
The programs for this book are on the

matching disk with the label shown at

the bottom of this page

THE AMAZING ADVENTURES OF CAPTAIN COMAL

BOOK 1
CAPTAIN COMAL GETS ORGANIZED

By Len Lindsay

Book and Disk - $19.95

BOOK 2
COMAL FROM A TO Z

By Borge Christensen

Book - $6.95

BOOK 3
COMAL LIBRARY OF FUNCTIONS & PROCEDURES

By Kevin Quiggle
Book and Disk - $19.95

BOOK M
CARTRIDGE GRAPHICS AND SOUND
By Captain COMAL's Friends

Book - $9.95

BOOK 5
CAPTAIN COMAL'S GRAPHIC PRIMER

By Mindy Skelton
Book and Disk - $19.95

BOOK 6

COMAL WORKBOOK
By Gordon Shigley

Book - $6.95

ISBN G-IEi

GRAPHICS PRIMER DISK
C64 COMAL 0.14 © 1983

COMAL Users Group (USA)

5501 Groveland Ter. Madison, Wl 53716-3251

LOAD "BOOT*", 8 then RUN

THE AMAZING ADVENTURES OF CAPTAIN COMAL

BOOK 5

CAPTAIN COMAL'S GRAPHIC PRIMER

TM

Mindy Skelton steps you through both

turtle graphics and sprite control

GETBORDER 62

5ETPEN 63

GETPENCOLOR 63

BETSPRITECOLOR '. 63

GETTURTLESIZE 63

6RAPHICSTATE 63

HEADING 64

HIDESCREEN 64

POLYGON 65

BHOWSCREEN 65-66

SHOWSPRITE 66

SPRITESTATE , 66

SPRITEXCOR 66

SPRITEXSIZE 66

SPRITEYCOR 67

SPRITEYSIZE 67

TURTLESTATE 67

XCOR • 67

YCOR 68

Captain COMAL

Presents

A Graphic Primer

by

Mindy Skelton

ISBN Q-

84 Captain COMAL's Graphic Primer 84

Captain COMAL's Graphic Primer

JAMQD nift*q»3

yd

The original manuscript of this

(O19S4 by Melinda

book is copyright

This edition is copyright (C)1984 by Comal Users Group,

U.S.A., Limited and published by perroision o-f the

author.

All rights are reserved. No part of this book

reproduced in any way or by any means

permission of the publisher.

COMAL USERS CROUP, U.S.A., LIMITED
5501 Croveland Ten, Madison, wi 53716

Trademarks:

CAPTAIN COMAL of COMAL

COMMODORE 64 of Commodore Electroiiics^Lt
Easy Script of Commodore Electronics Ltd

^ airiqsir) s'JAMOj nisiq&Cl

Captain COMAL's Graphic Primer

may be

without

PENCQLpR %\%%%%%\%%%%%%%^^s^.=.'.".^'.-^.'-.^.-.'.-^3^1^^^"n!d

PENDO1# .v.V.V.V.v.%v.vv^w.^.<.^.<v.-.».^
PENUP ^A .v.v.v.v.v.v.v."..^.^.^..'.■'••••■'• rV* J2-"£,3S^TTI-id
PLOT fA .v.v.v.v.\sw.wv.w.%w.*.ww.*.*.3^^^
PLOTTEXT 27-28

priqri¥V v.=.v.v.v.v.v.v.v.v,.v.,.v,v,.,.,.,,,.:,,. imam-Ati

PROGRAMMING MODE .. 12

READ'SPRITE

RENUM c&rehiimber*), ^h,«^. . .^

RIGHT id .^,.«..M.._,..,...,,,...... .;.

SAVE .4d -^.^^.^ . - .r»« «.^ ,... .^ .^ ^^

SCREElsBo . , .. . , ,..,-.,. r,,,.,__ . ,....

CoorBi nate. syste/n. ,*«■•««•«...,■•..,. d...,. s.,.,.

HI-REB ,.,«,^^,,,^,^^^..,^,..,^,

MULTI COLOR

SETGRtffiH ID ..^*. **,..« „ ..^.,. ,.(^......,

SETHEADING 17,

78-81

16-17

SETXY

SPLITSCREEN

SPRITE

Defined

HI-RES

MULTI COLOR 28-

SPRITEBACK

SPRITECOLLISION

SPRITECOLOR

SPRITEPOS

SPRITESIZE

21-22

24,26

21,1-22.

16, IB

27-28

28-30

30,76

30.34

37,39

30, 34

30.35

30,34

TURTLESIZE 17,21

PROCEDURES

CIRCLE 59-62

GETBACKGROUND 62

INDEX

An index to the procedures included in Chapter 5

follows the regular index.

AUTO (line numbering) 7

BACK 24

BACKGROUND 16-17

BORDER 16,18

CHAIN 11

CLEAR 16-17

COORDINATES, (see SCREEN COORDINATES)

DATACOLLISION ... 13,37,39

DEFAULT (defined) 12

DEFINE 30,31,33

DRAWTO 24-25

ENTER 11

FILL 24,26

FORWARD 24

FRAME 16,18

FULLSCREEN 16,18

FUNCTION KEY (predefined) 16,74

GETCOLOR 21,23

HIDESPRITE 30,35

HIDETURTLE 17,21-22

HOME 17,24

IDENTIFY 30-31,33

IMAGE (sprite) 30-31

IMMEDIATE MODE 12

LEFT 24-25

LIST (a program to screen) 10-11

(a program to disk) 11

LOAD 11

82 Captain CQMAL's Graphic Primer 62

TABLE OF CONTENTS

Introduction ««. 5

Chapter 1: Some COMAL Basics 7

Getting Started

Loading from disk

Your first programs

1-Line numbering and renumbering

2-A short word about Procedures and

Functions

3-Storing and Recalling Programs

Conventions of this Book

Chapter 2: Turtle Graphics 14

Why a Turtle?

Screen Coordinate System

Setting up the Screen

Meet your Turtle

Maneuvering the Turtle

Text on a Graphic Screen

Chapter 3: Sprite Graphics 29

What is a Sprite?

Making a Sprite

Moving a Sprite

Chapter 4: Program Listings 42

Chapter 5: Useful Procedures/Functions 59

Glossary 69

Appendix A: Defined Function Keys 74

Appendix B: Sprite Chart « 75

Appendix C: MULTI COLOR Sprites 76

Appendix D: Two More Ways to Design Sprites ...«.«.. 77

Index 82

Captain COMAL's Graphic Primer

I would like to thank Andy Skelton, Len Lindsay,

Colin Thompson, Kevin Quiggle, John McCoy, and David

Stidolph -for their help and encouragement in this

project. I would also like to thank Donald Pipkin,

Perry Brickley, and Jesse Knight -for use of their proc

edures and functions in Chapter 5.

Special thanks go to Wayne Schmidt for his cover

Doodle.

This primer was written in Easy Script, on a

Commodore 64, and was printed on a Gemini-10 printer.

Thank you, Precision Software, Commodore Business

Machines, and Star Micronics.

Captain COMAL's Braphic Primer

0766 IDENTIFY 1,0

0770 //

0780 data "0000110000" // any length

0790 data "0000110000" // up to 24

0800 data "0000110000"

0810 data "1111111111"

0820 data "1111111111"

0830 data "0000110000°

0840 data "0000110000"

0850 data "0000110000B

0860 data "h" // "h" means HI-RES

0870 //

0880 data "111111111111111111111 111"

0890 data "111000000001100000000111"

0900 data "111100000001100000001111"

0910 data "110110000001100000011011"

0920 data "110011000001100000110011"

0930 data "110001100001100001100011"

0940 data "110000110001100011000011"

0950 data "110000011001100110000011"

0960 data "110000001101101100000011"

0970 data "110000000111111000000011"

09B0 data "110000000011110000000011"

0990 data "111111111111111111111111"

1000 data "110000000011110000000011"

1010 data "110000000111111000000011"

1020 data "110000001101101100000011"

1030 data "110000011001100110000011"

1040 data "110000110001100011000011"

1050 data "110001100001100001100011"

1060 data "110011000001100000110011"

1070 data "110110000001100000011011"

1080 data "111111111111111111111111"

1090 data "m" // "m" means MULTI-COLOR

You now have several ways to design sprites,

you find one of them comfortable to use.

I hope

81 Captain COMAL's Braphic Primer 81

0350

0360

0370

0380

0390

0410

0420

0430

0440

0450

0460

0470

0480

0490

0500

0510

0520

0530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0765

80

=1

or line*(l)=="l11) and count<64

read'sprite'ml'data

endif

dim line$ of 24

dim sprite* of 64

sprite*:-H"5 count\

read line*

while (linefd)2211©1

and (not eod) do

while len(line$)<24 do line*:=line$+"O"

if line$=IIH then null

addr:=find'string

poke 702,addr mod 256

poke 703,addr div 256

sys 683

for x:=0 to 2 do

sprite$(count):=chr$(peek(680+x))

count:+l

endfor x

read line$

endwhile

while count<64 do

sprite$(count)s=chr$(0)

count:+l

endwhile

case line$(l) of

when "h'VH"

sprite*'(64):=chr$(0)
when "«■,"«"

sprite*(64):=chr*(l)

otherwise

print "error in sprite data statements"

stop

endcase

DEFINE blk;,sprite*

endproc read'sprite

read'sprite'ml * data

SET6RAPHIC (0)

read'sprite(O)

IDENTIFY 1,0

SPRITEPOS 1,75,75

SPRITECOLOR 1,1

read'sprite(O)

Captain COMAL's Braphic Primer 80

INTRODUCTION

Perhaps you are like me, and one of the reasons you

bought your Commodore 64 was because you wanted to use

the graphics capabilities that your fast-talking com

puter salesman showed you. Then you got your machine

home and discovered the joys of attempting hi-res or

sprite graphics on your Commodore. After wandering in

the wasteland of PEEKS and POKES, VIC chips and sprite

registers, not to mention the intricacies of bit-mapped

graphics, you decided you'd shelve graphics for a lit

tle while, and somehow never got back to it. Maybe you

mastered sprites and bit-mapped graphics, but would

like a simpler way of doing all that plotting. Which

ever camp you belong to, welcome to CQMAL graphics.

COMAL (COMmon Alogrithmic Language) was designed by

Barge Christensen and Benedict Loefstedt to be used by-

people who wanted to get the most from their computers,

but who did not necessarily wish to become "hackers".

With this goal in mind, the authors of COMAL made

graphics easily accessible to even the casual user.

Included as part of version 0.14 COMAL, and as a

quickly accessible "package" in version 2.0 COMAL, are

easily used and understood commands for turtle graphics

(which may already be familiar to you from LOGO or

PILOT) and sprite graphics. If you really want to ap

preciate the ease of COMAL sprites, read through the

sprite section in your Commodore 64 Programmer's

Reference Guide (pp. 131-149).

This booklet will guide your through the basic use of

the commands, give you some procedures and functions to

use, and show you some demonstrations and programs to

play with and change to suit your needs. There is also

a listing of graphic commands. For further detail of

these commands, see CQHQL FROM £ TO Z, by Borge

Christensen, available from COMAL User's Group, USA.

If you are unfamiliar with COMAL, please read the

first chapter for some hints on getting started. If

you are an old hand at COMAL, just glance at the

"Conventions of This Book" section to make sure we are

on the same wavelength.

Captain COMAL's Braphic Primer

eventually give you a striped sprite.

To use the Read'sprite program, either enter the code

below, or look on your CCGP disk and load Read'sprite.

To use this program -for your own sprite, all you have

to do is insert your own numbers in lines 780-860
(which design a multi-color sprite) or lines 880-1090

which design a hi-res sprite). The -following is an

example by Captain Carnal and his Friends.

0010 // delete IIreadsprite/demo2"

0020 // by captain comal and friends

0030 // save "readsprite/demo4"

0040 //

0050 func find'string closed

0060 pointerl:=peek(51)

0070 pointer2:=peek(52)

0080 address:=pointer2*256+pointer1

0090 return address+4

0100 endfunc find'string

0110 //

0120 proc read'sprite'ml'data closed

0130 //

0140 data 0,0,0,169,0,168,170,141

0150 data 168,2,141,169,2,141,170

0160 data 2,169,128,141,220,2,189

0170 data 0,4,41,1,240,10,185,168

0180 data 2,24,109,220,2,153,168

0190 data 2,232,224,24,240,8,78,220

0200 data 2,144,229,200,208,221,96

0210 total:*0

0220 for x:=680 to 731 do

0230 read a

0240 poke x,a

0250 total:+a

0260 endfor x

0270 if totalO5747 then

0280 print "error in data statements"

0290 stop

0300 endif

0310 endproc read'sprite'ml'data

0320 //

0330 proc read'sprite(blk) closed

0340 if peek (683)0169 then

79 Captain COMAL's Graphic Primer 79

designer, read it into your program

code something like this,

with a piece of

open file 2,"<your sprite image name>",unit 8 read

read file 2s image$ //this assigns the information

file 2 to the variable

image*

close file 2

DEFINE 0,image*

You can now use the defined image just as you would use

an image created any other way.

Read'sprite:

The Read'sprite procedure allows you to enter your

sprites as strings of Is and Os. These strings are

then read by a short machine language program which

uses your binary notation to define the sprite. To

define a HI-RES sprite by this method, enter

1 for blocks you want in the primary color

0 for blocks you want in the background color

For a MULTI COLOR sprite, remember that it takes two

numbers to define a block. Twenty four numbers define

a sprite 12 two-pixel-wide columns wide. The numbers

to use are

00 for transparent

10 for primary color

01 for background color#l

11 for background col or#2

For example the line

<data "100111001001110010011100">

would create one line of the 21 needed to define a

MULTI COLOR sprite. This particular line repeats the

sequence (primary color, 1st background, 2nd

background, transparent) three times. This would

78 Captain COMAL's Graphic Primer 78

Chapter 1

Some COMAL Basics

Getting Started

LOADing 0.14 from disk

Put the COMAL disk in your drive. Type LOAD

"BOOT*11,8. Press RETURN. When your machine returns the

READY prompt, type the word RUN, then sit back and wait

for a few minutes, as COMAL loads.

Once the program is loaded, you have a choice of

seeing several demos, reading some general infor

mation, or beginning to program. If you haven't seen

the demos or read the information, I would urge you to

do so. If you have, indicate that you want to begin

programming by either entering

or

p (for (p)rogram)

c (for (c)omal)

depending on your version of the COMAL menu. Press

enter NEW to

program, and

RETURN. When you get your neat prompt,

clear out the demo program and the "Hi"

you are ready to start programming.

Your first programs

1 - Line Numbering and Renumbering:

One of the niceties of COMAL is its automatic

line numbering. Before you start writing a program,

enter the command AUTO, then press RETURN. COMAL will

supply you with line numbers in increments of ten (the

default value), and all you have to do is type in the

lines of code. To cancel the auto numbering hit RETURN

twice. If you wish to continue the same program in the

auto numbering mode, enter AUTO and the line number

where you wish to begin. For example, if your last

program line was 120, you would enter AUTO 130, and

press RETURN.

Captain COMAL's Graphic Primer

You can also number in the regular way, by not

using auto, and entering the line numbers yourself.

For example, if you wish to insert some code betweem

lines 10 and 20, just start your line number with 11

and number as high as 19, with no ill effects*

Let's say that you want to include more code

between two lines than can be included in nine lines

(or however many lines you have available). What can

you do? COMAL has an automatic line renumbering

command. If you type RENUM and press return, your

entire program will be renumbered in increments of 10.

If you wish to have different increments, you can

specify both the increment and the beginning line

number. For example RENUM 100 would change your first

line number to 100, and increment by 10. RENUM 100,100

would change your first line number to 100 and

increment by 100. RENUM 100 would leave your first

line number as whatever it was, but would increment by

100. [Note: To get some experience with numbering and

renumbering, look at program 1.1 in the sample program

listings.1

2 - A short word on Procedures/Functions:

As you probably all know, COMAL is a

structured language, and one of the things that makes a

structured language, is the use of procedures rather

than the GOTOs and 60SUBS you may recall from BASIC.

The procedure is really the basis of all COMAL

programs. With procedures you can break up a long,

complicated program into several smaller pieces, each

of which performs a particular task, or part of a

task. The pieces are then used as needed by being

accessed (or called) in the MAIN section of the

program, or from another procedure. Procedures could

often stand on their own, outside the program and so

might be thought of as a mini-program.

Procedures have their own particular structure.

They all begin with the word PROC, followed by the

procedure name. If parameters (values for variables to

be used in the procedure) are to be passed to the

procedures, the name of the procedure is followed by

information in parentheses (these are the argutents of

Captain CQMAL's Graphic Primer 8

APPENDIX D:

Two more ways of making sprites

Sprite Designer:

The Sprite Designer allows you to design your sprite

without thinking about any values for any pixel. When

you load up the program, you will be asked a series of

questions. There were no instructions, but Captain

COMAL and his friends have figured out what to do. Use

1 for yes answers, and 0 for no answers. The first

question asks if the sprite is to be MULTI COLOR or

not. Reply with a 1 for MULTI COLOR, and a 0 for

HI-RES. You will then be asked to pick your primary

color- Use the CONTROL key or the COMMODORE key and

the numbers 1 through 8. For example, CONTROL 1 is

black, COMMODORE 1 is orange, etc.. The next two

questions ask if you want your sprite expanded on the x

and y axes. Use 1 or 0 to respond. You will then be

asked to choose your background color, and if your

sprite is MULTI COLOR, your background colors #1 and

#2. Again, use your CONTROL, COMMODORE and number keys

to select your colors.

You now can design your sprite by moving the cursor

around the large field. Use the cursor control keys to

position your cursor. Turn on a pixel by pressing 1,

turn it off by pressing 0. In multicolor mode press

0 (transparent)

1 (background #1)

2 (primary color)

3 (background #2)

to access your possible colors.

You can save your design by pressing S. To load in a

previously saved design, press L. Press A to append a

sprite to another program. Press Q to quit.

The sprite designer program is very long, and not

many people would actively enjoy typing it in (not to

mention de-bugging it after you type it in), so a

working version has been included on your CCGP disk.

Look for SPRITE DESIGNER.

To use one of the sprites you create with the

77 Captain COMAL's Graphic Primer 77

APPENDIX C:

MULTI COLOR Sprites

MULTI COLOR Sprites differ in several ways -from

HI-RES. They can hold -four colors (screen color,

primary color, background color#l, background color#2>

instead of the two allowed by HI-RES sprites.

The block which defines a MULTI COLOR sprite is only

half as wide (12 rather than 24) since in MULTI COLOR

made your pixels are double width.

For my money, MULTI COLOR sprites are most easily

defined using the Sprite Designer (q.v.)5 but they can

also be defined using the Read'sprite procedure (q.v.).

If you are using the Read'sprite procedure, the screen

(transparent) color has a value of 00, background

color#l has a value of 01, the primary color has a

value of 10, and the background color#2 has a value of

11.

All multi color sprites on the screen must share the

same two common background colors. The two colors are

set using the SPRITEBACK <colorl>,<color2> command.

The primary color of a MULTI COLOR sprite is set using

the SPRITECOLOR <sprite#>,<color> command.

76 Captain CQMAL's Graphic Primer 76

the procedure or function). When the procedure is

called, if there are values to be sent to the procedure

or function, a list of values is included in

parentheses. These values are assigned, in the order

they are given, to the arguments of the procedure or

function. [Note: If you are unfamiliar with

parameters, and passing values, please spend some time

with one of the many books on COMAL programming

currently available. We will be using parameters in

many of the programs in this book. You are welcome to

plunge ahead, and they may make sense as you see them

used.3 Parameters make procedures and functions

extremely flexible. As an example, let's look at a

procedure which draws a box.

proc box

for i:=l to 4 do

forward 10

right 90

endfor

endproc box

to this procedure:Now let's add arguments

proc box (h?v,heading,length)

moveto h,v

setheading headading

for is=l to 4 do

forward length

right 90

endfor

endproc box

By sending different values for h,v, heading and length

we can draw boxes of different sizes, in different

positions, and in different locations on the screen.

For example, if, later in your program, you called the

procedure by including the line:

box(0,0,0,20)

you would draw a box 20 pixels to a side, starting in

the lower left corner of the screen. Calling the

procedure causes the program to do whatever action is

Captain COMAL's Graphic Primer

Calling the procedure byspecefied in the procedure,

the inclusion o-f this line:

box(10,100,45,50)

would draw a diamond shape, 50 pixels to a side, 10

pixels up from the bottom o-f the screen, and 100 pixels

over from the left edge. Please notice in the example

that the first value in the call is assigned to the

first variable, the second to the second, the third

value to the third variable, and the fourth to the

fourth. Be sure to give your values in the correct

order.

Any commands or structures (such as if-then-else

statements, case structures, for-endfor loops, etc.)

can be used in a procedure or function. Just be sure

to end your procedure with the word ENDPROC, so COMAL

will know when your procedure is finished.

FUNCTIONS are a specialized kind of procedure.

All functions are started with the word FUNC (rather

than PROC). You can pass parameters to functions- In

version 0.14 you cannot define string functions.

Somewhere in the function, you must use the word RETURN

to return a value for your function.

e.g. func getpencolor

return peek(646)

endfunc getpencolor

This function could be called with a line like

print getpencolor

The system would then execute the function getpencolor,

and print the the value that is returned. Again, we

will be using functions, and they will make more sense

as you see them used.

3 - Storing and Recalling Programs:

You can list your program to the screen, either

in whole or in part, by entering the command LIST.

10 Captain COMAL's Graphic Primer 10

APPENDIX B:

Sprite Chart

Here is a chart you can use to sketch out your hi-res

sprites, if you want to try one without using a "sprite

designer". I would suggest either making several

copies, or overlaying this chart with a sheet of

acetate. Fill in the blacks to make the design you

want, then add up the values of the blacked-in spaces,

for each of the three sectionsB The three numbers you

get will be the data statements which define that line

of your sprite.

SEC

I i
£631
3426

t-

FiGidsECTIQH
\ L B

2631
842184268421

i i

SECTION

t C
2631
8426842J

SOU
OF
ft

SOU
OF
3

sun
OF
C

i

75 Captain COMAL's Graphic Primer 75

APPENDIX A

Defined Function Keys:

F1 ,..., TEXT SCREEN

F3 SPLITSCREEN

F3 .. FULLSCREEN

These three predefined function keys are available

for use after the graphic screen has been initialized.

They can be accessed in immediate mode from either the

text or graphic screen.

Fl - has the same effect as issuing the command

SETTEXT.

F3 - has the same effect as issuing the commands

SETGRAPHIC and SPLITSCREEN.

F5 - has the same effect as issuing

SET6RAPHIC and FULLSCREEN.

the commands

LIST by itself will list the entire program. To see

portions of your program, follow the LIST command by

the range of line numbers you wish to see. For

example, LIST -100, would list everything up to line

100. LIST 20-70, would list lines 20-70, inclusive.

LIST 100- would list everything from line 100 on. The

LIST command shows you the program complete with line

numbers and indentation. The command EDIT will show

you the program without indentation. Both can be

slowed by holding down the control key, or stopped and

restarted by pressing the space bar.

You are no doubt, familiar with saving programs

in BASIC with the SAVE command. This command also works

in COMAL. If you enter the command

SAVE "OsMyprogram"

you would store a PRG (program) file, called Myprogram,

on your disk. In order to call this program back into

memory at a later time, you would type

LOAD "0: Myprogram11

and press RETURN. If a file has been SAVEd, in can

also be called up by using the command CHAIN, fallowed

by the program name. The CHAIN command loads the file

and runs it.

COMAL has another way of saving a file. You

can LIST a file to disk. Entering the command

LIST "0:Myprogram.1"

stores Myprogram.1 on disk as a SEQ (sequential) file.

You might notice that this filename ends with '.P.

This is done, for your convenience, to help you

remember which files are SAVEd versions, and which ones

are LISTed. To recall a LISTed file, the command ENTER

is used, followed by the program name.

ENTER "0:Myprogram.1"

LISTed files cannot be chained, but they can be

manipulated like any other sequential file. For

74 Captain COMAL's Braphid Primer 74 11 Captain COMAL's Graphic Primer 11

example, if your word processor creates sequential

files, you can read in a LISTed file for inclusion in a

paper created on your word processor. (This really cuts

down on typos!)

There's lots more that's involved in COMAL

programming, but this is a book on graphics. For

additional info on programming, refer to one of the

many Captain Comal books.

