UL

2000

DATAMATICS

RC 4000 SOFTWARE
MULTIPROGRAMMING SYSTEM

Edited by
Per Brinch Hansen

2. edition

A/S REGNECENTRALEN
Copenhagen — February 1971

RCSL No: 55-D140

FOREWORD

The RC 4000 multiprogramming system consists of a monitor program that can be
extended with a hierarchy of operating systems to suit diverse requirements of
program scheduling and resource allocation.

This manual defines the functions of the monitor and the basic operating system,
which allows users to initiate and control parallel program execution from type-
writer consoles. The manual is divided into four parts: -

PART L. GENERAL DESCRIPTION
PART II. MONITOR FUNCTIONS
PART III. CATALOG INITIALIZATION
PART IV. BASIC OPERATING SYSTEM

The general description explains the philosophy and structure of the system. This
part will be of interest to anyone wishing an understanding of the system in order
to evaluate its possibilities and limitations without going into details about exact
conventions. The discussion treats the hardware structure of the RC 4000 only in
passing.

The initialization of the catalog of files on the backing store and the basic operating
system should be studied by those who are to operate the system from consoles.
The definition of monitor functions is of interest mainly to programmers. Since it
contains exact conventions for the use of monitor procedures in assembly language,
the reader must be familiar with the manuals of the RC 4000 computer and the
slang assembler.

A maintenance manual of the system will be published separately.

The design of the system is based on the ideas of Jorm Jensen, Soren Lauesen, and
the author; Leif Svalgaard participated in its implementation.

CONTENTS
PARTI. GENERAL DESCRIPTION

SYSTEMOBJECTIVES
ELEMENTARY MULTIPROGRAMMING PROBLEMS

13
15
15
15
16
17
18
18
18
19
20
21
21
21
23
25
27
27
28
29
29

2.1 Multiprogrammingt
2.2. Parallel Processeso oo v v oo
2.3. Mutual EXClusion v i i e
24, Mutual Synchronization
BASIC MONITORCONCEPTS
3.1. IntrodUuCtion v i e
3.2. Programs and Internal Processes
3.3. Documents and External Processes
3.4. MOMILOT & o v e e e e e e e e e e e
PROCESS COMMUNICATION s
4.1. Message Buffersand Queues
4.2, Send and Wait Procedureso
4.3. General Event Procedures oo
44. Advantages of Message Buffering
EXTERNALPROCESSES e
5.1. Initiation of Input/Output e
5.2. Reservationand Release
5.3. Creationand Removal
S4. Replacement of External Processesooovne e
INTERNALPROCESSESo
6.1. Creation, Control,and Removal"
6.2. ProcessHierarchy i
6.3. ProcesSSTALES . v v v e e e
RESOURCECONTROL e
7.1. INtroducCtion . . . o v e e
7.2. Time-Slice Scheduling e
7.3. Storage Allocation and Protection
74. Message Buffers and Process Descriptions
7.5. Peripheral Deviceso
7.6. Privileged Functions oo
MONITOR FEATURES e
8.1. Internal Interruption o
8.2. Real-TimeClock oot
8.3. Console Communication
8.4. Fileson BackingStore
SYSTEM IMPLEMENTATION s

9.1. Interruptable Monitor Functionsove e

1.

12.

CONTENTS
9.2. StoppingProcesses 45
9.3. SystemSize 47
94. SystemPerformance 48
95. SystemTape 49
SYSTEMPOSSIBILITIES 50
10.1. ldentificationof Documents 50
10.2. Temporary Removal of Programs e 50
10.3. BatchProcessing 51
104. Time-Sharing 51
10.5. Real-Time Scheduling 52
PART II. MONITOR FUNCTIONS
GENERALMONITOR CONVENTIONS 55
11.1. MonitorCall 55
11.2. InterruptHandling 55
11.3. FunctionMask 56
IV4. Names 57
I1.5. CatalogProtection 57
DEFINITION OF MONITORPROCEDURES 58
12.1. Procedure SetInterrupt 59
12.2. Procedure Process Description 60
12.3. Procedure Initialize Process 61
12.4. Procedure Reserve Process 62
12.5. Procedure Release Process 63
12.6. ProcedurelIncludeUser 64
12.7. Procedure ExcludeUser 65
12.8. ProcedureSendMessage 66
12.9. Procedure Wait Answer 67
12.10. Procedure WaitMessage 68
12.11. Procedure Send Answer 69
12.12. ProcedureWaitEvent, . .. 70
12.13. ProcedureGetEvent 71
12.14. Procedure Type Working Register 72
12.15. ProcedureGetClock 73
12.16. ProcedureSetClock 74
12.17. ProcedureCreateEntry 75
12.18. Procedure Look UpEntry 76
12.19. Procedure ChangeEntry 77
12.20. Procedure Rename Entry 78
12.21. Procedure Remove Entry 79
12.22. Procedure PermanentEntry 80

