END)
0070 DISK ' GET'STRING(D ' IDS,2,D'FILE,FILE ' END)
0080 DISK ' GET 'SKIP(92,D'FILE,FILE ' END)
0090 ENDPROC DIR'HEADER

Page 26 CAPTAIN COMAL GETS ORGANIZED

disk name

disk id

Page 26

MODULE: NEXT'FILE

PURPOSE: Gets the next file's name, file type, and number of blocks
MODULES REQUIRED: GET'TYPE#, GET I NAME, GET'BLOCKS#, CHECK'DIR'CYCLE

0100 II

This line is used as a I separator I between modules, making them easier
to find when glancing at a program listing.

0110 PROC NEXT'FILE(D'FILE,REF FIEND/REF FNS,REF FT#,REF FB#,REF BC)
type this at the end of above line: CLOSED

0120 FT#:=GET'TYPE#(D'FILE,F'END)

GET'TYPE# is an integer function defined later. COMAL uses the # symbol
after a variable name or function name to indicate that it is integer
only.

0130 GET'NAME(D'FILE,F'END,FNS)
0140 FB#:=GET'BLOCKS#(D'FILE,F'END)

GET'BLOCKS# is an integer function defined later.

0150 CHECK'DIR'CYCLE(D'FILE,F'END,BC)
0160 ENDPROC NEXT'FILE

MODULE: GET'TYPE#

PURPOSE: Get the file type for this file from the directory
MODULES REQUIRED: four DISK'GET modules

0170 II
0180 FUNC GET'TYPE#(D'FILE,REF FILE'END) CLOSED
0190 THIS'TYPE#:=DISK'GET(D'FILE,FILE'END)
0200 DISK 'GET'SKIP(2,D'FILE,FILE ' END)
0210 IF THIS 'TYPE#<129 OR THIS'TYPE#>132 THEN THIS I TYPE#: =128

Any file type value not equal to a valid type of file (129-132) is
converted to 128 (deleted or not used).

0220 RETURN THIS'TYPE#

Page 27 CAPTAIN COMAL GETS ORGANIZED Page 27

Every function must return a value. A RETURN statement is used. Because
this is an INTEG[R function, the value returned must be an integer.

0230 ENDFUNC GET'TYPE#

MODULE: GET'NAME

PURPOSE: Gets the file name from the directory
MODULES REQUIRED: four DISK'GET modules

0240 II
0250 PROC GET'NAME(D'FILE,REF FILE'END,REF F'NAMES) CLOSED
0260 DISK'GET'STRING(F'NAMES,16,D'FILE,FILE'END)
0210 FOR SPACE#:=l TO LEN(F'NAMES) DO
0280 IF ORD(F'NAMES(SPACE#))=160 THEN F'NAMES(SPACE#):=CHRS(32)
0290 ENDFOR SPACEd

rhis FOR loop checks each character of the file name. If it finds a
SHIFTED SPACE (160) it changes it to a regular SPACE (32). ORD is used
to get the ordinal value of a character. A substring is used to pick out
one character at a time. CHRS is the complement of ORD in that it takes
an ordinal value and gives its character.

0300 DISK'GET'SKIP(9,D'FILE, FILE'END)
0310 ENDPROC GET'NAME

MODULE: GET'BLOCKS#

PURPOSE: Gets the number of blocks used by this file
MODULES REQUIRED: four DISK'GET modules

0320 II
0330 FUNC GET'BLOCKS#(D'FILE,REF FILE'END) CLOSED
0340 BLOCKS#:=DISK'GET(D'FILE,FILE'END)
0350 BLOCKS#:+256*DISK'GET(D'FILE,FILE'END)
0360 RETURN BLOCKS#
0310 ENDfUNC GET'BLOCKS#

Page 28 CAPTAIN COMAL GETS ORGANIZED Page 28

MODULE: CHECK'DIR'CYCLE

PURPOSE: Skips 2 bytes after every file name cycle except every 8th one
MODULES REQUIRED: four DISK'GET modules

0380 II
0390 PROC CHECK'DIR'CYCLE(D'FILE,REF FILE'END,REF BLOCK'COUNT) CLOSED
0400 BLOCK'FLAG:=TRUE
0410 BLOCK 1 COUNT: +1
0420 IF BLOCK ' COUNT=8 THEN
0430 BLOCK 1 COUNT: =0
0440 BLOCK'FLAG:=FALSE
0450 ENDIF
0460 IF BLOCK'FLAG THEN DISK'GET'SKIP(2,D'FILE,FILE'END)
0470 ENDPROC CHECK'DIR'CYCLE

Done. Now renumber it into the 9000 1s and LIST it to disk:

RENt.-'" 9000,2
LIST "READ'DIR'PART2.L"

All the modules for our VIEW'DIR program are nearly finished now. All
that is left is the ability to allow the option of having the directory
printed on either the screen or the printer, and a module to CHAIN back
to the main MENU.

MODULE: PRINTER

PURPOSE: Find out if the user wants the output on screen or printer

Screen or Printer? This is a common question for many programs. Let's
put together a nice routine that takes care of this query. We will make
it a function called PRINTER. It will return TRUE if a printer is
desired (FALSE if the screen is to be used):

NEW
AUTO

0010 II
0020 FUNC PRINTER CLOSED
0030 PRINT "OUTPUT TO SCREEN OR PRINTER(S/P)",

Page 29 CAPTAIN COMAL GETS ORGANIZED Page 29

The comma at the end of the line keeps us on the same line, right where
we left off. Then we can print the whole word SCREEN or PRINTER at the
end of the line, depending on which key the user hits.

0040 REPEAT
005e CASE KEY$ OF
e06e WHEN "S","s" watch for both shifted and unshifted S
e070 PRINT "SCREEN"
0e80 RETURN FALSE
e090 WHEN "PH, Up" watch for both shifted and unshifted P
01ee PRINT "PRINTER H

0110 RETURN TRUE
0120 OTHERWISE
0130 NULL
0140 ENDCASE
015e UNTIL TRUE=FALSE
016e ENDFUNC PRINTER

do nothing

forever

KEYS looks at the keyboard. If no key is pressed CHR${e) is returned. We
are only concerned with the Sand P keys. So we set up a REPEAT loop to
continuously process a multiple choice CASE based on whatever key (if
any) is pressed. It does nothing until it sees a P or S (shifted or
unshifted). Then it returns its value of TRUE or FALSE. The RETURN also
ends the function.

Now, renumber the fucntion and list it to disk:

RENlJr'I ge0e
LIST "PRINTER.L"

MODULE: SCREEN

PURPOSE: Return output location to the screen

Of course, if the output from a program is ever directed to the printer,
sooner or later we must return it back to the screen. This easily
accomplished with: SELECT "OS:". However, sometimes the BUS (the group
of lines between the printer, disk drive, and computer) is not properly
reset and the next command to the disk'drive (such as DELETE
"e:TESTING") is printed on the printer instead. This may only occur with
certain printers or other rare circumstances. However, we have found
that initializing a disk after a SELECT "OS:" will always clear the BUS.
So, we have a quick module we can use to return output to the screen:

Page 30 CAPTAIN COMAL GETS ORGANIZED Page 30

NEW
AUTO

0010 //
e020 PROC SCREEN CLOSED
0030 SELECT OUTPUT liDS: II
ee4e PASS "Ie ll

€lese ENDPROC SCREEN

DONE. Now renumber and list to disk:

RENi1'1 gee0
LIST IISCREEN. Lit

MODULE: MENU

PURPOSE: Return control back to the MENU program

The last module needed for the program VIEW'DIR is the one that will
link back to the main MENU. All the programs in the system will always
CHAIN back to the MENU program. The MENU then allows a choice of what
program to run next. This routine should first ask the user to put the
DOS MENU PROGRAM DISK into drive e (the MENU program is on that diSk):

NEW
AUTO 9000 this will provide geee range line numbers right off

9000 /1
ge1e PROC MENU CLOSED
902e DIM C$ OF 1

CLOSED procedures are allowed to dimension strings for use just by the
procedure (and modules that it calls).

903e INPUT CHR$(18)+ItINSERT DOS MENU PROGRAM DISK IN DRIVE e: ": C$j

Notice that an input prompt can use a string EXPESSION. CHR$(18) is
REVERSE FIELD ON.

9040 PRINT IIOKII+CHR$(146)+" LOADING MAIN MENU NOW ... It

CHR$(146) is REVERSE OFF.

9050 CHAIN 110:DOS 'MENU II

Page 31 CAPTAIN COMAL GETS ORGANIZED Page 31

9~60 ENOPROC MENU

Oone. LIST it to disk: LIST "MENU.L"

PROGRAM: VIEW'DIR

FINAL CONSTRUCTION

MODULES REQUIRED: INTRO, PAGE, MENU, PRINTER, SCREEN, READ'DIR2,
six READ'DIR'PART2 modules, four DISK'GET modules

Now the VIEW'DIR program construction begins. All we do now is write the
short program. Then merely MERGE all the routines we need from disk:

NEW
AUTO

0010 IIDELETE "0: VIEW' DrR!"
0020 II(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 IISAVE "0:VIEW'DIR3"

All your programs should start with a similar three lines. It is really
a kind of PROGRAM TRACKING SYSTEM. It allows you to keep track of what
'version' you are on. Remember when we started the book. We saved a file
WELCOME1 and then a later version named WELCOME2. After awhile you might
be up to WELCOME14. You then forget if you had a WELCOME15 or not. And
you don't need 14 versions of the same thing on your disk. This simple
three line system takes care of keeping only the latest two version of
the program on disk- and remembers what version number you are on at all
times. PLUS if you give out a copy of your program to a friend, later he
can tell you what version it was.

Here is how the system works. All three lines start with II making them
remarks. The third line contains the current program number (start with
3). The first line has the program number to be deleted next (keeps the
disk from cluttering up with files, yet maintains 2 files on disk). The
second line is for your name or copyright notice etc.

Each time you wish to save the program to disk, merely list the first 3
lines. Now increment the program number in the first and third lines
(hit RETURN on each line). Next cursor back up to the first line. Type 7
spaces to erase the line number and the II. Hit RETURN and the DELETE
command is executed. After the DELETE command is sent to the disk, the
cursor returns at the beginning of the third line. Now merely type in
another 7 spaces and hit RETURN and the program is SAVfD with the

Page 32 CAPTAIN COMAL GETS ORGANIZED Page 32

current program number.

It's all automatic. No more typing in a DELETE and SAVE statement. Plus,
the two programs stay in the same locations in the disk directory
(unless something ahead of them is deleted meanwhile).

See the COMAl TODAY newsletter issue #1 page 22 for addition info on
this system. Now, back to our program:

0040 INTRO("VIEW CATALOG OF A DISK NOT ON THE MASTER")

Now we finally used that first module we wrote.

0050 DIM DUMMY$ OF 1
0060 DIM DISK'NAME$ OF 16
0070 DIM DISK'IDS Of 2
0080 DIM fIlE'INFOS OF 30
0090 DIM F'NAMES OF 16
0100 DIM TYPE$(128:132) OF 3 this is a string array
0110 TYPES(128):=I***" a deleted file
0120 TYPE$(129):=ISEQ" sequential file
0130 TYPES(130):="PRG" program file
0140 TYPES(140):="USR" user file
0150 TYPES(150):=IREl" relative file
0160 INPUT "[RVS]INSERT THE DISK TO VIEW INTO DRIVE 0: [OFF]": DlJtt1YS

The input prompt will be printed in reverse field. [RVS] means enter the
Reverse On key (CTRl 9). [OFF] means enter the Reverse Off key (CTRl 0).
We really don't care what the user types, we merely wait for the RETURN
key. This just gives him time to put the disk into the drive.

0170 IF PRINTER THEN SELECT OUTPUT "lP:"

See how we used the PRINTER function to choose the output location!

0180 READ'DIR2(2, "0 11 , TRUE)

This calls our READ'DIR2 module, using file number 2, drive "0 11 , and
choice of printing the directory.

0190 SCREEN

This puts the output is back on the screen before the program ends.

0200 MENU

Page 33 CAPTAIN COMAL GETS ORGANIZED Page 33

[his RUNs the MENU program.

0210 J/

Program is done. You can include an END statement here if you wish, but
it is optional.

Now you just MERGE in the modules you previously wrote and stored on
disk. Remember they use line numbers in the 9000's, so do a normal RENUM
before each MERGE. To merge in a module, use the ENTER command.

RENUM
ENTER "INTRO.L"
RENUM
ENTER "PAGE.L"
RENUM
ENTER "MENU.L"
RENUM
ENTER "PRINTER.L"
RENlJt1
ENTER "SCREEN.L"
RENlJt1
ENTER "READ'OIR2.L"
RENlJt1
ENfER "READ'DIR'PART2.L"
RENUM
ENTER "DISK I GET. L II
RENlJt1

Your program is now complete. Save it first, then try a RUN:

AHA!!! Do you remember how to save the program? LIST the first three
lines, increment the program numbers, and execute the first and third
1 i nes:

LIST -30

0010 J/DELETE "0: VIEW'DIR1"
0020 1/(C)l984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE 10:VIEW'DIR3"

Now cursor up to line 10 and change the 1 to a 2 - hit RETURN
Now cursor down to line 30 and change the 3 to a 4 - hit RETURN
Now cursor up to line 10, type 7 spaces - hit RETURN
The cursor ends up on line 30. Now type 7 spaces - hit RETURN

Page 34 CAPTAIN COMAL GETS ORGANIZED Page 34

Done. Next program please (watch how much easier the next one will be).

===============
PROGRAM: UPDATE
===============

PRELIMINARY WORK

The next program we construct should be the most important program in
this series: UPDATE. This is the program that catalogs all your disk's
onto the MASTER DIRECTORY DISK. It shares many modules with our first
program, VIEW'DIR.

Here are the modules we will use in this program (UPDATE) that you
already have LISTed to disk: INTRO, PAGE, MENU (modified slightly into
MENU2), SCREEN, DISK'GET, READ'DIR'PART2, and READ'DIR (modified from
READ' DIR2).

First let's look at an overview of what this program is supposed to do.

It should be able to read a disk's directory and store it on the MASTER
DIRECTORY DISK. We can use DISK'GET and READ'DIR2 (modified into
READ'DIR) and READ'DIR'PART2 modules we already have written to do this.
We only need to add a module to write a disk directory (WRITE'DIR) onto
the MASTER DIRECTORY DISK.

It also should be able to know if a disk being cataloged is already in
the system, and let the user have the option of skipping the disk (DISK
ID problem) or update the entry (UPDATE the catalog). We will have to
write this module (USED).

Of course the program will use INTRO and PAGE to start off, and MENU
(modified into MENU2) to chain into the main MENU.

We also will need to add two more modules to make our program 'smart'.
There will be a file on the DOS MENU PROGRAM DISK that records whether
the user has a dual drive or not. Also is a file that tracks whether the
system has been updated since the last time the MASTER FILE was created.
We will include SET'UPDATED and DUAL'DRIVE to access those two files.
The DOS'MENU program will create the file used by DUAL'DRIVE. The
STARTUP program will create the file shared by SET I UPDATED. We will
construct those programs after this one.

So, let's get on with it. First let's modify MENU and READ'DIR2 for use
with this program.