Conventions of This Book

Definitions?

(a) IMMEDIATE MODE: There will be times in this

booklet when I will refer to immediate mode or

programming mode. l&nediate node (at least while you

are reading this booklet) means any commands you type

in which are executed immediately. This can happen

either in text or graphic mode. If your commands are

contained in a program and are executed as the program

runs, we'll consider that programming node.

(b) DEFAULT: The term default value or status means

the value of a variable or condition, as it is when the

the system begins operation. For example, if a

variable has a default value of 10, or the screen has a

default color of blue, it means that when COMAL loads

in and becomes operational, that variable has a value

of 10, and the screen is blue, without your doing

anything. If you want the value to be anything other

that the default value, you must issue commands to

change it.

(c) Q.V.: The abbreviation q.v. stands for the Latin

phrase quid vide. It means literally, "which see", and

in common usage, "see also11. In context, it refers you

to relevant sections, definitions and related commands.

Helpful things to know:

1- A reference to the CCBP disk is a reference to

the Captain CONAL's Graphic Primer disk which

12 Captain COMAL's Graphic Primer 12

image. One sprite may, at different times, have

different images.

PRIORITY: PRIORITY<sprite#>,<p>: If <p> is FALSE (0),

sprite<sprite#> has a higher priority than screen

graphics. This means the sprite will pass over the

graphics. If <p> is TRUE (1), the sprite will pass

under the graphics. The priority of sprite against

sprite is determined by the number of the sprite, with

sprite 0 having the highest priority.

SPRITEBACK: SPRITEBACK <colorI>,<color2>: Sets the

common colors for multicolor sprites. <colorl> and

<color2> are integers from 0 to 15.

SPRITECOLLISION: SPRITECOLLISION «sprite#>,<reset»:

This function returns TRUE if (and only if) a sprite

<sprite#> has collided with another sprite. If <reset>

has a value of TRUE or 1, the collision flag is reset.

(See DATACOLLISION)

SPRITECOLOR: SPRITECOLOR <sprite#>,<color>: Makes

sprite number <sprite#> color <color>. <color> is an

integer from 0 to 15.

SPRITEPOS: SPRITEPOS <sprite#>,<x>,<y>: Sets the

position of sprite number <sprite#> to be such that the

upper left corner of the sprite is at position <x>,<y>.

SPRITESIZE: SPRITESIZE <sprite#>,<xsize>,<ysize>: If

<K5ize> is TRUE (1), sprit number <sprite#> is expanded

2 times in width. If <ysize> is TRUE (1), sprite

number <sprite#> is expanded 2 times in height.

73 Captain COMAL'S Graphic Primer 73

SETXY: 8ETXY <x>,<y>: Moves turtle to

coordinates, drawing a line if the pen

MOVETO)

the designated

is down. (See

SHOWTURTLE: SHOWTURTLE: Causes the turtle to become

visible on the graphic screen. This is the default

setting. (See HIDETURTLE).

SPLITSCREEN: SPLITSCREEN: Causes a text "window" to be

displayed on the top two lines of the graphic

screen.(See FULLSCREEN)

TURTLESIZEs TURTLESIZE <size>: Sets the size of the

turtle to <size>. <size> is an integer from 0 to 10.

The default size is 10 (largest).

SPRITE COMMANDS

DATACOLLISION: DATACOLLISION (<sprite>,<reset>): A

function which returns a value of TRUE if the sprite

number <sprite> collides with graphic information

(e.g., text, screen graphics or sprites). The

collision detection is done automatically each time a

sprite is drawn. If <reset)- is given a value of

TRUEU), the collision flag will be reset. If <reset>

is given a value FALSE(O), the collision flag is stored

for use with the next DATACOLLISION statement.(See)

DEFINE: DEFINE<image#>,<definition$>: Assigns the

string <definition$>, which contains the 64 characters

of the sprite image, to image<image#>. <image#> is an

integer from 0 to 55.

HIDESPRITE: HIDESPRITE <sprite#>: Causes sprite

<sprite#> to become invisible. (See procedure

SHOWSPRITE)

IDENTIFY: IDENTIFY<sprite#>,<image#>: 6ives

sprite<sprite#> the image contained in image number

<image#>. More than one sprite may share the same

72 Captain COMAL'S Graphic Primer 72

accompanies this book.

2- Keywords will be capitalized in text in order to

make them visable. Don't attempt to enter the programs

with the keywords capitalized, or COMAL will spit up.

3- Information to be supplied by the user will be

enclosed in single < >. If, for example, you saw

PENC0L0R<color> in a program, you would enter the

actual color number you wish to use, without the

enclosing < >s. For example, if you wanted a black

pen, you would enter 'PENCQLOR 0'.

4- Information to be supplied by the user which

requires the inclusion of parentheses will be enclosed

in (). If you find any parameters enclosed in (),

please be sure to include the ()s when you type in the

code. For example, the information following the

command DATACOLLISION must be in parentheses:

DATACOLLISION Ksprite#>,<reset». When you type this

command, you would include the (), but not the <>.

5- Actions to be performed by the user will be

enclosed in double << >>. For example, if you needed

to press both the Commodore key and another key (in

this example, A) simultaneously, you would see <<Com

A>>. If you were to press the RETURN key, you would

see «RETURN».

6- In some of the program listings you will see the

symbol 'A>. In order to get this symbol, press the ap

arro» key, immediately to the left of the RESTORE key.

The 'v, in COMAL (as in Commodore Basic), is the expo

nentiation sign. For example, 2 is the exponent in the

statement 8*2. 8A2 means 8 raised to the power of 2,

or 8 squared, or 8*8. 2X%8 would be 2*2*2*2*2*2*2*2.

13 Captain COMAL's Graphic Primer 13

CHAPTER 2:

TURTLE GRAPHICS

This chapter is divided into six sections. The -first

is just background on turtle graphics, and can be

skipped if you're in a big hurry to get going. After

each other section heading, there will be a list of

commands which will be explained in that section.

Why a turtle?

Turtle Graphics is a generic term for a system of

computer graphics found in CQMAL, as well as LOGO and

PILOT, In this system, the user controls a triangular

or turtle-shaped sprite (known as a "turtle") in order

to "draw" in HI-RES or MULTI-COLOR, graphics. Let me

try to make that definition a little clearer.

About 17 years ago at iiassachusett Institute of

Technology (MIT), Seymour Papert and a group of people

who were interested in artificial intellegence develop

ed a language called L060. LOGO grew out of another

language called LISP, which was and is used extensively

in programs which simulate intelligence. Originally

the language LOGO was used to control a slow-moving

robot shaped somewhat like a turtle. The robot was at

tached to a mainframe computer and could be controlled

by means of a "button box". The "turtle" could be made

to move forward and back as well as rotate a specified

number of degrees. Children (for whom the language was

aimed) could work out problems with the real, tangible

turtle, and later, as the language developed, could

duplicate their solutions with the "turtle-shaped"

cursor on the computer graphic screen. It took a while

before home computers were powerful enough to hold the

language, and by that time the robot was no longer a

feature of the language. The name turtle has hung on

to the turtle-shaped graphic cursor, long after most

people stopped using the robot.

14 Captain CQMAL's Graphic Primer 14

PENCOLOR: PENCOLQR <colar>s Sets the pen to color

<color>. <color> is an integer from 0 to 15. The cursor

will appear in the specified color, as will text.

PENDOWN: PENDOWNs "Lowers" the turtle pen. Causes the

pen to leave a trace on the screen as long as the
pencolor is different from the background color and as

long as the turtle is within the current frame. (See

PENUP)

PENUP: PENUP: "Raises" the turtle pen. No mark is left

by the turtle. PLOT and DRAWTO (q.v.) still function.

(See PENDOWN)

PLOT: PLOT <x>,<y>: Marks position <x>,<y> in the

current pencolor.

PLOTTEXT: PLOTTEXT <x>,<y>,<text*>: Plots text string

<text$> on the HI-RES graphic screen, in the current

pencolor. The lower left corner of the text expression

is placed at <x>,<y>. <x> and <y> will be adjusted to

the greatest multiple of 8 less than or equal to the

specified values.

RIGHT: RIGHT <degrees>s Turns the turtle's head

<degree> degrees to the turtle's right (clockwise).

SETGRAPHIC: SETGRAPHIC <type>: Initializes the graphic

screen. Used intially with <type> declaration. <Type>

of 0 sets screen to HI-RES, <type> of 1 sets the screen

to MULTICOLOR. Does not affect the text screen,, (See

SETTEXT)

SETHEADING: SETHEADIN6 <degree>: Sets the turtle to the

heading specified by <degree>. The heading is

calculated clockwise from the 0 degree heading

(vertical) rather than from the current heading of the

turtle.

SETTEXT: SETTEXT: Displays the text screen and hides

the graphic screen. Does not clear the graphic screen

or prevent graphic instructions from being carried out

on the graphic screen.(See SETGRAPHIC)

71 Captain COMAL'S Graphic Primer 71

encountering either a boundary

another color or points on the

frame (see FRAME).

•formed by points of

edge of the , present

FORWARD: FORWARD <distance>: Moves the turtle forward

<distance> units. Forward is the d.irectioin painted to

by the head (point) of the turtle. If the pen is down,

a line will be left in the current pencolor.

FRAME: FRAME<xl>,<x2>,<yl>,<y2>: Defines the area

(frame) within which graphic activity will occur. No

drawing will take place outside the framed area, even

though the turtle will be displayed. <xl>,<yl>

determine the lower left corner of the frame.

<x2>,<y2> determine the upper right corner. The

default is a frame covering thre entire graphic screen

with values of FRAME 0,319,0,199.

FULLSCREEN: FULLSCREEN: Shows the entire graphic screen

without the window of text on the upper two lines (see

SPLITSCREEN).

GETCOLOR: 6ETC0L0R <x>,<y>: Returns the color of the

specified point. Returns background color if no

graphic pixel on. Not affected by sprites.

HIDETURTLE: HIDETURTLE: Makes the turtle invisible

speeds up some graphics. (See SHOWTURTLE)

and

HOME: HOME: Moves turtle to center of screen (160,99),

with the head vertically upward, at heading 0. (See

SETHEADING)

LEFT: LEFT <degree>: Moves the turtle's head <degree>

degrees to the turtle's left (counterclockwise).

MOVETO: M0VET0<x>,<y>: Moves the turtle to the

specified coordinates. Does not leave a line on the

screen.(See SETXY)

70 Captain COMAL'S Graphic Primer 70

Screen coordinate system.

A number of the commands for moving your turtle

depend on your understanding of a graphic coordinatp

system. If you remember Geometry and the Cartesian co

ordinate system, think of you screen as the upper

right-hand section of a regular 4 section graph. The

horizontal axis is labeled x, and the vertical axis is

labeled y. Every spot on your graphic screen can be

defined by an x and y coordinate pair. Y~If ••«» tM*

system to tell the computer where you want something to

be placed.

Until you get used to thinking of your screen as a

grid, it may be helpful for you to have the fallowing

chart to refer to.

T
Y

X

S

1

CO

3

5

(168,

HO

(iS8

iS9> <3i9,i9

ME

,93>

m

CD

C6.8> (169,6>

X fiXIS

(313, 8>

HI-RES GRAPHIC SCREEK

The left border of your screen is the 0 x axis, and

the bottom of your screen is the 0 y axis. Where these

axes intersect in the lower left-corner of your screen

is location 0,0. The place where the x and y axes

intersect in the center of the screen (160,99) is the

15 Captain CQMAL's Graphic Primer 15

turtle's HOME<q.v.).

Setting up the screen.

Commands: SETGRAPHIC, SETTEXT, BACKGROUND, BORDER,

CLEAR, FULLSCREEN, BPLITSCREEN, FRAME

The first thing you have to do to use CQMAL graphics,

is initialize* or turn on, the graphic screen. To do

this, either in a program or in immediate mode, issue

the command

SETGRAPHIC <type>

•followed by the type of * graphic screen you want.

SETGRAPHIC 0 gives you a HI-RES screen. SETGRAPHIC 1

gives you a MULTI-COLOR screen. It is only necessary

to enter the type designation the first time you use

the SETGRAPHIC command. After that, unless you are

changing the type, the command SETGRAPHIC alone is suf

ficient.

You may be wondering what the difference is between

HI-RES and MULTI COLOR screens. In HI-RES graphics,

your screen is 200 (0 to 199) pixels high and 320 (0 to

319) wide. The screen is further divided into 1000

blocks (40 across, 25 down), each made up of 64 pixels

(8 across, 8 down)*. That's a lot of pixels, and

reasonably, this mode give you the greatest resolution.

Each of those pixels can be any of the Commodore

colors, but unfortunately, each block can only hold two

colors, the background color and the color of the last

pixel you turn on in that block. If, at a later time,

you attempt to turn on another pixel in that same

block, in a third color, each turned-on pixel in the

entire block changes to the third color. This may not

give you exactly the effect you had planned.

A partial solution to the problem is offered by MULTI

COLOR graphics. In MULTI COLOR mode your screen is

still divided into 1000 blocks, but each block is now

made up of 32 pixels (8 across, 4 down). This gives

you a screen 160 pixels by 200, and consequently lower

resolution. Each line you draw is now two pixels wide*.

As a compensation for the loss of resolution, each

block will now hold four colors, rather than two. Each

16 Captain COMAL's Graphic Primer 16

GLOSSARY

Here is an alphabetic listing of the COMAL graphic

commands, along with the syntax and a brief explan

ation of each. More-complete explanations of each com

mand will be found in Chapters 2 (turtle) and 3

(sprites). Turtle commands and sprite commands are

listed separately.

Since it may appear that some of the commands are

listed twice on a given line, it may be of help for you

to know all commands are listed in the following

format:

COMMAND: SYNTAX: DEFINITION

TURTLE COMMANDS

BACK: BACK <distance>: Moves turtle backward <distance>

units from the direction of the point of the turtle.

If pen is down (see PENDOWN), the turtle leaves a line

in the current pencolor (see PENCQLOR).

BACKGROUND: BACKGROUND <color>: Sets the background to

the specified color. In hi-res, the change does not

take effect until a CLEAR command has been executed

(see CLEAR).

BORDER: BORDER <color>:

specified color.

Sets the border to the

CLEAR: CLEAR: Clears the graphic screen, but

remove sprites (see HIDESPRITE).

does not

DRAWTO: DRAWTO <x>,<y>: Draws a line, in the current

pencolor, from the present location to the position

(<x>,<y>). Due to a bug in COMAL, this command

requires that the pen be in the 'down' position in

order to draw a line. If the pen is 'up', your turtle

will move to the specified position, but no line will

be drawn.

FILL: FILL <x>,<y>: Fills, with the current pencolor,

an area containing the specified location. Fills until

69 Captain COMAL'S Graphic Primer 69

YCQR

This -function returns the y coordinate of the turtle.

func ycor closed //return y

return 199-peek(27260)

endfunc ycor

68 Captain CQMAL's Braphic Primer 68

pixel in the block can now be one of the following

(a)screen color

(b)background color#l

(c)background calor#2

(d)character color.

Each turned-on pixel in the entire block will still

change color if you attempt to introduce a fifth color.

In order to get a feeling for these modes, type in

the sample program dealing with HI-RES vs MULTI COLOR.
When the SET6RAPHIC command is issued, the graphic

screen is turned on, the turtle is shown at coordinates

160,99 (see HOME), in size 10 (see TURTLESIZE), heading
vertically upward (setting 0 - see SETHEADINB). If

HIDETURTLE (q.v.) is in effect, the turtle will not be

visible. To return to the text screen from within your
program, enter the command

SETTEXT

In immediate mode you.have the choice of using SETTEXT

or pressing the Fl function key. [Note: Appendix A

gives a listing of the assigned actions of the function

keys.] The two screens operate independently, so it is

possible to switch from one to the other without losing

either, or even to have two differnt things going on at

the same time. For example, you could have direction

on your text screen while a picture is being drawn on

the graphic screen, then switch to graphics and a

completed picture. Conversely you can have

informatioin printed to the text screen while a picture
is being drawn, which you can access later.

Once you have your screen initialized, you can change
the color of the screen or border to any of the 16

Commodore colors. The background is set by using the
command

BACKGROUND <color#>

where <color#> is any number between 0 and 15. If you

are in HI-RES, the color won't change on the entire
screen until you issue the command

17 Captain CQMAL's Graphic Primer 17

CLEAR

CLEAR clears the graphic screen, but does not affect

any sprites present. Until you issue the CLEAR, the

background will only change in 8x8 pixel blocks around

any lines or points you put on the screen (leading to

some really strange images). The color of the screen

border can be set using the command

BORDER <color#>

where <color#> is an integer from 0 to 15.

You can further choose to have the full graphic

screen displayed by using the command

FULLSCREEN

or you can have a text window on the top two lines of

the graphic screen by using the command

SPLITSCREEN

In immediate mode, using SPLITSCREEN, you can see your

commands as you type them, which is sometimes helpful

[Note: SPLITSCREEN doesn't work in programming mode].

Your commands are recorded on the text screen even in

FULLSCREEN, so by toggling back and forth, you can keep

track of your commands, even without the "window".

The FRAME command allows you to choose the area of

your screen in which the pen will be active. A frame

is designated by four coordinates;

FRAME <xl>, <x2>, <yl>, <y2>

<xl> and <yl> are the lower left corner of the frame,

while <x2> and <y2> are the upper right corner. The

default value of FRAME is 0, 319, 0, 199, giving a

frame which covers the entire graphic screen. The

turtle's pen will not leave any marks outside your

frame, although, if the frame is smaller than the

graphic screen, the turtle may move outside the frame

and still be visible.

IB Captain COMAL's Graphic Primer 18

func spritexsize(num) closed

x:=(peek(53277) mod 2y-(num+l)) div 2'"num

return x

endfunc spritexsize

SPRITEYCOR

This function returns the y coordinate of the specified

sprite.

func spriteycor(num) closed

return peek(53249+2*num)

endfunc spriteycor

SPRITEYSIZE

This function tells you if the specified sprite is

double height by returning TRUE if the sprite is

expanded on the y coordinate (height).

func spriteysize(num) closed

y: = (peek (53271) mod 2'Mnum+D) div 2Anuoi

return y

endfunc spriteysize

TURTLESTATE

This function tells you if the turtle is visble or not

by returning TRUE if SHOWTURTLE is in effect, and FALSE

if HIDETURTLE is in effect.

func turtlestate closed

//return l=turtle on, 0=turtle off

return peek(27295)

endfunc turtlestate

XCQR

This function returns the x coordinate of the turtle.

func xcor closed //return x

high'bit#:=peek(27255)

return high'bit#*256+peek(27256)

endfunc >tcor

67 Captain COMAL's Graphic Primer 67

return

else

poke vic+17,peek(vic+17)+16

endif

endproc showscreen

SHOWSPRITE

This procedure allows you to turn on a sprite

previously hidden with HIDESPRITE, without knowing the

identity of the sprite,

proc showsprite(num) closed

vies=53248

x:=2Anum

y:=(peek(vic+21) mod (2*x)) div x

if not y then poke vic+21,peek(vic+21)+x

ys=(peek(27276) mod <2*x)) div x

if not y then poke 27276, peek (27276) +x

endproc showsprite

SPRITESTATE

This function will return TRUE if the specified sprite

is visible, and FALSE if the sprite is hidden.

func spritestate(num) closed

x: = (peek(27276) mod 2A(num+i>) div 2*num

return x

endfunc spritestate

SPRITEXCOR

This function returns the x coordinate of the specified

sprite.

func spritexcor(num) closed

x:« (peek (53264) mod 2A(num+l)> div 2'vnum

return x*256+peek(53248+2*num)

endfunc spritexcor

SPRITEXSIZE

This function tells you if the specified sprite

double height by returning TRUE if the sprite

expanded on the x coordinate (width).

66 Captain CQMAL's Braphic Primer

is

is

66

Let's look at short program (demo 2.1 on the CC6P

disk) which uses some of the commands discussed above.

Don't worry about MOVETQ and DRAWTQ; we'll get to them

later.

10 setgraphic 0

20 fullscreen

//this will initialized the

graphic screen to HI-RES

//this selects a full

graphic screen without

text window

30 for loopl := 0 to 15 do

40 background loopl //this chooses a background

of color* loopl (all

possible colors)

clear //this implements the color

change selected in line

40

for Ioop2 != 0 to 15 do

border Ioop2 //this selects a border

color of col or# Ioop2

(all possible colors)

for pause := 1 to 90 do null

endfor Ioop2

50

60

70

80

90

100 endfor loopl

110 frame 50,100,50,100 //this selects a frame

with lower left corner

at 50,50 and upper

right corner at 100,100

120 for scoot 5=50 to 100 step 5 do

130 moveto scoot,40 //lines 120-150 draw lines

across the framed area.

The turtle is always

visible, but the lines

show only in the framed

area

140 drawto scoot,120

150 endfor scoot

160 frame 0,319,0,199 //returns the frame to

default setting

(entire screen)

170 for scat :=150 to 200 step 5 do

180 moveto scat,40 //lines 170-200 draw lines

across

19 Captain CQMAL's Graphic Primer 19

the same area as above.

The lines are now visible

for their entire length,

as the frame now covers

the whole screen

190 drawto scat,120

200 endfor scat

210 while key$=chr*(0) do null // line 210 causes

the program to

pause until a

key is pressed

220 settext //you then return to text

screen

If you enter this program (remember you can use auto

line numbering) and run it you should get some idea of

the things you can do to set up your screen.

Now you have the basics. You can set up your screen

just the way you want it. Now you can rest for a

minute, as you get ready to...

Meet the Turtle.

Commands: TURTLESIZE, SHOWTURTLE, HIDETURTLE,

SETHEADING, PENCOLOR, PENDOWN, PENUP,

6ETC0L0R

HEAD -i

PEH

REGULAR TURTLE

If you issued the SET6RAPHIC command, you should have

a rather attractive triangle, similar to the one shown

above on the right, sitting in the center of your

screen. This is your turtle. (If your turtle looks

like the one on the left, remove your pet from the

screen.) Actually, the COMAL turtle is a sprite,

sprite 7 to be precise. This sprite comes with lots of

20 Captain COMAL's Graphic Primer 20

a polygon of any

x:=(peek(vic+17> mod 32) div 16

if x then

poke vic+17,peek(vic+17)-16

else

return

endif

endproc hidescreen

POLYGON

This procedure allows you to draw

radius.

proc polygon(sides,radius) closed

//this routine draws a polygon

// centered at the current

// position with sides and radius

// given

pi 8=3.14159265

length:=2*radius*sin(pi/sides)

angle:=180*(1-(sides-2)/sides)

penup

forward radius

right 90+angle/2

pendown

for side:=l to sides do

forward length

right angle

endfor side

right 90-angle/2

penup

forward radius

right 180

endproc polygon

SHOWSCREEN

(see also HIDESCREEN)

This procedure lets you show the entire screen, much as

you can SHOW or HIDE the turtle.

proc showscreen closed

vie:=53248

x:=(peek(vic+17) mod 32) div 16

if x then

65 Captain COMAL's Graphic Primer 65

endfunc graphicstate

HEADING

This -function returns the turtle's current heading as

an integer from 0 to 359.

func heading closed

as=peek<27277)$ b:=peek(27278)

case a o-f

when 0

return 90

when 129

return 89

when 130

return 88-(b div 64)

when 131

return 86-(b div 32)

when 132

return 82~(b div 16)

when 133

return 74-(b div 8)

when 134

return 58-(b div 4)

when 135

if b<53 then

return 26-(b div 2)

else

return 386-(b div 2)

endif

when 136

return 322-b

when 137

return (194-(b*2))-(peek(27279) div 128)

endcase

endfunc heading

HIDESCREEN

(see also SHQWSCREEN)

This procedure lets you hide the entire screen, much as

you can SHOW or HIDE the turtle.

proc hidescreen closed

vies=53248

64 Captain CQMAL's Graphic Primer 64

predefined images, so as your turtle moves, its shape

will change to reflect any rotation. Its size can also

change. Until we consider sprites, we will not be able

to make the turtle larger, but we can make it smaller

right now. A command

TURTLESIZE <size>

where <size> is an integer from 0 to 10, will alter

your turtle. The default size is 10 (the largest), but

you can make it anything down to 0 (almost invisible).

[Note: There is a function GETTURTLESIZE included in

Chapter 5 which will tell you the current size of your

turtle.]