13.

14.

1S.

CONTENTS 7

12.23. Procedure Create AreaProcess 81
12.24. Procedure Create Peripheral Process 82
12.25. Procedure Create Internal Process 83
12.26. Procedure Start Internal Process 85
12.27. Procedure Stop Internal Process 86
12.28. Procedure Modify Internal Process 87
12.29. Procedure Remove Process 88
12.30. Procedure Testcall 90
12.31. Procedure Generate Namecouueunn... 91
DEFINITION OF EXTERNALPROCESSES 92
13.1. ProcessKind 93
13.2. Input/Output Messagesocuouuoernnn 94
13.3. IntervalClock e 95
13.4. BackingStore Areauuuuunnana. . 96
13.5. Drum(RC4320) i 98
13.6. Typewriter(RC315) 99
13.7. Paper Tape Reader(RC2000) 102
13.8. Paper TapePunch (RC150) 104
13.9. LinePrinter(RC610), 105
13.10. Punched Card Reader (RC405) 106
13.11. Magnetic Tape Station (RC747) 108
13.12. ISOto Flexowriter Conversion 111
13.13. FlexowritertoISOConversion 112
13.14. EBCD to ISO CONVErsion - - - -« v v v e e oo eaeo e e 113
PART III. CATALOG INITIALIZATION
INITIALIZING FUNCTIONS s 117
141, Introduction 117
14.2. Definition of BackingStore 117
143. Loadingof BackingStore 118
DEFINITION OF INITIALIZINGCOMMANDS 120
15.1. CommandLanguagey 120
152, NewcatCommand 120
153, OldcatCommandt 120
154. CreateCommandttt 120
15.5. ChangeCommand 121
15.6. RenameCommand 121
15.7. RemoveCommand« ey 121
15.8. PermanCommando 121
159. LoadCommandt 121
15.10. Console Messages i 121

16.

17.

CONTENTS
PARTIV. BASIC OPERATING SYSTEM

OPERATING SYSTEMFUNCTIONS 125
16.1. Introduction 125
16.2. Controlof Internal Processes 125
16.3. Control of External Processes 127
164. DateandTime, 127
16.5. SystemStatus 127
16.6. Communication Strategy 128
DEFINITION OF CONSOLECOMMANDS 129
17.1. Console Parameters u.oon... 129
17.2. ConsoleClassification 130
17.3. CommandSyntax 130
174. NewCommand 131
17.5. ProcCommand 131
17.6. ProgCommand 131
17.7. SizeCommand 131
17.8. AddrCommand 131
17.9. BufCommand 131
17.10. AreaCommand, 132
17.11. IntemalCommand 132
17.12. FunctionCommand 132
17.13. CatalogCommand 132
17.14. KeyCommandc.c.uei.... 132
17.15. PrCommand 132
17.16. PkCommand 132
17.17. CreateCommand0...... 133
17.18. LoadCommand, 133
17.19. StartCommand 134
17.20. InitCommand 134
17.21. RunCommando, 134
17.22. StopCommand 134
17.23. BreakCommand 134
17.24. RemoveCommand 135
17.25. IncludeCommand 135
17.26. ExcludeCommand 135
17.27. CallCommand 135
17.28. NewdateCommand 135
17.29. DateCommand 136
17.30. MaxCommand 136
17.31. ListCommand 136
17.32. ConsoleMessages 136
17.33. ChildMessages 0. . 137

