

REVIEW: BEGINNING COMAL

As a leading educator in Denmark, Borge Christensen has

successfully written a hands-on COMAL tutorial aimed at the

beginning computer user. Assuming you have had no previous

computer experience, this book will teach you to program in COMAL•

A wonderfully direct technique is used to reveal the power and

beauty of COMAL. Chapter 1 begins with this program line: 25 PRINT

"HI, THERE." By dissecting this simple line of code, Mr.

Christensen introduces line numbers, statements, keywords, and

string constants. While still on page 1, the student is already

presented with a hands-on example to run. By building on these

short simple concepts with a complete series of examples and

exercises, a student is led from "print your name" through

variables, conditionals, iteratives, and into file structures. As

each new concept appears, a clear example of its usage is given,

along with exercises to show why it works.

While another book might be preferred as a reference, BEGINNING
COMAL should be your text of choice for teaching COMAL.

REVIEW#2: BEGINNING COMAL

This is a programmed instruction course in the classical sense.

There blanks for you to write in your own answers throughout the

book. There are structure diagrams galore, to represent each

principle being considered. This is one book that you cannot use

without the computer. While the COMAL Users Group did include an

errata sheet with the book, it was really more an instruction

sheet for using the accompanying disk; there were very few errors

of any kind. The book begins with 'the computer writes a message1

and before it ends we have covered data management, accounting,

statistics, etc. in a somewhat superficial way. Be assured I do

not mean that in a negative way, the text remains light and flows

gently from one subject to the next. If I had to recommend a best

first book for beginning COMAL, I would have to recommend,
BEGINNING COMAL by Borge Christensen.

TABLE OF CONTENTS

2 - Preface

4 - Read This First

6 - C64 COMAL 0.14 Graphics

11 - C64 COMAL 0.14 Sprites

14 - COMAL 0.14 Keywords

62 - Where to Find More Information

Original manuscript is copyright 1984 by Borge Christensen.

This edition is copyright 1984 by COMAL Users Group, U.S.A.,

Limited and published with permission of Borge Christensen.

The original manuscript was written on a Commodore computer

with WordPro. It was also submitted to Toronto Pet Users

Group for possible publication. This edition was edited with

Paperclip running on a CBM 8096 and printed on a Starwriter

printer.

All rights reserved. No part of this book may be reproduced

in any way or by any means without permission from the

publisher.

WordPro is trademark of Professional Software, Paperclip is

trademark of Batteries Included, Commodore 64 and CBM are

trademark of Commodore Electronics Limited, PET is trademark

of Commodore Business Machines.

Review originally from Clark County Commodore Computer COMAL Club

Newsletter.

ISBN O-

COMAL FROM A TO Z by Borge Christensen

PREFACE

The programming language COMAL (COMmon

Algorithmic language) was designed in 1973 by

Benedict Loefstedt and myself in order to make

life easier and safer for people who wanted to

use computers without being computer people, foe

combined the simplicity o± BASIC with the power

of Pascal.

If you take a close look at BASIC you will see

that its simplicity stems mainly from its

operative environment, and not from the language

itself. Using BASIC, a beginner can type in one

or two statements and have his small program

executed immediately by means of one simple

command. Line numbers are used to insert, delete

and sequence statements. You do not need a

sophisticated Text Editor or an ambitious

Operative System Command Language. Input and

output take place in a straightforward way at

the terminal.

On the other hand there is no doubt that as a

programming language, BASIC is hopelessly

obsolete. It was never a very good language, and

seen from a modern point of view it is a

disaster. People who start to learn programming

using BASIC may easily be led astray and, after

some time, may find themselves fighting with

problems that could be solved with almost no

effort using programming languages more adequate

to guide human thinking.

COtoAL includes the gentle operative environment

of BASIC and its usual simple statements, such

as INPUT, PRINT, READ, etc., but it adds to it a

set of statements modelled after Pascal that

makes it easy to write well structured programs.

Instead of leading people away from the modern

effective way of programming, COMAL offers a

perfect introduction to this new art.

With C64 COMAL 0.14 it is now possible for any

one to become familiar with modern principles of

programming. It also includes simple but

COMAL FROh A TO Z by Borge Christensen 2

REVIEW: COMAL HAHDBOOK

This book is more a manual or reference book than a textbook. It

is, however, essential for anyone who wishes to learn COMAL ori

Commodore computers. The main part of the book is in the form of a

reference manual covering all the COMAL keywords. For each keyword

there is an explanation, its syntax is given, and there are

examples and sample programs. Whether or not each keyword matches

the standard is stated, as are the versions in which each keyword

is available. There are many appendices, some of which are very

useful. There are special sections for the COMAL structures,

string handling, and useful procedures and functions.

For someone who already knows C64 BASIC and its operating

environment, this book should be extremely helpful to them in

learning COMAL. Some users may however require additional

assistance in getting to grips with the more complex aspects of

COMAL such as procedures and functions with parameters. The book

is not particularly suitable on its own for someone learning COMAL

as a first language. It is however, an essential reference book

for all who use COMAL on Commodore computers.

Reviewed by Diarmuid McCarthy. Originally from Riomhiris na Schol,

published by the Computer Education Society of Ireland, Colaiste

an Spioraid Naoimh, Bishopstown, Cork, Ireland ($30 per year).

RE7IES#2: COMAL HANDBOOK

This book contains the most complete description of the COMAL

language to be found anywhere. And I do mean COMPLETE! The

Keywords in the book are in alphabetical order, each on a separate

page. This allows ample room for an in-depth discussion of how,

when, and where it should be used, including which versions

support which keywords. The standard syntax is listed first, with

default values and possible ranges for each value in a clear and

easy to understand format. Next comes one or more examples of how

the keyword looks in a working program, with both user inputs and

computer responses shown. Finally, cross references show where to

find other examples, procedures at the end of the book which

contain this keyword, and a list of related keywords.

Together with this book, you have the most efficient programming

language working for you. It!s as if the authors of COMAL are

standing behind you. The answer to your question has already been

answered. Complete is the only word to describe the COMAL

HANDBOOK. When you need to know something about COMAL, this is.the
place to look.

HHESE TO FDD) MORE INFORMATION

This book was a mini reference book on C64 COMAL version 0.14- For
a much more complete and detailed reference you should get the

COMAL HANDBOOK, a 470 page reference book on COMAL. A comparable

reference book, COMMODORE 64 GRAPHICS WITH COMAL, is expected to

be available late 1984*

Reference books are great, but to actually learn COMAL, a beginner

should use a tutorial textbook. Several good ones are available

for COMAL, including: BEGINNING COMAL, FOUNDATIONS IN COMPUTER

STUDIES WITH COMAL, and STRUCTURED PROGRAMMING WITH COMAL. All

COMAL books mentioned here are available from the COMAL Users

Group, U.S.A., Limited.

Your best source of continuing information on COMAL is the COMAL

TODAY newsletter. It is packed with articles, programming tips,

news, reviews, and program listings. Contributors include Borge

Christensen (author of this book and BEGINNING COMAL), Len Lindsay

(author of COMAL HANDBOOK), Colin Thompson (well known columnist),
UniComal (authors of C64 COMAL), and many others. The reviews of

other COMAL books that follow are condensed from various issues of

COMAL TODAY.

REVIEW: FOUNDATIONS IN COMPUTE* STUDIES WITH COMAL

This textbook is a good value, 313 pages of solid information. It

seems to have been written for APPLE COMAL but since it is COMAL,

we really could not tell the difference. There are over 100 sample

programs. The page of notes from the COMAL Users Group explains

the reason for any differences in the programs. The book starts

out as a hands on tutorial, teaching you how to write and save

simple COMAL programs. From there, the book goes into the

theoretical aspects of structured programming with immediate

applications in COMAL. It was Clay that first noted that the book

was teaching theory, I thought it was just being interesting. The

book final digressed to a facinating study of the variety and

history of the computer. Clay felt the highlight of these chapters

was the 1946 picture of a 30 ton Computer. What I found even more

facinating was the books treatment of multidimensional arrays,

random and direct access files, and recursive routines. The author

concludes with brief chapters regarding the applications of

computers and the social and ethical implications of computer

dataprocessing.

Overall I found this book to be most enjoyable and informative not

only with specific COMAL applications but also in establishing a

good foundation.

Reviewed by David Skinner & Clay Ratliff. Originally from Clark

County Commodore Computer COMAL Club Newsletter.

effective and versatile instructions to control

graphics and sprites.

Tonder, Denmark, April 22, 1984

Borge R Christensen

COhAL 1'ROto A TO Z by Borge Christensen

<identified

<variable name>

<±ile name>

<expression>

READ THIS FIRST

This manual briefly explains each COhAL keyword

as well as assignments, expressions, procedures,

parameters, and standard functions. Keywords are

presented in alphabetical order, Graphics and

Sprites are each presented in their own

sections.

Most <items> are defined on location but a few

fundamental ones are explained below:

A string of up to 78 characters. The leading

character must be a letter, and the following

may be letters, digits, or any one of the

characters: apostrophe (!)> [>]> backslash, or

left arrow (displayed as underscore on the

printer).

An <identifier> to name a real (floating)

variable, <identifier># to name an integer

variable, or <identifier>$ to name a string

variable,

A <string expression> that returns a valid disk

operating system file name.

A <numeric expression> or a <string expressions

A <numeric expression> returns a numeric value

(integer or real), and a <string expression>

returns a string. Only <numeric expressions>

that return values in the range from -32768 to

32767 can be assigned to integer variables. See

also EXPRESSIONS.

<numeric constant>

A decimal representation of a number.

<string constant>

A string of characters enclosed in double

quotes.

<file#>

A <numeric expression> that returns a value in

the range 1-255. The COMAL System uses file #1

and #255 *or system use.

COMAL FROM A TO Z by Borge Christensen

ZONE

61

is a <numeric expression> that must return a

positive integer.

Data stored using the WRITE FILE statement may

be retrieved with the READ FILE statement but

not with the INPUT FILE statement.

WRITE FILE 2: NAME$,ADDRESS$,PAYCODE

writes sequentially the values of the variables

on the list to file number 2.

WRITE FILE 4,NUM: NAME$,ADDR$,DEPTNO

writes the values of the variables on the list

to file number 4, in the record given by the

value of NUM. Note: WRITE FILE and READ FILE

cannot be used with files stored on cassette.

Defines the width of the print zones. The value

of ZONE may be set with this statement

ZONE <zone width>

where <zone width> is a non-negative <numerical

expressions Default value of ZONE is zero.

ZONE 10

PRINT 1,2,3

PRINT " 5 0 5 0 5"

produces the following output:

1 2 3

5 0 5 0 5

ZONE 20

PRINT "PRICE PER POUND:",PRICE

If PRICE has the value 1.5 this results:

PRICE PER POUND: 1.5

PRINT ZONE

displays the present value of ZONE.

COMAL FROM A TO Z by Borge Christensen 61

WHILE STRUCTURE

WRITE FILE

The syntax of the WHILE loop and the statements

that control it is

WHILE <numeric expression> [DO]

<stateraent list>

ENDWHILE

The block of statements in the <statement list>

is executed repetitively as long as - i.e. while

- the expression following the WHILE keyword is

evaluated to TRUE. When the expression evaluates

to FALSE, control is transferred to the

statement following the ENDWHILE statement.

TAKEIN("NAME")

WHILE NOT OK DO

ERR0R("NAME")

TAKEIN("NAME")

ENDWHILE

If the <statement list> contains only one

statement a short form of the WHILE loop may be

used. Its syntax is

WHILE <numerical expression> DO <statement>

In this case no ENDWHILE statement is needed -

nor allowed - to terminate the loop.

WHILE X<A(I) DO I:+1

is functionally equivalent to

WHILE X<A(I) DO

ENDWHILE

Stores data in a sequential or random access

file. Its syntax is

WRITE FILE <file#> [,<rec#>]: <variable list>

where <file#> is a <numeric expression> that

must return an integer in the range 2-254 (the

COMAL System uses numbers 1 and 255), and <rec#>

<unit#>

<line number>

IMPORTANT

REFERENCE BOOK

TUTORIAL BOOKS

NEWSLETTER

A <numeric expression> that returns a value in

the range 0-15.

An integer in the range 1-9999.

In the syntax definitions, items in square

brackets [] are optional. Items enclosed in

braces { } are also optional, but may have

several occurences.

It should be stressed that this book is neither

a full formal definition nor a textbook. Though

it is believed to be complete and correct it

presupposes a certain knowledge about

programming in general and about Commodore

computers in particular. A 470 page handbook

that explains and details C64 COMAL and also

contains much useful additional information

about Commodore computers is:

COMAL Handbook by Len Lindsay

Textbooks about COMAL include:

Beginning COMAL by Borge Christensen

Foundations in Computer Studies with COMAL

by John Kelly

Structured Programming with COMAL

by Roy Atherton

The newsletter about COMAL is:

COMAL TODAY (Editor: Len Lindsay)

All are available from COMAL Users Group,

U.S.A., Limited, 5501 Groveland Ter, Madison, tol

53716.

60 COMAL FROM A TO Z by Borge Christensen 60 COMAL FROM A TO Z by Borge Christensen

EACK

BACKGROUND

BORDER

CLEAR

DRAfoTO

FILL

C64 COMAL 0.14 GRAPHICS

Remember to initialize the graphics system

BEFORE you try any of the graphics commands (see

SETGRAPHIC). You have 16 different colors

available, numbered 0-15- The screen coordinates

are 0-319 for the x axis and 0-199 for the y

axis. The turtle's home position is in the

center of the screen at position 160,99 facing

upward (zero degrees heading).

BACK <distance>

Moves the turtle <distance> screen units

backwards. If the pen is down (see PENDOtoN), a

line is drawn using the current color (see

PENCOLOR).

BACKGROUND <color>

Sets the background to the color given by the

value of <color> (number from 0-15). Vihen in

Hi-Res graphics the instruction is not executed,

until COML meets a CLEAR command (see CLEAR).

BORDER <color>

Sets the border to the color given by the value

of <color>. See also BACKGROUND.

CLEAR

Clears the graphics screen. Does not affect the

sprites.

DRAViTO <x>,<y>

Draws a line from the present position of the

pen to the position (<x>,<y>). The current color

is used.

FILL <x>,<y>

Fills the closed area containing the position

(<x>,<y>) with the current color (see PENCOLOR).

COftAL SROto A TO Z by Borge Christensen

TO

TRAP

TRUE

UNIT

UNTIL

USING

WHEN

59

Separates <initial value> from <final value> in

a FOR statement. See FOR.

Enables or disables the functioning of the STOP

key. Its syntax is

TRAP ESC <sign>

where <sign> is one of the characters + or -.

Default mode is TRAP ESC+.

TRAP ESC- Disables the STOP key

TRAP ESC+ Enables the STOP key

After the statement or command

TRAP ESC-

has been encountered by the interpreter,

depressing the STOP key will have no effect on

program execution, but the function ESC (see

ESC) returns the value TRUE (numeric 1). The

command or statement

TRAP ESC+

brings the STOP key back to normal mode of

operation.

A predefined constant with the numeric value 1.

See also FALSE.

Used in OPEN FILE statements when a certain

external device must be indicated. Default unit

is always disk unit no. 8. See OPEN.

Terminates the block of statements in a

REPEAT-UNTIL loop. See REPEAT.

Formats output of numerical values. See PRINT

USING.

Initiates a block of statements in the CASE

structure. See CASE.

COMAL FROM A TO Z by Borge Christensen 59

SYS

TAB

TAN

THEN

58

Invokes a machine code subroutine call (JSR).

Its syntax is

SYS <memory location>

where <memory location> is a <numeric

expression> that must return a value in the

range 0-65535•

In a PRINT statement the TAB function may be

used to set the next print position. The

argument of the TAB function must be positive

and not greater than 32767. If a vaiue greater

than 80 (line length) results it is first

divided by 80, and the remainder is used.

Non-integer values are truncated before use. If

the TAB function evaluates to a position prior -

to the current one, the tabulation is effected

on the next line.

PRINT " MATHEMATICS:lf,TAB(20),2

produces this printout

MATHEMATICS: 2

with "2" printed in column 20.

PRINT l! MATHEMATICS:f!,TAB(5),2

produces this printout

MATHEMATICS:

2

The example demonstrates that if the TAB

function returns a position prior to the current

one, the next line is used. See also PRINT.

A standard function. TAN(X) returns the tangent

of X (X in radians).

Ends an IF and ELIF statement. See ELIF, IF.

FORWARD

IRAME

FULLSCREEN

HIDETURTLE

COMAL FROM A TO Z by Borge Christensen 58

HOME

LEPT

The bounds of a closed area is thus defined: a

boundary point is one that has a color differet

from that of the background or a point on the

edge of the present frame (see FRAME).

FORWARD <distance>

Moves the turtle <distance> screen units

forward. If the pen is down (see PENDOWN), a

line is drawn using the current color (see

PLNCOLOR).

FRAME <xmin>,<xmax>,<ymin>,<ymax>

Defines the frame within which the pen is

active. No drawing takes place in points whose

coordinates are outside the frame, however the

turtle is still displayed outside the frame. The

lower left corner of the frame is given by

(<xmin>,<ymin>)• The upper right corner is

(<xmax>,<ymax>). Default frame covers the whole

graphics screen: FRAME 0,319,0,199.

FULLSCREEN

Shows the whole of the graphics screen, i.e. no

text window is displayed on the upper two lines

of the physical screen (unlike SPLITSCREEN).

HIDETURTLE

Makes the turtle invisible. This makes some

graphics faster.

HOME

Places the turtle in the position (160,99)

heading vertical upward (zero direction).

LEFT <angle>

Turns the turtles head <angle> degrees to the

left (counter clockwise).

COMAL FROM A TO Z by Borge Christensen

MOVETO

PENCOLOR

PENDOWN

PENUP

PLOT

PLOTTEXT

hOVETO

Moves the turtle from its present position to

the position (<x>,<y>) without drawing a line.

PENCOLOR <color>

Sets the color used for drawing, i.e. the color

of the pen. This is also the color of the cursor

and turtle, and the color in which text is

displayed on the text screen. Normally <color>

is an integer from 0 to 15 •

PENDOWN

Activates the turtles pen, i.e. the turtle

leaves a trace as long as its movements are

inside the present frame and the pen's color is

different from that of the background (see

PENCOLOR).

PENUP

Lifts the turtles pen, i.e. it no longer leaves

a trace on the screen. However, DRAWTO and PLOT

work even if PENUP is set.

PLOT <x>,<y>

Displays the position (<x>,<y>) in the current

color (see PENCOLOR).

PLOTTEXT <x>,<y>,<text>

Displays in the current color the text given by

the string expression <text> on the graphics

screen such that the lower left corner of the

first character of <text> is placed at the

position (<x>,<y>). However, the applied

coordinates are set to greatest multiple of 8

less than or equal to the given values. Texts

can only be displayed in Hi-Res graphics mode.

COMAL FROM A TO Z by Borge Christensen

A substring is specified by giving the position

of the first and last character in it. If for

example NAME$ has the value: "RICHARD PAWSON",

then

NAME$(9:14)

returns the string "PAWSON".

If the string SPACES$ is declared (DIM) to a

length of 60 characters, the assignment

SPACE$(1:6O):=""

fills SPACE$ with spaces (CHR$(32)).

In the string NAME$, the expression NAME$(5) is

equal to NAME$(5:5), i.e. if the substring is
only one character long, you only have to give

the position of that character.

Also note that substring assignment is allowed.

If the following statements are executed

DIM ADDRESS$ OF 80

ADDRESS$(1:8O):=""

ADDRESS$(21:40):=HOUSE$

the current value of HOUSE$ is stored in

ADDRESS$ on positions 21-40. If the value of

HOUSE$ has a length of more than 20 characters

surplus characters are lost.

If a substring of an array component is to be

pointed out, the component is first indicated

and after that the substring. If TEL$(23) has a

value of

"HARRY HENDERSON 3456"

then the string expression

TEL$(23)(21:24)

returns the value "3456".