Speaking of invisible, there is a command to make the

turtle invisible

HIDETURTLE

When this command is in effect, the turtle can still

draw things, but you can't see it. Drawings go faster

when the turtle is hidden, and personally, for most

uses I think the screen looks better without our little

friend. To bring the turtle back from invisiblity, use

the command

SHQWTURTLE

and BINGO there it is.

When your turtle first appears, the head will be

painting toward the top of your screen. This is

heading 0, the default setting. The command

SETHEADING <degrees>

will change the turtle's heading to anything between 0

and 359. The turtle is moved in a clockwise direction,

so heading 90 points to the right, heading 180 points

down, etc. The turtle does not move to the position

specified by <degrees> by turning through the

intermediate settings. It goes directly to the

specefied setting. If you ask for a heading of over

360 degrees, COMAL will subtract 360 from your request

21 Captain COMAL's Graphic Primer 21

until the result is less than 360, and set the turtle

to the resultant heading. For example SETHEADING 400,

would have the same effect as SETHEADING 40. The

SETHEADING command always operates from heading 0. The

current heading of the turtle when the SETHEADING

command is issued has no effect on the outcome. That

is, if your turtle is at heading 40, and you issue the

command SETHEADING 50, the turtle will be set directly

to heading 50 not heading 90.

Your turtle may be^.set to any of the 16 usual colors

available to you, by using the command

PENCOLOR <color#>

Color# will be an integer from 0 to 15. The color of

the turtle (even if HIDETURTLE is in effect) determines

the color of the line drawn by the turtle's pen, and

also the color of text plotted on the graphic screen,

or on the text screen. A handy trick I use sometimes

(since I find it very hard to remember what all 16

color number stand for) is to write a procedure which

assigns the color number to the appraprite color, far

example WHITE := 1. Then in my programming, if I want

to switch colors, I can issue commands using the name

of the color I want, for example

PENCOLOR WHITE

This isn't required. It's just helpful. This

procedure is called Color'select on your CCGP disk.

There is a function in chapter 5 called GETPENCOLOR

which returns the current pencolor. You can use this

function to store the current pencolor before you

change colors, and then can call up the original color

when you are through. There is also a built-in

function

GETCOLOR <x>,<y>

which returns the color of location x,y. If there is

no graphic data on the x,y point, GETCOLOR returns the

color of the background. GETCOLOR cannot recognize

sprites.

22 Captain COMAL's Graphic Primer 22

6ETPEN

This function will tell you if your pen is up or down

by returning TRUE if it is down, and FALSE if it is

up.

func getpen closed

return peek(27333)

endfunc getpen

GETPENCOLOR

This function will return the number of the current pen

color.

■func getpencolor closed

return peek(646)

endfunc getpencolor

GETSPRITECOLOR

This function will return the number of the current

sprite color.

func getspritecolor(num) closed

vie:=53248

return peek(vic+num+39) mod 16

endfunc getspritecolor

GETTURTLESIZE

This function returns the size of the turtle (0-10).

func getturtlesize closed //does not work if hideturtle

t'size:=peek(27258)-10

if t7size=i30 then t'size:=10 //prior to turtlesize

command

return t'size

endfunc getturtlesize

GRAPHICSTATE

This function will return TRUE if the graphic screen is

MULTI-COLOR, and FALSE if the screen is HI-RES.

func graphicstate closed

//return 0=hires, l=multicolor

return peek(27261)

63 Captain CQMAL's Graphic Primer 63

Circle #3:

proc circle(h,v,scale) closed

moveto h9 v

aspect:=1.3

y:=0

•first:-true

d'theta:=.l

c:-cos(d'theta)

s:=sin(d'theta)

num:=64

for loop:=l to num do

temp:=scale*c-y*s

y:-y#c+scale*s

scale:=temp

sx:=aspect*scale+h

sy-=v~y

if first then

moveto sx,sy

first:=false

else

drawto sx,sy

endif

endfor loop

endprac circle

6ETBACK6R0UND

This function will return the number

background color.

func getbackground closed

return peek(53281) mod 16

endfunc getbackground

of the current

6ETB0RDER

This function will return the number of the current

border color.

func getborder closed

vie:=53248

return peek(vic+32) mod 16

endfunc getborder

62 Captain COMAL's Graphic Primer 62

The line you see issuing from the head of your turtle

is the "pen". The pen can be either up or down. The

command

PENDOWN

"puts the pen on the paper", or causes the pen to

become "active". If the pen is down, the turtle will

usually leave a line when it moves (for an exception

see MOVETO). The command

PENUP

"lifts the pen from the paper", or causes the pen to

became "inactive". When the pen is up, the turtle will

usually not leave a line (see PLOT for an exception).

Let's see what some of these command do (this program

is demo 2.2 on your CC6P disk):

10 setgraphic 0

20 background 0

30 clear

40 for t'size := 0 to 10 do // show all possible

turtle sizes

50 turtlesize t'size

60 for wait := 1 to 20 do null //pause

70 endfor t'size

80 for blink := 1 to 10 do // "blink" turtle

90 hideturtle

100 for wait := 1 to 75 do null

110 showturtle

120 endfor blink

130 for t'color := 0 to 15 do // show all possible

turtle colors

140 pencolor t'color

150 for wait := i to 90 do null

160 endfor t'color

170 for t'turn := 0 to 360 step 5 do // rotate turtle

180 setheading t'turn

190 endfor t'turn

Maneuvering the Turtle.

23 Captain COMAL's Graphic Primer 23

Commands: HOME, FORWARD, BACK, RIGHT, LEFT, MOVETO,

DRAWTO, SETXY, PLOT, FILL

The turtle starts out in the "home" position.

Issuing the command HOME will send your turtle from
wherever it is to the center of the screen (coordinates

160,99). The turtle will be pointed toward the top of

your screen (heading 0).

The command

FORWARD <distance>

will cause your turtle to move forward (toward his

head) <distance> number of units (in this case pixels).

For example, issuing the command FORWARD 20 will move

your turtle 20 units forward. The command

BACK <distance>

will cause the turtle to move back (away from its

head), <distance> number of units. For example, the

command BACK 30 will move your turtle back 30 units.

The command

RIBHT <degrees>

will move the turtle <degrees> degrees to its right.

For example if your turtle is painting to the bottom of

the screen, and you issue the command RIGHT 90, the

turtle will turn 90 degrees to the right (clockwise) of
its present position. Since the turtle is upsidedown,

it will be turning to your left. This can get

confusing, so be alert. By the same token, the command

LEFT <degrees>

will turn the turtle <degrees> degrees to the turtle's

left (counter-clockwise). You may have noticed that

all the movement commands we've seen so far, with the

exception of SETHEADING, act in relation to the

turtle's current heading.

The next three commands we are going to talk about

now aren't concerned with current heading. They act on

24 Captain COMAL's Graphic Primer 24

// centered at x0, yO

// j. michener algorithm

x:=0$ y:=radius

d:=3-2*radius

while x<y do

plot'sym'points(x,y,xO,yO)

if d<0 then

d:=d+4lx+6

else

d:=d+4*(x-y)+10

y:=y-l

endif

x :=x+l

endwhile

if x=y then plot'sym'points(xfy,x0,y0)

endproc circle

proc plot'sym'points(x5y,x0,y0) closed

xx:=x; yys=y

xys=y> yx:=x

adjust(xO,yO)

adjust(xx,yy)

adjust(xy,yx)

plot xO+xx,yO+yy

plot xO+xy,yO+yx

plot xO+xx,yO-yy

plat xO+xy,yO~yx

plot xO-xx,yO-yy

plat xO-xy,yO-yx

plot xO-xx,yO+yy

plat xO-xy,yO+yx

endproc plot'sym'points

proc adjust(ref x,ref y) closed

scrunch:=1.34

// note: using a scrunch factor

// corrects the difference in

// vertical and horizontal units

// max x is reduced to 238

// horizontal center is 119

x:=scrunch*x

endproc adjust

61 Captain COMAL's Graphic Primer 61

next'x:=prev'x*cos'dtheta-prev'y*sin'dtheta

next *y s -prev'x *sin'dtheta+prev'yIcos'dtheta

draw'ta(xO+next'x,yO+next'y)

prev'x:=next'x$ prev'y:=next'y

endfor point

endproc circle

proc move'to(x,y) closed

adjust(x,y)

moveto x,y

endproc move'to

proc draw'to<x,y) closed

adjust(x,y)

drawto x,y

endproc draw'to

proc adjust(ref x,ref y) closed

scrunch:=1.34

// note: using a scrunch factor

// corrects the difference in

// vertical and horizontal units/

// max x is reduced to 238

// horizontal center is 119

x:=scrunch*x

endproc adjust

Circle #2:

[Note: This procedure gives a particularly nice
effect.]

// improved circle

setgraphic 0

hideturtle

fullscreen

pencolor 1

background 0

border 15

for radius:=10 to 100 step 10 do

at'xQ:*119

at'y0:=100

circle(radius,at'xO,at'yO)

endfor radius

end

proc circle(radiussx0,y0) closed

// draw circle of given radius

visual

the coordinate system discussed earlier, and move you

fromyour current position, to a specified location,

regardless of the turtle's heading.

MOVETO <x>,<y>

will move the turtle from it's current position to the

coordinates specified by <x>,<y>, regardless of the

current heading or position. This command does not

leave a line regardless of whether the pen is up or

down.

DRAWTO <x>,<y>

will draw a line from the current position to the

specified coordinates. Due to a quirk in COMAL, the

pen must be down for this command to leave a mark on

the screen. The heading of the pen has no effect on

the line.

SETXY <x>,<y>

does much the same thing as MOVETO, that is, it moves

the turtle from the curent position to the specified

position. If the pen is down, SETXY draws a line as it

moves to the specified position.

[HINT: Due to the aforementioned quirk, Len Lindsay

recommends leaving the pen down, and using moveto to

move to particular points without leaving a line. It's

so easy to forget to put the pen back down otherwise.]

The last two commands we will consider are PLOT and

FILL.

PLOT <x>,<y>

marks the specified location by turning on the pixel at

the x,y coordinates, in the currrent pencolor. PLOT

works whether the pen is up or down, and leaves no line

in moving to the specified location.

FILL <x>,<y>

fills the area containing the x,y coordinates. FILL

60 Captain COMAL's Graphic Primer 60
25 Captain COMAL's Graphic Primer 25

continues filling until it reaches the border of the

screen, or the border of the frame or an area of

another color. Be carefull. FILL can spill out of a

space even one pixel wide and cover your whole screen.

One nice thing about turtle graphics is its

variability. Once you have a procedure which draws a

particular design, you can, by varying such things as

the turtle heading and the x and y coordinates, draw

your design anywhere in the screen. You can repeat it

over and over to form new patterns. You can vary its

size and color. You are limited only by your

imagination. [Note: For some excellent examples of

this, look at the programs called Arabesquel thru

Arabesque7 on the User Group disk #4,]

Now that we've read about the commands, let's try

(Having our turtle. This program will make a mess, but

you can see how the different commands work.

10 setgraphic 0

20 background 0

30 clear

40 fullscreen

50 for box := 1 to 4 do //draws box

60

70

forward 20

right 90

80 endfor box

90 fill 161,100

100 moveto 50,50

//fills box

//lines 80-90 move turtle to

new location and draw line

110 drawto 50,70

120 for dot : = 1 to 20 do plot rnd(0,319),rnd(0,199)

//line 100 plots 20 points at random locations

130 home

140 penup //lines 130-160 show no marks

are left when in the penup

condition

150 left 90

160 forward 50

170 pendown

180 right 80

190 setxy 10,10

200 home

26 Captain CQMAL'5 Graphic Primer 26

USEFUL PROCEDURES/FUNCTIONS

Brateful acknowledgement is made to David Btidolph,

Donald Pipkin, John McCoy, Perry Brickley, Jesse

Knight, Kevin Quiggle, and Len Lindsay for spending

enough time dissecting CQMAL to come up with these

enhancements. A listing of most of these enhancements

can be found in CORAL Today Issue39 published by COMAL

Users Group, U.S.A., Limited. Listing is alphabetic.

CIRCLE

There are several ways to correct CQMAL's tendency

draw ovals instead of circles. Here are three.

Circle #1:

setgraphic 0

hideturtle

fullscreen

background 0

border 15

for radius: = 10 to 100 step 10 do

at'x0s=119

at'yO:=100

circle(radius,at'x0,at'y0)

endfor radius

end

proc circle(radius,x0,y0) closed

// draw circle of given radius

// centered at xO, yO

if radius<50 then

n'steps:=36

else

n'steps:=72

endif

dtheta:=6.283192/n' steps

cos* dtheta:=cos(dtheta)

sin'dtheta:=sin(dtheta)

first*x:=radius; first'y:=O

move'to(xO+first'x,yO+first'y)

prev'x:=first'x; prev'y^first'y

for point:=l to n'steps do

to

59 Captain COMAL's Graphic Primer 59

3000 data 63,255,252,127,231,254,127,231,254

3010 data 127,231,254,63,195,252,15,129,240,7,0,224

Text on a graphic screen.

Commands: PLOTTEXT

Text can only be plotted on a HI-RES screen, not on a

MULTI COLOR. The command

PLOTTEXT <x>,<y>,<text string)-,

plots the text contained in <text string)- on the

graphic screen, with the lower left corner of the first

letter in position x,y. This is one time when COMAL

outsmarts itself, and you. Text on your computer

screen is 8 pixels high (remember those 8x8 blocks?).

This gives you 25 lines of text on the screen, and, if

you will, 25 "bottom lines" for text, something like

invisible lined paper. The 40 characters you can put

on a line are each an 8x8 block, so you also have 40

invisible vertical lines. If your coordinates would

place your text "between" what the computer considers

the lines for text, COMAL will "correct" you and put

your text on the line equal to or less than your

coordinates (either horizontally or vertically). For

an example, change the value of x in line 40 of the

program below to some value other than 8 (or some

multiple thereof). For example, replace the 8 in line

40 with 13, or 5, or 20 and see what happens.

Although PLOTTEXT allows for only horizontal

plotting, there are applications such as PlotCbar by

John McCoy, and Gutenberg by Kevin Quiggle, which allow

you to print sideways, upsidedown and at angles.

Copies of both are available from Carnal Users

Group,U.S.A.,Limited.

Here's a look at PLOTTEXT.

58 Captain CQMAL's Graphic Primer 58

10 setgraphic 0

20 background 0

30 clear

40 x:=8

50 dim text* of 14

60 counter := 10

70 text$:= "i speak comal!"

80 for show := 100 to 50 step - >t

90 plottext counter,show, text*

27 Captain COMAL's Graphic Primer 27

100 counter := counter + x

110 endfor show

Well, that's all the commands for turtle graphics.

There are some sample programs in chapter 5. Look at

them, type them in and play around with them. You

should be crankin' out graphics in no time.

28 Captain COMAL's Graphic Primer 28

1700 endproc move'sprite

1710 //

1720 // main

1730 //

1740 init

1750 ground

1760 repeat

1770 flower

1780 co:=co+l

1790 until co>6

1800 repeat

1810 grass

1820 ko:=ko+l

1830 until ko>6

1840 sun

1850 cloud*make

1860 butter-fly

1870 repeat

1880 move'sprite

1890 until key$Ochr$<0)

1900 //

1910 // data

1920 //

1930 cloud

1940 data 0,0

1950 data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1960 data 0,255,0,3,255,192,7,255,224,7,255,224,15,

255,240

1970 data 127,255,254,255,255,255,127,255,254

1980 butterfly1

1990 data 192,0,3,248,0,31,184,0,29

2000 data 158,36,121,143,153,241,255,219,255

2010 data 255,255,255,225,231,135,255,231,255,248,

231,31

2020 data 255,231,255,126,102,126,7,255,224,31,231,248

2030 data 63,126,252,127,231,254,103,165,230

2040 data 103,231,230,63,195,252,15,'l29,240,7,0,224
2050 butterfly2

2060 data 192,0,3,248,0,31,248,0,31

2070 data 254,0,127,255,153,255,255,219,255

2080 data 255,255,255,255,255,255,255,255,255,255,

255,255

2090 data 255,255,255,127,255,254,7,255,224,31,255,248

57 Captain CQMAL's Graphic Primer 57

1270 for i:=0 to 1 da spritesize i,0,0

1280 endproc butterfly

1290 //

1300 proc cloud'make

1310 for i:=l to 63 do

1320 read code

1330 cloud$:=cloud$+chr$(cade)

1340 endfor i

1350 cloud*:=cloud*+chr$(0)

1360 define 1,cloud*

1370 identify 4,1

1380 identify 3,1

1390 identify 5,1

1400 identify 6,1

1410 identify 7,1

1420 spritecolor 4,1

1430 spritecolor 3,1

1440 spritecolor 5,1

1450 spritecolor 6,1

1460 spritecolor 7,1

1470 spritesize 4,1,1

1480 spritesize 3,1,1

1490 spritesize 5,1,1

1500 spritesize 6,1,1

1510 spritesize 7,1,1

1520 spritepos 4,40,200

1530 spritepos 3,260,220

1540 spritepos 5,180,150

1550 spritepos 6,60,205

1560 spritepos 7,65,195

1570 endproc cloud'make

1580 //

1590 proc move'sprite

1600 for xs=l to 300 do

1610 if <x mod 2)=0 then

1620 spritepos 0,x,100

1630 spritepos l,x,100

1640 else

1650 spritepos 0,x,101

1660 spritepos l,x,101

1670 endif

1680 for j:=1 to 3 do null

1690 endfor x

56 Captain CQMAL's Graphic Primer

CHAPTER 3

SPRITE GRAPHICS

This chapter is divided into three sections. The

first section will explain a little about what a sprite

is. The next two sections will show you how to design

both HI-RES and MULTI COLOR sprites, and how to move

your sprites. A list of any commands discussed in a

section will be included after the section heading.

What is a Sprite?

We all know from experiences with "arcade11 style

games that sprites can add real zest and sparkle

(sometimes literally) to a program. They're the sort

of thing to impress your friends with your virtuosity

at the (Commodore) keyboard. However, if you've read

the section on programming sprites in your Commodore 64

Programmer's Reference Suide, you may have come away

thinking that sprites are beyond your grasp. All that

stuff about VIC chips, POKES, sprite registers, color

locations, etc. can look and sound like Greek to the

beginning (and even the advanced) computer user. Forget

all that junk! Sprites are easy in CQMAL! Let me

repeat that, "Sprites are easy in COMAL!" Now, keep

that in mind, take a deep breath, and let's talk

sprites.

Sprites are:

(a)characters in "A Midsummer Night's Dream"

(b)a special kind of user definable character which

you can move around the screen to any location(s) you

choose

(c)too much work to bother with.

If you answered (c), go back to paragraph 1. If you

answered (a), you're right of course, but you may be

disappointed in the rest of this chapter. If your

answer was (b), give yourself a gold star, and keep

reading.

Consider this paragraph the Cliff-Notes on sprites.

Sprites are blocks of information which give a graphic

representation of an image you create and store in th

computer memory. Sprites are 24 pixels wide and 21

56 29 Captain COMAL's Graphic Primer 29

pixels long in hi-res, or 12 pixel pairs wide by 21

pixels long in multi-color mode. You can expand a

sprite by a factor of 2, horizontally, vertically, or

in both directions. You have up to B sprites at a time

(numbered 0-7) to work with on your screen. You can

assign a priority to your sprite to determine whether

it will pass over or under other sprites or data on the

screen. You can check to see it your sprite has

collided with another sprite, or piece of data. You

can turn off or "hide" srites when they are no longer

needed.

So how do you do all this? In COMAL, you have a

number of commands and procedures which will make the

job easy for you. Let's take it one step at a time.

Making a Sprite:

DEFINE, IDENTIFY, SPRITECOLOR, SPRITESIZE,

SPRITEBACK, HIDESPRITE, SPRITEPOS

Now that I've told you how easy sprites ars9 let me

confuse you. You determine the design of your sprite

by telling the computer whether you want a particular

pixel turned off or on, and if on, what color you want

it. There are a number of methods to do your

designing, ranging from complicated to easy, but what

all of them do is define a sprite iaage, rather than

the actual sprite. HUH?

[Note: The following two paragraphs are really

important, but they may not make much sense the first

time you read them. If that is the case, take a deep

breath and try again. Once this makes sense, you're

more than halfway to using sprites.]

You need to make a distinction now between sprites

and sprite images. A sprite mage is a 64 character

string expression which consists of 63 bytes of image

information, and a 64th byte which determines whether

the sprite is HI-RES or MULTI COLOR. The definition
string tells the computer which blocks of the sprite

you want on or off. You can have up to 56 (0 to 55) of

these images stored in memory (54 if you are using the

turtle). A sprite is a movable block, 21 pixels high

by 24 pixels wide (unexpanded, HI-RES sprite). You can

have up to 8 sprites (0 to 7) on the screen at one time

30 Captain COMAL's Graphic Primer 30

0840

0850

0860

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

aspect:=1.3

h:=260

v:=180

r:-10

y:=0

first:=true

d'theta:=.l

c:=cos(d'theta)

s:=sin(d?theta>

n:=64

for i:=l to n do

temp:=r*c-y#s

r:=temp

sx:=aspect*r+h

sy:=v-y

if first then

moveto sx,sy

first:=false

else

drawto sx,sy

endif

endfor i

fill h,v

endproc sun

proc butterfly

for i:=l to 63 do

read xx

shape*:=shape*+chr*(xx)

endfor i

for i:=l to 63 do

read xx

shapel*:=shapel*+chr*(xx)

endfor i

shape*:=shape*+chr*(0)

shapel*:=shapel*+chr*(0)

define 0,shape*

define 2,shapel$

identify 0,0

identify 1,2

spritecolor 0,7

spritecolor 1,2

55 Captain COMAL's Graphic Primer 55

0440 moveto x,40

0450 setheading 0

0460 -forward 15

0470 moveto x,58

0480 petal

0490 endproc flower

0500 //

0510 proc petal

0520 old'calQr:speek<646)

0530 pencolor 4

0540 for i:=l to 16 do

0550 forward 8

0560 right 170

0570 endfor i

0580 pencolor old'calor

0590 endproc petal

0600 //

0610 proc leaf(x) closed

0611 pencolor 5

0620 moveto x,40

0630 setheading 0

0640 for i:=l to 2 do

0650 for j:=1 to 13 do

0660 forward 1

0670 right 7

0680 endfor j

0690 right 90

0700 endfor i

0701 fill x+2,42

0710 moveto x,4Q

0720 setheading 0

0730 for i:=l to 2 do

0740 for js=1 to 13 do

0750 forward 1

0760 left 7

0770 endfor j

0780 left 90

0790 endfor i

0791 fill x-2,42

0800 endproc leaf

0810 //

0820 proc sun

0830 pencolor 7

54 Captain CQMAL's Graphic Primer

(7 if you are using the turtle). A sprite is given its

shape by being assigned one of the stored sprite

images. More than one sprite can have the same image,

and during the course of a program the same sprite can

have more than one image assigned to it (just not more

than one at the same time).

You build a sprite WQ&E with the command

DEFINE <image#>, (definition string)-

where <image#> is an integer from 0 to 55, and

(definition string> is a 64 character string. You

assign each sprite one of your stored images with the

command

IDENTIFY <sprite#>, <image#>

where <sprite#> is an integer from 0 to 7, and <image*>

is an integer from 0 to 55, representing one of your

pre-defined images.

It's all very well to say "you build a 64 character

string", but what are the mechanics of the cons

truction? I'm going to talk about several methods (and

there are probably other ways, so don't think you have

to do it the way I say). The first thing you should

do, no matter what system you use, is get some idea of

what you want your sprite to look like. You have 21 x

24 pixels at your disposal, and each one can be either

on or off. All you have to do is tell the computer

what's what.