CONTENTS 9

APPENDIX. IMPLEMENTATIONDETAILS 138
Al Administrationof Queueso 139
A2, Administration of Time Slices 140
A3, Administration of Message Buffers 141
A4 Administration of Console Buffers 143
AS. Administration of Process Descriptions 144
A6, Format of Internal Process Description 145
AT Format of Peripheral Process Description 147
A.8. Format of Area Process Description 148
A9. Administration of BackingStore 149
A.10. Selected ExecutionTimes 151
VOCABULARY OF MONITOR CONCEPTS 152
INDEX .. 155

PART I.
GENERAL DESCRIPTION

Chapter 1
SYSTEM OBJECTIVES

This chapter outlines the philosophy that guided the design of the RC 4000 multi-
programming system. It emphasizes the need for different operating systems to suit
different applications.

The pri multiprogramming is to share a central processor and its

peripheral equipment among a number of programs loaded in the internal store.
This is a meaningful objective if single programs only use a fraction of the system
resources and if the speed of the machine is so fast, compared to that of periph-
erals, that idle time within one program can be utilized by other programs.

The present system is implemented on the RC 4000 computer, a 24-bit, binary
computer with typical instruction execution times of 4 microseconds. It permits
practically unlimited expansion of the internal store and standardized connection
of all kinds of peripherals. Multiprogrammine is facilitated by concurrency of program
'e_g_(-ecution and input/output, program interruption, and storage protection.

The aim has been to make multiprogramming feasible on a machine with a minimum
internal store of 16 k words backed by a fast drum or disk. Programs can be written in
any of the available programming languages and contain programming errors._The
storage protection system guaraptees non-interference amang & parallel programs. but
The sy =% standard multiprogramming techniques: the central processor is
shared between loaded programs. Automatic swapping of programs in and out of the
store is possible but not enforced by the system. Backing sto i nized as a
common data bank, in which users can retain named files in a semi-permanent manner.
The system allows a conversational mode of access from typewriter consoles.

An essential part of any multiprogramming system is an operating system, a program
that coordinates all computational activities and input/outpyt. An operating system
must be in complete control of the strategy of program execution, and assist the users

with such functions as operator communication, interpretation of job control state-
ments, allocation of resources, and application of execution time limits.

For the designer of advanced information systems, a vital requirement of any
operating system is that it allows him to change the mode of operation it controls:

otherwise his freedom of design can be seriously limited. Unfortunately this is
precisely what present operating systems do not allow. Most of them are based
exclusively on a single mode of operation, such as batch processing, priority sched-
uling, real-time scheduling, or time-sharing.

When the need arises, the user often finds it hopeless to modify an operating system
that has made rigid assumptions in its basic design about a specific mode of operation.
The alternative — to replace the original operating system with a new one — is in most

14 1. SYSTEM OBJECTIVES

computers a serious, if not impossible, matter, the reason being that the rest of the
software is intimately bound to the conventions required by the original system.

This unfortunate situation indicates that the main problem in the design of a
multiprogramming system is not to define functions that satisfy specific operating
needs, but rather to supply a system nucleus that can be extended with new operating
systems in an orderly manner. This is the primary objective of the RC 4000 system.
The nucleus of the RC 4000 multiprogramming system is a monitor program with
complete control of storage protection, input/output, and interrupts. Essentially the
monitor is a software extension of the hardware structure, which makes the RC 4000
more attractive for multiprogramming. The following elementary functions are imple-
mented in the monitor:

scheduling of time slices among programs executed
in parallel by means of a digital clock,

initiation and control of program execution at
the request of other running programs,

transfer of messages among running programs,

initiation of data transfers to or from peripherals.

The monitor has no built-in strategy of program execution and resource allocation; it
allows any program to initiate other programs in a hierarchal manner and to execute
them according to any strategy desired. In this hierarchy of programs an operating
system is simply a program that controls the execution of other programs. Thus
operating systems can be introduced in the system as other programs without
modification of the monitor. Furthermore operating systems can be replaced dyna-

mically, enabling each installation to switch among various modes of operation;
several operating systems can, in fact, be active simultaneously.

In the following chapters we shall explain this dynamic operating system concept in
detail. In accordance with our philosophy all questions about particular strategies of
program scheduling will be postponed, and the discussion will concentrate on the
fundamental aspects of the control of an environment of parallel processes.