57 COMAL FROM A TO Z by Borge Christensen 57

STATUS

STEP

STOP

SGN(X) returns the sign of X: -1 if X is

positive, 0 if X is equal to zero, and

1 if X is positive.

SIN(X) returns the sine of X (X in radians).

SQR(X) returns the square root of X (X

non-negative) •

TAN(X) returns the tangent of X (X in

radians) •

Makes the system display the disk operative

system status and switches off the error

indicator.

Indicates an optional counter variable increment

in a FOR statement. See FOR.

Stops program execution. Its syntax is

STOP

STRING HANDLING, SUBSTRINGS.

A string variable must always be declared. For

example

DIM NAME$ OF 30

declares a string variable NAME$ that may hold

up to 30 characters. If a string array is

declared, the maximum length of the components

must also be specified. For example

DIM ADDRESS$(100,3) OF 20

declares a two dimensional string array, where

each component may hold up to 20 characters.

Formal parameters of type string have no

predeclared length. Thus in

PROC PACK(N$)

the parameter N$ is automatically given the

length necessary to hold the string value passed

to it.

RIGHT

SETGRAPHIC

SETHEADING

SETTEXT

56 COMAL FROM A TO Z by Borge Christensen 56

RIGHT <angle>

Turns the turtles head <angle> degrees to the

right (clockwise).

SETGRAPHIC <type>

Initializes and makes the graphics screen

visible. You have two graphic modes:

High Resolution graphics: <type>=0

Multicolor graphics: <type>=1

In high resolution graphics you have 320*200

pixels at your disposal. The whole of the

graphics screen is split up in 40*25 blocks,

each of which holds 8*8 pixels. Each individual

block only allows two colors to be applied at a

time. One of these colors is the background. The

other color is defined as soon as a pixel in the

block is set. If on a later occasion a pixel

inside a block is set with a different color the

whole block changes to the latter one.

In multicolor graphics the resolution in the

horizontal direction is only half that of high

resolution, i.e. you now have 160*200 pixels at

your disposal. Again the screen is divided in

40*25 blocks, but each of the them only holds

8*4 pixels. However each block can hold up to

four different colours one of which is the

background.

SETHEADING <direction>

Turns the turtle to point at <direction> degrees

clockwise from zero (vertically upward).

SETTEXT

Hides the graphics screen and shows the text

screen, however the graphics instructions still

work on the hidden graphics screen. The result

of graphics activities can easily be revealed by

using the SETGRAPHIC command.

COMAL FROM A TO Z by Borge Christensen

SETXY

SHOMURTLE

SPLITSCREEN

TURTLESIZE

SETXY <x>,<y>

fooves the turtle to the position (x,y). If the

pen is down (see PENDOtoN) a line is drawn.

SHOtoTURTLE

Makes the turtle visible on the graphics screen.

Vi hen COMAL is started a default SHOWTURTLE is

executed, i.e. from start the turtle is shown on

the graphics screen (see HIDETURTLE).

SPLITSCREEN

Displays a window into the text screen on the

top two lines of the graphics screen.

TURTLESIZE <size>

Defines the size of the turtle. The value of

<size> is an integer from 0 to 10. Default value

of <size> is 10.

10 COMAL FROfo A TO Z by Borge Christensen 10

STANDARD FUNCTIONS.

ABS(X)

ATN(X)

CHR$(X)

COS(X)

EOD

EOF(X)

ESC

EXP(X)

KEY$

INT(X)

LEN(X$)

LOG(X)

ORD(X$)

PEEK X

RND(X,Y)

RND(X)

returns the absolute value of X.

returns the arctangent in radians of X.

returns the character whose ASCII value

is X.

returns the cosine of X (X in radians).

returns a value of TRUE (numeric 1) if

the last element in the data queue has

been read, otherwise a value of FALSE

(numeric 0) is returned.

returns a value of TRUE (numeric 1) if

the end-of-file mark in a sequential

file opened as file number X has been

encountered, otherwise a value of FALSE

(numeric 0) is returned.

returns a value of TRUE (numeric 1) if

the STOP key is depressed, otherwise it

returns a value of FALSE (numeric 0).

returns the value of e (nat. log. base)

to the power of X (thus being the

inverse of nat. log.)

returns the first ASCII character in

the keyboard buffer. If no key has been

depressed, a CHR$(O) is returned.

returns the integer part of X, i.e. the

greatest integer less than or equal to

X.

returns the current length, i.e. number

of characters, of the string value of

X$.

returns the natural logarithm of X, X

positive.

returns the ASCII value of the first

character held by X$.

returns the contents of memory location

X (X in the range 0-65768) in decimal

representation.

returns a random integer in the range

from X to Y, X and Y integers and X

less than Y.

returns a random real in the range from

0 to 1. If X is negative the same

sequence is always generated, otherwise

a random start is implied.

55 COMAL FROM A TO Z by Borge Christensen 55

SETMSG

SGN

SIN

SIZE

SQR

allowed to type in the EXEC. The interpreter

will simply ignore it while in SETEXEC- mode.

Note: the reason for having this command is one

of compatibility. In earlier version of COMAL

the EXEC was compulsory, and some people might

still like to have it. See also EXEC.

Suppresses the error messages. Its syntax is

SETMSG <sign>

where <sign> is + or -. Default mode is SETMSG+.

SETMSG+ Enables the error messages

SETMSG- Disables the error messages

Error messages are held in a file on the

diskette to save main storage. This means that

you will have to wait about 3 seconds to get a

message on the screen. To a trained programmer

this could be annoying. Therefore the option to

switch the messages off is given with SETMSG. If

in SETMSG- mode a prompt like

ERROR 12

is displayed with the cursor placed on the

estimated location of the error.

A standard function. SGN(X) returns the sign of

X: -1 if X is positive, 0 if X is equal to zero,

and 1 if X is positive.

A standard function. SIN(X) returns the sine of

X (X in radians).

Prints the size of free memory in bytes. Its

syntax is

SIZE

A standard function. SQR(x) returns the square

root of X (X non-negative).

DATACOLLISION

LEFINE

HIDESPRITE

064 CORAL 0.14 SPRITES

Eight sprites are available for your use,

numbered 0-7 (sprite number 7 is used by the

system for the turtle's image). Up to 48 images

can be defined. The usual 16 colors (0-15) are

available.

DATACOLLISION(<sprite>,<reset>)

This function returns a value of TRUE, if sprite

no. <sprite> collides with graphics information

(i.e. a non-background sprite pixel is also a

non-background graphics pixel). The collision

detection is automatically done by the system

each time a sprite is drawn. If <reset> has a

value of TRUE (1), the system resets the

collision ilag. If <reset> is FALSE (0), the

collision ilag is stored by the system for use

with the next DATACOLLISION statement.

DEFINE <image#>,<definition>

where <image#> is an integer from 0-47, and

<definition> is a string expression that has the

64 characters which defines the image (see your

Commodore 64 Users Guide page 68 or the

Commodore 64 Programmers Reference Guide page

131 for information about the meaning of the

first 63 bytes of a sprite image definition).

You can have a pool of 48 images (47 if a turtle

is used) and each of these can be used as a

model for any one of the 8 (7 if a turtle is

used) available sprites. Not all of the 48

images need to be defined, and more than one

sprite can use the same image.

HIDESPRITE <sprite>

Sprite no. <sprite> is no longer displayed on

the screen.

54 COMAL FROM A TO Z by Borge Christensen 54 11 COMAL FROM A TO Z by Borge Christensen 11

IDENTIFY

PRIORITY

SPRITEBACK

SPRITECOLLISION

SPRITECOLOR

IDENTIFY <sprite>,<image#>

Sprite number <sprite> is given the image

defined by <image#>. Imagine you have a cupboard

filled with drawings of differet shapes numbered

0-47- Each time the IDENTIFY statement is used,

the specified drawing (<image#>) is taken out of

the cupboard and its shape is given to sprite

<sprite>. The <sprite> must be an integer from 0

to 7 (the turtle is sprite number 7).

PRIORITY <sprite>,<p>

If <p> is TRUE, the pixels in sprite no.

<sprite> will have lower priority than the

graphics pixels, i.e. the sprite will appear

underneath the graphics. If <p> is FALSE, the

sprite will have higher priority than the

graphics.

The priority among the sprites is fixed: A

sprite with a lower number has a higher

priority. Thus sprite no. 0 has a higher

priority than sprite no. 1 etc.

SPRITEBACK <color-1>,<color-2>

Defines the two common colors to be used with

multicolor sprites, where <color-1> and

<color-2> are integers from 0-15.

SPRITECOLLISION(<sprite>,<reset>)

A function that returns the value TRUE, if and

only if sprite no. <sprite> has collided with

another sprite. See DATACOLLISION for

explanation of <reset>.

SPRITECOLOR <sprite>,<color>

Defines the color of sprite no. <sprite> to

become <color> (0-15).

SELECT OUTPUT

SETEXEC

12 COMAL FROM A TO Z by Borge Christensen 12 53

SAVE "AUNTIE"

stores the program presently in workspace on a

diskette in unit no. 8.

^SAVE "UNCLE",1

stores the program presently in workspace on a

tape in unit no, 1. See also LOAD, CHAIN, LIST,

and ENTER.

Directs printout to the screen or the printer.

Its syntax is

SELECT [OUTPUT] <device>

where <device> is "LP:" (Line Printer) or "DSr"

(Data Screen). The default output device is the

screen.

PRINT "I AM HERE."

PRINT "WHERE ARE YOU?"

SELECT "LP:"

PRINT "I AM HERE BESIDE YOU."

SELECT "DS:"

PRINT "THANKS, PRINTER."

The two first texts are displayed on the screen,

the third one is sent out on the printer, and

the fourth one appears on the screen.

Chooses whether the interpreter will list the

keyword EXEC when listing a program (see EXEC).

Its syntax is

SETEXEC <sign>

where <sign> is + or -.

SETEXEC+ makes COMAL list the keyword EXEC

SETEXEC- causes EXEC to be supressed

The default mode is SETEXEC-. If you are in

SETEXEC+ mode the keyword EXEC is inserted

automatically by the system (you never need to

type in EXEC). On the other hand you always are

COMAL FROM A TO Z by Borge Christensen

RND

RUN

SAVE

FUNC MAX(X,Y)
IF X<=Y THEN

RETURN Y

ELSE

RETURN X

ENDIF

ENDFUNC MAX

FUNC GCD(A,B)

IF (A MOD B)=O THEN

RETURN B

ELSE

RETURN GCD(B,A MOD B)

ENDIF

ENDFUNC GCD

Note that the function GCD is calling itself

recursively. See also FUNC and PROCEDURES AND

PARAMETERS

A standard function. RND(X,Y), X and Y integers

and X less than Y, returns a random integer in

the range from X to Y. RND(Y) returns a random

real number in the range from 0 to 1. If Y is

zero or negative, a new sequence of random

numbers is seeded and used, but if Y is

positive, the next random number from the

previously created sequence is used.

Invokes a prepass of the program in workspace

(unless the program has already been prepassed

and no changes have been made in it) and then

starts execution of it. See also CHAIN. Its

syntax is

RUN

Used to store programs on diskette or tape. Its

syntax is

SAVE <file name> [,<unit no.>]

Programs stored by using SAVE may be retrieved

by LOAD or CHAIN.

SPRITEPOS

SPRITESIZE

SPRITEPOS <sprite>,<x>,<y>

Positions sprite no. <sprite> such that the

upper left corner appears at the position

(<x>,<y>). The bottom left corner of the screen

is (0,0).

SPRITESIZE <sprite>,<xsize>,<ysize>

If <xsize> is TRUE (1), sprite no. <sprite> is

expanded to double width, if <ysize> is TRUE,

the sprite is expanded to double height. The

resolution is not affected by the expansions.

52 COMAL FROM A TO Z by Borge Christensen 52 13 COMAL FROM A TO Z by Borge Christensen 13

ABS

AND

APPEND

ASSIGNMENTS

COMAL 0.14 KEYWORDS

A standard function. ABS(X) returns the absolute

value of X.

A Boolean operator that denotes logical

conjugation. See also EXPRESSIONS.

Specifies that a sequential file is opened in

append mode. See also OPEN. t

The syntax of an assignment is

<variable>:=<expression>

If the <variable> is of type string, the

<expression> must be of the same type. Type

conflicts between numerics and strings are

normally found and reported as program lines are

entered.

The system is, however, very tolerant when

numeric types (reals and integers) are

concerned. A variable of type real will accept

integer values and you may use variables of type

integer in real expressions. An integer variable

will accept any number in the range from -32768

to 32767. If a real number in that range is

assigned to an integer the number is first

rounded.

Numeric type incremental and decremental

assignments such as:

<variable>:=<variable>+<expression> and

<variable>:=<variable>-<expression>

may respectively be written in shorthand form:

<variable>:+<expression> and

<variable>:-<expression>

If the keyword LET is typed in before an

assignment it is ignored by the system. If the

sign of equality (=)is entered instead of the

14 COMAL FROM A TO Z by Borge Christensen 14

RENUM

Used to change or adjust line numbers. Its

syntax is

RENUM [<line number>] [,<increment>]

COMMAND RESULTS IN LINE NUMBERS

RENUM 10, 20, 30, 40, etc.

RENUM 100 100, 110, 120, 130, etc.

RENUM 150,5 150, 155, 160, 165, etc.

RENUM ,2 10, 12, 14, 16, etc.

REPEAT STRUCTURE

RESTORE

RETURN

The syntax of the REPEAT loop and the REPEAT and

UNTIL statements is given in this diagram <

REPEAT

<statement list>

UNTIL <numeric expression>

The program section given by <statement list> is

executed repetitively until the <numeric

expression> returns a value of TRUE (i.e.

numeric non-zero)•

REPEAT

READ NAME$,TEL

FOUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD

Resets the data pointer to the first element in

a data queue. Its syntax is

RESTORE

See also DATA and READ.

Returns a value from a function, or returns from

a procedure before the ENDPROC statement is

reached. Its syntax is

RETURN [<numeric expression>]

Two examples follow:

51 COMAL FROM A TO Z by Borge Christensen 51

READ FILE

REF

REM

Retrieves data from sequential and random access

files stored by using the WRITE FILE statement

(see WRITE FILE). Its syntax is

READ FILE <file#> [,<rec#>]: <variable list>

where <file#> and <rec#> are both <numeric

expressions

Note that a variable on the <variable list> may

refer to an array, and in that case a whole

array of data can be retrieved in a single

execution of a READ FILE statement

DIM NAME$(1OO) OF 30
READ FILE 2: NAME$

Values for the whole array NAME$ is retrieved

from the sequential file signed on as file

number 2.

READ FILE 4,RECN0: NAME$,OWNER$,DEST$,CARGO*NO

The statement reads from record no. RECNO in the

file opened as no. 4. See also OPEN, WRITE,

PRINT, INPUT, and CLOSE.

Marks formal parameters to be called by

reference. See PROCEDURES AND PARAMETERS and

FUNC.

Initiates comments. The interpreter converts it

into the symbol "//"• A comment may be placed on

a line of its own (like a REM statement in

BASIC) or at the end of any other statement, and

is initiated with the symbol "//".

IF CH$ IN VOWELS$ THEN //IS IT A VOWEL?

COUNT1VOWELS:+1

ELSE //MUST BE A CONSONANT

COUNT1CONSONANTS:+1

ENDIF //LETTER

EXAMPLES:

ATN

AUTO

BASIC

sign of assignment (:=), the system

automatically converts "=" into ":=".

VOLUME:=LENGTH*WIDTH*HIGHT/3

COUNTER:+INCREMENT

ADDRESS$:=NAME$+"@!f+STREET$+lf@"+CITY$+M*fl

MAX#:=32128

A standard function. ATN(X) returns the

arctangent in randians of X.

Makes the COMAL system generate line numbers

automatically as a program is entered. Its

syntax is:

AUTO [<line number>] [,<increment>]

where <increment> is a positive integer.

COMMAND GENERATES LINE NUMEERS:

AUTO 0010, 0020, 0030, 0040, etc.

AUTO 110 0110, 0120, 0130, 0140, etc.

AUTO ,2 0010, 0012, 0014, 0016, etc.

AUTO 110,2 0110, 0112, 0114, 0116, etc.

If a valid line number is added to the word

AUTO, the generated sequence of numbers will

start with the number thus indicated.

If a positive integer preceded by a comma is

added, the system will use this integer as an

increment in line numbers.

AUTO mode is switched off by pressing the RETURN

key twice in succession.

Makes the computer switch back to the built-in

BASIC interpreter. The syntax of the command is

BASIC

To return to COMAL the interpreter must be

reloaded.

COMAL FROM A TO Z by Borge Christensen 50 15 COMAL FROM A TO Z by Borge Christensen 15

CASE STRUCTURE

Note: the C64 reset function sometimes fails

when the BASIC command is used. To be sure that

the system is truly reset to BASIC mode press

<STOP>+<RESTORE> once or twice.

The CASE structure controls multiway branching.

The syntax of the case structure and its

individual statements is given below:

CASE <case selector> [OF]

{WHEN <choice list>

<statement list>}

[OTHERWISE

<statement list>]

ENDCASE

The <case selector> is an <expression>. The

<choice list> is a list of <expressions>. The

expressions on the <choice list> following a

WHEN statement must be of the same type (real,

integer, or string) as the <case selector>.

If the value of the <case selector> is equal to

the value of one of the expressions on a <choice

list> the corresponding <statement list> is

executed.

As soon as a <statement list> has been executed,

the COMAL interpreter transfers control to the

statement following the ENDCASE statement, or

stops if no more statements follow. If the value

of the <case selector> does not match any of the

expressions on the choice lists the <statement

list> following OTHERWISE is executed, but if no

OTHERWISE statement is present, an error message

is emitted and execution of the program is

stopped.

On the listing of a program statements in a

<statement list> are indented automatically

relative to the control statements:

RANDOM

READ

16 COMAL FROM A TO Z by Borge Christensen 16

mainline program, since the procedure is closed.

In fact W$ is taking over the part of "outer

B$". See also FUNC and CLOSED.

Indicates that a file is opened for random

access. See OPEN.

Retrieves data from a data queue set up in DATA

statements. Its syntax is

READ <variable name> {,<variable name>}

As data elements are read a data pointer is

moved to point to the next element. When the

last element in the queue has been read a

built-in Boolean function EOD (End-Of-Data)

returns a value of TRUE (see STANDARD

FUNCTIONS).

The data pointer may be reset to the beginning

of a queue by means of the RESTORE statement

(See RESTORE).

READ NAME$,TEL

...

DATA "JOHN NELSON",34

After the READ statement has been executed,

NAME$ is assigned the value "JOHN NELSON" and

TEL is set to 34. Note that a string constant

must be read by a string variable, and a numeric

constant must be read by a numeric variable. The

types of the variables in the READ statement

must be in accordance with the types of the

constants in the queue. See also DATA.

N0:=1

REPEAT

READ NAME$(NO),TEL(NO)

N0:+1

PRINT NAME$(NO);

PRINT "HAS TEL.NO.";TEL(NO)

UNTIL EOD

DATA "MAX ANDERSSON",34,"PETER CRAWFORD",45

DATA "ANNI BERSTEIN",12,"LIZA MATZON",56

49 COMAL FROM A TO Z by Borge Christensen 49

must refer to a one dimensional array. If the

call is to be valid, MARKS must be the name of a

one dimensional array. With a reference

parameter no assignment take place during the

call, but the formal parameter in question is

simply used by the procedure as a "nickname" for

the actual parameter. So in this case MARKS will

actually "suffer" from anything WRITERECORD does

to M. The following metaphor might help you to

remember what a reference parameter is: A boy

named JEREMY is called JIM at home - i.e.

locally. If JIM is overfed by his mother the

world will see JEREMY grow fat. The procedure

WRITERECORD might also be headed

PROC WRITERECORD(R,REF N$,REF M())

The only difference from the former heading is

that N$ is now a parameter to be called by

reference. N$ will only refer to NAME$ and no

assignment takes place. This of course speeds up

the process and saves storage.