Page 35 CAPTAIN COMAL GETS ORGANIZED Page 35

MODULE: MENU2

(adapted from MENU)

PURPOSE: Return control back to the MENU program

NEW
ENTER IIMENU.LII

LIST

9000 /1
9010 PROC MENU CLOSED
9020 DIM C$ OF 1
9030 INPUT CHR$(18)+IIINSERT DOS MENU PROGRAM DISK IN DRIVE 0: II: C$j
9040 PRINT IIOKII+CHR$(146)+11 LOADING MAIN MENU NOW II

9050 CHAIN 110:DOS'MENUII
9060 ENDPROC MENU

We only need to make one small modification to the program. We need the
UPDATE program to also update the file on the DOS MENU DISK that keeps
track of whether or not the system was updated since the last MASTER
FILE was created. We merely add the following line:

9045 IF FLAG THEN SET'UPDATED(TRUE)

Now when we call MENU we will pass it a parameter - FLAG, that is TRUE
if we updated the system, and is FALSE if not. If the system was updated
(FLAG=TRUE) then we call another procedure called SET 'UPDATED, which we
will write next. Since we are now using a parameter we must change the
HEADER:

9010 PROC MENU2(FLAG) CLOSED

Notice we added the parameter FLAG and changed the name to MENU2 to
differentiate it from MENU (later, in another program, we will even have
a third kind of MENU: MENU3). Since we changed the procedure name, we
must make the same name change in its matching ENDPROC:

9060 ENDPROC MENU2

Now, look at how the new MENU looks:

LIST

Page 36 CAPTAIN COMAL GETS ORGANIZED Page 36

9000 II
9010 PROC.MENU2(FLAG) CLOSED
9020 DIM C$ OF 1
9030 INPUT CHR$(18)+"INSERT DOS MENU PROGRAM DISK IN DRIVE 0:": C$j
9040 PRINT IOK"+CHR$(146)+" LOADING MAIN MENU NOW ... II

9045 IF FLAG THEN SET'UPDATED(TRUE)
9050 CHAIN 110:DOS'MENU II

9060 ENDPROC MENU2

That looks good. Just renumber it (to get rid of the 9045 odd number)
and LIST it to disk:

RENlJ1 9000
LIST "MENU2. L II

Now let's write the SET'UPDATED module that MENU2 calls:

MODULE: SET'UPDATED

PURPOSE: If an update took place, it writes TRUE into the status file.

NEW
AUTO 9000

9000 II
9010 PROC SET'UPDATED(FLAG) CLOSED
9020 DELETE "0: ALLFILES. STATUS II
9030 OPEN FILE 78, 110:ALLFILES. STATUS", WRITE
9040 WRITE FILE 78: FLAG
9050 CLOSE FILE 78
9060 ENDPROC SET'UPDATED

See how easy it is to keep the status file up to date. Merely delete the
old status file, then OPEN it as a new file, write the FLAG (TRUE in
this case) and then CLOSE the file.

LIST II SET I UPDATED. L"

Page 37 CAPTAIN COMAL GETS ORGANIZED Page 37

MODULE: READ'DIR

(Adapted from READ'DIR2)

PURPOSE: Read a disk's directory and store it into 3 arrays.
MODULES REQUIRED: four DISK'GET modules, six READ'DIR'PART2 modules

Let's update the READ'DIR2 procedure for reading a disk's directory.
READ'DIR2 just read the directory and printed out at the same time. We
will now add a few lines that allow us to STORE the directory in arrays.
We can access this array in many ways. This program will merely use it
to write the directory to the MASTER DIRECTORY DISK.

NEW
ENTER IREAD'DIR2.L"

LIST

9000 PROC READ'DIR2(D'FILE,DRIVES,SHOW) II NOT CLOSED
9010 RESTORE
9020 DISK'GET'INIT
9030 PASS "I"+DRIVES
9040 FILE'END:=FALSE
9050 OPEN FILE D'FILE, "S"+DRIVES, READ
9060 DIR'HEADER(D'FILE,FILE'END,DISK'NAMES,DISK'IDS)
9070 IF SHOW THEN
9080 PRINT "DISK: "jDISK'NAMES; "ID: ";DISK'IDS
9090 PRINT
9100 PRINT "NlJr1 FILE NAME TYP BLOCKS"
9110 PRINT "--- ---------------- --- ------"
9120 ENDIF
9130 BC:=0; BLOCKS'FREE:=664j FILE'COUNT:=0
9140 REPEAT
9150 NEXT'FILE(D'FILE,FILE'END,F'NAMES,F'TYPE#,F'BLOCKS#,BC)
9160 IF F'TYPE#<>128 THEN
9170 BLOCKS'FREE:-F'BLOCKS#
9180 FILE'COUNT:+1
9190 II HERE YOU COULD PUT THE FILE NAME INTO AN ARRAY
9200 ENDIF
9210 IF SHOW THEN
9220 PRINT USING "###": FILE'COUNT j
9230 PRINT F'NAMES,TAB(22),TYPES(F'TYPE#)j
9240 PRINT USING "###": F'BLOCKS#
9250 ENDIF

Page 38 CAPTAIN COMAL GETS ORGANIZED Page 38

9260 UNTIL FILE'END
927~ CLOSE FILE D'FILE
9280 IF SHOW THEN PRINT FILE'COUNT j II FILES AND"jBLOCKS'FREE j "BLOCKS FRE"
9290 ENDPROC READ'DIR2

First let's change the name to just READ'DIR:

EDIT 9000

9000 PROC READ I DIR2(D'FILE,DRIVES,SHOW) II NOT CLOSED

Cursor up and over and delete the 2 (it should now look like):

9000 PROC READ'DIR(D'FILE,DRIVES,SHOW) II NOT CLOSED

Now change the ENDPROC too:

9290 ENDPROC READ'DIR

Now, notice this line:

9190 II HERE YOU COULD PUT THE FILE NAME INTO AN ARRAY

That is just we are going to do now. First, we must agree on the array
names. One array can store all the file names, called FILE'NAMESS.
Another can store all the file types, called FILE'TYPES# (an integer
array is used to save memory). The final array can store all the blocks
for each file, called FILE'BLOCKS# (also an integer array).

These arrays will be DIMensioned at the start of the program. We need to
know the upper limit to use for the arrays. Since only 144 files can be
stored on a 1541 or 4040 disk, that seems the logical choice. Let's use
a variable called MAX' FILES as the top of array indicator. The DIMs
could then look like this:

MAX I FILES=144
DIM FILE I NAMESS(l:MAX ' FILES) OF 16, FILE ' TYPES#(l:MAX ' FILES)
DIM FILE ' BLOCKS#(l:MAX'FILES)

Now all we need to do is add three lines to our procedure replacing line
9190. These lines will put the current file name, type, and blocks into
the proper array. We can use FILE'COUNT as the index into the array,
since it is counting the files for us as we go:

9190 II INTO ARRAYS HERE
9192 FILE'NAMES$(FILE'COUNT):=F'NAMES

Page 39 CAPTAIN COMAL GETS ORGANIZED Page 39

9194 FILE'BLOCKS#(FILE'COUNT):=F'BLOCKS#
9196 FILE'TYPES#(FILE'COUNT):=F'TYPE#

We can even add just a couple line so our program will not allow more
programs than set in MAX'FILES. It is quite easy. We just add an IF .,.
ELSE ... ENDIF into the section: First list the line in the section we
wi 11 be addi ng thi s IF structure into:

LIST 9160-9200

9160 IF F'TYPE#<>128 THEN
9110 BLOCKS'FREE:-F'BLOCKS#
9180 FILE 'COUNT:+1
9190 II INTO ARRAYS HERE
9192 FILE I NAMES $ (FILE I COUNT): =F I NAME$
9194 FILE'BLOCKS#(FILE'COUNT):=F'BLOCKS#
9196 FILE'TYPES#(FILE'COUNT):=F'TYPE#
9200 ENDIF

We should check if MAXI FILES is met or exceded right away (and if so
print a warning message but skip array storage):

9162 IF FILE'COUNT>=MAX'FILES THEN
9164 PRINT "TOO MANY FILES"
9166 ELSE

Now the rest of the lines would be execute as usual. Finally we must add
the ENDIF for the IF structure:

9198 ENDIF

Now list this segment:

LIST 9160-9200

9160 IF F'TYPE#<>128 THEN
9162 IF FILE'COUNT>=MAX'FILES THEN
9164 PRINT "TOO MANY FILES II
9166 ELSE
9170 BLOCKS'FREE:-F'BLOCKS#
9180 FILE'COUNT:+1
9190 II INTO ARRAYS HERE
9192 FILE'NAMES$(FILE'COUNT):=F'NAME$
9194 FILE'BLOCKS#(FILE'COUNT):=F'BLOCKS#
9196 FILE'TYPES#(FILE'COUNT):=F'TYPE#
9198 ENDIF

Page 40 CAPTAIN COMAL GETS ORGANIZED Page 40

9200 ENDIF

That looks right, but ouch - the line numbers are a mess. So renumber
the whole thing before we LIST it to disk:

RENtJ1 9000
LIST "READ'DIR.L"

MODULE: DUAL/DRIVE

PURPOSE: Check whether a dual drive is in use or not.

How about that module to check whether or not a dual drive is being
used. There is only one record in the status file. That record is either
a 1 (TRUE) or a 0 (FALSE). Let's make it a function that returns TRUE if
a dual drive is used, FALSE if not:

NEW
AUTO 9000

9000 II
9010 FUNC DUAL/DRIVE CLOSED
9020 DIM $$ OF 2
9030 OPEN FILE 78, "0: DUALDRIVE. STATUS", READ
9040 S$:=STATUS$

If it can't find or read the status file, then return false to use only
one drive.

9050 IF $$="00" THEN
9060 READ FILE 78: DRIVES
9070 ELSE
9080 DRIVES:=FALSE
9090 ENDIf
9100 CLOSE fILE 78
9110 RETURN DRIVES
9120 ENDfUNC DUAL/DRIVE

That/s all that's to it. Remember, the file is created by DOS'MENU
(constructed soon). LIST it to disk:

LIST "DUAL' DRIVE. L"

Page 41 CAPTAIN COMAL GETS ORGANIZED Page 41

MODULE: WRITE'DIR

PURPOSE: Write a disk directory to the MASTER. Adds its disk ID to list

This is the module that will write a disk's directory onto the MASTER
DIRECTORY DISK:

NEW
AUTO 9000

9000 II
9010 PROC WRITE'DIR
9020 DIR'FILE=8 II SET THE FILE NUMBER TO USE
9030 OPEN FILE DIR'FILE,MASTER$+"DISK'IDS.DATAU,APPEND

Note that the file is opened as an APPEND type file. This means that the
system will open the file that already exists, read quickly past all the
data and position at its end ready to write the next record. The
variable MASTER$ is set to either "0:" or "1:" depending on whether a
dual drive is used or not. This happens at the start of the program
(coming up soon). The next line writes the disk ID at the end of the
DISK ID file.

9040 WRITE FILE DIR'FILE: DISK'ID$
9050 CLOSE FILE DIR'FILE
9060 DELETE MASTER$+"DIRECTORY .. "+DISK'ID$
9070 OPEN FILE DIR'FILE,MASTER$+"DIRECTORY .. "+DISK'ID$,WRITE
9080 WRITE FILE DIR'FILE: DISK'ID$,BLOCKS'FREE,DISK'NAME$,FILE'COUNT

add this to end of above line: ,DATES

The first thing in each directory file is the disk summary. This will
allow fast summaries of disks in other programs in the OMS series. It
follows the structure previously outlined in this book.

9090 FOR X:=l TO FILE'COUNT DO
9100 WRITE FILE DIR'FILE: FILE'NAME$(X),FILE'TYPE#(X),FILE'BLOCKS#(X)
9110 ENDFOR X

This writes the file's name, type, and blocks, for each file on the disk
- the number of files is indicated by FILE'COUNT.

9120 CLOSE FILE DIR'FILE
9130 UPDATED'FLAG:=TRUE

Page 42 CAPTAIN COMAL GETS ORGANIZED Page 42

Since we just updated the system, we set a flag, UPDATED I FLAG, to TRUE.
Later, when the program is done, it will be used in the call to MENU.

9140 ENDPROC WRITE'DIR

That's it. LIST it to disk:

LIST "WRITE'DIR.L"

MODULE: USED

PURPOSE: Check if a disk ID is used. If it is, ask if update is wanted

This is the function that checks if a disk's ID is already in the list,
and if it is, asks if an UPDATE is desired or not. It then will return
TRUE if the disk ID is used and an update is NOT wanted (otherwise it
returns FALSE):

NEW
AUTO 9000

9000 II
9010 FUNC USED
9020 FOUND:=FALSE
9030 ID'FILE:=9
9040 OPEN FILE ID'FILE,MASTERS+"DISK'IDS.DATA",READ
9050 WHILE NOT EOF(ID'FILE) AND NOT FOUND DO

Here we set up a loop that will read through the disk ID file till it
reaches the end, unless the ID is found and it quits the loop right
there.

9060 READ FILE ID'FILE: TEMpI IDS
9070 IF DISK'IDS:=TEMP'IDS THEN FOUND:=TRUE
9080 ENDWHILE
9090 CLOSE FILE ID'FILE
9100 IF FOUND THEN
9110 INPUT DISK'ID$+" ALREADY EXISTS - UPDATE? ": REPLYS
9120 IF REPLYS="Y" OR REPLYS="y" THEN FOUND:=FALSE

We allow both shifted or unshifted Y as a YES reply.

9130 ENDIF

Page 43 CAPTAIN COMAL GETS ORGANIZED Page 43

9140 RETURN FOUND
9150 ENDFUNC USED

Done. Lf st it to di sk: LIST "USED. L II

MODULE: UPDATE

PURPOSE: Cycle through the steps necessary to catalog a disk.
MODULES REQUIRED: READ'DIR, USED, WRITE'DIR

This is the module that will cycle through the steps necessary to
catalog a disk:

NEW
AUTO 9000

9000 II
9010 PROC UPDATE
9020 PRINT "[RVS]PUT DISK TO CATALOG IN DRIVE 0 (Q=QUIT):[OFF]"

Hit CTRL 9 in place of [RVS] and hit CTRL 0 in place of [OFF].

9030 INPUT REPLY$
9040 If REPLY$="Q" OR REPLY$=lq" THEN
9050 DONE:=TRUE
9060 PRINT "DONE"
9070 ELSE
9080 DONE:=fALSE
9090 PRINT "OK"
9100 READ'DIR(2,10",TRUE)

The parameters mean use file number 2, use drive 0, and show the
directory as it is read.

9110 INPUT II[RVS]INSERT MASTER DIRECTORY DISK IN DRIVE II+MASTER$+
"[OFF]": REPLY$

The above is all one line. Hit CTRL 9 in place of [RVS] and CTRL 0 in
place of [OFF].

9120 PRINT "OK"
9130 If NOT USED THEN WRITE'DIR
9140 ENDIF
9150 ENDPROC UPDATE

Page 44 CAPTAIN COMAL GETS ORGANIZED Page 44

Done. Li st it to di sk: LIST II UPDATE. L II

===============
PROGRAM: UPDATE
===============

FINAL CONSTRUCTION

OLD MODULES REQUIRED: six READ'DIR'PART2 modules, four DISK'GET modules,
INTRO, PAGE

MODIFIED MODULES: READ'DIR (from READ'DIR2), MENU2 (from MENU)
NEW MODULES: SET 'UPDATED, DUAL 'DRIVE, UPDATE, USED, WRITE'DIR

We are now ready to construct the program. First let's get the main
program written, then MERGE in all the modules we need.

NEW
AUTO

0010 IIDELETE 110: UP OAT El II
0020 //(C) 1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE 110:UPDATE3 11

We started with our typical top three lines. These lines should be the
top three on all your programs.

