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2. REPRESENTATION OF INTEGER NUMBERS IN THE 2's_COMPLEMENT NOTATTON.

-~

Before stating the rules for the 2's complement notation, some general
remarks are required.

1. N denotes the number of binary digits in the bit string

aoal L3 ak L N aN—1.

2. & equals the value of the bit string, which is found by interpreting the
binary digits as coefficients in a polynomial of 2, i.e.

a = aozN"l + alzN—2 + eee akzN"l"k+ ces + aN_12O
N-1
_ N-1-k
—> ak2 .
k=0

We will often make use of the notation a = B,y eee By eee By g, meaning

the summation.
3. A is the signed integer represented by the above bit string.
4. ::= denotes >>represented by<<{, hence A::= a.

The bit string is interpreted as a signed integer A, in accordance with the
following rules:

Definition

s 8 forao=0

(2.1)

>
i

. - (2N— a) for a.o=1.
Conversely, the bit string representation of the signed integer A is easily ob-
tained by solving the equations (2.1) with respect to a.,
fA=|M . for A2 O
a = (2.2)
12N+A=2N-[M for A < 0. :



Examples, . .
N=4L, -8<A<7T
6::= 0110 -62:= 21‘ - 6 = 1010.

From the above-mentioned it should be observed that each of the ZN N-bit

integer numbers, x, in the interval
2Nl ¢y ¢ N1 g,

which forms en Abelian group X with respect to modulo N addition will have an
image y in the 2's complement notation.

Ix] for x > O modulo 2V

1
y = £f(x) = ﬁ

N _ x| for x < 0 modulo 2V.

The mapping establishes in fact = one-to-one correspondence between the two
intervals—ZN"lsxSZN_i— 1a.nd05y$2N— 1.

We will now develop three useful rules for finding the bit string, re-
presenting -A, when the bit string of A is known.

Theorem 2.1. If A::= & then -A::= 2N - 8.

Proof. 1) A>0: a=|a], -ari=2"_ [a] =2V _ o
2) A<0: a=2N_ |a], -ani= [a] = 2 - a. Q.E.D.

Theorem 2.2. If A::= a.oa.l oo &Nv_l then -A::= E.oal eos aN-l + 1

Proof. We obtain from Theorem 2.1 that
"A::"-: 2N - 8.081 a0 %‘_1

=2N'1-8031“'5N—1+1
"11'"1'3031"'91\7-1"'1

= Bg eee Byq + 1. Q.E.D.



Theorem 2.5. If Ats=a_ ..: &

Proof.

0 -1 am aml cee aN_1 then

-As:= 0 *** 8n.1 & Beg "o By _q Where 8 is the least signifi-
cant bit having the value 1.

Thenrem 2.2 implies that

-Aii= ag ... CI g cee ay 4 + 1.

As &y, = OthenEN_1= 1 andEN_1+ 1 = 0 plus a carry.
a.N_2 = 0 then EN-Z =1 and 51\1-2 + 1 = 0 plus a carry, and so
on until we eéncounter 8 . Because,

a =1 then §m°=~0 and Em + 1 =1 and no carry. This implies

that the bits a8, ... & , are undisturbed. Q.E.D.

The table below shows some characteristic numbers.

;s

:
is % 011 ... 1
Largest number —
| N-1
stands for [ 2 -1
i
is E 100 ... O
Smellest number I
stands for @ -2N1
llr
Zero : 000 «ee O
i




5. SHIFTING.

To implement the multiply and the divide instructions, it is necessary
to have a shift register at one's disposal. The mathematical behaviour of
shift operations is explained in this section.

An arithmetical left shift is performed by shifting the number one bit
position to the left and inserting a zero in the least significant bit.

A: = aoa.laz e aN_i aShl.A::= alaz LN aN_io

Theorem 3.1. The value of A shifted k places to the left equals 2kA.

provided that no overflow has occured.