A procedure with this heading is given

PROC PRINTOUT(REF TABLE(,))

The (,) following the name TABLE indicate that

TABLE must refer to a two dimensional numerical

array. Thus (,,) would indicate reference to a

three dimensional array, and so forth.

PROC BACKWARDS(REF W$) CLOSED

LN:=LEN(W$)

DIM B$ OF LN

FOR I:=LN TO 1 STEP -1 DO B$:+W$(l)

W$:=B$

ENDPROC BACKWARDS

//
DIM B$ OF 30

INPUT "WORD (MAX. 30 CHAR.): ": B$

BACKWARDS(B$)

PRINT B$

The string B$ declared in the procedure has

nothing to do with the string B$ declared in the

CAT

CASE GUESS OF

WHEN 1,2,3,4,5

C0L0UR$:="RED"

FACTOR:=1.5

WHEN 6,7,8

COLOUR$:="YELLOW"

FACTOR:=3

WHEN 9

COLOUR$:="BLUE"

FACTOR:=10

ENDCASE

If the <case selector> GUESS is equal to 1, 2,

3,4, or 5, the first case is executed. If GUESS

is equal to 6, 7, or 8, the second case is

executed, and if GUESS is equal to 9 the last of

the cases is executed.

CASE MONTH$ OF

WHEN "JAN","MAR","MAY","JUL","AUG","OCT","DEC"

PRINT "THE MONTH HAS 31 DAYS."

WHEN "APR","JUN","SEP","NOV"

PRINT "THE MONTH HAS 30 DAYS."

WHEN "FEB"

IF YEAR MOD 4=0 THEN

PRINT "THE MONTH HAS 29 DAYS"

ELSE

PRINT "THE MONTH HAS 28 DAYS"

ENDIF

OTHERWISE

PRINT "OLD MAN TURNS OVER IN HIS GRAVE."

ENDCASE

Displays the contents of the diskettes. Its

syntax is

CAT [<drive no.>]

The command

CAT

causes the system to display catalogs of all

diskettes mounted in disk drive unit 8. The

command

48 COMAL FROM A TO Z by Bbrge Christensen 48 17 COMAL FROM A TO Z by Borge Christensen 17

CHAIN

CHR$

CLOSE

CLOSED

CAT 0

shows the catalog of the diskette in drive 0,

unit 8.

Loads a program stored on disk and runs it. Its

syntax is

CHAIN <file name> [,<unit no.>]

If <unit no.> is not specified, disk unit number

8 is used. Programs already in main storage will

be deleted when the CHAIN statement is invoked.

Only programs stored by means of the SAVE

command can be retrieved via CHAIN.

CHAIN "UPDATE"

loads the program named "UPDATE" from drive 0,

unit 8, and runs it. See also SAVE and LOAD.

A standard function. CHR$(X) returns the

character whose ASCII value is X.

Closes data files. Its syntax is

CLOSE [FILE] [<file number>]

The statement (or command)

CLOSE

closes all files that have been opened. The

following statement (or command) closes file

number 3 only.

CLOSE 3

The keyword FILE is added automatically by the

interpreter if not entered by the user. See also

OPEN, INPUT, PRINT, READ, WRITE.

If the keyword CLOSED terminates the procedure

heading, all variables in the procedure will be

local. Normally this is only the case with the

parameters.

18 COMAL FROM A TO Z by Borge Christensen 18

Actual parameters to be passed by value may be

constants, variables, or expressions, as long as

they are ready to "deliver a value" on request,

i.e. whenever a call is invoked. The procedure

TRY might be called by statements like

TRY(1,9) or TRY(P-1

PROC BACKWARDS(W$)

LN:=LEN(W$); B$:=""

FOR I:=LN TO 1 STEP -1 DO B$:+W$(l)

ENDPROC BACKWARDS

The above procedure is called from these

mainlines:

DIM B$ OF 30

INPUT "ENTER WORD (MAX. 30 CHAR.): ": B$

BACKWARDS(B$)

PRINT B$

The value of B$ is passed to W$ during the call.

Note that W$ is not declared explicitly. When a

string variable is used as a formal parameter it

is automatically given the length necessary to

hold the actual string value passed to it. When

the procedure is finished the part of memory

occupied by W$ is set free.

A procedure is headed

PROC WRITERECORD(R,N$,REF M())

and is called by

WRITERECORD(STUDENTNO,NAME$,MARKS)

In this example R and N$ are formal value

parameters, and during the call they are

assigned the values of STUDENTNO and NAME$,

respectively. The

REF M()

denotes a formal parameter M that is called by

reference. The () following M indicates that M

47 COMAL FROM A TO Z by Borge Christensen 47

ENDPROC is supplied automatically by the system

during prepass if not entered by the programmer.

The <formal parameter list> is specified as

<formal parameter> {,<formal parameter>}

where a <formal parameter> could be either

[REF] <variable identified or

REF <variable identifier>({,})

If the keyword REF is used before a parameter it

is passed by reference, otherwise it is passed

by value. Arrays of any type can only be passed

by reference.

Example: A procedure that starts with this

statement

PROC TRY(I,J)

called with:

TRY(FIRST,LAST)

In this case the identifiers I and J in the

procedure head are formal parameters, and a

value is assigned to each of them when the

procedure is called. The identifiers FIRST and

LAST referred to in the calling statement are

actual parameters and must be defined whenever

the statement comes to be executed. During the

procedure call, I is assigned the value of FIRST

(the value of FIRST is "passed" to I), and J is

assigned the value of LAST. Since actual values

are passed, I and J are called value parameters.

But there is more to it. I and J will be treated

as local variables to the procedure TRY, and

that means that they will not be known to the

"world" outside the procedure, and therefore

they will not be confused with variables I and

J, if any, in other parts of the program. Also

when the procedure is finished any trace of

local variables is removed.

CON

COS

DATA

PROC WINDOW(X,Y) CLOSED
SCREEN(X,1)

FOR I:=1 TO Y-X+1 DO ERASE1LINE(l)

SCREEN(X,1)

ENDPROC WINDOW

//
PROC SCREEN(L,C) CLOSED

X:=984+L*4O

POKE 209,X MOD 256 //LINE LOW BYTE

POKE 210,X DIV 256 //LINE HIGH BYTE

POKE 211,C-1 //COLUMN

ENDPROC SCREEN

//
PROC ERASE1LINE(L) CLOSED

SCREEN(L,1)

FOR I:=1 TO 40 DO PRINT " ",

ENDPROC ERASE1LINE

The variables X, Y, L, C, and I are all local,

X, Y, L, AND C because they are parameters and

I because the procedures are closed. Thus the X

used in SCREEN and the X used in WINDOW are

different objects. The same goes for I in WINDOW

and ERASE1LINE. See also PROCEDURES AND

PARAMETERS and FUNC.

Restarts a program which has been stopped.

CON

Due to the internal linking of structures in a

COMAL program, the CON command cannot be used

after deletion or insertion of statements or

introduction of new variables. See also STOP.

A standard function. COS(X) returns the cosine

of X (X in radians).

A DATA statement is used to hold numeric or

string constants that may be retrieved in a READ

statement. Its syntax is:

COMAL FROM A TO Z by Borge Christensen 46 19 COMAL FROM A TO Z by Borge Christensen 19

DEL

DELETE

DATA <value> {,<value>}

where <value> is a <numeric constant> or a

<string constant>. See also EOD, READ, and

RESTORE.

REPEAT

READ NAME$,TEL

FOUND:=(THISNAME$=ft!AME$)

UNTIL FOUND OR EOD

DATA "COLLINS",23,"JACOBS",34,"HUDSON",45

DATA "KILROY",14,"ATHERTON",10,"BRAMER",15

Removes one or more lines from a program in main

storage:

DEL [<line number> [-[<line number>]j] or

DEL -<line number>

COMMAND RESULTS

DEL 100 Removes line 100 from program

DEL 100-200 Removes lines between 100 and

200 inclusive

DEL -300 Removes all lines up to and

including 300

DEL 300- Removes all lines numbered 300

or greater

Important note. A line cannot be removed by just

giving its line number. The DEL command should

not be confused with the DELETE command which is

used to remove files from the disk.

Removes files from a disk. Its syntax is

DELETE <file name>

The <file name> must include the drive number.

Thus the command

DELETE "O:MYPROG"

deletes the file "MYPROG" stored on the diskette

in drive 0, unit 8.

20 COMAL FROM A TO Z by Borge Christensen 20

point, if any, and a minus sign can be

introduced to be displayed if the value of the

number is negative.

PRINT USING " ### ####.##»: A,B

If A equals 23.6 and B equals 234.567 the

following output is produced:

24 234-57

If A is equal to 1234 and B has a value of 546

the following output is produced:

*** 546.00

with the three *fs indicating that there is an

overflow in the format.

PRINT USING "THE ROOT IS: -##.##": -B/2/A

If B is equal to 15.748 and A is equal to 7.2

the statement produces the following output:

THE ROOT IS: -1.09

If B equals 234.67 and A is equal -23.3 the

statement produces this output:

THE ROOT IS: 5.04

PROCEDURES AND PARAMETERS.

The PROC statement is used as the first

statement - or head - of any user defined

procedure. The syntax of a procedure is

PROC <procedure identifier> <head appendix>

<procedure body>

ENDPROC [<procedure identifier^

The <head appendix> is specified as

[(<formal parameter list>)] [CLOSED]

The <procedure identified is an <identifier>,

the <procedure body> is made up of COMAL

statements. The <procedure identified following

45 COMAL FROM A TO Z by Borge Christensen 45

PRINT USING

<print list> and <end> are as specified for

PRINT, <rec#> is a <numeric expressions A file

that has been created using PRINT FILE is of

type SEQ and data from it may be retrieved by

means of INPUT FILE.

OPEN FILE 4,"PERSONS",UNIT 1, WRITE

FOR N0:=1 TO MAXNO DO

PRINT FILE 4: NAME$(NO)

PRINT FILE 4: ADDR$(NO)

PRINT FILE 4: PAYCD(NO)

ENDFOR NO

CLOSE

The program stores data sequentially on a

cassette in the file signed on as number 4. The

data thus stored may be retrieved by means of

the following:

OPEN FILE 6,"PERSONS",UNIT 1, READ

FOR J:=1 TO MAX DO

INPUT FILE 6: NAME$(j)

INPUT FILE 6: ADDR$(j)

INPUT FILE 6: PAYCD(j)

ENDFOR J

CLOSE

Normally PRINT FILE and INPUT FILE are only used

for sequential data files on cassette. See also

READ, WRITE, and OPEN.

Formats output of numbers. The syntax is

PRINT USING <format info>: <using list>[<end>]

where <format info> is a <string expression> and

<end> is as specified for PRINT. The <using

list> is

<numeric expression> {,<numeric expression>}

The <format info> can contain texts and format

fields. A format field is a string that serves

as a model for the printout af numeric values.

The hash mark (#) reserves a digit place, the

dot (.) specifies the location of the decimal

DIM

Declares strings and arrays of numerics and

strings. Its syntax is

DIM <declaration> {,<declaration>}

A <declaration> could be a <numeric declaration

as in

DIM TABLE(-1:1OO)

or a <string declaration> as in

DIM NAME$(0:20) OF 30

Since the DIM statement is very versatile and

powerful, it is not all that simple to give a

detailed description of its syntax. Instead we

shall look at some examples. The statement

DIM TABLE(-1:100),MARKS(1000:1500,8:10)

declares an array of real numbers, named TABLE,

with indices ranging from -1 to 100, and a two

dimensional numeric array, named MARKS, with

indices ranging from 1000 to 1500 and 8 to 10.

You may use any <numeric expression> for lower

bound and upper bound, as long as the value

returned for the lower one is smaller than or

equal to the value returned for the upper one.

Non-integer values are truncated. If no lower

bound is given the interpreter uses 1 in its

place. Thus the statement

DIM JOBCODE(IOO)

declares an array of numerics with indices

ranging from 1 to 100 and is totally equivalent

to

DIM JOBCODE(1:100)

The statement

DIM NAME$ OF 30, ANSW$ OF 3

44 COMAL FROM A TO Z by Borge Christensen 44 21 COMAL FROM A TO Z by Eorge Christensen 21

DIV

DO

EDIT

ELIF

ELSE

END

ENDCASE

ENDFOR

declares two single string variables such that

the first one may hold up to 30 characters and

the second one up to 3 characters. Single string

variables must be declared. The following

statement

DIM PUPIL$(30:100,8:10) OF 30

declares an array of strings with indices

ranging from 30 to 100 and 8 to 10 where each

component may hold up to 30 characters.

An array may have any number of dimensions.

An operator that denotes integer division. See

also EXPRESSIONS.

used with FOR and WHILE statements. See FOR and

WHILE.

Displays a list of the program presently in

workspace, but without the structured

indentation invoked by the LIST command. The

syntax is:

EDIT [<line number> [-[<line number>]]] or

EDIT -<line number>

The EDIT command is used when editing to avoid

including indent spaces on continued screen

lines caused by the automatic indentation of

lines that are wrapped around. See also LIST.

Used with the IF statement. See IF.

Used with the IF statement. See IF.

Stops execution of a program. See also STOP.

Terminates the last block in a CASE multiway

branching structure. See CASE.

Terminates the block controlled by a FOR

statement. See FOR.

PRINT FILE

The <print element> is an <expression> or the

TAB function, and <separator> is either a comma

(,) or a semicolon (;). If a semicolon is used

an extra space is output between one <print

element> and the next; if a comma is used no

extra spaces are output unless otherwise stated

in a ZONE statement (see ZONE). The <end> is the

same as <separator>.

PRINT "THIS IS THE ",3,!f. TIME"

outputs

THIS IS THE 3. TIME

The same output results from

PRINT "THIS IS THE";3,". TIME"

The next statement:

PRINT "PUPIL ",N0," NAME IS ",NAME$(N0)

may output the following

PUPIL 5 NAME IS ROY MANNING

The same output may be produced by

PRINT "PUPIL";

PRINT NO," NAME IS";

PRINT NAME$(NO)

Note the use of semicolon as <end> in this case.

If comma is used you get

PRINT "PUPIL ",

PRINT NO," NAME IS ",

PRINT NAME$(NO)

Stores data on disk or tape. Its syntax is

PRINT FILE <file#>[,<rec#>]:<print list>[<end>]

22 COMAL FROM A TO Z by Borge Christensen 22 43 COMAL FROM A TO Z by Borge Christensen 43

OR

ORD

OTHERWISE

PASS

PEEK

POKE

PRINT

250 bytes long. See also CLOSE, INPUT, PRINT,

READ, WRITE.

A Boolean operator that denotes disjunction. See

EXPRESSIONS.

A standard function. ORD(X$) returns the ASCII

value of the first character held by X$.

Used in the CASE structure to indicate a default

case. See CASE.

Passes strings to the disk drive. The strings

are interpreted as commands by the disk

operating system (see your disk manual for disk

commands)• Its syntax is

PASS <string expression>

PASS "NO:CONNIE'S DISK,01"

command to the disk

passes a format

A standard function. PEEK(x) returns the

contents (0-255) of a memory location X (X in

the range 0-65535) in decimal representation.

Assigns values to specified locations in memory.

Its syntax is:

POKE <location>,<contents>

where <location> is a <numeric expression> that

must return a value from 0-65535, and <contents>

is a <numeric expression> that must return a

value from 0-255 (one byte).

POKE 650,128 makes C64 keys repeat

42

Outputs data to the screen or the printer. Its

syntax is

PRINT [<output list>] [<end>]

where <output list> is

<print element> {<separator> <print element>}

COMAL FROM A TO Z by Borge Christensen 42

ENDFUNC

ENDIF

ENDPROC

ENDWHILE

ENTER

LOD

EOF

23

Terminates the definition of a user defined

function. See FUNC.

Terminates the last block of statements in an IF

branching. See IF.

Terminates the definition of a procedure. See

PROCEDURES AND PARAMETERS.

Terminates the block of statements controlled by

a WHILE statement. See WHILE.

Enters a program stored on disk or tape into

workspace:

ENTER <file name> [,<unit no.>]

Default value of <unit no.> is 8. The command

ENTER "0:MYPR0G.L",9

is used to enter the program "MYPROG" found on

drive number 0, unit number 9, whereas the

command

ENTER f!Y0URPR0G",1

retrieves the program "YOURPROG" found on the

cassette in unit number 1 (datasette).

Only programs stored by means of the LIST

command may be retrieved with the ENTER command.

Important note. Program lines that are taken in

by the ENTER command are merged into an existing

program in the same way as lines typed from the

keyboard. See also LOAD, LIST and SAVE.

A standard Boolean function. EOD returns a value

of TRUE (numeric 1) it the last element in a

data queue has been read, otherwise a value of

FALSE (numeric 0) is returned. See also READ.

A standard Boolean function. EOF(X) returns a

value of TRUE (numeric 1) if the end-of-file in

COMAL FROM A TO Z by Borge Christensen 23

ESC

EXEC

the sequential file X has been reached,

otherwise a value of FALSE (numeric 0) is

returned. See also READ and INPUT.

OPEN 2,"PERSONS",READ

WHILE NOT E0F(2) DO

READ FILE 2: NAME$,ADR$,CITY$

PRINT NAME$

PRINT ADR$

PRINT CITY$

ENDWHILE

CLOSE

The function ESC returns a value of TRUE

(numeric 1) if the STOP key is depressed,

otherwise it returns a value of FALSE (numeric

0). The ESC function is not active unless a TRAP

ESC- statement is in effect. See also TRAP.

Indicates a procedure call. The syntax of a

procedure call is

[EXEC] <identifier>(<actual parameters list>)

The normal way of calling a procedure is by

simply stating the name of the procedure

followed by a parameter list, if any. But for

sake of compatibility with earlier versions of

COMAL the dummy keyword EXEC may still be used.

Normally the EXEC is suppressed on the listing

of the program, but by using the SETEXEC command

(see SETEXEC) you can force the interpreter to

display it.

The following statements

PRINT0UT(NAME$,ADDRESS$)

EXEC PRINTOUT(NAME$,ADDRESS$)

are equivalent. They are both calling the

procedure PRINTOUT passing the parameters NAME$

and ADDRESS$. See PROCEDURES AND PARAMETERS.

COMAL PROM A TO Z by Eorge Christensen 24

where <secondary addr> is a <numeric expression>

that must return a value from 0-15. Finally

<type> is READ for sequential reading, WRITE for

sequential writing, APPEND for continued

sequential writing, or RANDOM <record length>

for reading to or writing from a direct access

file (random file), where <record length> is a

<numeric expression> that must return a positive

value.

OPEN FILE 3,"MARKS",READ

assigns the file "MARKS" as file number 3. The

keyword READ indicates that a sequential file is

referred to, and that data may be retrieved from

it, starting from the beginning of the file.

OPEN FILE 4,"@0:MARKS",WRITE

The file "MARKS" is assigned file number 4. The

keyword WRITE indicates that a sequential file

is referred to, and that data may be stored in

it, starting from the beginning of the file. The

"@0:f! token indicates that if the file exists

already then it may be overwritten. The same

effect may be obtained by using these

statements:

DELETE "0:MARKS"

OPEN FILE 4,"MARKS",WRITE

The keyword APPEND indicates that a sequential

file is referred to, and that data may be stored

in it, starting from the end of the existing

file, thus appending more data to it.

OPEN FILE 6,"MARKS",APPEND

The file "MARKS" is assigned file number 6.

OPEN FILE 3,"CLIENTS",RANDOM 250

With this statement the direct access file

"CLIENTS" is signed on for both reading and

writing. The constant 250 following the keyword

RANDOM indicates that each record can be up to

CORAL FROM A TO Z by Borge Christensen 41

LOG

MOD

NEW

NEXT

NOT

NULL

OF

OPEN

A standard function. LOG(X) returns the natural

logarithm of X.