0040 INTRO(IIUPDATE THE MASTER DIRECTORY DISKII)
0050 MAX'FILES:=144j UPDATED'FLAG:=FALSE
0060 DIM DISK'NAME$ OF 16, DISK'ID$ OF 2, F'NAMES OF 16, REPLYS OF 1
0070 DIM TEMP'IDS Of 2, MASTER$ OF 2, DATE$ OF 6
0080 DIM FILE'TYPES'(l:MAX'FILES), FILE'BLOCKS'(l:MAX'FILES)
0090 DIM TYPE$(128:132) OF 3, FILE'NAMES$(l:MAX'FILES) OF 16
0100 TYPES(128):=II***lI j TYPES(129):=IISEQ"; TYPES(130):="PRGII
0110 TYPE$(131):=IIUSRll j TYPES(132):=IIREL II

0120 MASTERS: =110: II

0130 IF DUAL'DRIVE THEN MASTERS: ="1: II

Here is where we check for dual drives. If TRUE is returned, we change
the master dri ve to 111: II .

0140 INPUT IIENTER TODAYS DATE (YYftt1DD): ": DATES

Notice, we are asking for the date in year, month, day. This allows for
easy sorting by date for anyone adding extensions onto this system.

0150 REPEAT

Page 45 CAPTAIN COMAL GETS ORGANIZED Page 45

0160 UPDATE
0170 UNTIL DONE
0180 CLOSE
0190 MENU2(UPDATED IFLAG)

Thatls all we need for the program. (Hit RETURN an extra time to quit
AUTO numbering mode.) We now construct the rest of it from the modules
already on the disK:

ENTER II INTRO. L II
RENlI1
ENTER II PAGE. L II
RENlJt1
ENTER IIMENU2.LII
RENlJ1
ENTER II SET I UPDATED. L II
RENlII
ENTER II DUAL I DRIVE. L II
RENlJt1
ENTER IIREADIDIR.L"
RENlI1
ENTER IIREADIDIRIPART2.LII
RENlII
ENTER IIUPDATE. L II
RENlI1
ENTER "USED. L II
RENlII
ENTER IIWRITEIDIR.LII
REMJt1
ENTER "DISKIGET.LII
RENlI1

Your program construction is now complete. The modules can be entered in
any order. They can even come before the program itself. COMAL is very
tolerant with us in this regard.

Remember to save the program BEFORE you try running it:

SAVE "UPDATE"

AHA !! Caught you. You should save the program using the top three
lines. A habit you soon will have:

Page 46 CAPTAIN COMAL GETS ORGANIZED Page 46

LIST -30

0010 IIDELETE "0: UPDATEl"
0020 II(C) 1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 IISAVE 10:UPDATE3"

Now change the 1 to a 2, and the 3 to a 4, then execute the top line,
then the third line.

=================
PROGRAM: DOS'MENU
=================
PRELIMINARY WORK

We may as well write the MENU program next. We have referred to it many
times. It could be a simple list of options, and a quick CASE structure
to CHAIN into the program picked. But this fine series of programs
deserve better than that. So the menu program we will construct will
have a few nice touches to it. This program's main modules, PRESENT I MENU
AND PROCESS I MENU are quite long, due to the many print statements and
the long CASE structure.

This program (and the next one we will do, STARTUP) contains few modules
in common with the rest of the series. The only module already on the
di sk so far is PAGE. Others you may see agai n in the programs sti 11 to
come.

So, what will DOS'MENU do? It should present a list of options to the
user (PRESENT'MENU) , and wait for the choice (PROCESS'MENU). It should
have a HELP option (SEE), and check whether the system has been updated
or not (UPDATED) since the last MASTER FILE was created. This program is
the one that asks whether or not a dual drive is being used
(DUAL'CHOICE). Other supporting modules used in the program are
FILE'EXISTS (from the COMAL HANDBOOK) and CHOICES (from ORDER PROCESSING
SYSTEM - not published yet). Also, the SEE procedure is taken from the
C64 COMAL SYSTEM DISK and includes the procedure SHIFT'WAIT (from the
COMAL HANDBOOK).

MODULE: SEE

PURPOSE: Display a text file onto the screen.
MODULES REQUIRED: PAGE, SHIFT'WAIT

Weill take the SEE procedure I wrote for the C64 SYSTEM DISK. It is

Page 47 CAPTAIN COMAL GETS ORGANIZED Page 47

already written and is portable, so we'll use it. One thing I hope you
have learned, is that it helps to REUSE modules from both your previous
programs as well as other peoples (with their permission of course). I
will explain the procedure for you as we go, since it involves some
tricks. It is designed to read a sequential text file created by WORD
PRO. The text file is created while in C8M printer mode as a DISK
PRINTER file. Word Pro mixes up the square brackets, so this procedure
fixes them. Also, we must delete the first CHR$(17) Word Pro inserted at
the start of each line. The procedure also relies on the SHIFT'WAIT
procedure (which weill do next):

NEW
AUTO 9000

9000 II
9010 PROC SEE(FILE'NAMES) CLOSED
9020 DIM TEXTS OF 80
9030 SEE ' FILE:=106
9040 CLOSE FILE SEE'FILE II MAKE SURE FILE IS CLOSED
9050 OPEN FILE SEE'FILE,FILE'NAMES,READ
9060 PAGE
9070 PRINT II SKIP FIRST PRINT LINE
9080 REPEAT
9090 INPUT FILE SEE'FIIE: TEXTS
9100 IF CHRS(17) IN TEXTS THEN TEXT$(CHRS(17) IN TEXT$):=CHRS(0)

This gets rid of the CURSOR DOWN character Word Pro puts in.

9110 WHILE CHRS(219) IN TEXTS DO TEXT$(CHRS(219) IN TEXTS):=CHRS(91)

This is how you can scan through a whole string, searching for anyone
character, and replacing it with another single character. In this case
we are fixing the first square bracket ([). The next line fixes the
other square bracket (]).

9120 WHILE CHRS(221) IN TEXT$ DO TEXT$(CHR$(221) IN TEXT$):=CHRS(93)
9130 SHIFT'WAIT II WAIT TILL SHIFT KEY IS DEPRESSED
9140 PRINT TEXTS
9150 UNTIL EOF(SEE'FILE)

Keep going until we hit the End Of File.

9160 CLOSE FILE SEE'FILE
9170 INPUT "FINISHED - HIT <RETURN> WHEN READY": TEXTS;
9180 PRINT
9190 ENDPROC SEE

Page 48 CAPTAIN COMAL GETS ORGANIZED Page 48

Done. List it to disk: LIST "SEE.L"

MODULE: SHIFT'WAIT

PURPOSE: Wait until the shift key is depressed.

This is the module that waits for the shift key to be depressed. It
comes from the COMAL HANDBOOK (you do have the book, don't you?) It is
machine dependent. If you are using a PET/CBM computer, you must change
the PEEK location from 653 to 152:

NEW
AUTO 9000

9000 II
9010 PROC SHIFT'WAIT CLOSED
9020 SHIFT'FLAG:=653 II PET USE 152
9030 WHILE NOT PEEK(SHIFT'FLAG) DO
9040 PRINT "PRESS SHIFT[UP]"

Hit the CURSOR UP key in place of [UP] in both line 9040 and 9050.

9050 PRINT II [UP]"
9060 ENDWHILE
9070 ENDPROC SHIFT'WAIT

Done. List it to disk: LIST "SHIFT'WAIT.L"

MODULE: CHOICES

PURPOSE: Print a list of words with the first letter of each
hi gh 1 i ghted.

This module will print a list of words and highlight the first letter in
each word in reverse field. This is useful to present a list of choices
for a MENU. We will use it for our special HELP menu.

NEW
AUTO 9000

9000 II

Page 49 CAPTAIN COMAL GETS ORGANIZED Page 49

9010 PROC CHOICES(TEXT$) CLOSED
9020 PRINT CHR$(18), II REVERSE ON
9030 MARK: =0; MAX:=LEN(TEXT$)
9040 WHILE MARK <MAX DO
9050 MARK: +1
9060 IF TEXT$(MARK)=II II THEN

Here we check a substring of TEXT$. If it is a space, we are still
waiting for the next word, so turn REVESE OFF, print a space, and then
turn REVERSE back on. If it isn't a space, print it and then turn off
the reverse field.

9070 PRINT CHR$(146), II ",CHR$(18),
9080 ELSE
9090 PRINT TEXT$(MARK),CHR$(146),
9100 ENDIF .
9110 ENDWHILE
9120 PRINT
9130 ENDPROC CHOICES

Done. List it to disk: LIST "CHOICES.L II

You may be interested in seeing this procedure in action. RUN it and
then call it with some sample set of words:

RUN
CHOICES(IITHIS IS A TEST II)

THIS IS A TEST

See how just the first letter of each word is highlighted!

MODULE: FILE'EXISTS

PURPOSE: Check if a specific file exists on the disk already.

Next, lets look at another module from the COMAL HANDBOOK. It checks if
a file already exists on a disk and returns TRUE if it does (FALSE if
not).

NEW
AUTO 9000

9000 II

Page 50 CAPTAIN COMAL GETS ORGANIZED Page 50

9010 FUNC FILE'EXISTS(NAMES) CLOSED
9020 DIM SS OF 2
9030 OPEN FILE 78,NAMES,READ
9040 SS:=STATUSS
9050 CLOSE FILE 78
9060 IF SS:=H00" THEN
9070 RETURN TRUE
9080 ELSE
9090 RETURN FALSE
9100 ENDIF
9110 ENDFUNC FILE'EXISTS

Done. List it to disk: LIST "FILE'EXISTS.L"

MODULE: DUAL'CHOICE

PURPOSE: Ask if a dual drive is in use, and write the status file.

Now lets create the module that asks whether or not a dual drive is
being used, and then writes a status file for use by the other programs.

NEW
AUTO 9000

9000 II
9010 PROC DUAL'CHOICE CLOSED
9020 DIM CHOICES OF 1
9030 INPUT "ARE YOU USING A DUAL DRIVE: " CHOICES;
9040 IF CHOICE$="Y" OR CHOICE$="y" THEN
9050 DUAL'STATUS:=TRUE
9060 ELSE
9070 DUAL'STATUS:=FALSE
9080 ENDIF
9090 DELETE "0:DUALDRIVE.STATUS"
9100 OPEN FILE 78, "0: DUALDRIVE. STATUS" I WRITE
9110 WRITE FILE 78: DUAL'STATUS
9120 CLOSE FILE 78
9130 PRINT
9140 ENDPROC DUAL'CHOICE

Done. List it to disk: LIST "DUAL'CHOICLL"

Page 51 CAPTAIN COMAL GETS ORGANIZED Page 51

MODULE: UPDATED

PURPOSE: Check if the system has been updated by reading status file.

Now we can write the function that makes our system smart. This function
reads the status file to tell if the sytem has been updated since the
last MASTER FILE was created and returns TRUE if it has (FALSE if not).

NEW
AUTO 9000

9000 II
9010 FUNC UPDATED CLOSED
9020 DIM S$ OF 2
9030 OPEN FILE 78, "ALLFILES. STATUS", READ
9040 SS:=STATUSS
9050 IF S$="00" THEN
9060 READ FILE 78: UPDATED'FLAG
9070 ELSE
9080 PRINT "UPDATE STATUS FILE NOT FOUND"
9090 UPDATED'FLAG:=FALSE
9100 ENDIF
9110 CLOSE FILE 78
9120 RETURN UPDATED I FLAG
9130 ENDFUNC UPDATED

Done. List it to disk: LIST "UPDATED.L"

MODULE: PRESENT'MENU

PURPOSE: Display the options available with the system
MODULES REQUIRED: PAGE, FILE'EXISTS, DUAL'CHOICE, UPDATED

This is the first in a "pair" of modules, one to display the menu, and
the other to process the choice. First, the menu display module:

NEW
AUTO 9000

9000 II
9010 PROC PRESENT'MENU

Page 52 CAPTAIN COMAL GETS ORGANIZED Page 52

9020 PAGE
9030 DONE:=FALSE
9040 PRINT" [RVS] [OFF] CAPTAIN COMAL PRESENTS:"

In order to have a fancy looking menu, we are using the REVERSE ON and
REVERSE OFF quite a bit. Use CTRL 9 in place of each [RVS] and CTRL 0 in
place of each [OFF].

9050 PRINT II [RVS] [OFF] II
9060 PRINT II[RVS] DISK ORGANIZATION SYSTEM MENU [OFF] ",

Note: it is exactly 40 characters in between the [RVS] and the [OFF].

9070 PRINT" [RVS] [OFF]"
9080 PRINT" [RVS] [OFF]"
9090 PRINT "A [RVS]-[OFF] ALLOCATE FIRST TIME ONLY FILES"
9100 PRINT "C [RVS]-[OFF] C~PARE TWO DIRECTORIES"
9110 PRINT liD [RVS]-[OFF] DELETE DISK FR~ THE MASTER CATALOG II
9120 PRINT "F [RVS]-[OFF] FIND A FILE IN THE MASTER CATALOG"
9130 PRINT"H [RVS]-[OFF] HELP"
9140 PRINT "I [RVS]-[OFF] ID'S IN USE CHART OR LIST"
9150 PRINT"M [RVS]-[OFF] MAKE MASTER FILE OF CATALOGED DISKS"
9160 PRINT"N [RVS]-[OFF] Nl11BER OF DRIVES (SINGLE OR DUAL)"
9170 PRINT"P [RVS]-[OFF] PRINT DIRECTORY (MULTI-FORMATS)"
9180 PRINT"S [RVS]-[OFF] Sl11MARY OF DISKS IN THE MASTER"
9190 PRINT "U [RVS]-[OFF] UPDATE MASTER CATALOG"
9200 PRINT "V [RVS]-[OFF] VIEW AN UNCATALOGED DISK DIRECTORY"
9210 PRINT II [RVS] [OFF]"
9220 PRINT"Q [RVS]-[OFF] QUIT"
9230 PRINT" [RVS] [OFF]"
9240 PRINT" [RVS] [OFF]";
9250 IF FILE' EXISTS("0: DUALDRIVE. STATUS") THEN
9260 PRINT
9270 ELSE
9280 DUAL 'CHOICE
9290 ENDIF
9300 PRINT" [RVS] [OFF]"
9310 PRINT II [RVS] [OFF]";
9320 IF UPDATED THEN PRINT "CHOOSE OPTON M SOON. ";
9330 PRINT
9340 PRINT II [RVS] [OFF]"
9350 PRINT II [RVS] [OFF][UP][UP] II

The above line prints on the last screen line, and ends with two cursor
ups.

Page 53 CAPTAIN COMAL GETS ORGANIZED Page 53

9360 ENDPROC PRESENT'MENU

Done. List it to disk: LIST "PRESENT'MENU.L"

MODULE: PROCESS'MENU

PURPOSE: Find out what option the user wants next.
MODULlS REQUIRED: CHOICES, SEE

This module asks the user to choose one of the options and ignore an
incorrect response. If HELP is requested, a submenu is presented.

