
TRACE and BATCH FILES

TRACE is very useful as an aid to locating a problem in

the program you are writing. If your running program

begins doing something unexpected just hit the STOP key.

Once the program is stopped enter the command: TRACE.

The system will then tell you how it got to the point

the program was stopped at. Another use for TRACE is

when your program abends (abnormally ends) with an error

message. Just enter the command: TRACE and the system

will tell you how it got to the point of error.

BATCH FILES are extremely useful to the serious

programmer, but even a casual programmer can take

advantage of them. The BATCH FILE is a type of COMMAND

FILE, a sequential ASCII file containing COMAL commands.

The command SELECT INPUT "0:NAME" transfer control to

the file named. All commands read from that file are

treated as if they had been typed in from the keyboard.

When the end of file is reached, control automatically

returns to the keyboard. You can have as many batch

files as you wish.

Programs that use batch files include: VIEW'FONTS and

BATCHFILE'EDITOR (Demo Disk #3) and BATCH'COPIER (Demo

Disk #2). Batch files can set up your system. For

example, you could have a batch file set up the screen

colors and function keys as you like them, and then give

you a directory of just the PRG files on the disk. Let's

say you called the file "BAT.MINE". Anytime you issued

the command SELECT INPUT "BAT.MINE" it would do all

those things. For an easy example of BATCH FILES in

action type in the following lines from direct mode:

OPEN FILE 2,"0:BAT.MINE",WRITE

PRINT FILE 2: "CAT"

PRINT FILE 2: "SIZE"

CLOSE

SELECT INPUT "BAT.MINE"

Send us listings of what you put in your batch files, or

send us a disk with the files on it. Then watch COMAL

TODAY for tips on BATCH FILES shared by other users.

ISBN

THE AMAZING ADVENTURES OF CAPTAIN COMAL
BOOK 4

CARTRIDGE GRAPHICS AND SOUND
AND OTHER PACKAGES

TM

$9.95

mw/r/J

ABOUT T/9/}7

FOR MORE INFORMATION

The COMAL 2,0 Cartridge is a very powerful tool. We have

just barely scratched the surface of its potential and

capabilities. The COMAL HANDBOOK documents the COMAL

part of the cartridge and complements this book very

well.

COMAL TODAY newsletter is the BEST source of ongoing

information and programs for COMAL. Starting in January

1985 it will have a complete section devoted to using

the COMAL 2.0 Cartridge. If you aren't already you will

want to subscribe to COMAL TODAY - $14.95 per year.

(NOTE: Subscribe before January 1, 1985 and get 6 issues

per subscription year - after that a subscription will

be for 5 issues).

One of the best ways to uncover the power in your

cartridge is to look at programs already written. Two

disks come with the Deluxe Cartridge Package and provide

a good start. But there are two more available December

1984: Cartridge Demo Disk #3 and #4. Demo Disk #3 will

be the super demo disk with some useful and amazing

programs on it. A special order form should have been

packed with your cartridge providing you a special

discount on Demo Disks #3 and #4. Take advantage of it!

If you need a tutorial about COMAL programming try these

books:

FOUNDATIONS IN COMPUTER STUDIES WITH COMAL

by John Kelly

book=$19.95 matching disk=$19.95

(book and disk only $24.95 to COMAL TODAY subscribers)

STRUCTURED PROGRAMMING WITH COMAL

by Roy Atherton

book=$26.95 matching disk=$19.95

(book and disk only $32.95 to COMAL TODAY subscribers)

All COMAL materials are available directly from:

COMAL USERS GROUP, U.S.A., LIMITED

5501 Groveland Terrace

Madison, WI 53716-3251

(608) 222-4432

64 - CARTRIDGE GRAPHICS AND SOUND - 64

THE AMAZING ADVENTURES OF CAPTAIN COMAL

Book 4

CARTRIDGE GRAPHICS AND SOUND

and other packages

by Captain COMAL1s Friends

Published by COMAL Users Group, U.S.A., Limited

5501 Groveland Terrace

Madison, WI 53716-3251

phone: 608-222-4432

Copyright 1984 COMAL Users Group, U.S.A., Limited

First Edition Cower

All rights reserved. No part of this book may be

reproduced in any way or by any means without written

permission from the publisher.

This edition is for the C64 COMAL 2.01 Cartridge. It

applies to both the EPROM and ROM versions since both

are identical except for the start up screen. The

cartridges are distributed in North America by COMAL

Users Group, U.S.A., Limited.

Your comments on the book are welcome and appreciated

We tried to keep it concise and to the point. COMAL

TODAY newsletter will have a special section just for

the CARTRIDGE starting in 1985. Make sure you are a

subscriber.

The following trademarks should be noted:

Commodore 64, CBM of Commodore Electronics

Captain COMAL of COMAL Users Group, U.S.A., Limited

Koala Pad of Koala Technologies

ISBN 0-928411-02-8 Printed in U.S.A.

1 - CARTRIDGE GRAPHICS AND SOUND - 1

TABLE OP CONTENTS

3

7

8

17

31

32

44

Introduction 54

Packages 55

System Package 56

Graphics Package 58

Turtle Package 63

Sprite Package 64

Sound Package BC

Joystick Package

Paddles Package

Lightpen Package

Font Package

CONTROL Codes

FOR MORE INFORMATION

TRACE and BATCH FILE

Running COMAL 0.14 programs in COMAL 2.0

COMAL programs written in disk loaded COMAL 0.14 are

upward compatible with the C64 COMAL 2.0 Cartridge. BUT

they are not SAVE and LOAD compatible (if you try to

LOAD a COMAL 0.14 program file into COMAL 2.0 you will

get an error message). To transfer a COMAL 0.14 program

to run under COMAL 2.0 you must follow these steps:

1) You can keep your COMAL cartridge plugged in. Switch

to BASIC mode by issuing the command: BASIC.

2) LOAD in COMAL 0.14 from your disk as usual:

LOAD "BOOT*",8 // RUN

3) While in COMAL 0.14 LIST the program to disk:

LIST "NAME.L*

4) Do the same thing with any other COMAL 0.14 programs

you wish to transfer to COMAL 2.0.

5) Now switch back to COMAL 2.0:

Turn off the computer, then back on again.

6) ENTER each program previously LISTed to disk:

ENTER "NAME.L"

7) After the program is successfully ENTERedf you may

wish to SAVE it to disk with 2.0 SAVE command for future

use.

Remember, graphics is not COMAL, it is an environment

(now called a package). Plain COMAL programs should

transfer fine. Graphics and sprites now need ()

parentheses in 2.0 and a USE GRAPHICS and USE SPRITES at

the beginning of the program.

FORWARD 9 becomes FORWARD(9)

More tips will be in COMAL TODAY newsletter.

2 - CARTRIDGE GRAPHICS AND SOUND - 2

CONTROL KEY USES

Use the following keys along with the CONTROL key to do

special things:

A - remove indentations of a listed line

- oops! return line to original state and

remove changes - only before RETURN

- show line - to see any line just type the line#

then CONTROL A

- move cursor one word back

- Dump graphics screen (does PRINTSCREEN("lp:11,79))

(causes an error if printer is not present)

- move cursor one word forward

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

X

Y

Z

erase to end of logical line

goto end of line (last non blank character)

Textscreen dump (does a HARDCOPY("lp:11))

(causes an error if printer is not present)

Restore Function keys toggle

Sets textcolors to (6,6,1) - startup colors

Sets textcolors to (11,15,0)

for black/white monitors

Changes text border color

CNTRL X then CNTRL <color key>

Changes text background

CNTRL Y then CNTRL <color key>

Makes the current textscreen colors the default

63 - CARTRIDGE GRAPHICS AND SOUND - 63

MATIONAL LANGUAGE MESSAGES

COMAL is designed to be used internationally. With that

in mind, the capability to have the error messages

displayed in many different languages was incorporated

into COMAL.

When you start up the cartridge, it comes up in English.

However, Danish messages are built into the cartridge as

well and disk loaded packages for other languages will

be available soon. To see messages in Danish just issue

the command:

USE DANSK

Now try this:

s <hit RETURN key>

The computer responds:

s: ukendt saetning eller procedure

Don't worry. If you don't know Danish, just issue the

command: USE ENGLISH and try it again. This time the

computer responds:

s: unknown statement or procedure

62 - CARTRIDGE GRAPHICS AND SOUND - 62

SOME OP THE CARTRIDGE FEATURES AND HOW TO USB THEM

Professional COMAL is available for the Commodore 64. It

is called the C64 COMAL 2.0 Cartridge and contains the

full version 2.0 COMAL implementation for the Commodore

64 computer system. Preliminary versions were available

for a year before the final version was released. The

preliminary versions were called 2.00 and 2.01y. The

final version was released as version 2.01 (they did not

bump up the number to version 2.02 as expected). In this

book, we will refer to it simply as the cartridge or

COMAL.

The cartridge contains the complete COMAL system and

more. The COMAL system is detailed in the COMAL

HANDBOOK. In addition, 11 packages (including graphics

and sound) are built into the cartridge. These packages

are considered 'tack-ons' to COMAL. You must issue a USE

command before you can use features in a package.

Version 0.14 disk loaded COMAL was more primitive, and

just built in the graphics, turtle and sprites as part

of COMAL, when they really are not COMAL. Commands

inside packages can have parameters, and when parameters

are used, they must always be enclosed inside

parentheses (). Thus note the change in syntax for

graphics and spites from version 0.14 to version 2.0:

Version 0.14:

Cartridge 2.0:

FORWARD 10

FORWARD(10)

CORRECTS SOME COMPUTER PROBLEMS

The COMAL Cartridge even corrects some problems in the

C64 itself. For example, colors on the graphics screen

are in 8x8 (with a limit of 2 colors) or 8x4 (with a

limit of 4 colors) pixel blocks. Once the color limit of

2 or 4 is reached, the C64 does NOT reset the pixels

back to 'unused' if the whole block is filled with one

color. COMAL resets colors automatically for you. Also

the Commodore 1541 Disk Drive problem with RANDOM or

RELATIVE files is corrected by the COMAL system - and

still gives you faster access times than BASIC.

3 - CARTRIDGE GRAPHICS AND SOUND - 3

INPUT STATEMENTS

An INPUT statement now can accept up to 120 characters

(on continued screen lines). Also, the input fields are

now 'protected' fields. Cursor up and Cursor down are

ignored, as are reverse on and off, and there is no

'quote mode'. But the interesting feature is that while

in an INPUT request, the CLR (clear screen) key will

only clear the input field and HOME (cursor home) key

will put the cursor on the first position of the input

field. In addition to the normal INPUT statement you now

can use the professional INPUT AT specifying the row and

column to start at as well as the maximum length of the

input field:

INPUT NAME?

INPUT nNAME> ": NAME$

INPUT AT 9,1: nNAME> ": NAME$

INPUT AT 9,1,10: "NAME> ": NAME$

The above input statements all input characters into the

variable NAME$. The first one is the most basic type.

Since it includes no prompt, COMAL will use the question

mark (?) as the prompt (to have no prompt at all, use a

prompt of nn). The next line uses a prompt of "NAME> n.

The next example starts the INPUT request at row 9

column 1 (the N in NAME> will be in that position).

Finally, the last example includes 10 as the maximum

permitted input. COMAL will not let the user type more

than 10 characters for the reply! Try this example

program:

10 PAGE // clear screen

20 INPUT AT 9,1,10: nNAME> "j

30 PRINT NAME$

NAME$

Also it is important to note that both RETURN and

SHIPTed RETURN are the same now. Use the STOP key

instead of SHIFTed RETURN.

EASY EDITING

FIND and CHANGE commands are available:

FIND " PROC "

4 - CARTRIDGE GRAPHICS AND SOUND - 4

1000 USE FONT

1010 DIM char$ OF 8

1020 FOR x:=1 TO 8 DO

1030 READ a

1040 char$(x):=CHR$(a)

1050 ENDFOR x

1060 PUTCHARACTER(0,0,char$)

1070 // repelaces '@' in UPPER/graphics

1080 // with Commodore logo.

1090 data %00111100 //

1100 data %01100110 //

1110 data %01100100 //

1120 data %01100000 //

1130 data %01100100 // U
• TT • •

1140 data %01100110 //

1150 data %00111100 //

1160 data %00000000 //

<Press STOP Key to end AUTO mode>

RUN

61 - CARTRIDGE GRAPHICS AND SOUND - 61

SELECT INPUT.

A second or third LOADFONT will overwrite PONTs 0 and 1.

SAVEEOHT

SAVEFONT(<filename>)

SAVEFONT("font.standard")

This command will write a 4K (4096) byte SEQ file to

disk or tape from the two user defined FONTs. This

command may be used in a running program without

problem.

GETCHARACTER

GETCHARACTER(<font#>f<character#>f<string variable>)

GETCHARACTER(3,1,char$)

Each character in a FONT is an 8 byte long string,

identifying the pixels as displayed on the screen. The

first character of the string is the top row of pixels

and the eighth character is the bottom row of pixels.

If the pixel is on then it equals a "11 and if it is off

then it will equal ' 0 ■. Each character is a binary

number (0-255) representation of a row of the character.

With this command you can look at any of the 256

characters (0-255) in any FONT (0-3).

POTCHARACTER

PUTCHARACTER(<font#>,<character#>,<string variable>)

PUTCHARACTER(0,1,char$)

This command allows you to define a character with an

eight byte string. Fortunately, COMAL 2.0 allows the

use of binary numbers, so creating characters is easy.

The following program demonstrates the use of this

command:

NEW

USE FONT

LINKFONT

AUTO 1000

60 - CARTRIDGE GRAPHICS AND SOUND - 60

This will find all program lines with n PROC n in it.

COMAL will list one line at a time. Hit RETURN for the

next one (you may edit the line first if you wish). Hold

the RETURN key down for a continuous list of all lines.

Issue a SELECT "lp:n command first and the list of lines

will print on the printer.

CHANGE "temp11, "final11

This will change all occurances of "temp" into "final".

COMAL asks your approval before it makes each change

(the line is displayed with the target flashing). Hit N

for No change or hit the RETURN key and it will be

changed. Use the STOP key to cancel the command. While a

line is displayed you may also hit the COMMODORE LOGO

key - this allows you to edit that line first and then

continue (but the CHANGE will not be made for that line

unless you do it yourself).

UPPER and lower case are considered different.

Therefore, if you search for "proc" it will not FIND

"PROC". Be careful.

UNDERLINE CHARACTER

The left arrow key (top left key on keyboard) can be

used as part of a variable name, and if used, it will be

listed on the printer and screen as underline. The

Commodore key plus the @ key will directly produce the

underline character. Underline is CHR$(164) in PETASCII

or CHR$(95) in ASCII.

The cartridge also converts all 'control code1 character

in print statements into the code number with quotes on

each side. This allows a program listing to print on any

printer even with embedded control codes. For example,

the HOME CURSOR control code is 19. In BASIC we would

say PRINT "[HOME]". When you press the HOME key in

between the quote marks a reverse field S appeared. It

represents HOME cursor. The cartridge would

automatically convert this line into PRINT ""19"". It

looks funny at first - but it makes sense. Simply remove

the control character and replace it with a quote mark,

the code number, and another quote mark. Of course, if

5 - CARTRIDGE GRAPHICS AND SOUND - 5

you don't like it this way you always can just use PRINT

CHR$(19).

UPPER or lower case

The cartridge will let you use either UPPER or lower

case letters when entering COMAL commands and

statements. Thus to list the program you can use any of

the following (they are all considered the same by

COMAL):

LIST list List LiST liST

However, when listing a program, keywords will be in

UPPER case and variable names in lower case:

FOR delay:=start TO finish DO PRINT "Testing"

You can change this if you wish, and when LISTing a

program to disk to transfer to version 0.14 you MUST

change the keywords into lower case. Changing this

default is accessed thru the SYSTEM package, so let's

get on with the packages...

6 - CARTRIDGE GRAPHICS AND SOUND - 6

LIHKFQNT

LINKPONT

The first time LINKFONT is used it overwrites memory (it

will copy the built in FONTs 2 and 3 into FONTs 0 and 1)

and links the user defined FONTs to the program so that

when you save the program, the user defined FONTs, 0 and

1 , will be saved with the program. When LINKFONT is

used for the first time it will also stop a running

program (because it overwrites memory) so this command

should be used in the direct mode the first time.

KERPFONT

KEEPFONT

This command makes the user defined FONTs 0 and 1 the

default FONTs (like FREEZING the FONTs into the system).

After this command is issued, programs will be saved

without the user defined FONTs. The only way to get

back out of them is via a LOADFONT command or by turning

the computer off and back on again. If no user font is

active then KEEPFONT has no meaning

LOADFONT

LOADFONT(<filename>)

LOADFONT("font.russian")

This command will load a user defined character FONT

into memory from the disk drive or tape machine. In

essence it will do the following:

(1) Does a LINKFONT

(2) Loads a 4K (4096) byte SEQ file into the user

defined FONTs

(3) Switches to FONTS 0 and 1 as current FONTs

This command will stop a running program so it must be

used in direct mode or by use of a batch file with

59 - CARTRIDGE GRAPHICS AND SOUND - 59

FONT PACKAGE

The Commodore 64 has two character sets built into it,

upper/graphics and lower/upper case. COMAL 2.0 allows

you to define your own character sets and to use them in

your own programs. This is a very powerfull feature.

One way to use this feature is for custom game pieces on

the text screen. Another use is to have a Danish

character set. While you must spell the command words

the same way they are spelled in English, variable names

can be spelled any way you wish.

Characters are made up of dots, or pixels, eight wide

and eight tall. Due to limitation of the video chip and

your video screen, vertical lines should be two dots

wide to make them more visable.

Besides the two character sets built into the computer,

you can have two of your own defined character sets in

memory at one time. These fonts are numbered for the

FONT commands so you can access any of them:

FONT 0: User defined, stored in RAM, read/write

FONT 1: User defined, stored in RAM, read/write

FONT 2: UPPER/graphics, stored in ROM, read only

FONT 3: lower/UPPER, stored in ROM, read only

SHIFT/Commmodore key toggles between FONTS 0 and 1, just

as it normally does with fonts 2 and 3. To prevent

this, printing chr$(8) will cause the system to ignore

the SHIFT/Commodore key. To restore the keys, print

chr$(9).

PLOTTEXT uses whatever FONT is currently active

(normally FONT 2 or 3). This way you can plot user

defined characters on the graphic screen.

Whenever user fonts are used, 5K (5120) bytes of memory

is used. 4K (4096) for FONT 0 and 1, and 1K (1024) for

the text screen. The built in FONTs, 2 and 3, and

textscreen still exist, unchanged.

58 - CARTRIDGE GRAPHICS AND SOUND - 58

A NOTE ABOUT PACKAGES

It is possible to extend COMAL by use of PACKAGES. The

added commands in each package is not available until

COMAL has been instructed to USE the package. This gives

you control over when the commands are active, and

memory is not taken up by them when they are not needed

in a program. Eleven packages are built into the

cartridge, and others can be loaded from disk.

To use the commands in a package, you must issue the

command USE followed by the name of the package:

NAME ABILITIES

DANSK Displays message texts in Danish language

ENGLISH Displays message texts in English language

FONT Allows user defined character sets

GRAPHICS Adds 48 different graphic commands

JOYSTICKS Adds joystick control

LIGHTPEN adds lightpen control (port #1 only)

PADDLES Adds paddle control

SOUND Adds sound and music commands

SPRITES Adds sprite commands including animation

SYSTEM Gives control over some of the COMAL system

TURTLE All GRAPHICS package plus LOGO abbreviations

Examples: USE GRAPHICS

USE JOYSTICKS

USE FONT

More than one package can be active at one time, but by

adding them into the command table, some memory is used

(although this should not be a problem in a 30K system).

These added commands are not GLOBAL and do not

automatically pass into a CLOSED procedure, so you will

have to issue the USE command within that procedure in

order to use the commands, or IMPORT the specific ones

needed.

The command DISCARD removes all packages from the name

table. It is a direct command and cannot be used in a

running program.