Chapter 2

ELEMENTARY MULTIPROGRAMMING PROBLEMS

This chapter introduces the elementary multiprogramming problems of mutual ex-
clusion and synchronization of parallel processes. The discussion is restricted to the
logical problems that arise when independent processes try to access common vari-
ables and shared resources. An understanding of these concepts is indispensable to the
uninitiated reader, who wants to appreciate the difficulties of switching from uni-
programming to multiprogramming.

2.1. Multiprogramming
In multiprogramming the sharing of computing time among programs is controlled by
a clock, which interrupts program execution frequently and activates a monitor_

_program. The monitor saves the registers of the interrupted program and allocates the

next slice of computing time to another program and so on. Switching from one
program to another is also performed whenever a_program must wait for the com:
pletion of input/output.

Thus although the computer is only able to execute one instruction at a time,
multiprogramming creates the illusion that programs are being executed simulta-
neously, mainly because peripherals assigned to different programs indeed operate in
parallel.

2.2. Parallel Processes

Most of the elementary problems in multiprogramming arise from the fact that one
process (e.g. an executed program) cannot make any assumptions about the relative
speed and progress of other processes. This is a potential source of conflict whenever
two processes try to access a common variable or a shared resource.

It is evident that this problem will exist in a truly parallel system, in which programs
are executed simultaneously on several central processors. It should be realized,
however, that the problem will also appear in a quasi-parallel system based on the
sharing of a single processor by means of interrupts; since a program cannot detect
when it has been interrupted, it does not know how far other programs have
progressed.

Another way of stating this is that if one considers the system as seen from within a
program, it is irrelevant whether multiprogramming is implemented on one or more
central processors — the logical problems are the same.

Consequently a multiprogramming system must in_general be viewed as an envi-
ronment with a number of truly parallel processes. Having reached this conclusion, a

natural generalization is to treat not only program execution but input/output also as
independent, parallel processes. This point will be illustrated abundantly in the
following chapters.

16 2. 3. MUTUAL EXCLUSION

2.3. Mutual Exclusion

The idea of multiprogramming is to share the computing equipment among a number
of parallel programs. At any moment, however, a given resource must belong to one
program only. In order to ensure this it is necessary to introduce global variables,
which programs can inspect to decide whether a given resource is available or not.

As an example consider a typewriter used by all programs for messages to the
operator. To control access to this device we might introduce a global boolean
typewriter available. When a program p wishes to output a message, it must examine
and set this boolean by means of the following instructions:

wait: load typewriter available
skip if true
jump to wait
load false
store typewriter available

While this is taking place the program may be interrupted after the loading of the
boolean, but before inspection and assignment to it. The register containing the value
of the boolean is then stored within the monitor, and program q is started. Q may load
the same boolean and find that the typewriter is available. Q accordingly assigns the
value false to the boolean and starts using the typewriter. After a while q is inter-
rupted, and at some later time p is restarted with the original contents of the register
reestablished by the monitor. Program p continues the inspection of the original value
of the boolean and concludes erroneously that the ty pewriter is available.

This conflict arises because programs have no control over the interrupt system. Thus
the only indivisible operations available to programs are single instructions such as
load, compare, and store. This example shows that one cannot implement a multi-
programming system without ensuring a mutual exclusion of programs during the
inspection of global variables. Evidently the entire reservation sequence must be
£xecuted as an indivisible function. Qne of the purposes of a monitor program is to
execute indivisible functions in the disabled mode.,

In the use of reservation primitives one must be aware of the problem of "the deadly
embrace’’ between two processes, p and g, which attempt to share the resourcesrand s
as follows:

process p: wait and reserve(r) - - - wait and reserve(s) -
process q: wait and reserve(s) - - - wait and reserve(r) -

This can cause both processes to wait forever, since neither is aware of that it wants
what the other one has.

To avoid this problem we need a third process (an operating system) that controls the
allocation of shared resources between p and q in a manner that guarantees that both
will be able to proceed to completion (if necessary by delaying the other until

resources become available).