NEW
AUTO 9000

9000 II
9010 PROC PROCESS'MENU
9020 INPUT" [RVS] [OFF] YOUR CHOICE)": CHOICES;
9030 CASE CHOICES OF
9040 WHEN "A","a"
9050 PRINT "FIRST TIME ALLOCATE"
9060 PRINT "THIS WILL ZERO OUT I CREATE FILES"
9070 INPUT "CONTINUE (YIN):": CHOICES
9080 IF CHOICE$="Y" OR CHOICES="y" THEN CHAIN "STARTUP"
9090 WHEN "C", "c"
9100 PRINT "COMPARE DIRECTORIES"
9110 CHAIN "COMPARE'DIR"
9120 WHEN liD", lid"
9130 PRINT "DELETE DISK ENTRY"
9140 CHAIN "DELETE'DIR"
9150 WHEN "fll,"f"
9160 PRINT "FIND A FILE"
9170 CHAIN II FIND I FILE"
9180 WHEN "H", "h", "?","/"

For requesting HELP, we are also watching for the question mark key,
shifted (?) or unshifted (I).

9190 PRINT "HELP - INSTRUCTIONS"
9200 CHOICES("GRAPHICS SPRITES Ccw\L INSTRUCTIONS ?")
9210 REPEAT
9220 OK:=TRUE
9230 CASE KEYS OF
9240 WHEN "G", "gil

Page 54 CAPTAIN Ccw\L GETS ORGANIZED Page 54

9250 SEE("HELP-GRAPHICS")
9260 WHEN US", "5"
9270 SEE("HELP-SPRITES")
9280 WHEN "C", "e"
9290 SEE("HELP-COMAL")
9300 WHEN "I","i",IIHII,lIh","?","j"
9310 SEE("HELP-INSTRUCTION")
9320 OTHERWISE
9330 OK:=FALSE
9340 ENDCASE
9350 UNTIL OK
9360 WHEN "I", "i"
9370 PRINT"ID LIST OR CHART"
9380 CHAIN "PRINT'IDS"
9390 WHEN "M", "m"
9400 PRINT "MAKE NEW MASTER FILE"
9410 CHAIN "MASTER'MAKER"
9420 WHEN "N", Un"
9430 PRINT "NlJt1BER OF DRIVES"
9440 DUAL 'CHOICE
9450 WHEN "P", "p"
9460 PRINT "PRINT'DIRECTORIES"
9470 CHAIN "PRINT'DIR"
9480 WHEN "Q", "g"
9490 PRINT "QUIT THE SYSTEM"
9500 DONE:=TRUE
9510 WHEN "S","s"
9520 PRINT "SLftft1ARY OF DISKS"
9530 CHAIN "DISK'SLmARY"
9540 WHEN "U","u"
9550 PRINT "UPDATE MASTER CATALOG"
9560 CHAIN "UPDATE"
9570 WHEN "V", "v"
9580 PRINT "VIEW UNCATALOGED CAT"
9590 CHAIN "VIEW'DIR"
9600 OTHERWISE
9610 NULL
9620 ENDCASE
9630 ENDPROC PROCESS'MENU

That's it. LIST it to disk:

LIST "PROCESS'MENU.L"

Page 55 CAPTAIN COMAL GETS ORGANIZED Page 55

PROGRAM: DOS'MENU

FINAL CONSTRUCTION

OLD MODULES REQUIRED: PAGE
NEW MODULES REQUIRED: PRESENT ' MENU, PROCESS 'MENU, UPDATED, DUAL' CHOICE,

FILE'EXISTS, CHOICES, SEE, SHIFT'WAIT

Now we're ready to construct our DOS'MENU program.

But, wait. Did you notice how a program is CHAINed:

CHAIN "VIEW'DIR"

That gives us a problem. We save our programs with their version number
after the name. Thus VIEW'DIR would not be found (it is on disk as
VIEW'DIR4 or something). Yes, this is true. But, we are only in the
construction stage. The diskette we are using now can be referred to as
a WORKING DISK. Once a program is tested and works, save it as usual,
but save it an additional time on a final diskette without the program
version number attached (but keep the top three lines in the program of
course).

Now lets start with the main program:

NEW
AUTO

0010 IIDELETE "0: DOS 'MENU1"
0020 II(C)l984 COMAL USERS GROUP, U.S.A., LIMITED
0030 IISAVE "0: DOS'MENU3"
0040 DIM CHOICES OF 1
0050 DIM TEXT$ OF 40
0060 REPEAT
0070 PRESENT'MENU
0080 PROCESS'MENU
0090 UNTIL DONE
0100 II

You may make line 100 an END statement if you wish.

That is it. A very simple program. The rest, of course, is the modules
already on disk. Finish the program construction:

Page 56 CAPTAIN COMAL GETS ORGANIZED Page 56

ENTER "PRESENT'MENU.L"
RENLM
ENTER "PROCESS'MENU.L"
RENlftl
ENTER "UPDATED.L"
RENLM
ENTER II DUAL , CHOICE. L II
RENlII
ENTER "FILE'EXISTS.L"
RENUM
ENTER II PAGE. L II
RENtJ1
ENTER "CHOICES.L"
RENtJ1
ENTER II SEE. L II
RENlftl
ENTER "SHIFT'WAIT.L"
RENtJ1

The program is now complete. SAVE it in the usual way, using the first
three program lines.

PROGRAM: STARTUP
================
PRELIMINARY WORK

Next we will construct the STARTUP program. It creates files our
programs depend on.

STARTUP will create a dummy disk directory file (START'DIRECTORY) so
that the system is not empty. It also creates the DISK'ID file, starting
it with the dummy ID of "00" (START'DISKIDS). It also creates the status
file for the MASTER FILE (START'ALL'STATUS) and starts the MASTER FILE
itself with one dummy record (START'ALLFILES).

One important thing STARTUP will do is FORMAT a disk for the user. All
the user needs is a blank disk, and the program will format it properly
for him. Procedures FORMAT I MASTER and FORMAT I IT take care of this.

The program also shares PAGE, MENU, and INTRO modules as we previously
stored on disk.

Page 57 CAPTAIN COMAL GETS ORGANIZED Page 57

MODULE: FORMAT'MASTER

PURPOSE: Asks the user if the MASTER DISK needs to be formatted.
MODULE REQUIRED: FORMAT'IT

This is the first of two modules that take care of formatting a disk.

NEW
AUTO 9000

9000 II
9010 PROC FORMAT'MASTER CLOSED
9020 PRINT "TO PROPERLY USE THIS SYSTEM YOU SHOULD"
9030 PRINT "HAVE A MASTER DIRECTORY DISK. THIS DISK"
9040 PRINT "WILL BE USED TO STORE THE DIRECTORIES"
9050 PRINT "OF ALL YOUR OTHER DISKS."
9060 PRINT
9070 PRINT "IT IS BEST IF YOU HAVE A NEW BLANK DISK"
9080 PRINT "TO USE. THE SYSTEM CAN THE FORMAT IT"
9090 PRINT "FOR YOU AS THE MASTER DISK."
9100 PRINT
9110 PRINT "IF YOU ALREADY HAVE A FORMATTED MASTER"
9120 PRINT "DISK, YOU MAY REPLY NO TO THE NEXT"
9130 PRINT "QUESTION."
9140 PRINT
9150 PRINT "WOULD YOU LIKE THE SYSTEM TO FORMAT A"
9160 PRINT "MASTER DISK FOR YOU (YIN): "
9170 REPEAT
9180 DISK'OK:=TRUE
9190 CASE KEY$ OF
9200 WHEN "Y","y"
9210 FORMAT'IT
9220 WHEN "N", "n"
9230 NULL
9240 OTHERWISE
9250 DISK'OK:=FALSE
9260 ENOCASE
9270 UNTIL DISK'OK
9280 ENDPROC FORMAT'MASTER

Done. List it to disk: LIST "FORMAT'MASTER.L"

Page 58 CAPTAIN COMAL GETS ORGANIZED Page 58

MODULE: FORMAT'IT

PURPOSE: Format a MASTER DISK after verifying that this is really wanted

Now we'll write the procedure that actually formats the disk. Since this
will completely erase the disk, we must make sure this is what the user
wants (give a chance to change his mind).

NEW
AUTO 9000

9000 II
9010 PROC FORMAT'IT CLOSED
9020 DIM S$ OF 2, IDS OF 2
9030 REPEAT
9040 S$:=1/00"
9050 PRINT
9060 PRINT 1/»» FORMAT A MASTER DISK ««"
9070 PRINT
9080 PRINT "ENTER Q FOR QUIT TO SKIP THIS"
9090 PRINT "0R ENTER F TO FORMAT THE DISKI/
9100 PRINT CHR$(18)+"INSERT DISK TO BE FORMATTED INTO DRIVE 0"+

add this to the above line: CHR$(146),

Notice that we require an F to format, not just the RETURN key. This is
to help verify that it is not a mistake. Also, you may recall that
CHR$(18) is REVERSE ON and that CHR$(146) ;s REVERSE OFF.

9110 REPEAT
9120 FORMAT'OK:=TRUE
9130 CASE KEY$ OF
9140 WHEN "F","f"
9150 INPUT "ENTER 2 CHARACTER ID FOR MASTER: II ID$
9160 ID$:=ID$+"00"
9170 PASS "N0:MASTER DISK,"+ID$(1:2)

The above two lines make sure that the ID is two characters. If less
than two characters are entered, it merely adds two zero characters to
the reply, then uses the first two characters of ID$. Yes, I know that
IDS is only dimensioned to 2. But this way, it is clear exactly what we
are doing.

9180 PRINT II»» NOW FORMATTING DISK - PLEASE WAIT",

Page 59 CAPTAIN COMAL GETS ORGANIZED Page 59

9190 S$:=STATUS$

By requesting the STATUS right away, the program must wait for the
previous disk operation to end. This is an easy way to have the program
pause until the formatting is done. In addition, we can make sure that
the status was "00" for no error. If not, we report an error and try
agai n.

9200 PRINT
9210 IF S$<>"00" THEN PRINT CHR$(18)+"»> DISK ERROR «~<"
9220 WHEN "Q","q"
9230 NULL
9240 OTHERWISE
9250 FORMAT'OK:=FALSE
9260 ENDCASE
9270 UNTIL FORMAT'OK
9280 UNTIL S$="00"
9290 ENDPROC FORMAT'IT

Done. List it to disk: LIST "FORMAT'IT.L"

MODULE: START'ALLFILES

PURPOSE: Create the MASTER FILE.

Now lets write our four file creating modules. Start with the one to
create the MASTER FILE:

NEW
AUTO 9000

9000 II
9010 PROC START'ALLFILES
9020 ALL'FILE:=5
9030 DELETE MASTER$+"ALLFILES.DATA"
9040 OPEN FILE ALL I FILE, MASTER$+"ALLFILES. DATA", WRITE
9050 FILE'NAME$:="DlJtf1Y 00P"
9060 WRITE FILE ALL'FILE: FILE'NAME$
9070 CLOSE FILE ALL'FILE
9080 ENDPROC START'ALLFILES

Done. List it to disk: LIST "START'ALLFILES.L"

Page 60 CAPTAIN COMAL GETS ORGANIZED Page 60

MODULE: START'ALL'STATUS

PURPOSE: Create status file that tells if the system has been updated.

Next, let's do the module to create the status file specifying whether
the system has been updated or not. Since at start up time, it has not
been updated, we set it to FALSE to start with.

NEW
AUTO 9000

9000 II
9010 PROC START'ALL'STATUS
9020 ALL ' FILE:=5
9030 DELETE "0: ALLFILES. STATUS II
9040 OPEN FILE ALL'FILE, 10:ALLFILES.STATUS",WRITE
9050 UPDATED:=FALSE
9060 WRITE FILE ALL'FILE: UPDATED
9070 CLOSE FILE ALL'FILE
9080 ENDPROC START'ALL'STATUS

Done. List to disk: LIST "START'ALL 'STATUS.L"

MODULE: START'DIRECTORY

PURPOSE: Create a dummy directory file.

Next, the module that will create a dummy directory file, so that the
system is not empty.

NEW
AUTO 9000

9000 II
9010 PROC START I DIRECTORY
9020 DIR ' FILE:=8
9030 DELETE MASTERS+"DIRECTORY .. nil

This line deletes ALL files that start with DIRECTORY .. and have two
other characters after that (all directory files in this system meet
that criteria).

Page 61 CAPTAIN COMAL GETS ORGANIZED Page 61

9040 OPEN FILE DIR' FILE, MASTER$+"DIRECTORY .. 00", WRITE
9050 DISK'NAME$:="DlM'1Y u

9060 DATES:="DlXft'IY"
9070 NLt1:=1
9080 FILE'NAME$:="DLtft1Y"
9090 WRITE FILE DIR'FILE: DISK'IDS,NlJt1,DISK'NAMES,NlJt1,DATES
9100 INTEGER#:=129
9110 WRITE FILE DIR'FILE: FILE'NAMES,INTEGER#,INTEGER#
9120 CLOSE FILE DIR'FILE
9130 ENDPROC START'DIRECTORY

Done. List it to disk: LIST "START'DIRECTORY.L"

MODULE: START'DISKIDS

PURPOSE: Create a dummy disk id file.

This final module creates the disk ID file. It starts with dummy id 00.

NEW
AUTO 9000

9000 II
9010 PROC START'DISKIDS
9020 ID'FILE:=9
9030 DELETE MASTERS+"DISK'IDS.DATA"
9040 OPEN FILE ID'FILE,MASTER$+"DISK'IDS.DATA",WRITE
9050 DISK'ID$:="00"
9050 WRITE FILE ID'FILE: DISK'ID$
9060 CLOSE FILE ID'FILE
9070 ENDPROC START'DISKIDS

Done. Li st it to di sk: LIST "START' DISKIDS. L"

================
PROGRAM: STARTUP
================

FINAL CONSTRUCTION

OLD MODULES REQUIRED: INTRO, PAGE, MENU
NEW MODULES REQUIRED: START'DISKIDS, START 'DIRECTORY, START 'ALL 'STATUS,

START'ALLFILES, FORMAT 'MASTER, FORMAT'IT

Page 62 CAPTAIN COMAL GETS ORGANIZED Page 62

All the necessary modules are now on the disk. We can begin our program
constructi on:

NEW
AUTO

0010 !!DELETE "0:STARTUP1"
0~20 //(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 !!SAVE "0:STARTUP3"
0040 INTRO("SYSTEM STARTUP - CREATE FILES")
0050 DIM DISK'NAME$ OF 16, DISK'ID$ OF 2
0060 DIM MASTERS OF 2, REPLY$ OF 1
0070 DIM FILE'NAME$ OF 19, DATE$ OF 6
0080 MASTER$:="0: II
0090 START'ALL'STATUS

We call START'ALL'STATUS now because it writes its file on the DOS MENU
PROGRAM DISK which is still in drive 0.

0100 FORMAT'MASTER
0110 INPUT CHR$(18)+"INSERT MASTER DIRECTORY DISK IN DRIVE 0:": REPLY$
0120 PRINT "OK II
0130 SIART'DISKIDS
0140 START'DIRECTORY
0150 START'ALLFILES
0160 MENU

That's the program. Now finish the construction by MERGING in the
modules needed from disk:

ENTER "START'DISKIDS.L"
RENlJt1
ENTER IISTART'DIRECTORY.L"
RENlJt1
ENTER "START'ALL'STATUS.L"
RENlJt1
ENTER "START'ALLFILES.L"
RENlJt1
ENTER "INTRO.L"
RENlJt1
ENTER "PAGE. L"
RENlJt1
ENTER "MENU.L"
RENlJt1
ENTER "FORMAT'MASTER.L II

RENlJt1

Page 63 CAPTAIN COMAL GETS ORGANIZED Page 63

ENTER "FORMAT'IT.LII
RENLft

Program construction is now complete. Save the program on your disk (you
know how to do it).