An operator that returns the remainder from

integer division. See also EXPRESSIONS.

Clears the whole workspace of program and data.

Its syntax is

NEW

Automatically converted into ENDFOR by the

interpreter. See also ENDFOR, FOR.

A Boolean operator that denotes negation. See

also EXPRESSIONS.

The NULL statement does nothing. Its syntax is

NULL

It might seem a bit strange or even luxurious to

have a "no-op" statement like that to perform

the "empty action", but it can be inserted in

some special cases to satisfy the syntax of

COMAL. The example below shows how:

FOR I :=1 TO 750 DO NULL

Ends the CASE header statement and is part of

the declaration of string variables or string

arrays. See also CASE and DIM.

Opens and assigns reference numbers to files.

Its syntax is

OPEN FILE <file#>,<filename>[,<dev>][,<type>]

<file#> is a <numeric expression> that must

return a value from 1-255 (but the COMAL System

reserves files 1 and 255 for system use), <dev>

is

UNIT <unit#> [,<secondary addr>]

EXP

EXPRESSIONS

A standard function. EXP(X) returns the value of

e (nat. log. base) to the power of X (thus being

the inverse of nat. log.)

A <numeric expression^ can contain constants,

variables, and numeric functions, used with

parentheses and the following operators

according to the usual rules of mathematics:

+

-

/
DIV

MOD

+

monadic +

monadic -

power

multiplication

division

integer division (see below)

remainder from division (see below)

addition

subtraction

+A

-A

A^B

A*E

A/B

A DIV B

A MOD B

A+B

A-B

If A and E are integers then A MOD B is the so

called principal remainder from division of A by

B, i.e. the smallest non-negative integer R such

that

A = B*Q + R

and A DIV B is the quotient Q.

Numeric values may be compared by means of the

following relational operators:

< means "less than"

<= means "less than or equal to"

= means "equal to"

>= means "greater than or equal to"

> means "greater than"

<> means "not equal to"

Numeric expressions may be used as Boolean

expressions. A numeric value equal to zero is

interpreted as FALSE, whereas any value other

than zero is interpreted as TRUE. A logical

operation returns a numeric 1 for TRUE and 0 for

FALSE.

40 COMAL FROM A TO Z by Borge Christensen 40 25 COMAL FROM A TO Z by Borge Christensen 25

The following Boolean operators are available:

NOT logical negation. NOT A returns a value of

FALSE, i.e. numeric 0, if A has a value of

TRUE, i.e. a numeric value different from

zero, but a value of TRUE (numeric 1) if A

has a value of FALSE (is equal to zero).

AND logical conjunction. A. AND E returns a value

of TRUE if A and B are both TRUE, otherwise

a value of FALSE is returned.

OR logical disjunction. A OR B returns a value

of FALSE if A and B are both FALSE,

otherwise a value of TRUE is returned.

A <string expression> may consist of string

constants, string variables, string array

elements, or string functions concatenated by

means of the + sign. String expressions may be

compared (lexicographical order) by means of the

operators:

< means "comes before11

<= means "comes before or is equal to"

= means "is equal to"

>= means "comes after or is equal to"

> means "comes after"

<> means "is not equal to"

Note that strings with relational operators make

up expressions that return numerical values; 1

for TRUE and 0 for FALSE.

IN is used for string pattern matching. The

expression A$ IN B$ returns a value of zero

(i.e. FALSE) if A$ is not found as a

substring of B$, but if A$ is found as a

substring of B$ the expression returns the

position of the first matching character.

If NAME$ has a value of "LOTTIE CHRISTENSEN"

then the expression

"TIE" IN NAME$

LOAD

LIST "MYPROG.L"

stores a program now in main storage on disk as

a program file with the name of "MYPROG.L". The

program is stored as source code, and may

therefore later be merged with another program

in main storage (see ENTER). Since the LIST

command handles source code directly, this

version is also permitted:

LIST 100-200 "YOURPROG.L"

In this case line 100-200 are stored in a file

named "YOURPROG.L". In order to easily

distinguish files LISTed to disk from those

SAVEd to disk, it is suggested to end the file

name with .L.

If another device than disk unit no. 8 is used,

<unit no.> must be added to the command.

A program that has been stored by the LIST

command has type SEQ and may be opened as any

other sequential file and read by an INPUT FILE

statement. See also PRINT FILE, ENTER, and EDIT.

Retrieves programs from disk or tape. Its syntax

is

LOAD <file name> [,<unit no.>]

The command

LOAD "MAINPROG"

will load the program "MAINPROG11 into workspace.

If you want to retrieve the program from a

device other than disk unit no. 8, a unit no.

must be specified:

LOAD "Y0URPR0G",1

will load the program "YOURPROG" from cassette

into workspace. See also CHAIN, SAVE, LIST, and

ENTER.

26 COMAL FROM A TO Z by Borge Christensen 26 39 COMAL FROM A TO Z by Borge Christensen 39

LEN

LINEFEED

LIST

If BREAK assumes a value of TRUE (value not

equal to 0) control is transferred to the label

statement. See also GOTO.

A standard function. LEN(X$) returns the current

length (number of characters) of the string

value of X$.

The command

LINEFEED+

makes the system emit a linefeed after each

carriage return, when output is to the printer.

The command

LINEFEED-

disables this facility, i.e. no linefeed is sent

out after a carriage return. Default mode is

LINEFEED-.

Displays a program or a part of a program

residing in workspace. The syntax is:

LIST [<line number>[-[<line number>]]]

LIST -<line number>

or

where <name> is the name of a function or a

procedure.

COMMAND RESULT

LIST List the whole program

LIST 100 List line numbered 100

LIST 100-200 List all lines between 100 and

200 inclusive

LIST -300 List all lines up to and

including 300

LIST 300- List all lines numbered 300 or

greater

The LIST command may also be used to store

programs on disks or tapes. The command

FALSE

FILE

FOR STRUCTURE

returns a value of 4 (TRUE).

The priority of the above operators is:

(power)

><> in

* /

< <=

NOT

AND

OR

DIV

=

MOD

>=

To improve the readability of programs, two

constants, TRUE and FALSE, are predefined. TRUE

is equal to 1, and FALSE is equal to 0.

See OPEN, CLOSE, INPUT, PRINT, READ, and WRITE.

The syntax of the FOR loop structure is:

FOR <for range> [<step>] DO

<stateraent list>

ENDFOR [<control variable>]

where <for range> is

<control variable>:=<initial value> TO <final

value>

and <step> is

STEP <step value>

The <control variable> is a <numeric variable>,

and <initial value>, <final value>, and <step

value> are <numeric expressions>.

The <control variable> following the keyword

ENDFOR has been bracketed to indicate that it is

supplied automatically by the interpreter if not

entered by the programmer. To ensure

compatibility with earlier versions of COMAL the

keyword NEXT is accepted on entry as well as

ENDFOR. In a listing the keyword ENDFOR is

displayed.

38 COMAL FROM A TO Z by Borge Christensen 38 27 COMAL FROM A TO Z by Borge Christensen 27

28

I OR X:=1 TO 5 DO

SUM:=SUM+X

PRINT SUM;

ENDFOR X

First the control variable X is set to 1 and the

two statements in the range of the loop are

executed. Then X is set to 2, and the statements

are executed again. This goes on as long as X is

not greater than the final value 5. When X

assumes a value of 6 execution of the loop is

stopped and the interpreter starts on the

statement following the ENDFOR statement. Note

that X has a value of 6, i.e. <final value>+1,

when the loop terminates. Also note that this

value is not actually used in the loop.

FOR N:=1 TO 10 STEP 2 DO

SUM:=SUM+N

PRINT SUM

ENDFOR N

In this example N assumes the values 1, 3, 5, 7,

9, and 11, since a step value of 2 is

prescribed. Note that the control variable N has

an unused value of 11 when execution of the loop

terminates.

iOR P:=10 TO 1 STEP -1 DO

PRINT TEXT$(1:P)

ENDFOR P

The statement in the loop is executed for P

equal to 10, 9, 8, ..., 1. The termination value

of P is 0 and not used in the loop.

A short FOR loop is available. Its syntax is

FOR <for range> [<step>] DO <stateinent>

No ENDFOR statement is allowed in this case. The

one-line FOR statement may also be used as a

command.

FOR P:=10 TO 1 STEP -1 DO PRINT TEXT$(1:P)

COMAL FROM A TO Z by Borge Christensen 28

IDENTIFIERS

INT

KEY$

LABELS

VIDEO:=3

OPEN FILE VIDEO,"",UNIT 3,READ

SELECT "LP:"

IOR R0W:=1 TO 25 DO

INPUT FILE VIDEO: TEXT$

PRINT TEXT$

ENDFOR ROW

CLOSE VIDEO

SELECT "DS:"

Used to name variables, labels, functions, and

procedures. An identifier may contain as many as

78 characters, all significant. The first

character must be a letter, the following may be

letters, digits, or any one of the characters:

apostrope (f), [,], backslash, or left arrow.

Here are some valid identifiers:

MAXNUMBER, HOUSENO, NUMBER1OF1VOWELS, N1, N2,

N3, CREATE1 RECORD, GET1DIGIT

A standard function. INT(X) returns the integer

part of X, i.e. the greatest integer less than

or equal to X.

A standard function. It returns the first ASCII

character in the input buffer. If no key has

been depressed, a CHR$(O) is returned.

PROC GETfCHAR(REF T$)

T$:=CHR$(O)

WHILE T$=CHR$(O) DO T$:=KEY$

ENDPROC GET1CHAR

Used as a jump address for a GOTO statement. The

syntax of a label statement is

<identifier>:

Note that GOTO <line number> is not allowed.

IF BREAK THEN GOTO HALT

...

HALT:

STOP

37 COMAL FROM A TO Z by Borge Christensen 37

INPUT FILE

INPUT "FROM: ":FIRST$;

INPUT " TO: ":LAST$

The semicolon terminating the first statement

prevents the carriage return and linefeed after

the first string has been typed in. The result

of a program-user dialog might look like this:

FROM: 12.DEC.80 TO: 23.DEC.80

The RETURN key was pressed after each entry.

Note that a string variable in an <input list>

will pick up all characters entered from the

keyboard including commas and quotemarks.

Therefore you can not have more than one string

variable in the list, and it must always be the

last one (unless the user hits the RETURN key

after each string requested).

Used to retrieve data from a file that was

created using PRINT FILE. It will also allow

characters to be read directly off the screen.

The syntax of an INPUT FILE statement is:

INPUT FILE <file#>[,<rec#>]:<input list>[<end>]

where <input list> is a list of variable

identifiers, <rec#> is a <numeric expression>

and <end> is comma (,) or semicolon (;).

OPEN FILE 3,MMYDATA",READ

REPEAT

INPUT FILE 3: LINE$

PRINT LINE$

UNTIL E0F(3)
CLOSE

This program above reads and displays the

contents of the sequential file "MYDATA". The

following program reads the screen line by line

and prints a hard copy of its contents:

FUNCTIONS

This loop is functionally equivalent to the

previous one only this time the short form is

used.

FOR T:=1 TO 750 DO NULL

This loop waits till COMAL has counted from 1 to

750.

The FUNC statement is used as the first

statement - or head - of any user defined

function. The syntax is

FUNC <function identifier> <head appendix>

<function body>

ENDFUNC [<function identifier^

The <function identifier> is a <variable

identified and the <head appendix> is specified

as:

[(<formal parameter 1ist>)] [CLOSED]

The <function body> is made up of COMAL

statements.

A function value must be returned in a RETURN

statement (see RETURN), and at least one such

statement must be present in the <function

body>.

The <function identified following ENDFUNC is

supplied automatically by the system during the

prepass if not entered by the programmer.

Note: if you are not very familiar with

multi-line functions and parameters, it might be

advisable that you read the section about

PROCEDURES AND PARAMETERS before continuing the

present one.

PRINT DISTANCE(10,-4)

The statement above calls the function below:

36 COMAL FROM A TO Z by Borge Christensen 36 29 COMAL FROM A TO Z by Borge Christensen 29

FUNC DISTANCE(X,Y)

IF X<=Y THEN

RETURN Y-X

ELSE

RETURN X-Y

ENDIF

ENDFUNC DISTANCE

The values of the actual parameters 10 and -4

are assigned ("passed11) to the formal parameters

X and Y, respectively, and the value 14 is

returned. The PRINT statement displays 14.

FUNC P0S(A$,B$)

RETURN A$ IN B$

ENDFUNC POS

This function represents nothing but a renaming

of the IN operator. In some cases such a

renaming could contribute to a better

documentation.

FUNC GCD#(X#,Y#)

IF (X# MOD Y#)=0 THEN

RETURN Y#

ELSE

RETURN GCD#(Y#,X# MOD Y#)

ENDIF

ENDFUNC GCD#

This function returns the GCD (Greatest Common

Divisor) of two integers. Note that the function

itself is of type integer, and that it calls

itself recursively.

FUNC VALUE(A$) CLOSED

LN:=LEN(A$)

ONES:=ORD(A$(LN))-ORD("0")

IF LN=1 THEN

RETURN ONES

ELSE

RETURN ONES+VALUE(A$(1:LN-1))*10

ENDIF

ENDFUNC VALUE

This function also calls itself recursively from

the expression in the last RETURN statement.

30 COMAL FROM A TO Z by Borge Christensen 30

enter a number and press the RETURN key. The

number typed in is assigned as a value to

MAXNUMBER.

INPUT "ENTER NAME: ": NAME$

When this statement is executed the system

displays the user defined prompt

ENTER NAME:

and pauses to let the user type in a string to

be assigned as a value to the variable NAME$.

INPUT NAME$,AGE

When this statement is executed the system

displays its standard prompt "?" and pauses. The

user is expected to type in a string and press

the RETURN key. The string is then assigned to

NAME$ and the system submits another "?" on the

same line and pauses to let the user type in a

number.

INPUT A,B,C

This statement will ask the user to enter three

numbers. The following options may be chosen:

You can enter three numbers like

5 80 34

and then press RETURN. The variable A is then

set to 5, B to 80, and C to 34* You can also

enter the three numbers in the following manner:

5,80,34

and then press RETURN. Finally you may obtain

the same result by entering 5 and press RETURN;

then 80 and press RETURN; finally 34 anc* press

RETURN. In the first two cases only one "?" is

displayed, in the last case three "?" are

submitted.

35 COMAL FROM A TO Z by Borge Christensen 35

IN

INPUT

expressions are also TRUE, but only FREQUENCY(i)

is increased by 1• If on the other hand it is

TRUE that 1O<=OBS and 0BS<20 only the second

assignment is executed. It is easy to see how

this could be used in statistics.

IF CHAR$ IN SET1 OF1 LETTERS$ THEN

IF CHAR$ IN SET10F!VOWELS$ THEN

VOWELS:+1 //ANOTHER VOWEL

ELSE

CONSONANTS:+1 //ANOTHER CONSONANT

ENDIF

ELIF CHAR$=" " THEN

WORDS:+1 //ANOTHER WORD

ELIF CHAR$ IN SET1OF1DIGITS$ THEN

DIGITS:+1 //ANOTHER DIGIT

ELSE

SPECIALS:+1 //ANOTHER SPECIAL

ENDIF

IF JOB=3 THEN PRINTOUT

is functionally equivalent to

IF JOB=3 THEN

PRINTOUT

ENDIF

In both cases the procedure PRINTOUT is called

if JOB has a value of 3.

A Boolean operator used for string matching. See

also EXPRESSIONS.

Used to fetch data from keyboard. Its syntax is

INPUT [<prompt>:] <input list> [<print end>]

where <prompt> is a <string expression>, <input

list> is a list of variable identifiers, and

<print end> is a semicolon (;).

INPUT MAXNUMBER

When this statement is executed, the system

displays the sign "?" and waits for the user to

GOTO

IF STRUCTURE

EUNC HASH(A$,HASHER) CLOSED

LN:=LEN(A$); T:=0

FOR I:=1 TO LN DO T:+0RD(A$(l))

RETURN T MOD HASHER

ENDFUNC HASH

FUNC MEAN(N,REF A()) CLOSED

SUM:=O

FOR I:=1 TO N DO SUM:+A(l)

RETURN SUM/N

ENDFUNC

This function uses an array A passed as a

parameter by reference. See also PROCEDURES AND

PARAMETERS and CLOSED.

The syntax of a GOTO statement is:

GOTO <label>

where <label> is an <identifier>. The GOTO

statement transfers control to a <label

statement> thus defined:

<label>:

IF FATALERROR THEN

PRINT "FATAL ERROR. CANNOT CONTINUE."

GOTO HALT

ENDIF

...

HALT:

STOP

Using a GOTO statement you can jump out of any

structure, but not out of a procedure. If you

try to jump into a structure the result is

unpredictable. Jumping into a procedure may

cause a system break down.

The IF statement is the head of the IF structure

that controls conditional branching. The syntax

of the IF structure and the statements that go

with it is shown in the following diagram:

34 COMAL FROM A TO Z by Borge Christensen 34 31 COMAL FROM A TO Z by Borge Christensen 31

IF <logical expression [THEN]

<statement list>

{ELIF <logical expression [THEN]

<statement list>}

[ELSE

<statement list>]

ENDIF '

where <logical expression is the same as

<numerical expression. The keyword THEN is

supplied automatically by the system if not

entered by the user. The lines in a <statement

list> are automatically indented by the

interpreter on the program listing.

In COMAL you also have a short form of the IF

statement. Its syntax is:

IF <logical expression THEN <stateraent>

Note that no ENDIF is allowed in this case. On

the other hand the keyword THEN must be entered.

IF K=J THEN

W:=A(I); A(I):=A(J); A(j):=W

I:=I+1; J:=J-1

ENDIF

If the expression K=J evaluates to TRUE

(numeric 1) the statement list between IF and

ENDIF is executed. If, however, it returns FALSE

(numeric 0) the statement list is skipped and
control is transferred to the statement

following ENDIF.

IF TRY<3 THEN

PRINT "NO, TRY AGAIN"

ELSE

PRINT "NO, THE ANSWER IS ",RESULT

PRINT "TYPE THAT!"

ENDIF

If the expression TRY<3 evaluates to TRUE, the

statement between IF and ELSE is executed, but

if it returns the value FALSE, the statements

between ELSE and ENDIF is executed. In both

■t

cases control is then transferred to the

statement following ENDIF.

D:=B*B-4*A*C

IF D>0 THEN

PRINT "TWO REAL ROOTS:"

PRINT "X1 = ",(-B+SQR(D))/2/A

PRINT "X2 = ",(-B-SQR(D))/2/A

ELIF D=0 THEN

PRINT "ONE REAL ROOT:"

PRINT "X = ",-B/2/A

ELSE

PRINT "DISCRIMINANT NEGATIVE"

PRINT "NO REAL ROOTS."

ENDIF

If the expression D>0 returns the value TRUE the

first three-statement list is executed, and the

rest is skipped. If, however, it is evaluated to

FALSE, the interpreter evaluates the expression

D=0 following ELIF. It that appears to be TRUE,

the second statement list is executed. If the

second expression also has a value of FALSE,

execution finally falls through to the last

statement list, i.e. the one following the ELSE

statement. Note that never more than one

statement list is executed. This means that if

two expressions may become TRUE, only the

statement list following the first of them is

executed.

IF 0BS<10 THEN

FREQUENCY(1):+1

ELIF 0BS<20 THEN

FREQUENCY(2):+1

ELIF OBS<3O THEN

FREQUENCY(3):+1
ELIF OBS<4O THEN

FREQUENCY(4):+1

ELSE

FREQUENCY(5):+1
ENDIF

In this example it is utilized that one

<statement list> at most is executed. If it is

TRUE than OBS<1O all the rest of the Boolean

32 COMAL FROM A TO Z by Borge Christensen 32 33 COMAL FROM A TO Z by Borge Christensen 33

IF <logical expression [THEN]

<statement list>

{ELIF <logical expression [THEN]

<statement list>}

[ELSE

<statement list>]

ENDIF '

where <logical expression is the same as

<numerical expression. The keyword THEN is

supplied automatically by the system if not

entered by the user. The lines in a <statement

list> are automatically indented by the

interpreter on the program listing.