CARTRIDGE GRAPHICS AND SOUND - 7

SYSTEM PACKAGE

The SYSTEM package allows you to change some of the

system defaults and gives you some extra commands as

well. Before you can use any of this you MOST tell COMAL

you want to use the SYSTEM package. Just issue this

command:

USB SYSTEM

The following pages detail what is available in the

SYSTEM package.

BELL

BELL(<number>)

BELL(3)

This makes the sound heard when you turn on the computer

with the COMAL cartridge in place. The sound can be long

or short, depending on the number used (3 is a good

choice for many uses). The bell will 'ring1 the number

of times specified (from 0 to 255 times).

CDROOL

CURCOL

X:=CURCOL

This function returns the cursor's current position on

the the screen. This is useful with CURROW to remember

where the cursor currently is before you move it

someplace else.

cmtRcm

CURROW

R:=CURROW

This function returns the row that the cursor is

currently on. It is useful with CURCOL to identify the

current location of the cursor.

8 - CARTRIDGE GRAPHICS AND SOUND -8

PEHOH

PENON

This function returns TRUE if the lightpen senses light,

and FALSE if the lightpen does not.

READPEN(<X coordinate^ <Y coordinate^<penon?>)

READPEN(xpos,ypos,pen'status)

This command reads the position of the lightpen,

corrects for the OFFSET command, and sets variables <X

coordinate>,<Y coordinate> to the lightpen position. If

the lightpen senses light, the variable <penon?> will be

set to TRUE, otherwise it will be set to FALSE.

Variables have to be used because they are set to the

lightpen settings. If you use numbers instead of

variables, an error will result.

TIMEON(<time>)

TIMEON(3)

This command sets how long the lightpen must be taken

away from the screen before it is not recognized.

57 - CARTRIDGE GRAPHICS AND SOUND - 57

LIGHTPEN PACKAGE

The LIGHTPEN package allows you to easily read and use a

lightpen with your Commodore 64. The lightpen can only

be read if it is plugged into control port #1. The

quality of your lightpen will control how fast and

accurate it is.

ACCURACY

ACCURACY(<X range>,<Y range>)

ACCURACY(2,1)

This command sets how accurate the pen will read. The

more accurate the setting, the longer it takes to read

the position. For fast drawing a high value of 5-7

should be used. For slow, accurate drawing, a low value

of 1-2 should be used.

DELAY

DELAY(<time>)

DELAY(5)

This command sets how many time the light pen has to

return the same number to be accurate. A high value of

5-10 should be used for menu selection, while a low

value 2-3 should be used for drawing.

OFFSET

OFFSET(<X correction>,<Y correction>)

OFFSET(5,0)

This command corrects for errors that develop on

different sizes of televisions. The idea is to touch

the lightpen to a known point on the screen, read the

position returned, calculate the difference between the

point returned and what the point should have been. Then

set the OFFSET to that difference.

56 - CARTRIDGE GRAPHICS AND SOUND - 56

DEFKEY

DEFKEY(<function key number>,<string to issue$>)

DEFKEY(1 , "LIST111 3" ")

DEFKEY(1,"LISTn+CHR$(13))

DEFKEY(3,"COPY"+CHR$(13)+","+CHR$(34)+n1:*")

DEFKEY(3,nCOPYn13n,""1:*")

You now have full control over the function keys. DEFKEY

allows you to set up any function key to return any

string of characters you wish, up to the line length

limit. The first example above sets function key 1 (F1)

to be the LIST command with a carriage return (note the

"13" is the new way of saying CHR$(13) for carriage

return). The second example uses the old method. Both

achieve the same result.

The third example sets up function key 3 (F3) to be a

'copy1 key for a dual disk drive. To copy any file from

drive 0 to drive 1 simply do a CAT for drive 0. Then

simply put the cursor in front of any program you wish

to copy and press F3. The last example is the same, but

using the new method of indicating CHR$ via quotes

around the CHR value.

Within a running program, the function keys are

internally referred to as F11 - F18 (10 more than

usual). This allows you to set up function keys inside a

program and not affect their settings outside the

program. The previous values of F11 - F18 are cleared by

the RUN command back to their default values.

FREE

MEM1 LEFT :=FREE

PRINT FREE

While the SIZE command is part of COMAL and provides

more complete details on memory used, it is not

accessible from a running COMAL program. FREE is a

function that will return the amount of FREE user memory

available. This could be useful when dealing with

external procedures or large arrays.

9 - CARTRIDGE GRAPHICS AND SOUND - 9

GETSCREEN(<string$>)

GETSCREEN(screen1 $)

This command assigns the entire text screen, including

colors and cursor location to the string variable

indicated. The variable must be DIM'ed to 1505 before

using it (ie, DIM SCREEN1$ OF 1505).

CWTTMR}

GETTIME$

PRINT GETTIME$

THIS1 TIME$:=GETTIME$

returns the time as a string:

HH:MM:SS.T

The current time is returned by GETTIME$ as a string in

the format: HH:MM:SS.T where HH is the hour, MM is the

minutes, SS is the seconds and T is the tenths of

seconds. The following program is a complete digital

clock program:

10 USE SYSTEM

20 PAGE // clear screen

30 WHILE TRUE DO PRINT AT 10,10: GETTIME$(1:8)

HARDOOPY

HARDCOPY(<filename$>)

HARDCOPY(nlp:n)

HARDCOPY(n0:textscreen")

This sends a text screen dump to the location specified.

The first example sends it to the printer while the

second creates a disk file called TEXTSCREEN and sends

it there. Note that CONTROL P is the same as

HARDCOPYClp:11) and produces a text screen dump to the

printer.

10 - CARTRIDGE GRAPHICS AND SOUND - 10

PADDLES PACKAGE

This package has one command which lets you read the

position and fire button status of a pair of paddles

plugged into one of the two control ports. The sound

chip can read the paddles and return a number 0-255 to

represent how far around the to the right the paddle

nobs are turned. You must issue the command: USE PADDLES

to initialize the PADDLE command.

PATOIS

PADDLE(<port>, <paddle1 >, <paddle2 >, <button1 >, <button2 >)

PADDLE(1,pad1,pad2,fire1,fire2)

The C64 has two control ports (1 and 2), each of which

can have a pair of paddles plugged in (for a total of

four paddles) and can be checked with this command. The

position of the paddles and status of their fire buttons

of the control port specified are put into the variables

for position and for button. When the paddle is turned

to the extreme left a value of zero is returned. When

the paddle is turned to the extreme right a value of 255

is returned.

The Koala Pad from Koala Technologies, or any other X-Y

reading device, can be used with COMAL with this

command. Just plug the device into one of the control

ports and use this command to read the position of the

device.

If you plan to draw graphics with paddles or any X-Y

drawing device, remember that the range of the paddles

is 0-255, while the graphics screen (after USE GRAPHICS)

set up for 0-319 (X-direction), 0-199 (Y-direction).

This can be corrected by the use of the WINDOW command

(i.e. WINDOW(0,255,0,255) — now you can plot directly

to the graphics screen).

55 - CARTRIDGE GRAPHICS AND SOUND - 55

JOYSTICK PACKAGE

This package allows you to read the direction and fire

button status of a joystick plugged into one of the two

control ports. All brands of joysticks that are for the

Commodore 64 can be read with the following command

after a USE JOYSTICKScommand has been issued.

JOYSTICK

JOYSTICK(<port>, <direction>, <button>)

JOYSTICK(1 , joydir, f' button)

The C64 has two joystick ports (1 and 2) which can be

checked with this command. The direction of the

joystick and status of the fire button of the control

port specified are put into the variables for direction

and for button. Since 'direction' and 'button' are

changed, they must be variables. The direction and fire

button status returned is:

8

7

6

1

0

5

2

3

4

Fire Button

True

Fire Button

False

Pressed

Not Pressed

54 - CARTRIDGE GRAPHICS AND SOUND - 54

IHKEY$

INKEY$

CHOICE$:=INKEY$

PRINT INKEY$

This is a very useful addition. The keyword KEY$ is part

of the COMAL system and simply looks at the keyboard

buffer once to see if a key has been pressed. If you

want to actually wait for a key to be pressed, you can

now use INKEY$. In addition, COMAL will blink a cursor

while waiting. INKEY$ is a string function and returns*

the character matching the key pressed.

KEYWORDS'IH1UPPER1 CASE

KEYWORDS'IN'UPPER'CASE(<true/false>)

KEYWORDS'IN'UPPER'CASE(false)

You will notice that COMAL tries to make your program

listings even easier to follow by automatically listing

COMAL keywords in UPPER case and your variable names,

procedure names, etc in lower case. This is compatible

with COMAL systems running on other computers systems

(mostly in Europe). Hopefully you will like this default

method of listing. However, you can easily change it

with the KEYWORDS'IN'UPPER1CASE command.

NOTE: If you are LISTing a program to disk to transfer

to version 0.14 you MOST first issue this command:

KEYWORDS'IN'UPPER'CASE(false)

This is because version 0.14 does not recognize UPPER

case keywords.

NAMES1 IH1 UPPER1 CASE

NAMES'IN'UPPER'CASE(<true/false>)

NAMES'IN'UPPER'CASE(true)

All identifiers (ie, variable names, procedure

names,...) are listed in lower case by default. You can

have them listed in upper case by issuing the command as

shown in the example above.

11 - CARTRIDGE GRAPHICS AND SOUND - 11

QUOTE1MODE

QUOTE1MODE(<true/false>)

QUOTE'MODE(true)

Quote mode is used by Commodore to allow you to insert

cursor movements and other special controls inside a

string constant. Some people like it. Many hate it. With

COMAL you can choose to have it or not. It is disabled

by default and the example above illustrates how to turn

it back on.

SERIAL

SERIAL(<true/false>)

SERIAL(true)

Commodore's IEEE interface for the C64 does not allow

'mixed' devices (some on the serial bus and others on

IEEE). Thus a serial printer and IEEE disk drive could

not both be used by a program at once. COMAL overcomes

this drawback with the SERIAL command. Issue the

command: SERIAL(true) and all I/O will be on the serial

bus. Issue the command: SERIAL(false) and all I/O will

be on the IEEE bus. You can change back and forth as

often as you need to. Plus, this also allows you to have

two printers with device number 4, one on each bus!

SEEPAGE

SETPAGE(<page number>)

SETPAGE(2)

This cbmmand is not needed for normal COMAL use. But if

you really want to get 'inside' COMAL it comes in handy.

Use it to look at the different memory overlays used by

COMAL on the C64. Different areas seem to need different

overlay numbers. Some areas are:

$E000 - $FPFF

SETPAGE(O) =

SETPAGE(2) =

> graphic screen

> kernal

12 - CARTRIDGE GRAPHICS AND SOUND - 12

This command will stop the given voice(s) from playing

if the value given is one (or True), but continue

playing if zero (or False).

The example above withdraws voice one from the automatic

system, but leaves voices two and three alone.

WAITSOORE

WAITSCORE(<voice one>,<voice two>,<voice three>)

WAITSCORE(TRUE,FALSE,FALSE)

If any of the voices you have put TRUE for are still

playing, then this function will return TRUE, otherwise

it will return false.

Example: WHILE WAITSCORE(TRUE,TRUE,TRUE) DO NULL

This program line will wait and do nothing until all

three voices have stoped playing.

53 - CARTRIDGE GRAPHICS AND SOUND - 53

AUTOMATIC SOUND COWTKOL

(INTERRUPT DRIVEN SOUND)

Every sixtith of a second, an interrupt is generated by

the Commodore 64 (for the keyboard, clock, and other

system demands). COMAL 2.0 takes advantage of this so

you can play music while you do graphics, sprites, or

any other programing simultaneously. The only

restriction is you cannot Load or Chain other programs,

or modify the program in memory. This automatic system

is setup by SETSCORE, started by PLAYSCORE, and stopped

by STOPPLAY. Waitscore is a built in function that can

tell you if any, or all, of the three voices are still

playing.

SKTSCORB

SETSCORE(<#>,<freq array>,<gate=1array>,<gate=0array>)

SETSCORE(1,freq1 #(),time'oni#(),time'off1 #())

<#> is the voice number to be set up.

<freq array> is a global integer array that is filled

with the proper sequence of notes (freqencies). The

last value should be zero (to turn off the voice).

<gate=1array> is a global integer array that tells how

long (in 1/60 seconds) each note should have the gate

on.

<gate=0array> is a global integer array the tells how

long (in 1/60 seconds) each note should have the gate

off (before going to the next note).

The example above sets up voice one to play a series of

notes defined in the array freq1#, with the duration of

the notes defined in the arrays time'on1# and

timefoff1#.

STOPPLAY

STOPPLAY(<voice one>,<voice two>,<voice three>)

STOPPLAY(TRUE , FALSE , FALSE)

52 - CARTRIDGE GRAPHICS AND SOUND - 52

$D000 - $DFFF

SETPAGE(O) => hidden RAM

SETPAGE(2) => character generator ROM

SETPAGE(6) => I/O and color RAM

(when PEEKing color RAM ignore upper 4 bits)

$A000 - $BFFF

SETPAGE(O) => hidden RAM (used by packages)

$8000 - $9FFF

SETPAGE(O) => RAM (used by packages)

SETPAGEO) => COMAL code

SETPR1NTKR

SETPRINTER(<printer specifications$>)

SETPRINTER(nu5:/a+/l+/t+/s7/d-n)

See COMAL HANDBOOK edition 2 APPENDIX N page 441 for

details. Briefly:

u5: sets the unit to device 5

/a+ convert upper/lower case to true ASCII

/1+ a carriage return will also send a line feed

/t+ use IEEE time out conventions used by COMAL

/s7 use secondary address 7

/d- the file is not a disk file

Whenever a SELECT "LP:11 command is encountered, the

default printer is opened. SETPRINTER allows you to set

up just how the default should be and only needs to be

used once, but you are allowed to change it as often as

you wish.

SETRECORDDELAY

SETRECORDDELAY(<amount delay>)

SETRECORDDELAY(0)

This allows you to fine tune the COMAL system to your

disk drive. If you are using a Commodore 1541 drive you

should not use this command. However, if you are using

another drive, such as the MSD Dual Drive, you can get

faster disk access by issuing the command:

SETRECORDDELAY(0).

13 - CARTRIDGE GRAPHICS AND SOUND - 13

SETSCREEN(<string$>)

SETSCREEN(screeni$)

This restores a text screen previously stored with a

GETSCREEN command. The entire text screen including

colors and cursor position is stored as a 1505 character

string as follows:

First character is border color of text screen

Second character is background color of text screen

Third character is cursor color on text screen

Fourth character is cursor location, row^-1

Fifth character is cursor location, column-1

The rest of the string is text and color information

grouped in sets of 3:

1: first character

2: second character

3: low 4 bits for first character color,

high 4 bits for second char color

Example:

DIM screen$ of 1505

GETSCREEN(screen$)

PAGE

SETSCREEN(screen$)

save current screen as screen$

clear screen, ready to test it

put screen back again

Note: This is useful for HELP menus - save current

screen - flip through HELP - then replace original

screen.

SETTIME(<time string$>)

SETTIME("0n)

SETTIME("10:30")

SETTIME("5:45:15")

SETTIME("0:0:0.0/50")

sets the real time clock

14 - CARTRIDGE GRAPHICS AND SOUND - 14

VOICE

It is possible to modify notes while they are playing.

For instance, if you rapidly change the frequency of a

note around a small value you would get a vibrato

effect. Many different effects can be generated this

way (try selecting the Pulse waveform and sliding the

pulse width). To help in this, two commands allow you

to see what is happening in voice three.

OSC3

OSC3

wave • value:=OSC3

This function returns the value (0-255) of oscillator 3.

The numbers that appear depend on the waveform (although

they all change at the FREQUENCY rate).

Triangle will generate a series of numbers going from 0

to 255 and back down to 0.

Sawtooth will generate a series of numbers going from 0

to 255.

Pulse will jump back and forth between 0 and 255.

Noise will generate random numbers.

The example above sets the variable wave'value to the

output of oscillator 3.

EHV3

ENV3

wave • point :=ENV3

This function return the value (0-255) of envelope 3.

The numbers returned reflect the ADSR values and how far

into the note it is. Voice 3 must be gated in order to

use this function.

The example above sets the variable wave'point equal the

the value of envelope 3.

51 - CARTRIDGE GRAPHICS AND SOUND - 51

The original example sets the filter to Low Pass and
turns voice 3 off.

FILTERFRBQ

FILTERPREQ(<frequency 0-2047>)

FILTERFREQ(729)

This command will set the filter frequency. The steps

are 5.85 Hz apiece so a middle C is a value of 729. The

effective range is 30 Hz to 12 kHz.

The example above sets the filter frequency to a middle
C (aproximately).

FILTER

FILTER(<voice one>,<voice two>,<voice three>,<external>)
FILTER(TRUE , FALSE , TRUE , FALSE)

This command specifies what voices should go through the

filter. There is an external input to the sound chip

and if you use it, the sounds from it can be modified by
the filter.

TRUE = On

FALSE = Off

In the example above voice one and three will go through

the filter while voice two and the external input will
not.

RESOHAHCE

RESONANCE(<value 0-15>)

RESONANCE(15)

RESONANCE is a peaking effect of freqencies at the

filter frequency. The values range from zero (no

effect) to 15 (full effect). This will produce sharper
sounds.

The example above turns resonance on full for the
filter.

50 - CARTRIDGE GRAPHICS AND SOUND - 50

set time in GETTIME$ format: HH:MM:SS.T

You may change just the hours like this:

SETTIME(n10n) sets hours to 10

You set full time (without tenths):

SETTIME("10:30:0") sets time to 10:30

SETTIME allows you to set the system clock used by

COMAL. Time is kept in this format: HH:MM:SS.T with HH

the hour, MM the minutes, SS the seconds and T the

tenths of a second. To set just the hour it is not

necessary to include the rest of the paramenters in the

string (the first example sets the hour to 0 and also by

default sets minutes, seconds, and tenths to 0).

The second example sets the time to 10:30:00.0. The

third example sets the time to 05:45:15.0 and the last

example sets the time to 00:00:00.0.

COMAL is designed to work with both 50 and 60 cycle

power (European and American). It defaults to the

correct type automatically. However, you are allowed to

specify the cycle type at the very end of a time setting

string - preceded by a slash /. Thus the /50 at the end

of the final example would put COMAL time keeping in the

50 cycle mode. This is not practical, but you are

allowed the option.

SB0MKE7S

SHOWKEYS

The function keys are active in COMAL. They are set up

to perform common functions automatically for you, but

you can set them to anything you want with the DEFKEY

command. SHOWKEYS will display what each function key is

currently set at. The display is done to be compatible

with the define key command so that after showing the

keys current definitions, you can simply cursor up to

the one you wish to change, make the changes in the

string, and hit return. The function keys have two

settings for each key, one for while a program is

running, another while in READY mode (edit mode). Thus a

program can set function keys without disturbing the

settings outside the running program. To distinguish

between them, program mode function keys are internally

15 - CARTRIDGE GRAPHICS AND SOUND - 15

stored as 10 more than the real key number (ie, P1 would
be F11).

Default settings follow:

READY MODE:

F1=RENUM + RETURN

F2=MOUNT + RETURN initializes disk

F3=USE TURTLE + RETURN switch to turtle graphics

F4=AUTO

F5=EDIT

F6=LIST

F7=RUN use with DIR listing to RUN from disk
F8=SCAN

PROGRAM MODE: (matches their values in BASIC)

F11=CHR$(133)

F12=CHR$(137)

F13=CHR$(134)

F14=CHR$(138)

F15=CHR$(135)

F16=CHR$(139)

F17=CHR$(136)

F18=CHR$(140)

TBXTOOIORS

TEXTCOLORS(<border>,<background> f <cursor>)

TEXTCOLORS(15,1,6)

This is used to set all three text colors at once.

Colors can be 0-15 plus -1 meaning no change from the

current value. Use CONTROL Z to keep the current colors

as the default colors.

16 - CARTRIDGE GRAPHICS AND SOUND - 16

This command will set the master (or maximum) volume for

all the voices. The range is zero (off) to 15

(maximum).

The example above turns the volume on full,

is the default for USE SOUND.