=====================
PROGRAM: MASTER I MAKER
--

PRELIMINARY WORK

The appropriate program to construct next is the program that creates a
MASTER FILE from all the directory files on the MASTER DIRECTORY DISK.

The program will first sort the DISK 10 file and then add directories to
the MASTER FILE in sorted order. To do this we will have READ I IDS,
SORT' IDS, and WRITE'SORTED modules. And we will use the three QUICKSORT
modules taken from the C64 COMAL SYSTEM DISK. We will also modify MENU2
into MENU3 (the last of the MENUs). SET'UPDATED remains the same as
already on disk. We also will use INTRO, PAGE, and DUAL'DRIVE unchanged
from disk. We will add a module to request the MASTER DISK be inserted
in the drive (INIT). Also we will need to add modules to process the
MASTER FILE (PROCESS'MASTER) and add a directory to the MASTER FILE
(ADD'DIRECTORY). Let's begin.

MODULE: INIT

PURPOSE: Sets the drive to use for MASTERS and requests the MASTER DISK
MODULE REQUIRED: DUAL'DRIVE

Let's start with the INIT module. It will be used by all the rest of the
OMS programs. It checks if a dual drive is being used, then asks the
user to insert the MASTER DIRECTORY DISK in the appropriate drive.

NEW
AUTO 9000

9000 II
9010 PROC INIT(REF MASTER$) CLOSED

INIT uses MASTER$ as a parameter in reference so that the main program
is informed of what the value of MASTERS is.

9020 DIM CS OF 1

Page 64 CAPTAIN COMAL GETS ORGANIZED Page 64

9030 MASTERS: =110: II
9040 IF DUAL 'DRIVE THEN MASTERS: ="1: II
9050 INPUT CHRS(18)+"INSERT MASTER DIRECTOY DISK IN DRIVE II+MASTERS:CS;
9060 PRINI 1I0K"
9070 ENDPROC INn

Done. List it to disk: LIST "INIT.LII

MODULE: MENU3

PURPOSE: Request DOS MENU PROGRAM DISK and update the status file.
MODULE REQUIRED: SET'UPDATED

We will simply change one line in MENU2 (plus change its name to MENU3)
and this module is done.

NEW
ENTER IIMENU2.LII

LIST

9000 II
9010 PROC MENU2(FLAG) CLOSED
9020 DIM CS OF 1
9030 INPUT CHRS(18)+IIINSERT DOS MENU PROGRAM DISK IN DRIVE 0: II: CS;
9040 PRINT "OK"+CHRS(146)+" LOADING MAIN MENU NOW ... II
9050 IF FLAG THEN SET'UPDATED(TRUE)
9060 CHAIN 110:DOS'MENU II
9070 ENDPROC MENU

After the MASTER FILE is created, we have to set the status file to
FALSE, that no update has taken place since the MASTER FILE was created.
Thus we merely change line 9050 to:

9050 SET'UPDATED(FLAG)

Now change the name in the HEADER and the ENDPROC, then LIST to disk:

9010 PROC MENU3(FLAG) CLOSED
9070 ENDPRC MENU3
LIST "MENU3.L"

Page 65 CAPTAIN COMAL GETS ORGANIZED Page 65

MODULE: READ'IDS

PURPOSE: Read the disk IDs from the file into an array.

NEW
AUTO 9000

9000 II
9010 PROC READ'IDS
9020 PRINT "READING DISK ID FILE"
9030 ID'FILE:=9
9040 OPEN FILE ID'FILE,MASTER$+"DISK'IDS.DATA",READ
9050 COUNT:=0
9060 WHILE NOT EOF(ID'FILED) AND COUNT<MAX'NUM'DISKS DO
9070 COUNT: +1
9080 READ FILE ID'FILE: ID$(COUNT)
9090 ENDWHILE
9100 CLOSE FILE ID'FILE
9110 ENDPROC READ'IDS

Done. List it to disk: LIST "READ'IDS.L"

MODULE: SORT'IDS

PURPOSE: Sort the IDs in the array.
MODULES REQUIRED: three QUICKSORT modules

NEW
AUTO 9000

9000 II
9010 PROC SORT'IDS
9020 PRINT "SORTING DISK IDS"
9030 QUICKSORT(ID$,I,COUNT,2)

QUICKSORT will do all the sorting for us. We merely tell it the array
name (10$), the starting record number (1), the number of records
(COUNi), and the length of the string (2).

9040 ENDPROC SORT'IDS

Page 66 CAPTAIN COMAL GETS ORGANIZED Page 66

Done. List it to disk: LIST ijSORT'IDS.Lij

MODULE: QUICKSORT

PURPOSE: Sorting utility taken from the COMAL SYSTEM DISK.

This set of three routines is on the disk that came with this book. It
is not our place to discuss how it works. Merely use it. It is LISTed to
the disk as QUICKSORT.L as you expected. This is what its three routines
look like:

NEW
ENTER ijQUICKSORT.Lij

LIST

9000 II
9010 II 3 QUICKSORT ROUTINES FOLLOW:
9020 II
9030 PROC QUICKSORT(REF A$(),LEFT',RIGHT',RECLEN) CLOSED
9040 DIM PIVOTS OF RECLEN, BUFFERS OF RECLEN
9050 PARTITION(LEFT',RIGHT',LEFT',RIGHT') II SORT AS(lEFT':RIGHT')
9060 ENDPROC QUICKSORT
9070 II
9080 PROC PARTITION(LEFT',RIGHT',I,J)
9090 PIVOT$:=A$((LEFT'+RIGHT') DIV 2) II GET MIDDLE ELEMENT AS PIVOT
9100 REPEAT II PERFORM SWAPPINGS
9110 WHILE. PIVOT$)A$(I) DO 1:+1
9120 WHILE PIVOT$<AS(J) DO J:-l
9130 IF I<=J THEN SWAP(AS(I),AS(J))j I:+1j J:-l
9140 UNTIL I>J
9150 IF LEFT'<J THEN PARTITION(LEFT',J,LEFT',J) II SORT A$(LEFT':J)
9160 IF I<RIGHT' THEN PARTITION(I,RIGHT',I,RIGHT') II SORT AS(I:RIGHT')
9170 ENDPROC PARTITION
9180 II
9190 PROC SWAP(REF AS,REF BS)
9200 BUFFER$:=A$j A$:=B$j B$:=BUFFERS
9210 ENDPROC SWAP
9220 1/
9230 II END OF QUICKSORT ROUTINES
9240 II

Page 67 CAPTAIN COMAL GETS ORGANIZED Page 67

MODULE: WRITEISORTED

PURPOSE: Write disk ID file in sorted order. Duplicate IDls are ignored.

NEW
AUTO 9000

9000 II
9010 PROC WRITEISORTED
9020 NEW IFILE:=10
9030 PRINT llWRITING NEW SORTED DISK ID FILP
9040 DELETE MASTER$+llNHJ I IDS II
9050 OPEN FILE NEWIFILE,MASTER$+llNEWIIDSU,WRITE
9060 LAST I ID$: =1111

By keeping track of what the last ID written to the file was we can
ignore any duplicate IDs.

9070 FOR X:=l TO COUNT DO
9080 IF ID$(X»LASTIID$ THEN
9090 WRITE FILE NEWIFILE: ID$(X)
9100 LAST'ID$:=ID$(X)
9110 ENDIF
9120 ENDFOR X
9130 CLOSE FILE NEWIFILE
9140 DELETE MASTER$+llOLD I IDS. DATA II
9150 PASS "Rll+MASTER$+1I0LDIIDS.DATA=DISK IIDS.DATA II

9160 PASS llR"+MASTER$+I'DISKI IDS. DATA=NEW ' IDS II

The above three lines get rid of the old I backup I ID file, then rename
the current ID file to be the old file, then rename the new ID file as
the current file.

9170 ENDPROC WRITE I SORTED

Done. Li st it to di sk: LIST II WRITE I SORTED. L II

Page 68 CAPTAIN COMAL GETS ORGANIZED Page 68

MODULE: PROCESS'MASTER

PURPOSE: Add each directories files. Use disk ID file for directory IDs.
MODULE REQUIRED: ADD'DIRECTORY

NEW
AUTO 9000

9000 II
9010 PROC PROCESS'MASTER
9020 ID'FILE:=9; ALL'FILE:=3
9030 DELETE MASTER$+"ALLFILES.DATA"
9040 OPEN FILE ALL' FILE, MASTER$+"ALLFILES. DATA", WRITE
9050 OPEN FILE 10' FILE, MASTERS+"DISK ' IDS. DATA", READ
9060 WHILE NOT EOF(ID'FILE) DO
9070 READ FILE ID'FILE: ADD'IDS
9080 ADD'DIRECTORY(ADD'IDS,SHOW'DIR)

The variable SHOW'DIR is set in the main program. If it is TRUE then the
file names in each directory wil be printed as they are added.

9090 ENDWHILE
9100 CLOSE FILE ID'FILE
9110 CLOSE FILE ALL'FILE
9120 ENDPROC PROCESS'MASTER

Done. List it to disk: LIST "PROCESS'MASTER.L"

MODULE: ADD'DIRECTORY

PURPOSE: Adds the files into the MASTER FILE. Prints them as it goes.

NEW
AUTO 9000

9000 II
9010 PROC ADD'DIRECTORY(IDS,SHOW)
9020 DIR'FILE:=8
9030 PRINT "ADDING DIRECTORY .. ";IDS
9040 OPEN FILE DIR'FILE,MASTERS+"DIRECTORY .. "+IDS,READ
9050 READ FILE DIR'FILE: DISK'IDS,X,DUMMYS,X,DUMMYS

Page 69 CAPTAIN COMAL GETS ORGANIZED Page 69

We can just skip over the summary information stored at the beginning of
the file.

9060 WHILE NOT EOF(DIR'FILE} DO
9070 READ FILE DIR'FILE: FILE'NAME$,FILE'TYPE#,BLOCK#
9080 FILE ' NAME$(1:19}:=FILE ' NAME$

This makes sure that the string is 19 characters long. COMAL puts in
spaces at the end to make it 19 characters.

9090 FILE'NAME$(17:18}:=DISK'ID$

The disk 10 comes right after the 16 characters reserved for the file
name.

9100 FILE 'NAME$(19}:=TYPE$(FILE 'TYPE#}

We tack on the file type as a one letter string in case future expansion
to this system needs this information from the master file. We use a
string array (TYPES) for this purpose. It is set up in the beginning of
the program.

9110 WRITE FILE ALL'FILE: FILE'NAME$
9120 IF SHOW THEN PRINT FILE'NAME$
9130 ENDWHILE
9140 CLOSE FILE DIR'FILE 9150 IF SHOW THEN PRINT 11 __________________________________ 11

9160 ENDPROC ADD'DIRECTORY

Done. LIST it to disk: LIST IIADD'DIRECTORY.L II

=====================
PROGRAM: MASTER'MAKER
=====================

FINAL CONSTRUCTION

OLD MODULES: INTRO, PAGE, DUAL'DRIVE, SET'UPDATED
MODIFIED MODULES: MENU3 (from MENU2)
NEW MODULES: PROCESS I MASTER, ADD I DIRECTORY, INIT, READ I IDS, SORT I IDS,

WRITE'SORTED, three QUICKSORT modules

All the needed modules are now on disk. We can write the program and
then MERGE in the modules.

NEW

Page 70 CAPTAIN COMAL GETS ORGANIZED Page 70

AUTO

0010 IIDELETE "a:MASTER'MAKERl u

0020 //(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE "0: MASTER' MAKER3"
0040 INTRO("MAKE A NEW MASTER FILE OF ALL FILES")
0050 MAX'Nl~'DISKS:~140j SHOW'DIR:=TRUE
0060 DIM ID$(l:MAX'NUM'DISKS) OF 2
0070 DIM LAST'ID$ OF 2
0080 DIM DISK'ID$ OF 2, FILE'NAME$ OF 19, TYPE$(129:132) OF 1
0090 DIM DUMMY$ OF I, MASTER$ OF 2, ADD'ID$ OF 2
0100 TYPE$(129):="S" j TYPE$(130):~"P"j TYPE$(131):="U"j TYPE$(132):="R"
0110 INIT(MASTER$)
0120 READ'IDS
0130 SORT' IDS
0140 WRITE'SORTED
0150 PROCESS'MASTER
0160 MENU3(FALSE)

That's the program. Now merely MERGE in the modules needed and the
construction is complete:

ENTER "PROCESS'MASTER.L"
RENUM
ENTER "ADD'DIRECTORY.L"
RENUM
ENTER "INTRO.L"
RENUM
ENTER "PAGE.L It
RENUM
ENTER "INIT. L"
RENUM
ENTER ItDUAL'DRIVE.L"
RENUM
ENTER "MENU3.L"
RENLtl
ENTER "SET'UPDATED.L"
RE.NUM
ENTER "READ/IDS.L"
RENUM
ENfER "SORT'IDS.L"
RENUM
ENTER "WRITE'SORTED.LIt
RENUM
ENTER "QUICKSORT.L"
RENUM

Page 71 CAPTAIN COMAL GETS ORGANIZED Page 71

The program construction is now complete. Save it to disk. You know how.

==================
PROGRAM: PRINT'DIR
==================

PRELIMINARY WORK

This program will print the directory of any disk cataloged on the
MASTER DIRECTORY DISK.

It will be able to print the directory in a long list (PRINT'DIR'REG) or
as a multi-column list with many useful applications {PRINT'DIR'LABEL}.

We can use many modules already on the disk unchanged: INTRO, INIT,
PRINTER, PAGE, SCREEN, MENU, DUAL 'DRIVE, and FILE'EXISTS. Now, you may
see some benefits to modular programming. And in addition, PRINT'DIR'REG
is adapted from READ'DIR, and PRINT'DIR'LABEL is taken from a program
from COMAL TODAY 11 and COMMODORE MAGAZINE. Portability benefits
continue.

We then only need to add a module to request what type of directory is
needed (TYPE'OF'DIR), two that print the directories (PRINT'ALL and
PRINT'IT), and a module to get the directory from the MASTER DIRECTORY
DISK (GET'DIR).

Let's begin with the module to get the directory.

MODUlE: GET'DIR

PURPOSE: Gets a disks directory from the MASTER DIRECTORY DISK.

NEW
AUTO 9000

9000 II
9010 PROC GET'DIR{NAMES,REF D$(},REF F'TYPEI(},REF F'BLOCKSI,REF COUNT)

Notice how entire arrays can be passed as parameters in reference.

9020 DIR'FILE:=8
9030 OPEN FILE DIR'FILE,NAME$,READ
9040 READ FILE DIR'FILE: DISK'ID$
9050 READ FILE DIR'FILE: BLOCKS'FREE

Page 72 CAPTAIN COMAL GETS ORGANIZED Page 72

9060 READ FILE DIR'FILE: OISK'NAME$
9070 READ FIL[OIR'FILE: COUNT
9080 READ FILE DIR'FILE: DATES
90913 FOR X:=l TO COUNT DO

rhe disk's summary told us how many files there were (COUNT). We now use
this information to read that many file enteries.

91130 READ FILE DIR'FILE: D$(X),F'TYPE#(X),F'BLOCKS#(X)
9110 ENDFOR X
9120 CLOSE FILE OIR'FILE
9130 ENDPROC GET'DIR

Done. List it to disk: LIST "GET'OIR.L"

MODULE: TYPE'OF'DIR

PURPOSE: Asks what type of directory is needed.