2.4. MUTUAL SYNCHRONIZATION 17

2.4. Mutual Synchronization

In a multiprogramming system parallel processes must be able to cooperate in the
sense that they can activate one another and exchange information. One example ofa
process activating another process is the initiation of input/output by a program.
Another example is that of an operating system that schedules a number of programs.
The exchange of information between two processes can also be regarded asa problem
of mutual exclusion, in which the receiver must be prevented from inspecting the
information until the sender has delivered it in a common storage area.

Since the two processes are independent with respect to speed, it is not certain that the
receiver is ready to accept the information at the very moment the sender wishes to
deliver it, or conversely the receiver can become idle at a time when there is no further
information for it to process.

This problem of the synchronization of two processes during a transfer of information
must be solved by indivisible monitor functions, which allow a process to be delayed
on its own request and activated on request from another process.

For a more extensive analysis of multiprogramming fundamentals, the reader should
consult E. W. Dijkstra’s monograph: Cooperating Sequential Processes. Math. Dep.
Technological University, Eindhoven, (Sep. 1965).

Chapter 3

BASIC MONITOR CONCEPTS

This chapter opens a detailled description of the RC 4000 monitor. A multiprogram-
ming system is viewed as an environment in which program execution and input/out-
put are handled uniformly as cooperating, parallel processes. The need for an exact
definition of the process concept is stressed. The purpose of the monitor is to bridge
the gap between the actual hardware and the abstract concept of multiprogramming.

3.1.Introduction
The aim has been to implement a multiprogramming system that can be extended with
new operating systems in a well-defined manner. In order to do this a sharp distinction
must be made between the control and the strategy of program execution.
The mechanisms provided by the monitor solve the logical problems of the control of
parallel processes. They also solve the safety problems that arise when erroneous or
malicious processes try to interfere with other processes. They do, however, leave the
choice of particular strategies of program scheduling to the processes themselves.
With this objective in mind we have implemented the following fundamental mecha-
nisms within the monitor:

simulation of parallel processes,

communication among processes,

creation, control, and removal of processes.

3.2. Programs and Internal Processes

As a first step we shall assign a precise meaning to the process concept, i.e. introduce
an unambiguous terminology for what a process is and how it is implemented on the
RC 4000.

We distinguish between internal and external processes, roughly corresponding to

program execution and input/output.

More precisely: an_internal process is the execution of one or more interruptable
programs in a given storage area. An internal process is identified by a unique process
rame. Thus other processes need not be aware of the actual location of an internal
process in the store, but can refer to it by name.

The following figure illustrates a division of the internal store among the monitor and
three internal processes, p, q,and r:

3.3 DOCUMENTS AND EXTERNAL PROCESSES 19

MONITOR

INTERNAL
PROCESS P

INTERNAL
PROCESS Q

INTERNAL
PROCESS R

Later it will be explained how internal processes are created and how programs are
loaded into them. At this point it should only be noted that an internal process
occupies a fixed, contiguous storage area during its whole lifetime. The monitor hasa
process description of each internal process; this table defines the name, storage area,
and current state of the process.

Computing time is shared cyclically among all active internal processes; asa standard
the monitor allocates a maximum time slice of 25 milliseconds to each internal process

in turn; after the elapse of this interval the process is interrupted and its registers are
stored in the process description; following this the monitor allocates 25 milliseconds
to the next internal process, and so on. The cyclic queue of active internal processes is
called the time slice queue.

A sharp distinction is made between the concepts program and internal process. A
program is a collection of instructions describing a computational process, whereas an
internal process is the execution of these instructions in a given storage area.

An internal process like p can involve the execution of a sequence of programs, for
example, editing followed by translation and execution of an object program. Itisalso
possible that copies of the same program (e.g. the Algol compiler) can be executed
simultaneously in two processes q and r. These examples illustrate the need for a
distinction between programs and processes.

3.3. Documents and External Processes

In connection with input/output the monitor distinguishes between peripheral de-
vices. documents, and external processes.

A peripheral device is an item of hardware connected to_the data channel and

identified by a device number.

20 3.4. MONITOR

A document is a collection of data stored on a physical medium. Examples of
documents are:

aroll of paper tape,

adeck of punched cards,

a printer form,

areel of magnetic tape,

a data area on the backing store.

By the expression external process we refer to the input/output of a given document
identified by a unique process name. This concept implies that once a document has
been mounted, internal processes can refer to it by name without knowing the actual
device it uses.