This value

FILTERS

FXLTERTYPE

FILTERTYPE(<low>f<band>,<high>,<voice 3 off?>)

FILTERTYPE(TRUE , FALSE , FALSE , TRUE)

The commodore 64 has a built in filter which acts like

the tone controls on your stero (but a bit more

flexible). First you set the filterfs frequency, then

you specify the filter type. The different types are

Low pass, Band pass, and High pass.

Low Pass: When this is turned on, all frequencies at or

below the filter frequency is pass unchanged.

Frequencies above the filter frequency are cut out more

and more the further above the filter frequency they

are. This way you get the deeper tones.

Band Pass: This filter passes freqencies at (or around)

the filter frequency and cuts out the frequency above

and below. You could eliminate harmonics this way.

High Pass: This filter works like the Low Pass filter,

but frequencies at or above the filter frequency are

passed. This way you get the higher tones.

These filters are additive and you could select them

together. If you turned both the Low pass and the High

pass filter on, only frequencies at the filter freqency

would be cut out.

<voice three off?>: This allows you to turn off voice

three at its output, so you can use it to modify the

other two voices.

TRUE

FALSE

On

Off

49 - CARTRIDGE GRAPHICS AND SOUND - 49

RINGMOD(<voice number>,<on/off>)

RINGMOD(TRUE)

If the waveform for <voice number> is set to Triangle,

then that voice will be "ring modulated" with another

voice. This can be used for bell, or gong sounds. The

voices are set to be "ring modulated" in a specific way.

If voice one is set then it will be "ring modulated"

with voice three. Likewise, voice three with voice two

and voice two with voice one.

TRUE

FALSE

On

Off

The original example turns the ring modulation for voice

number one on.

SYNC

SYNC(<voice number>,<on/off>)

SYNC(1,0)

The SYNC command will work with any waveform and

synchronizes the base frequency of one voice with

another. This results in a complex series of harmonics.

The frequency of the voice being synchronized with

should be lower (but not zero) than the frequency of

<voice number>. Voice one will synchronize with voice

three, voice two with voice one, and voice three with

voice two.

GRAPHICS PACKAGE

The Commodore 64 graphics screen is made up of 64,000

pixels that can each display one of 16 different colors.

The graphics screen has two different modes: Hi-Res and

Multi-Color. To access all the commands you must first

issue the command: USE GRAPHICS.

Hi-Res: This mode displays 200 pixel lines, each of

which is made up of 320 pixels. Due to the structure of

the video chip, only one color besides the background

color can be used in each 8X8 block (these blocks

match the character blocks on the text screen). If you

try to draw in a block with a new color, then everything

drawn in that block is changed to the new color. This

mode provides very good high-resolution graphics for
smooth lines and drawing.

Multi-Color: This mode displays 200 pixel lines, each

made up of 160 pixels. The video chip uses pairs of

pixels to tell what color to use. In this mode you have

fewer dots per line, but you can have 3 different colors

in addition to the background color in each 8X8 block.

Lines are twice as wide because of the fewer pixels per

line, and can appear to be jagged. Once three colors

are used in a block, the fourth will change the last

drawn color to the new color.

USE GRAPHICS will initialize the graphics screen only if

it is not already initialized. After the screen has

been initialized, USE GRAPHICS will only add the

commands to the name table and set the screen up as

follows:

TRUE = On

FALSE = Off

In the original example, synchronizing for voice number

one is turned off.

VOLUME

VOLUME*<level>)

VOLUME(15)

48 - CARTRIDGE GRAPHICS AND SOUND - 48

0,199 +

I

-+ 319,199

I

i

160,100

0,0

Drawing on the screen can use a system called "Turtle

Graphics". This means you move an imaginary "Turtle",

that has a colored pen fastened to it, around the screen

17 - CARTRIDGE GRAPHICS AND SOUND - 17

with simple commands and, if the pen is down, draw

lines. Many of the commands will draw from where the

turtle's current position.

Angle degrees on the graphic screen are as follows:

315 45

270 90

225 135

180

Straight up is zero degrees, right is 90, and so on.

ARC

ARC(<centerX>,<centerY>,<radius>,<start angle>,<size>)

ARC(160,100,50,0,90)

This command draws an arc, which is a section of a

circle. The first three parameters describe the circle,

and the last two, the arc of that circle. The arc will

begin on the edge of the circle, starting at <start

angle> (0-359). From there it will draw to the left

around the circle, for a number of degrees set in

<size>. In the example above, an ARC will be drawn on

screen starting 50 pixels above the center of the

screen, going around to the left outlining a circle 50

pixels in radius, for 1/4 the length of the circle

(90/360=1/4). The turtle is moved by this command.

ARCL

ARCL(<radius>,<angle size>)

ARCL(50,180)

Draws an arc from the current position and HEADING of

the turtle counterclockwise for the number of degrees

given in <angle size>, using <radius> as the distance

from the turtle to the points on the arc. In the

example above, half a circle is drawn. If <angle size>

is 360, then a full circle is drawn. The turtle is
moved by this command.

18 - CARTRIDGE GRAPHICS AND SOUND - 18

SOUNDTYPE(<voice number>,0)=No sound

SOUNDTYPE(<voice number>,1)=Triangle

SOUNDTYPE(<voice number>,2)=Sawtooth

SOUNDTYPE(<voice number>,3)=Pulse

SOUNDTYPE(<voice number>,4)=Noise

PULSE

PULSE(<voice number>,<pulse width 0-4095>)

PULSE(1,1500)

If the pulse waveform has been selected, the pulse width

controls how it sounds. The closer to the middle width

number (2048) the fuller the note sounds. The further

away from the middle number the pulse width is, the

thinner the note sounds. A reed flute, for instance,

produces a very thin, insubstantial, note- so a number

far away from the middle would be selected (100-500 or

3600-4095). Low and high numbers are the same to your

ear. Only how far from the middle is important.

The original example sets PULSE width for voice one to

1500.

GATE

GATE(<voice number>,<on/off>)

GATE(1,TRUE)

The GATE command controls the playing of notes. When

the gate is turned on the volume of that voice begins to

rise at the attack rate until the maximum volume is

reached. Once maximum volume is reached the volume for

that note begins to fall to the sustain level at the

decay rate. When the sustain volume level is reached,

the note will remain constant until the gate is turned

off. After the gate is turned off the volume for the

note will fall to zero at the release rate.

TRUE = ON - Attack, Decay, Sustain

FALSE = OFF - Release

In the original example, the GATE for voice one is

turned on.

47 - CARTRIDGE GRAPHICS AND SOUND - 47

Default setting for voice 1: ADSR(1,0,12,10)

Default setting for voice 2: ADSR(2,10,8,10,9)

Default setting for voice 3: ADSR(3,0,9,0,9)

SOUNDTXPB

SOUNDTYPE(<voice number>,<waveform>)

SOUNDTYPE(1,2)

When a note vibrates, it produces harmonics, which are

integer multiples of the base frequency. The overall

pitch of the note is the base frequency, with the

harmonics anded in. How they are added in is determined

by the waveform. For the sake of this discussion we

will call the base, or fundemental, frequency harmonic

number one (harmonic number 2 is double the frequency of

the base, harmonic 3 is thre times the base, etc.). The

commodore 64 has 4 different waveforms built in;

Triangle, Sawtooth, Pulse, and Noise.

Triangle: This waveform conains only odd harmonics

added together by the reciprocal of the square of their

harmonic number (1/1 + 1/9 + 1/25 + 1/49 +...). In

other words, harmonic number 3 is 1/9 as quiet as

harmonic 1 because 3 squared is 9 and the reciprocal of

9 is 1/9. This type of waveform produces fairly smooth,

somewhat hollow, notes, good for organ or flute sounds.

Sawtooth: Contains all harmonics added together by the

reciprocal of their base (i.e. 1/1 + 1/2 + 1/3 + 1/4 +

•••)• This is good for brass and other bright

instruments. It is the default for voices 1 and 2.

Pulse: Contains only odd harmonics added together by

the reciprocal of their base (1/1 + 1/3 + 1/5 + 1/7 +

...). Furthermore, you can vary the width of the pulse

to give an even wider range of control over the sound.

This waveform is good for piano and pinging sounds. It

is the default for voice 3.

Noise: This waveform produces a hissing type sound

produced randomly, commonly referred to as "white

noise". It is good for drums and game sounds.

Values for waveforms:

46 - CARTRIDGE GRAPHICS AND SOUND - 46

ARCR

ARCR(<radius>,<angle size>)

ARCR(75,10)

This command works like ARCL except it draws to the

clockwise instead of counterclockwise. The turtle is
moved by this command.

BACK

BACK(<distance>)

BACK(25)

Moves the turtle backwards <distance> units. If the pen

is down, a line will be drawn.

BACKGROUND

BACKGROUND(<color number>)

BACKGROUND(O)

This command sets the background color of the graphics
screen. This command will immediatly change the

background color of the entire graphics screen (unlike
0.14) and will not work on the text screen. To change

the color of the text screen you must now use

TEXTBACKGROUND. The colors 0-15 are the only allowable
values for <color number>.

BORDER(<color number>)

BORDER(-1)

This command sets the border color of the graphics
screen. <color number> can be in the range of -1 to 15.

If the number is -1 (as in the above example) the border

color of the graphics screen will be the same as the

BACKGROUND color. To change the border to the text

screen you must now use TEXTBORDER.

19 - CARTRIDGE GRAPHICS AND SOUND - 19

CIRCLE

CIRCLE(<center X>f<center Y>,<radius>)

CIRCLE*160,100,50)

This will draw a circle around the center point with the

radius given. The circle is drawn counterclockwise for

a full 360 degrees. The turtle is moved by this

command•

CLEAR

CLEAR

This command will clear the part of the screen inside

the current VIEWPORT. You can use these two commands to

clear any portion of the screen.

CLEARSCREEN

This will clear the entire graphics screen, regardless
of the VIEWPORT command. It is a good idea to use this

command to clear the screen in procedures rather than

the CLEAR command, in case some other part of the

program does a VIEWPORT command.

DRAM

DRAW(<X offset>,<Y offset>)

DRAW(5,-4)

This command will draw to a new position set by adding
<X offset> to the current X position of the turtle and

adding <Y offset> to the current Y position of the

turtle. In the example above, the turtle will move to a

point 4 units below and 5 units to the right of the
current position.

DRAHTO

DRAWTO(<X position>,<Y position>)

DRAWTO(100,50)

20 - CARTRIDGE GRAPHICS AND SOUND - 20

to that frequency. Note$ is a two or three character
string containing:

The first character is the note name: a,b,c,d,e,f,g

(must be lower case letters)

The second character is the octave number:

0,1,2,3,4,5,6,7

The optional third character is for the sharp indicator.

For example, nc4n means middle C

nd2#n means D sharp in the second octave

Note: The frequency range for the SID chip is the same

for a piano, but octave 0 is lower than a piano, and the

SID chip cannot go as high as a piano.

The original example sets up the frequency of voice one

to a middle C.

ADSR

ADSR(<voice#>,<attack>, <decay> ,<sustain>, <release>)

ADSR(1,8,8,10,8)

ADSR stands for Attack, Decay, Sustain and Release.

ADSR controls the volume of a note while it is playing.

The process starts when the gate is turned on.

Immediately the volume begins to climb to the maximum

volume level. The amount of time it takes to get to

that level is determined by the attack rate.

Once maximum volume is reached, the volume begins to

fall to the sustain volume. The amount of time it takes

is set by the decay rate. The note will stay constant

at the sustain level until the gate is turned off.

After the gate is turned off the volume will begin to

fall to zero at the release rate. This may sound

complicated (and it is), but before too long it will

seem all to simple.

45 - CARTRIDGE GRAPHICS AND SOUND - 45

SOUND PACKAGE

The Commodore 64 has the most advanced music synthesizer

built into any 8 bit personal computer today.

Unfortunatly, that also makes it one of the hardest to

use. This package will give you complete control over

the 64's sound capabilities. It even provides a way to

play music independent of your running program. The

commands will be broken up into two parts (standard

commands and the automatic independent commands) even

though you can use both at the same time. As all other

packages, before you can use any of the sound commands

you must first issue the command:

USB SOUND

This adds the commands to COMAL and initializes the SID

chip so that voice 1 sounds like a piano, voice 2 sounds

like a violin, and voice 3 sounds like cymbals. Also,

the volume is turned on full and the filters are turned
off.

<voice number> is a numeric expression equal to 1, 2, or

3 that refers to any of the three available voices.

SETFRBQUEHCY

SETFREQUENCY(<voice number>f<frequency value>)
SETFREQUENCY(1,4291)

This command sets the frequency, or pitch, of a given

voice. Frequency is how fast the voice vibrates. The

higher the frequency, the higher pitched the sound is.

Middle C on a piano is 4291. The range <frequency
value> is 0-65535.

The example above sets the frequency of voice one to a
middle C.

NOTE(<voice number>,<note$ >)

NOTE(1,nc4n)

Figures the frequency of note$ and sets the given voice

44 - - CARTRIDGE GRAPHICS AND SOUND - 44

This command will draw a continuous line to the given

position regardless if the pen is up or down. The line

is drawn in the color set by pencolor.

Fill.

FILL(<X position>,<Y position>)

FILL(50,50)

This command will start at the specified position and

fill from that point in the color set by PENCOLOR until

a non-background color or the edge of the viewport is

encountered. The color of pixel <X position>,<Y

position> is considered the background color for this

command.

FORWARD

FORWARD(<distance>)

FORWARD(10)

This command will move the turtle <distance> units

forward in the direction it is pointing. If PENDOWN is

in effect, a line will be drawn in the color set by

PENCOLOR.

FOIiLSGREEN

FULLSCREEN

This command will show the full graphics screen. If the

text screen is active before this command, then the

screen will switch to the graphics screen. If

SPLITSCREEN is in effect, the upper four lines will

remain as they are. You will have to clear them with

the VIEWPORT and CLEAR commands. This mode can setup

using the f5 key in direct command mode.

GEKXXLOR

GETCOLOR(<X coordinate>,<Y coordinated

dot'color:=GETCOLOR(160,100)

This function returns the color of the specified pixel

or -1 if it is a background pixel.

21 - CARTRIDGE GRAPHICS AND SOUND - 21

GRAP1

GRAPHICSCREEN(<screen type>)

GRAPHICSCREEN(O)

This command initializes the graphics screen to either

of two types:

Multi-Color = 1

Hi-Res = 0

The graphics screen is cleared and the graphics screen

will be shown.

HEfiDXNG

HEADING

turtle'heading:=HEADING

This function returns the current direction, in degrees,

that the turtle is pointing.

HOME

This command moves the turtle to the point 0,0 (which is

by default the lower left hand corner for USE GRAPHICS

and in the center of the screen for USE TURTLE) and

points the turtle straight up, SETHEADING(O). If the

screen boundries have been changed with WINDOW command,

then the turtle will move the point 0,0 — even if that

point is off the screen.

IMQ

INQ(<type function number>)

num:=INQ(0)

This is a multi-purpose function that returns

information about the graphics screen and the turtle.

This information would be most useful in CLOSED

procedures that do graphics and return the turtle and

screen to the original state. The parameter determines

22 - CARTRIDGE GRAPHICS AND SOUND - 22

STARTSPRITES

STARTSPRITES

This command will start any sprites moving that are

waiting because of the setting in a MOVESPRITE command.

STOPSPRITE(<sprite number>)

STOPSPRITE(3)

Stops the sprite from moving or animating.

See The Programer Reference Guide for more information

on the structure of sprites.

43 - CARTRIDGE GRAPHICS AND SOUND - 43

MOVESPRITE

MOVESPRITE(<sprite#>,<new x>r<new y>,<speed>,<event>)

MOVESPRITE(2,320,50,400,%00000110)

This command will move a sprite from the present

position to the new destination at the specified speed.

<speed> is a number from 0-32767 which means how long it

takes (in 60ths of a second) to move from the original

position to the new destination. A speed of zero means
to move there immediatly.

<event> is a number that tell when to start moving the

sprite, and if the sprite should stop if it collides

with another sprite or with screen data. The number is

in the range of 0-7 and is a binary number. The
settings are:

NUMBER SETTING

%0000000X 1=Move Now

0=Wait for STARTSPRITES command

%000000X0 1=Stop if SPRITECOLLISION

0=Continue regardless

%00000X00 1=Stop if DATACOLLISION

0=Continue regardless

The upper 5 bits of <event> are ignored. For example:

%00000111 means move now and stop if it collides with

either data or another sprite.

MOVING

MOVING(<sprite number>)

spr fmoving:=MOVING(3)

This is a function that returns TRUE if the given sprite
is moving (using MOVESPRITE). It will return FALSE if

it is not moving, or if no MOVESPRITE has been used.

what information is returned.

NUMBER FUNCTION TYPE

0 Graphics screen type

1 Text border color

2 Text background color

3 Text cursor color

4 Graphics border color

5 Graphics background color

6 PENCOLOR setting

7 Textstyle Height size

8 Textstyle Width size

9 Textstyle Direction

10 Textstyle Overplot?

11 Turtle visable?

12 Turtle inside VIEWPORT?

13 Textscreen currently displayed

14 Splitscreen active?

15 Wrap mode On?

16 PENDOWN?

17 X-coordinate of turtle

18 Y-coordinate of turtle

19 VIEWPORT X minimum

20 VIEWPORT X maximum

21 VIEWPORT Y minimum

22 VIEWPORT Y maximum

23 WINDOW X minimum

24 WINDOW X maximum

25 WINDOW Y minimum

26 WINDOW Y maximum

27 Cosine of HEADING

28 Sine of HEADING

29 Size of Turtle set by TURTLESIZE

In the example above, the numeric variable (num) is set
to the graphic type (0 for Hi-Res, 1 for Multi-Color).

LEFT

LEFT(<distance>)

LEFT(45)

Turns the turtle to the counterclockwise the number of
degrees indicated. By using negative numbers, the

42 - CARTRIDGE GRAPHICS AND SOUND - 42 23 - CARTRIDGE GRAPHICS AND SOUND - 23

turtle is turned the other way.

LOADSCREEN(<filename>)

LOADSCREEN("hrg.screen'name")

This command will load a color graphics screen from the

file <filename>r which was created with SAVESCREEN. To

identify graphic screen files, you should precede the

file name with "hrg.n.

MOVE

MOVE(<X offset>,<Y offset>)

MOVE(5,-5)

This command works like DRAW, but it just moves the

turtle. It will not draw a line even if the pen is

down. The offsets are added to the position of the

turtle just as for DRAW.

MOWETO

MOVETO(<X coordinated<Y coordinated

MOVETO(100,50)

Moves the turtle to the new position without drawing a

line.

NONRAP

NOWRAP

When the turtle moves off the screen, or VIEWPORT, it

continues to move, but does not draw. This is the

default for USE GRAPHICS.

PAINT

PAINT(<X coordinated<Y coordinate^

PAINT(160,100)

This command works like FILL, but it fills with the

current pencolor until it meets a pixel of the current

24 - CARTRIDGE GRAPHICS AND SOUND - 24

ANIMATE: PAUSE

npn+chr$(<duration>)

Example: np"+chr$(60)

or: ■pn

Pauses the sprite given in the ANIMATE command for a

length of <duration> in 60ths of a second. The example

above will pause the sprite for 1 second (60/60).

ANIMATE: SHOW A SPRITE

"sn+chr$(<sprite number>)

Example: n s"+chr$(2)

or: "sn2"lf

Does a SHOWSPRITE of the given sprite. The sprite will

continue to move.

ANIMATE: EXPAND WIDTH

nxn+chr$(<expand width?>)

Example: "xn+chr$(TRUE)

or: "x"1""'

Does a SPRITESIZE for the width of the sprite given in

ANIMATE. The parameter should be either 0 or 1.

ANIMATE: EXPAND HEIGHT

ny"+chr$(<expand height?>)

Example: "y"+chr$(FALSE)

or:
HyflQI

Does a SPRITESIZE for the height of the sprite given in

ANIMATE. The parameter should be either 0 or 1.

ANIMATE: HALT

To stop animation of a sprite, issue a new ANIMATE

command with a null string. If an error in the 'syntax1

occurs, animation is aborted, and an error generated.