If the on-off business sounds like binary math, it

is. One method of designing sprite images is to build

up strings of is and 0s (binary notation). A 1

indicates the block is on, a 0, it's off. You then use

a machine language subroutine to build the binary code

into a definition string. This is quick and easy, but

you have to have the machine language subroutine

(unless you can write one for yourself). [Note: See

Appendix D for more information. See also the program

READ'SPRITE on your CCGP disk.3

Another very easy way to design your image is to use

a sprite designer. A sprite designer is a program

which allows you to move your cursor around a

54 31 Captain COMAL's Graphic Primer 31

sprite

have only

You can still design

seen sprite design

B). If you

made

into

in each

it. To

representation of a sprite, turning the block on and

off with the -flick of a switch. You then save the

result and load it into your program later. This is

the easiest way o-f doing it, but again you need the

sprite designer. [Note:The program FLURRY on your CC6P

disk uses sprite data generated by a sprite designer

Look at appendix D for more information on

designers-]

Let's imagine -for a minute that you

yourself, your machine and COMAL.

sprite images. You've probably

grids (If you haven't, look at Appendix

have, you've noticed that each of the 21 rows is

up of 24 columns. The 24 columns are divided

three sections of eight rows each. Each block

row has a particular value associated with

generate the data to define your sprite image, you fill

in the block you want turned on and add the values for

the darkened blocks. You get a total for each of the

three sections of each line, which give you the three

data statements to define that line. Three totals per

line, for 21 lines give you 63 of the 64 characters you

need for your sprite definition string. The 64th

character determines whether the sprite is HI-RES or

MULTI COLOR. A 0 indicates HI-RES, anything but a 0

indicates MULTI COLOR. For now I will be dealing only

with HI-RES sprites. MULTI COLOR will come a little

later.

Let's design a sprite image. In this example, our

sprite is going to be a solid block. That means every

pixel in our image is on. I chose a block to simplify

things. Since all the lines in our sprite are the

same, all our data statements will be the same. Since

all our pixels are on^, all the numbers in our data

statements will be 255. If you are unsure as to how we

arrived at that figure, look at Appendix B» The values

of the columns in each section are 1, 2, 4, 8, 16, 32,

64, 128 (a binary progression). To get a numeric data

item, you add together the numbers associated with the

colums containing pixels which arts to be turned on-

When you add all the values in a section together (as

in our example where all the pixels are on), you get

255. The following code will design the image of a

32 Captain COMAL's Graphic Primer 32

0090 setgraphic 0

0100 background 6

0110 hideturtle

0120 co:=0

0125 ko:=0

0130 endproc init

0140 //

0150 proc ground

0160 right 90

0170 moveta 0,0

0180 pencolor 13

0190 forward 320

0200 for i:=l to 40 do

0201 moveto 0,i

0202 if i=40 then

0203 pencolor 5

0204 else

0205 pencalor 13

0206 endif

0210 forward 320

0220 moveto 0,i

0230 endfor i

0240 endproc ground

0250 //

0260 proc grass

0265 pencolor 5

0270 x:=rnd(5,315)

0280 moveta x,40

0290 setheading 0

0300 forward 10

0310 for i:=2 to 8 step 2 do

0320 xl:=x-i

0330 moveto xi,40

0340 forward (10-i)+rnd(0,3)

0350 x2:=x+i

0360 moveto x2,40

0370 forward <10-i)+rnd(0,3)

0380 endfor i

0390 endproc grass

0400 //

0410 proc flower

0420 x:=rnd(5,315)

0430 leaf(x)

53 Captain COMAL's Braphic Primer 53

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

window(245

window<260

window(210

windowdO,

window(30,

window(35,

window(45,

window<46,

window(56,

window(60,

window(80,

window(107

window(82.

window(102

window(122

window(125

window(137

window<139

window(150

window(160

window(280

window(290.

window(310

window(312.

Sprites:

Demo

,50)

,10)

,10)

100)

120)

5)

85)

85)

26)

26)

150)

,175)

50)

,34)

,124)

,12)

,42)

? 120)

,10)

,70)

,60)

,55)

,100)

4.4 on CC5P disk

I hope this program is helpful to you in setting up

your sprite programs. Lines 1100 - 1720 do the sprite

work here. Take a second to notice that the three

different sprite shapes all have labels in the data

statements. This is not required, but it helps you

keep things straight.

0010 // save "0:butterfly.3"

0020 // mindy skelton

0030 // delete "0:butterfly.1"

0040 //

0050 // procedures

0060 //

0070 proc init

0080 dim cloud$ of 64, shape* of 64, shapel$ of 64

52 Captain CQMAL's Graphic Primer 52

block:

10 setgraphic 0

20 hideturtle

30 dim image$ of 64

40 for i := 1 to 63

50 image$:= image* + chr$(255)

60 endfor i

70 image* := image$ + chr$(0)

Line 10 turns an the graphic screen. Line 20

dimensions the image string. Lines 30-50 build all of

the definition string, except the character which

designates HI-RES or MULTI COLOR mode. Line 60 adds

this final character. We now have a completed image

definition. All that remains is to assign our

definition to one of our sprite images. This is done

with the

DEFINE (sprite image#>,<definition$>

command. For example, by adding the line

80 DEFINE 0,image*

to our program, we assign our defined image to sprite

image 0.

This does not give us a sprite yet. In order to

assign the image to a sprite, we need to use the

IDENTIFY <sprite#>,(sprite image#>

command. The IDENTIFY command assigns the sprite image

specified to the desired sprite. By adding the line

90 IDENTIFY 0,0

to our program, we have now IDENTIFYed sprite # 0 as

having the shape of image #0.

We're not through yet. Now we need to assign a color

to our sprite, decide on its shape, and put it on the

screen. A HI-RES sprite can have two colors in it.

One of the colors is the background color of the

33 Captain COMAL's Graphic Primer 33

screen. This is called the transparent color, since it

really doesn't show. Your primary color is determined

through the

BPRITECOLDR <sprite#>,<color#>

command. To make our sprite (sprite #0) red (color 25,

we enter the line

100 SPRITECOLOR 0,2

Color becomes a bit more complicated for MULTI COLOR.

If our sprite were MULTI COLOR, we would have a choice

of four colors, rather than the two allowed in HI-RES.

We would have the transparent color, the primary color

and two background colors. Due to the way color is

handled on the Commodore, all the MULTI COLOR sprites

on your screen will have common background colors.

These colors are set with the

SPRITEBACK <color#l >,<color#2>

command. Primary color is set with SPRITECOLOR. CNote:

MULTI COLOR sprites are discussed in more detail in

Appendix C.3

Now, do we want the sprite its normal size, or do we

want it expanded horizontally or vertically? If we

want it normal size, we either do nothing, or put FALSE

or 0 for <x expand?)- and <y expand?)-. If we want to

change the sprite size, we use the

SPRITESIZE<sprite#)-,<x expand?)-, <y expand?)-

command. If you want the sprite to be double height,

put TRUE or 1 in <y expand?)-; for double width, answer

TRUE or i to <x expand?>, and obviously, two TRUEs for

expansion in both directions,

double size by adding the

program.

Let's make our sprite

following line to our

110 SPRITESIZE 0,1,1

The only thing left to do now is put the sprite on the

34 Captain CQMAL's Graphic Primer 34

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

51

proc window(h,v)

moveto h,v

pencolor 7

plot h,v

endproc window

//

// main

//

init

build2(0,0,150,40)

build(41,0,110,30)

build5(71,0,163,60)

build(116,0,130,17)

build(133,0,134,10)

build3(143,0,100,25)

build4<169,0,85,20)

build2(189,0,170,35)

build3(225,0,100,45)

build5(271,0,80,40)

build4(301,0,125,20)

pencolor 0

moveto 0,180 *

fill 0,199

pencolor 1

plot 125,155

plot 40,180

plot 300,150

plot 150,150

plot 10,190

plot 200,195

plot 160,195

plot 260,180

pencolor 0

for is=120 to 123 do

windowd, 20)

endfor i

window<125,100)

window(245,50)

window(260,10)

window(200,120)

window(205,90)

window(230,80)

Captain COIiAL's Graphic Primer 51

0470

04S0

0490

0500

:">510

0520

"530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0770

0780

0790

0800

0810

0820

0830

0840

0850

0860

0870

0880

0890

forward q/5

lsft 90

forward q/5

endfor i

right 90

for i:-l to 2 do

forward q/5

right 90

•forward q/5

left 90

end-far i

forward q/5

right 90

■forward z

endproc build3

II

proc build4(x,y5z,q)

ground'-floor (x?y)

forward z

right 90

forward q/2

right 90

forward q/4

left 90

forward q/2

right 90

forward z

endproc build4

II

proc build5(x,y,z,q)

ground'floar(x,y)

forward z

right 90

for i:=i to 2 do

forward q/4

left 90

•forward q/4

right 90

endfor i

forward q/4

right 90

forward z+q

endproc buildS

screen. Surprisingly, there is a command that does

that very thing:

SPRITEPOS <sprite#>,<x>,<y>

For the time being, let's put the sprite halfway up the

screen, on the left border.

120 SPRITEPOS 0,0,99

If all has gone well, you should have a double-size red

block sitting halfway upthe left side of your screen

(demo 3.1 on CCGP disk). Once your sprite is on the

screen, you may notice that the CLEAR command has no

effect on it. How do you get a sprite off your screen?

The command

HIDESPRITE <sprite#>

will turn off your sprite. (Note: There is a procedure

in chapter 5 called SHDUSPRITE which you can use to

turn your sprite back on, or you can re-IDENTIFY your

sprite.3

Perhaps you'd like to design a slightly more exciting

sprite. Fine! I'll show you the way I do it ,with the

clear understanding that there are many other ways of

doing it. CNote: See Appendix C for directions on two

other ways.3

The graph on the next page shows the sprite designer

graph I normally use. You will notice that some of the

squares are darkened. The values associated with these

blanks have been added to give the three values listed

for each line. These values will be made into data

statements.

50 Captain COMAL's Graphic Primer 50 35 Captain CQMAL's Braphic Primer

s

p

ECTIOH
ft

131
£68421

1
if

8

i

ft

F

5ECTIGH

i b
2631
B42S842J

II

P

IK
if

1
1

1

1
i

1

SECTION

i c
2S3i
8426842J

13

1

r i

1

1

Ira
%

i

SUH
OF
ft

H

iO

17

33
s.

:=:

1:=:

33

32

s?
32

16

3

1

0

x«

0

H

s

ft

SUrf
OF
e

r o
0

0

Q

o

o

123

o

2H

2H

0

2£B

102

102

SUM
OF
C

32

SO

138

132

3S

16

72

i32

H

4

3

16

&

!2:=:
Q

o

6H

LSO

If you make the following changes and additions to

the code you've already typed in, we'll have two

sprites on the screen in no time. First, amend line 20

of our program to read,

20 dim image* of 64, imagel$ of 64

Now add these lines to the program we are creating,

55 read info

56 imagel$:= imagel* + chr$(info)

75 imagel$:= imagel$ + chr$(0)

85 DEFINE l,imagel* //assign imagel$ to image 1

95 IDENTIFY 1,1 //assign image 1 to sprite 1

105 SPRITECOLOR 1,7 //make sprite 1 yellow

115 SPRITESIZE 1,0,0 //sprite 1 is unexpanded

125 SPRITEPOS 1,200,199//sprite 1 is at top of screen

most of the way across

400 data 4,0,,32,10,0,80,17,25,136 //data to define

spritettl

410 data 33,0,132,6,0,96,8,0,16

36 Captain CQMAL's Graphic Primer 36

0040

0050

0060

0070

0080

0090

0100

0110

0120

0130

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

0350

0360

0370

0380

0390

0400

0410 //

0420 prac build3(x,y,z,i

0430 graund'flaor(x,y)

0440 forward z

0450 for i:=l to 2 do

.3460 right 90

prac init

setgraphic 1

fullscreen

hideturtle

border 0

background 11

clear

pencolor 0

endproc init

proc ground'floor<x,y) closed

moveto x,y

setheading 0

endproc ground'floor

proc build<x,y,z,q)

ground9f1oor(x, y)

forward z

right 90

forward Q

right 90

forward z

endproc build

proc build2(x,y,z,q)

ground'floor(x,y)

forward z

right 90

forward q/2

left 90

forward q/4

right 90

forward q/2

right 90

forward z+(q/4)

endproc build2

Captain COMAL's Graphic Primer 49

1570

1580

1590

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

// main

//

init

ground

pencolor 1

house

roof

door

window(130,60,9,

window(180,60,9,

window(130980,9,

window(180,80,9,

window(155,80,9,

pencolor 2

fill 125,51

pencolor 1

fill 125,101

trunk(60,49,31)

tree(20)

trunk(60,49,26)

tree(15)

trunk(265,49,31)

tree(20)

trunk(265,49,26)

tree(15)

pencolor 1

birdl<100,180)

repeat

null

until key$Ochr$

settext

print chr$(147)

end

Turtle Graphics:

Demo 4.3 on CC6P disk

8)

B)

8)

8)

8)

(0)

// shifted clear/home

This program shows that -fairly complicated drawings can

be created using simple graphic commands.

0010 // delete "0:city'scape.1"

0020 // m.skelton

0030 // save "0:city'scape.3"

48 Captain COMAL's Graphic Primer 48

420 data 18,0,72,33,129,132,32,0,4

430 data 32,0,4,32,24,4,16,66,8

440 data 8,60,16,4,0,32,3,0,192

450 data 0,255,0,0,102,0,0,102,0

460 data 2,102,64,5,102,160,8,231,16

If after renumbering (use RENUM), saving your code,

and running it you have two sprites on your screen,

well done (demo 3.2 on CC6P disk)! What's that you say?

You want your sprites to move? Very well..

Moving a Sprite:

PRIORITY, SPRITECOLLISION, DATACOLLISION

Once your sprite is DESIGNed, IDENTIFYed, and put

into position with SPRITEPOS, you're probably going to

want to move it around. You may even want it do

different things if it encounters other sprites

data. No problem.

Let's make the box move across the screen 'while

creature goes up and down. Go back to our program,

add the following lines, between lines between 180

190,

or

the

and

and

185 x := Ojy : =

187 repeat

199

Now change lines 190 and 200 to read

190 SPRITEPOS 0,X,199

200 SPRITEPOS l,200,Y

Now add the following lines between 200 an 210. [HINT:

Type RENUM 100,100, then press <<return». Then type

AUTO 2010, press <<return>>, and you can enter the

lines.] J ^

if x>319 then

x :» 0

else

x : = x + 1

end if

if y<0 then

37 Captain COMAL's Graphic Primer 37

y := 199

else

y := y-1

endif

until key* <> chr*(O)

Now type RENUM again, and press <<return>>. If

you've entered everything, your program listing should

look like this:

0010 setgraphic 0

0020 hideturtle

0030 dim image$ of 64, imagel* of 64

0040 for i :-l to 63 do

0050 image* := image$ + chr$(255)

0060 read info

0070 imagel* := imagel* + chr*(info)

0080 endfor i

0090 image* := image* + chr*(0)

0100 imagel* :- imagel* + chr*(0>

0110 define 0,image*

0120 define 1,imagel*

0130 identify 0,0

0140 identify 1,1

0150 spritecolor 0,2

0160 spritecolor 0,2

0170 spritesize 0,1,1

0180 spritesize 1,0,0

0190 x != 0; y := 199

0200 repeat

0210 spritepos 0,x,99

0220 spritepos l,200,y

0230 if x>319 then

0240 x := 0

0250 else

0260 x := x + 1

0270 endif

0280 if y<0 then

0290 y := 199

0300 else

0310 y := y-i

0320 endif

0330 until key*Ochr*(0)

0340 data 4,0,32,10,0,80,17,25,136

38 Captain CQMAL's Graphic Primer 38

1140 right 45

1150 forward 1

1160 treed*.75)

1170 if 1<5 then blossom

1180 back 1

1190 left 90

1200 forward 1

1210 tree(l$.75)

1220 if 1<5 then blossom

1230 back 1

1240 right 45

1250 endif

1260 endproc tree

1270 //

1280 proc blossom

1290 pencolor 7

1300 x:=xcor

1310 y:=ycor

1320 plot x,y

1330 plot x,y+l

1340 plot x+1,y

1350 plot x+l,y+l

1360 pencolor 5

1370 endproc blossom

1380 //

1390 func xcor closed

1400 high'bit#:=peek(27255)

1410 return high'bit#*256+peek(27256)

1420 endfunc xcor

1430 //

1440 func ycor closed

1450 return 199-peek(27260)

1460 endfunc ycor

1470 //

1480 proc birdl(x,y)

1490 moveto x,y

1500 left 45

1510 forward 5

1520 back 5

1530 right 90

1540 forward 5

1550 endproc birdl

1560 //

47 Captain COMAL's Graphic Primer 47

0710 forward 54

0720 right 70

0730 forward 54

0740 endproc roof

0750 //

0760 proc door

0770 moveto 155,50

0780 setheading 0

0790 forward 20

0800 right 90

0810 forward 10

0820 right 90

0830 forward 20

0840 plot 162,60

0850 endproc door

0860 //

0870 proc window(x,y,h,w)

0880 setheading 0

0890 moveto X,Y

0900 for is=l to 2 do

0910 forward h

0920 right 90

0930 forward w

0940 right 90

0950 endfor i

0960 setheading 0

0970 moveto x+4,y

0980 forward h

0990 moveto x,y+4

1000 right 90

1010 forward w

1020 endproc window

1030 //

1040 proc trunk(x,y,1)

1050 moveto x,y

1060 setheading 0

1070 pencolor 10

1080 forward 1

1090 endproc trunk

1100 //

1110 proc treed)

1120 pencolor 5

1130 if 1>4 then

0350 data 33,0,132,6,0,96,8,0,16

0360 data IB.,0,72,33,129,132,32,0,4

0370 data 32,0,4,32,24,4,16,6,8

0380 data B,60,16,4,0,32,3,0,192.

0390 data 0,25,0,0,102,0,0,102,0

0400 data 2,102,64,5,102,160,8,231,16

Save this, run it, and you should have two sprites

slipping across the screen. How ?bout that? (on your

CCGP disk, this is demo 3.3)

That's almost it for sprites. There are a couple

more commands to look at, and you're home free. The

PRI0RITY<sprite#>,<p>

command determines whether sprite number <sprite#>

passes over or under graphic data. If <p> is TRUE, the

sprite will have lower priority, and will pass under

the graphics. If <p> is FALSE, the sprite passes over.

The priority among sprites themselves is pre-deter-

mined. The lower the number, the higher the priority.

Sprite 0 has the highest priority (passes over all

other sprites), sprite 7 has the lowest priority

(passes under all other sprites).

In addition to passing over and under graphics and

other sprites, sprites can recognize collisions. That

is, you can detect if a particular sprite has come in

contact with another sprite, or some graphic

information, and, if you wish, perform some other

action at that point. The commands for detection are

DATAC0LLISI0N(<sprite#>,<reset>)

and

SPRITEC0LLISI0N(<sprite#>,<reset>)

DATACOLLISION checks automatically each time a sprite

is drawn, to see if the specified sprite has collided

with a non-background sprite pixel or a non-background

graphics pixel. When this happens DATACOLLISION

returns a value of TRUE. If <reset> is set to TRUE,

the collision detection flag is reset. If the flag is

46 Captain COMAL's Graphic Primer 46 39 Captain CQMAL's Graphic Primer 39

reset, the statement will return TRUE the, next time it

is encountered; otherwise, it will return FALSE.

SPRITECOLLISION works the same way, but it returns TRUE

only if the specified sprite has collided with another

sprite. The one exception to all this is in MULTI

COLOR sprites. The first background color (01) will

not cause a collision. For this reason, this color is

often used to fill in areas of a sprite which you do

not want to be detected as a collision.

To add a collision detection routine to our example,

add the following lines between lines 220 and 230.

Obviously, you will need to renumber again. Once

again, type RENUM 100,100, press <<return>>, and type

AUTO 2210, and press <<return>> one more time.

if SPRITECOLLISION (1,1) then

if x>319 then

x:=0

else

x:=x+l

end if

if y<0 then

y:=199

else

y:=y-l

endif

Now, assuming that you renumbered

line between line 3200 and 3300:

endif

by 100, add this

Type RENUM, press <<return>> once more, and, if all

your code is correct, your large red block should wait

and let your creature pass, (demo 3.4 on CC6P disk)

Congratulations! You can now use sprites with the

best of them (well, maybe not the BEST...). Moving

right along., did I hear someone say -MULTI COLOR?

MULTI COLOR sprites are dealt with in Appendix C.

[Notes You can simulate MC sprites with HI-RES sprites.

If, for example, you superimposed a sprite shaped like

a box with holes in it over our box sprite, the colors

of the solid sprite would show through. Look at the

40 Captain COMAL's Graphic Primer 40

0140

0310

0320

0330

0340

0350

0360

0370

0380

0390

0400

0410

0420

0430

0440

0450

0460

0470

0480

0490

0500

0510

0520

0521

0522

0530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

11

proc ground closed

pencolor 5

x:=130

for i:=0 to 48 do

moveto 0,I

if i mod 2=0 then

pencolor 5

else

pencolor 13

endif

drawto x,i

x:=x+.5

endfor i

x:=190

for i:=0 to 48 do

moveto 319,i

if i mod 2=0 then

pencolor 5

else

pencolor 13

endif

drawto X,I

x:=x-.5

endfor i

endproc ground

//

proc house

moveto 120,49

setheading 0

for i:=1 to 2 do

forward 51

right 90

forward 80

right 90

endfor i

endproc house

//

proc roof

home

moveto 120,100

right 55

back 5

45 Captain COMAL's Graphic Primer 45

temp := scale * c - y * s

y := y % c + scale * s

scale := temp

sk s= aspect * scale + h

sy := v - y

if first then

moveto sxjsy

first := false

else

drawto sx,sy

endif

endfor i

endproc circle

Now add the following between lines 4700 and 4300:

when 3

circle(h,v,scale)

Now if you want, you can renumber the entire program.

HI-RES and MULTI COLOR:

Demo 4.2 on CC5P disk

Enter and save (or list) this program (remember auto

line numbering can make life much easier). Then run it.

Look closely for areas where the colors "bleed" into

each other. Then change line 80 to read SETGRAPHIC 1.

Run the program again and notice the differences.

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

0120

// delete "0:house.1.1"

// m.skelton

// save "0:house.1.3"

//

// procedures

//

proc init

setgraphic 0

hideturtle

border 0

background 0

clear

0130 endproc init

44 Captain COMAL's Graphic Primer 44

sprite example in Chapter 4 - demo 4.43

After you feel comfortable with the material covered

in the last chapters, take apart the programs in the

next chapter. See how they work. Change them around.

Have fun.

41 Captain COMAL's Graphic Primer 41

SAMPLE PROGRAMS

This section consists of several programs for you to

enter. Each o-f them gives you practice in a particular

area, but any or all of them can be torn apart to see

how a COMAL graphics program is put together. I hope

you will -find them to be useful. All these programs

are included on your Captain COMQL'S Braphic Primer

disk.

Numbering and Renumbering:

Demo 4.1 on the CCGP disk

Enter this program using automatic line numbering:

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

0120

0130

0131

0132

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0250

0260

proc init

setgraphic 0

hideturtle

fullscreen

background 0

border 0

endproc init

proc square(h,v,1) closed

moveto h,v

■for loop e^l to 2 do

•forward 11.75

right 90

-forward 1

right 90

end-for loop

endproc square

proc poly(h,v,l,s) closed

moveto h,v

for loop :=1 to s do

•forward 1

right 360/S

end-for loop

endproc poly

init

0270 counter := 0

0280 repeat

0290 counter := counter + 1

0300 scale := rnd(5,40)

0310 1 s= rnd<5,40)

0320 s := rnd(3,8)

0330 h := rnd(0,320)

0344 v := rnd(0,200)

0350 pencolor rnd(1,15)

0360 ct := rnd(1,3)

0370 case ct of

0380 when 1

0390 poly(h,v,l,s)

0400 if counter>20 then

0410 counter := 0

0420 clear

0430 else

0440 nul1

0450 endif

0460 when 2

0470 square(h,v,l)

0480 otherwise

0490 nul1

0500 endcase

0510 until key$Ochr$(0)

0520 end

Now add the following lines to the program right

after the procedure "poly*. Try using RENUM 100,100

and inserting the new lines between lines 2500 and

2600.

proc circle (h,v,scale) closed

moveto h,v

aspect := 1.3

y := 0

first := true

d'theta := .1

c := cos(d'theta)

s := sin(d'theta)

n :- 64

for i := 1 to n do

42 Captain CQMAL's Braphic Primer 42 43 Captain CQMAL's Graphic Primer 43

SAMPLE PROGRAMS

This section consists of several programs for you to

enter. Each o-f them gives you practice in a particular

area, but any or all of them can be torn apart to see

how a COMAL graphics program is put together. I hope

you will -find them to be useful. All these programs

are included on your Captain COMQL'S Braphic Primer

disk.