For each external process the monitor keeps a process description defining its name,
kind, device number, and current state. The process kind is an integer defining the
kind of peripheral device on which the document is mounted.

For each kind of external process the monitor contains an interrupt procedure that
can initiate and terminate input/output on request from internal processes.

3.4. Monitor

The monitor is a program activated by means of interrupts. It can execute privileged
instructions in the disabled mode, meaning that (1) it is in complete control of
input/output, storage protection, and the interrupt system, and that (2) it can execute
a sequence of instructions as an indivisible entity.

After initial system loading the monitor resides permanently in the internal store.

We do not regard the monitor as an independent process, but rather as a software
extension of the hardware structure, which makes the computer more attractive for
multiprogramming. Its function is to (1) keep descriptions of all processes; (2) share
computing time among internal and ex ternal processes; and (3) implement procedures
that processes can call in order to create and control other processes and communicate
with them.

So far we have described the multiprogramming system as a set of independent,
parallel processes identified by names. The emphasis has been on a clear understanding
of relationships among resources (store and peripherals), data (programs and docu-
ments), and processes (internal and external).

Chapter 4

PROCESS COMMUNICATION

This chapter deals with the monitor procedures for the exchange of information
between two parallel processes. The mechanism of message buffering is defended on
the grounds of safety and efficiency.

4.1. Message Buffersand Queues

Two parallel processes can cooperate by sending messages to each other.

A message consists of eight words. Messages are transmitted from one process to
another by means of message buffers selected from a common pool within the
nionitor.

The monitor administers a message queue for each process. Messages are linked to this
queue when they arrive from other processes. The message queue is a part of the
process description. :

Normally a process serves its queue on a first-come, first-served basis. After the
processing of a message, the receiving process returns an answer. of eight words to the
sending process in the same buffer.

As described in Section 2.4, communication between two independent processes
requires a synchronization of the processes during a transfer of information. A process
requests synchronization by executing a wait operation; this causes a delay of the
process until another process executes a send operation.

The term delay means that the internal process is removed temporarily from the time
slice queue; the process is said to be activated when it is again linked to the time slice
queue.

4.2. Send and Wait Procedures
The following monitor procedures are available for communication among internal
processes:

send message (receiver, message, buffer)

wait message (sender, message, buffer)

send answer (result, answer, buffer)

wait answer (result, answer, buffer)
Send message copies a message into the first available buffer within the pool and
delivers it in the queue of a named receiver. The receiver is activated if it is waiting fora
message. The sender continues after being informed of the address of the message
buffer.
Wait message delays the calling process until a message arrives in its queue. When the
process is allowed to proceed, it is supplied with the name of the sender, the contents
of the message, and the address of the message buffer. The buffer is removed from the
queue and is now ready to transmit an answer.

22 4.2. SEND AND WAIT PROCEDURES

Send answer copies an answer into a buffer in which a message has been received and
delivers it in the queue of the original sender. The sender of the message is activated if
it is waiting for the answer. The answering process continues immediately.

Wait answer delays the calling process until an answer arrives in a given buffer. On
arrival, the answer is copied into the process and the buffer is returned to the pool. The
result specifies whether the answer is a response from another process, or a dummy
answer generated by the monitor in response to a message addressed to a non-existing
process.

The use of these procedures can be illustrated by the following example of a
conversational process. The figure below shows one of several user processes, which
deliver their output on the backing store. After completion of its output a user process
sends a message to a converter process requesting it to print the output. The converter
process receives and serves these requests one by one, thus ensuring that the line
printer is shared by all user processes with a minimum delay.