NEW
AUTO 9000

9000 II
9010 PROC TYPE'OF'OIR(REF LABELS,REF NUM'COLS,REF NL~'ROWS) CLOSED
9020 DIM REPLY$ OF 1
9030 INPUT "MULTI-COLUMN DIRECTORY (YIN): ": REPLY$
9040 IF REPLY$ IN "Yy" THEN
9050 LABELS:=TRUE
9060 INPUT "HOW MANY COLUMNS WIDE:2[LEFT]": NUM'COLS

Hit the CURSOR LEFT key in place of [LEFT]

9070 INPUT "HOW MANY LINES PER PAGE:8[LEFTJ": NUM'ROWS
9080 ELSE
9090 LABELS:=FALSEj NUM'COLS:=lj NUM'ROWS:=0
9100 ENDIF
9110 ENDPROC TYPE'OF'DIR

Done. LIST it to disk: LIST "TYPE'OF'DIR.L"

Page 13 CAPTAIN COMAL GETS ORGANIZED Page 73

MODULE: PRINTIDIRIREG

PURPOSE: Prints a regular single column directory.

NEW
AUTO 9000

9000 II
9010 PROC PRINT1DIR1REG(REF D$(),REF F1TYPE/(),REF FIBLOCKS/(),REF

add this to end of above line: COUNT)
9020 PRINT IIDISK: II j DISK 1NAME$j IIID: ll jDISK 1ID$
9030 PRINT
9040 PRINT IINlPI FILE NAME TYP BLOCKS II
9050 PRINT 11--- ___________________ ------11
9060 FOR X:=l TO COUNT DO
9070 PRINT USING 11//111: Xj
9080 PRINT D$(X),TAB(22),TYPE$(F 1TYPE/(X))j
9090 PRINT USING 11##/11: FIBLOCKS#(X)
9100 END FOR X
9110 PRINT COUNT; II FILES ANDlljBLOCKSIFREEjllBLOCKS FREE II
9120 ENDPROC PRINTIDIRIREG

PURPOSE: Prints a multi-column directory.

NEW
AUTO 9000

9000 II
9010 PROC PRINT1DIRILABEL(REF D$(),START,NlPI1COLS,NUMIROWS,REF

add this to end of above line: FILE I COUNT)
9020 START:-1
9030 D$(0}:=II»II+DISK1ID$+1I II+DATE$+II II+DISK 1ID$+II«1I
9040 FOR ROW: =0 TO NUMIROWS-1 DO
9050 FOR COL:=0 TO NUM1COLS-l DO
9060 THIS10NE:=START+(COL*NUMIROWS)+ROW
9070 IF THIS10NE<=FILE1COUNT THEN PRINT TAB(1+(17*COL)),D$(THIS 10NE),
9080 ENDFOR COL

Page 74 CAPTAIN COMAL GETS ORGANIZED Page 74

9090 PRINT
9100 ENDFOR ROW
9110 PRINT

The PRINT gives a blank line between 'pages'. You may wish to chage it
to issue a form feed to your printer: PRINT CHRS(12),.

9120 START:+(NLtl'COLS*NlJt1'ROWS)
9130 IF FILE'COUNT>=START THEN
9140 OS(START-1):=DISK'IOS+" CONTINUED "+OISK'IOS

This privides a continuation title on the next page. It overwrites the
last file name printed. The next page goes back 1 file (see line 9020)
to pick up this title.

9150 PRINT' DIR' LABEL (D$, START, NUW COLS, NlJt1' ROWS, FILE' COUNT)

This is a recursive call. It will keep calling itself until all the file
names are printed.

9160 ENOIF
91J0 ENUPROC PRINT'DIR'LABEL

Done. List it to disk: LIST "PRINT'OIR'LABEL.Lij

MODULE: PRINT'IT

PURPOSE: Check if directory file exists and then calls the print routine
MOUULES REQUIRED: FILE'EXISTS, GET'DIR, PRINT'DIR'REG, PRINT'DIR'LABEL

NEW
AUTO 9000

9000 II
9010 PROC PRINT'IT(FILE'NAMES)
9020 IF FILE'EXISTS(FILE'NAMES) THEN
9030 GET'DIR(FILE'NAMES,DS,F'TYPE#,F'BLOCKS#,COUNT)
9040 IF LABELS THEN
9050 PRINT'OIR'LABEL(OS,l,NLt1'COLS,NlJr1'ROWS,COUNT)
9060 ELSE
9070 PRINT'DIR'REG(OS,F'TYPE#,F'BLOCKS#,COUNT)
9080 ENDIF
9090 ENDIF
9100 ENDPROC PRINT'IT

Page 75 CAPTAIN COMAL GETS ORGANIZED Page 75

Done. List it to disk: LIST "PRINT'IT.L"

MODULE: PRINT'ALL

PURPOSE: Cycles through all directories in the MASTER, printing them all
MODULE REQUIRED: PRINT'IT

NEW
AUTO 9000

9000 II
9010 PROC PRINT'ALL(MASTER$)
9020 ID'FILE:=9
9030 OPEN FILE IO'FILE,MASTER$+"DISK'IOS.DATA",READ
9040 WHILE NOT EOF(ID'FILE) DO
9050 READ FILE ID'FILE: 10$
9060 PRINT'IT(MASTER$+"DIRECTORY .. "+10$)
9070 ENDWHILE
9080 CLOSE FILE ID'FILE
9090 ENDPROC PRINT'ALL

Done. LIST it to disk: LIST "PRINT'ALL.L"

==================
PROGRAM: PRINT'DIR
==================
FINAL CONSTRUCTION

OLD MODULES: INTRO, INIT, PAGE, PRINTER, SCREEN, MENU, DUAL 'DRIVE,
FILE' EXISTS

NEW MODULES: PRINT' IT, PRINT'ALL, PRINT'DIR'LABEL, PRINT'DIR'REG,
GET'DIR, TYPE'OF'DIR

All the modules needed are now on the disk. Now we just enter the main
program, then MERGE in the modules.

NEW
AUTO

0010 IIDELETE 10:PRINT'DIR1"
0020 II(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 II SAVE 10:PRINT'DIR3"
0040 INTRO("PRINT DISK DIRECTORY")

Page 76 CAPTAIN COMAL GETS ORGANIZED Page 76

0eS0 MAX'FILES:=144
0060 DIM D$(0:MAX'FILES) OF 16, F'TYPE#(l:MAX'FILES), F'BLOCKS#(l:

add this to above line: MAX'FILES)

Note that the array 0$, for the file names on the disk starts at 0
instead of 1. This allows for the title record added in the
PRINT'DIR'LABEL module.

0070 DIM DISK'ID$ OF 2, MASTERS OF 2
0080 DIM DISK'NAME$ OF 16, DATE$ OF 6, FIND'ID$ OF 2
0090 DIM 10$ OF 2
0100 DIM TYPE$(129:132) OF 3
0110 TYPE$(129):="SEQ"; TYPES(130):="PRG"
0120 TYPE$(131):="USR"; TYPE$(132):="REL"
0130 INIT(MASTER$)
0140 PRINT "WHICH DISK ID TO PRINT (OR * FOR ALL):"
0150 INPUT FIND'IDS
0160 TYPE'OF'DIR(LABELS,NUM'COLS,NUM'ROWS)
0110 IF PRINTER THEN SELECT OUTPUT "LP:"
0180 IF FIND'ID$="*" THEN
0190 PRINT'ALL(MASTERS)
0200 ELSE
0210 PRINT' IT (MASTERS+ "DIRECTORY .. "+FIND' IDS)
0220 ENDIF
0230 SCREEN
0240 MENU

Now just MERGE in the modules already on disk:

ENTER "PRINT'IT.L"
RENlA'1
ENTER "INTRO.L"
RENlA'1
ENTER "INIT. L"
RENlA'1
ENTER "PRINTER.L"
RENlt1
ENTER "PAGE.L"
RENLt1
ENTER "SCREEN.L"
RENUM
ENTER "MENU.L"
RENLt1
ENTER "DUAL 'DRIVE. L"
RENUM
ENTER "PRINT' ALL. L"

Page 17 CAPTAIN COMAL GETS ORGANIZED Page 77

RENLt1
ENTER "FILE'EXISTS.L"
RENLt1
ENTER "PRINT'DIR'REG.L"
RENLt1
ENTER "PRINT I DIR I LABEL. L II
RENlJt1
ENTER "GET'DIR.L"
RENLt1
ENTER "TYPE'OF'DIR.L"
RENlJt1

That's it. Program construction is complete. Now just save it to disk.

==================
PROGRAM: PRINT'IDS
==================

PRELIMINARY WORK

This program will print all the disk IDs currently in use. It will print
them as a chart (PRINT'ID'CHART) or in a list (PRINT'ID'LIST).

We only need to add a module to find out what whether a LIST or a CHART
is desired (TYPE'OF'LIST), a module to set up a line for the CHART
(FIX'LINE) and a module to skip any IDs not in our CHART listing
(SKIP'IDS).

Let's begin with the module to find what kind of output is wanted:

MODULE: TYPE'OF'LIST

PURPOSE: Find out whether a LIST or a CHART is wanted.
MODULES REQUIRED: PRINT I 10 1 CHART, PRINT'ID'LIST

NEW
AUTO 9000

9000 /I
9010 PROC TYPE'OF'LIST
9020 INPUT "LIST OR CHART (L/C): ": REPLY$
9030 IF REPLY$="C" OR REPLY$=lc" THEN
9040 INPUT "40 COl LIMIT?II: REPLY$
9050 IF REPLY$ IN !lyy" THEN
9060 PRINT ' ID'CHART(33,31)

Page 78 CAPTAIN COMAL GETS ORGANIZED Page 78

We pass two parameters to the PRINT'ID'CHART procedure. The first
parameter is the ordinal value of the starting character for the row.
rhe other parameter specifies how many characters more to include in the
row (twice as many when 40 columns is not a limit).

9070 PRINT'ID'CHART(65,31)
9080 ELSE
9090 PRINT'ID'CHART(33,62)
9100 ENDIF
9110 ELSE
9120 PRINT'ID'LIST
9130 ENDIF
9140 ENDPROC TYPE'OF'LIST

Done. LIST it to di sk: LIST "TYPE I OF I LIST. L II

MODULE: PRINT'ID'LIST

PURPOSE: Print the disk IDs in a long list.

NEW
AUTO 9000

9000 II
9010 PROC PRINT'ID'LIST
9020 FOR X:=l TO COUNT DO PRINT ID$(X)
9030 ENDPROC PRINT'ID'LIST

Done. LIST it to disk: LIST "PRINT'ID'LIST.L"

MODULE: PRINT'ID'CHART

PURPOSE: Print disk IDs in a chart, allowing for either 40 or 80 columns
MODULES REQUIRED: SKIP'IDS, FIX'LINE

NEW
AUTO 9000

9000 II
9010 PROC PRINTtID'CHART(COL'START,ADD'COL)

Page 79 CAPTAIN COMAL GETS ORGANIZED Page 79

For parameters, we use the ordinal value of the starting ID (the column
in the chart) and the number of additional columns (characters) to print
across.

9020 CURRENT I 10: =1
9030 IF ORD(ID$(CURRENT ' ID))<33 THEN SKIP'IDS
9040 HEADING$:=" II

9050 FOR X=COL'START TO COL'START+ADD'COL DO HEADING$:=HEADING$+CHR$(X)

HEADING$ is used as a divider line between rows. It is an informative
line rather than just dashes -----.

9060 FOR ROW:=33 TO 95 DO
9070 IF NOT ((ROW-33) MOD 5) THEN PRINT HEADING$

This prints the dividing HEADING line after every 5 lines in the chart.
Change the 5 to another number to make the HEADING line more or less
frequent.

9080 LINES:=CHR$(ROW) II START OF NEXT CHART LINE IS ITS 10 CHARACTER
9090 FOR COLS:=2 TO ADD'COL+2 DO LINE$(COLS):=FILLER$

Builds the next chart line with the default of no IDs used in that line.
FILLER$ can vary depending on whether the output is on the screen or the
printer, or you may use other criteria as a modification.

9100 IF CURRENT'ID<=COUNT THEN
9110 IF ROW=ORD(ID$(CURRENT'ID)) THEN FIX'LINE

If an 10 is used in the line, FIX'LINE is called to plot it into the
1 i ne.

9120 ENDIF
9130 PRINT LINE$
9140 ENDFOR ROW
9150 ENDPROC PRINT'ID'CHART

Done. LIST it to disk: LIST "PRINT'IO'CHART.L"

MODUlE: FIX'LINE

PURPOSE: Fix next chart line to include a # at the spot of an 10 in use

NEW

Page 80 CAPTAIN COMAL GETS ORGANIZED Page 80

AUTO 9000

9000 II
9010 PROC FIX'LINE
9020 ORD2:=ORD(ID$(CURRENT ' ID}(2}}

This shows how to take a substring of an element in a string array. We
are looking only at the second character of the current 10$.

9030 IF ORD2>=COL 'START AND ORD2<=COL 'START+ADD ' COL THEN
9040 LINES (2+0RD2-COL I START): = II#"
9050 ENDIF
9060 CURRENT'ID:+1
9070 IF CURRENT'ID<=COUNT THEN
9080 IF ORD(ID$(CURRENT'ID))=ROW THEN FIX'LINE

Thi s 1 i ne keeps calli ng FIX I LINE as 10n9 as another 10 starts with the
same character (recursive).

9090 ENDIF
9100 ENPROC FIX'LINE

Done. LIST it to disk: LIST HFIX'LINE.LII

MODULE: SKIP'IDS

PURPOSE: Skips over any IDs not included in the range of our 10 CHART.

NEW
AUTO 9000

9000 II
9010 PROC SKIP'IDS
9020 CURRENT I 10: +1
9030 IF CURRENT'ID<=COUNT THEN
9040 IF ORD(ID$(CURRENT'ID})<33 THEN SKIP'IDS

This keeps calling itself as long as there may be more IDs to skip
(recursi ve) .

9050 ENDIF
9060 ENDPROC SKIP'IDS

Done. LIST it to disk: LIST IISKIP'1OS.L II

Page 81 CAPTAIN COMAL GETS ORGANIZED Page 81

==================
PROGRAM: PRINT'IDS
==================
FINAL CONSTRUCTION

OLD MODULES: READ I IDS, SORT I IDS, WRITE I SORTED, INTRO, PAGE, INIT,
DUAL I DRIVE, PRINTER, SCREEN, MENU, three QUICKSORT modules

NEW MODULES: PRINT'ID'CHART, PRINT'ID'LIST, SKIP'IDS, FIX'LINE

All the modules needed by the program are now on the disk. We now can
write the main program and then MERGE in the modules from disk.

NEW
AUTO

0010 IIDELETE "0: PRINT ' IDS 1 II
0020 //(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE 10:PRINT'IDS3"
0040 INTRO("PRINT LIST OR CHART OF DISK IDS IN USE")
0050 MAX'NUM 'DISKS:=140
0060 DIM ID$(l:MAX ' NUM 'DISKS) OF 2, LAST'ID$ OF 2, LINE$ OF 64
0070 DIM HEADING$ OF 64, FILLERS OF 1, REPLYS OF 1, MASTERS OF 2
0080 INIT{MASTERS)
0090 READ I IDS
0100 SORT'IDS
0110 WRITE'SORTED
0120 IF PRINTER THEN
0130 SELECT OUTPUT "LP:"
0140 FILLER$:=" II

For faster printing spaces are used. This also saves the printwheel on
daisy wheel printers.