Numbering and Renumbering:

Demo 4.1 on the CCGP disk

Enter this program using automatic line numbering:

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

0120

0130

0131

0132

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0250

0260

proc init

setgraphic 0

hideturtle

fullscreen

background 0

border 0

endproc init

proc square(h,v,1) closed

moveto h,v

■for loop e^l to 2 do

•forward 11.75

right 90

-forward 1

right 90

end-for loop

endproc square

proc poly(h,v,l,s) closed

moveto h,v

for loop :=1 to s do

•forward 1

right 360/S

end-for loop

endproc poly

init

0270 counter := 0

0280 repeat

0290 counter := counter + 1

0300 scale := rnd(5,40)

0310 1 s= rnd<5,40)

0320 s := rnd(3,8)

0330 h := rnd(0,320)

0344 v := rnd(0,200)

0350 pencolor rnd(1,15)

0360 ct := rnd(1,3)

0370 case ct of

0380 when 1

0390 poly(h,v,l,s)

0400 if counter>20 then

0410 counter := 0

0420 clear

0430 else

0440 nul1

0450 endif

0460 when 2

0470 square(h,v,l)

0480 otherwise

0490 nul1

0500 endcase

0510 until key$Ochr$(0)

0520 end

Now add the following lines to the program right

after the procedure "poly*. Try using RENUM 100,100

and inserting the new lines between lines 2500 and

2600.

proc circle (h,v,scale) closed

moveto h,v

aspect := 1.3

y := 0

first := true

d'theta := .1

c := cos(d'theta)

s := sin(d'theta)

n :- 64

for i := 1 to n do

42 Captain CQMAL's Braphic Primer 42 43 Captain CQMAL's Graphic Primer 43

temp := scale * c - y * s

y := y % c + scale * s

scale := temp

sk s= aspect * scale + h

sy := v - y

if first then

moveto sxjsy

first := false

else

drawto sx,sy

endif

endfor i

endproc circle

Now add the following between lines 4700 and 4300:

when 3

circle(h,v,scale)

Now if you want, you can renumber the entire program.

HI-RES and MULTI COLOR:

Demo 4.2 on CC5P disk

Enter and save (or list) this program (remember auto

line numbering can make life much easier). Then run it.

Look closely for areas where the colors "bleed" into

each other. Then change line 80 to read SETGRAPHIC 1.

Run the program again and notice the differences.

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

0120

// delete "0:house.1.1"

// m.skelton

// save "0:house.1.3"

//

// procedures

//

proc init

setgraphic 0

hideturtle

border 0

background 0

clear

0130 endproc init

44 Captain COMAL's Graphic Primer 44

sprite example in Chapter 4 - demo 4.43

After you feel comfortable with the material covered

in the last chapters, take apart the programs in the

next chapter. See how they work. Change them around.

Have fun.

41 Captain COMAL's Graphic Primer 41

reset, the statement will return TRUE the, next time it

is encountered; otherwise, it will return FALSE.

SPRITECOLLISION works the same way, but it returns TRUE

only if the specified sprite has collided with another

sprite. The one exception to all this is in MULTI

COLOR sprites. The first background color (01) will

not cause a collision. For this reason, this color is

often used to fill in areas of a sprite which you do

not want to be detected as a collision.

To add a collision detection routine to our example,

add the following lines between lines 220 and 230.

Obviously, you will need to renumber again. Once

again, type RENUM 100,100, press <<return>>, and type

AUTO 2210, and press <<return>> one more time.

if SPRITECOLLISION (1,1) then

if x>319 then

x:=0

else

x:=x+l

end if

if y<0 then

y:=199

else

y:=y-l

endif

Now, assuming that you renumbered

line between line 3200 and 3300:

endif

by 100, add this

Type RENUM, press <<return>> once more, and, if all

your code is correct, your large red block should wait

and let your creature pass, (demo 3.4 on CC6P disk)

Congratulations! You can now use sprites with the

best of them (well, maybe not the BEST...). Moving

right along., did I hear someone say -MULTI COLOR?

MULTI COLOR sprites are dealt with in Appendix C.

[Notes You can simulate MC sprites with HI-RES sprites.

If, for example, you superimposed a sprite shaped like

a box with holes in it over our box sprite, the colors

of the solid sprite would show through. Look at the

40 Captain COMAL's Graphic Primer 40

0140

0310

0320

0330

0340

0350

0360

0370

0380

0390

0400

0410

0420

0430

0440

0450

0460

0470

0480

0490

0500

0510

0520

0521

0522

0530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

11

proc ground closed

pencolor 5

x:=130

for i:=0 to 48 do

moveto 0,I

if i mod 2=0 then

pencolor 5

else

pencolor 13

endif

drawto x,i

x:=x+.5

endfor i

x:=190

for i:=0 to 48 do

moveto 319,i

if i mod 2=0 then

pencolor 5

else

pencolor 13

endif

drawto X,I

x:=x-.5

endfor i

endproc ground

//

proc house

moveto 120,49

setheading 0

for i:=1 to 2 do

forward 51

right 90

forward 80

right 90

endfor i

endproc house

//

proc roof

home

moveto 120,100

right 55

back 5

45 Captain COMAL's Graphic Primer 45

0710 forward 54

0720 right 70

0730 forward 54

0740 endproc roof

0750 //

0760 proc door

0770 moveto 155,50

0780 setheading 0

0790 forward 20

0800 right 90

0810 forward 10

0820 right 90

0830 forward 20

0840 plot 162,60

0850 endproc door

0860 //

0870 proc window(x,y,h,w)

0880 setheading 0

0890 moveto X,Y

0900 for is=l to 2 do

0910 forward h

0920 right 90

0930 forward w

0940 right 90

0950 endfor i

0960 setheading 0

0970 moveto x+4,y

0980 forward h

0990 moveto x,y+4

1000 right 90

1010 forward w

1020 endproc window

1030 //

1040 proc trunk(x,y,1)

1050 moveto x,y

1060 setheading 0

1070 pencolor 10

1080 forward 1

1090 endproc trunk

1100 //

1110 proc treed)

1120 pencolor 5

1130 if 1>4 then

0350 data 33,0,132,6,0,96,8,0,16

0360 data IB.,0,72,33,129,132,32,0,4

0370 data 32,0,4,32,24,4,16,6,8

0380 data B,60,16,4,0,32,3,0,192.

0390 data 0,25,0,0,102,0,0,102,0

0400 data 2,102,64,5,102,160,8,231,16

Save this, run it, and you should have two sprites

slipping across the screen. How ?bout that? (on your

CCGP disk, this is demo 3.3)

That's almost it for sprites. There are a couple

more commands to look at, and you're home free. The

PRI0RITY<sprite#>,<p>

command determines whether sprite number <sprite#>

passes over or under graphic data. If <p> is TRUE, the

sprite will have lower priority, and will pass under

the graphics. If <p> is FALSE, the sprite passes over.

The priority among sprites themselves is pre-deter-

mined. The lower the number, the higher the priority.

Sprite 0 has the highest priority (passes over all

other sprites), sprite 7 has the lowest priority

(passes under all other sprites).

In addition to passing over and under graphics and

other sprites, sprites can recognize collisions. That

is, you can detect if a particular sprite has come in

contact with another sprite, or some graphic

information, and, if you wish, perform some other

action at that point. The commands for detection are

DATAC0LLISI0N(<sprite#>,<reset>)

and

SPRITEC0LLISI0N(<sprite#>,<reset>)

DATACOLLISION checks automatically each time a sprite

is drawn, to see if the specified sprite has collided

with a non-background sprite pixel or a non-background

graphics pixel. When this happens DATACOLLISION

returns a value of TRUE. If <reset> is set to TRUE,

the collision detection flag is reset. If the flag is

46 Captain COMAL's Graphic Primer 46 39 Captain CQMAL's Graphic Primer 39

y := 199

else

y := y-1

endif

until key* <> chr*(O)

Now type RENUM again, and press <<return>>. If

you've entered everything, your program listing should

look like this:

0010 setgraphic 0

0020 hideturtle

0030 dim image$ of 64, imagel* of 64

0040 for i :-l to 63 do

0050 image* := image$ + chr$(255)

0060 read info

0070 imagel* := imagel* + chr*(info)

0080 endfor i

0090 image* := image* + chr*(0)

0100 imagel* :- imagel* + chr*(0>

0110 define 0,image*

0120 define 1,imagel*

0130 identify 0,0

0140 identify 1,1

0150 spritecolor 0,2

0160 spritecolor 0,2

0170 spritesize 0,1,1

0180 spritesize 1,0,0

0190 x != 0; y := 199

0200 repeat

0210 spritepos 0,x,99

0220 spritepos l,200,y

0230 if x>319 then

0240 x := 0

0250 else

0260 x := x + 1

0270 endif

0280 if y<0 then

0290 y := 199

0300 else

0310 y := y-i

0320 endif

0330 until key*Ochr*(0)

0340 data 4,0,32,10,0,80,17,25,136

38 Captain CQMAL's Graphic Primer 38

1140 right 45

1150 forward 1

1160 treed*.75)

1170 if 1<5 then blossom

1180 back 1

1190 left 90

1200 forward 1

1210 tree(l$.75)

1220 if 1<5 then blossom

1230 back 1

1240 right 45

1250 endif

1260 endproc tree

1270 //

1280 proc blossom

1290 pencolor 7

1300 x:=xcor

1310 y:=ycor

1320 plot x,y

1330 plot x,y+l

1340 plot x+1,y

1350 plot x+l,y+l

1360 pencolor 5

1370 endproc blossom

1380 //

1390 func xcor closed

1400 high'bit#:=peek(27255)

1410 return high'bit#*256+peek(27256)

1420 endfunc xcor

1430 //

1440 func ycor closed

1450 return 199-peek(27260)

1460 endfunc ycor

1470 //

1480 proc birdl(x,y)

1490 moveto x,y

1500 left 45

1510 forward 5

1520 back 5

1530 right 90

1540 forward 5

1550 endproc birdl

1560 //

47 Captain COMAL's Graphic Primer 47

1570

1580

1590

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

// main

//

init

ground

pencolor 1

house

roof

door

window(130,60,9,

window(180,60,9,

window(130980,9,

window(180,80,9,

window(155,80,9,

pencolor 2

fill 125,51

pencolor 1

fill 125,101

trunk(60,49,31)

tree(20)

trunk(60,49,26)

tree(15)

trunk(265,49,31)

tree(20)

trunk(265,49,26)

tree(15)

pencolor 1

birdl<100,180)

repeat

null

until key$Ochr$

settext

print chr$(147)

end

Turtle Graphics:

Demo 4.3 on CC6P disk

8)

B)

8)

8)

8)

(0)

// shifted clear/home

This program shows that -fairly complicated drawings can

be created using simple graphic commands.

0010 // delete "0:city'scape.1"

0020 // m.skelton

0030 // save "0:city'scape.3"

48 Captain COMAL's Graphic Primer 48

420 data 18,0,72,33,129,132,32,0,4

430 data 32,0,4,32,24,4,16,66,8

440 data 8,60,16,4,0,32,3,0,192

450 data 0,255,0,0,102,0,0,102,0

460 data 2,102,64,5,102,160,8,231,16

If after renumbering (use RENUM), saving your code,

and running it you have two sprites on your screen,

well done (demo 3.2 on CC6P disk)! What's that you say?

You want your sprites to move? Very well..

Moving a Sprite:

PRIORITY, SPRITECOLLISION, DATACOLLISION

Once your sprite is DESIGNed, IDENTIFYed, and put

into position with SPRITEPOS, you're probably going to

want to move it around. You may even want it do

different things if it encounters other sprites

data. No problem.

Let's make the box move across the screen 'while

creature goes up and down. Go back to our program,

add the following lines, between lines between 180

190,

or

the

and

and

185 x := Ojy : =

187 repeat

199

Now change lines 190 and 200 to read

190 SPRITEPOS 0,X,199

200 SPRITEPOS l,200,Y

Now add the following lines between 200 an 210. [HINT:

Type RENUM 100,100, then press <<return». Then type

AUTO 2010, press <<return>>, and you can enter the

lines.] J ^

if x>319 then

x :» 0

else

x : = x + 1

end if

if y<0 then

37 Captain COMAL's Graphic Primer 37

s

p

ECTIOH
ft

131
£68421

1
if

8

i

ft

F

5ECTIGH

i b
2631
B42S842J

II

P

IK
if

1
1

1

1
i

1

SECTION

i c
2S3i
8426842J

13

1

r i

1

1

Ira
%

i

SUH
OF
ft

H

iO

17

33
s.

:=:

1:=:

33

32

s?
32

16

3

1

0

x«

0

H

s

ft

SUrf
OF
e

r o
0

0

Q

o

o

123

o

2H

2H

0

2£B

102

102

SUM
OF
C

32

SO

138

132

3S

16

72

i32

H

4

3

16

&

!2:=:
Q

o

6H

LSO

If you make the following changes and additions to

the code you've already typed in, we'll have two

sprites on the screen in no time. First, amend line 20

of our program to read,

20 dim image* of 64, imagel$ of 64

Now add these lines to the program we are creating,

55 read info

56 imagel$:= imagel* + chr$(info)

75 imagel$:= imagel$ + chr$(0)

85 DEFINE l,imagel* //assign imagel$ to image 1

95 IDENTIFY 1,1 //assign image 1 to sprite 1

105 SPRITECOLOR 1,7 //make sprite 1 yellow

115 SPRITESIZE 1,0,0 //sprite 1 is unexpanded

125 SPRITEPOS 1,200,199//sprite 1 is at top of screen

most of the way across

400 data 4,0,,32,10,0,80,17,25,136 //data to define

spritettl

410 data 33,0,132,6,0,96,8,0,16

36 Captain CQMAL's Graphic Primer 36

0040

0050

0060

0070

0080

0090

0100

0110

0120

0130

0140

0150

0160

0170

0180

0190

0200

0210

0220

0230

0240

0250

0260

0270

0280

0290

0300

0310

0320

0330

0340

0350

0360

0370

0380

0390

0400

0410 //

0420 prac build3(x,y,z,i

0430 graund'flaor(x,y)

0440 forward z

0450 for i:=l to 2 do

.3460 right 90

prac init

setgraphic 1

fullscreen

hideturtle

border 0

background 11

clear

pencolor 0

endproc init

proc ground'floor<x,y) closed

moveto x,y

setheading 0

endproc ground'floor

proc build<x,y,z,q)

ground9f1oor(x, y)

forward z

right 90

forward Q

right 90

forward z

endproc build

proc build2(x,y,z,q)

ground'floor(x,y)

forward z

right 90

forward q/2

left 90

forward q/4

right 90

forward q/2

right 90

forward z+(q/4)

endproc build2

Captain COMAL's Graphic Primer 49

0470

04S0

0490

0500

:">510

0520

"530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0770

0780

0790

0800

0810

0820

0830

0840

0850

0860

0870

0880

0890

forward q/5

lsft 90

forward q/5

endfor i

right 90

for i:-l to 2 do

forward q/5

right 90

•forward q/5

left 90

end-far i

forward q/5

right 90

■forward z

endproc build3

II

proc build4(x,y5z,q)

ground'-floor (x?y)

forward z

right 90

forward q/2

right 90

forward q/4

left 90

forward q/2

right 90

forward z

endproc build4

II

proc build5(x,y,z,q)

ground'floar(x,y)

forward z

right 90

for i:=i to 2 do

forward q/4

left 90

•forward q/4

right 90

endfor i

forward q/4

right 90

forward z+q

endproc buildS

screen. Surprisingly, there is a command that does

that very thing:

SPRITEPOS <sprite#>,<x>,<y>

For the time being, let's put the sprite halfway up the

screen, on the left border.

120 SPRITEPOS 0,0,99

If all has gone well, you should have a double-size red

block sitting halfway upthe left side of your screen

(demo 3.1 on CCGP disk). Once your sprite is on the

screen, you may notice that the CLEAR command has no

effect on it. How do you get a sprite off your screen?

The command

HIDESPRITE <sprite#>

will turn off your sprite. (Note: There is a procedure

in chapter 5 called SHDUSPRITE which you can use to

turn your sprite back on, or you can re-IDENTIFY your

sprite.3

Perhaps you'd like to design a slightly more exciting

sprite. Fine! I'll show you the way I do it ,with the

clear understanding that there are many other ways of

doing it. CNote: See Appendix C for directions on two

other ways.3

The graph on the next page shows the sprite designer

graph I normally use. You will notice that some of the

squares are darkened. The values associated with these

blanks have been added to give the three values listed

for each line. These values will be made into data

statements.

50 Captain COMAL's Graphic Primer 50 35 Captain CQMAL's Braphic Primer

screen. This is called the transparent color, since it

really doesn't show. Your primary color is determined

through the

BPRITECOLDR <sprite#>,<color#>

command. To make our sprite (sprite #0) red (color 25,

we enter the line

100 SPRITECOLOR 0,2

Color becomes a bit more complicated for MULTI COLOR.

If our sprite were MULTI COLOR, we would have a choice

of four colors, rather than the two allowed in HI-RES.

We would have the transparent color, the primary color

and two background colors. Due to the way color is

handled on the Commodore, all the MULTI COLOR sprites

on your screen will have common background colors.

These colors are set with the

SPRITEBACK <color#l >,<color#2>

command. Primary color is set with SPRITECOLOR. CNote:

MULTI COLOR sprites are discussed in more detail in

Appendix C.3

Now, do we want the sprite its normal size, or do we

want it expanded horizontally or vertically? If we

want it normal size, we either do nothing, or put FALSE

or 0 for <x expand?)- and <y expand?)-. If we want to

change the sprite size, we use the

SPRITESIZE<sprite#)-,<x expand?)-, <y expand?)-

command. If you want the sprite to be double height,

put TRUE or 1 in <y expand?)-; for double width, answer

TRUE or i to <x expand?>, and obviously, two TRUEs for

expansion in both directions,

double size by adding the

program.

Let's make our sprite

following line to our

110 SPRITESIZE 0,1,1

The only thing left to do now is put the sprite on the

34 Captain CQMAL's Graphic Primer 34

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

51

proc window(h,v)

moveto h,v

pencolor 7

plot h,v

endproc window

//

// main

//

init

build2(0,0,150,40)

build(41,0,110,30)

build5(71,0,163,60)

build(116,0,130,17)

build(133,0,134,10)

build3(143,0,100,25)

build4<169,0,85,20)

build2(189,0,170,35)

build3(225,0,100,45)

build5(271,0,80,40)

build4(301,0,125,20)

pencolor 0

moveto 0,180 *

fill 0,199

pencolor 1

plot 125,155

plot 40,180

plot 300,150

plot 150,150

plot 10,190

plot 200,195

plot 160,195

plot 260,180

pencolor 0

for is=120 to 123 do

windowd, 20)

endfor i

window<125,100)

window(245,50)

window(260,10)

window(200,120)

window(205,90)

window(230,80)

Captain COIiAL's Graphic Primer 51

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

window(245

window<260

window(210

windowdO,

window(30,

window(35,

window(45,

window<46,

window(56,

window(60,

window(80,

window(107

window(82.

window(102

window(122

window(125

window(137

window<139

window(150

window(160

window(280

window(290.

window(310

window(312.

Sprites:

Demo

,50)

,10)

,10)

100)

120)

5)

85)

85)

26)

26)

150)

,175)

50)

,34)

,124)

,12)

,42)

? 120)

,10)

,70)

,60)

,55)

,100)

4.4 on CC5P disk

I hope this program is helpful to you in setting up

your sprite programs. Lines 1100 - 1720 do the sprite

work here. Take a second to notice that the three

different sprite shapes all have labels in the data

statements. This is not required, but it helps you

keep things straight.

0010 // save "0:butterfly.3"

0020 // mindy skelton

0030 // delete "0:butterfly.1"

0040 //

0050 // procedures

0060 //

0070 proc init

0080 dim cloud$ of 64, shape* of 64, shapel$ of 64

52 Captain CQMAL's Graphic Primer 52

block:

10 setgraphic 0

20 hideturtle

30 dim image$ of 64

40 for i := 1 to 63

50 image$:= image* + chr$(255)

60 endfor i

70 image* := image$ + chr$(0)

Line 10 turns an the graphic screen. Line 20

dimensions the image string. Lines 30-50 build all of

the definition string, except the character which

designates HI-RES or MULTI COLOR mode. Line 60 adds

this final character. We now have a completed image

definition. All that remains is to assign our

definition to one of our sprite images. This is done

with the

DEFINE (sprite image#>,<definition$>

command. For example, by adding the line

80 DEFINE 0,image*

to our program, we assign our defined image to sprite

image 0.

This does not give us a sprite yet. In order to

assign the image to a sprite, we need to use the

IDENTIFY <sprite#>,(sprite image#>

command. The IDENTIFY command assigns the sprite image

specified to the desired sprite. By adding the line

90 IDENTIFY 0,0

to our program, we have now IDENTIFYed sprite # 0 as

having the shape of image #0.

We're not through yet. Now we need to assign a color

to our sprite, decide on its shape, and put it on the

screen. A HI-RES sprite can have two colors in it.

One of the colors is the background color of the

33 Captain COMAL's Graphic Primer 33

sprite

have only

You can still design

seen sprite design

B). If you

made

into

in each

it. To

representation of a sprite, turning the block on and

off with the -flick of a switch. You then save the

result and load it into your program later. This is

the easiest way o-f doing it, but again you need the

sprite designer. [Note:The program FLURRY on your CC6P

disk uses sprite data generated by a sprite designer

Look at appendix D for more information on

designers-]

Let's imagine -for a minute that you

yourself, your machine and COMAL.

sprite images. You've probably

grids (If you haven't, look at Appendix

have, you've noticed that each of the 21 rows is

up of 24 columns. The 24 columns are divided

three sections of eight rows each. Each block

row has a particular value associated with

generate the data to define your sprite image, you fill

in the block you want turned on and add the values for

the darkened blocks. You get a total for each of the

three sections of each line, which give you the three

data statements to define that line. Three totals per

line, for 21 lines give you 63 of the 64 characters you

need for your sprite definition string. The 64th

character determines whether the sprite is HI-RES or

MULTI COLOR. A 0 indicates HI-RES, anything but a 0

indicates MULTI COLOR. For now I will be dealing only

with HI-RES sprites. MULTI COLOR will come a little

later.

Let's design a sprite image. In this example, our

sprite is going to be a solid block. That means every

pixel in our image is on. I chose a block to simplify

things. Since all the lines in our sprite are the

same, all our data statements will be the same. Since

all our pixels are on^, all the numbers in our data

statements will be 255. If you are unsure as to how we

arrived at that figure, look at Appendix B» The values

of the columns in each section are 1, 2, 4, 8, 16, 32,

64, 128 (a binary progression). To get a numeric data

item, you add together the numbers associated with the

colums containing pixels which arts to be turned on-

When you add all the values in a section together (as

in our example where all the pixels are on), you get

255. The following code will design the image of a

32 Captain COMAL's Graphic Primer 32

0090 setgraphic 0

0100 background 6

0110 hideturtle

0120 co:=0

0125 ko:=0

0130 endproc init

0140 //

0150 proc ground

0160 right 90

0170 moveta 0,0

0180 pencolor 13

0190 forward 320

0200 for i:=l to 40 do

0201 moveto 0,i

0202 if i=40 then

0203 pencolor 5

0204 else

0205 pencalor 13

0206 endif

0210 forward 320

0220 moveto 0,i

0230 endfor i

0240 endproc ground

0250 //

0260 proc grass

0265 pencolor 5

0270 x:=rnd(5,315)

0280 moveta x,40

0290 setheading 0

0300 forward 10

0310 for i:=2 to 8 step 2 do

0320 xl:=x-i

0330 moveto xi,40

0340 forward (10-i)+rnd(0,3)

0350 x2:=x+i

0360 moveto x2,40

0370 forward <10-i)+rnd(0,3)

0380 endfor i

0390 endproc grass

0400 //

0410 proc flower

0420 x:=rnd(5,315)

0430 leaf(x)

53 Captain COMAL's Braphic Primer 53

0440 moveto x,40

0450 setheading 0

0460 -forward 15

0470 moveto x,58

0480 petal

0490 endproc flower

0500 //

0510 proc petal

0520 old'calQr:speek<646)

0530 pencolor 4

0540 for i:=l to 16 do

0550 forward 8

0560 right 170

0570 endfor i

0580 pencolor old'calor

0590 endproc petal

0600 //

0610 proc leaf(x) closed

0611 pencolor 5

0620 moveto x,40

0630 setheading 0

0640 for i:=l to 2 do

0650 for j:=1 to 13 do

0660 forward 1

0670 right 7

0680 endfor j

0690 right 90

0700 endfor i

0701 fill x+2,42

0710 moveto x,4Q

0720 setheading 0

0730 for i:=l to 2 do

0740 for js=1 to 13 do

0750 forward 1

0760 left 7

0770 endfor j

0780 left 90

0790 endfor i

0791 fill x-2,42

0800 endproc leaf

0810 //

0820 proc sun

0830 pencolor 7

54 Captain CQMAL's Graphic Primer

(7 if you are using the turtle). A sprite is given its

shape by being assigned one of the stored sprite

images. More than one sprite can have the same image,

and during the course of a program the same sprite can

have more than one image assigned to it (just not more

than one at the same time).