Proof. A > 0: kashl A = 2% = 2X|a|
A< 0: kashl A = 2%a = 2¥(2N _|a]) = 29T _ 3K}a|
= 2N - 2¥|A] moaulus 2V. Q.E.D.

An arithmetical right shift is performed by shifting the number one bit
position to the right and the left most bit remains unchanged. The right most
bit is either discarded or a rounding-off procedure mey take place.

Aii= appy ... By oAy g ashrAii= ag@gey ... 8y o (ay_)

k

Theorem 3.2. The value of A shifted k places to the right equals 2 A,

provided that no truncation has taken place.

27Ka = 274

Proof. A2 0: kashr A

A< o0t kashr A =2V 14 oN-2, |, Nk okoN _a)y

oV _ 1 - (2V kL q) 4 ok _ 5Ky

i

2N _ 27k || Q.E.D.




4, ROUNDING-OFF.

Either the shifting c¢r division process may produce more digits in the
result than are desired. The positive number

01011.x1\]xm_1

would be recorded as the integer 01100 or 01011 when xN equals 1 or O, respec-
tively. The most straightforward way to obtain this rounded number is to add

a 1 in the highest order which is to be dropped, and a carry will propagste if
xN = 1. Unfortunately this method does not work for negative numbers. For exam-
ple 10010.1 (-13.5) would be rounded to 10011 (-13.0) instead of 10010 (-1L.0).
From these two examples the following rounding procedure is deducted.

Theorem k4.1, IfA2 0: add 1 to a, , if aa. . 2 10

If A< Q: add 1 to aN__1 if 8N8N+1 2 10

Example.
01110{00 14.00 10010j00 -1k.00
01101|11  13.75 10010{01  -13.75
01101{10 13.50 10010{10 -13.50
o1io1|or  13.25 10010|11  -13.25
o110t loo0  13.00 10011{00 -13.00
8N-1 By-1

The emount of egquipment required to produce a rounding procedure as above-
mentioned may be deemed excessive for some applications, and therefore the
straightforward method is often used.



S o o = v

With pencil ang paper arithmetic it is customary to add more than two
numbers simulteneously et a time. This is never done in computer arithmetic,
because the sum of only two numbers may be a (N+1)-bit number, and hence ex-
ceeds the word-capacity, -~ this is nameq overflow. By using one more bit, the
link bit a._l, in the adder circuitry a simple overflow detection is possivle,
and it is then left to the bprogrammer to remedy the situastion.

Theorem 5.1, Let A::= & and B::= b then the sum S::= 8 = at+b.
Overflow occurs if and only if 8_4 4 Sy 8_, always gives the
correct sign.

Proof.
1.A20,B20

4
]
o
n
>

00 zatla.2 see a.N_1

00%biby oun By o

0 808182 see sN—l

9
[]
o’
"
o

S:i= 8 = a+b = A+B

55 equals 1 if and only if A+B 2 2N'1. consequently overflow occurs if

8 1 e so. The link always gives the correct information about the sign of
the sun.

2. A<0,B<O

11a8, 08y, Aii= g = L _ |4
11bb, euu by, Bi:= b = 21 _ ||

1 808152 eee aN—l

1= 8 = arb = 291 | o] 4 WL g o N2 _ (lal+IBl) = 2% _ (lakIB])

When the sum of the two negative numbers satisfies the not-overflow condition .
1.e. —2N-1 £ 8 < 0, the following inequality 3.2N-1 < AL _ (lal+IBl) ¢ 21
is correct, which implies 8y = 1. The overflow test is therefore equivalent to

8 test of the two bits s_1 and so. The conténts of 8_1 determines the sign.
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3. A2 0,B<0
0=, &, .o By o A= a = 2,t?+,1
11b,b,y eee By 4 Bi:=b = - ||
118152 oes Eh_l
or 005152 ese aN_1
la] - |B] for 0 £ Jal-]B] < F-1

L L a)-1B] for -2 1 < Ja]-IR] < 0

Overflow is naturally impossible in this case and 8 4 = 8y Again the correct
sign is equivalent to 8 4

L. A<0,B2 0

This case is similar to 3.
Q.E.D.