0150 ELSE
0160 FILLER$:=":"
0170 ENDIF
0180 TYPE'OF'LIST
0190 SCREEN
0200 MENU

Now just MERGE in the modules:

ENTER "READ'IDS.L"
RENUM
ENTER "SORT'IDS.L"

Page 82 CAPTAIN COMAL GETS ORGANIZED Page 82

RENUM
ENTER "WRITE' SOR fED. L"
RENUM
ENTER "PRINT'ID'CHART.L"
RENl1-1
ENTER "PRINT' ID' LIST. L"
RENUM
ENTER "SKIP'IDS.L"
RENUM
ENTER "FIX'LINE.L"
RENUM
ENTER "INTRO.L"
RENUM
ENTER "PAGE. L II
RENUM
[NTER "INIT. L"
RENUM
ENTER "DUAL'DRIVE.L"
RENUM
ENTER "PRINTER.L"
RENUM
ENTER "SCREEN.L"
RENUM
ENTER "MENU.L"
RENUM
ENTER "QUICKSORT.L"
RENUM
ENTER "TYPE'OF'LIST.L"
RENUM

That's it. Program construction is complete. Save the program. You know
how.

==================
PROGRAM: FIND'FILE
==================

PRELIMINARY WORK

This program will search through the MASTER FILE for the file name you
spP.cify (or you can use a wild card search utilizing the * character as
with Commodore's disk operating system). The file names matching your
search name will be listed along with the ID of the disk that they are
stored on.

We will be using some modules from previous programs: MENU, SCREEN,
PRINfER, DUAL 'DRIVE, PAGE, INIT, and INTRO (these make up over half the

Page 83 CAPTAIN COMAL GETS ORGANIZED Page 83

program). We only need to write the modules that request the name to
search for (FIND'WHAT), a module to do the searching (SEARCH'PRINT), one
to print the files that match (PRINT'IT2), and a module to get a Y or N
answer. We'll be done with this program one, two, three.

MODULE: FIND'WHAT

PURPOSE: Request a name to search for. Adjusts for a * wild card search
MODULE REQUIRED: PAGE

NEW
AUTO 9000

9000 II
9010 PROC FINO'WHAT
9020 PAGE
9030 PRINT "ENTER THE NAME OF THE FILE TO FIND"
9040 PRINT "USE A * TO MEAN IGNORE REST OF THE NAME"
9050 PRINT "ENTER JUST A * TO LIST ALL FILES"
9060 PRINT
9070 INPUT "WHAT NAME TO SEARCH FOR: ": FIND' NAMES
9080 IF "*" IN FIND'NAMES THEN
9090 ENO'POS:=("*" IN FIND'NAMES)-l

If a * was included in the name, we set the length (ENO'POS) to just
before the * occurred, since we do not need to match characters from
that position on.

9100 ELSE
9110 END'POS:=16
9120 FIND' NAMES: =FIND' NAME $+ II "

File names are stored as 16 character long names. If a name is less than
16 characters, it is "padded" with spaces. The above line adds 16 spaces
to the name to make sure it is long enough in every case.

9130 ENDIF
9140 ENDPROC FIND'WHAT

Done. List it to disk: LIST "FIND'WHAT.L"

Page 84 CAPTAIN COMAl GETS ORGANIZED Page 84

MODULE: SEARCH'PRINT

PURPOSE: Searches through the MASTER FILE, printing any names that match
MODULE REQUIRED: PRINT'IT2

NEW
AUTO 9000

9000 II
9010 PROC SEARCH'PRINT
9020 ALL ' FILE:=5
9030 OPEN FILE ALL' FILE,MASTERS+"ALLFILES. DATA II , READ
9040 WHILE NOT EOF(ALL'FILE) DO
9050 READ FILE ALL'FILE: FILE'NAME$
9060 IF END 'POS=0 THEN
9070 PRINT'IT2

If the user specified a search name of only "*" then all files are to be
printed. In that case the variable END'POS was set to equal 0 - no
characters need to match. So in that case, we print every name read.

9080 ELIF FIND'NAME$(1:END'POS)=FILE 'NAME$(1:END'POS) THEN
9090 PRINT ' IT2
9100 ENDIF
9110 ENDWHILE
9120 CLOSE FILE ALL'FILE
9130 ENDPROC SEARCH'PRINT

Done. List it to disk: LIST "SEARCH'PRINT.L"

MODULE: PRINT'IT2

PURPOSE: Prints the file name just matched with the 10 of its disk

We call this module PRINT'IT2, since we already have a PRINT'IT module
in a previous program.

NEW
AUTO 9000

9000 II

Page 85 CAPTAIN COMAL GETS ORGANIZED Page 85

9010 PROC PRINT ' H2
9020 PRINT FILE 'NAME$(1:16)j"DISK: "j FILE'NAME$(17: 18)

Remember? The disk id is stored in the file name as characters 17 and
18.

9030 ENDPROC PRINT'IT2

Done. Li st it to di sk: LIST "PRINT I H2. L II

MODULE: VERIFIED

PURPOSE: Prints the prompt plus (YIN), and only accepts a Y or N answer

NEW
AUTO 9000

9000 II
9010 PROC VERIFIED(PROMPT$) CLOSED
9020 PRINT PROMPT$+" (YIN): ",
9030 REPEAT
9040 CASE KEY$ OF
9050 WHEN lIyl,"y"
9060 FOR X:=l TO LEN(PROMPT$)+7 DO PRINT CHR$(20),

This line erases the prompt from the screen. This is not useful now, but
in your future programs you may find it is just what you need.

9070 RETURN TRUE
9080 WHEN "N","n"
9090 FOR X:=l TO LEN(PROMPT$)+7 DO PRINT CHR$(20),
9100 RETURN FALSE
9110 OTHERWISE
9120 NULL
9130 ENDCASE
9140 UNTIL TRUE=FALSE II FOREVER
9150 ENDFUNC VERIFIED

Done. List it to disk: LIST "VERIFIED.L"

Page 86 CAPTAIN COMAL GETS ORGANIZED Page 86

==================
PROGRAM: FIND'FILE
==================
FINAL CONSTRUCTION

OLD MODULES: INTRO, INIT, PAGE, DUAL 'DRIVE, PRINTER, SCREEN, MENU
NEW MODULES: VERIFIED, FIND'WHAT, SEARCH'PRINT, PRINT'IT2

All the modules needed by the program are now on the disk. We just write
the main program, and then MERGE in the modules.

NEW
AUTO

0010 //DELETE "0:FIND'FILE1"
0020 //(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE "0:FIND'FILE3"
0040 INTRO("FIND WHAT DISKS CONTAIN A SPECIFIC FILE")
0050 DIM FILE'NAME$ OF 19, REPLY$ or 1, MASTER$ OF 2, FIND'NAME$ OF 16
0060 INIT(MASTER$)
0070 REPEAT
0080 FIND'WHAT
0090 IF PRINTER THEN SELECT OUTPUT "LP:"
0100 SEARCH'PRINT
0110 SCREEN
0120 UNTIL NOT VERIFIED("MORE TO FIND")
0130 MENU

That's the main program. Now just MERGE in the modules:

ENTER "FIND'WHAT.L"
RENlJt1
ENTER "SEARCH'PRINT.L"
RENlJt1
ENTER "PRINT'IT2.L"
RENlJt1
ENTER "INTRO.L"
RENlJt1
ENTER II INIT. L"
RENLt1
ENTER "PAGE. L"
RENlftt
ENTER "DUAL'DRIVE.LII
RENlftt
ENTER "PRINTER.L"

Page 87 CAPTAIN COMAL GETS ORGANIZED Page 87

RENLft1
ENTER "SCREEN.L"
RENLft1
ENTER "MENU.L"
RENLft1
ENTER IVER1F1ED.L"

That1s it. Program construction is complete. Save the program. You know
how.

PROGRAM: DELETEIDIR

PRELIMINARY WORK

This program will delete disks from the MASTER. Just specify the disk1s
1D and the program will first report the summary for the disk, and
verify that this is the correct disk to delete. This program is useful
when you remove disks from your library (involuntary sometimes - a
ruined disk).

We only will have to write one new module for the program (DELETEIIT).
All the rest of the modules will be borrowed from previous programs. You
now should begin to understand the real advantage of modular
progralTlTling.

MODUlE: DELETEIIT

PURPOSE: This module deletes a disk from the MASTER after verification
MODULE REQUIRED: FILE'EX1STS

NEW
AUTO 9000

9000 II
9010 PROC DELETE1IT{MASTERS,FILE1NAMES,REF UPDATED'FLAG, DELETE I IDS)

add this to end of above line:
9020 DIM DISKIIDS OF 2, DISK'NAMES OF 16, DATES OF 6,
9030 DIM TEMP1IDS OF 2
9040 IF FILE1EXISTS{MASTERS+FILE1NAMES) THEN
9050 DIR'FILE:=8
9060 OPEN FILE DIR'FILE,MASTERS+FILE1NAMES,READ

CLOSED
REPLYS OF 1

9070 READ FILE DIR'FILE: DISK'IDS,BLOCKS,DISK'NAMES,FILE'COUNT,DATES
9080 CLOSE FILE DIRIFILE

Page 88 CAPTAIN COMAL GETS ORGANIZED Page 88

9090 PRINT DISK'IDS;DISK'NAMES; "CATALOGED ON"; DATES
91130 PRINT FILE'COUNTj "FILES"; "WITH";BLOCKS; "BLOCKS FREE"
91113 INPUT "DELETE THIS DIRECTORY FROM MASTER?": REPLY$
9120 IF REPLYS="Y" OR REPLYS="y" THEN
91313 DELETE MASTERS+FILE'NAMES

Here we delete the directory file. Next we remove the ID from the DISK
ID file.

9140 ID'FILE:=9j NEW'FILE:=le
91513 OPEN FILE ID'FILE,MASTERS+"DISK'IDS.DATA", READ
91613 DELETE MASTERS+"NEW'IDS.DATA"
91713 OPEN FILE NEW'FILE,MASTERS+"NEW'IDS.DATA",WRITE
9180 WHILE NOT EOF(ID'FILE) DO
91913 READ FILE ID'FILE: TEMP'IDS
921313 IF TEMP'IDS<>DELETE'IDS THEN WRITE FILE NEW'FILE: TEMP'ID$
9210 E.NDWHILE
9220 CLOSE FILE ID'FILE
9230 CLOSE FILE NEW'FILE

The next three lines delete the backup 10 file, then rename the current
file to the old file, and finally rename the new file to the current
fi 1 e.

92413 DELETE MASTERS+"OLD'IDS.DATA"
9250 PASS "R"+MASTER$+"OLD'IDS.DATA=DISK'IDS.DATA"
9260 PASS "R"+MASTER$+"DISK'IDS.DATA=NEW'IDS.DATA"
9270 UPDATED'FLAG:=TRUE

You remember the updated flag of course.

9280 ENDIF
92913 ELSE
931313 PRINT FILE I NAME$; "DOES NOT EXIST"
93113 ENDIF
93213 ENDPROC DELETE I IT

Done. List it to disk: LIST "DELETE'IT.L"

Page 89 CAPTAIN COMAL GETS ORGANIZED Page 89

===================
PROGRAM: DELETE'DIR
===================
FINAL CONSTRUCTION

OLD MODULES: SET 'UPDATED, INTRO, PAGE, INIT, DUAL 'DRIVE, FILE'EXISTS,
MENU2

NEW MODULE: DELETE'IT

All the modules needed by the program are now on the disk. Next we write
the main program and MERGE in the modules.

NEW
AUTO

0010 //DELETE "0:DELETE'DIR1"
0020 //(C)1984 COMAL USERS GROUP, U.S.A., LIMITED
0030 //SAVE "0:DELETE'DIR3"
0040 INTRO("DELETE A DISK ENTRY FROM THE MASTER DISK")
0050 DIM MASTERS OF 2, ID$ OF 2
0060 UPDATED'FLAG=FALSE
0070 INIT(MASTERS}
0080 REPEAT
0090 INPUT "WHICH DISK ID TO DELETE {*=QUIT}: ": IDS
0100 IF ID$o "*" THEN DELETE' IT (MASTERS, "DIRECTORY .. "+ ID$,

add this to line above: UPDATED'FLAG,ID$)
0110 UNTIL ID$="*"
0120 MENU2(UPDATED'FLAG)

Now just MERGE in the modules:

ENTER "DELETE'IT.L"
RENLft1
ENTER "SET'UPDATED.L"
RENLft1
ENTER "INTRO.L"
RENLft1
ENTER "PAGE. L"
RENLft1
ENTER "INIT.L"
RENlf1
ENTER "DUAL'DRIVE.L"
RENlf1
ENTER "FILE'EXIST:).L"
RENLft1

Page 90 CAPTAIN COMAL GETS ORGANIZED Page 90

ENTER "MENU2.L"
RENUM

That's it. Program construction is complete. Save the program. You know
how.

PROGRAM: COMPARE'DIR
=::======:::========

PRELIMINARY WORK

This program will compare the directories of any two disks in the
MASTER. This is useful to find the one program that is different, or the
one that is the same, and all the many cases in between. A few years ago
when I needed this program I didn't have it. Now I do, and you do too.

Once again over half of the program is already written, using our old
modules. We will tailor the GET'DIR module to this program, creating
GET'DIR2. The new modules to be written are those to get the two disk
ID's (G[T'ID), get a directory and sort it (DIRECTORY and SORT'DIR),
compare two directories (COMPARE), and the modules to do the printing
of the two directories (PRINT'D0, PRINT'D1, and PRINT'BOTH).

First let's modify the GET'DIR module we wrote as part of the PRINT'DIR
program:

MODULE: GET'DIR2

PURPOSE: Gets a disks directory from the MASTER DIRECTORY DISK.

The quickest way to modify the GET'DIR module already written is to
retrieve it from disk, and then edit it:

NEW
ENTER "GET'DIR.L"

EDIT

9000 II
9010 PROC GET'DIR(NAMES,REF D$(},REF F'TYPE#(),REF F'BLOCKS#,REF COUNT)
9020 DIR'FILE:=8
9030 OPEN FILE DIR'FILE,NAME$,READ
9040 READ FILE DIR'FILE: DISK'ID$
9050 READ FILE DIR'FILE: BLOCKS'FREE

Page 91 CAPTAIN COMAL GETS ORGANIZED Page 91

9060 READ FILE DIR'FILE: DISK'NAME$
9070 READ FILE DIR'FILE: COUNT
9080 READ FILE DIR'FILE: DATE$
9090 FOR X:=l TO COUNT DO
9100 READ FILE DIR'FILE: D$(X),F'TYPE'(X),F'BLOCKS'(X)
9110 ENDFOR X
9120 CLOSE FILE DIR'FILE
9130 ENDPROC GET'DIR

Of course we must change the proc name in the header and ENDPROC. Cursor
up to line 9010 to fix the header. Then cursor back down to the ENDPROC
and add a 2 to the end of the name there too.