You build a sprite WQ&E with the command

DEFINE <image#>, (definition string)-

where <image#> is an integer from 0 to 55, and

(definition string> is a 64 character string. You

assign each sprite one of your stored images with the

command

IDENTIFY <sprite#>, <image#>

where <sprite#> is an integer from 0 to 7, and <image*>

is an integer from 0 to 55, representing one of your

pre-defined images.

It's all very well to say "you build a 64 character

string", but what are the mechanics of the cons

truction? I'm going to talk about several methods (and

there are probably other ways, so don't think you have

to do it the way I say). The first thing you should

do, no matter what system you use, is get some idea of

what you want your sprite to look like. You have 21 x

24 pixels at your disposal, and each one can be either

on or off. All you have to do is tell the computer

what's what.

If the on-off business sounds like binary math, it

is. One method of designing sprite images is to build

up strings of is and 0s (binary notation). A 1

indicates the block is on, a 0, it's off. You then use

a machine language subroutine to build the binary code

into a definition string. This is quick and easy, but

you have to have the machine language subroutine

(unless you can write one for yourself). [Note: See

Appendix D for more information. See also the program

READ'SPRITE on your CCGP disk.3

Another very easy way to design your image is to use

a sprite designer. A sprite designer is a program

which allows you to move your cursor around a

54 31 Captain COMAL's Graphic Primer 31

pixels long in hi-res, or 12 pixel pairs wide by 21

pixels long in multi-color mode. You can expand a

sprite by a factor of 2, horizontally, vertically, or

in both directions. You have up to B sprites at a time

(numbered 0-7) to work with on your screen. You can

assign a priority to your sprite to determine whether

it will pass over or under other sprites or data on the

screen. You can check to see it your sprite has

collided with another sprite, or piece of data. You

can turn off or "hide" srites when they are no longer

needed.

So how do you do all this? In COMAL, you have a

number of commands and procedures which will make the

job easy for you. Let's take it one step at a time.

Making a Sprite:

DEFINE, IDENTIFY, SPRITECOLOR, SPRITESIZE,

SPRITEBACK, HIDESPRITE, SPRITEPOS

Now that I've told you how easy sprites ars9 let me

confuse you. You determine the design of your sprite

by telling the computer whether you want a particular

pixel turned off or on, and if on, what color you want

it. There are a number of methods to do your

designing, ranging from complicated to easy, but what

all of them do is define a sprite iaage, rather than

the actual sprite. HUH?

[Note: The following two paragraphs are really

important, but they may not make much sense the first

time you read them. If that is the case, take a deep

breath and try again. Once this makes sense, you're

more than halfway to using sprites.]

You need to make a distinction now between sprites

and sprite images. A sprite mage is a 64 character

string expression which consists of 63 bytes of image

information, and a 64th byte which determines whether

the sprite is HI-RES or MULTI COLOR. The definition
string tells the computer which blocks of the sprite

you want on or off. You can have up to 56 (0 to 55) of

these images stored in memory (54 if you are using the

turtle). A sprite is a movable block, 21 pixels high

by 24 pixels wide (unexpanded, HI-RES sprite). You can

have up to 8 sprites (0 to 7) on the screen at one time

30 Captain COMAL's Graphic Primer 30

0840

0850

0860

0870

0880

0890

0900

0910

0920

0930

0940

0950

0960

0970

0980

0990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

aspect:=1.3

h:=260

v:=180

r:-10

y:=0

first:=true

d'theta:=.l

c:=cos(d'theta)

s:=sin(d?theta>

n:=64

for i:=l to n do

temp:=r*c-y#s

r:=temp

sx:=aspect*r+h

sy:=v-y

if first then

moveto sx,sy

first:=false

else

drawto sx,sy

endif

endfor i

fill h,v

endproc sun

proc butterfly

for i:=l to 63 do

read xx

shape*:=shape*+chr*(xx)

endfor i

for i:=l to 63 do

read xx

shapel*:=shapel*+chr*(xx)

endfor i

shape*:=shape*+chr*(0)

shapel*:=shapel*+chr*(0)

define 0,shape*

define 2,shapel$

identify 0,0

identify 1,2

spritecolor 0,7

spritecolor 1,2

55 Captain COMAL's Graphic Primer 55

1270 for i:=0 to 1 da spritesize i,0,0

1280 endproc butterfly

1290 //

1300 proc cloud'make

1310 for i:=l to 63 do

1320 read code

1330 cloud$:=cloud$+chr$(cade)

1340 endfor i

1350 cloud*:=cloud*+chr$(0)

1360 define 1,cloud*

1370 identify 4,1

1380 identify 3,1

1390 identify 5,1

1400 identify 6,1

1410 identify 7,1

1420 spritecolor 4,1

1430 spritecolor 3,1

1440 spritecolor 5,1

1450 spritecolor 6,1

1460 spritecolor 7,1

1470 spritesize 4,1,1

1480 spritesize 3,1,1

1490 spritesize 5,1,1

1500 spritesize 6,1,1

1510 spritesize 7,1,1

1520 spritepos 4,40,200

1530 spritepos 3,260,220

1540 spritepos 5,180,150

1550 spritepos 6,60,205

1560 spritepos 7,65,195

1570 endproc cloud'make

1580 //

1590 proc move'sprite

1600 for xs=l to 300 do

1610 if <x mod 2)=0 then

1620 spritepos 0,x,100

1630 spritepos l,x,100

1640 else

1650 spritepos 0,x,101

1660 spritepos l,x,101

1670 endif

1680 for j:=1 to 3 do null

1690 endfor x

56 Captain CQMAL's Graphic Primer

CHAPTER 3

SPRITE GRAPHICS

This chapter is divided into three sections. The

first section will explain a little about what a sprite

is. The next two sections will show you how to design

both HI-RES and MULTI COLOR sprites, and how to move

your sprites. A list of any commands discussed in a

section will be included after the section heading.

What is a Sprite?

We all know from experiences with "arcade11 style

games that sprites can add real zest and sparkle

(sometimes literally) to a program. They're the sort

of thing to impress your friends with your virtuosity

at the (Commodore) keyboard. However, if you've read

the section on programming sprites in your Commodore 64

Programmer's Reference Suide, you may have come away

thinking that sprites are beyond your grasp. All that

stuff about VIC chips, POKES, sprite registers, color

locations, etc. can look and sound like Greek to the

beginning (and even the advanced) computer user. Forget

all that junk! Sprites are easy in CQMAL! Let me

repeat that, "Sprites are easy in COMAL!" Now, keep

that in mind, take a deep breath, and let's talk

sprites.

Sprites are:

(a)characters in "A Midsummer Night's Dream"

(b)a special kind of user definable character which

you can move around the screen to any location(s) you

choose

(c)too much work to bother with.

If you answered (c), go back to paragraph 1. If you

answered (a), you're right of course, but you may be

disappointed in the rest of this chapter. If your

answer was (b), give yourself a gold star, and keep

reading.

Consider this paragraph the Cliff-Notes on sprites.

Sprites are blocks of information which give a graphic

representation of an image you create and store in th

computer memory. Sprites are 24 pixels wide and 21

56 29 Captain COMAL's Graphic Primer 29

100 counter := counter + x

110 endfor show

Well, that's all the commands for turtle graphics.

There are some sample programs in chapter 5. Look at

them, type them in and play around with them. You

should be crankin' out graphics in no time.

28 Captain COMAL's Graphic Primer 28

1700 endproc move'sprite

1710 //

1720 // main

1730 //

1740 init

1750 ground

1760 repeat

1770 flower

1780 co:=co+l

1790 until co>6

1800 repeat

1810 grass

1820 ko:=ko+l

1830 until ko>6

1840 sun

1850 cloud*make

1860 butter-fly

1870 repeat

1880 move'sprite

1890 until key$Ochr$<0)

1900 //

1910 // data

1920 //

1930 cloud

1940 data 0,0

1950 data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1960 data 0,255,0,3,255,192,7,255,224,7,255,224,15,

255,240

1970 data 127,255,254,255,255,255,127,255,254

1980 butterfly1

1990 data 192,0,3,248,0,31,184,0,29

2000 data 158,36,121,143,153,241,255,219,255

2010 data 255,255,255,225,231,135,255,231,255,248,

231,31

2020 data 255,231,255,126,102,126,7,255,224,31,231,248

2030 data 63,126,252,127,231,254,103,165,230

2040 data 103,231,230,63,195,252,15,'l29,240,7,0,224
2050 butterfly2

2060 data 192,0,3,248,0,31,248,0,31

2070 data 254,0,127,255,153,255,255,219,255

2080 data 255,255,255,255,255,255,255,255,255,255,

255,255

2090 data 255,255,255,127,255,254,7,255,224,31,255,248

57 Captain CQMAL's Graphic Primer 57

3000 data 63,255,252,127,231,254,127,231,254

3010 data 127,231,254,63,195,252,15,129,240,7,0,224

Text on a graphic screen.

Commands: PLOTTEXT

Text can only be plotted on a HI-RES screen, not on a

MULTI COLOR. The command

PLOTTEXT <x>,<y>,<text string)-,

plots the text contained in <text string)- on the

graphic screen, with the lower left corner of the first

letter in position x,y. This is one time when COMAL

outsmarts itself, and you. Text on your computer

screen is 8 pixels high (remember those 8x8 blocks?).

This gives you 25 lines of text on the screen, and, if

you will, 25 "bottom lines" for text, something like

invisible lined paper. The 40 characters you can put

on a line are each an 8x8 block, so you also have 40

invisible vertical lines. If your coordinates would

place your text "between" what the computer considers

the lines for text, COMAL will "correct" you and put

your text on the line equal to or less than your

coordinates (either horizontally or vertically). For

an example, change the value of x in line 40 of the

program below to some value other than 8 (or some

multiple thereof). For example, replace the 8 in line

40 with 13, or 5, or 20 and see what happens.

Although PLOTTEXT allows for only horizontal

plotting, there are applications such as PlotCbar by

John McCoy, and Gutenberg by Kevin Quiggle, which allow

you to print sideways, upsidedown and at angles.

Copies of both are available from Carnal Users

Group,U.S.A.,Limited.

Here's a look at PLOTTEXT.

58 Captain CQMAL's Graphic Primer 58

10 setgraphic 0

20 background 0

30 clear

40 x:=8

50 dim text* of 14

60 counter := 10

70 text$:= "i speak comal!"

80 for show := 100 to 50 step - >t

90 plottext counter,show, text*

27 Captain COMAL's Graphic Primer 27

continues filling until it reaches the border of the

screen, or the border of the frame or an area of

another color. Be carefull. FILL can spill out of a

space even one pixel wide and cover your whole screen.

One nice thing about turtle graphics is its

variability. Once you have a procedure which draws a

particular design, you can, by varying such things as

the turtle heading and the x and y coordinates, draw

your design anywhere in the screen. You can repeat it

over and over to form new patterns. You can vary its

size and color. You are limited only by your

imagination. [Note: For some excellent examples of

this, look at the programs called Arabesquel thru

Arabesque7 on the User Group disk #4,]

Now that we've read about the commands, let's try

(Having our turtle. This program will make a mess, but

you can see how the different commands work.

10 setgraphic 0

20 background 0

30 clear

40 fullscreen

50 for box := 1 to 4 do //draws box

60

70

forward 20

right 90

80 endfor box

90 fill 161,100

100 moveto 50,50

//fills box

//lines 80-90 move turtle to

new location and draw line

110 drawto 50,70

120 for dot : = 1 to 20 do plot rnd(0,319),rnd(0,199)

//line 100 plots 20 points at random locations

130 home

140 penup //lines 130-160 show no marks

are left when in the penup

condition

150 left 90

160 forward 50

170 pendown

180 right 80

190 setxy 10,10

200 home

26 Captain CQMAL'5 Graphic Primer 26

USEFUL PROCEDURES/FUNCTIONS

Brateful acknowledgement is made to David Btidolph,

Donald Pipkin, John McCoy, Perry Brickley, Jesse

Knight, Kevin Quiggle, and Len Lindsay for spending

enough time dissecting CQMAL to come up with these

enhancements. A listing of most of these enhancements

can be found in CORAL Today Issue39 published by COMAL

Users Group, U.S.A., Limited. Listing is alphabetic.

CIRCLE

There are several ways to correct CQMAL's tendency

draw ovals instead of circles. Here are three.

Circle #1:

setgraphic 0

hideturtle

fullscreen

background 0

border 15

for radius: = 10 to 100 step 10 do

at'x0s=119

at'yO:=100

circle(radius,at'x0,at'y0)

endfor radius

end

proc circle(radius,x0,y0) closed

// draw circle of given radius

// centered at xO, yO

if radius<50 then

n'steps:=36

else

n'steps:=72

endif

dtheta:=6.283192/n' steps

cos* dtheta:=cos(dtheta)

sin'dtheta:=sin(dtheta)

first*x:=radius; first'y:=O

move'to(xO+first'x,yO+first'y)

prev'x:=first'x; prev'y^first'y

for point:=l to n'steps do

to

59 Captain COMAL's Graphic Primer 59

next'x:=prev'x*cos'dtheta-prev'y*sin'dtheta

next *y s -prev'x *sin'dtheta+prev'yIcos'dtheta

draw'ta(xO+next'x,yO+next'y)

prev'x:=next'x$ prev'y:=next'y

endfor point

endproc circle

proc move'to(x,y) closed

adjust(x,y)

moveto x,y

endproc move'to

proc draw'to<x,y) closed

adjust(x,y)

drawto x,y

endproc draw'to

proc adjust(ref x,ref y) closed

scrunch:=1.34

// note: using a scrunch factor

// corrects the difference in

// vertical and horizontal units/

// max x is reduced to 238

// horizontal center is 119

x:=scrunch*x

endproc adjust

Circle #2:

[Note: This procedure gives a particularly nice
effect.]

// improved circle

setgraphic 0

hideturtle

fullscreen

pencolor 1

background 0

border 15

for radius:=10 to 100 step 10 do

at'xQ:*119

at'y0:=100

circle(radius,at'xO,at'yO)

endfor radius

end

proc circle(radiussx0,y0) closed

// draw circle of given radius

visual

the coordinate system discussed earlier, and move you

fromyour current position, to a specified location,

regardless of the turtle's heading.

MOVETO <x>,<y>

will move the turtle from it's current position to the

coordinates specified by <x>,<y>, regardless of the

current heading or position. This command does not

leave a line regardless of whether the pen is up or

down.

DRAWTO <x>,<y>

will draw a line from the current position to the

specified coordinates. Due to a quirk in COMAL, the

pen must be down for this command to leave a mark on

the screen. The heading of the pen has no effect on

the line.

SETXY <x>,<y>

does much the same thing as MOVETO, that is, it moves

the turtle from the curent position to the specified

position. If the pen is down, SETXY draws a line as it

moves to the specified position.

[HINT: Due to the aforementioned quirk, Len Lindsay

recommends leaving the pen down, and using moveto to

move to particular points without leaving a line. It's

so easy to forget to put the pen back down otherwise.]

The last two commands we will consider are PLOT and

FILL.

PLOT <x>,<y>

marks the specified location by turning on the pixel at

the x,y coordinates, in the currrent pencolor. PLOT

works whether the pen is up or down, and leaves no line

in moving to the specified location.

FILL <x>,<y>

fills the area containing the x,y coordinates. FILL

60 Captain COMAL's Graphic Primer 60
25 Captain COMAL's Graphic Primer 25

Commands: HOME, FORWARD, BACK, RIGHT, LEFT, MOVETO,

DRAWTO, SETXY, PLOT, FILL

The turtle starts out in the "home" position.

Issuing the command HOME will send your turtle from
wherever it is to the center of the screen (coordinates

160,99). The turtle will be pointed toward the top of

your screen (heading 0).

The command

FORWARD <distance>

will cause your turtle to move forward (toward his

head) <distance> number of units (in this case pixels).

For example, issuing the command FORWARD 20 will move

your turtle 20 units forward. The command

BACK <distance>

will cause the turtle to move back (away from its

head), <distance> number of units. For example, the

command BACK 30 will move your turtle back 30 units.

The command

RIBHT <degrees>

will move the turtle <degrees> degrees to its right.

For example if your turtle is painting to the bottom of

the screen, and you issue the command RIGHT 90, the

turtle will turn 90 degrees to the right (clockwise) of
its present position. Since the turtle is upsidedown,

it will be turning to your left. This can get

confusing, so be alert. By the same token, the command

LEFT <degrees>

will turn the turtle <degrees> degrees to the turtle's

left (counter-clockwise). You may have noticed that

all the movement commands we've seen so far, with the

exception of SETHEADING, act in relation to the

turtle's current heading.

The next three commands we are going to talk about

now aren't concerned with current heading. They act on

24 Captain COMAL's Graphic Primer 24

// centered at x0, yO

// j. michener algorithm

x:=0$ y:=radius

d:=3-2*radius

while x<y do

plot'sym'points(x,y,xO,yO)

if d<0 then

d:=d+4lx+6

else

d:=d+4*(x-y)+10

y:=y-l

endif

x :=x+l

endwhile

if x=y then plot'sym'points(xfy,x0,y0)

endproc circle

proc plot'sym'points(x5y,x0,y0) closed

xx:=x; yys=y

xys=y> yx:=x

adjust(xO,yO)

adjust(xx,yy)

adjust(xy,yx)

plot xO+xx,yO+yy

plot xO+xy,yO+yx

plot xO+xx,yO-yy

plat xO+xy,yO~yx

plot xO-xx,yO-yy

plat xO-xy,yO-yx

plot xO-xx,yO+yy

plat xO-xy,yO+yx

endproc plot'sym'points

proc adjust(ref x,ref y) closed

scrunch:=1.34

// note: using a scrunch factor

// corrects the difference in

// vertical and horizontal units

// max x is reduced to 238

// horizontal center is 119

x:=scrunch*x

endproc adjust

61 Captain COMAL's Graphic Primer 61

Circle #3:

proc circle(h,v,scale) closed

moveto h9 v

aspect:=1.3

y:=0

•first:-true

d'theta:=.l

c:-cos(d'theta)

s:=sin(d'theta)

num:=64

for loop:=l to num do

temp:=scale*c-y*s

y:-y#c+scale*s

scale:=temp

sx:=aspect*scale+h

sy-=v~y

if first then

moveto sx,sy

first:=false

else

drawto sx,sy

endif

endfor loop

endprac circle

6ETBACK6R0UND

This function will return the number

background color.

func getbackground closed

return peek(53281) mod 16

endfunc getbackground

of the current

6ETB0RDER

This function will return the number of the current

border color.

func getborder closed

vie:=53248

return peek(vic+32) mod 16

endfunc getborder

62 Captain COMAL's Graphic Primer 62

The line you see issuing from the head of your turtle

is the "pen". The pen can be either up or down. The

command

PENDOWN

"puts the pen on the paper", or causes the pen to

become "active". If the pen is down, the turtle will

usually leave a line when it moves (for an exception

see MOVETO). The command

PENUP

"lifts the pen from the paper", or causes the pen to

became "inactive". When the pen is up, the turtle will

usually not leave a line (see PLOT for an exception).

Let's see what some of these command do (this program

is demo 2.2 on your CC6P disk):

10 setgraphic 0

20 background 0

30 clear

40 for t'size := 0 to 10 do // show all possible

turtle sizes

50 turtlesize t'size

60 for wait := 1 to 20 do null //pause

70 endfor t'size

80 for blink := 1 to 10 do // "blink" turtle

90 hideturtle

100 for wait := 1 to 75 do null

110 showturtle

120 endfor blink

130 for t'color := 0 to 15 do // show all possible

turtle colors

140 pencolor t'color

150 for wait := i to 90 do null

160 endfor t'color

170 for t'turn := 0 to 360 step 5 do // rotate turtle

180 setheading t'turn

190 endfor t'turn

Maneuvering the Turtle.

23 Captain COMAL's Graphic Primer 23

until the result is less than 360, and set the turtle

to the resultant heading. For example SETHEADING 400,

would have the same effect as SETHEADING 40. The

SETHEADING command always operates from heading 0. The

current heading of the turtle when the SETHEADING

command is issued has no effect on the outcome. That

is, if your turtle is at heading 40, and you issue the

command SETHEADING 50, the turtle will be set directly

to heading 50 not heading 90.

Your turtle may be^.set to any of the 16 usual colors

available to you, by using the command

PENCOLOR <color#>

Color# will be an integer from 0 to 15. The color of

the turtle (even if HIDETURTLE is in effect) determines

the color of the line drawn by the turtle's pen, and

also the color of text plotted on the graphic screen,

or on the text screen. A handy trick I use sometimes

(since I find it very hard to remember what all 16

color number stand for) is to write a procedure which

assigns the color number to the appraprite color, far

example WHITE := 1. Then in my programming, if I want

to switch colors, I can issue commands using the name

of the color I want, for example

PENCOLOR WHITE

This isn't required. It's just helpful. This

procedure is called Color'select on your CCGP disk.

There is a function in chapter 5 called GETPENCOLOR

which returns the current pencolor. You can use this

function to store the current pencolor before you

change colors, and then can call up the original color

when you are through. There is also a built-in

function

GETCOLOR <x>,<y>

which returns the color of location x,y. If there is

no graphic data on the x,y point, GETCOLOR returns the

color of the background. GETCOLOR cannot recognize

sprites.

22 Captain COMAL's Graphic Primer 22

6ETPEN

This function will tell you if your pen is up or down

by returning TRUE if it is down, and FALSE if it is

up.

func getpen closed

return peek(27333)

endfunc getpen

GETPENCOLOR

This function will return the number of the current pen

color.

■func getpencolor closed

return peek(646)

endfunc getpencolor

GETSPRITECOLOR

This function will return the number of the current

sprite color.

func getspritecolor(num) closed

vie:=53248

return peek(vic+num+39) mod 16

endfunc getspritecolor

GETTURTLESIZE

This function returns the size of the turtle (0-10).

func getturtlesize closed //does not work if hideturtle

t'size:=peek(27258)-10

if t7size=i30 then t'size:=10 //prior to turtlesize

command

return t'size

endfunc getturtlesize

GRAPHICSTATE

This function will return TRUE if the graphic screen is

MULTI-COLOR, and FALSE if the screen is HI-RES.

func graphicstate closed

//return 0=hires, l=multicolor

return peek(27261)

63 Captain CQMAL's Graphic Primer 63

endfunc graphicstate

HEADING

This -function returns the turtle's current heading as

an integer from 0 to 359.

func heading closed

as=peek<27277)$ b:=peek(27278)

case a o-f

when 0

return 90

when 129

return 89

when 130

return 88-(b div 64)

when 131

return 86-(b div 32)

when 132

return 82~(b div 16)

when 133

return 74-(b div 8)

when 134

return 58-(b div 4)

when 135

if b<53 then

return 26-(b div 2)

else

return 386-(b div 2)

endif

when 136

return 322-b

when 137

return (194-(b*2))-(peek(27279) div 128)

endcase

endfunc heading

HIDESCREEN

(see also SHQWSCREEN)

This procedure lets you hide the entire screen, much as

you can SHOW or HIDE the turtle.

proc hidescreen closed

vies=53248

64 Captain CQMAL's Graphic Primer 64

predefined images, so as your turtle moves, its shape

will change to reflect any rotation. Its size can also

change. Until we consider sprites, we will not be able

to make the turtle larger, but we can make it smaller

right now. A command

TURTLESIZE <size>

where <size> is an integer from 0 to 10, will alter

your turtle. The default size is 10 (the largest), but

you can make it anything down to 0 (almost invisible).