INPUT CONVERTER
AND
\ USER ANSWER
QUTPUT PROCESS
BACKING INTERNAL
STORE STORE

The algorithms of the converter and the user are as follows:
converter process:
wait message (sender, message, buffer);
print from backing store (message);
send answer (result, answer, buffer);
goto converter process;

4.3. GENERAL EVENT PROCEDURES 23

user process:

output on backing store;

send message(<:converter=, message, buffer);

wait answer(result, answer, buffer);
4.3. General Event Procedures
The communication procedures enable a conversational process to receive messages
simultaneously from several other processes. To avoid becoming a bottleneck in the
system, however, a conversational process must be prepared to be actively engaged in
more than one conversation at a time. As an example think of a conversational process
that engages itself, on request from another process, in a conversation with one of
several human operators in order to perform some manual operation (mounting of a
tape etc.). If one restricts a conversational process to only accepting one request (i.e. a
message) at a time, and to completing the requested action before receiving the next
request, the unacceptable consequence of this is that other processes (including
human operators at consoles) can have their requests for response delayed for a long or
even undefined time.
As soon as a conversational process has started a lengthy action, by sending a message
to some other process, it must receive further messages and initiate other actions. It
will then be reminded later of the completion of earlier actions by means of normal
answers. In general a conversational process is now engaged in several requests at one
time. This introduces a scheduling and resource problem: when the process receives a
request, some of its resources (storage or peripheral devices) can be tied up by already
initiated actions; thus in some cases the process will not be able to honor new requests
beforc old ones are completed. In this case the process wants to postpone the
reception of some requests and leave them pending in the queue, while examining
others.
The procedures wait message and wait answer, which force a process to serve its queue
in a strict sequential order and delay itself while its own requests to other processes are
completed, do not fulfill the above requirements.
Consequently we have introduced two more general communication procedures,
which enable a process to wait for the arrival of the next message or answer and serve
its queue in any order:

wait event (last buffer, next buffer, result)
get event (buffer)

The term event denotes a message or an answer. In accordance with this the queue of a
process from now on will be called the event queue.

Wait event delays the calling process until either a message or an answer arrives in its
queue after a given last buffer.The process is supplied with the address of the next
buffer and a result indicating whether it contains a message or an answer. If the last

24 4.3. GENERAL EVENT PROCEDURES

buffer address is zero, the queue is examined from the start. The procedure does not
remove the next buffer from the queue or in any other way change its status.
Asan example, consider an event queue with two pending buffers A and B:

queue =buffer A, buffer B

The monitor calls: wait event(0,buffer) and wait event(A, buffer) will cause imme-
diate return to the process with buffer equal to A and B, respectively; while the call:
wait event(B, buffer) will delay the process until another message or answer arrives in
the queue after buffer B.

Get event removes a given buffer from the queue of the calling process. If the buffer
contains a message, it is made ready for the sending of an answer. If the buffer contains
an answer, it is returned to the common pool. The copying of the message or answer
from the buffer must be done by the process itself before get event is called (see
Appendix A.3. Administration of Message Buffers).

The following algorithm illustrates the use of these procedures within a conversational
process:

first event: buffer:=0;

next event: last buffer:=buffer;
wait event(last buffer, buffer, result);
if result = message then

begin
exam request: if resources not available then go to next event;
init action: get event (buffer);

reserve resources;

send message to some other process;

save state of action;

end else

begin comment: result = answer;
term action: restore state of action;

get event (buffer);

release resources;

send answer to original sender;

end;

go to first event;

The process starts by examining its queue; if empty, it awaits the arrival of the next
event. If it findsa message, it checks whether it has the necessary resources to perform
the requested action; if not, it leaves the message in the queue and examines the next
event. Otherwise it accepts the message, reserves resources, and initiates an action. As
soon as this involves the sending of a message to some other process, the conver-

4.4. ADVANTAGES OF MESSAGE BUFFERING 25

sational process saves information about the state of the incomplete action and
proceeds to examine its queue from the start in order to engage itself in another
action.

Whenever the process finds an answer in its queue, it immediately accepts it and
completes the corresponding action. It can now release the resources used and send an
answer to the original sender that made the request. After this it examines the entire
queue again to see whether the release of resources has made it possible to accept
pending messages.

One example of a process operating in accordance with this scheme is the basic
operating system s, which creates internal processes on request from typewriter
consoles. S can be engaged in conversations with several consoles at the same time. It
will only postpone an operator request if its storage is occupied by other requests, or if
it is already in the middle of an action requested from the same console (see Section
16.6).

4.4. Advantages of Message Buffering

In the design of the communication scheme we have given full recognition to the fact
that the multiprogramming system is a dynamic environment, in which some of the
processes may turn out to be black sheep.