41 - CARTRIDGE GRAPHICS AND SOUND - 41

example, the sprite specified in the ANIMATE command

would show image number 3 for 1/2 a second (30/60).

After the length of <duration> is over, the next command

is executed. The duration can vary between 0 and 255

(60ths of a second). If <duration> is zero then the

sprite will stop and wait for a "Go" command from

another sprite, or another ANIMATE command for this

sprite.

AHIMATE: SPRITE COLOR

"c"+chr$(<color number>)

Example: "c"+chr$(1)

or: "c"1"""

This sets the color for the sprite specified in ANIMATE

to the color number. In the example above, the sprite

color is changed to white.

AHIMATE: GO

"g"+chr$(<sprite number>)

Example:

or:

ngn+chr$(4)

Tells sprite <sprite number> to Go. If you give a

duration of zero in the first command, it will stop

until told to Go. With this you can have a sprite

controlled by another sprite. The above example tells

sprite number 4 to Go.

AHIMATE: HIDE A SPRITE

"h"+chr$(<sprite number>)

Example: "h"+chr$(3)

or: "h"3""

Does a HIDESPRITE of the given sprite. The sprite will

continue to move and animate, whether it is on or off.

When off, no collision can occur.

40 - CARTRIDGE GRAPHICS AND SOUND - 40

color or the edge of the VIEWPORT setting. You can set

PENCOLOR to -1 (background), draw the outline, and PAINT

the shape to erase it.

PEHCOIOR

PENCOLOR(<color number>)

PENCOLOR(1)

Sets the drawing color. The color numbers range from 0

to 15, plus the number -1 means ferase1 color: then you

will erase rather than draw.

PENDOWN

This command permits turtle drawing commands to draw

lines. This is the default for USE GRAPHICS or USE
TURTLE.

PENUP

PENUP

After this command, commands which are dependent on the

Penstate (up/down) will not draw.

PLOT

PLOT(<X coordinated<Y coordinate^

PLOT(100,50)

This command plots the given point in the current

PENCOLOR. The turtle is not moved by this command.

PLOTTEXT

PLOTTEXT(<X coordinate^ <Y coordinate^<text$>)

PLOTTEXT(10,10,"This is the text to print")

This plots text on the screen as defined by TEXTSTYLE.

Text can be put anywhere on the screen, and it is

plotted in the current color. Since the text can be

stretched, you can now plot text on the Multi-Color

25 - CARTRIDGE GRAPHICS AND SOUND - 25

screen. The starting point is the lower left hand

corner point of the string's first character.

PRINTSCREEN(<filename>,<offset>)

PRINTSCREEN("lp:n , 8 0)

This command outputs the graphics screen to the printer

(or the disk drive for later printing). It is a smart

routine in that it skips over blank areas (resulting in

a faster print) and can print Multi-Color pictures

(using gray levels). This is only for MPS-801

compatible printers. <offset> is how far from the left

the picture should be. The example above would print

the picture in the center of the paper on a Commodore

MPS-801 printer.

RIGHT

RIGHT(<angle>)

RIGHT(45)

This command turns the turtle clockwise the number of

degrees specified. See also LEFT.

SAVESCREEN(<filename>)

SAVESCREEN (n hrg. screen • name11)

This command saves the graphic screen to the disk drive

using the name in <filename>. To identify screens saved

to disk you should precede the file name with nhrg.n.

The screen can be retrieved later by LOADSCREEN.

SETHEADING

SETHEADING(<angle>)

SETHEADINGOO)

Sets the HEADING of the turtle to the angle specified.

In the example above, the turtle would be pointing to

the right.

26 - CARTRIDGE GRAPHICS AND SOUND - 26

AUTOMATIC SPRITE CONTROL

Almost all games on the Commodore 64 have been written

to take advantage of the sprite capability. This can

also be done with the standard sprite commands, but

timing is usually important, so writing a program to do

sprite animation is difficult. Most game programing,

therefor, is done in machine code so speed would not be

a problem. While machine code is fast, it is not easy

to write. The following COMAL commands allow you to do

sprite animation at machine code speed.

Sprite animation is like drawing a cartoon. You present

a series of drawings that fools the eye into seeing

continuous motion.

The animating and moving of sprites presented in this

package take place in what is known as "background"

mode. This means that the sprites can be animated and

moving around the screen while your program continues

executing other things. This is similar to the

automatic sound system.

ANIMATE

ANIMATE(<sprite number>,<sequence$>)

ANIMATE(3,sprite■sequence$)

ANIMATE sets up a sequence of commands that can be

thought of as a "mini" sprite language. The commands

are in pairs, with the first being a command, and the

second its parameter. Once started, it runs

independently of COMAL. All the commands and their

parameters are one byte, or character, long. The

commands are:

ANIMATE: IMAGE 6 DURATION

chr$(<image number>)+chr$(<duration>)
Example: chr$(3)+chr$(30)

or: ""3""30""

This has the sprite number in the ANIMATE command

display the image contained in <image number> for a

length of <duration> 60ths of a second. In the above

39 - CARTRIDGE GRAPHICS AND SOUND - 39

SPRITBSIZE

SPRITESIZE(<sprite#>,<expand width?>,<expand height?>)

SPRITESIZEt 3 ,TRUE,FALSE)

Any or all of the eight sprites can be exapanded to

double their width and/or height. If a sprite is

expanded in the X direction, it is expanded to the

right. If a sprite is epanded in the Y direction, it is

expanded downward. In the above example, sprite number

3 would be double width, but normal height.

SFRITBX

SPRITEX(<sprite number>)

x'pos:=SPRITEX(3)

This function returns the current X position of a

sprite. In the above example x'pos is set to the X

coordinate of sprite number 3.

SPRITEY

SPRITEY(<sprite number>)

y'pos:=SPRITEY(3)

This function returns the current Y position of a

sprite. In the above example y'pos is set to the Y

coordinate of sprite number 3.

STAMPSPRITE

STAMPSPRITE(<sprite number>)

STAMPSPRITE(5)

This powerful command stamps the sprite image onto the

graphics screen. This is useful for games where you

have more than eight images, or to print a screen (stamp

all eight sprites so they will show up on a screen

dump). Care should be taken in stamping a Multi-Color

sprite on a Hi-Res screen or the other way around.

SETXY

SETXY(<X coordinated<Y coordinate^

SETXY(100,50)

This command moves the turtle to the point specified,

and draws a line if PENDOWN is in effect.

SHOWTURTLE

This command turns the turtle image on (the image is a

triangle with a line which points the direction the

turtle is pointing). The turtle is the color of

PENCOLOR.

SPLITSCREHI

SPLITSCREEN

If the current graphic mode is Hi-Res, then the screen

will show the graphic screen, with the top four lines

displaying the text screen. The text screen is drawn

onto the graphic screen, so if FULLSCREEN is done

afterwards, the text remains. This mode can also be

enabled in direct command mode by pressing the f3 key.

TEXTBACKGROUND(<color number>)

TEXTBACKGROUND(0)

This command sets the background color for the text

screen. The above example sets the background for the

text screen to black.

TKXTBOKDER

TEXTBORDER(<color number>)

TEXTBORDER(-I)

This command sets the border color for the text screen.

If color number -1 is selected (as above), then the

color is the TEXTBACKGROUND color.

38 - CARTRIDGE GRAPHICS AND SOUND - 38 27 - CARTRIDGE GRAPHICS AND SOUND - 27

tjskxOQLOR

TEXTCOLOR(<color number>)

TEXTCOLOR(1)

This works like PENCOLOR, but it is for the color text

is displayed on the text screen (not PLOTTEXT). You can

use -1 for the color number to print something on the

text screen that can not be read by the user (invisible

ink)f but is accepted by a program (INPUTing from the

screen ~ maybe for SELECT INPUT "ds:")

TEXTSCREEN

This switches the screen to the text screen. To switch

back to the graphic screen, you must use the commands

FULLSCREEN or SPLITSCREEN. These commands can be called

by pressing the f3 or f5 key in direct command mode.

TKXTSTYIiE

TEXTSTYLE(<height>, <width>, <direction>, <overplot?>)

TEXTSTYLE(1,1r0,1)

This command determines how text is ploted on the

graphics screen. The first two parameters determine the

size of the characters. This is useful for large titles

and for plotting text on the Multi-Color screen. Since

the Multi-Color screen uses pairs of pixels, COMAL

automatically makes sure that the width multiple is an

even number: 2,4,6,...retc. The default is 1,1.

<direction> refers to the direction the text should be

printed.

NUMBER

-1

0

1

2

3

28 -

DIRECTION

No change

To the right

Upwards (rotated 90 degrees to the left)

Upside down (to the left)

Downwards (rotated 90 degrees to the right)

CARTRIDGE GRAPHICS AND SOUND - 28

While SPRITEBACK sets colors common to all sprites,
SPRITECOLOR sets the color only for the specified
sprite.

SFRITBmQ

SPRITEINQ(<sprite number>,<item number>)

this'image:=SPRITEINQ(2,8)

This is a general purpose function that returns
information on the status of the sprites. There are 11
different functions defined by SPRITEINQ:

ITEM NUMBER FUNCTION

0

1

2

3

4

5

6

7

8

9

10

11

Is sprite visible?

Color number of Multi-Color #1

Color number of Sprite

Color number of Multi-Color #2

Expanded in width?

Expanded in height?

Multi-Color or Hi-Res sprite (64th byte)
Data priority

Image number

Is sprite moving?

Sprite-to-sprite collision?

Sprite-to-data collision?

This function can by used by general purpose procedures
that needs certain information on sprites. The example
above sets this'image to the image that was defined in a
previous IDENTIFY statement.

SPRITEPOS

SPRITEPOS(<sprite number>,<x coordinate^<y coordinated
SPRITEPOS(1,160,100)

This command will position a sprite on the graphic
screen, where the sprite is positioned depends on the x

coordinate/y coordinate and the WINDOW setting. The

reference position is for the upper left hand corner of
the sprite.

37 - CARTRIDGE GRAPHICS AND SOUND - 37

Shape files should have their name preceded by nshap.n

so they can be easily identified.

SHOWSPRITE(<sprite number>)

SHOWSPRITE(1)

This command turns a sprite on. After you define the

sprite image with the DEFINE command, and tell the

computer what image the sprite should use, you must

issue this command to display the sprite. To turn the

image off, use the HIDESPRITE command.

SFRITEBACK

SPRITEBACK(<multi-color #1>,<multi-color #2>)

SPRITEBACK(1,7)

If a sprite has been defined as Multi-Color, then it

will use the colors specified with the SPRITEBACK

command. The Multi-Colors defined by the command are

common to all the eight sprites. The example above sets

Multi-Color #1 to white, and Multi-Color #2 to yellow.

SPRITBGOELISIGH

SPRITECOLLISION(<sprite number>,<reset flag?>)

sprite'col:=SPRITECOLLISION(2,TRUE)

This command works like the DATACOLLISION command, but

it detects whether the specified sprite has collided

with another sprite. When two sprites overlap, both

flags (one for each sprite) are turned on. The <reset

flag> parameter works the same way as it does in

DATACOLLISION (see above).

SPRITBOQLDR

SPRITECOLOR(<sprite number>,<color>)

SPRITECOLOR(3,7)

All eight sprites have a unique sprite color register.

This command sets the color (0-15) for that sprite.

36 - CARTRIDGE GRAPHICS AND SOUND - 36

<overplot?> refers to whether the text should be blended

into the graphics, or to simply write over and wipe it

out (like it does in 0.14).

NUMBER STYLE

-1

0

1

No change

Blend text into graphics

Overwrite text onto graphics screen

The example above would print normal sized text on the

graphics screen to the right and would overwrite

anything on the screen.

TURXLESIZE

TURTLESIZE(<size>)

TURTLESIZE(5)

Sets the size of the turtle. The turtle can be set to

11 different sizes from 0 (the smallest) to 10 (the

largest, and default).

VIEWPORT

VIEWPORT(<X minimum>,<X max>,<Y minimum>,<Y max>)

VIEWPORT(0,319,0,199)

Sets up a frame, outside of which no drawing will occur.

The points specified are not relative and can not be

changed or modified by WINDOW. If WRAP is in effect,

any drawing which goes off one edge, comes in on the

other side.

WINDOW

WINDOW(<X minimum>,<X maximum>,<Y minimum>,<Y maximum>)
WINDOW(0,1,0,1)

This command sets the scale of the screen (or VIEWPORT)

for drawing or positioning sprites. In the above

example, points on the screen would be fractional

numbers between 0 and 1. One use of this command is to

change the scale of the screen so a round CIRCLE would

29 - CARTRIDGE GRAPHICS AND SOUND - 29

be generated (instead of the usual oval).

WRAP

WRAP

This command sets up the screen so when you draw off one

edge of the screen, or VIEWPORT, you will come in from

the other edge (WRAPping around the screen). This is the

default mode for USE TURTLE.

XCOR

XCOR

num:=XCOR

This function returns the X coordinate position of the

turtle.

YOOR

YCOR

num:=YCOR

This function returns the Y coordinate position of the

turtle.

30 - CARTRIDGE GRAPHICS AND SOUND - 30

or use the command DISCARD.

LOADSHAPE

LOADSHAPE(<image number>,<file name>)

LOADSHAPE(3,"0:shap.queen")

Sprite Images can be saved on disk as a 64 byte string

with the SAVESHAPE command. The image number that the

shape was in originally is not'saved in the file, so you

can load the image into any of the 32 areas (0-31) with

the LOADSHAPE command. The example above loads a shape

from the file "shap.queen" into image number 3.

Shape file names should be preceded by "shap.1

it is obvious what the file contains.

so that

PRIORITY

PRIORITY(<sprite number>f<data priority?>)

PRIORITY(2,TRUE)

Normally, a sprite moves across the screen passing over

(or in front of) anything drawn on the screen. Using

PRIORITY, you tell the video chip whether the given

sprite should pass in front of, or behind, anything

drawn on the graphicscreen, if <data priority> is true,

then the sprite will pass behind graphics drawn on the

screen.

Sprites have their own, fixed, priority system - in

addition to the data priority. A lower; numbered sprite

is displayed in front of a higher numbered sprite. For

example, sprite 3 will pass in front of sprite 4.

SAVESHAPE

SAVESHAPE(<image number>,<file name>)

SAVESHAPE(6,"shap.boat")

This command saves a image, or shape, to disk. The file

is a Sequential file 64 bytes long that consists of the

64 byte definition of the image. The example above

writes image number 6 to the disk drive with the file

name "shap.boat".

35 - CARTRIDGE GRAPHICS AND SOUND - 35

HIDESPRITE

HIDESPRITE(<sprite number>)

HIDESPRITE(3)

This command turns the specified sprite image (0-7) off.

It does not change the color of the sprite or its

position (although no collision can occur when it is not

visible).

The sprite can be turned on again with the SHOWSPRITE

command•

IDENTIFY

IDENTIFY(<sprite number>,<image number>)

IDENTIFY*0,1)

Once a sprite image has been defined with the DEFINE

command, any sprite can be displayed with that image.

The IDENTIFY command tells a sprite which image

definition to use as its shape. It does not turn on the

image (SHOWSPRITE does that). In the above example

sprite number 0 is set to image number 1 (if sprite

number 0 had been on before this command, then it will

remain on, but showing the new image).

LIHKSHAPE

LINKSHAPE(<image number>)

LINKSHAPE(1)

This command allows you to 'link1 a sprite image, or

shape, to the program in memory so when the program is

saved and/or loaded the sprite shape will go with it.

Once this has been done it is not necessary for the

program to DEFINE it. Thus you can include a sprite

definition procedure in your program, RUN it, then

LINKSHAPE all the images to the program. Then you can

delete the definiton procedue as the shapes are

available at all times since they then are attached to

the proram. Any or all of the 32 different sprite images

can be linked to your program. To get rid of the image

you can list your program to disk (and ENTER it back in)

34 - CARTRIDGE GRAPHICS AND SOUND - 34

TURTLE PACKAGE

This package has all of the commands from the GRAPHICS

package, with additions and certain changes. To use this

package you must issue the command: USE TURTLE.

The most obvious change is with the screen coordinates.

The default range for the X axis is -160 to 159, and the

range for the Y axis is -100 to 99. In this case HOME

(0,0) is in the center of the screen. Also, if USE

TURTLE is entered in direct command mode, the screen

will switch to the initialized screen with SPLITSCREEN

in effect.

Another change is that WRAP is the default mode. This

means if you draw off the screen (or VIEWPORT) you will

come back one the screen from the opposite side.

The abbreviations work the same way the regular

commands, the names are just shorter.

ABBREVIATION

BG

BK

CS

FD

HT

LT

PC

PD

PU

RT

SETH

ST

TEXTBG

COMMAND

BACKGROUND

BACK

CLEARSCREEN

FORWARD

HIDETURTLE

LEFT

PENCOLOR

PENDOWN

PENUP

RIGHT

SETHEADING

SHOWTURTLE

TEXTBACKGROUND

The abbreviated commands require the same type of

parameters as the longer versions of the commands. Both

of the following mean the same thing:

FORWARD(50)

and

FD(50)

31 - CARTRIDGE GRAPHICS AND SOUND - 31

SPRITE PACKAGE

Sprites are video images that can be moved around the

screen quickly and easily. The are eight sprites, each

of them are 24 pixels wide and 21 pixels high. A 64

byte string defines the sprite image in the following

manner:

char 1

char 4

char 7

char 61

char 2

char 5

char 8

char 62

char 3

char 6

char 9

char 63

The 64th character tells whether the sprite definition

is a Hi-Res or Multi-Color sprite. Each character is

eight pixels wide (3 X 8 = 24). Whether or not a pixel

is on determines what color will be shown.

Hi-Res pixels have only two states, on or off. If the

pixel is on then a dot the color of the sprite is turned

on. If the pixel is off, whatever is on the graphics

screen is shown (also called transparent). Binary

numbers can be used in data statements to show a sprite

definition:

data %00011000,%00000000,%00000000

data %00111100,%00000000,%00000000

data %01100110,%00000000,%00000000

data %01100110,%00000000,%00000000

data %01100110,%00000000,%00000000

data %00111100,%00000000,%00000000

data %00011000,%00000000,%00000000

data %00000000,%00000000,%00000000

....

<for a total of 21 lines>

Multi-Color sprites are more complex in that they can

show three different colors in addition to the fourth

transparent. It can do this by using pairs of pixels to

choose one of four states. By using this mode the

resolution of the sprite becomes 12 X 21 (the dots are

streched in size so it will appear the same size as a

Hi-Res sprite). The different states (in binary) are:

00 Transparent

01 Multi-Color #1

10 Sprite Color

11 Multi-Color #2

Before you can use any of these commands you must first

issue the command: USE SPRITES.

DATAGOLLISION

DATACOLLISION(<sprite number>,<reset flag?>)

dat' col :=DATACOLLISION(3 ,FALSE)

When a nontransparent part of a sprite overlaps

something drawn on the screen, a datacollision occurs

and the flag for that sprite is turned on. The status

of that flag is returned by this function. The first

parameter is the sprite number to check. If the second

parameter is true the system clears the datacollision

flag for that sprite (making way for a new data

collision). If the expression is false then the flag

will not be reset (so the status can be checked again).

In the above example, the variable dat1 col is set to the

current status of the data collision flag for sprite

number 3, FALSE means that the flag will not be reset.

NOTE: Multi-Color #1 does not cause a collision, so make

sure that anything you want visible on the sprite, but

not to cause a collision, should be in Multi-Color #1.

DEFINE

DEFINE(<image number>,<image string>)

DEFINE(5,sprite■def$)

32 different sprite images can be defined in memory at

one time (numbered 0-31). The image string is 64 bytes

long with the last character telling whether it is

Hi-Res or Multi-Color. If the last character value is

zero then the sprite is displayed in Hi-Res, otherwise

it will be displayed in Multi-Color mode.

The color of a sprite is not contained in the image

string — you must assign it in your program.