In COMAL you also have a short form of the IF

statement. Its syntax is:

IF <logical expression THEN <stateraent>

Note that no ENDIF is allowed in this case. On

the other hand the keyword THEN must be entered.

IF K=J THEN

W:=A(I); A(I):=A(J); A(j):=W

I:=I+1; J:=J-1

ENDIF

If the expression K=J evaluates to TRUE

(numeric 1) the statement list between IF and

ENDIF is executed. If, however, it returns FALSE

(numeric 0) the statement list is skipped and
control is transferred to the statement

following ENDIF.

IF TRY<3 THEN

PRINT "NO, TRY AGAIN"

ELSE

PRINT "NO, THE ANSWER IS ",RESULT

PRINT "TYPE THAT!"

ENDIF

If the expression TRY<3 evaluates to TRUE, the

statement between IF and ELSE is executed, but

if it returns the value FALSE, the statements

between ELSE and ENDIF is executed. In both

■t

cases control is then transferred to the

statement following ENDIF.

D:=B*B-4*A*C

IF D>0 THEN

PRINT "TWO REAL ROOTS:"

PRINT "X1 = ",(-B+SQR(D))/2/A

PRINT "X2 = ",(-B-SQR(D))/2/A

ELIF D=0 THEN

PRINT "ONE REAL ROOT:"

PRINT "X = ",-B/2/A

ELSE

PRINT "DISCRIMINANT NEGATIVE"

PRINT "NO REAL ROOTS."

ENDIF

If the expression D>0 returns the value TRUE the

first three-statement list is executed, and the

rest is skipped. If, however, it is evaluated to

FALSE, the interpreter evaluates the expression

D=0 following ELIF. It that appears to be TRUE,

the second statement list is executed. If the

second expression also has a value of FALSE,

execution finally falls through to the last

statement list, i.e. the one following the ELSE

statement. Note that never more than one

statement list is executed. This means that if

two expressions may become TRUE, only the

statement list following the first of them is

executed.

IF 0BS<10 THEN

FREQUENCY(1):+1

ELIF 0BS<20 THEN

FREQUENCY(2):+1

ELIF OBS<3O THEN

FREQUENCY(3):+1
ELIF OBS<4O THEN

FREQUENCY(4):+1

ELSE

FREQUENCY(5):+1
ENDIF

In this example it is utilized that one

<statement list> at most is executed. If it is

TRUE than OBS<1O all the rest of the Boolean

32 COMAL FROM A TO Z by Borge Christensen 32 33 COMAL FROM A TO Z by Borge Christensen 33

IN

INPUT

expressions are also TRUE, but only FREQUENCY(i)

is increased by 1• If on the other hand it is

TRUE that 1O<=OBS and 0BS<20 only the second

assignment is executed. It is easy to see how

this could be used in statistics.

IF CHAR$ IN SET1 OF1 LETTERS$ THEN

IF CHAR$ IN SET10F!VOWELS$ THEN

VOWELS:+1 //ANOTHER VOWEL

ELSE

CONSONANTS:+1 //ANOTHER CONSONANT

ENDIF

ELIF CHAR$=" " THEN

WORDS:+1 //ANOTHER WORD

ELIF CHAR$ IN SET1OF1DIGITS$ THEN

DIGITS:+1 //ANOTHER DIGIT

ELSE

SPECIALS:+1 //ANOTHER SPECIAL

ENDIF

IF JOB=3 THEN PRINTOUT

is functionally equivalent to

IF JOB=3 THEN

PRINTOUT

ENDIF

In both cases the procedure PRINTOUT is called

if JOB has a value of 3.

A Boolean operator used for string matching. See

also EXPRESSIONS.

Used to fetch data from keyboard. Its syntax is

INPUT [<prompt>:] <input list> [<print end>]

where <prompt> is a <string expression>, <input

list> is a list of variable identifiers, and

<print end> is a semicolon (;).

INPUT MAXNUMBER

When this statement is executed, the system

displays the sign "?" and waits for the user to

GOTO

IF STRUCTURE

EUNC HASH(A$,HASHER) CLOSED

LN:=LEN(A$); T:=0

FOR I:=1 TO LN DO T:+0RD(A$(l))

RETURN T MOD HASHER

ENDFUNC HASH

FUNC MEAN(N,REF A()) CLOSED

SUM:=O

FOR I:=1 TO N DO SUM:+A(l)

RETURN SUM/N

ENDFUNC

This function uses an array A passed as a

parameter by reference. See also PROCEDURES AND

PARAMETERS and CLOSED.

The syntax of a GOTO statement is:

GOTO <label>

where <label> is an <identifier>. The GOTO

statement transfers control to a <label

statement> thus defined:

<label>:

IF FATALERROR THEN

PRINT "FATAL ERROR. CANNOT CONTINUE."

GOTO HALT

ENDIF

...

HALT:

STOP

Using a GOTO statement you can jump out of any

structure, but not out of a procedure. If you

try to jump into a structure the result is

unpredictable. Jumping into a procedure may

cause a system break down.

The IF statement is the head of the IF structure

that controls conditional branching. The syntax

of the IF structure and the statements that go

with it is shown in the following diagram:

34 COMAL FROM A TO Z by Borge Christensen 34 31 COMAL FROM A TO Z by Borge Christensen 31

FUNC DISTANCE(X,Y)

IF X<=Y THEN

RETURN Y-X

ELSE

RETURN X-Y

ENDIF

ENDFUNC DISTANCE

The values of the actual parameters 10 and -4

are assigned ("passed11) to the formal parameters

X and Y, respectively, and the value 14 is

returned. The PRINT statement displays 14.

FUNC P0S(A$,B$)

RETURN A$ IN B$

ENDFUNC POS

This function represents nothing but a renaming

of the IN operator. In some cases such a

renaming could contribute to a better

documentation.

FUNC GCD#(X#,Y#)

IF (X# MOD Y#)=0 THEN

RETURN Y#

ELSE

RETURN GCD#(Y#,X# MOD Y#)

ENDIF

ENDFUNC GCD#

This function returns the GCD (Greatest Common

Divisor) of two integers. Note that the function

itself is of type integer, and that it calls

itself recursively.

FUNC VALUE(A$) CLOSED

LN:=LEN(A$)

ONES:=ORD(A$(LN))-ORD("0")

IF LN=1 THEN

RETURN ONES

ELSE

RETURN ONES+VALUE(A$(1:LN-1))*10

ENDIF

ENDFUNC VALUE

This function also calls itself recursively from

the expression in the last RETURN statement.

30 COMAL FROM A TO Z by Borge Christensen 30

enter a number and press the RETURN key. The

number typed in is assigned as a value to

MAXNUMBER.

INPUT "ENTER NAME: ": NAME$

When this statement is executed the system

displays the user defined prompt

ENTER NAME:

and pauses to let the user type in a string to

be assigned as a value to the variable NAME$.

INPUT NAME$,AGE

When this statement is executed the system

displays its standard prompt "?" and pauses. The

user is expected to type in a string and press

the RETURN key. The string is then assigned to

NAME$ and the system submits another "?" on the

same line and pauses to let the user type in a

number.

INPUT A,B,C

This statement will ask the user to enter three

numbers. The following options may be chosen:

You can enter three numbers like

5 80 34

and then press RETURN. The variable A is then

set to 5, B to 80, and C to 34* You can also

enter the three numbers in the following manner:

5,80,34

and then press RETURN. Finally you may obtain

the same result by entering 5 and press RETURN;

then 80 and press RETURN; finally 34 anc* press

RETURN. In the first two cases only one "?" is

displayed, in the last case three "?" are

submitted.

35 COMAL FROM A TO Z by Borge Christensen 35

INPUT FILE

INPUT "FROM: ":FIRST$;

INPUT " TO: ":LAST$

The semicolon terminating the first statement

prevents the carriage return and linefeed after

the first string has been typed in. The result

of a program-user dialog might look like this:

FROM: 12.DEC.80 TO: 23.DEC.80

The RETURN key was pressed after each entry.

Note that a string variable in an <input list>

will pick up all characters entered from the

keyboard including commas and quotemarks.

Therefore you can not have more than one string

variable in the list, and it must always be the

last one (unless the user hits the RETURN key

after each string requested).

Used to retrieve data from a file that was

created using PRINT FILE. It will also allow

characters to be read directly off the screen.

The syntax of an INPUT FILE statement is:

INPUT FILE <file#>[,<rec#>]:<input list>[<end>]

where <input list> is a list of variable

identifiers, <rec#> is a <numeric expression>

and <end> is comma (,) or semicolon (;).

OPEN FILE 3,MMYDATA",READ

REPEAT

INPUT FILE 3: LINE$

PRINT LINE$

UNTIL E0F(3)
CLOSE

This program above reads and displays the

contents of the sequential file "MYDATA". The

following program reads the screen line by line

and prints a hard copy of its contents:

FUNCTIONS

This loop is functionally equivalent to the

previous one only this time the short form is

used.

FOR T:=1 TO 750 DO NULL

This loop waits till COMAL has counted from 1 to

750.

The FUNC statement is used as the first

statement - or head - of any user defined

function. The syntax is

FUNC <function identifier> <head appendix>

<function body>

ENDFUNC [<function identifier^

The <function identifier> is a <variable

identified and the <head appendix> is specified

as:

[(<formal parameter 1ist>)] [CLOSED]

The <function body> is made up of COMAL

statements.

A function value must be returned in a RETURN

statement (see RETURN), and at least one such

statement must be present in the <function

body>.

The <function identified following ENDFUNC is

supplied automatically by the system during the

prepass if not entered by the programmer.

Note: if you are not very familiar with

multi-line functions and parameters, it might be

advisable that you read the section about

PROCEDURES AND PARAMETERS before continuing the

present one.

PRINT DISTANCE(10,-4)

The statement above calls the function below:

36 COMAL FROM A TO Z by Borge Christensen 36 29 COMAL FROM A TO Z by Borge Christensen 29

28

I OR X:=1 TO 5 DO

SUM:=SUM+X

PRINT SUM;

ENDFOR X

First the control variable X is set to 1 and the

two statements in the range of the loop are

executed. Then X is set to 2, and the statements

are executed again. This goes on as long as X is

not greater than the final value 5. When X

assumes a value of 6 execution of the loop is

stopped and the interpreter starts on the

statement following the ENDFOR statement. Note

that X has a value of 6, i.e. <final value>+1,

when the loop terminates. Also note that this

value is not actually used in the loop.

FOR N:=1 TO 10 STEP 2 DO

SUM:=SUM+N

PRINT SUM

ENDFOR N

In this example N assumes the values 1, 3, 5, 7,

9, and 11, since a step value of 2 is

prescribed. Note that the control variable N has

an unused value of 11 when execution of the loop

terminates.

iOR P:=10 TO 1 STEP -1 DO

PRINT TEXT$(1:P)

ENDFOR P

The statement in the loop is executed for P

equal to 10, 9, 8, ..., 1. The termination value

of P is 0 and not used in the loop.

A short FOR loop is available. Its syntax is

FOR <for range> [<step>] DO <stateinent>

No ENDFOR statement is allowed in this case. The

one-line FOR statement may also be used as a

command.

FOR P:=10 TO 1 STEP -1 DO PRINT TEXT$(1:P)

COMAL FROM A TO Z by Borge Christensen 28

IDENTIFIERS

INT

KEY$

LABELS

VIDEO:=3

OPEN FILE VIDEO,"",UNIT 3,READ

SELECT "LP:"

IOR R0W:=1 TO 25 DO

INPUT FILE VIDEO: TEXT$

PRINT TEXT$

ENDFOR ROW

CLOSE VIDEO

SELECT "DS:"

Used to name variables, labels, functions, and

procedures. An identifier may contain as many as

78 characters, all significant. The first

character must be a letter, the following may be

letters, digits, or any one of the characters:

apostrope (f), [,], backslash, or left arrow.

Here are some valid identifiers:

MAXNUMBER, HOUSENO, NUMBER1OF1VOWELS, N1, N2,

N3, CREATE1 RECORD, GET1DIGIT

A standard function. INT(X) returns the integer

part of X, i.e. the greatest integer less than

or equal to X.

A standard function. It returns the first ASCII

character in the input buffer. If no key has

been depressed, a CHR$(O) is returned.

PROC GETfCHAR(REF T$)

T$:=CHR$(O)

WHILE T$=CHR$(O) DO T$:=KEY$

ENDPROC GET1CHAR

Used as a jump address for a GOTO statement. The

syntax of a label statement is

<identifier>:

Note that GOTO <line number> is not allowed.

IF BREAK THEN GOTO HALT

...

HALT:

STOP

37 COMAL FROM A TO Z by Borge Christensen 37

LEN

LINEFEED

LIST

If BREAK assumes a value of TRUE (value not

equal to 0) control is transferred to the label

statement. See also GOTO.

A standard function. LEN(X$) returns the current

length (number of characters) of the string

value of X$.

The command

LINEFEED+

makes the system emit a linefeed after each

carriage return, when output is to the printer.

The command

LINEFEED-

disables this facility, i.e. no linefeed is sent

out after a carriage return. Default mode is

LINEFEED-.

Displays a program or a part of a program

residing in workspace. The syntax is:

LIST [<line number>[-[<line number>]]]

LIST -<line number>

or

where <name> is the name of a function or a

procedure.

COMMAND RESULT

LIST List the whole program

LIST 100 List line numbered 100

LIST 100-200 List all lines between 100 and

200 inclusive

LIST -300 List all lines up to and

including 300

LIST 300- List all lines numbered 300 or

greater

The LIST command may also be used to store

programs on disks or tapes. The command

FALSE

FILE

FOR STRUCTURE

returns a value of 4 (TRUE).

The priority of the above operators is:

(power)

><> in

* /

< <=

NOT

AND

OR

DIV

=

MOD

>=

To improve the readability of programs, two

constants, TRUE and FALSE, are predefined. TRUE

is equal to 1, and FALSE is equal to 0.

See OPEN, CLOSE, INPUT, PRINT, READ, and WRITE.

The syntax of the FOR loop structure is:

FOR <for range> [<step>] DO

<stateraent list>

ENDFOR [<control variable>]

where <for range> is

<control variable>:=<initial value> TO <final

value>

and <step> is

STEP <step value>

The <control variable> is a <numeric variable>,

and <initial value>, <final value>, and <step

value> are <numeric expressions>.

The <control variable> following the keyword

ENDFOR has been bracketed to indicate that it is

supplied automatically by the interpreter if not

entered by the programmer. To ensure

compatibility with earlier versions of COMAL the

keyword NEXT is accepted on entry as well as

ENDFOR. In a listing the keyword ENDFOR is

displayed.

38 COMAL FROM A TO Z by Borge Christensen 38 27 COMAL FROM A TO Z by Borge Christensen 27

The following Boolean operators are available:

NOT logical negation. NOT A returns a value of

FALSE, i.e. numeric 0, if A has a value of

TRUE, i.e. a numeric value different from

zero, but a value of TRUE (numeric 1) if A

has a value of FALSE (is equal to zero).

AND logical conjunction. A. AND E returns a value

of TRUE if A and B are both TRUE, otherwise

a value of FALSE is returned.

OR logical disjunction. A OR B returns a value

of FALSE if A and B are both FALSE,

otherwise a value of TRUE is returned.

A <string expression> may consist of string

constants, string variables, string array

elements, or string functions concatenated by

means of the + sign. String expressions may be

compared (lexicographical order) by means of the

operators:

< means "comes before11

<= means "comes before or is equal to"

= means "is equal to"

>= means "comes after or is equal to"

> means "comes after"

<> means "is not equal to"

Note that strings with relational operators make

up expressions that return numerical values; 1

for TRUE and 0 for FALSE.

IN is used for string pattern matching. The

expression A$ IN B$ returns a value of zero

(i.e. FALSE) if A$ is not found as a

substring of B$, but if A$ is found as a

substring of B$ the expression returns the

position of the first matching character.

If NAME$ has a value of "LOTTIE CHRISTENSEN"

then the expression

"TIE" IN NAME$

LOAD

LIST "MYPROG.L"

stores a program now in main storage on disk as

a program file with the name of "MYPROG.L". The

program is stored as source code, and may

therefore later be merged with another program

in main storage (see ENTER). Since the LIST

command handles source code directly, this

version is also permitted:

LIST 100-200 "YOURPROG.L"

In this case line 100-200 are stored in a file

named "YOURPROG.L". In order to easily

distinguish files LISTed to disk from those

SAVEd to disk, it is suggested to end the file

name with .L.

If another device than disk unit no. 8 is used,

<unit no.> must be added to the command.

A program that has been stored by the LIST

command has type SEQ and may be opened as any

other sequential file and read by an INPUT FILE

statement. See also PRINT FILE, ENTER, and EDIT.

Retrieves programs from disk or tape. Its syntax

is

LOAD <file name> [,<unit no.>]

The command

LOAD "MAINPROG"

will load the program "MAINPROG11 into workspace.

If you want to retrieve the program from a

device other than disk unit no. 8, a unit no.

must be specified:

LOAD "Y0URPR0G",1

will load the program "YOURPROG" from cassette

into workspace. See also CHAIN, SAVE, LIST, and

ENTER.

26 COMAL FROM A TO Z by Borge Christensen 26 39 COMAL FROM A TO Z by Borge Christensen 39

LOG

MOD

NEW

NEXT

NOT

NULL

OF

OPEN

A standard function. LOG(X) returns the natural

logarithm of X.

An operator that returns the remainder from

integer division. See also EXPRESSIONS.

Clears the whole workspace of program and data.

Its syntax is

NEW

Automatically converted into ENDFOR by the

interpreter. See also ENDFOR, FOR.

A Boolean operator that denotes negation. See

also EXPRESSIONS.

The NULL statement does nothing. Its syntax is

NULL

It might seem a bit strange or even luxurious to

have a "no-op" statement like that to perform

the "empty action", but it can be inserted in

some special cases to satisfy the syntax of

COMAL. The example below shows how:

FOR I :=1 TO 750 DO NULL

Ends the CASE header statement and is part of

the declaration of string variables or string

arrays. See also CASE and DIM.

Opens and assigns reference numbers to files.

Its syntax is

OPEN FILE <file#>,<filename>[,<dev>][,<type>]

<file#> is a <numeric expression> that must

return a value from 1-255 (but the COMAL System

reserves files 1 and 255 for system use), <dev>

is

UNIT <unit#> [,<secondary addr>]

EXP

EXPRESSIONS

A standard function. EXP(X) returns the value of

e (nat. log. base) to the power of X (thus being

the inverse of nat. log.)

A <numeric expression^ can contain constants,

variables, and numeric functions, used with

parentheses and the following operators

according to the usual rules of mathematics:

+

-

/
DIV

MOD

+

monadic +

monadic -

power

multiplication

division

integer division (see below)

remainder from division (see below)

addition

subtraction

+A

-A

A^B

A*E

A/B

A DIV B

A MOD B

A+B

A-B

If A and E are integers then A MOD B is the so

called principal remainder from division of A by

B, i.e. the smallest non-negative integer R such

that

A = B*Q + R

and A DIV B is the quotient Q.

Numeric values may be compared by means of the

following relational operators:

< means "less than"

<= means "less than or equal to"

= means "equal to"

>= means "greater than or equal to"

> means "greater than"

<> means "not equal to"

Numeric expressions may be used as Boolean

expressions. A numeric value equal to zero is

interpreted as FALSE, whereas any value other

than zero is interpreted as TRUE. A logical

operation returns a numeric 1 for TRUE and 0 for

FALSE.