6. SUBTRACTION.

As A - B= A + (-B) subtraction is done as follows.

Theorem 6.1. Let A::= a and B::= b then the difference
Di:=d = 858y +eo 8y 4 + Dby eee By 4 * 1. Overflow occurs

1f and only if d_, 4 dye d_, always gives the correct sign.

’ Proof. The verification of this rule is obtained by combining the
| Theorems 2.2 and 5.1. Q.E.D.

|
1
!

5::= 00101 00101

Tss= 00111 11000
1

| 11110
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1. MULTIPLICATION.

Multiplication is carried out by means of additions, subtractions, and
shifts alone. The number of operations end their order is determined by the mul-
tiplier digits. Overflow is never a problem in integer multiplication, hecause
the maximum obtainsgble result (_2N-1)‘(_2N-1) = oN-2
2N bits.

The algorithm is described in terms of a HARGOL procedure followed by a

mathematical verification. Before the reader proceeds, he might find it conve-

can be represented within

nient to consult the examples on page 13.

procedure MULTIPLY,

ey s oo O

register AR(O0:N-1)conBR(0:N-1) contains, after termination of the procedure, the
result. AR and CR are both supplied with one extra bit to avoid overflow. The re-

gister configuration is as follows,

begin integer k; register AR(-1:N-1), BR(O:N-1), CR(-1:N-1);
= O3 t=b; CR:= a;
for ki:= N-1 step -1 until 1 do
begin if BR(N-1) = 1 then AR:= AR + CR;

ashr AR con BR

end;
i1f BR(N-1) = 1 then AR:= AR - CR;
ashr AR con BR

end MULTIPLY;
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Proof.
The numerical value produced by the algorithm equels
(NashraA)xby , + ... + (kggg;A)xbk_l + «.. +(2ashrA)«<b, - (g.gQ;A)x’bo.

A2 0 AxBri= 27MAby 4 + oo+ 27KAB L4 Lul 2-20, + (27 - 271a)p,
=2 (g 4w 2N R Ly 22p, - 21y ) 4 oM
A <0 AxBii= (N2 N[al)py , torer(227Kal)p, 4o (2N - 272 Al +27 A,
1
=-lale Moy, + vee 2R 4Lt 22p, - N1y )+ 2NZ .
K=N-1

1. A2 0, B2 0 (b, = 0).

A<B::= A2 Np = apo N,
The factor Z'N designates the fact that the binary point must be moved N places
to the right.

2.A_>_O,B<O(bo=1).

AxB::= A2 N(p - zsz‘lbo) + Doy = a2 NN _ [p] - M) 4 N

2N

- alsl2N,
This is the expected result.

3. A< 0, B2 0 (b, = 0).

1
AB:i= - Al Np 4+ N b,
k=N-1
1 { N _ |algeN for B4 0
~ NN\ -N _
= 2“‘/ b - lalp2N -
k=N-1 alg2N = o for B = 0.

’-L.A(O,B(O(bo=1).

1
AxB:i= - ,A,Z—N(b - 2x2N‘1b0) + 2N / bk
' k=N-1

1_
= - |al2 V(N Ip]-2N) + ZNY—:‘bk = |allsl2N,
K=N-1
Q.E.D.




Examples, N = 3.

ashr

ashr
ashr

ashr
ashr

ashr

2x5=6

0010 x 011
0000

0010 lo11
0010

o001 olo1
0010

0011

ooo1 10lo
0000 110

2(-4) = -8

0010 x 100
0000

0000 0[10
0000 001

0010

1110

1111 000

ashr
ashr

ashr

ashr
ashr

ashr
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2<(-3) = -6

0010 = 101
0000

oo10 101

0010

ooo1l ol10
0000 10]1

0010

1110

1111 010

(-U)<(-4) = 16

1100 = 100
0000

0000 ol10
0000 00]1
1100

0100

0010 000
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8. DIVISION.