32 - CARTRIDGE GRAPHICS AND SOUND - 32 33 - CARTRIDGE GRAPHICS AND SOUND - 33

SPRITE PACKAGE

Sprites are video images that can be moved around the

screen quickly and easily. The are eight sprites, each

of them are 24 pixels wide and 21 pixels high. A 64

byte string defines the sprite image in the following

manner:

char 1

char 4

char 7

char 61

char 2

char 5

char 8

char 62

char 3

char 6

char 9

char 63

The 64th character tells whether the sprite definition

is a Hi-Res or Multi-Color sprite. Each character is

eight pixels wide (3 X 8 = 24). Whether or not a pixel

is on determines what color will be shown.

Hi-Res pixels have only two states, on or off. If the

pixel is on then a dot the color of the sprite is turned

on. If the pixel is off, whatever is on the graphics

screen is shown (also called transparent). Binary

numbers can be used in data statements to show a sprite

definition:

data %00011000,%00000000,%00000000

data %00111100,%00000000,%00000000

data %01100110,%00000000,%00000000

data %01100110,%00000000,%00000000

data %01100110,%00000000,%00000000

data %00111100,%00000000,%00000000

data %00011000,%00000000,%00000000

data %00000000,%00000000,%00000000

....

<for a total of 21 lines>

Multi-Color sprites are more complex in that they can

show three different colors in addition to the fourth

transparent. It can do this by using pairs of pixels to

choose one of four states. By using this mode the

resolution of the sprite becomes 12 X 21 (the dots are

streched in size so it will appear the same size as a

Hi-Res sprite). The different states (in binary) are:

00 Transparent

01 Multi-Color #1

10 Sprite Color

11 Multi-Color #2

Before you can use any of these commands you must first

issue the command: USE SPRITES.

DATAGOLLISION

DATACOLLISION(<sprite number>,<reset flag?>)

dat' col :=DATACOLLISION(3 ,FALSE)

When a nontransparent part of a sprite overlaps

something drawn on the screen, a datacollision occurs

and the flag for that sprite is turned on. The status

of that flag is returned by this function. The first

parameter is the sprite number to check. If the second

parameter is true the system clears the datacollision

flag for that sprite (making way for a new data

collision). If the expression is false then the flag

will not be reset (so the status can be checked again).

In the above example, the variable dat1 col is set to the

current status of the data collision flag for sprite

number 3, FALSE means that the flag will not be reset.

NOTE: Multi-Color #1 does not cause a collision, so make

sure that anything you want visible on the sprite, but

not to cause a collision, should be in Multi-Color #1.

DEFINE

DEFINE(<image number>,<image string>)

DEFINE(5,sprite■def$)

32 different sprite images can be defined in memory at

one time (numbered 0-31). The image string is 64 bytes

long with the last character telling whether it is

Hi-Res or Multi-Color. If the last character value is

zero then the sprite is displayed in Hi-Res, otherwise

it will be displayed in Multi-Color mode.

The color of a sprite is not contained in the image

string — you must assign it in your program.

32 - CARTRIDGE GRAPHICS AND SOUND - 32 33 - CARTRIDGE GRAPHICS AND SOUND - 33

HIDESPRITE

HIDESPRITE(<sprite number>)

HIDESPRITE(3)

This command turns the specified sprite image (0-7) off.

It does not change the color of the sprite or its

position (although no collision can occur when it is not

visible).

The sprite can be turned on again with the SHOWSPRITE

command•

IDENTIFY

IDENTIFY(<sprite number>,<image number>)

IDENTIFY*0,1)

Once a sprite image has been defined with the DEFINE

command, any sprite can be displayed with that image.

The IDENTIFY command tells a sprite which image

definition to use as its shape. It does not turn on the

image (SHOWSPRITE does that). In the above example

sprite number 0 is set to image number 1 (if sprite

number 0 had been on before this command, then it will

remain on, but showing the new image).

LIHKSHAPE

LINKSHAPE(<image number>)

LINKSHAPE(1)

This command allows you to 'link1 a sprite image, or

shape, to the program in memory so when the program is

saved and/or loaded the sprite shape will go with it.

Once this has been done it is not necessary for the

program to DEFINE it. Thus you can include a sprite

definition procedure in your program, RUN it, then

LINKSHAPE all the images to the program. Then you can

delete the definiton procedue as the shapes are

available at all times since they then are attached to

the proram. Any or all of the 32 different sprite images

can be linked to your program. To get rid of the image

you can list your program to disk (and ENTER it back in)

34 - CARTRIDGE GRAPHICS AND SOUND - 34

TURTLE PACKAGE

This package has all of the commands from the GRAPHICS

package, with additions and certain changes. To use this

package you must issue the command: USE TURTLE.

The most obvious change is with the screen coordinates.

The default range for the X axis is -160 to 159, and the

range for the Y axis is -100 to 99. In this case HOME

(0,0) is in the center of the screen. Also, if USE

TURTLE is entered in direct command mode, the screen

will switch to the initialized screen with SPLITSCREEN

in effect.

Another change is that WRAP is the default mode. This

means if you draw off the screen (or VIEWPORT) you will

come back one the screen from the opposite side.

The abbreviations work the same way the regular

commands, the names are just shorter.

ABBREVIATION

BG

BK

CS

FD

HT

LT

PC

PD

PU

RT

SETH

ST

TEXTBG

COMMAND

BACKGROUND

BACK

CLEARSCREEN

FORWARD

HIDETURTLE

LEFT

PENCOLOR

PENDOWN

PENUP

RIGHT

SETHEADING

SHOWTURTLE

TEXTBACKGROUND

The abbreviated commands require the same type of

parameters as the longer versions of the commands. Both

of the following mean the same thing:

FORWARD(50)

and

FD(50)

31 - CARTRIDGE GRAPHICS AND SOUND - 31

be generated (instead of the usual oval).

WRAP

WRAP

This command sets up the screen so when you draw off one

edge of the screen, or VIEWPORT, you will come in from

the other edge (WRAPping around the screen). This is the

default mode for USE TURTLE.

XCOR

XCOR

num:=XCOR

This function returns the X coordinate position of the

turtle.

YOOR

YCOR

num:=YCOR

This function returns the Y coordinate position of the

turtle.

30 - CARTRIDGE GRAPHICS AND SOUND - 30

or use the command DISCARD.

LOADSHAPE

LOADSHAPE(<image number>,<file name>)

LOADSHAPE(3,"0:shap.queen")

Sprite Images can be saved on disk as a 64 byte string

with the SAVESHAPE command. The image number that the

shape was in originally is not'saved in the file, so you

can load the image into any of the 32 areas (0-31) with

the LOADSHAPE command. The example above loads a shape

from the file "shap.queen" into image number 3.

Shape file names should be preceded by "shap.1

it is obvious what the file contains.

so that

PRIORITY

PRIORITY(<sprite number>f<data priority?>)

PRIORITY(2,TRUE)

Normally, a sprite moves across the screen passing over

(or in front of) anything drawn on the screen. Using

PRIORITY, you tell the video chip whether the given

sprite should pass in front of, or behind, anything

drawn on the graphicscreen, if <data priority> is true,

then the sprite will pass behind graphics drawn on the

screen.

Sprites have their own, fixed, priority system - in

addition to the data priority. A lower; numbered sprite

is displayed in front of a higher numbered sprite. For

example, sprite 3 will pass in front of sprite 4.

SAVESHAPE

SAVESHAPE(<image number>,<file name>)

SAVESHAPE(6,"shap.boat")

This command saves a image, or shape, to disk. The file

is a Sequential file 64 bytes long that consists of the

64 byte definition of the image. The example above

writes image number 6 to the disk drive with the file

name "shap.boat".

35 - CARTRIDGE GRAPHICS AND SOUND - 35

Shape files should have their name preceded by nshap.n

so they can be easily identified.

SHOWSPRITE(<sprite number>)

SHOWSPRITE(1)

This command turns a sprite on. After you define the

sprite image with the DEFINE command, and tell the

computer what image the sprite should use, you must

issue this command to display the sprite. To turn the

image off, use the HIDESPRITE command.

SFRITEBACK

SPRITEBACK(<multi-color #1>,<multi-color #2>)

SPRITEBACK(1,7)

If a sprite has been defined as Multi-Color, then it

will use the colors specified with the SPRITEBACK

command. The Multi-Colors defined by the command are

common to all the eight sprites. The example above sets

Multi-Color #1 to white, and Multi-Color #2 to yellow.

SPRITBGOELISIGH

SPRITECOLLISION(<sprite number>,<reset flag?>)

sprite'col:=SPRITECOLLISION(2,TRUE)

This command works like the DATACOLLISION command, but

it detects whether the specified sprite has collided

with another sprite. When two sprites overlap, both

flags (one for each sprite) are turned on. The <reset

flag> parameter works the same way as it does in

DATACOLLISION (see above).

SPRITBOQLDR

SPRITECOLOR(<sprite number>,<color>)

SPRITECOLOR(3,7)

All eight sprites have a unique sprite color register.

This command sets the color (0-15) for that sprite.

36 - CARTRIDGE GRAPHICS AND SOUND - 36

<overplot?> refers to whether the text should be blended

into the graphics, or to simply write over and wipe it

out (like it does in 0.14).

NUMBER STYLE

-1

0

1

No change

Blend text into graphics

Overwrite text onto graphics screen

The example above would print normal sized text on the

graphics screen to the right and would overwrite

anything on the screen.

TURXLESIZE

TURTLESIZE(<size>)

TURTLESIZE(5)

Sets the size of the turtle. The turtle can be set to

11 different sizes from 0 (the smallest) to 10 (the

largest, and default).

VIEWPORT

VIEWPORT(<X minimum>,<X max>,<Y minimum>,<Y max>)

VIEWPORT(0,319,0,199)

Sets up a frame, outside of which no drawing will occur.

The points specified are not relative and can not be

changed or modified by WINDOW. If WRAP is in effect,

any drawing which goes off one edge, comes in on the

other side.

WINDOW

WINDOW(<X minimum>,<X maximum>,<Y minimum>,<Y maximum>)
WINDOW(0,1,0,1)

This command sets the scale of the screen (or VIEWPORT)

for drawing or positioning sprites. In the above

example, points on the screen would be fractional

numbers between 0 and 1. One use of this command is to

change the scale of the screen so a round CIRCLE would

29 - CARTRIDGE GRAPHICS AND SOUND - 29

tjskxOQLOR

TEXTCOLOR(<color number>)

TEXTCOLOR(1)

This works like PENCOLOR, but it is for the color text

is displayed on the text screen (not PLOTTEXT). You can

use -1 for the color number to print something on the

text screen that can not be read by the user (invisible

ink)f but is accepted by a program (INPUTing from the

screen ~ maybe for SELECT INPUT "ds:")

TEXTSCREEN

This switches the screen to the text screen. To switch

back to the graphic screen, you must use the commands

FULLSCREEN or SPLITSCREEN. These commands can be called

by pressing the f3 or f5 key in direct command mode.

TKXTSTYIiE

TEXTSTYLE(<height>, <width>, <direction>, <overplot?>)

TEXTSTYLE(1,1r0,1)

This command determines how text is ploted on the

graphics screen. The first two parameters determine the

size of the characters. This is useful for large titles

and for plotting text on the Multi-Color screen. Since

the Multi-Color screen uses pairs of pixels, COMAL

automatically makes sure that the width multiple is an

even number: 2,4,6,...retc. The default is 1,1.

<direction> refers to the direction the text should be

printed.

NUMBER

-1

0

1

2

3

28 -

DIRECTION

No change

To the right

Upwards (rotated 90 degrees to the left)

Upside down (to the left)

Downwards (rotated 90 degrees to the right)

CARTRIDGE GRAPHICS AND SOUND - 28

While SPRITEBACK sets colors common to all sprites,
SPRITECOLOR sets the color only for the specified
sprite.

SFRITBmQ

SPRITEINQ(<sprite number>,<item number>)

this'image:=SPRITEINQ(2,8)

This is a general purpose function that returns
information on the status of the sprites. There are 11
different functions defined by SPRITEINQ:

ITEM NUMBER FUNCTION

0

1

2

3

4

5

6

7

8

9

10

11

Is sprite visible?

Color number of Multi-Color #1

Color number of Sprite

Color number of Multi-Color #2

Expanded in width?

Expanded in height?

Multi-Color or Hi-Res sprite (64th byte)
Data priority

Image number

Is sprite moving?

Sprite-to-sprite collision?

Sprite-to-data collision?

This function can by used by general purpose procedures
that needs certain information on sprites. The example
above sets this'image to the image that was defined in a
previous IDENTIFY statement.

SPRITEPOS

SPRITEPOS(<sprite number>,<x coordinate^<y coordinated
SPRITEPOS(1,160,100)

This command will position a sprite on the graphic
screen, where the sprite is positioned depends on the x

coordinate/y coordinate and the WINDOW setting. The

reference position is for the upper left hand corner of
the sprite.

37 - CARTRIDGE GRAPHICS AND SOUND - 37

SPRITBSIZE

SPRITESIZE(<sprite#>,<expand width?>,<expand height?>)

SPRITESIZEt 3 ,TRUE,FALSE)

Any or all of the eight sprites can be exapanded to

double their width and/or height. If a sprite is

expanded in the X direction, it is expanded to the

right. If a sprite is epanded in the Y direction, it is

expanded downward. In the above example, sprite number

3 would be double width, but normal height.

SFRITBX

SPRITEX(<sprite number>)

x'pos:=SPRITEX(3)

This function returns the current X position of a

sprite. In the above example x'pos is set to the X

coordinate of sprite number 3.

SPRITEY

SPRITEY(<sprite number>)

y'pos:=SPRITEY(3)

This function returns the current Y position of a

sprite. In the above example y'pos is set to the Y

coordinate of sprite number 3.

STAMPSPRITE

STAMPSPRITE(<sprite number>)

STAMPSPRITE(5)

This powerful command stamps the sprite image onto the

graphics screen. This is useful for games where you

have more than eight images, or to print a screen (stamp

all eight sprites so they will show up on a screen

dump). Care should be taken in stamping a Multi-Color

sprite on a Hi-Res screen or the other way around.

SETXY

SETXY(<X coordinated<Y coordinate^

SETXY(100,50)

This command moves the turtle to the point specified,

and draws a line if PENDOWN is in effect.

SHOWTURTLE

This command turns the turtle image on (the image is a

triangle with a line which points the direction the

turtle is pointing). The turtle is the color of

PENCOLOR.

SPLITSCREHI

SPLITSCREEN

If the current graphic mode is Hi-Res, then the screen

will show the graphic screen, with the top four lines

displaying the text screen. The text screen is drawn

onto the graphic screen, so if FULLSCREEN is done

afterwards, the text remains. This mode can also be

enabled in direct command mode by pressing the f3 key.

TEXTBACKGROUND(<color number>)

TEXTBACKGROUND(0)

This command sets the background color for the text

screen. The above example sets the background for the

text screen to black.

TKXTBOKDER

TEXTBORDER(<color number>)

TEXTBORDER(-I)

This command sets the border color for the text screen.

If color number -1 is selected (as above), then the

color is the TEXTBACKGROUND color.

38 - CARTRIDGE GRAPHICS AND SOUND - 38 27 - CARTRIDGE GRAPHICS AND SOUND - 27

screen. The starting point is the lower left hand

corner point of the string's first character.

PRINTSCREEN(<filename>,<offset>)

PRINTSCREEN("lp:n , 8 0)

This command outputs the graphics screen to the printer

(or the disk drive for later printing). It is a smart

routine in that it skips over blank areas (resulting in

a faster print) and can print Multi-Color pictures

(using gray levels). This is only for MPS-801

compatible printers. <offset> is how far from the left

the picture should be. The example above would print

the picture in the center of the paper on a Commodore

MPS-801 printer.

RIGHT

RIGHT(<angle>)

RIGHT(45)

This command turns the turtle clockwise the number of

degrees specified. See also LEFT.

SAVESCREEN(<filename>)

SAVESCREEN (n hrg. screen • name11)

This command saves the graphic screen to the disk drive

using the name in <filename>. To identify screens saved

to disk you should precede the file name with nhrg.n.

The screen can be retrieved later by LOADSCREEN.

SETHEADING

SETHEADING(<angle>)

SETHEADINGOO)

Sets the HEADING of the turtle to the angle specified.

In the example above, the turtle would be pointing to

the right.

26 - CARTRIDGE GRAPHICS AND SOUND - 26

AUTOMATIC SPRITE CONTROL

Almost all games on the Commodore 64 have been written

to take advantage of the sprite capability. This can

also be done with the standard sprite commands, but

timing is usually important, so writing a program to do

sprite animation is difficult. Most game programing,

therefor, is done in machine code so speed would not be

a problem. While machine code is fast, it is not easy

to write. The following COMAL commands allow you to do

sprite animation at machine code speed.

Sprite animation is like drawing a cartoon. You present

a series of drawings that fools the eye into seeing

continuous motion.

The animating and moving of sprites presented in this

package take place in what is known as "background"

mode. This means that the sprites can be animated and

moving around the screen while your program continues

executing other things. This is similar to the

automatic sound system.

ANIMATE

ANIMATE(<sprite number>,<sequence$>)

ANIMATE(3,sprite■sequence$)

ANIMATE sets up a sequence of commands that can be

thought of as a "mini" sprite language. The commands

are in pairs, with the first being a command, and the

second its parameter. Once started, it runs

independently of COMAL. All the commands and their

parameters are one byte, or character, long. The

commands are:

ANIMATE: IMAGE 6 DURATION

chr$(<image number>)+chr$(<duration>)
Example: chr$(3)+chr$(30)

or: ""3""30""

This has the sprite number in the ANIMATE command

display the image contained in <image number> for a

length of <duration> 60ths of a second. In the above

39 - CARTRIDGE GRAPHICS AND SOUND - 39

example, the sprite specified in the ANIMATE command

would show image number 3 for 1/2 a second (30/60).

After the length of <duration> is over, the next command

is executed. The duration can vary between 0 and 255

(60ths of a second). If <duration> is zero then the

sprite will stop and wait for a "Go" command from

another sprite, or another ANIMATE command for this

sprite.

AHIMATE: SPRITE COLOR

"c"+chr$(<color number>)

Example: "c"+chr$(1)

or: "c"1"""

This sets the color for the sprite specified in ANIMATE

to the color number. In the example above, the sprite

color is changed to white.

AHIMATE: GO

"g"+chr$(<sprite number>)

Example:

or:

ngn+chr$(4)

Tells sprite <sprite number> to Go. If you give a

duration of zero in the first command, it will stop

until told to Go. With this you can have a sprite

controlled by another sprite. The above example tells

sprite number 4 to Go.

AHIMATE: HIDE A SPRITE

"h"+chr$(<sprite number>)

Example: "h"+chr$(3)

or: "h"3""

Does a HIDESPRITE of the given sprite. The sprite will

continue to move and animate, whether it is on or off.

When off, no collision can occur.

40 - CARTRIDGE GRAPHICS AND SOUND - 40

color or the edge of the VIEWPORT setting. You can set

PENCOLOR to -1 (background), draw the outline, and PAINT

the shape to erase it.

PEHCOIOR

PENCOLOR(<color number>)

PENCOLOR(1)

Sets the drawing color. The color numbers range from 0

to 15, plus the number -1 means ferase1 color: then you

will erase rather than draw.

PENDOWN

This command permits turtle drawing commands to draw

lines. This is the default for USE GRAPHICS or USE
TURTLE.

PENUP

PENUP

After this command, commands which are dependent on the

Penstate (up/down) will not draw.

PLOT

PLOT(<X coordinated<Y coordinate^

PLOT(100,50)

This command plots the given point in the current

PENCOLOR. The turtle is not moved by this command.

PLOTTEXT

PLOTTEXT(<X coordinate^ <Y coordinate^<text$>)

PLOTTEXT(10,10,"This is the text to print")

This plots text on the screen as defined by TEXTSTYLE.

Text can be put anywhere on the screen, and it is

plotted in the current color. Since the text can be

stretched, you can now plot text on the Multi-Color

25 - CARTRIDGE GRAPHICS AND SOUND - 25

turtle is turned the other way.