40 COMAL FROM A TO Z by Borge Christensen 40 25 COMAL FROM A TO Z by Borge Christensen 25

ESC

EXEC

the sequential file X has been reached,

otherwise a value of FALSE (numeric 0) is

returned. See also READ and INPUT.

OPEN 2,"PERSONS",READ

WHILE NOT E0F(2) DO

READ FILE 2: NAME$,ADR$,CITY$

PRINT NAME$

PRINT ADR$

PRINT CITY$

ENDWHILE

CLOSE

The function ESC returns a value of TRUE

(numeric 1) if the STOP key is depressed,

otherwise it returns a value of FALSE (numeric

0). The ESC function is not active unless a TRAP

ESC- statement is in effect. See also TRAP.

Indicates a procedure call. The syntax of a

procedure call is

[EXEC] <identifier>(<actual parameters list>)

The normal way of calling a procedure is by

simply stating the name of the procedure

followed by a parameter list, if any. But for

sake of compatibility with earlier versions of

COMAL the dummy keyword EXEC may still be used.

Normally the EXEC is suppressed on the listing

of the program, but by using the SETEXEC command

(see SETEXEC) you can force the interpreter to

display it.

The following statements

PRINT0UT(NAME$,ADDRESS$)

EXEC PRINTOUT(NAME$,ADDRESS$)

are equivalent. They are both calling the

procedure PRINTOUT passing the parameters NAME$

and ADDRESS$. See PROCEDURES AND PARAMETERS.

COMAL PROM A TO Z by Eorge Christensen 24

where <secondary addr> is a <numeric expression>

that must return a value from 0-15. Finally

<type> is READ for sequential reading, WRITE for

sequential writing, APPEND for continued

sequential writing, or RANDOM <record length>

for reading to or writing from a direct access

file (random file), where <record length> is a

<numeric expression> that must return a positive

value.

OPEN FILE 3,"MARKS",READ

assigns the file "MARKS" as file number 3. The

keyword READ indicates that a sequential file is

referred to, and that data may be retrieved from

it, starting from the beginning of the file.

OPEN FILE 4,"@0:MARKS",WRITE

The file "MARKS" is assigned file number 4. The

keyword WRITE indicates that a sequential file

is referred to, and that data may be stored in

it, starting from the beginning of the file. The

"@0:f! token indicates that if the file exists

already then it may be overwritten. The same

effect may be obtained by using these

statements:

DELETE "0:MARKS"

OPEN FILE 4,"MARKS",WRITE

The keyword APPEND indicates that a sequential

file is referred to, and that data may be stored

in it, starting from the end of the existing

file, thus appending more data to it.

OPEN FILE 6,"MARKS",APPEND

The file "MARKS" is assigned file number 6.

OPEN FILE 3,"CLIENTS",RANDOM 250

With this statement the direct access file

"CLIENTS" is signed on for both reading and

writing. The constant 250 following the keyword

RANDOM indicates that each record can be up to

CORAL FROM A TO Z by Borge Christensen 41

OR

ORD

OTHERWISE

PASS

PEEK

POKE

PRINT

250 bytes long. See also CLOSE, INPUT, PRINT,

READ, WRITE.

A Boolean operator that denotes disjunction. See

EXPRESSIONS.

A standard function. ORD(X$) returns the ASCII

value of the first character held by X$.

Used in the CASE structure to indicate a default

case. See CASE.

Passes strings to the disk drive. The strings

are interpreted as commands by the disk

operating system (see your disk manual for disk

commands)• Its syntax is

PASS <string expression>

PASS "NO:CONNIE'S DISK,01"

command to the disk

passes a format

A standard function. PEEK(x) returns the

contents (0-255) of a memory location X (X in

the range 0-65535) in decimal representation.

Assigns values to specified locations in memory.

Its syntax is:

POKE <location>,<contents>

where <location> is a <numeric expression> that

must return a value from 0-65535, and <contents>

is a <numeric expression> that must return a

value from 0-255 (one byte).

POKE 650,128 makes C64 keys repeat

42

Outputs data to the screen or the printer. Its

syntax is

PRINT [<output list>] [<end>]

where <output list> is

<print element> {<separator> <print element>}

COMAL FROM A TO Z by Borge Christensen 42

ENDFUNC

ENDIF

ENDPROC

ENDWHILE

ENTER

LOD

EOF

23

Terminates the definition of a user defined

function. See FUNC.

Terminates the last block of statements in an IF

branching. See IF.

Terminates the definition of a procedure. See

PROCEDURES AND PARAMETERS.

Terminates the block of statements controlled by

a WHILE statement. See WHILE.

Enters a program stored on disk or tape into

workspace:

ENTER <file name> [,<unit no.>]

Default value of <unit no.> is 8. The command

ENTER "0:MYPR0G.L",9

is used to enter the program "MYPROG" found on

drive number 0, unit number 9, whereas the

command

ENTER f!Y0URPR0G",1

retrieves the program "YOURPROG" found on the

cassette in unit number 1 (datasette).

Only programs stored by means of the LIST

command may be retrieved with the ENTER command.

Important note. Program lines that are taken in

by the ENTER command are merged into an existing

program in the same way as lines typed from the

keyboard. See also LOAD, LIST and SAVE.

A standard Boolean function. EOD returns a value

of TRUE (numeric 1) it the last element in a

data queue has been read, otherwise a value of

FALSE (numeric 0) is returned. See also READ.

A standard Boolean function. EOF(X) returns a

value of TRUE (numeric 1) if the end-of-file in

COMAL FROM A TO Z by Borge Christensen 23

DIV

DO

EDIT

ELIF

ELSE

END

ENDCASE

ENDFOR

declares two single string variables such that

the first one may hold up to 30 characters and

the second one up to 3 characters. Single string

variables must be declared. The following

statement

DIM PUPIL$(30:100,8:10) OF 30

declares an array of strings with indices

ranging from 30 to 100 and 8 to 10 where each

component may hold up to 30 characters.

An array may have any number of dimensions.

An operator that denotes integer division. See

also EXPRESSIONS.

used with FOR and WHILE statements. See FOR and

WHILE.

Displays a list of the program presently in

workspace, but without the structured

indentation invoked by the LIST command. The

syntax is:

EDIT [<line number> [-[<line number>]]] or

EDIT -<line number>

The EDIT command is used when editing to avoid

including indent spaces on continued screen

lines caused by the automatic indentation of

lines that are wrapped around. See also LIST.

Used with the IF statement. See IF.

Used with the IF statement. See IF.

Stops execution of a program. See also STOP.

Terminates the last block in a CASE multiway

branching structure. See CASE.

Terminates the block controlled by a FOR

statement. See FOR.

PRINT FILE

The <print element> is an <expression> or the

TAB function, and <separator> is either a comma

(,) or a semicolon (;). If a semicolon is used

an extra space is output between one <print

element> and the next; if a comma is used no

extra spaces are output unless otherwise stated

in a ZONE statement (see ZONE). The <end> is the

same as <separator>.

PRINT "THIS IS THE ",3,!f. TIME"

outputs

THIS IS THE 3. TIME

The same output results from

PRINT "THIS IS THE";3,". TIME"

The next statement:

PRINT "PUPIL ",N0," NAME IS ",NAME$(N0)

may output the following

PUPIL 5 NAME IS ROY MANNING

The same output may be produced by

PRINT "PUPIL";

PRINT NO," NAME IS";

PRINT NAME$(NO)

Note the use of semicolon as <end> in this case.

If comma is used you get

PRINT "PUPIL ",

PRINT NO," NAME IS ",

PRINT NAME$(NO)

Stores data on disk or tape. Its syntax is

PRINT FILE <file#>[,<rec#>]:<print list>[<end>]

22 COMAL FROM A TO Z by Borge Christensen 22 43 COMAL FROM A TO Z by Borge Christensen 43

PRINT USING

<print list> and <end> are as specified for

PRINT, <rec#> is a <numeric expressions A file

that has been created using PRINT FILE is of

type SEQ and data from it may be retrieved by

means of INPUT FILE.

OPEN FILE 4,"PERSONS",UNIT 1, WRITE

FOR N0:=1 TO MAXNO DO

PRINT FILE 4: NAME$(NO)

PRINT FILE 4: ADDR$(NO)

PRINT FILE 4: PAYCD(NO)

ENDFOR NO

CLOSE

The program stores data sequentially on a

cassette in the file signed on as number 4. The

data thus stored may be retrieved by means of

the following:

OPEN FILE 6,"PERSONS",UNIT 1, READ

FOR J:=1 TO MAX DO

INPUT FILE 6: NAME$(j)

INPUT FILE 6: ADDR$(j)

INPUT FILE 6: PAYCD(j)

ENDFOR J

CLOSE

Normally PRINT FILE and INPUT FILE are only used

for sequential data files on cassette. See also

READ, WRITE, and OPEN.

Formats output of numbers. The syntax is

PRINT USING <format info>: <using list>[<end>]

where <format info> is a <string expression> and

<end> is as specified for PRINT. The <using

list> is

<numeric expression> {,<numeric expression>}

The <format info> can contain texts and format

fields. A format field is a string that serves

as a model for the printout af numeric values.

The hash mark (#) reserves a digit place, the

dot (.) specifies the location of the decimal

DIM

Declares strings and arrays of numerics and

strings. Its syntax is

DIM <declaration> {,<declaration>}

A <declaration> could be a <numeric declaration

as in

DIM TABLE(-1:1OO)

or a <string declaration> as in

DIM NAME$(0:20) OF 30

Since the DIM statement is very versatile and

powerful, it is not all that simple to give a

detailed description of its syntax. Instead we

shall look at some examples. The statement

DIM TABLE(-1:100),MARKS(1000:1500,8:10)

declares an array of real numbers, named TABLE,

with indices ranging from -1 to 100, and a two

dimensional numeric array, named MARKS, with

indices ranging from 1000 to 1500 and 8 to 10.

You may use any <numeric expression> for lower

bound and upper bound, as long as the value

returned for the lower one is smaller than or

equal to the value returned for the upper one.

Non-integer values are truncated. If no lower

bound is given the interpreter uses 1 in its

place. Thus the statement

DIM JOBCODE(IOO)

declares an array of numerics with indices

ranging from 1 to 100 and is totally equivalent

to

DIM JOBCODE(1:100)

The statement

DIM NAME$ OF 30, ANSW$ OF 3

44 COMAL FROM A TO Z by Borge Christensen 44 21 COMAL FROM A TO Z by Eorge Christensen 21

DEL

DELETE

DATA <value> {,<value>}

where <value> is a <numeric constant> or a

<string constant>. See also EOD, READ, and

RESTORE.

REPEAT

READ NAME$,TEL

FOUND:=(THISNAME$=ft!AME$)

UNTIL FOUND OR EOD

DATA "COLLINS",23,"JACOBS",34,"HUDSON",45

DATA "KILROY",14,"ATHERTON",10,"BRAMER",15

Removes one or more lines from a program in main

storage:

DEL [<line number> [-[<line number>]j] or

DEL -<line number>

COMMAND RESULTS

DEL 100 Removes line 100 from program

DEL 100-200 Removes lines between 100 and

200 inclusive

DEL -300 Removes all lines up to and

including 300

DEL 300- Removes all lines numbered 300

or greater

Important note. A line cannot be removed by just

giving its line number. The DEL command should

not be confused with the DELETE command which is

used to remove files from the disk.

Removes files from a disk. Its syntax is

DELETE <file name>

The <file name> must include the drive number.

Thus the command

DELETE "O:MYPROG"

deletes the file "MYPROG" stored on the diskette

in drive 0, unit 8.

20 COMAL FROM A TO Z by Borge Christensen 20

point, if any, and a minus sign can be

introduced to be displayed if the value of the

number is negative.

PRINT USING " ### ####.##»: A,B

If A equals 23.6 and B equals 234.567 the

following output is produced:

24 234-57

If A is equal to 1234 and B has a value of 546

the following output is produced:

*** 546.00

with the three *fs indicating that there is an

overflow in the format.

PRINT USING "THE ROOT IS: -##.##": -B/2/A

If B is equal to 15.748 and A is equal to 7.2

the statement produces the following output:

THE ROOT IS: -1.09

If B equals 234.67 and A is equal -23.3 the

statement produces this output:

THE ROOT IS: 5.04

PROCEDURES AND PARAMETERS.

The PROC statement is used as the first

statement - or head - of any user defined

procedure. The syntax of a procedure is

PROC <procedure identifier> <head appendix>

<procedure body>

ENDPROC [<procedure identifier^

The <head appendix> is specified as

[(<formal parameter list>)] [CLOSED]

The <procedure identified is an <identifier>,

the <procedure body> is made up of COMAL

statements. The <procedure identified following

45 COMAL FROM A TO Z by Borge Christensen 45

ENDPROC is supplied automatically by the system

during prepass if not entered by the programmer.

The <formal parameter list> is specified as

<formal parameter> {,<formal parameter>}

where a <formal parameter> could be either

[REF] <variable identified or

REF <variable identifier>({,})

If the keyword REF is used before a parameter it

is passed by reference, otherwise it is passed

by value. Arrays of any type can only be passed

by reference.

Example: A procedure that starts with this

statement

PROC TRY(I,J)

called with:

TRY(FIRST,LAST)

In this case the identifiers I and J in the

procedure head are formal parameters, and a

value is assigned to each of them when the

procedure is called. The identifiers FIRST and

LAST referred to in the calling statement are

actual parameters and must be defined whenever

the statement comes to be executed. During the

procedure call, I is assigned the value of FIRST

(the value of FIRST is "passed" to I), and J is

assigned the value of LAST. Since actual values

are passed, I and J are called value parameters.

But there is more to it. I and J will be treated

as local variables to the procedure TRY, and

that means that they will not be known to the

"world" outside the procedure, and therefore

they will not be confused with variables I and

J, if any, in other parts of the program. Also

when the procedure is finished any trace of

local variables is removed.

CON

COS

DATA

PROC WINDOW(X,Y) CLOSED
SCREEN(X,1)

FOR I:=1 TO Y-X+1 DO ERASE1LINE(l)

SCREEN(X,1)

ENDPROC WINDOW

//
PROC SCREEN(L,C) CLOSED

X:=984+L*4O

POKE 209,X MOD 256 //LINE LOW BYTE

POKE 210,X DIV 256 //LINE HIGH BYTE

POKE 211,C-1 //COLUMN

ENDPROC SCREEN

//
PROC ERASE1LINE(L) CLOSED

SCREEN(L,1)

FOR I:=1 TO 40 DO PRINT " ",

ENDPROC ERASE1LINE

The variables X, Y, L, C, and I are all local,

X, Y, L, AND C because they are parameters and

I because the procedures are closed. Thus the X

used in SCREEN and the X used in WINDOW are

different objects. The same goes for I in WINDOW

and ERASE1LINE. See also PROCEDURES AND

PARAMETERS and FUNC.

Restarts a program which has been stopped.

CON

Due to the internal linking of structures in a

COMAL program, the CON command cannot be used

after deletion or insertion of statements or

introduction of new variables. See also STOP.

A standard function. COS(X) returns the cosine

of X (X in radians).

A DATA statement is used to hold numeric or

string constants that may be retrieved in a READ

statement. Its syntax is:

COMAL FROM A TO Z by Borge Christensen 46 19 COMAL FROM A TO Z by Borge Christensen 19

CHAIN

CHR$

CLOSE

CLOSED

CAT 0

shows the catalog of the diskette in drive 0,

unit 8.

Loads a program stored on disk and runs it. Its

syntax is

CHAIN <file name> [,<unit no.>]

If <unit no.> is not specified, disk unit number

8 is used. Programs already in main storage will

be deleted when the CHAIN statement is invoked.

Only programs stored by means of the SAVE

command can be retrieved via CHAIN.

CHAIN "UPDATE"

loads the program named "UPDATE" from drive 0,

unit 8, and runs it. See also SAVE and LOAD.

A standard function. CHR$(X) returns the

character whose ASCII value is X.

Closes data files. Its syntax is

CLOSE [FILE] [<file number>]

The statement (or command)

CLOSE

closes all files that have been opened. The

following statement (or command) closes file

number 3 only.

CLOSE 3

The keyword FILE is added automatically by the

interpreter if not entered by the user. See also

OPEN, INPUT, PRINT, READ, WRITE.

If the keyword CLOSED terminates the procedure

heading, all variables in the procedure will be

local. Normally this is only the case with the

parameters.

18 COMAL FROM A TO Z by Borge Christensen 18

Actual parameters to be passed by value may be

constants, variables, or expressions, as long as

they are ready to "deliver a value" on request,

i.e. whenever a call is invoked. The procedure

TRY might be called by statements like

TRY(1,9) or TRY(P-1

PROC BACKWARDS(W$)

LN:=LEN(W$); B$:=""

FOR I:=LN TO 1 STEP -1 DO B$:+W$(l)

ENDPROC BACKWARDS

The above procedure is called from these

mainlines:

DIM B$ OF 30

INPUT "ENTER WORD (MAX. 30 CHAR.): ": B$

BACKWARDS(B$)

PRINT B$

The value of B$ is passed to W$ during the call.

Note that W$ is not declared explicitly. When a

string variable is used as a formal parameter it

is automatically given the length necessary to

hold the actual string value passed to it. When

the procedure is finished the part of memory

occupied by W$ is set free.

A procedure is headed

PROC WRITERECORD(R,N$,REF M())

and is called by

WRITERECORD(STUDENTNO,NAME$,MARKS)

In this example R and N$ are formal value

parameters, and during the call they are

assigned the values of STUDENTNO and NAME$,

respectively. The

REF M()

denotes a formal parameter M that is called by

reference. The () following M indicates that M

47 COMAL FROM A TO Z by Borge Christensen 47

must refer to a one dimensional array. If the

call is to be valid, MARKS must be the name of a

one dimensional array. With a reference

parameter no assignment take place during the

call, but the formal parameter in question is

simply used by the procedure as a "nickname" for

the actual parameter. So in this case MARKS will

actually "suffer" from anything WRITERECORD does

to M. The following metaphor might help you to

remember what a reference parameter is: A boy

named JEREMY is called JIM at home - i.e.

locally. If JIM is overfed by his mother the

world will see JEREMY grow fat. The procedure

WRITERECORD might also be headed

PROC WRITERECORD(R,REF N$,REF M())

The only difference from the former heading is

that N$ is now a parameter to be called by

reference. N$ will only refer to NAME$ and no

assignment takes place. This of course speeds up

the process and saves storage.

A procedure with this heading is given

PROC PRINTOUT(REF TABLE(,))

The (,) following the name TABLE indicate that

TABLE must refer to a two dimensional numerical

array. Thus (,,) would indicate reference to a

three dimensional array, and so forth.

PROC BACKWARDS(REF W$) CLOSED

LN:=LEN(W$)

DIM B$ OF LN

FOR I:=LN TO 1 STEP -1 DO B$:+W$(l)

W$:=B$

ENDPROC BACKWARDS

//
DIM B$ OF 30

INPUT "WORD (MAX. 30 CHAR.): ": B$

BACKWARDS(B$)

PRINT B$

The string B$ declared in the procedure has

nothing to do with the string B$ declared in the

CAT

CASE GUESS OF

WHEN 1,2,3,4,5

C0L0UR$:="RED"

FACTOR:=1.5

WHEN 6,7,8

COLOUR$:="YELLOW"

FACTOR:=3

WHEN 9

COLOUR$:="BLUE"

FACTOR:=10

ENDCASE

If the <case selector> GUESS is equal to 1, 2,

3,4, or 5, the first case is executed. If GUESS

is equal to 6, 7, or 8, the second case is

executed, and if GUESS is equal to 9 the last of

the cases is executed.

CASE MONTH$ OF

WHEN "JAN","MAR","MAY","JUL","AUG","OCT","DEC"

PRINT "THE MONTH HAS 31 DAYS."

WHEN "APR","JUN","SEP","NOV"

PRINT "THE MONTH HAS 30 DAYS."