The non-restoring division method has been chosen in preference to
the restoring method, because the latter requires extra cycles for resto-
ration, which of course is time consuming. Speed may be gained by using
more elaborate methods, but they are unfortunately very expensive to im-
plement. As it is of paramount importance that the remainder and the di-
vidend have the same sign much of the following is devoted to this topic.
0 dividend, Xk
D divisor, R remainder, and N is the register capacity; thus

XO = QD + R.

The symbols used are: X partial remainder, Q quotient,

8.1. Quotient Determination.

By the non-restoring method, one binary quotient bit is determined in
each iteration of a recursive process. The recursive equation for the kith
iteration generates a new partial remainder Xk&l' as a function of the pre-
sent partial remainder Xk and the divisor D. The dividend.Xo is the remainder
before the first iteration. The recursive equation includes either a subtrac-

tion or an addition depending on the relative signs of Xk and D.

The relationships are:

sgrX, = senD = q 4 =1, X,

sgnX, 4 sgnD = q _, =0, X,

2X, - pX
2)(K+D2N

k=o|1..o. .N—lﬂ

A single recursive equation combining the above conditions is:

X, = 2% - (2q_, - 1)p2'. (8.1)

The process, from which the definitions of qk—l have been derived, gene-
rates an infinite sequence of quotient digits. This is necessary since the di-
vidend and divisor are, in general, incommensurable. However, the truncation of
the recursive process after the determination of N+1 digits requires some form
of rounding of the quotient. This implies that the least significant digit qN—l
cannot be defined as in (8.1). In order to determine the digit values in a quo-
tient of N+1 digits, the ratio XO/D is derived by cambining the first N itera-
tions of (8.1).



X, =2X_ - (2, - 1)p2N

1 (0] q-1

- - - N _ _ _ N7 _ _ N
X, = 2X, - (2q, - 1)p2" = 2[2X, - (2q_, - 1)p2"] - (2q, - 1)D2

2 N N
2%, - 2(2q_, - 1)p2" - (29, - 1)D2
and the final remainder XN is easily seen to be

_ Ny oNpoN-1 _ N-2 _ _
XN = 2 XO p2'[2 (2(_1_1 1) + 2 (2qO 1) + ... + (2qN_2 1)]

N-2
_ N N O\ N-k-2
Xy = 2 Xo - D2 / 2 (2qk - 1)
k=-1
N-2
XO/D = (X.N/D)Z_N + > oN-k-2 (2qk -1)
k=-1
N-2 N-2
N, XX N-k-1 ~k-2
= (xy/D)2™ + 2 q, - zN‘>> 2
= k=-1
N-2
= (XN/D)?._N + ZNq_1 + 2_ zN'k"lqk - 2N(2—1 + 2% 4 L.+ Z'N)
k=0
N-2
= (xg/D)2 " + 2q_, + ;2_‘ MNklg 41 - 2F
<
N-2
Xg -[(q1—1)2N+\ oN-k-1 q, + 1]D+XN2N

- 15 -

(8.2)
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By comparing the above equation with Xo = QD + R, the quotient is seen
to be included in the parentheses and U_q = 1. The final remainder is
xNz‘N.
1. If sanO = sgnD thenq 4y =1 and
N-2
Q= 0«2 + E FrEtl g 4 o<a<d
- k=0
2. If sano =lr sgnD then a_4 = 0 and
N-2
\ -k-1
Q-——2N+ :‘ZN qk+1 —2N<Q<O
k=0
When Q is negative, the representation of Q in the 2's complement form
is
N-2
i + N k-
Q::=2N+—|Q|=2Nl—(2N—/ szj‘qk—l)
k=0
e -k-1
Q= ZN + % ZN 9 + 1
k=0
Now it should be clear that the various digits of Q can be defined as
follows:
Q::= q195% -°- qN_21. (8.3)

"The example below serves as an illustration of how division is
implemented by using three N-bit registers plus one additional bit.