LOADSCREEN(<filename>)

LOADSCREEN("hrg.screen'name")

This command will load a color graphics screen from the

file <filename>r which was created with SAVESCREEN. To

identify graphic screen files, you should precede the

file name with "hrg.n.

MOVE

MOVE(<X offset>,<Y offset>)

MOVE(5,-5)

This command works like DRAW, but it just moves the

turtle. It will not draw a line even if the pen is

down. The offsets are added to the position of the

turtle just as for DRAW.

MOWETO

MOVETO(<X coordinated<Y coordinated

MOVETO(100,50)

Moves the turtle to the new position without drawing a

line.

NONRAP

NOWRAP

When the turtle moves off the screen, or VIEWPORT, it

continues to move, but does not draw. This is the

default for USE GRAPHICS.

PAINT

PAINT(<X coordinated<Y coordinate^

PAINT(160,100)

This command works like FILL, but it fills with the

current pencolor until it meets a pixel of the current

24 - CARTRIDGE GRAPHICS AND SOUND - 24

ANIMATE: PAUSE

npn+chr$(<duration>)

Example: np"+chr$(60)

or: ■pn

Pauses the sprite given in the ANIMATE command for a

length of <duration> in 60ths of a second. The example

above will pause the sprite for 1 second (60/60).

ANIMATE: SHOW A SPRITE

"sn+chr$(<sprite number>)

Example: n s"+chr$(2)

or: "sn2"lf

Does a SHOWSPRITE of the given sprite. The sprite will

continue to move.

ANIMATE: EXPAND WIDTH

nxn+chr$(<expand width?>)

Example: "xn+chr$(TRUE)

or: "x"1""'

Does a SPRITESIZE for the width of the sprite given in

ANIMATE. The parameter should be either 0 or 1.

ANIMATE: EXPAND HEIGHT

ny"+chr$(<expand height?>)

Example: "y"+chr$(FALSE)

or:
HyflQI

Does a SPRITESIZE for the height of the sprite given in

ANIMATE. The parameter should be either 0 or 1.

ANIMATE: HALT

To stop animation of a sprite, issue a new ANIMATE

command with a null string. If an error in the 'syntax1

occurs, animation is aborted, and an error generated.

41 - CARTRIDGE GRAPHICS AND SOUND - 41

MOVESPRITE

MOVESPRITE(<sprite#>,<new x>r<new y>,<speed>,<event>)

MOVESPRITE(2,320,50,400,%00000110)

This command will move a sprite from the present

position to the new destination at the specified speed.

<speed> is a number from 0-32767 which means how long it

takes (in 60ths of a second) to move from the original

position to the new destination. A speed of zero means
to move there immediatly.

<event> is a number that tell when to start moving the

sprite, and if the sprite should stop if it collides

with another sprite or with screen data. The number is

in the range of 0-7 and is a binary number. The
settings are:

NUMBER SETTING

%0000000X 1=Move Now

0=Wait for STARTSPRITES command

%000000X0 1=Stop if SPRITECOLLISION

0=Continue regardless

%00000X00 1=Stop if DATACOLLISION

0=Continue regardless

The upper 5 bits of <event> are ignored. For example:

%00000111 means move now and stop if it collides with

either data or another sprite.

MOVING

MOVING(<sprite number>)

spr fmoving:=MOVING(3)

This is a function that returns TRUE if the given sprite
is moving (using MOVESPRITE). It will return FALSE if

it is not moving, or if no MOVESPRITE has been used.

what information is returned.

NUMBER FUNCTION TYPE

0 Graphics screen type

1 Text border color

2 Text background color

3 Text cursor color

4 Graphics border color

5 Graphics background color

6 PENCOLOR setting

7 Textstyle Height size

8 Textstyle Width size

9 Textstyle Direction

10 Textstyle Overplot?

11 Turtle visable?

12 Turtle inside VIEWPORT?

13 Textscreen currently displayed

14 Splitscreen active?

15 Wrap mode On?

16 PENDOWN?

17 X-coordinate of turtle

18 Y-coordinate of turtle

19 VIEWPORT X minimum

20 VIEWPORT X maximum

21 VIEWPORT Y minimum

22 VIEWPORT Y maximum

23 WINDOW X minimum

24 WINDOW X maximum

25 WINDOW Y minimum

26 WINDOW Y maximum

27 Cosine of HEADING

28 Sine of HEADING

29 Size of Turtle set by TURTLESIZE

In the example above, the numeric variable (num) is set
to the graphic type (0 for Hi-Res, 1 for Multi-Color).

LEFT

LEFT(<distance>)

LEFT(45)

Turns the turtle to the counterclockwise the number of
degrees indicated. By using negative numbers, the

42 - CARTRIDGE GRAPHICS AND SOUND - 42 23 - CARTRIDGE GRAPHICS AND SOUND - 23

GRAP1

GRAPHICSCREEN(<screen type>)

GRAPHICSCREEN(O)

This command initializes the graphics screen to either

of two types:

Multi-Color = 1

Hi-Res = 0

The graphics screen is cleared and the graphics screen

will be shown.

HEfiDXNG

HEADING

turtle'heading:=HEADING

This function returns the current direction, in degrees,

that the turtle is pointing.

HOME

This command moves the turtle to the point 0,0 (which is

by default the lower left hand corner for USE GRAPHICS

and in the center of the screen for USE TURTLE) and

points the turtle straight up, SETHEADING(O). If the

screen boundries have been changed with WINDOW command,

then the turtle will move the point 0,0 — even if that

point is off the screen.

IMQ

INQ(<type function number>)

num:=INQ(0)

This is a multi-purpose function that returns

information about the graphics screen and the turtle.

This information would be most useful in CLOSED

procedures that do graphics and return the turtle and

screen to the original state. The parameter determines

22 - CARTRIDGE GRAPHICS AND SOUND - 22

STARTSPRITES

STARTSPRITES

This command will start any sprites moving that are

waiting because of the setting in a MOVESPRITE command.

STOPSPRITE(<sprite number>)

STOPSPRITE(3)

Stops the sprite from moving or animating.

See The Programer Reference Guide for more information

on the structure of sprites.

43 - CARTRIDGE GRAPHICS AND SOUND - 43

SOUND PACKAGE

The Commodore 64 has the most advanced music synthesizer

built into any 8 bit personal computer today.

Unfortunatly, that also makes it one of the hardest to

use. This package will give you complete control over

the 64's sound capabilities. It even provides a way to

play music independent of your running program. The

commands will be broken up into two parts (standard

commands and the automatic independent commands) even

though you can use both at the same time. As all other

packages, before you can use any of the sound commands

you must first issue the command:

USB SOUND

This adds the commands to COMAL and initializes the SID

chip so that voice 1 sounds like a piano, voice 2 sounds

like a violin, and voice 3 sounds like cymbals. Also,

the volume is turned on full and the filters are turned
off.

<voice number> is a numeric expression equal to 1, 2, or

3 that refers to any of the three available voices.

SETFRBQUEHCY

SETFREQUENCY(<voice number>f<frequency value>)
SETFREQUENCY(1,4291)

This command sets the frequency, or pitch, of a given

voice. Frequency is how fast the voice vibrates. The

higher the frequency, the higher pitched the sound is.

Middle C on a piano is 4291. The range <frequency
value> is 0-65535.

The example above sets the frequency of voice one to a
middle C.

NOTE(<voice number>,<note$ >)

NOTE(1,nc4n)

Figures the frequency of note$ and sets the given voice

44 - - CARTRIDGE GRAPHICS AND SOUND - 44

This command will draw a continuous line to the given

position regardless if the pen is up or down. The line

is drawn in the color set by pencolor.

Fill.

FILL(<X position>,<Y position>)

FILL(50,50)

This command will start at the specified position and

fill from that point in the color set by PENCOLOR until

a non-background color or the edge of the viewport is

encountered. The color of pixel <X position>,<Y

position> is considered the background color for this

command.

FORWARD

FORWARD(<distance>)

FORWARD(10)

This command will move the turtle <distance> units

forward in the direction it is pointing. If PENDOWN is

in effect, a line will be drawn in the color set by

PENCOLOR.

FOIiLSGREEN

FULLSCREEN

This command will show the full graphics screen. If the

text screen is active before this command, then the

screen will switch to the graphics screen. If

SPLITSCREEN is in effect, the upper four lines will

remain as they are. You will have to clear them with

the VIEWPORT and CLEAR commands. This mode can setup

using the f5 key in direct command mode.

GEKXXLOR

GETCOLOR(<X coordinate>,<Y coordinated

dot'color:=GETCOLOR(160,100)

This function returns the color of the specified pixel

or -1 if it is a background pixel.

21 - CARTRIDGE GRAPHICS AND SOUND - 21

CIRCLE

CIRCLE(<center X>f<center Y>,<radius>)

CIRCLE*160,100,50)

This will draw a circle around the center point with the

radius given. The circle is drawn counterclockwise for

a full 360 degrees. The turtle is moved by this

command•

CLEAR

CLEAR

This command will clear the part of the screen inside

the current VIEWPORT. You can use these two commands to

clear any portion of the screen.

CLEARSCREEN

This will clear the entire graphics screen, regardless
of the VIEWPORT command. It is a good idea to use this

command to clear the screen in procedures rather than

the CLEAR command, in case some other part of the

program does a VIEWPORT command.

DRAM

DRAW(<X offset>,<Y offset>)

DRAW(5,-4)

This command will draw to a new position set by adding
<X offset> to the current X position of the turtle and

adding <Y offset> to the current Y position of the

turtle. In the example above, the turtle will move to a

point 4 units below and 5 units to the right of the
current position.

DRAHTO

DRAWTO(<X position>,<Y position>)

DRAWTO(100,50)

20 - CARTRIDGE GRAPHICS AND SOUND - 20

to that frequency. Note$ is a two or three character
string containing:

The first character is the note name: a,b,c,d,e,f,g

(must be lower case letters)

The second character is the octave number:

0,1,2,3,4,5,6,7

The optional third character is for the sharp indicator.

For example, nc4n means middle C

nd2#n means D sharp in the second octave

Note: The frequency range for the SID chip is the same

for a piano, but octave 0 is lower than a piano, and the

SID chip cannot go as high as a piano.

The original example sets up the frequency of voice one

to a middle C.

ADSR

ADSR(<voice#>,<attack>, <decay> ,<sustain>, <release>)

ADSR(1,8,8,10,8)

ADSR stands for Attack, Decay, Sustain and Release.

ADSR controls the volume of a note while it is playing.

The process starts when the gate is turned on.

Immediately the volume begins to climb to the maximum

volume level. The amount of time it takes to get to

that level is determined by the attack rate.

Once maximum volume is reached, the volume begins to

fall to the sustain volume. The amount of time it takes

is set by the decay rate. The note will stay constant

at the sustain level until the gate is turned off.

After the gate is turned off the volume will begin to

fall to zero at the release rate. This may sound

complicated (and it is), but before too long it will

seem all to simple.

45 - CARTRIDGE GRAPHICS AND SOUND - 45

Default setting for voice 1: ADSR(1,0,12,10)

Default setting for voice 2: ADSR(2,10,8,10,9)

Default setting for voice 3: ADSR(3,0,9,0,9)

SOUNDTXPB

SOUNDTYPE(<voice number>,<waveform>)

SOUNDTYPE(1,2)

When a note vibrates, it produces harmonics, which are

integer multiples of the base frequency. The overall

pitch of the note is the base frequency, with the

harmonics anded in. How they are added in is determined

by the waveform. For the sake of this discussion we

will call the base, or fundemental, frequency harmonic

number one (harmonic number 2 is double the frequency of

the base, harmonic 3 is thre times the base, etc.). The

commodore 64 has 4 different waveforms built in;

Triangle, Sawtooth, Pulse, and Noise.

Triangle: This waveform conains only odd harmonics

added together by the reciprocal of the square of their

harmonic number (1/1 + 1/9 + 1/25 + 1/49 +...). In

other words, harmonic number 3 is 1/9 as quiet as

harmonic 1 because 3 squared is 9 and the reciprocal of

9 is 1/9. This type of waveform produces fairly smooth,

somewhat hollow, notes, good for organ or flute sounds.

Sawtooth: Contains all harmonics added together by the

reciprocal of their base (i.e. 1/1 + 1/2 + 1/3 + 1/4 +

•••)• This is good for brass and other bright

instruments. It is the default for voices 1 and 2.

Pulse: Contains only odd harmonics added together by

the reciprocal of their base (1/1 + 1/3 + 1/5 + 1/7 +

...). Furthermore, you can vary the width of the pulse

to give an even wider range of control over the sound.

This waveform is good for piano and pinging sounds. It

is the default for voice 3.

Noise: This waveform produces a hissing type sound

produced randomly, commonly referred to as "white

noise". It is good for drums and game sounds.

Values for waveforms:

46 - CARTRIDGE GRAPHICS AND SOUND - 46

ARCR

ARCR(<radius>,<angle size>)

ARCR(75,10)

This command works like ARCL except it draws to the

clockwise instead of counterclockwise. The turtle is
moved by this command.

BACK

BACK(<distance>)

BACK(25)

Moves the turtle backwards <distance> units. If the pen

is down, a line will be drawn.

BACKGROUND

BACKGROUND(<color number>)

BACKGROUND(O)

This command sets the background color of the graphics
screen. This command will immediatly change the

background color of the entire graphics screen (unlike
0.14) and will not work on the text screen. To change

the color of the text screen you must now use

TEXTBACKGROUND. The colors 0-15 are the only allowable
values for <color number>.

BORDER(<color number>)

BORDER(-1)

This command sets the border color of the graphics
screen. <color number> can be in the range of -1 to 15.

If the number is -1 (as in the above example) the border

color of the graphics screen will be the same as the

BACKGROUND color. To change the border to the text

screen you must now use TEXTBORDER.

19 - CARTRIDGE GRAPHICS AND SOUND - 19

with simple commands and, if the pen is down, draw

lines. Many of the commands will draw from where the

turtle's current position.

Angle degrees on the graphic screen are as follows:

315 45

270 90

225 135

180

Straight up is zero degrees, right is 90, and so on.

ARC

ARC(<centerX>,<centerY>,<radius>,<start angle>,<size>)

ARC(160,100,50,0,90)

This command draws an arc, which is a section of a

circle. The first three parameters describe the circle,

and the last two, the arc of that circle. The arc will

begin on the edge of the circle, starting at <start

angle> (0-359). From there it will draw to the left

around the circle, for a number of degrees set in

<size>. In the example above, an ARC will be drawn on

screen starting 50 pixels above the center of the

screen, going around to the left outlining a circle 50

pixels in radius, for 1/4 the length of the circle

(90/360=1/4). The turtle is moved by this command.

ARCL

ARCL(<radius>,<angle size>)

ARCL(50,180)

Draws an arc from the current position and HEADING of

the turtle counterclockwise for the number of degrees

given in <angle size>, using <radius> as the distance

from the turtle to the points on the arc. In the

example above, half a circle is drawn. If <angle size>

is 360, then a full circle is drawn. The turtle is
moved by this command.

18 - CARTRIDGE GRAPHICS AND SOUND - 18

SOUNDTYPE(<voice number>,0)=No sound

SOUNDTYPE(<voice number>,1)=Triangle

SOUNDTYPE(<voice number>,2)=Sawtooth

SOUNDTYPE(<voice number>,3)=Pulse

SOUNDTYPE(<voice number>,4)=Noise

PULSE

PULSE(<voice number>,<pulse width 0-4095>)

PULSE(1,1500)

If the pulse waveform has been selected, the pulse width

controls how it sounds. The closer to the middle width

number (2048) the fuller the note sounds. The further

away from the middle number the pulse width is, the

thinner the note sounds. A reed flute, for instance,

produces a very thin, insubstantial, note- so a number

far away from the middle would be selected (100-500 or

3600-4095). Low and high numbers are the same to your

ear. Only how far from the middle is important.

The original example sets PULSE width for voice one to

1500.

GATE

GATE(<voice number>,<on/off>)

GATE(1,TRUE)

The GATE command controls the playing of notes. When

the gate is turned on the volume of that voice begins to

rise at the attack rate until the maximum volume is

reached. Once maximum volume is reached the volume for

that note begins to fall to the sustain level at the

decay rate. When the sustain volume level is reached,

the note will remain constant until the gate is turned

off. After the gate is turned off the volume for the

note will fall to zero at the release rate.

TRUE = ON - Attack, Decay, Sustain

FALSE = OFF - Release

In the original example, the GATE for voice one is

turned on.

47 - CARTRIDGE GRAPHICS AND SOUND - 47

RINGMOD(<voice number>,<on/off>)

RINGMOD(TRUE)

If the waveform for <voice number> is set to Triangle,

then that voice will be "ring modulated" with another

voice. This can be used for bell, or gong sounds. The

voices are set to be "ring modulated" in a specific way.

If voice one is set then it will be "ring modulated"

with voice three. Likewise, voice three with voice two

and voice two with voice one.

TRUE

FALSE

On

Off

The original example turns the ring modulation for voice

number one on.

SYNC

SYNC(<voice number>,<on/off>)

SYNC(1,0)

The SYNC command will work with any waveform and

synchronizes the base frequency of one voice with

another. This results in a complex series of harmonics.

The frequency of the voice being synchronized with

should be lower (but not zero) than the frequency of

<voice number>. Voice one will synchronize with voice

three, voice two with voice one, and voice three with

voice two.

GRAPHICS PACKAGE

The Commodore 64 graphics screen is made up of 64,000

pixels that can each display one of 16 different colors.

The graphics screen has two different modes: Hi-Res and

Multi-Color. To access all the commands you must first

issue the command: USE GRAPHICS.

Hi-Res: This mode displays 200 pixel lines, each of

which is made up of 320 pixels. Due to the structure of

the video chip, only one color besides the background

color can be used in each 8X8 block (these blocks

match the character blocks on the text screen). If you

try to draw in a block with a new color, then everything

drawn in that block is changed to the new color. This

mode provides very good high-resolution graphics for
smooth lines and drawing.

Multi-Color: This mode displays 200 pixel lines, each

made up of 160 pixels. The video chip uses pairs of

pixels to tell what color to use. In this mode you have

fewer dots per line, but you can have 3 different colors

in addition to the background color in each 8X8 block.

Lines are twice as wide because of the fewer pixels per

line, and can appear to be jagged. Once three colors

are used in a block, the fourth will change the last

drawn color to the new color.

USE GRAPHICS will initialize the graphics screen only if

it is not already initialized. After the screen has

been initialized, USE GRAPHICS will only add the

commands to the name table and set the screen up as

follows:

TRUE = On

FALSE = Off

In the original example, synchronizing for voice number

one is turned off.

VOLUME

VOLUME*<level>)

VOLUME(15)

48 - CARTRIDGE GRAPHICS AND SOUND - 48

0,199 +

I

-+ 319,199

I

i

160,100

0,0

Drawing on the screen can use a system called "Turtle

Graphics". This means you move an imaginary "Turtle",

that has a colored pen fastened to it, around the screen

17 - CARTRIDGE GRAPHICS AND SOUND - 17

stored as 10 more than the real key number (ie, P1 would
be F11).

Default settings follow:

READY MODE:

F1=RENUM + RETURN

F2=MOUNT + RETURN initializes disk

F3=USE TURTLE + RETURN switch to turtle graphics

F4=AUTO

F5=EDIT

F6=LIST

F7=RUN use with DIR listing to RUN from disk
F8=SCAN

PROGRAM MODE: (matches their values in BASIC)

F11=CHR$(133)

F12=CHR$(137)

F13=CHR$(134)

F14=CHR$(138)

F15=CHR$(135)

F16=CHR$(139)

F17=CHR$(136)

F18=CHR$(140)

TBXTOOIORS

TEXTCOLORS(<border>,<background> f <cursor>)

TEXTCOLORS(15,1,6)

This is used to set all three text colors at once.

Colors can be 0-15 plus -1 meaning no change from the

current value. Use CONTROL Z to keep the current colors

as the default colors.

16 - CARTRIDGE GRAPHICS AND SOUND - 16

This command will set the master (or maximum) volume for

all the voices. The range is zero (off) to 15

(maximum).

The example above turns the volume on full,

is the default for USE SOUND.