WHEN "FEB"

IF YEAR MOD 4=0 THEN

PRINT "THE MONTH HAS 29 DAYS"

ELSE

PRINT "THE MONTH HAS 28 DAYS"

ENDIF

OTHERWISE

PRINT "OLD MAN TURNS OVER IN HIS GRAVE."

ENDCASE

Displays the contents of the diskettes. Its

syntax is

CAT [<drive no.>]

The command

CAT

causes the system to display catalogs of all

diskettes mounted in disk drive unit 8. The

command

48 COMAL FROM A TO Z by Bbrge Christensen 48 17 COMAL FROM A TO Z by Borge Christensen 17

CASE STRUCTURE

Note: the C64 reset function sometimes fails

when the BASIC command is used. To be sure that

the system is truly reset to BASIC mode press

<STOP>+<RESTORE> once or twice.

The CASE structure controls multiway branching.

The syntax of the case structure and its

individual statements is given below:

CASE <case selector> [OF]

{WHEN <choice list>

<statement list>}

[OTHERWISE

<statement list>]

ENDCASE

The <case selector> is an <expression>. The

<choice list> is a list of <expressions>. The

expressions on the <choice list> following a

WHEN statement must be of the same type (real,

integer, or string) as the <case selector>.

If the value of the <case selector> is equal to

the value of one of the expressions on a <choice

list> the corresponding <statement list> is

executed.

As soon as a <statement list> has been executed,

the COMAL interpreter transfers control to the

statement following the ENDCASE statement, or

stops if no more statements follow. If the value

of the <case selector> does not match any of the

expressions on the choice lists the <statement

list> following OTHERWISE is executed, but if no

OTHERWISE statement is present, an error message

is emitted and execution of the program is

stopped.

On the listing of a program statements in a

<statement list> are indented automatically

relative to the control statements:

RANDOM

READ

16 COMAL FROM A TO Z by Borge Christensen 16

mainline program, since the procedure is closed.

In fact W$ is taking over the part of "outer

B$". See also FUNC and CLOSED.

Indicates that a file is opened for random

access. See OPEN.

Retrieves data from a data queue set up in DATA

statements. Its syntax is

READ <variable name> {,<variable name>}

As data elements are read a data pointer is

moved to point to the next element. When the

last element in the queue has been read a

built-in Boolean function EOD (End-Of-Data)

returns a value of TRUE (see STANDARD

FUNCTIONS).

The data pointer may be reset to the beginning

of a queue by means of the RESTORE statement

(See RESTORE).

READ NAME$,TEL

...

DATA "JOHN NELSON",34

After the READ statement has been executed,

NAME$ is assigned the value "JOHN NELSON" and

TEL is set to 34. Note that a string constant

must be read by a string variable, and a numeric

constant must be read by a numeric variable. The

types of the variables in the READ statement

must be in accordance with the types of the

constants in the queue. See also DATA.

N0:=1

REPEAT

READ NAME$(NO),TEL(NO)

N0:+1

PRINT NAME$(NO);

PRINT "HAS TEL.NO.";TEL(NO)

UNTIL EOD

DATA "MAX ANDERSSON",34,"PETER CRAWFORD",45

DATA "ANNI BERSTEIN",12,"LIZA MATZON",56

49 COMAL FROM A TO Z by Borge Christensen 49

READ FILE

REF

REM

Retrieves data from sequential and random access

files stored by using the WRITE FILE statement

(see WRITE FILE). Its syntax is

READ FILE <file#> [,<rec#>]: <variable list>

where <file#> and <rec#> are both <numeric

expressions

Note that a variable on the <variable list> may

refer to an array, and in that case a whole

array of data can be retrieved in a single

execution of a READ FILE statement

DIM NAME$(1OO) OF 30
READ FILE 2: NAME$

Values for the whole array NAME$ is retrieved

from the sequential file signed on as file

number 2.

READ FILE 4,RECN0: NAME$,OWNER$,DEST$,CARGO*NO

The statement reads from record no. RECNO in the

file opened as no. 4. See also OPEN, WRITE,

PRINT, INPUT, and CLOSE.

Marks formal parameters to be called by

reference. See PROCEDURES AND PARAMETERS and

FUNC.

Initiates comments. The interpreter converts it

into the symbol "//"• A comment may be placed on

a line of its own (like a REM statement in

BASIC) or at the end of any other statement, and

is initiated with the symbol "//".

IF CH$ IN VOWELS$ THEN //IS IT A VOWEL?

COUNT1VOWELS:+1

ELSE //MUST BE A CONSONANT

COUNT1CONSONANTS:+1

ENDIF //LETTER

EXAMPLES:

ATN

AUTO

BASIC

sign of assignment (:=), the system

automatically converts "=" into ":=".

VOLUME:=LENGTH*WIDTH*HIGHT/3

COUNTER:+INCREMENT

ADDRESS$:=NAME$+"@!f+STREET$+lf@"+CITY$+M*fl

MAX#:=32128

A standard function. ATN(X) returns the

arctangent in randians of X.

Makes the COMAL system generate line numbers

automatically as a program is entered. Its

syntax is:

AUTO [<line number>] [,<increment>]

where <increment> is a positive integer.

COMMAND GENERATES LINE NUMEERS:

AUTO 0010, 0020, 0030, 0040, etc.

AUTO 110 0110, 0120, 0130, 0140, etc.

AUTO ,2 0010, 0012, 0014, 0016, etc.

AUTO 110,2 0110, 0112, 0114, 0116, etc.

If a valid line number is added to the word

AUTO, the generated sequence of numbers will

start with the number thus indicated.

If a positive integer preceded by a comma is

added, the system will use this integer as an

increment in line numbers.

AUTO mode is switched off by pressing the RETURN

key twice in succession.

Makes the computer switch back to the built-in

BASIC interpreter. The syntax of the command is

BASIC

To return to COMAL the interpreter must be

reloaded.

COMAL FROM A TO Z by Borge Christensen 50 15 COMAL FROM A TO Z by Borge Christensen 15

ABS

AND

APPEND

ASSIGNMENTS

COMAL 0.14 KEYWORDS

A standard function. ABS(X) returns the absolute

value of X.

A Boolean operator that denotes logical

conjugation. See also EXPRESSIONS.

Specifies that a sequential file is opened in

append mode. See also OPEN. t

The syntax of an assignment is

<variable>:=<expression>

If the <variable> is of type string, the

<expression> must be of the same type. Type

conflicts between numerics and strings are

normally found and reported as program lines are

entered.

The system is, however, very tolerant when

numeric types (reals and integers) are

concerned. A variable of type real will accept

integer values and you may use variables of type

integer in real expressions. An integer variable

will accept any number in the range from -32768

to 32767. If a real number in that range is

assigned to an integer the number is first

rounded.

Numeric type incremental and decremental

assignments such as:

<variable>:=<variable>+<expression> and

<variable>:=<variable>-<expression>

may respectively be written in shorthand form:

<variable>:+<expression> and

<variable>:-<expression>

If the keyword LET is typed in before an

assignment it is ignored by the system. If the

sign of equality (=)is entered instead of the

14 COMAL FROM A TO Z by Borge Christensen 14

RENUM

Used to change or adjust line numbers. Its

syntax is

RENUM [<line number>] [,<increment>]

COMMAND RESULTS IN LINE NUMBERS

RENUM 10, 20, 30, 40, etc.

RENUM 100 100, 110, 120, 130, etc.

RENUM 150,5 150, 155, 160, 165, etc.

RENUM ,2 10, 12, 14, 16, etc.

REPEAT STRUCTURE

RESTORE

RETURN

The syntax of the REPEAT loop and the REPEAT and

UNTIL statements is given in this diagram <

REPEAT

<statement list>

UNTIL <numeric expression>

The program section given by <statement list> is

executed repetitively until the <numeric

expression> returns a value of TRUE (i.e.

numeric non-zero)•

REPEAT

READ NAME$,TEL

FOUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD

Resets the data pointer to the first element in

a data queue. Its syntax is

RESTORE

See also DATA and READ.

Returns a value from a function, or returns from

a procedure before the ENDPROC statement is

reached. Its syntax is

RETURN [<numeric expression>]

Two examples follow:

51 COMAL FROM A TO Z by Borge Christensen 51

RND

RUN

SAVE

FUNC MAX(X,Y)
IF X<=Y THEN

RETURN Y

ELSE

RETURN X

ENDIF

ENDFUNC MAX

FUNC GCD(A,B)

IF (A MOD B)=O THEN

RETURN B

ELSE

RETURN GCD(B,A MOD B)

ENDIF

ENDFUNC GCD

Note that the function GCD is calling itself

recursively. See also FUNC and PROCEDURES AND

PARAMETERS

A standard function. RND(X,Y), X and Y integers

and X less than Y, returns a random integer in

the range from X to Y. RND(Y) returns a random

real number in the range from 0 to 1. If Y is

zero or negative, a new sequence of random

numbers is seeded and used, but if Y is

positive, the next random number from the

previously created sequence is used.

Invokes a prepass of the program in workspace

(unless the program has already been prepassed

and no changes have been made in it) and then

starts execution of it. See also CHAIN. Its

syntax is

RUN

Used to store programs on diskette or tape. Its

syntax is

SAVE <file name> [,<unit no.>]

Programs stored by using SAVE may be retrieved

by LOAD or CHAIN.

SPRITEPOS

SPRITESIZE

SPRITEPOS <sprite>,<x>,<y>

Positions sprite no. <sprite> such that the

upper left corner appears at the position

(<x>,<y>). The bottom left corner of the screen

is (0,0).

SPRITESIZE <sprite>,<xsize>,<ysize>

If <xsize> is TRUE (1), sprite no. <sprite> is

expanded to double width, if <ysize> is TRUE,

the sprite is expanded to double height. The

resolution is not affected by the expansions.

52 COMAL FROM A TO Z by Borge Christensen 52 13 COMAL FROM A TO Z by Borge Christensen 13

IDENTIFY

PRIORITY

SPRITEBACK

SPRITECOLLISION

SPRITECOLOR

IDENTIFY <sprite>,<image#>

Sprite number <sprite> is given the image

defined by <image#>. Imagine you have a cupboard

filled with drawings of differet shapes numbered

0-47- Each time the IDENTIFY statement is used,

the specified drawing (<image#>) is taken out of

the cupboard and its shape is given to sprite

<sprite>. The <sprite> must be an integer from 0

to 7 (the turtle is sprite number 7).

PRIORITY <sprite>,<p>

If <p> is TRUE, the pixels in sprite no.

<sprite> will have lower priority than the

graphics pixels, i.e. the sprite will appear

underneath the graphics. If <p> is FALSE, the

sprite will have higher priority than the

graphics.

The priority among the sprites is fixed: A

sprite with a lower number has a higher

priority. Thus sprite no. 0 has a higher

priority than sprite no. 1 etc.

SPRITEBACK <color-1>,<color-2>

Defines the two common colors to be used with

multicolor sprites, where <color-1> and

<color-2> are integers from 0-15.

SPRITECOLLISION(<sprite>,<reset>)

A function that returns the value TRUE, if and

only if sprite no. <sprite> has collided with

another sprite. See DATACOLLISION for

explanation of <reset>.

SPRITECOLOR <sprite>,<color>

Defines the color of sprite no. <sprite> to

become <color> (0-15).

SELECT OUTPUT

SETEXEC

12 COMAL FROM A TO Z by Borge Christensen 12 53

SAVE "AUNTIE"

stores the program presently in workspace on a

diskette in unit no. 8.

^SAVE "UNCLE",1

stores the program presently in workspace on a

tape in unit no, 1. See also LOAD, CHAIN, LIST,

and ENTER.

Directs printout to the screen or the printer.

Its syntax is

SELECT [OUTPUT] <device>

where <device> is "LP:" (Line Printer) or "DSr"

(Data Screen). The default output device is the

screen.

PRINT "I AM HERE."

PRINT "WHERE ARE YOU?"

SELECT "LP:"

PRINT "I AM HERE BESIDE YOU."

SELECT "DS:"

PRINT "THANKS, PRINTER."

The two first texts are displayed on the screen,

the third one is sent out on the printer, and

the fourth one appears on the screen.

Chooses whether the interpreter will list the

keyword EXEC when listing a program (see EXEC).

Its syntax is

SETEXEC <sign>

where <sign> is + or -.

SETEXEC+ makes COMAL list the keyword EXEC

SETEXEC- causes EXEC to be supressed

The default mode is SETEXEC-. If you are in

SETEXEC+ mode the keyword EXEC is inserted

automatically by the system (you never need to

type in EXEC). On the other hand you always are

COMAL FROM A TO Z by Borge Christensen

SETMSG

SGN

SIN

SIZE

SQR

allowed to type in the EXEC. The interpreter

will simply ignore it while in SETEXEC- mode.

Note: the reason for having this command is one

of compatibility. In earlier version of COMAL

the EXEC was compulsory, and some people might

still like to have it. See also EXEC.

Suppresses the error messages. Its syntax is

SETMSG <sign>

where <sign> is + or -. Default mode is SETMSG+.

SETMSG+ Enables the error messages

SETMSG- Disables the error messages

Error messages are held in a file on the

diskette to save main storage. This means that

you will have to wait about 3 seconds to get a

message on the screen. To a trained programmer

this could be annoying. Therefore the option to

switch the messages off is given with SETMSG. If

in SETMSG- mode a prompt like

ERROR 12

is displayed with the cursor placed on the

estimated location of the error.

A standard function. SGN(X) returns the sign of

X: -1 if X is positive, 0 if X is equal to zero,

and 1 if X is positive.

A standard function. SIN(X) returns the sine of

X (X in radians).

Prints the size of free memory in bytes. Its

syntax is

SIZE

A standard function. SQR(x) returns the square

root of X (X non-negative).

DATACOLLISION

LEFINE

HIDESPRITE

064 CORAL 0.14 SPRITES

Eight sprites are available for your use,

numbered 0-7 (sprite number 7 is used by the

system for the turtle's image). Up to 48 images

can be defined. The usual 16 colors (0-15) are

available.

DATACOLLISION(<sprite>,<reset>)

This function returns a value of TRUE, if sprite

no. <sprite> collides with graphics information

(i.e. a non-background sprite pixel is also a

non-background graphics pixel). The collision

detection is automatically done by the system

each time a sprite is drawn. If <reset> has a

value of TRUE (1), the system resets the

collision ilag. If <reset> is FALSE (0), the

collision ilag is stored by the system for use

with the next DATACOLLISION statement.

DEFINE <image#>,<definition>

where <image#> is an integer from 0-47, and

<definition> is a string expression that has the

64 characters which defines the image (see your

Commodore 64 Users Guide page 68 or the

Commodore 64 Programmers Reference Guide page

131 for information about the meaning of the

first 63 bytes of a sprite image definition).

You can have a pool of 48 images (47 if a turtle

is used) and each of these can be used as a

model for any one of the 8 (7 if a turtle is

used) available sprites. Not all of the 48

images need to be defined, and more than one

sprite can use the same image.

HIDESPRITE <sprite>

Sprite no. <sprite> is no longer displayed on

the screen.

54 COMAL FROM A TO Z by Borge Christensen 54 11 COMAL FROM A TO Z by Borge Christensen 11

SETXY

SHOMURTLE

SPLITSCREEN

TURTLESIZE

SETXY <x>,<y>

fooves the turtle to the position (x,y). If the

pen is down (see PENDOtoN) a line is drawn.

SHOtoTURTLE

Makes the turtle visible on the graphics screen.

Vi hen COMAL is started a default SHOWTURTLE is

executed, i.e. from start the turtle is shown on

the graphics screen (see HIDETURTLE).

SPLITSCREEN

Displays a window into the text screen on the

top two lines of the graphics screen.

TURTLESIZE <size>

Defines the size of the turtle. The value of

<size> is an integer from 0 to 10. Default value

of <size> is 10.

10 COMAL FROfo A TO Z by Borge Christensen 10

STANDARD FUNCTIONS.

ABS(X)

ATN(X)

CHR$(X)

COS(X)

EOD

EOF(X)

ESC

EXP(X)

KEY$

INT(X)

LEN(X$)

LOG(X)

ORD(X$)

PEEK X

RND(X,Y)

RND(X)

returns the absolute value of X.

returns the arctangent in radians of X.

returns the character whose ASCII value

is X.

returns the cosine of X (X in radians).

returns a value of TRUE (numeric 1) if

the last element in the data queue has

been read, otherwise a value of FALSE

(numeric 0) is returned.

returns a value of TRUE (numeric 1) if

the end-of-file mark in a sequential

file opened as file number X has been

encountered, otherwise a value of FALSE

(numeric 0) is returned.

returns a value of TRUE (numeric 1) if

the STOP key is depressed, otherwise it

returns a value of FALSE (numeric 0).

returns the value of e (nat. log. base)

to the power of X (thus being the

inverse of nat. log.)

returns the first ASCII character in

the keyboard buffer. If no key has been

depressed, a CHR$(O) is returned.

returns the integer part of X, i.e. the

greatest integer less than or equal to

X.

returns the current length, i.e. number

of characters, of the string value of

X$.

returns the natural logarithm of X, X

positive.

returns the ASCII value of the first

character held by X$.

returns the contents of memory location

X (X in the range 0-65768) in decimal

representation.

returns a random integer in the range

from X to Y, X and Y integers and X

less than Y.

returns a random real in the range from

0 to 1. If X is negative the same

sequence is always generated, otherwise

a random start is implied.

55 COMAL FROM A TO Z by Borge Christensen 55

STATUS

STEP

STOP

SGN(X) returns the sign of X: -1 if X is

positive, 0 if X is equal to zero, and

1 if X is positive.

SIN(X) returns the sine of X (X in radians).

SQR(X) returns the square root of X (X

non-negative) •

TAN(X) returns the tangent of X (X in

radians) •

Makes the system display the disk operative

system status and switches off the error

indicator.

Indicates an optional counter variable increment

in a FOR statement. See FOR.

Stops program execution. Its syntax is

STOP

STRING HANDLING, SUBSTRINGS.

A string variable must always be declared. For

example

DIM NAME$ OF 30

declares a string variable NAME$ that may hold

up to 30 characters. If a string array is

declared, the maximum length of the components

must also be specified. For example

DIM ADDRESS$(100,3) OF 20

declares a two dimensional string array, where

each component may hold up to 20 characters.

Formal parameters of type string have no

predeclared length. Thus in

PROC PACK(N$)

the parameter N$ is automatically given the

length necessary to hold the string value passed

to it.

RIGHT

SETGRAPHIC

SETHEADING

SETTEXT

56 COMAL FROM A TO Z by Borge Christensen 56

RIGHT <angle>

Turns the turtles head <angle> degrees to the

right (clockwise).

SETGRAPHIC <type>

Initializes and makes the graphics screen

visible. You have two graphic modes:

High Resolution graphics: <type>=0

Multicolor graphics: <type>=1

In high resolution graphics you have 320*200

pixels at your disposal. The whole of the

graphics screen is split up in 40*25 blocks,

each of which holds 8*8 pixels. Each individual

block only allows two colors to be applied at a

time. One of these colors is the background. The

other color is defined as soon as a pixel in the

block is set. If on a later occasion a pixel

inside a block is set with a different color the

whole block changes to the latter one.

In multicolor graphics the resolution in the

horizontal direction is only half that of high

resolution, i.e. you now have 160*200 pixels at

your disposal. Again the screen is divided in

40*25 blocks, but each of the them only holds

8*4 pixels. However each block can hold up to

four different colours one of which is the

background.

SETHEADING <direction>

Turns the turtle to point at <direction> degrees

clockwise from zero (vertically upward).

SETTEXT

Hides the graphics screen and shows the text

screen, however the graphics instructions still

work on the hidden graphics screen. The result

of graphics activities can easily be revealed by

using the SETGRAPHIC command.

COMAL FROM A TO Z by Borge Christensen

MOVETO

PENCOLOR

PENDOWN

PENUP

PLOT

PLOTTEXT

hOVETO

Moves the turtle from its present position to

the position (<x>,<y>) without drawing a line.