.
!
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QD + R, 27 = 6<4 + 3, N=k,

Note, the partial remainder X1 lies in the interval —22N 5 X1 5 2

0

X, = 00.001 1011

2X, = 00.011 0111
11.100

X, = 11.111 0111

2x, = 11.110 11]1 0
00.100

X, = 00.010 11110

2X,, = 00.101 111 01
11.100

X5 = 00.001 111 01

2X, = 00.011 lto11
11.100

X), = 11.111

Q::= 00111 = 7 and R::= 11111 = ~-1.

2N_2'

which implies that it is always correct represented in the (2N + 1)-bit

register.

8.2. Remainder and Overflow Determination.

In all non-restoring division methods, the
sometimes end with different signs. As we

cept when the remainder is zer

arises when the quotient exceeds N

to detect this overflow situation.

Case XO D
i 2 0 2 0
2 201 <0
3 <ol2o0
L <o0t1<o0

remainder and the dividend
wish that the signs are equal - ex-
o - a correction is required. Another problem
bits, and a simple check must be provided

Let us consider the following four cases.

XO=Q,D+R
Xo /D =Q+ R/D
-1<R/DK1
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The restrictions on Xb, D, Q, and R are for N = 24:

_2“75x0521*7-1, P2 <p< P -1,
2?2 <q ¢ -1, P (rR< P -1

Throughout this section q denotes the summation of the bit pattern

A3 9 Y -+ B33 2 notation which only differs from the one introduced
in Section 2 with respect to q_l. In the final 24-bit quotient a_ is
dropped, but as we shall see later on it plays an important role in the
overflow test.

1.XOZO,D2_O;0_<_R<D,OSQ_<_223—1.

Overflow Condition.
Q=X,/D-RMD2O => X/D 2 B/D = Xy2 0 +);

this condition is always fulfilled.

Q= O/D-R/D<225-1 =>xo/1)_<_223-1+R/D<223 =>

223D < Os

xo_

i.e. correct quotient if X, = 2X; - 24p ¢ 0. +) (8.4)

Remainder.
Now condition (8.4) implies that X, =2 + ZZhD from which we can
deduce X, 2 - 2. 24D + 2*p = -2¥p, X, < 2«0 + 24y = P4, or
-#*p ¢ %, < 2.
Continuous iterations confirm the following result
A ¢ X, < 24D,

+) This statement is also correct for D = O.
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The final modified remainder r = 22uR and Q are
= X . < %, < 22
24 L
r=X,,+2 D Q::= g-1 for -2°'D < Xy, < 0.

Alternative Overflow Condition.

As shown later on, an overflow test based on X1 requires that the
inequalities Xy < 0, Xy < 0, X4 2 0, and X > O are satisfied in the four

cases 1, 2, 3, and 4 respectively.

From a technical point of view, this is not a suitable solution for
two reasons; firstly, the inequality depends on XO and D, and secondly, the
hardware inplementation of X; 2 O requires a costly decoding. Our alterne-
tive solution is a simple comparison of q_y; and q,, independent of XO and D.
The proof of this test is one of the major alms of this section.

1Ta) X4 < O.
As sano = sgnD and sgnXy 4 sgnd then a_lqo = Q0.
The remainder correction has no influence on a_q and 45 consequently
X1<O=>q_1=q0.
1Tb) X; 2 O.
As sgn Xy = sgnD and sgnX; = sgnD thenla_lqo = 01, which implies
X 20=>a; %d:-
The alternative overflow test is found by combining 1Ta and 1Tb.
No overflow <=> X; < 0 <=>‘a_1 = Q53 before or after remainder correc-

tion.

2. % > 0,D<0; 0SR<-D, - 22 Q<o

Overflow Condition.
Q=X/D-RDLO0 =X/DSR/D = X5 2 0
this condition is always fulfilled.

Q=X0/D—R/DZ—223 =>x0/1>2_-223 +BD> P -1 % <-#p -1y

i.e. correct quotient if Xi = zxo + @hD < -2D. (8.5)




- 20 -

Remainder.
Let us divide the investigation of (8.5) into two parts.