This value

FILTERS

FXLTERTYPE

FILTERTYPE(<low>f<band>,<high>,<voice 3 off?>)

FILTERTYPE(TRUE , FALSE , FALSE , TRUE)

The commodore 64 has a built in filter which acts like

the tone controls on your stero (but a bit more

flexible). First you set the filterfs frequency, then

you specify the filter type. The different types are

Low pass, Band pass, and High pass.

Low Pass: When this is turned on, all frequencies at or

below the filter frequency is pass unchanged.

Frequencies above the filter frequency are cut out more

and more the further above the filter frequency they

are. This way you get the deeper tones.

Band Pass: This filter passes freqencies at (or around)

the filter frequency and cuts out the frequency above

and below. You could eliminate harmonics this way.

High Pass: This filter works like the Low Pass filter,

but frequencies at or above the filter frequency are

passed. This way you get the higher tones.

These filters are additive and you could select them

together. If you turned both the Low pass and the High

pass filter on, only frequencies at the filter freqency

would be cut out.

<voice three off?>: This allows you to turn off voice

three at its output, so you can use it to modify the

other two voices.

TRUE

FALSE

On

Off

49 - CARTRIDGE GRAPHICS AND SOUND - 49

The original example sets the filter to Low Pass and
turns voice 3 off.

FILTERFRBQ

FILTERPREQ(<frequency 0-2047>)

FILTERFREQ(729)

This command will set the filter frequency. The steps

are 5.85 Hz apiece so a middle C is a value of 729. The

effective range is 30 Hz to 12 kHz.

The example above sets the filter frequency to a middle
C (aproximately).

FILTER

FILTER(<voice one>,<voice two>,<voice three>,<external>)
FILTER(TRUE , FALSE , TRUE , FALSE)

This command specifies what voices should go through the

filter. There is an external input to the sound chip

and if you use it, the sounds from it can be modified by
the filter.

TRUE = On

FALSE = Off

In the example above voice one and three will go through

the filter while voice two and the external input will
not.

RESOHAHCE

RESONANCE(<value 0-15>)

RESONANCE(15)

RESONANCE is a peaking effect of freqencies at the

filter frequency. The values range from zero (no

effect) to 15 (full effect). This will produce sharper
sounds.

The example above turns resonance on full for the
filter.

50 - CARTRIDGE GRAPHICS AND SOUND - 50

set time in GETTIME$ format: HH:MM:SS.T

You may change just the hours like this:

SETTIME(n10n) sets hours to 10

You set full time (without tenths):

SETTIME("10:30:0") sets time to 10:30

SETTIME allows you to set the system clock used by

COMAL. Time is kept in this format: HH:MM:SS.T with HH

the hour, MM the minutes, SS the seconds and T the

tenths of a second. To set just the hour it is not

necessary to include the rest of the paramenters in the

string (the first example sets the hour to 0 and also by

default sets minutes, seconds, and tenths to 0).

The second example sets the time to 10:30:00.0. The

third example sets the time to 05:45:15.0 and the last

example sets the time to 00:00:00.0.

COMAL is designed to work with both 50 and 60 cycle

power (European and American). It defaults to the

correct type automatically. However, you are allowed to

specify the cycle type at the very end of a time setting

string - preceded by a slash /. Thus the /50 at the end

of the final example would put COMAL time keeping in the

50 cycle mode. This is not practical, but you are

allowed the option.

SB0MKE7S

SHOWKEYS

The function keys are active in COMAL. They are set up

to perform common functions automatically for you, but

you can set them to anything you want with the DEFKEY

command. SHOWKEYS will display what each function key is

currently set at. The display is done to be compatible

with the define key command so that after showing the

keys current definitions, you can simply cursor up to

the one you wish to change, make the changes in the

string, and hit return. The function keys have two

settings for each key, one for while a program is

running, another while in READY mode (edit mode). Thus a

program can set function keys without disturbing the

settings outside the running program. To distinguish

between them, program mode function keys are internally

15 - CARTRIDGE GRAPHICS AND SOUND - 15

SETSCREEN(<string$>)

SETSCREEN(screeni$)

This restores a text screen previously stored with a

GETSCREEN command. The entire text screen including

colors and cursor position is stored as a 1505 character

string as follows:

First character is border color of text screen

Second character is background color of text screen

Third character is cursor color on text screen

Fourth character is cursor location, row^-1

Fifth character is cursor location, column-1

The rest of the string is text and color information

grouped in sets of 3:

1: first character

2: second character

3: low 4 bits for first character color,

high 4 bits for second char color

Example:

DIM screen$ of 1505

GETSCREEN(screen$)

PAGE

SETSCREEN(screen$)

save current screen as screen$

clear screen, ready to test it

put screen back again

Note: This is useful for HELP menus - save current

screen - flip through HELP - then replace original

screen.

SETTIME(<time string$>)

SETTIME("0n)

SETTIME("10:30")

SETTIME("5:45:15")

SETTIME("0:0:0.0/50")

sets the real time clock

14 - CARTRIDGE GRAPHICS AND SOUND - 14

VOICE

It is possible to modify notes while they are playing.

For instance, if you rapidly change the frequency of a

note around a small value you would get a vibrato

effect. Many different effects can be generated this

way (try selecting the Pulse waveform and sliding the

pulse width). To help in this, two commands allow you

to see what is happening in voice three.

OSC3

OSC3

wave • value:=OSC3

This function returns the value (0-255) of oscillator 3.

The numbers that appear depend on the waveform (although

they all change at the FREQUENCY rate).

Triangle will generate a series of numbers going from 0

to 255 and back down to 0.

Sawtooth will generate a series of numbers going from 0

to 255.

Pulse will jump back and forth between 0 and 255.

Noise will generate random numbers.

The example above sets the variable wave'value to the

output of oscillator 3.

EHV3

ENV3

wave • point :=ENV3

This function return the value (0-255) of envelope 3.

The numbers returned reflect the ADSR values and how far

into the note it is. Voice 3 must be gated in order to

use this function.

The example above sets the variable wave'point equal the

the value of envelope 3.

51 - CARTRIDGE GRAPHICS AND SOUND - 51

AUTOMATIC SOUND COWTKOL

(INTERRUPT DRIVEN SOUND)

Every sixtith of a second, an interrupt is generated by

the Commodore 64 (for the keyboard, clock, and other

system demands). COMAL 2.0 takes advantage of this so

you can play music while you do graphics, sprites, or

any other programing simultaneously. The only

restriction is you cannot Load or Chain other programs,

or modify the program in memory. This automatic system

is setup by SETSCORE, started by PLAYSCORE, and stopped

by STOPPLAY. Waitscore is a built in function that can

tell you if any, or all, of the three voices are still

playing.

SKTSCORB

SETSCORE(<#>,<freq array>,<gate=1array>,<gate=0array>)

SETSCORE(1,freq1 #(),time'oni#(),time'off1 #())

<#> is the voice number to be set up.

<freq array> is a global integer array that is filled

with the proper sequence of notes (freqencies). The

last value should be zero (to turn off the voice).

<gate=1array> is a global integer array that tells how

long (in 1/60 seconds) each note should have the gate

on.

<gate=0array> is a global integer array the tells how

long (in 1/60 seconds) each note should have the gate

off (before going to the next note).

The example above sets up voice one to play a series of

notes defined in the array freq1#, with the duration of

the notes defined in the arrays time'on1# and

timefoff1#.

STOPPLAY

STOPPLAY(<voice one>,<voice two>,<voice three>)

STOPPLAY(TRUE , FALSE , FALSE)

52 - CARTRIDGE GRAPHICS AND SOUND - 52

$D000 - $DFFF

SETPAGE(O) => hidden RAM

SETPAGE(2) => character generator ROM

SETPAGE(6) => I/O and color RAM

(when PEEKing color RAM ignore upper 4 bits)

$A000 - $BFFF

SETPAGE(O) => hidden RAM (used by packages)

$8000 - $9FFF

SETPAGE(O) => RAM (used by packages)

SETPAGEO) => COMAL code

SETPR1NTKR

SETPRINTER(<printer specifications$>)

SETPRINTER(nu5:/a+/l+/t+/s7/d-n)

See COMAL HANDBOOK edition 2 APPENDIX N page 441 for

details. Briefly:

u5: sets the unit to device 5

/a+ convert upper/lower case to true ASCII

/1+ a carriage return will also send a line feed

/t+ use IEEE time out conventions used by COMAL

/s7 use secondary address 7

/d- the file is not a disk file

Whenever a SELECT "LP:11 command is encountered, the

default printer is opened. SETPRINTER allows you to set

up just how the default should be and only needs to be

used once, but you are allowed to change it as often as

you wish.

SETRECORDDELAY

SETRECORDDELAY(<amount delay>)

SETRECORDDELAY(0)

This allows you to fine tune the COMAL system to your

disk drive. If you are using a Commodore 1541 drive you

should not use this command. However, if you are using

another drive, such as the MSD Dual Drive, you can get

faster disk access by issuing the command:

SETRECORDDELAY(0).

13 - CARTRIDGE GRAPHICS AND SOUND - 13

QUOTE1MODE

QUOTE1MODE(<true/false>)

QUOTE'MODE(true)

Quote mode is used by Commodore to allow you to insert

cursor movements and other special controls inside a

string constant. Some people like it. Many hate it. With

COMAL you can choose to have it or not. It is disabled

by default and the example above illustrates how to turn

it back on.

SERIAL

SERIAL(<true/false>)

SERIAL(true)

Commodore's IEEE interface for the C64 does not allow

'mixed' devices (some on the serial bus and others on

IEEE). Thus a serial printer and IEEE disk drive could

not both be used by a program at once. COMAL overcomes

this drawback with the SERIAL command. Issue the

command: SERIAL(true) and all I/O will be on the serial

bus. Issue the command: SERIAL(false) and all I/O will

be on the IEEE bus. You can change back and forth as

often as you need to. Plus, this also allows you to have

two printers with device number 4, one on each bus!

SEEPAGE

SETPAGE(<page number>)

SETPAGE(2)

This cbmmand is not needed for normal COMAL use. But if

you really want to get 'inside' COMAL it comes in handy.

Use it to look at the different memory overlays used by

COMAL on the C64. Different areas seem to need different

overlay numbers. Some areas are:

$E000 - $FPFF

SETPAGE(O) =

SETPAGE(2) =

> graphic screen

> kernal

12 - CARTRIDGE GRAPHICS AND SOUND - 12

This command will stop the given voice(s) from playing

if the value given is one (or True), but continue

playing if zero (or False).

The example above withdraws voice one from the automatic

system, but leaves voices two and three alone.

WAITSOORE

WAITSCORE(<voice one>,<voice two>,<voice three>)

WAITSCORE(TRUE,FALSE,FALSE)

If any of the voices you have put TRUE for are still

playing, then this function will return TRUE, otherwise

it will return false.

Example: WHILE WAITSCORE(TRUE,TRUE,TRUE) DO NULL

This program line will wait and do nothing until all

three voices have stoped playing.

53 - CARTRIDGE GRAPHICS AND SOUND - 53

JOYSTICK PACKAGE

This package allows you to read the direction and fire

button status of a joystick plugged into one of the two

control ports. All brands of joysticks that are for the

Commodore 64 can be read with the following command

after a USE JOYSTICKScommand has been issued.

JOYSTICK

JOYSTICK(<port>, <direction>, <button>)

JOYSTICK(1 , joydir, f' button)

The C64 has two joystick ports (1 and 2) which can be

checked with this command. The direction of the

joystick and status of the fire button of the control

port specified are put into the variables for direction

and for button. Since 'direction' and 'button' are

changed, they must be variables. The direction and fire

button status returned is:

8

7

6

1

0

5

2

3

4

Fire Button

True

Fire Button

False

Pressed

Not Pressed

54 - CARTRIDGE GRAPHICS AND SOUND - 54

IHKEY$

INKEY$

CHOICE$:=INKEY$

PRINT INKEY$

This is a very useful addition. The keyword KEY$ is part

of the COMAL system and simply looks at the keyboard

buffer once to see if a key has been pressed. If you

want to actually wait for a key to be pressed, you can

now use INKEY$. In addition, COMAL will blink a cursor

while waiting. INKEY$ is a string function and returns*

the character matching the key pressed.

KEYWORDS'IH1UPPER1 CASE

KEYWORDS'IN'UPPER'CASE(<true/false>)

KEYWORDS'IN'UPPER'CASE(false)

You will notice that COMAL tries to make your program

listings even easier to follow by automatically listing

COMAL keywords in UPPER case and your variable names,

procedure names, etc in lower case. This is compatible

with COMAL systems running on other computers systems

(mostly in Europe). Hopefully you will like this default

method of listing. However, you can easily change it

with the KEYWORDS'IN'UPPER1CASE command.

NOTE: If you are LISTing a program to disk to transfer

to version 0.14 you MOST first issue this command:

KEYWORDS'IN'UPPER'CASE(false)

This is because version 0.14 does not recognize UPPER

case keywords.

NAMES1 IH1 UPPER1 CASE

NAMES'IN'UPPER'CASE(<true/false>)

NAMES'IN'UPPER'CASE(true)

All identifiers (ie, variable names, procedure

names,...) are listed in lower case by default. You can

have them listed in upper case by issuing the command as

shown in the example above.

11 - CARTRIDGE GRAPHICS AND SOUND - 11

GETSCREEN(<string$>)

GETSCREEN(screen1 $)

This command assigns the entire text screen, including

colors and cursor location to the string variable

indicated. The variable must be DIM'ed to 1505 before

using it (ie, DIM SCREEN1$ OF 1505).

CWTTMR}

GETTIME$

PRINT GETTIME$

THIS1 TIME$:=GETTIME$

returns the time as a string:

HH:MM:SS.T

The current time is returned by GETTIME$ as a string in

the format: HH:MM:SS.T where HH is the hour, MM is the

minutes, SS is the seconds and T is the tenths of

seconds. The following program is a complete digital

clock program:

10 USE SYSTEM

20 PAGE // clear screen

30 WHILE TRUE DO PRINT AT 10,10: GETTIME$(1:8)

HARDOOPY

HARDCOPY(<filename$>)

HARDCOPY(nlp:n)

HARDCOPY(n0:textscreen")

This sends a text screen dump to the location specified.

The first example sends it to the printer while the

second creates a disk file called TEXTSCREEN and sends

it there. Note that CONTROL P is the same as

HARDCOPYClp:11) and produces a text screen dump to the

printer.

10 - CARTRIDGE GRAPHICS AND SOUND - 10

PADDLES PACKAGE

This package has one command which lets you read the

position and fire button status of a pair of paddles

plugged into one of the two control ports. The sound

chip can read the paddles and return a number 0-255 to

represent how far around the to the right the paddle

nobs are turned. You must issue the command: USE PADDLES

to initialize the PADDLE command.

PATOIS

PADDLE(<port>, <paddle1 >, <paddle2 >, <button1 >, <button2 >)

PADDLE(1,pad1,pad2,fire1,fire2)

The C64 has two control ports (1 and 2), each of which

can have a pair of paddles plugged in (for a total of

four paddles) and can be checked with this command. The

position of the paddles and status of their fire buttons

of the control port specified are put into the variables

for position and for button. When the paddle is turned

to the extreme left a value of zero is returned. When

the paddle is turned to the extreme right a value of 255

is returned.

The Koala Pad from Koala Technologies, or any other X-Y

reading device, can be used with COMAL with this

command. Just plug the device into one of the control

ports and use this command to read the position of the

device.

If you plan to draw graphics with paddles or any X-Y

drawing device, remember that the range of the paddles

is 0-255, while the graphics screen (after USE GRAPHICS)

set up for 0-319 (X-direction), 0-199 (Y-direction).

This can be corrected by the use of the WINDOW command

(i.e. WINDOW(0,255,0,255) — now you can plot directly

to the graphics screen).

55 - CARTRIDGE GRAPHICS AND SOUND - 55

LIGHTPEN PACKAGE

The LIGHTPEN package allows you to easily read and use a

lightpen with your Commodore 64. The lightpen can only

be read if it is plugged into control port #1. The

quality of your lightpen will control how fast and

accurate it is.

ACCURACY

ACCURACY(<X range>,<Y range>)

ACCURACY(2,1)

This command sets how accurate the pen will read. The

more accurate the setting, the longer it takes to read

the position. For fast drawing a high value of 5-7

should be used. For slow, accurate drawing, a low value

of 1-2 should be used.

DELAY

DELAY(<time>)

DELAY(5)

This command sets how many time the light pen has to

return the same number to be accurate. A high value of

5-10 should be used for menu selection, while a low

value 2-3 should be used for drawing.

OFFSET

OFFSET(<X correction>,<Y correction>)

OFFSET(5,0)

This command corrects for errors that develop on

different sizes of televisions. The idea is to touch

the lightpen to a known point on the screen, read the

position returned, calculate the difference between the

point returned and what the point should have been. Then

set the OFFSET to that difference.

56 - CARTRIDGE GRAPHICS AND SOUND - 56

DEFKEY

DEFKEY(<function key number>,<string to issue$>)

DEFKEY(1 , "LIST111 3" ")

DEFKEY(1,"LISTn+CHR$(13))

DEFKEY(3,"COPY"+CHR$(13)+","+CHR$(34)+n1:*")

DEFKEY(3,nCOPYn13n,""1:*")

You now have full control over the function keys. DEFKEY

allows you to set up any function key to return any

string of characters you wish, up to the line length

limit. The first example above sets function key 1 (F1)

to be the LIST command with a carriage return (note the

"13" is the new way of saying CHR$(13) for carriage

return). The second example uses the old method. Both

achieve the same result.

The third example sets up function key 3 (F3) to be a

'copy1 key for a dual disk drive. To copy any file from

drive 0 to drive 1 simply do a CAT for drive 0. Then

simply put the cursor in front of any program you wish

to copy and press F3. The last example is the same, but

using the new method of indicating CHR$ via quotes

around the CHR value.

Within a running program, the function keys are

internally referred to as F11 - F18 (10 more than

usual). This allows you to set up function keys inside a

program and not affect their settings outside the

program. The previous values of F11 - F18 are cleared by

the RUN command back to their default values.

FREE

MEM1 LEFT :=FREE

PRINT FREE

While the SIZE command is part of COMAL and provides

more complete details on memory used, it is not

accessible from a running COMAL program. FREE is a

function that will return the amount of FREE user memory

available. This could be useful when dealing with

external procedures or large arrays.

9 - CARTRIDGE GRAPHICS AND SOUND - 9

SYSTEM PACKAGE

The SYSTEM package allows you to change some of the

system defaults and gives you some extra commands as

well. Before you can use any of this you MOST tell COMAL

you want to use the SYSTEM package. Just issue this

command:

USB SYSTEM

The following pages detail what is available in the

SYSTEM package.

BELL

BELL(<number>)

BELL(3)

This makes the sound heard when you turn on the computer

with the COMAL cartridge in place. The sound can be long

or short, depending on the number used (3 is a good

choice for many uses). The bell will 'ring1 the number

of times specified (from 0 to 255 times).

CDROOL

CURCOL

X:=CURCOL

This function returns the cursor's current position on

the the screen. This is useful with CURROW to remember

where the cursor currently is before you move it

someplace else.

cmtRcm

CURROW

R:=CURROW

This function returns the row that the cursor is

currently on. It is useful with CURCOL to identify the

current location of the cursor.

8 - CARTRIDGE GRAPHICS AND SOUND -8

PEHOH

PENON

This function returns TRUE if the lightpen senses light,

and FALSE if the lightpen does not.

READPEN(<X coordinate^ <Y coordinate^<penon?>)

READPEN(xpos,ypos,pen'status)

This command reads the position of the lightpen,

corrects for the OFFSET command, and sets variables <X

coordinate>,<Y coordinate> to the lightpen position. If

the lightpen senses light, the variable <penon?> will be

set to TRUE, otherwise it will be set to FALSE.

Variables have to be used because they are set to the

lightpen settings. If you use numbers instead of

variables, an error will result.

TIMEON(<time>)

TIMEON(3)

This command sets how long the lightpen must be taken

away from the screen before it is not recognized.