PENCOLOR <color>

Sets the color used for drawing, i.e. the color

of the pen. This is also the color of the cursor

and turtle, and the color in which text is

displayed on the text screen. Normally <color>

is an integer from 0 to 15 •

PENDOWN

Activates the turtles pen, i.e. the turtle

leaves a trace as long as its movements are

inside the present frame and the pen's color is

different from that of the background (see

PENCOLOR).

PENUP

Lifts the turtles pen, i.e. it no longer leaves

a trace on the screen. However, DRAWTO and PLOT

work even if PENUP is set.

PLOT <x>,<y>

Displays the position (<x>,<y>) in the current

color (see PENCOLOR).

PLOTTEXT <x>,<y>,<text>

Displays in the current color the text given by

the string expression <text> on the graphics

screen such that the lower left corner of the

first character of <text> is placed at the

position (<x>,<y>). However, the applied

coordinates are set to greatest multiple of 8

less than or equal to the given values. Texts

can only be displayed in Hi-Res graphics mode.

COMAL FROM A TO Z by Borge Christensen

A substring is specified by giving the position

of the first and last character in it. If for

example NAME$ has the value: "RICHARD PAWSON",

then

NAME$(9:14)

returns the string "PAWSON".

If the string SPACES$ is declared (DIM) to a

length of 60 characters, the assignment

SPACE$(1:6O):=""

fills SPACE$ with spaces (CHR$(32)).

In the string NAME$, the expression NAME$(5) is

equal to NAME$(5:5), i.e. if the substring is
only one character long, you only have to give

the position of that character.

Also note that substring assignment is allowed.

If the following statements are executed

DIM ADDRESS$ OF 80

ADDRESS$(1:8O):=""

ADDRESS$(21:40):=HOUSE$

the current value of HOUSE$ is stored in

ADDRESS$ on positions 21-40. If the value of

HOUSE$ has a length of more than 20 characters

surplus characters are lost.

If a substring of an array component is to be

pointed out, the component is first indicated

and after that the substring. If TEL$(23) has a

value of

"HARRY HENDERSON 3456"

then the string expression

TEL$(23)(21:24)

returns the value "3456".

57 COMAL FROM A TO Z by Borge Christensen 57

SYS

TAB

TAN

THEN

58

Invokes a machine code subroutine call (JSR).

Its syntax is

SYS <memory location>

where <memory location> is a <numeric

expression> that must return a value in the

range 0-65535•

In a PRINT statement the TAB function may be

used to set the next print position. The

argument of the TAB function must be positive

and not greater than 32767. If a vaiue greater

than 80 (line length) results it is first

divided by 80, and the remainder is used.

Non-integer values are truncated before use. If

the TAB function evaluates to a position prior -

to the current one, the tabulation is effected

on the next line.

PRINT " MATHEMATICS:lf,TAB(20),2

produces this printout

MATHEMATICS: 2

with "2" printed in column 20.

PRINT l! MATHEMATICS:f!,TAB(5),2

produces this printout

MATHEMATICS:

2

The example demonstrates that if the TAB

function returns a position prior to the current

one, the next line is used. See also PRINT.

A standard function. TAN(X) returns the tangent

of X (X in radians).

Ends an IF and ELIF statement. See ELIF, IF.

FORWARD

IRAME

FULLSCREEN

HIDETURTLE

COMAL FROM A TO Z by Borge Christensen 58

HOME

LEPT

The bounds of a closed area is thus defined: a

boundary point is one that has a color differet

from that of the background or a point on the

edge of the present frame (see FRAME).

FORWARD <distance>

Moves the turtle <distance> screen units

forward. If the pen is down (see PENDOWN), a

line is drawn using the current color (see

PLNCOLOR).

FRAME <xmin>,<xmax>,<ymin>,<ymax>

Defines the frame within which the pen is

active. No drawing takes place in points whose

coordinates are outside the frame, however the

turtle is still displayed outside the frame. The

lower left corner of the frame is given by

(<xmin>,<ymin>)• The upper right corner is

(<xmax>,<ymax>). Default frame covers the whole

graphics screen: FRAME 0,319,0,199.

FULLSCREEN

Shows the whole of the graphics screen, i.e. no

text window is displayed on the upper two lines

of the physical screen (unlike SPLITSCREEN).

HIDETURTLE

Makes the turtle invisible. This makes some

graphics faster.

HOME

Places the turtle in the position (160,99)

heading vertical upward (zero direction).

LEFT <angle>

Turns the turtles head <angle> degrees to the

left (counter clockwise).

COMAL FROM A TO Z by Borge Christensen

EACK

BACKGROUND

BORDER

CLEAR

DRAfoTO

FILL

C64 COMAL 0.14 GRAPHICS

Remember to initialize the graphics system

BEFORE you try any of the graphics commands (see

SETGRAPHIC). You have 16 different colors

available, numbered 0-15- The screen coordinates

are 0-319 for the x axis and 0-199 for the y

axis. The turtle's home position is in the

center of the screen at position 160,99 facing

upward (zero degrees heading).

BACK <distance>

Moves the turtle <distance> screen units

backwards. If the pen is down (see PENDOtoN), a

line is drawn using the current color (see

PENCOLOR).

BACKGROUND <color>

Sets the background to the color given by the

value of <color> (number from 0-15). Vihen in

Hi-Res graphics the instruction is not executed,

until COML meets a CLEAR command (see CLEAR).

BORDER <color>

Sets the border to the color given by the value

of <color>. See also BACKGROUND.

CLEAR

Clears the graphics screen. Does not affect the

sprites.

DRAViTO <x>,<y>

Draws a line from the present position of the

pen to the position (<x>,<y>). The current color

is used.

FILL <x>,<y>

Fills the closed area containing the position

(<x>,<y>) with the current color (see PENCOLOR).

COftAL SROto A TO Z by Borge Christensen

TO

TRAP

TRUE

UNIT

UNTIL

USING

WHEN

59

Separates <initial value> from <final value> in

a FOR statement. See FOR.

Enables or disables the functioning of the STOP

key. Its syntax is

TRAP ESC <sign>

where <sign> is one of the characters + or -.

Default mode is TRAP ESC+.

TRAP ESC- Disables the STOP key

TRAP ESC+ Enables the STOP key

After the statement or command

TRAP ESC-

has been encountered by the interpreter,

depressing the STOP key will have no effect on

program execution, but the function ESC (see

ESC) returns the value TRUE (numeric 1). The

command or statement

TRAP ESC+

brings the STOP key back to normal mode of

operation.

A predefined constant with the numeric value 1.

See also FALSE.

Used in OPEN FILE statements when a certain

external device must be indicated. Default unit

is always disk unit no. 8. See OPEN.

Terminates the block of statements in a

REPEAT-UNTIL loop. See REPEAT.

Formats output of numerical values. See PRINT

USING.

Initiates a block of statements in the CASE

structure. See CASE.

COMAL FROM A TO Z by Borge Christensen 59

WHILE STRUCTURE

WRITE FILE

The syntax of the WHILE loop and the statements

that control it is

WHILE <numeric expression> [DO]

<stateraent list>

ENDWHILE

The block of statements in the <statement list>

is executed repetitively as long as - i.e. while

- the expression following the WHILE keyword is

evaluated to TRUE. When the expression evaluates

to FALSE, control is transferred to the

statement following the ENDWHILE statement.

TAKEIN("NAME")

WHILE NOT OK DO

ERR0R("NAME")

TAKEIN("NAME")

ENDWHILE

If the <statement list> contains only one

statement a short form of the WHILE loop may be

used. Its syntax is

WHILE <numerical expression> DO <statement>

In this case no ENDWHILE statement is needed -

nor allowed - to terminate the loop.

WHILE X<A(I) DO I:+1

is functionally equivalent to

WHILE X<A(I) DO

ENDWHILE

Stores data in a sequential or random access

file. Its syntax is

WRITE FILE <file#> [,<rec#>]: <variable list>

where <file#> is a <numeric expression> that

must return an integer in the range 2-254 (the

COMAL System uses numbers 1 and 255), and <rec#>

<unit#>

<line number>

IMPORTANT

REFERENCE BOOK

TUTORIAL BOOKS

NEWSLETTER

A <numeric expression> that returns a value in

the range 0-15.

An integer in the range 1-9999.

In the syntax definitions, items in square

brackets [] are optional. Items enclosed in

braces { } are also optional, but may have

several occurences.

It should be stressed that this book is neither

a full formal definition nor a textbook. Though

it is believed to be complete and correct it

presupposes a certain knowledge about

programming in general and about Commodore

computers in particular. A 470 page handbook

that explains and details C64 COMAL and also

contains much useful additional information

about Commodore computers is:

COMAL Handbook by Len Lindsay

Textbooks about COMAL include:

Beginning COMAL by Borge Christensen

Foundations in Computer Studies with COMAL

by John Kelly

Structured Programming with COMAL

by Roy Atherton

The newsletter about COMAL is:

COMAL TODAY (Editor: Len Lindsay)

All are available from COMAL Users Group,

U.S.A., Limited, 5501 Groveland Ter, Madison, tol

53716.

60 COMAL FROM A TO Z by Borge Christensen 60 COMAL FROM A TO Z by Borge Christensen

<identified

<variable name>

<±ile name>

<expression>

READ THIS FIRST

This manual briefly explains each COhAL keyword

as well as assignments, expressions, procedures,

parameters, and standard functions. Keywords are

presented in alphabetical order, Graphics and

Sprites are each presented in their own

sections.

Most <items> are defined on location but a few

fundamental ones are explained below:

A string of up to 78 characters. The leading

character must be a letter, and the following

may be letters, digits, or any one of the

characters: apostrophe (!)> [>]> backslash, or

left arrow (displayed as underscore on the

printer).

An <identifier> to name a real (floating)

variable, <identifier># to name an integer

variable, or <identifier>$ to name a string

variable,

A <string expression> that returns a valid disk

operating system file name.

A <numeric expression> or a <string expressions

A <numeric expression> returns a numeric value

(integer or real), and a <string expression>

returns a string. Only <numeric expressions>

that return values in the range from -32768 to

32767 can be assigned to integer variables. See

also EXPRESSIONS.

<numeric constant>

A decimal representation of a number.

<string constant>

A string of characters enclosed in double

quotes.

<file#>

A <numeric expression> that returns a value in

the range 1-255. The COMAL System uses file #1

and #255 *or system use.

COMAL FROM A TO Z by Borge Christensen

ZONE

61

is a <numeric expression> that must return a

positive integer.

Data stored using the WRITE FILE statement may

be retrieved with the READ FILE statement but

not with the INPUT FILE statement.

WRITE FILE 2: NAME$,ADDRESS$,PAYCODE

writes sequentially the values of the variables

on the list to file number 2.

WRITE FILE 4,NUM: NAME$,ADDR$,DEPTNO

writes the values of the variables on the list

to file number 4, in the record given by the

value of NUM. Note: WRITE FILE and READ FILE

cannot be used with files stored on cassette.

Defines the width of the print zones. The value

of ZONE may be set with this statement

ZONE <zone width>

where <zone width> is a non-negative <numerical

expressions Default value of ZONE is zero.

ZONE 10

PRINT 1,2,3

PRINT " 5 0 5 0 5"

produces the following output:

1 2 3

5 0 5 0 5

ZONE 20

PRINT "PRICE PER POUND:",PRICE

If PRICE has the value 1.5 this results:

PRICE PER POUND: 1.5

PRINT ZONE

displays the present value of ZONE.

COMAL FROM A TO Z by Borge Christensen 61

HHESE TO FDD) MORE INFORMATION

This book was a mini reference book on C64 COMAL version 0.14- For
a much more complete and detailed reference you should get the

COMAL HANDBOOK, a 470 page reference book on COMAL. A comparable

reference book, COMMODORE 64 GRAPHICS WITH COMAL, is expected to

be available late 1984*

Reference books are great, but to actually learn COMAL, a beginner

should use a tutorial textbook. Several good ones are available

for COMAL, including: BEGINNING COMAL, FOUNDATIONS IN COMPUTER

STUDIES WITH COMAL, and STRUCTURED PROGRAMMING WITH COMAL. All

COMAL books mentioned here are available from the COMAL Users

Group, U.S.A., Limited.

Your best source of continuing information on COMAL is the COMAL

TODAY newsletter. It is packed with articles, programming tips,

news, reviews, and program listings. Contributors include Borge

Christensen (author of this book and BEGINNING COMAL), Len Lindsay

(author of COMAL HANDBOOK), Colin Thompson (well known columnist),
UniComal (authors of C64 COMAL), and many others. The reviews of

other COMAL books that follow are condensed from various issues of

COMAL TODAY.

REVIEW: FOUNDATIONS IN COMPUTE* STUDIES WITH COMAL

This textbook is a good value, 313 pages of solid information. It

seems to have been written for APPLE COMAL but since it is COMAL,

we really could not tell the difference. There are over 100 sample

programs. The page of notes from the COMAL Users Group explains

the reason for any differences in the programs. The book starts

out as a hands on tutorial, teaching you how to write and save

simple COMAL programs. From there, the book goes into the

theoretical aspects of structured programming with immediate

applications in COMAL. It was Clay that first noted that the book

was teaching theory, I thought it was just being interesting. The

book final digressed to a facinating study of the variety and

history of the computer. Clay felt the highlight of these chapters

was the 1946 picture of a 30 ton Computer. What I found even more

facinating was the books treatment of multidimensional arrays,

random and direct access files, and recursive routines. The author

concludes with brief chapters regarding the applications of

computers and the social and ethical implications of computer

dataprocessing.

Overall I found this book to be most enjoyable and informative not

only with specific COMAL applications but also in establishing a

good foundation.

Reviewed by David Skinner & Clay Ratliff. Originally from Clark

County Commodore Computer COMAL Club Newsletter.

effective and versatile instructions to control

graphics and sprites.

Tonder, Denmark, April 22, 1984

Borge R Christensen

COhAL 1'ROto A TO Z by Borge Christensen

PREFACE

The programming language COMAL (COMmon

Algorithmic language) was designed in 1973 by

Benedict Loefstedt and myself in order to make

life easier and safer for people who wanted to

use computers without being computer people, foe

combined the simplicity o± BASIC with the power

of Pascal.

If you take a close look at BASIC you will see

that its simplicity stems mainly from its

operative environment, and not from the language

itself. Using BASIC, a beginner can type in one

or two statements and have his small program

executed immediately by means of one simple

command. Line numbers are used to insert, delete

and sequence statements. You do not need a

sophisticated Text Editor or an ambitious

Operative System Command Language. Input and

output take place in a straightforward way at

the terminal.

On the other hand there is no doubt that as a

programming language, BASIC is hopelessly

obsolete. It was never a very good language, and

seen from a modern point of view it is a

disaster. People who start to learn programming

using BASIC may easily be led astray and, after

some time, may find themselves fighting with

problems that could be solved with almost no

effort using programming languages more adequate

to guide human thinking.

COtoAL includes the gentle operative environment

of BASIC and its usual simple statements, such

as INPUT, PRINT, READ, etc., but it adds to it a

set of statements modelled after Pascal that

makes it easy to write well structured programs.

Instead of leading people away from the modern

effective way of programming, COMAL offers a

perfect introduction to this new art.

With C64 COMAL 0.14 it is now possible for any

one to become familiar with modern principles of

programming. It also includes simple but

COMAL FROh A TO Z by Borge Christensen 2

REVIEW: COMAL HAHDBOOK

This book is more a manual or reference book than a textbook. It

is, however, essential for anyone who wishes to learn COMAL ori

Commodore computers. The main part of the book is in the form of a

reference manual covering all the COMAL keywords. For each keyword

there is an explanation, its syntax is given, and there are

examples and sample programs. Whether or not each keyword matches

the standard is stated, as are the versions in which each keyword

is available. There are many appendices, some of which are very

useful. There are special sections for the COMAL structures,

string handling, and useful procedures and functions.

For someone who already knows C64 BASIC and its operating

environment, this book should be extremely helpful to them in

learning COMAL. Some users may however require additional

assistance in getting to grips with the more complex aspects of

COMAL such as procedures and functions with parameters. The book

is not particularly suitable on its own for someone learning COMAL

as a first language. It is however, an essential reference book

for all who use COMAL on Commodore computers.

Reviewed by Diarmuid McCarthy. Originally from Riomhiris na Schol,

published by the Computer Education Society of Ireland, Colaiste

an Spioraid Naoimh, Bishopstown, Cork, Ireland ($30 per year).

RE7IES#2: COMAL HANDBOOK

This book contains the most complete description of the COMAL

language to be found anywhere. And I do mean COMPLETE! The

Keywords in the book are in alphabetical order, each on a separate

page. This allows ample room for an in-depth discussion of how,

when, and where it should be used, including which versions

support which keywords. The standard syntax is listed first, with

default values and possible ranges for each value in a clear and

easy to understand format. Next comes one or more examples of how

the keyword looks in a working program, with both user inputs and

computer responses shown. Finally, cross references show where to

find other examples, procedures at the end of the book which

contain this keyword, and a list of related keywords.

Together with this book, you have the most efficient programming

language working for you. It!s as if the authors of COMAL are

standing behind you. The answer to your question has already been

answered. Complete is the only word to describe the COMAL

HANDBOOK. When you need to know something about COMAL, this is.the
place to look.

REVIEW: BEGINNING COMAL

As a leading educator in Denmark, Borge Christensen has

successfully written a hands-on COMAL tutorial aimed at the

beginning computer user. Assuming you have had no previous

computer experience, this book will teach you to program in COMAL•

A wonderfully direct technique is used to reveal the power and

beauty of COMAL. Chapter 1 begins with this program line: 25 PRINT

"HI, THERE." By dissecting this simple line of code, Mr.

Christensen introduces line numbers, statements, keywords, and

string constants. While still on page 1, the student is already

presented with a hands-on example to run. By building on these

short simple concepts with a complete series of examples and

exercises, a student is led from "print your name" through

variables, conditionals, iteratives, and into file structures. As

each new concept appears, a clear example of its usage is given,

along with exercises to show why it works.

While another book might be preferred as a reference, BEGINNING
COMAL should be your text of choice for teaching COMAL.

REVIEW#2: BEGINNING COMAL

This is a programmed instruction course in the classical sense.

There blanks for you to write in your own answers throughout the

book. There are structure diagrams galore, to represent each

principle being considered. This is one book that you cannot use

without the computer. While the COMAL Users Group did include an

errata sheet with the book, it was really more an instruction

sheet for using the accompanying disk; there were very few errors

of any kind. The book begins with 'the computer writes a message1

and before it ends we have covered data management, accounting,

statistics, etc. in a somewhat superficial way. Be assured I do

not mean that in a negative way, the text remains light and flows

gently from one subject to the next. If I had to recommend a best

first book for beginning COMAL, I would have to recommend,
BEGINNING COMAL by Borge Christensen.

TABLE OF CONTENTS

2 - Preface

4 - Read This First

6 - C64 COMAL 0.14 Graphics

11 - C64 COMAL 0.14 Sprites

14 - COMAL 0.14 Keywords

62 - Where to Find More Information

Original manuscript is copyright 1984 by Borge Christensen.

This edition is copyright 1984 by COMAL Users Group, U.S.A.,

Limited and published with permission of Borge Christensen.

The original manuscript was written on a Commodore computer

with WordPro. It was also submitted to Toronto Pet Users

Group for possible publication. This edition was edited with

Paperclip running on a CBM 8096 and printed on a Starwriter

printer.

All rights reserved. No part of this book may be reproduced

in any way or by any means without permission from the

publisher.

WordPro is trademark of Professional Software, Paperclip is

trademark of Batteries Included, Commodore 64 and CBM are

trademark of Commodore Electronics Limited, PET is trademark

of Commodore Business Machines.

Review originally from Clark County Commodore Computer COMAL Club

Newsletter.

ISBN O-

COMAL FROM A TO Z by Borge Christensen