In the COMPARE'DIR program, we don't need to know the file type and
blocks for every file on the disk. So we will skip them. But since they
still are part of the disk files we will be reading, the way we will do
this is to "dulTITlY them out". This is strange terminology IBM mainframe
(the big million dollar computers) programmers will recognize from their
JCL coding. This is how it works: We simply change the references to the
arrays and variables we wish to skip to be the variables DUMMY$ (to skip
string variables) and DUMMY2' (to skip integer variables or arrays). We
can't use DUMMY' because a variable name can only be used once, and
DUMMY is already used for a string variable. Now start by changing the
two integer array names in the header to DUMMY2':

EDIT 9010

9010 PROC GET 'DIR2(NAME$,REF D$(),REF F'TYPE'(),REF F'BLOCKS',REF COUNT)

Now edit to look like this:

9010 PROC GET'DIR(NAME$,REF D$(),DUMMY2/,DUMMY2/,REF COUNT)

Next we must make similar changes to line 9100:

EDIT 9100:

9100 READ FILE DIR'FILE: D$(X),F'TYPE/(X),F'BLOCKS/(X)

Change it to:

9100 READ FILE DIR'FILE: D$(X),DUMMY2/,DUMMY21

Finally, we also can "dunmy out" the variables DISK'ID$, DISK'NAME$, and
DATE$ since we do not need them in this program either. Edit lines 9040,
9060, and 9080 to look like this:

Page 92 CAPTAIN COMAl GETS ORGANIZED Page 92

9040 READ FILE DIR'FILE: DUMMY$

9060 READ FILE DIR'FILE: DlffiY$

9080 READ FILE DIR'FILE: DUMMY$

Now, the modified module is done. list it to disk: LIST IGET'DIR2.l"

MODULE: GET'ID

PURPOSE: Gets an ID of a disk to use for the COMPARE
MODULE REQUIRED: FIlE'EXISTS

NEW
AUTO 9000

9000 II
9010 PROC GET'ID(REF ID$) CLOSED
9020 REPEAT
9030 INPUT "DISK ID: ": 10$;
9040 PRINT " __ > II j
9050 IF FILE'EXISTS("DIRECTORY .. "+ID$) THEN
9060 DONE:=TRUE
9070 PRINT II OK II
9080 ELSE
9090 DONE:=FALSE
9100 PRINT "DIRECTORY NOT FOUND"
9110 ENDIF
9120 UNTIL DONE
9130 ENDPROC GET'ID

Done. List it to disk: lIST "GET'ID.l"

MODULE: DIRECTORY

PURPOSE: Gets the directory from the MASTER and sorts it
MODULES REQUIRED: GET 'DIR2, SORT'DIR

NEW
AUTO 9000

Page 93 CAPTAIN COMAl GETS ORGANIZED Page 93

9000 II
9010 PROC DIRECTORY(REF D$(),ID$)
9020 FILE 'COUNT:=0
9030 FOR X:=1 TO MAXI FILES DO D$(X):=""

The above line initializes the array of file names to be all blank.

9040 GET ' DIR2(MASTER$+IDIRECTORY .. "+ID$,D$,DlJtfttY2',DlJtfttY2/,FILE'COUNT)
9050 SORT'DIR(D$,FILE'COUNT)
9060 ENDPROC DIRECTORY

Done. List it to disk: LIST "DIRECTORY.L"

MODULE: SORT'DIR

PURPOSE: Sort the directory
MODULES REQUIRED: three QUICKSORT modules

NEW
AUTO 9000

9000 II
9010 PROC SORT'DIR(REF D$(),COUNT) CLOSED
9020 PRINT "SORTING DIRECTORY ... II
9030 QUICKSORT (0$, 1,COUNT, 16)
9040 ENDPROC SORT'DIR

Done. List it to disk: LIST ·SORT'DIR.LR

MODULE: C<Jt1PARE

PURPOSE: Compares the two directories
MODULES REQUIRED: PRINT'00, PRINT'D1, PRINT'BOTH

NEW
AUTO 9000

9000 II
9010 PROC C<Jt1PARE(REF D0$(),REF D1$())

Always pass arrays as parameters in REFerence. It saves memory. And
besides, version 0.14 COMAL requires it.

Page 94 CAPTAIN COMAL GETS ORGANIZED Page 94

9020 PRINT
9030 PRINT uDISK U;ID0$,TAB(18), uBOTH U,TAB(33), "DISKU;ID1$
904'1 PRINT 1-------",TAB(18), "----II,TAB(33), "-------"
905'1 D0 IDONE:=FALSE; D1 I DONE: =FALSE; D0 ICOUNT:=1; D1 ICOUNT:=1
9060 REPEAT
9070 IF D0 1 DONE THEN
9080 PRINTID1

If directory 0 has been exhausted, we merely keep printing directory 1
until it is done. The same goes for directory 1 below:

9090 ELIF D1 1 DONE THEN
9100 PRINT 1 D0
9110 ELIF D0$(D0 ICOUNT)=D1$(D1 ICOUNT) THEN
9120 PRINTIBOTH

If both names are the same, print the name in the both column.

9130 ELIF D1$(DI ICOUNT)<D0$(D0 ICOUNT) THEN
9140 PRINTIDl

If the file in directory 1 is compares to be less than the directory 0
file then PRINT 1 D1. If the reverse is true, as below, then PRINT 1 D0:

9150 ELIF D0$(D0 ICOUNT)<Dl$(D1 ICOUNT) THEN
9160 PRINTID0

If we get to this point something is wrong:

9170 ELSE
9180 PRINT lIERROR IN COMPARP
9190 D0 IDONE:=TRUE; DI IDONE:=TRUE

Do you know why we just donlt put an END statement here? Why set the end
o directory flags to TRUE instead?

The output may be going to the printer. We will want to reset it back to
the screen. And we are inside a SERIES of programs. Ending abruptly will
stop the whole series. A graceful ending still allows the MENU to be
called again.

9200 ENDIF
9210 UNTIL D0 1 DONE AND DI IDONE
9220 ENDPROC COMPARE

Page 95 CAPTAIN COMAL GETS ORGANIZED Page 95

Done. List it to disk: LIST "C(It1PARLL"

MODULE: PRINT'D0

PURPOSE: Print a line with the file name in the D0 column and update D0

NEW
AUTO 9000

9000 II
9010 PROC PRINT'D0
9020 PRINT D0$(D0 1 COUNT), TAB(18), " ... ", TAB(37), " ... II

9030 D0 I COUNT: +1
9040 IF D0$(D0 ICOUNT}="1 THEN D0 IDONE:=TRUE
9050 ENDPROC PRINT 'D0

Done. List it to disk: LIST "PRINTID0.L"

MODULE: PRINT'D1

PURPOSE: Print a line with the file name in the D1 column and update D1

You may have thought that this proc could be easily modified from
PRINT 'D0. Not really. We are being fancy and right justifying the names
along the right side. This requires some extra calculations. The line
printed is different, of course. So let's just write it from scratch:

NEW
AUTO 9000

9000 II
9010 PROC PRINT 'D1
9020 TEMP$:=D1$(D1 ICOUNT}j LENGTH:=LEN(TEMP$)
9030 WHILE TEMP$(LENGTH)=CHR$(32} DO LENGTH:-1
9040 PRINT " ... n, TAB (18), " ... ", TAB (39-LENGTH+ 1), TEMP$ (1: LENGTH)
9050 D1 ICOUNT:+1
9060 IF D1$(01ICOUNT)=1I1I THEN D1 I DONE: =TRUE
9070 ENDPROC PRINT 'D1

Done. List it to disk: LIST "PRINT'D1.LII

Page 96 CAPTAIN COMAL GETS ORGANIZED Page 96

MODULE: PRINT'BOTH

PURPOSE: Print a line with the name in the BOTH column. Update D0 and 01

Now you can modify the previous PRINT'D1 module to fit here. Being
fancy, of course we want to center the file name in the middle BOTH
column. So we will be able to reuse the first two lines. The print line
will change, and we must update both counts, and check both directories
for their end.

NEW
ENTER "PRINT'Dl.L"

EDIT

9000 II
9010 PROC PRINT'D1
9020 TEMP$:=D1$(D1'COUNT}j LENGTH:=LEN(TEMP$)
9030 WHILE TEMP$(LENGTH)=CHRS(32} DO LENGTH:-l
9040 PRINT " ... ", TAB(18), " ... ",TAB(39-LENGTH+l},TEMP$(1:LENGTH)
9050 D1'COUNT:+1
9060 IF D1$(D1'COUNT)="" THEN D1 'DONE: =TRUE
9070 ENDPROC PRINT'D1

Now change the name in the header and ENDPROC:

9010 PROC PRINT'BOTH
9070 ENDPROC PRINT'BOTH

Then add to line 9050 to increment the count for both:

9050 D0'COUNT:+1j D1'COUNT:+1

Add a line to check if directory 0 is done:

9055 IF D0$(D0' COUNT)='''' THEN D0' DONE: =TRUE

Finally fix the print line:

9040 PRINT " ... ", TAB(19- (LENGTH DIV 2)), TEMPS (1: LENGTH), TAR(37), " ... "

Done. Now RENlJ1 and LIST it to di sk:

Page 97 CAPTAIN COMAL GETS ORGANIZED Page 97

RENLt1 9000
LIST "PRINT'BOTH.L"

====================
PROGRAM: COMPARE'DIR
====================

FINAL CONSTRUCTION

OLD MODULES: INTRO, INIT, PRINTER, SCREEN, MENU, PAGE, FILE'EXISTS,
DUAL'DRIVE, three QUICKSORT modules

MODIFIED MODULES: GET'DIR2 (FROM GET'DIR)
NEW MODULES: DIRECTORY, SORT'DIR, COMPARE, PRINT 'D0, PRINT 'D1,

PRINT'BOTH, GET'ID

All the modules needed by the program are on disk. Now we write the main
program and then MERGE in the modules:

NEW
AUTO

0010 IIDELETE "0: C(Jt1PARE' DIR1"
0020 //(C)l984 COMAL USERS GROUP, U.S.A., LIMITED
0030 IISAVE "0: C(Jt1PARE'DIR3"
0040 INTRO("COMPARE DIRECTORIES OF ANY TWO DISKS")
0050 MAX ' FILES:=125

Due to all our fancy ideas, we only have enough memory to hold 125
files. Remember, that is two directories of 125 files each - alot of
storage required. Now you know why we "dulTITlied out" the integer arrays.

0060 DIM DISK0$(1:MAX ' FILES) OF 16, DISK1$(1:MAX ' FILES) OF 16
0070 DIM ID0$ OF 2, ID1$ OF 2
0080 DIM DUMMY$ OF I, MASTER$ OF 2
0090 DIM TEMP$ OF 16
0100 INIT(MASTER$)
0110 GET'ID(ID0$)
0120 PRINT
0130 GET'ID(ID1$)
0140 DIRECTORY(DISK0$,ID0$)
0150 DIRECTORY(DISK1$,ID1$)
0160 IF PRINTER THEN SELECT OUTPUT "LP:"
0170 C<Jt1PARE(DISK0$,DISK1$)
0180 SCREEN
0190 MENU

Now just MERGE in the modules:

Page 98 CAPTAIN COMAL GETS ORGANIZED Page 98

ENIER "DIRECTORY.L"
RENUM
ENfER "SORT'DIR.L"
RENlA'1
ENTER "(OMPARE.LII
RENlA'1
ENTER "PRINT'D0.L"
RENUM
ENTER "PRINT'Dl.L"
RENl1'1
ENTER "PRINT'BOTH.L"
RENUM
ENTER II GET 'ID. L II
RENl1'1
ENTER "INTRO.L"
RENIJt1
ENTER IIINIT.LII
RENIJt1
ENTER "PRINTER.L"
RENl1'1
ENTER "SCREEN.L"
RENLt1
ENTER "MENU.L"
RENLt1
ENTER "PAGE.L"
RENUM
ENTER "FILE'EXISTS.L"
RENLt1
ENTER "DUAL'DRIVE.L"
RENUVI
ENTER "QUICKSORT.L"
RENlA'1
ENTER IGET'DIR2.L"
RENlJt1

That's it. Program construction is complete. Save the program. You know
how.

Page 99 CAPTAIN (OMAL GETS ORGANIZED Page 99

APPENDIX A

HOW TO BACKUP A DISK

With a dual drive (ie, 4040):

Backup drive 0 to drive 1:
CC»1AL: PASS "d1=0"
BASIC: OPEN 15,8,15,"d1=0"

CLOSE 15

With a single drive (ie, 1541):

Use the 1541 BACKUP program on Commodorels BONUS PAK disk. If you don't
have this program, a similar program, 1541 BACKUP(FREE), is included at
the end of CC»1AL Users Group, U.S.A., Limited disks. Since a disk backup
program needs as much free memory as possible, the program is written in
BASIC. Do NOT attempt to LOAD it into CDMAL.

HOW TO USE THE 1541 BACKUP(FREE) PROGRAM:

1) Remove any disks from the di~k drive. Turn off computer.
2) Turn on computer and disk drive.

») Use unshifted letters when typing «<

3) Type in this line followed by RETURN key:
load 11541backup(free)",8

4) Type in this line followed by RETURN key:
run

5) The screen clears and you are asked:
disk name ?

6) Before replying, remove the original disk from the drive and insert a
blank disk. The program will erase and format the disk for use as your
backup di sIc
7) Type in a name for the disk (up to 16 characters)
8) Next you are asked:

unique disk id ?

Every disk has its own ID. This 10 can be any two characters. No two
disks should ever have the same disk 10. It is hard to emphasize this
enough. The CAPTAIN CC»1AL DISK ORGANIZATION SYSTEM will help you keep
track of your disk lOis. Type in two characters that you are SURE are
not used elsewhere (when in doubt try something odd like [[).

9) The following instruction no appears:

Page 100 CAPTAIN CC»1AL GETS ORGANIZED Page 100

insert source disk, press SPACE

10) REMOVE the new disk from the drive and "label it with the disk name
and 10. Insert the original disk, a"lso called the SOURCE DISK. After
doing this hit the space bar.
11) Information about the disk will scroll by. It's not important to
read it. It ends by estimating about how long in minutes and seconds
that the copy may take. Then the program counts and reads blocks from
the SOURCE DISK. The count is flashed on the bottom screen line:

reading block #---

12) After 124 blocks are read you see this:
insert destination disk, press SPACE

13) Take out the original SOURCE DISK. Put the new DESTINATION DISK into
the drive. After you do this hit the space bar.
14) As blocks are written the count is shown:

writing buffer #---

15) After all blocks are written you'll see:
insert source disk, press SPACE

16) Take out the new DESTINATION DISK. Put the original SOURCE DISK back
into the drive. After you do this hit the space bar.
17) Now the familiar message appears again, flashing through the next
set of blocks, 1 through 124 (yes, the numbers are 1 - 124 again, but
this is a different set of 124 blocks):

reading block 1---

After the next 124 blocks are read you'll see:
insert destination disk, press SPACE

18) You may now go back to 13) and continue the cycle of swapping disks
back and forth as instructed. BE PATIENT! It may take 12 disk swaps. The
last pass of reading blocks from the original source disk will probably
not go all the way up to 124. It will probably end at some other number.
That is your sign that this is the final swap. Put in the destination
disk as instructed. After it writes the final blocks you are done. The
program then lists the directory of the newly created disk.

Page 101 CAPTAIN COMAL GETS ORGANIZED Page 101

APPENDIX B

HOW TO FORMAT A DISK

Put new disk into drive 0:
C()1AL: PASS "n0:disk name, id ll

BASIC: OPEN 15,8,15,"n0:d1sk name,id"
CLOSE 15

Replace "disk name" with any 16 character name for the disk. Replace
"id" with anay two characters you wish to use as its ID. This 10 should
be unique from all other disk lOis you already have.

If you want to erase ALL programs and files from a disk you have already
formatted and used, you can reformat the disk:

Put disk to be reformatted into drive 0:
C()1AL: PASS II n0:disk name ll

BASIC: OPEN 15,8,15,lIn0:disk name"
CLOSE 15

Notice, it was the same as the format sequence EXCEPT you did not
spec; fy the ID.

Page 102 CAPTAIN C()1AL GETS ORGANIZED Page 102