[Note: There is a function GETTURTLESIZE included in

Chapter 5 which will tell you the current size of your

turtle.]

Speaking of invisible, there is a command to make the

turtle invisible

HIDETURTLE

When this command is in effect, the turtle can still

draw things, but you can't see it. Drawings go faster

when the turtle is hidden, and personally, for most

uses I think the screen looks better without our little

friend. To bring the turtle back from invisiblity, use

the command

SHQWTURTLE

and BINGO there it is.

When your turtle first appears, the head will be

painting toward the top of your screen. This is

heading 0, the default setting. The command

SETHEADING <degrees>

will change the turtle's heading to anything between 0

and 359. The turtle is moved in a clockwise direction,

so heading 90 points to the right, heading 180 points

down, etc. The turtle does not move to the position

specified by <degrees> by turning through the

intermediate settings. It goes directly to the

specefied setting. If you ask for a heading of over

360 degrees, COMAL will subtract 360 from your request

21 Captain COMAL's Graphic Primer 21

the same area as above.

The lines are now visible

for their entire length,

as the frame now covers

the whole screen

190 drawto scat,120

200 endfor scat

210 while key$=chr*(0) do null // line 210 causes

the program to

pause until a

key is pressed

220 settext //you then return to text

screen

If you enter this program (remember you can use auto

line numbering) and run it you should get some idea of

the things you can do to set up your screen.

Now you have the basics. You can set up your screen

just the way you want it. Now you can rest for a

minute, as you get ready to...

Meet the Turtle.

Commands: TURTLESIZE, SHOWTURTLE, HIDETURTLE,

SETHEADING, PENCOLOR, PENDOWN, PENUP,

6ETC0L0R

HEAD -i

PEH

REGULAR TURTLE

If you issued the SET6RAPHIC command, you should have

a rather attractive triangle, similar to the one shown

above on the right, sitting in the center of your

screen. This is your turtle. (If your turtle looks

like the one on the left, remove your pet from the

screen.) Actually, the COMAL turtle is a sprite,

sprite 7 to be precise. This sprite comes with lots of

20 Captain COMAL's Graphic Primer 20

a polygon of any

x:=(peek(vic+17> mod 32) div 16

if x then

poke vic+17,peek(vic+17)-16

else

return

endif

endproc hidescreen

POLYGON

This procedure allows you to draw

radius.

proc polygon(sides,radius) closed

//this routine draws a polygon

// centered at the current

// position with sides and radius

// given

pi 8=3.14159265

length:=2*radius*sin(pi/sides)

angle:=180*(1-(sides-2)/sides)

penup

forward radius

right 90+angle/2

pendown

for side:=l to sides do

forward length

right angle

endfor side

right 90-angle/2

penup

forward radius

right 180

endproc polygon

SHOWSCREEN

(see also HIDESCREEN)

This procedure lets you show the entire screen, much as

you can SHOW or HIDE the turtle.

proc showscreen closed

vie:=53248

x:=(peek(vic+17) mod 32) div 16

if x then

65 Captain COMAL's Graphic Primer 65

return

else

poke vic+17,peek(vic+17)+16

endif

endproc showscreen

SHOWSPRITE

This procedure allows you to turn on a sprite

previously hidden with HIDESPRITE, without knowing the

identity of the sprite,

proc showsprite(num) closed

vies=53248

x:=2Anum

y:=(peek(vic+21) mod (2*x)) div x

if not y then poke vic+21,peek(vic+21)+x

ys=(peek(27276) mod <2*x)) div x

if not y then poke 27276, peek (27276) +x

endproc showsprite

SPRITESTATE

This function will return TRUE if the specified sprite

is visible, and FALSE if the sprite is hidden.

func spritestate(num) closed

x: = (peek(27276) mod 2A(num+i>) div 2*num

return x

endfunc spritestate

SPRITEXCOR

This function returns the x coordinate of the specified

sprite.

func spritexcor(num) closed

x:« (peek (53264) mod 2A(num+l)> div 2'vnum

return x*256+peek(53248+2*num)

endfunc spritexcor

SPRITEXSIZE

This function tells you if the specified sprite

double height by returning TRUE if the sprite

expanded on the x coordinate (width).

66 Captain CQMAL's Braphic Primer

is

is

66

Let's look at short program (demo 2.1 on the CC6P

disk) which uses some of the commands discussed above.

Don't worry about MOVETQ and DRAWTQ; we'll get to them

later.

10 setgraphic 0

20 fullscreen

//this will initialized the

graphic screen to HI-RES

//this selects a full

graphic screen without

text window

30 for loopl := 0 to 15 do

40 background loopl //this chooses a background

of color* loopl (all

possible colors)

clear //this implements the color

change selected in line

40

for Ioop2 != 0 to 15 do

border Ioop2 //this selects a border

color of col or# Ioop2

(all possible colors)

for pause := 1 to 90 do null

endfor Ioop2

50

60

70

80

90

100 endfor loopl

110 frame 50,100,50,100 //this selects a frame

with lower left corner

at 50,50 and upper

right corner at 100,100

120 for scoot 5=50 to 100 step 5 do

130 moveto scoot,40 //lines 120-150 draw lines

across the framed area.

The turtle is always

visible, but the lines

show only in the framed

area

140 drawto scoot,120

150 endfor scoot

160 frame 0,319,0,199 //returns the frame to

default setting

(entire screen)

170 for scat :=150 to 200 step 5 do

180 moveto scat,40 //lines 170-200 draw lines

across

19 Captain CQMAL's Graphic Primer 19

CLEAR

CLEAR clears the graphic screen, but does not affect

any sprites present. Until you issue the CLEAR, the

background will only change in 8x8 pixel blocks around

any lines or points you put on the screen (leading to

some really strange images). The color of the screen

border can be set using the command

BORDER <color#>

where <color#> is an integer from 0 to 15.

You can further choose to have the full graphic

screen displayed by using the command

FULLSCREEN

or you can have a text window on the top two lines of

the graphic screen by using the command

SPLITSCREEN

In immediate mode, using SPLITSCREEN, you can see your

commands as you type them, which is sometimes helpful

[Note: SPLITSCREEN doesn't work in programming mode].

Your commands are recorded on the text screen even in

FULLSCREEN, so by toggling back and forth, you can keep

track of your commands, even without the "window".

The FRAME command allows you to choose the area of

your screen in which the pen will be active. A frame

is designated by four coordinates;

FRAME <xl>, <x2>, <yl>, <y2>

<xl> and <yl> are the lower left corner of the frame,

while <x2> and <y2> are the upper right corner. The

default value of FRAME is 0, 319, 0, 199, giving a

frame which covers the entire graphic screen. The

turtle's pen will not leave any marks outside your

frame, although, if the frame is smaller than the

graphic screen, the turtle may move outside the frame

and still be visible.

IB Captain COMAL's Graphic Primer 18

func spritexsize(num) closed

x:=(peek(53277) mod 2y-(num+l)) div 2'"num

return x

endfunc spritexsize

SPRITEYCOR

This function returns the y coordinate of the specified

sprite.

func spriteycor(num) closed

return peek(53249+2*num)

endfunc spriteycor

SPRITEYSIZE

This function tells you if the specified sprite is

double height by returning TRUE if the sprite is

expanded on the y coordinate (height).

func spriteysize(num) closed

y: = (peek (53271) mod 2'Mnum+D) div 2Anuoi

return y

endfunc spriteysize

TURTLESTATE

This function tells you if the turtle is visble or not

by returning TRUE if SHOWTURTLE is in effect, and FALSE

if HIDETURTLE is in effect.

func turtlestate closed

//return l=turtle on, 0=turtle off

return peek(27295)

endfunc turtlestate

XCQR

This function returns the x coordinate of the turtle.

func xcor closed //return x

high'bit#:=peek(27255)

return high'bit#*256+peek(27256)

endfunc >tcor

67 Captain COMAL's Graphic Primer 67

YCQR

This -function returns the y coordinate of the turtle.

func ycor closed //return y

return 199-peek(27260)

endfunc ycor

68 Captain CQMAL's Braphic Primer 68

pixel in the block can now be one of the following

(a)screen color

(b)background color#l

(c)background calor#2

(d)character color.

Each turned-on pixel in the entire block will still

change color if you attempt to introduce a fifth color.

In order to get a feeling for these modes, type in

the sample program dealing with HI-RES vs MULTI COLOR.
When the SET6RAPHIC command is issued, the graphic

screen is turned on, the turtle is shown at coordinates

160,99 (see HOME), in size 10 (see TURTLESIZE), heading
vertically upward (setting 0 - see SETHEADINB). If

HIDETURTLE (q.v.) is in effect, the turtle will not be

visible. To return to the text screen from within your
program, enter the command

SETTEXT

In immediate mode you.have the choice of using SETTEXT

or pressing the Fl function key. [Note: Appendix A

gives a listing of the assigned actions of the function

keys.] The two screens operate independently, so it is

possible to switch from one to the other without losing

either, or even to have two differnt things going on at

the same time. For example, you could have direction

on your text screen while a picture is being drawn on

the graphic screen, then switch to graphics and a

completed picture. Conversely you can have

informatioin printed to the text screen while a picture
is being drawn, which you can access later.

Once you have your screen initialized, you can change
the color of the screen or border to any of the 16

Commodore colors. The background is set by using the
command

BACKGROUND <color#>

where <color#> is any number between 0 and 15. If you

are in HI-RES, the color won't change on the entire
screen until you issue the command

17 Captain CQMAL's Graphic Primer 17

turtle's HOME<q.v.).

Setting up the screen.

Commands: SETGRAPHIC, SETTEXT, BACKGROUND, BORDER,

CLEAR, FULLSCREEN, BPLITSCREEN, FRAME

The first thing you have to do to use CQMAL graphics,

is initialize* or turn on, the graphic screen. To do

this, either in a program or in immediate mode, issue

the command

SETGRAPHIC <type>

•followed by the type of * graphic screen you want.

SETGRAPHIC 0 gives you a HI-RES screen. SETGRAPHIC 1

gives you a MULTI-COLOR screen. It is only necessary

to enter the type designation the first time you use

the SETGRAPHIC command. After that, unless you are

changing the type, the command SETGRAPHIC alone is suf

ficient.

You may be wondering what the difference is between

HI-RES and MULTI COLOR screens. In HI-RES graphics,

your screen is 200 (0 to 199) pixels high and 320 (0 to

319) wide. The screen is further divided into 1000

blocks (40 across, 25 down), each made up of 64 pixels

(8 across, 8 down)*. That's a lot of pixels, and

reasonably, this mode give you the greatest resolution.

Each of those pixels can be any of the Commodore

colors, but unfortunately, each block can only hold two

colors, the background color and the color of the last

pixel you turn on in that block. If, at a later time,

you attempt to turn on another pixel in that same

block, in a third color, each turned-on pixel in the

entire block changes to the third color. This may not

give you exactly the effect you had planned.

A partial solution to the problem is offered by MULTI

COLOR graphics. In MULTI COLOR mode your screen is

still divided into 1000 blocks, but each block is now

made up of 32 pixels (8 across, 4 down). This gives

you a screen 160 pixels by 200, and consequently lower

resolution. Each line you draw is now two pixels wide*.

As a compensation for the loss of resolution, each

block will now hold four colors, rather than two. Each

16 Captain COMAL's Graphic Primer 16

GLOSSARY

Here is an alphabetic listing of the COMAL graphic

commands, along with the syntax and a brief explan

ation of each. More-complete explanations of each com

mand will be found in Chapters 2 (turtle) and 3

(sprites). Turtle commands and sprite commands are

listed separately.

Since it may appear that some of the commands are

listed twice on a given line, it may be of help for you

to know all commands are listed in the following

format:

COMMAND: SYNTAX: DEFINITION

TURTLE COMMANDS

BACK: BACK <distance>: Moves turtle backward <distance>

units from the direction of the point of the turtle.

If pen is down (see PENDOWN), the turtle leaves a line

in the current pencolor (see PENCQLOR).

BACKGROUND: BACKGROUND <color>: Sets the background to

the specified color. In hi-res, the change does not

take effect until a CLEAR command has been executed

(see CLEAR).

BORDER: BORDER <color>:

specified color.

Sets the border to the

CLEAR: CLEAR: Clears the graphic screen, but

remove sprites (see HIDESPRITE).

does not

DRAWTO: DRAWTO <x>,<y>: Draws a line, in the current

pencolor, from the present location to the position

(<x>,<y>). Due to a bug in COMAL, this command

requires that the pen be in the 'down' position in

order to draw a line. If the pen is 'up', your turtle

will move to the specified position, but no line will

be drawn.

FILL: FILL <x>,<y>: Fills, with the current pencolor,

an area containing the specified location. Fills until

69 Captain COMAL'S Graphic Primer 69

encountering either a boundary

another color or points on the

frame (see FRAME).

•formed by points of

edge of the , present

FORWARD: FORWARD <distance>: Moves the turtle forward

<distance> units. Forward is the d.irectioin painted to

by the head (point) of the turtle. If the pen is down,

a line will be left in the current pencolor.

FRAME: FRAME<xl>,<x2>,<yl>,<y2>: Defines the area

(frame) within which graphic activity will occur. No

drawing will take place outside the framed area, even

though the turtle will be displayed. <xl>,<yl>

determine the lower left corner of the frame.

<x2>,<y2> determine the upper right corner. The

default is a frame covering thre entire graphic screen

with values of FRAME 0,319,0,199.

FULLSCREEN: FULLSCREEN: Shows the entire graphic screen

without the window of text on the upper two lines (see

SPLITSCREEN).

GETCOLOR: 6ETC0L0R <x>,<y>: Returns the color of the

specified point. Returns background color if no

graphic pixel on. Not affected by sprites.

HIDETURTLE: HIDETURTLE: Makes the turtle invisible

speeds up some graphics. (See SHOWTURTLE)

and

HOME: HOME: Moves turtle to center of screen (160,99),

with the head vertically upward, at heading 0. (See

SETHEADING)

LEFT: LEFT <degree>: Moves the turtle's head <degree>

degrees to the turtle's left (counterclockwise).

MOVETO: M0VET0<x>,<y>: Moves the turtle to the

specified coordinates. Does not leave a line on the

screen.(See SETXY)

70 Captain COMAL'S Graphic Primer 70

Screen coordinate system.

A number of the commands for moving your turtle

depend on your understanding of a graphic coordinatp

system. If you remember Geometry and the Cartesian co

ordinate system, think of you screen as the upper

right-hand section of a regular 4 section graph. The

horizontal axis is labeled x, and the vertical axis is

labeled y. Every spot on your graphic screen can be

defined by an x and y coordinate pair. Y~If ••«» tM*

system to tell the computer where you want something to

be placed.

Until you get used to thinking of your screen as a

grid, it may be helpful for you to have the fallowing

chart to refer to.

T
Y

X

S

1

CO

3

5

(168,

HO

(iS8

iS9> <3i9,i9

ME

,93>

m

CD

C6.8> (169,6>

X fiXIS

(313, 8>

HI-RES GRAPHIC SCREEK

The left border of your screen is the 0 x axis, and

the bottom of your screen is the 0 y axis. Where these

axes intersect in the lower left-corner of your screen

is location 0,0. The place where the x and y axes

intersect in the center of the screen (160,99) is the

15 Captain CQMAL's Graphic Primer 15

CHAPTER 2:

TURTLE GRAPHICS

This chapter is divided into six sections. The -first

is just background on turtle graphics, and can be

skipped if you're in a big hurry to get going. After

each other section heading, there will be a list of

commands which will be explained in that section.

Why a turtle?

Turtle Graphics is a generic term for a system of

computer graphics found in CQMAL, as well as LOGO and

PILOT, In this system, the user controls a triangular

or turtle-shaped sprite (known as a "turtle") in order

to "draw" in HI-RES or MULTI-COLOR, graphics. Let me

try to make that definition a little clearer.

About 17 years ago at iiassachusett Institute of

Technology (MIT), Seymour Papert and a group of people

who were interested in artificial intellegence develop

ed a language called L060. LOGO grew out of another

language called LISP, which was and is used extensively

in programs which simulate intelligence. Originally

the language LOGO was used to control a slow-moving

robot shaped somewhat like a turtle. The robot was at

tached to a mainframe computer and could be controlled

by means of a "button box". The "turtle" could be made

to move forward and back as well as rotate a specified

number of degrees. Children (for whom the language was

aimed) could work out problems with the real, tangible

turtle, and later, as the language developed, could

duplicate their solutions with the "turtle-shaped"

cursor on the computer graphic screen. It took a while

before home computers were powerful enough to hold the

language, and by that time the robot was no longer a

feature of the language. The name turtle has hung on

to the turtle-shaped graphic cursor, long after most

people stopped using the robot.

14 Captain CQMAL's Graphic Primer 14

PENCOLOR: PENCOLQR <colar>s Sets the pen to color

<color>. <color> is an integer from 0 to 15. The cursor

will appear in the specified color, as will text.

PENDOWN: PENDOWNs "Lowers" the turtle pen. Causes the

pen to leave a trace on the screen as long as the
pencolor is different from the background color and as

long as the turtle is within the current frame. (See

PENUP)

PENUP: PENUP: "Raises" the turtle pen. No mark is left

by the turtle. PLOT and DRAWTO (q.v.) still function.

(See PENDOWN)

PLOT: PLOT <x>,<y>: Marks position <x>,<y> in the

current pencolor.

PLOTTEXT: PLOTTEXT <x>,<y>,<text*>: Plots text string

<text$> on the HI-RES graphic screen, in the current

pencolor. The lower left corner of the text expression

is placed at <x>,<y>. <x> and <y> will be adjusted to

the greatest multiple of 8 less than or equal to the

specified values.

RIGHT: RIGHT <degrees>s Turns the turtle's head

<degree> degrees to the turtle's right (clockwise).

SETGRAPHIC: SETGRAPHIC <type>: Initializes the graphic

screen. Used intially with <type> declaration. <Type>

of 0 sets screen to HI-RES, <type> of 1 sets the screen

to MULTICOLOR. Does not affect the text screen,, (See

SETTEXT)

SETHEADING: SETHEADIN6 <degree>: Sets the turtle to the

heading specified by <degree>. The heading is

calculated clockwise from the 0 degree heading

(vertical) rather than from the current heading of the

turtle.

SETTEXT: SETTEXT: Displays the text screen and hides

the graphic screen. Does not clear the graphic screen

or prevent graphic instructions from being carried out

on the graphic screen.(See SETGRAPHIC)

71 Captain COMAL'S Graphic Primer 71

SETXY: 8ETXY <x>,<y>: Moves turtle to

coordinates, drawing a line if the pen

MOVETO)

the designated

is down. (See

SHOWTURTLE: SHOWTURTLE: Causes the turtle to become

visible on the graphic screen. This is the default

setting. (See HIDETURTLE).

SPLITSCREEN: SPLITSCREEN: Causes a text "window" to be

displayed on the top two lines of the graphic

screen.(See FULLSCREEN)

TURTLESIZEs TURTLESIZE <size>: Sets the size of the

turtle to <size>. <size> is an integer from 0 to 10.

The default size is 10 (largest).

SPRITE COMMANDS

DATACOLLISION: DATACOLLISION (<sprite>,<reset>): A

function which returns a value of TRUE if the sprite

number <sprite> collides with graphic information

(e.g., text, screen graphics or sprites). The

collision detection is done automatically each time a

sprite is drawn. If <reset)- is given a value of

TRUEU), the collision flag will be reset. If <reset>

is given a value FALSE(O), the collision flag is stored

for use with the next DATACOLLISION statement.(See)

DEFINE: DEFINE<image#>,<definition$>: Assigns the

string <definition$>, which contains the 64 characters

of the sprite image, to image<image#>. <image#> is an

integer from 0 to 55.

HIDESPRITE: HIDESPRITE <sprite#>: Causes sprite

<sprite#> to become invisible. (See procedure

SHOWSPRITE)

IDENTIFY: IDENTIFY<sprite#>,<image#>: 6ives

sprite<sprite#> the image contained in image number

<image#>. More than one sprite may share the same

72 Captain COMAL'S Graphic Primer 72

accompanies this book.

2- Keywords will be capitalized in text in order to

make them visable. Don't attempt to enter the programs

with the keywords capitalized, or COMAL will spit up.

3- Information to be supplied by the user will be

enclosed in single < >. If, for example, you saw

PENC0L0R<color> in a program, you would enter the

actual color number you wish to use, without the

enclosing < >s. For example, if you wanted a black

pen, you would enter 'PENCQLOR 0'.

4- Information to be supplied by the user which

requires the inclusion of parentheses will be enclosed

in (). If you find any parameters enclosed in (),

please be sure to include the ()s when you type in the

code. For example, the information following the

command DATACOLLISION must be in parentheses:

DATACOLLISION Ksprite#>,<reset». When you type this

command, you would include the (), but not the <>.

5- Actions to be performed by the user will be

enclosed in double << >>. For example, if you needed

to press both the Commodore key and another key (in

this example, A) simultaneously, you would see <<Com

A>>. If you were to press the RETURN key, you would

see «RETURN».

6- In some of the program listings you will see the

symbol 'A>. In order to get this symbol, press the ap

arro» key, immediately to the left of the RESTORE key.

The 'v, in COMAL (as in Commodore Basic), is the expo

nentiation sign. For example, 2 is the exponent in the

statement 8*2. 8A2 means 8 raised to the power of 2,

or 8 squared, or 8*8. 2X%8 would be 2*2*2*2*2*2*2*2.

13 Captain COMAL's Graphic Primer 13

example, if your word processor creates sequential

files, you can read in a LISTed file for inclusion in a

paper created on your word processor. (This really cuts

down on typos!)

There's lots more that's involved in COMAL

programming, but this is a book on graphics. For

additional info on programming, refer to one of the

many Captain Comal books.

Conventions of This Book

Definitions?

(a) IMMEDIATE MODE: There will be times in this

booklet when I will refer to immediate mode or

programming mode. l&nediate node (at least while you

are reading this booklet) means any commands you type

in which are executed immediately. This can happen

either in text or graphic mode. If your commands are

contained in a program and are executed as the program

runs, we'll consider that programming node.

(b) DEFAULT: The term default value or status means

the value of a variable or condition, as it is when the

the system begins operation. For example, if a

variable has a default value of 10, or the screen has a

default color of blue, it means that when COMAL loads

in and becomes operational, that variable has a value

of 10, and the screen is blue, without your doing

anything. If you want the value to be anything other

that the default value, you must issue commands to

change it.

(c) Q.V.: The abbreviation q.v. stands for the Latin

phrase quid vide. It means literally, "which see", and

in common usage, "see also11. In context, it refers you

to relevant sections, definitions and related commands.

Helpful things to know:

1- A reference to the CCBP disk is a reference to

the Captain CONAL's Graphic Primer disk which

12 Captain COMAL's Graphic Primer 12

image. One sprite may, at different times, have

different images.

PRIORITY: PRIORITY<sprite#>,<p>: If <p> is FALSE (0),

sprite<sprite#> has a higher priority than screen

graphics. This means the sprite will pass over the

graphics. If <p> is TRUE (1), the sprite will pass

under the graphics. The priority of sprite against

sprite is determined by the number of the sprite, with

sprite 0 having the highest priority.

SPRITEBACK: SPRITEBACK <colorI>,<color2>: Sets the

common colors for multicolor sprites. <colorl> and

<color2> are integers from 0 to 15.

SPRITECOLLISION: SPRITECOLLISION «sprite#>,<reset»:

This function returns TRUE if (and only if) a sprite

<sprite#> has collided with another sprite. If <reset>

has a value of TRUE or 1, the collision flag is reset.

(See DATACOLLISION)

SPRITECOLOR: SPRITECOLOR <sprite#>,<color>: Makes

sprite number <sprite#> color <color>. <color> is an

integer from 0 to 15.

SPRITEPOS: SPRITEPOS <sprite#>,<x>,<y>: Sets the

position of sprite number <sprite#> to be such that the

upper left corner of the sprite is at position <x>,<y>.

SPRITESIZE: SPRITESIZE <sprite#>,<xsize>,<ysize>: If

<K5ize> is TRUE (1), sprit number <sprite#> is expanded

2 times in width. If <ysize> is TRUE (1), sprite

number <sprite#> is expanded 2 times in height.