57 - CARTRIDGE GRAPHICS AND SOUND - 57

FONT PACKAGE

The Commodore 64 has two character sets built into it,

upper/graphics and lower/upper case. COMAL 2.0 allows

you to define your own character sets and to use them in

your own programs. This is a very powerfull feature.

One way to use this feature is for custom game pieces on

the text screen. Another use is to have a Danish

character set. While you must spell the command words

the same way they are spelled in English, variable names

can be spelled any way you wish.

Characters are made up of dots, or pixels, eight wide

and eight tall. Due to limitation of the video chip and

your video screen, vertical lines should be two dots

wide to make them more visable.

Besides the two character sets built into the computer,

you can have two of your own defined character sets in

memory at one time. These fonts are numbered for the

FONT commands so you can access any of them:

FONT 0: User defined, stored in RAM, read/write

FONT 1: User defined, stored in RAM, read/write

FONT 2: UPPER/graphics, stored in ROM, read only

FONT 3: lower/UPPER, stored in ROM, read only

SHIFT/Commmodore key toggles between FONTS 0 and 1, just

as it normally does with fonts 2 and 3. To prevent

this, printing chr$(8) will cause the system to ignore

the SHIFT/Commodore key. To restore the keys, print

chr$(9).

PLOTTEXT uses whatever FONT is currently active

(normally FONT 2 or 3). This way you can plot user

defined characters on the graphic screen.

Whenever user fonts are used, 5K (5120) bytes of memory

is used. 4K (4096) for FONT 0 and 1, and 1K (1024) for

the text screen. The built in FONTs, 2 and 3, and

textscreen still exist, unchanged.

58 - CARTRIDGE GRAPHICS AND SOUND - 58

A NOTE ABOUT PACKAGES

It is possible to extend COMAL by use of PACKAGES. The

added commands in each package is not available until

COMAL has been instructed to USE the package. This gives

you control over when the commands are active, and

memory is not taken up by them when they are not needed

in a program. Eleven packages are built into the

cartridge, and others can be loaded from disk.

To use the commands in a package, you must issue the

command USE followed by the name of the package:

NAME ABILITIES

DANSK Displays message texts in Danish language

ENGLISH Displays message texts in English language

FONT Allows user defined character sets

GRAPHICS Adds 48 different graphic commands

JOYSTICKS Adds joystick control

LIGHTPEN adds lightpen control (port #1 only)

PADDLES Adds paddle control

SOUND Adds sound and music commands

SPRITES Adds sprite commands including animation

SYSTEM Gives control over some of the COMAL system

TURTLE All GRAPHICS package plus LOGO abbreviations

Examples: USE GRAPHICS

USE JOYSTICKS

USE FONT

More than one package can be active at one time, but by

adding them into the command table, some memory is used

(although this should not be a problem in a 30K system).

These added commands are not GLOBAL and do not

automatically pass into a CLOSED procedure, so you will

have to issue the USE command within that procedure in

order to use the commands, or IMPORT the specific ones

needed.

The command DISCARD removes all packages from the name

table. It is a direct command and cannot be used in a

running program.

CARTRIDGE GRAPHICS AND SOUND - 7

you don't like it this way you always can just use PRINT

CHR$(19).

UPPER or lower case

The cartridge will let you use either UPPER or lower

case letters when entering COMAL commands and

statements. Thus to list the program you can use any of

the following (they are all considered the same by

COMAL):

LIST list List LiST liST

However, when listing a program, keywords will be in

UPPER case and variable names in lower case:

FOR delay:=start TO finish DO PRINT "Testing"

You can change this if you wish, and when LISTing a

program to disk to transfer to version 0.14 you MUST

change the keywords into lower case. Changing this

default is accessed thru the SYSTEM package, so let's

get on with the packages...

6 - CARTRIDGE GRAPHICS AND SOUND - 6

LIHKFQNT

LINKPONT

The first time LINKFONT is used it overwrites memory (it

will copy the built in FONTs 2 and 3 into FONTs 0 and 1)

and links the user defined FONTs to the program so that

when you save the program, the user defined FONTs, 0 and

1 , will be saved with the program. When LINKFONT is

used for the first time it will also stop a running

program (because it overwrites memory) so this command

should be used in the direct mode the first time.

KERPFONT

KEEPFONT

This command makes the user defined FONTs 0 and 1 the

default FONTs (like FREEZING the FONTs into the system).

After this command is issued, programs will be saved

without the user defined FONTs. The only way to get

back out of them is via a LOADFONT command or by turning

the computer off and back on again. If no user font is

active then KEEPFONT has no meaning

LOADFONT

LOADFONT(<filename>)

LOADFONT("font.russian")

This command will load a user defined character FONT

into memory from the disk drive or tape machine. In

essence it will do the following:

(1) Does a LINKFONT

(2) Loads a 4K (4096) byte SEQ file into the user

defined FONTs

(3) Switches to FONTS 0 and 1 as current FONTs

This command will stop a running program so it must be

used in direct mode or by use of a batch file with

59 - CARTRIDGE GRAPHICS AND SOUND - 59

SELECT INPUT.

A second or third LOADFONT will overwrite PONTs 0 and 1.

SAVEEOHT

SAVEFONT(<filename>)

SAVEFONT("font.standard")

This command will write a 4K (4096) byte SEQ file to

disk or tape from the two user defined FONTs. This

command may be used in a running program without

problem.

GETCHARACTER

GETCHARACTER(<font#>f<character#>f<string variable>)

GETCHARACTER(3,1,char$)

Each character in a FONT is an 8 byte long string,

identifying the pixels as displayed on the screen. The

first character of the string is the top row of pixels

and the eighth character is the bottom row of pixels.

If the pixel is on then it equals a "11 and if it is off

then it will equal ' 0 ■. Each character is a binary

number (0-255) representation of a row of the character.

With this command you can look at any of the 256

characters (0-255) in any FONT (0-3).

POTCHARACTER

PUTCHARACTER(<font#>,<character#>,<string variable>)

PUTCHARACTER(0,1,char$)

This command allows you to define a character with an

eight byte string. Fortunately, COMAL 2.0 allows the

use of binary numbers, so creating characters is easy.

The following program demonstrates the use of this

command:

NEW

USE FONT

LINKFONT

AUTO 1000

60 - CARTRIDGE GRAPHICS AND SOUND - 60

This will find all program lines with n PROC n in it.

COMAL will list one line at a time. Hit RETURN for the

next one (you may edit the line first if you wish). Hold

the RETURN key down for a continuous list of all lines.

Issue a SELECT "lp:n command first and the list of lines

will print on the printer.

CHANGE "temp11, "final11

This will change all occurances of "temp" into "final".

COMAL asks your approval before it makes each change

(the line is displayed with the target flashing). Hit N

for No change or hit the RETURN key and it will be

changed. Use the STOP key to cancel the command. While a

line is displayed you may also hit the COMMODORE LOGO

key - this allows you to edit that line first and then

continue (but the CHANGE will not be made for that line

unless you do it yourself).

UPPER and lower case are considered different.

Therefore, if you search for "proc" it will not FIND

"PROC". Be careful.

UNDERLINE CHARACTER

The left arrow key (top left key on keyboard) can be

used as part of a variable name, and if used, it will be

listed on the printer and screen as underline. The

Commodore key plus the @ key will directly produce the

underline character. Underline is CHR$(164) in PETASCII

or CHR$(95) in ASCII.

The cartridge also converts all 'control code1 character

in print statements into the code number with quotes on

each side. This allows a program listing to print on any

printer even with embedded control codes. For example,

the HOME CURSOR control code is 19. In BASIC we would

say PRINT "[HOME]". When you press the HOME key in

between the quote marks a reverse field S appeared. It

represents HOME cursor. The cartridge would

automatically convert this line into PRINT ""19"". It

looks funny at first - but it makes sense. Simply remove

the control character and replace it with a quote mark,

the code number, and another quote mark. Of course, if

5 - CARTRIDGE GRAPHICS AND SOUND - 5

INPUT STATEMENTS

An INPUT statement now can accept up to 120 characters

(on continued screen lines). Also, the input fields are

now 'protected' fields. Cursor up and Cursor down are

ignored, as are reverse on and off, and there is no

'quote mode'. But the interesting feature is that while

in an INPUT request, the CLR (clear screen) key will

only clear the input field and HOME (cursor home) key

will put the cursor on the first position of the input

field. In addition to the normal INPUT statement you now

can use the professional INPUT AT specifying the row and

column to start at as well as the maximum length of the

input field:

INPUT NAME?

INPUT nNAME> ": NAME$

INPUT AT 9,1: nNAME> ": NAME$

INPUT AT 9,1,10: "NAME> ": NAME$

The above input statements all input characters into the

variable NAME$. The first one is the most basic type.

Since it includes no prompt, COMAL will use the question

mark (?) as the prompt (to have no prompt at all, use a

prompt of nn). The next line uses a prompt of "NAME> n.

The next example starts the INPUT request at row 9

column 1 (the N in NAME> will be in that position).

Finally, the last example includes 10 as the maximum

permitted input. COMAL will not let the user type more

than 10 characters for the reply! Try this example

program:

10 PAGE // clear screen

20 INPUT AT 9,1,10: nNAME> "j

30 PRINT NAME$

NAME$

Also it is important to note that both RETURN and

SHIPTed RETURN are the same now. Use the STOP key

instead of SHIFTed RETURN.

EASY EDITING

FIND and CHANGE commands are available:

FIND " PROC "

4 - CARTRIDGE GRAPHICS AND SOUND - 4

1000 USE FONT

1010 DIM char$ OF 8

1020 FOR x:=1 TO 8 DO

1030 READ a

1040 char$(x):=CHR$(a)

1050 ENDFOR x

1060 PUTCHARACTER(0,0,char$)

1070 // repelaces '@' in UPPER/graphics

1080 // with Commodore logo.

1090 data %00111100 //

1100 data %01100110 //

1110 data %01100100 //

1120 data %01100000 //

1130 data %01100100 // U
• TT • •

1140 data %01100110 //

1150 data %00111100 //

1160 data %00000000 //

<Press STOP Key to end AUTO mode>

RUN

61 - CARTRIDGE GRAPHICS AND SOUND - 61

MATIONAL LANGUAGE MESSAGES

COMAL is designed to be used internationally. With that

in mind, the capability to have the error messages

displayed in many different languages was incorporated

into COMAL.

When you start up the cartridge, it comes up in English.

However, Danish messages are built into the cartridge as

well and disk loaded packages for other languages will

be available soon. To see messages in Danish just issue

the command:

USE DANSK

Now try this:

s <hit RETURN key>

The computer responds:

s: ukendt saetning eller procedure

Don't worry. If you don't know Danish, just issue the

command: USE ENGLISH and try it again. This time the

computer responds:

s: unknown statement or procedure

62 - CARTRIDGE GRAPHICS AND SOUND - 62

SOME OP THE CARTRIDGE FEATURES AND HOW TO USB THEM

Professional COMAL is available for the Commodore 64. It

is called the C64 COMAL 2.0 Cartridge and contains the

full version 2.0 COMAL implementation for the Commodore

64 computer system. Preliminary versions were available

for a year before the final version was released. The

preliminary versions were called 2.00 and 2.01y. The

final version was released as version 2.01 (they did not

bump up the number to version 2.02 as expected). In this

book, we will refer to it simply as the cartridge or

COMAL.

The cartridge contains the complete COMAL system and

more. The COMAL system is detailed in the COMAL

HANDBOOK. In addition, 11 packages (including graphics

and sound) are built into the cartridge. These packages

are considered 'tack-ons' to COMAL. You must issue a USE

command before you can use features in a package.

Version 0.14 disk loaded COMAL was more primitive, and

just built in the graphics, turtle and sprites as part

of COMAL, when they really are not COMAL. Commands

inside packages can have parameters, and when parameters

are used, they must always be enclosed inside

parentheses (). Thus note the change in syntax for

graphics and spites from version 0.14 to version 2.0:

Version 0.14:

Cartridge 2.0:

FORWARD 10

FORWARD(10)

CORRECTS SOME COMPUTER PROBLEMS

The COMAL Cartridge even corrects some problems in the

C64 itself. For example, colors on the graphics screen

are in 8x8 (with a limit of 2 colors) or 8x4 (with a

limit of 4 colors) pixel blocks. Once the color limit of

2 or 4 is reached, the C64 does NOT reset the pixels

back to 'unused' if the whole block is filled with one

color. COMAL resets colors automatically for you. Also

the Commodore 1541 Disk Drive problem with RANDOM or

RELATIVE files is corrected by the COMAL system - and

still gives you faster access times than BASIC.

3 - CARTRIDGE GRAPHICS AND SOUND - 3

TABLE OP CONTENTS

3

7

8

17

31

32

44

Introduction 54

Packages 55

System Package 56

Graphics Package 58

Turtle Package 63

Sprite Package 64

Sound Package BC

Joystick Package

Paddles Package

Lightpen Package

Font Package

CONTROL Codes

FOR MORE INFORMATION

TRACE and BATCH FILE

Running COMAL 0.14 programs in COMAL 2.0

COMAL programs written in disk loaded COMAL 0.14 are

upward compatible with the C64 COMAL 2.0 Cartridge. BUT

they are not SAVE and LOAD compatible (if you try to

LOAD a COMAL 0.14 program file into COMAL 2.0 you will

get an error message). To transfer a COMAL 0.14 program

to run under COMAL 2.0 you must follow these steps:

1) You can keep your COMAL cartridge plugged in. Switch

to BASIC mode by issuing the command: BASIC.

2) LOAD in COMAL 0.14 from your disk as usual:

LOAD "BOOT*",8 // RUN

3) While in COMAL 0.14 LIST the program to disk:

LIST "NAME.L*

4) Do the same thing with any other COMAL 0.14 programs

you wish to transfer to COMAL 2.0.

5) Now switch back to COMAL 2.0:

Turn off the computer, then back on again.

6) ENTER each program previously LISTed to disk:

ENTER "NAME.L"

7) After the program is successfully ENTERedf you may

wish to SAVE it to disk with 2.0 SAVE command for future

use.

Remember, graphics is not COMAL, it is an environment

(now called a package). Plain COMAL programs should

transfer fine. Graphics and sprites now need ()

parentheses in 2.0 and a USE GRAPHICS and USE SPRITES at

the beginning of the program.

FORWARD 9 becomes FORWARD(9)

More tips will be in COMAL TODAY newsletter.

2 - CARTRIDGE GRAPHICS AND SOUND - 2

CONTROL KEY USES

Use the following keys along with the CONTROL key to do

special things:

A - remove indentations of a listed line

- oops! return line to original state and

remove changes - only before RETURN

- show line - to see any line just type the line#

then CONTROL A

- move cursor one word back

- Dump graphics screen (does PRINTSCREEN("lp:11,79))

(causes an error if printer is not present)

- move cursor one word forward

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

X

Y

Z

erase to end of logical line

goto end of line (last non blank character)

Textscreen dump (does a HARDCOPY("lp:11))

(causes an error if printer is not present)

Restore Function keys toggle

Sets textcolors to (6,6,1) - startup colors

Sets textcolors to (11,15,0)

for black/white monitors

Changes text border color

CNTRL X then CNTRL <color key>

Changes text background

CNTRL Y then CNTRL <color key>

Makes the current textscreen colors the default

63 - CARTRIDGE GRAPHICS AND SOUND - 63

FOR MORE INFORMATION

The COMAL 2,0 Cartridge is a very powerful tool. We have

just barely scratched the surface of its potential and

capabilities. The COMAL HANDBOOK documents the COMAL

part of the cartridge and complements this book very

well.

COMAL TODAY newsletter is the BEST source of ongoing

information and programs for COMAL. Starting in January

1985 it will have a complete section devoted to using

the COMAL 2.0 Cartridge. If you aren't already you will

want to subscribe to COMAL TODAY - $14.95 per year.

(NOTE: Subscribe before January 1, 1985 and get 6 issues

per subscription year - after that a subscription will

be for 5 issues).

One of the best ways to uncover the power in your

cartridge is to look at programs already written. Two

disks come with the Deluxe Cartridge Package and provide

a good start. But there are two more available December

1984: Cartridge Demo Disk #3 and #4. Demo Disk #3 will

be the super demo disk with some useful and amazing

programs on it. A special order form should have been

packed with your cartridge providing you a special

discount on Demo Disks #3 and #4. Take advantage of it!

If you need a tutorial about COMAL programming try these

books:

FOUNDATIONS IN COMPUTER STUDIES WITH COMAL

by John Kelly

book=$19.95 matching disk=$19.95

(book and disk only $24.95 to COMAL TODAY subscribers)

STRUCTURED PROGRAMMING WITH COMAL

by Roy Atherton

book=$26.95 matching disk=$19.95

(book and disk only $32.95 to COMAL TODAY subscribers)

All COMAL materials are available directly from:

COMAL USERS GROUP, U.S.A., LIMITED

5501 Groveland Terrace

Madison, WI 53716-3251

(608) 222-4432

64 - CARTRIDGE GRAPHICS AND SOUND - 64

THE AMAZING ADVENTURES OF CAPTAIN COMAL

Book 4

CARTRIDGE GRAPHICS AND SOUND

and other packages

by Captain COMAL1s Friends

Published by COMAL Users Group, U.S.A., Limited

5501 Groveland Terrace

Madison, WI 53716-3251

phone: 608-222-4432

Copyright 1984 COMAL Users Group, U.S.A., Limited

First Edition Cower

All rights reserved. No part of this book may be

reproduced in any way or by any means without written

permission from the publisher.

This edition is for the C64 COMAL 2.01 Cartridge. It

applies to both the EPROM and ROM versions since both

are identical except for the start up screen. The

cartridges are distributed in North America by COMAL

Users Group, U.S.A., Limited.

Your comments on the book are welcome and appreciated

We tried to keep it concise and to the point. COMAL

TODAY newsletter will have a special section just for

the CARTRIDGE starting in 1985. Make sure you are a

subscriber.

The following trademarks should be noted:

Commodore 64, CBM of Commodore Electronics

Captain COMAL of COMAL Users Group, U.S.A., Limited

Koala Pad of Koala Technologies

ISBN 0-928411-02-8 Printed in U.S.A.

1 - CARTRIDGE GRAPHICS AND SOUND - 1

TRACE and BATCH FILES

TRACE is very useful as an aid to locating a problem in

the program you are writing. If your running program

begins doing something unexpected just hit the STOP key.

Once the program is stopped enter the command: TRACE.

The system will then tell you how it got to the point

the program was stopped at. Another use for TRACE is

when your program abends (abnormally ends) with an error

message. Just enter the command: TRACE and the system

will tell you how it got to the point of error.

BATCH FILES are extremely useful to the serious

programmer, but even a casual programmer can take

advantage of them. The BATCH FILE is a type of COMMAND

FILE, a sequential ASCII file containing COMAL commands.

The command SELECT INPUT "0:NAME" transfer control to

the file named. All commands read from that file are

treated as if they had been typed in from the keyboard.

When the end of file is reached, control automatically

returns to the keyboard. You can have as many batch

files as you wish.

Programs that use batch files include: VIEW'FONTS and

BATCHFILE'EDITOR (Demo Disk #3) and BATCH'COPIER (Demo

Disk #2). Batch files can set up your system. For

example, you could have a batch file set up the screen

colors and function keys as you like them, and then give

you a directory of just the PRG files on the disk. Let's

say you called the file "BAT.MINE". Anytime you issued

the command SELECT INPUT "BAT.MINE" it would do all

those things. For an easy example of BATCH FILES in

action type in the following lines from direct mode:

OPEN FILE 2,"0:BAT.MINE",WRITE

PRINT FILE 2: "CAT"

PRINT FILE 2: "SIZE"

CLOSE

SELECT INPUT "BAT.MINE"

Send us listings of what you put in your batch files, or

send us a disk with the files on it. Then watch COMAL

TODAY for tips on BATCH FILES shared by other users.

ISBN

THE AMAZING ADVENTURES OF CAPTAIN COMAL
BOOK 4

CARTRIDGE GRAPHICS AND SOUND
AND OTHER PACKAGES

TM

$9.95

mw/r/J

ABOUT T/9/}7