2Ra) X, < O ; hence sgnX, = sgnD and X, = 2X) - 22¥D.

We obtain as in 1, 224D <X < -22¥D. from which r and Q are deduced.

q for  0< Xy < 22

T =X Q:

T = qu - ZZhD Q:=q + 1 for 224D 5 th < 0.

2Rb) 0 £ X1 < -2D; hence san1 4 sgnD and X2 = 2X1 + 22hD.

X, 2 22%D ana x, < -2°D + 22 or 224 < %, < 2%D + 22,

X3 2X2 - 22uD is now calculated to satisfy the inequalities

b L

2k, D5x5<-23n+221)

X5 2 2

. X3 < -23D + 22th or 22

Continuous iterations result in 22hD <Xy < —ZzuD + 22hD =0,

that is a correction of the remainder is always necessary.

Ly

r = Xy, - 2°D Qii=q+ 1 for 22D < Xy, < O-

Alternative Overflow Condition.

2Ta) ¥X; < O.

As sgnX, 4 sgnD and sgnX, = sgnD then a&lqo = 11,

The bit pattern'a_lqo is only influenced by the remainder correction
ifgq=11 ... 1 fnd qu € 0, in which case q_lqo becomes 00.

Hence X1 < o= a4 = 9e
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2Tb) 0 £ X; < -2D.

As sgn XO +4 sgnD and san1 4 sgnD then §_1q0
The necessary correction, however, cancels the discrepancy between the
two overflow tests, because Q::= 1011 ... 1 + 1 = 1100 ... O (= ~223).

Therefore, so far, the alternative test is valid after remainder cor-

= 10.

rection.

2Tc) Xl < -2D.

As sano 4 sgnD and sgriy < sgnD then'ﬁ_lqo = 10.

This shows that the q ,q. test is correct before correction, but as seen

-170
from the example below this is not generally true when a correction is

involved.

Q(-1) + R. N =L,

i

Exemple. X, = QD + R. 127

1111 | X, 00111 1111

01111 11 1lo q, =0
11111

X, 01110 11 1lo
11101 1100 9y = O
11111

X, 11100 1 1§00
11001 1loo 1 q =1
00001

X, 11010 1loo0 1
10101 loo11 q, =1
00001

%X, 10110

q + 1= 10111 + 1 = 11000 and Q::= 1000.

The consequence of this example is that the q__lqO test is only valid
before any correction, and therefore the otherwise correct quotients obtained
in 2Rb are considered to exceed the N-bit capacity. We would like to empha- -
size that the test X1 < -2D is normally too complex to be used in a micro-
program, so anyway we would have restricted ourselves to the interval X1 < 0.
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L

Xl = ZXO + 22 D < 0 implies XO/D = Q + R/D > —223, hence the simple

overflow test becomes:

No overflow and Q + R/D > 223 (= X, o= "q'__l = q before remainder

correction.

5. X,<0,D20; -D<RZO, -22 <q<o.

Overflow condition.

Q=X,/D-R/DLO= X,/D < B/D = Xy <0 +);
this condition is always fulfilled.

Q=X/p-RD) - > X,/D2 -2 +B/p> P> -1 X, > -#p - 1y

i.e. correct quotient if Xl = ZXO + 22)+D > -2D. +) (8.6)

Remainder.

To investigate this, we divide the range of X1 into two parts.

3Ra) X 2 0; hence sgn)(l senD a.ndx2 = 2}(1 - 221‘13.

We obtain as in 1, -2D < X, < Z*D, from which r and Q ere deduced.
r=xzh-22hD Qi:=q + 1 for O<X2,+<221‘LD
T =X, Qi:=gq for —22!‘LD <Xy L0
T = xzh + ZZhD Qi:=q - 1 for xzh = —22hD.

+) This statement is also correct for D = O.
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3Rb) -2D < Xl < 03 hence san1 % sgnD and X,, = 2X1 + 22h .