73 Captain COMAL'S Graphic Primer 73

APPENDIX A

Defined Function Keys:

F1 ,..., TEXT SCREEN

F3 SPLITSCREEN

F3 .. FULLSCREEN

These three predefined function keys are available

for use after the graphic screen has been initialized.

They can be accessed in immediate mode from either the

text or graphic screen.

Fl - has the same effect as issuing the command

SETTEXT.

F3 - has the same effect as issuing the commands

SETGRAPHIC and SPLITSCREEN.

F5 - has the same effect as issuing

SET6RAPHIC and FULLSCREEN.

the commands

LIST by itself will list the entire program. To see

portions of your program, follow the LIST command by

the range of line numbers you wish to see. For

example, LIST -100, would list everything up to line

100. LIST 20-70, would list lines 20-70, inclusive.

LIST 100- would list everything from line 100 on. The

LIST command shows you the program complete with line

numbers and indentation. The command EDIT will show

you the program without indentation. Both can be

slowed by holding down the control key, or stopped and

restarted by pressing the space bar.

You are no doubt, familiar with saving programs

in BASIC with the SAVE command. This command also works

in COMAL. If you enter the command

SAVE "OsMyprogram"

you would store a PRG (program) file, called Myprogram,

on your disk. In order to call this program back into

memory at a later time, you would type

LOAD "0: Myprogram11

and press RETURN. If a file has been SAVEd, in can

also be called up by using the command CHAIN, fallowed

by the program name. The CHAIN command loads the file

and runs it.

COMAL has another way of saving a file. You

can LIST a file to disk. Entering the command

LIST "0:Myprogram.1"

stores Myprogram.1 on disk as a SEQ (sequential) file.

You might notice that this filename ends with '.P.

This is done, for your convenience, to help you

remember which files are SAVEd versions, and which ones

are LISTed. To recall a LISTed file, the command ENTER

is used, followed by the program name.

ENTER "0:Myprogram.1"

LISTed files cannot be chained, but they can be

manipulated like any other sequential file. For

74 Captain COMAL's Braphid Primer 74 11 Captain COMAL's Graphic Primer 11

Calling the procedure byspecefied in the procedure,

the inclusion o-f this line:

box(10,100,45,50)

would draw a diamond shape, 50 pixels to a side, 10

pixels up from the bottom o-f the screen, and 100 pixels

over from the left edge. Please notice in the example

that the first value in the call is assigned to the

first variable, the second to the second, the third

value to the third variable, and the fourth to the

fourth. Be sure to give your values in the correct

order.

Any commands or structures (such as if-then-else

statements, case structures, for-endfor loops, etc.)

can be used in a procedure or function. Just be sure

to end your procedure with the word ENDPROC, so COMAL

will know when your procedure is finished.

FUNCTIONS are a specialized kind of procedure.

All functions are started with the word FUNC (rather

than PROC). You can pass parameters to functions- In

version 0.14 you cannot define string functions.

Somewhere in the function, you must use the word RETURN

to return a value for your function.

e.g. func getpencolor

return peek(646)

endfunc getpencolor

This function could be called with a line like

print getpencolor

The system would then execute the function getpencolor,

and print the the value that is returned. Again, we

will be using functions, and they will make more sense

as you see them used.

3 - Storing and Recalling Programs:

You can list your program to the screen, either

in whole or in part, by entering the command LIST.

10 Captain COMAL's Graphic Primer 10

APPENDIX B:

Sprite Chart

Here is a chart you can use to sketch out your hi-res

sprites, if you want to try one without using a "sprite

designer". I would suggest either making several

copies, or overlaying this chart with a sheet of

acetate. Fill in the blacks to make the design you

want, then add up the values of the blacked-in spaces,

for each of the three sectionsB The three numbers you

get will be the data statements which define that line

of your sprite.

SEC

I i
£631
3426

t-

FiGidsECTIQH
\ L B

2631
842184268421

i i

SECTION

t C
2631
8426842J

SOU
OF
ft

SOU
OF
3

sun
OF
C

i

75 Captain COMAL's Graphic Primer 75

APPENDIX C:

MULTI COLOR Sprites

MULTI COLOR Sprites differ in several ways -from

HI-RES. They can hold -four colors (screen color,

primary color, background color#l, background color#2>

instead of the two allowed by HI-RES sprites.

The block which defines a MULTI COLOR sprite is only

half as wide (12 rather than 24) since in MULTI COLOR

made your pixels are double width.

For my money, MULTI COLOR sprites are most easily

defined using the Sprite Designer (q.v.)5 but they can

also be defined using the Read'sprite procedure (q.v.).

If you are using the Read'sprite procedure, the screen

(transparent) color has a value of 00, background

color#l has a value of 01, the primary color has a

value of 10, and the background color#2 has a value of

11.

All multi color sprites on the screen must share the

same two common background colors. The two colors are

set using the SPRITEBACK <colorl>,<color2> command.

The primary color of a MULTI COLOR sprite is set using

the SPRITECOLOR <sprite#>,<color> command.

76 Captain CQMAL's Graphic Primer 76

the procedure or function). When the procedure is

called, if there are values to be sent to the procedure

or function, a list of values is included in

parentheses. These values are assigned, in the order

they are given, to the arguments of the procedure or

function. [Note: If you are unfamiliar with

parameters, and passing values, please spend some time

with one of the many books on COMAL programming

currently available. We will be using parameters in

many of the programs in this book. You are welcome to

plunge ahead, and they may make sense as you see them

used.3 Parameters make procedures and functions

extremely flexible. As an example, let's look at a

procedure which draws a box.

proc box

for i:=l to 4 do

forward 10

right 90

endfor

endproc box

to this procedure:Now let's add arguments

proc box (h?v,heading,length)

moveto h,v

setheading headading

for is=l to 4 do

forward length

right 90

endfor

endproc box

By sending different values for h,v, heading and length

we can draw boxes of different sizes, in different

positions, and in different locations on the screen.

For example, if, later in your program, you called the

procedure by including the line:

box(0,0,0,20)

you would draw a box 20 pixels to a side, starting in

the lower left corner of the screen. Calling the

procedure causes the program to do whatever action is

Captain COMAL's Graphic Primer

You can also number in the regular way, by not

using auto, and entering the line numbers yourself.

For example, if you wish to insert some code betweem

lines 10 and 20, just start your line number with 11

and number as high as 19, with no ill effects*

Let's say that you want to include more code

between two lines than can be included in nine lines

(or however many lines you have available). What can

you do? COMAL has an automatic line renumbering

command. If you type RENUM and press return, your

entire program will be renumbered in increments of 10.

If you wish to have different increments, you can

specify both the increment and the beginning line

number. For example RENUM 100 would change your first

line number to 100, and increment by 10. RENUM 100,100

would change your first line number to 100 and

increment by 100. RENUM 100 would leave your first

line number as whatever it was, but would increment by

100. [Note: To get some experience with numbering and

renumbering, look at program 1.1 in the sample program

listings.1

2 - A short word on Procedures/Functions:

As you probably all know, COMAL is a

structured language, and one of the things that makes a

structured language, is the use of procedures rather

than the GOTOs and 60SUBS you may recall from BASIC.

The procedure is really the basis of all COMAL

programs. With procedures you can break up a long,

complicated program into several smaller pieces, each

of which performs a particular task, or part of a

task. The pieces are then used as needed by being

accessed (or called) in the MAIN section of the

program, or from another procedure. Procedures could

often stand on their own, outside the program and so

might be thought of as a mini-program.

Procedures have their own particular structure.

They all begin with the word PROC, followed by the

procedure name. If parameters (values for variables to

be used in the procedure) are to be passed to the

procedures, the name of the procedure is followed by

information in parentheses (these are the argutents of

Captain CQMAL's Graphic Primer 8

APPENDIX D:

Two more ways of making sprites

Sprite Designer:

The Sprite Designer allows you to design your sprite

without thinking about any values for any pixel. When

you load up the program, you will be asked a series of

questions. There were no instructions, but Captain

COMAL and his friends have figured out what to do. Use

1 for yes answers, and 0 for no answers. The first

question asks if the sprite is to be MULTI COLOR or

not. Reply with a 1 for MULTI COLOR, and a 0 for

HI-RES. You will then be asked to pick your primary

color- Use the CONTROL key or the COMMODORE key and

the numbers 1 through 8. For example, CONTROL 1 is

black, COMMODORE 1 is orange, etc.. The next two

questions ask if you want your sprite expanded on the x

and y axes. Use 1 or 0 to respond. You will then be

asked to choose your background color, and if your

sprite is MULTI COLOR, your background colors #1 and

#2. Again, use your CONTROL, COMMODORE and number keys

to select your colors.

You now can design your sprite by moving the cursor

around the large field. Use the cursor control keys to

position your cursor. Turn on a pixel by pressing 1,

turn it off by pressing 0. In multicolor mode press

0 (transparent)

1 (background #1)

2 (primary color)

3 (background #2)

to access your possible colors.

You can save your design by pressing S. To load in a

previously saved design, press L. Press A to append a

sprite to another program. Press Q to quit.

The sprite designer program is very long, and not

many people would actively enjoy typing it in (not to

mention de-bugging it after you type it in), so a

working version has been included on your CCGP disk.

Look for SPRITE DESIGNER.

To use one of the sprites you create with the

77 Captain COMAL's Graphic Primer 77

designer, read it into your program

code something like this,

with a piece of

open file 2,"<your sprite image name>",unit 8 read

read file 2s image$ //this assigns the information

file 2 to the variable

image*

close file 2

DEFINE 0,image*

You can now use the defined image just as you would use

an image created any other way.

Read'sprite:

The Read'sprite procedure allows you to enter your

sprites as strings of Is and Os. These strings are

then read by a short machine language program which

uses your binary notation to define the sprite. To

define a HI-RES sprite by this method, enter

1 for blocks you want in the primary color

0 for blocks you want in the background color

For a MULTI COLOR sprite, remember that it takes two

numbers to define a block. Twenty four numbers define

a sprite 12 two-pixel-wide columns wide. The numbers

to use are

00 for transparent

10 for primary color

01 for background color#l

11 for background col or#2

For example the line

<data "100111001001110010011100">

would create one line of the 21 needed to define a

MULTI COLOR sprite. This particular line repeats the

sequence (primary color, 1st background, 2nd

background, transparent) three times. This would

78 Captain COMAL's Graphic Primer 78

Chapter 1

Some COMAL Basics

Getting Started

LOADing 0.14 from disk

Put the COMAL disk in your drive. Type LOAD

"BOOT*11,8. Press RETURN. When your machine returns the

READY prompt, type the word RUN, then sit back and wait

for a few minutes, as COMAL loads.

Once the program is loaded, you have a choice of

seeing several demos, reading some general infor

mation, or beginning to program. If you haven't seen

the demos or read the information, I would urge you to

do so. If you have, indicate that you want to begin

programming by either entering

or

p (for (p)rogram)

c (for (c)omal)

depending on your version of the COMAL menu. Press

enter NEW to

program, and

RETURN. When you get your neat prompt,

clear out the demo program and the "Hi"

you are ready to start programming.

Your first programs

1 - Line Numbering and Renumbering:

One of the niceties of COMAL is its automatic

line numbering. Before you start writing a program,

enter the command AUTO, then press RETURN. COMAL will

supply you with line numbers in increments of ten (the

default value), and all you have to do is type in the

lines of code. To cancel the auto numbering hit RETURN

twice. If you wish to continue the same program in the

auto numbering mode, enter AUTO and the line number

where you wish to begin. For example, if your last

program line was 120, you would enter AUTO 130, and

press RETURN.

Captain COMAL's Graphic Primer

eventually give you a striped sprite.

To use the Read'sprite program, either enter the code

below, or look on your CCGP disk and load Read'sprite.

To use this program -for your own sprite, all you have

to do is insert your own numbers in lines 780-860
(which design a multi-color sprite) or lines 880-1090

which design a hi-res sprite). The -following is an

example by Captain Carnal and his Friends.

0010 // delete IIreadsprite/demo2"

0020 // by captain comal and friends

0030 // save "readsprite/demo4"

0040 //

0050 func find'string closed

0060 pointerl:=peek(51)

0070 pointer2:=peek(52)

0080 address:=pointer2*256+pointer1

0090 return address+4

0100 endfunc find'string

0110 //

0120 proc read'sprite'ml'data closed

0130 //

0140 data 0,0,0,169,0,168,170,141

0150 data 168,2,141,169,2,141,170

0160 data 2,169,128,141,220,2,189

0170 data 0,4,41,1,240,10,185,168

0180 data 2,24,109,220,2,153,168

0190 data 2,232,224,24,240,8,78,220

0200 data 2,144,229,200,208,221,96

0210 total:*0

0220 for x:=680 to 731 do

0230 read a

0240 poke x,a

0250 total:+a

0260 endfor x

0270 if totalO5747 then

0280 print "error in data statements"

0290 stop

0300 endif

0310 endproc read'sprite'ml'data

0320 //

0330 proc read'sprite(blk) closed

0340 if peek (683)0169 then

79 Captain COMAL's Graphic Primer 79

0350

0360

0370

0380

0390

0410

0420

0430

0440

0450

0460

0470

0480

0490

0500

0510

0520

0530

0540

0550

0560

0570

0580

0590

0600

0610

0620

0630

0640

0650

0660

0670

0680

0690

0700

0710

0720

0730

0740

0750

0760

0765

80

=1

or line*(l)=="l11) and count<64

read'sprite'ml'data

endif

dim line$ of 24

dim sprite* of 64

sprite*:-H"5 count\

read line*

while (linefd)2211©1

and (not eod) do

while len(line$)<24 do line*:=line$+"O"

if line$=IIH then null

addr:=find'string

poke 702,addr mod 256

poke 703,addr div 256

sys 683

for x:=0 to 2 do

sprite$(count):=chr$(peek(680+x))

count:+l

endfor x

read line$

endwhile

while count<64 do

sprite$(count)s=chr$(0)

count:+l

endwhile

case line$(l) of

when "h'VH"

sprite*'(64):=chr$(0)
when "«■,"«"

sprite*(64):=chr*(l)

otherwise

print "error in sprite data statements"

stop

endcase

DEFINE blk;,sprite*

endproc read'sprite

read'sprite'ml * data

SET6RAPHIC (0)

read'sprite(O)

IDENTIFY 1,0

SPRITEPOS 1,75,75

SPRITECOLOR 1,1

read'sprite(O)

Captain COMAL's Braphic Primer 80

INTRODUCTION

Perhaps you are like me, and one of the reasons you

bought your Commodore 64 was because you wanted to use

the graphics capabilities that your fast-talking com

puter salesman showed you. Then you got your machine

home and discovered the joys of attempting hi-res or

sprite graphics on your Commodore. After wandering in

the wasteland of PEEKS and POKES, VIC chips and sprite

registers, not to mention the intricacies of bit-mapped

graphics, you decided you'd shelve graphics for a lit

tle while, and somehow never got back to it. Maybe you

mastered sprites and bit-mapped graphics, but would

like a simpler way of doing all that plotting. Which

ever camp you belong to, welcome to CQMAL graphics.

COMAL (COMmon Alogrithmic Language) was designed by

Barge Christensen and Benedict Loefstedt to be used by-

people who wanted to get the most from their computers,

but who did not necessarily wish to become "hackers".

With this goal in mind, the authors of COMAL made

graphics easily accessible to even the casual user.

Included as part of version 0.14 COMAL, and as a

quickly accessible "package" in version 2.0 COMAL, are

easily used and understood commands for turtle graphics

(which may already be familiar to you from LOGO or

PILOT) and sprite graphics. If you really want to ap

preciate the ease of COMAL sprites, read through the

sprite section in your Commodore 64 Programmer's

Reference Guide (pp. 131-149).

This booklet will guide your through the basic use of

the commands, give you some procedures and functions to

use, and show you some demonstrations and programs to

play with and change to suit your needs. There is also

a listing of graphic commands. For further detail of

these commands, see CQHQL FROM £ TO Z, by Borge

Christensen, available from COMAL User's Group, USA.

If you are unfamiliar with COMAL, please read the

first chapter for some hints on getting started. If

you are an old hand at COMAL, just glance at the

"Conventions of This Book" section to make sure we are

on the same wavelength.

Captain COMAL's Braphic Primer

I would like to thank Andy Skelton, Len Lindsay,

Colin Thompson, Kevin Quiggle, John McCoy, and David

Stidolph -for their help and encouragement in this

project. I would also like to thank Donald Pipkin,

Perry Brickley, and Jesse Knight -for use of their proc

edures and functions in Chapter 5.

Special thanks go to Wayne Schmidt for his cover

Doodle.

This primer was written in Easy Script, on a

Commodore 64, and was printed on a Gemini-10 printer.

Thank you, Precision Software, Commodore Business

Machines, and Star Micronics.

Captain COMAL's Braphic Primer

0766 IDENTIFY 1,0

0770 //

0780 data "0000110000" // any length

0790 data "0000110000" // up to 24

0800 data "0000110000"

0810 data "1111111111"

0820 data "1111111111"

0830 data "0000110000°

0840 data "0000110000"

0850 data "0000110000B

0860 data "h" // "h" means HI-RES

0870 //

0880 data "111111111111111111111 111"

0890 data "111000000001100000000111"

0900 data "111100000001100000001111"

0910 data "110110000001100000011011"

0920 data "110011000001100000110011"

0930 data "110001100001100001100011"

0940 data "110000110001100011000011"

0950 data "110000011001100110000011"

0960 data "110000001101101100000011"

0970 data "110000000111111000000011"

09B0 data "110000000011110000000011"

0990 data "111111111111111111111111"

1000 data "110000000011110000000011"

1010 data "110000000111111000000011"

1020 data "110000001101101100000011"

1030 data "110000011001100110000011"

1040 data "110000110001100011000011"

1050 data "110001100001100001100011"

1060 data "110011000001100000110011"

1070 data "110110000001100000011011"

1080 data "111111111111111111111111"

1090 data "m" // "m" means MULTI-COLOR

You now have several ways to design sprites,

you find one of them comfortable to use.

I hope

81 Captain COMAL's Braphic Primer 81

INDEX

An index to the procedures included in Chapter 5

follows the regular index.

AUTO (line numbering) 7

BACK 24

BACKGROUND 16-17

BORDER 16,18

CHAIN 11

CLEAR 16-17

COORDINATES, (see SCREEN COORDINATES)

DATACOLLISION ... 13,37,39

DEFAULT (defined) 12

DEFINE 30,31,33

DRAWTO 24-25

ENTER 11

FILL 24,26

FORWARD 24

FRAME 16,18

FULLSCREEN 16,18

FUNCTION KEY (predefined) 16,74

GETCOLOR 21,23

HIDESPRITE 30,35

HIDETURTLE 17,21-22

HOME 17,24

IDENTIFY 30-31,33

IMAGE (sprite) 30-31

IMMEDIATE MODE 12

LEFT 24-25

LIST (a program to screen) 10-11

(a program to disk) 11

LOAD 11

82 Captain CQMAL's Graphic Primer 62

TABLE OF CONTENTS

Introduction ««. 5

Chapter 1: Some COMAL Basics 7

Getting Started

Loading from disk

Your first programs

1-Line numbering and renumbering

2-A short word about Procedures and

Functions

3-Storing and Recalling Programs

Conventions of this Book

Chapter 2: Turtle Graphics 14

Why a Turtle?

Screen Coordinate System

Setting up the Screen

Meet your Turtle

Maneuvering the Turtle

Text on a Graphic Screen

Chapter 3: Sprite Graphics 29

What is a Sprite?

Making a Sprite

Moving a Sprite

Chapter 4: Program Listings 42

Chapter 5: Useful Procedures/Functions 59

Glossary 69

Appendix A: Defined Function Keys 74

Appendix B: Sprite Chart « 75

Appendix C: MULTI COLOR Sprites 76

Appendix D: Two More Ways to Design Sprites ...«.«.. 77

Index 82

Captain COMAL's Graphic Primer

JAMQD nift*q»3

yd

The original manuscript of this

(O19S4 by Melinda

book is copyright

This edition is copyright (C)1984 by Comal Users Group,

U.S.A., Limited and published by perroision o-f the

author.

All rights are reserved. No part of this book

reproduced in any way or by any means

permission of the publisher.

COMAL USERS CROUP, U.S.A., LIMITED
5501 Croveland Ten, Madison, wi 53716

Trademarks:

CAPTAIN COMAL of COMAL

COMMODORE 64 of Commodore Electroiiics^Lt
Easy Script of Commodore Electronics Ltd

^ airiqsir) s'JAMOj nisiq&Cl

Captain COMAL's Graphic Primer

may be

without

PENCQLpR %\%%%%%\%%%%%%%^^s^.=.'.".^'.-^.'-.^.-.'.-^3^1^^^"n!d

PENDO1# .v.V.V.V.v.%v.vv^w.^.<.^.<v.-.».^
PENUP ^A .v.v.v.v.v.v.v."..^.^.^..'.■'••••■'• rV* J2-"£,3S^TTI-id
PLOT fA .v.v.v.v.\sw.wv.w.%w.*.ww.*.*.3^^^
PLOTTEXT 27-28

priqri¥V v.=.v.v.v.v.v.v.v.v,.v.,.v,v,.,.,.,,,.:,,. imam-Ati

PROGRAMMING MODE .. 12

READ'SPRITE

RENUM c&rehiimber*), ^h,«^. . .^

RIGHT id .^,.«..M.._,..,...,,,...... .;.

SAVE .4d -^.^^.^ . - .r»« «.^ ,... .^ .^ ^^

SCREElsBo . , .. . , ,..,-.,. r,,,.,__ . ,....

CoorBi nate. syste/n. ,*«■•««•«...,■•..,. d...,. s.,.,.

HI-REB ,.,«,^^,,,^,^^^..,^,..,^,

MULTI COLOR

SETGRtffiH ID ..^*. **,..« „ ..^.,. ,.(^......,

SETHEADING 17,

78-81

16-17

SETXY

SPLITSCREEN

SPRITE

Defined

HI-RES

MULTI COLOR 28-

SPRITEBACK

SPRITECOLLISION

SPRITECOLOR

SPRITEPOS

SPRITESIZE

21-22

24,26

21,1-22.

16, IB

27-28

28-30

30,76

30.34

37,39

30, 34

30.35

30,34

TURTLESIZE 17,21

PROCEDURES

CIRCLE 59-62

GETBACKGROUND 62

GETBORDER 62

5ETPEN 63

GETPENCOLOR 63

BETSPRITECOLOR '. 63

GETTURTLESIZE 63

6RAPHICSTATE 63

HEADING 64

HIDESCREEN 64

POLYGON 65

BHOWSCREEN 65-66

SHOWSPRITE 66

SPRITESTATE , 66

SPRITEXCOR 66

SPRITEXSIZE 66

SPRITEYCOR 67

SPRITEYSIZE 67

TURTLESTATE 67

XCOR • 67

YCOR 68

Captain COMAL

Presents

A Graphic Primer

by

Mindy Skelton

ISBN Q-

84 Captain COMAL's Graphic Primer 84

Captain COMAL's Graphic Primer

The programs for this book are on the

matching disk with the label shown at

the bottom of this page

THE AMAZING ADVENTURES OF CAPTAIN COMAL

BOOK 1
CAPTAIN COMAL GETS ORGANIZED

By Len Lindsay

Book and Disk - $19.95

BOOK 2
COMAL FROM A TO Z

By Borge Christensen

Book - $6.95

BOOK 3
COMAL LIBRARY OF FUNCTIONS & PROCEDURES

By Kevin Quiggle
Book and Disk - $19.95

BOOK M
CARTRIDGE GRAPHICS AND SOUND
By Captain COMAL's Friends

Book - $9.95

BOOK 5
CAPTAIN COMAL'S GRAPHIC PRIMER

By Mindy Skelton
Book and Disk - $19.95

BOOK 6

COMAL WORKBOOK
By Gordon Shigley

Book - $6.95

ISBN G-IEi

GRAPHICS PRIMER DISK
C64 COMAL 0.14 © 1983

COMAL Users Group (USA)

5501 Groveland Ter. Madison, Wl 53716-3251

LOAD "BOOT*", 8 then RUN

THE AMAZING ADVENTURES OF CAPTAIN COMAL

BOOK 5

CAPTAIN COMAL'S GRAPHIC PRIMER

TM

Mindy Skelton steps you through both

turtle graphics and sprite control