2

Continuous iterations, as in 2Rb, confirm the following inequality

0 = -224 4+ 22 ¢ X, < 22hy

that is a correction of the rerainder is always necessary.
- _ 52k .ee 2
iy th 2°D Q::i=q + 1 for 0 < qu <2 uD.

Note, @a. =g .= .., 1.

o~ 11 =9 7

Alternative Overflow Condition.

3Ta) X, 2 0.
As sanO 1 senD and san1 = sgnD then ﬁ_lqo = 11,
The bit pattern ﬁ_lqo is only influenced by the remainder correction
ifqgq =11 ... 1 and qu 2 0, in vwhich case a;lqo becomes Q0.
= q = .
Hence X1 20 a_, qo
ym)—z><x1<o.
As sanO 4 sgnD and san1 4 sgnD then a_lqo = 10.
Although ?q_lqo = 11 after the appropriate remainder modification, the
quotient is considered to exceed the N-bit capacity. This case is simi-

lar to 2Tb.

3Te) X, < -2D.

As sano 4 sgnD and sgnxl 4 sgnD the a_lqo = 10.
Xl = 2XO + 224D 2 O implies XO/D =Q + R/D 2 —22'3 and this inequali-

ty in conjunction with 3Ta, 3Tb, and 3Tc determines the alternative over—
flow test.

No overflow and Q + R/D > 2 <= X, 20<= q, = 9, before remainder

correction.



b X, <0, D<O;D<REO,0¢Qg 2% -1,

Overflow condition.
Q=XO/D—R/DZ 0 => XO/DZ_R/D=> X, < 05
this condition is always fulfilled

Q =X /D - R/D < 223 _ 1 Xo/D & 223 _ 1 + B/D < 223 > X, > 2%p;

i.e. correct quotient if Xl = 2}{0 - 22Ll'D > 0. (8.7)

Remainder.
Now concéition (8.7) implies that X2 = 2X1 + 22)'"D and we obtain simi-
lar to 1 ~22L"D < qu < 22)4]\.
The rules for r and Q are therefore as follows.

2k 24
= HEE I« -2°7"D
T X2h+2 D Q q-1 for O<X21+<
= T = L" <
r =X, Q:i=gq for 27D < Xy, $ O
= - L"'F = o == bd 22)4
r=X, 2%y = o Q:= q+ 1 for X, D .
Alternative Overflow Condition.
4Ta) X > 0.
As sanO = ggnD and san1 4 sgnD then ﬁ_lqo = Q0.
The remainder correction has only influence on q ,q_ if the two con-

-170
s _ _ _ _ _ 2 .
ditions q1 = q2 = .6 = q22 = 1 and qu = 22 D are satisfied. It is

easily proved that these two conditions are contradictory.

9, = 0 =>x2=2x1+22“3>22“13
g =1 =% <0 =>x5=2x2-22hn>2?‘*n
Q=1 =X <0 =>xh=2x3-22“17>221‘19
q22=1 = X5 <0 => x2h=2x22-22hn> 24,

Hence X, > 0= -q_l = g4+
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LTo) X, =
As sgnX, = sgnD and sgnX; 4 sgnD then a_lqo = 00, which is in contra-
distinction to (8.7). But from the above formulae it follows that

= o2k g = - _
Xé X3 ce- =X,), = 27D and QY =Y = ee. = Aoz = 1; therefore
Qi:i=q + 1 and q 1qo 01 after correction.

4Tc) X < 0.
As sanO = sgnD and san1 = sgnD then g 1qO 01, which implies
X, <0=>aq, 4q,

The overflow test is found by combining U4Ta, 4Tb, and 4Tec.

No overflow <= X > 0<=q 1 = 4, both before and after remainder

correction.

This completes the proof of the alternative overflow condition,
which we can summarize as follows:
The quotient is correct represented within N bits if

a) 5;1 = q, before remainder correction and

b) 5;1 = q, after remainder correction,
the latter being a consequence of the former except for

XO<O,D<O.a.ndXN=2ND.
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