The system is dynamic in the sense that processes can appear and disappear at any
time. Therefore a process does not in general have a complete knowledge about the
existence of other processes. This is reflected in the procedure wait message, which
makes it possible for a process to be unaware of the existence of other processes until
it receives messages from them.

On the other hand once a communication has been established between two processes
(e.g. by means of a message), they need a common identification of it in order to agree
on when it is terminated (e.g. by means of an answer). Thus we can properly regard the
selection of a buffer as the creation of an identification of a conversation. A happy
consequence of this is that it enables two processes to exchange more than one
message at a time.

We must be prepared for the occurance of erroneous or malicious processes in the
system (e.g. undebugged programs). This is tolerable only if the monitor ensures that
no process can interfere with a conversation between two other processes. This is done
by storing information about the sender and receiver in each buffer, and checking it
whenever a process attempts to send or wait for an answer in a given buffer.
Efficiency is obtained by the queuing of buffers, which enables a sending process to
continue immediately after delivery of a message or an answer regardless of whether
the receiver is ready to process it or not.

In order to make the system dynamic it is vital that a process can be removed at any
time, even if it is engaged in one or more conversations. In the previous example of
user processes that deliver their output on the backing store and ask a converter
process to print it, it would be sensible to remove a user process that has completed its
task and is now only waiting for an answer from the converter process. In this case the

26 4.4. ADVANTAGES OF MESSAGE BUFFERING

monitor leaves all messages tfrom the removed process undisturbed in the queues of
other processes. When these processes terminate their actions by sending answers. the
monitor simply returns the buffers to the common pool.

The reverse situation is also possible: during the removal of a process, the monitor
finds unanswered messages sent to the process. These are returned as dummy answers
to the senders. A special instance of this is the gencration of a dummy answer to a
message addressed to a process that does not exist.

The main drawback of message buffering is that it introduces yet another resource
problem, since the common pool contains a finite number of butfers. It a process was
allowed to empty the pool by sending messages to ignorant processes. which do not
respond with answers, further communication within the system would be blocked.
We have consequently set a limit to the number of messages a process can send
simultaneously. By doing this. and by allowing a process to transmit an answer in a
received buffer. we have placed the entire risk of a conversation on the process that
opens it (see Section 7.4),

Chapter 5

EXTERNAL PROCESSES

This chapter clarifies the meaning of the external process concept. It explains
initiation of input/output by meuns of messages from internal processes. dynamic
creation and removal of external processes. and exclusive access to documents by
means of reservation. The similarity of internal and external processes is stressed.

5.1. Initiation of Input/Output
Consider the following situation. in which an internal process. p.inputs ablock from
an external process. g (say.a magnetic tape):

______ FIRST ADDRESS
INPUT
BLOCK
______ LAST ADDRESS
EXTERNAL INTERNAL
PROCESS Q PROCESS P

Pinitiates input by sending a message to q:

send message (<:q:>. message, buffer)
The message consists of eight words defining an input/output operation and the first
and last addresses of a storage area within process p:

message: operation

first storage address

last storage address

(five irrelevant words)

The monitor copies the message into a buffer and delivers it in the queue of process g.
Following this it uses the kind parameter in the process description of process g to
switch to a piece of code common to all magnetic tapes. If the tape station is busy. the
message is merely left in its queue: otherwise input is initiated to the given storage
area. On return, program execution continues in process p.

28 5.2. RESERVATION AND RELEASE

When the tape station completes input by means of an interrupt, the monitor
generates an answer and delivers it in the queue of p, which in turn receives it by calling
wait answer:

wait answer (result, answer, buffer)
The answer contains status bits sensed from the device and the actual block length
expressed as the number of bytes and characters input:

answer: status bits

number of bytes

number of characters

(five irrelevant words)

After delivery of the answer, the monitor examines the queue of the external process q
and initiates its next operation (unless the queue is empty).
Essentially all external processes follow this scheme, which can be defined by the
following algorithm:
external process: wait message;
analyse and check message;
initiate input/output;
wait interrupt;
generate answer;
send answer;
goto external process;

With low-speed, character-oriented devices, the monitor repeats input/output and the
interrupt response for each character until a complete block has been transferred;
(while this is taking place, the time between interrupts is of course shared among
internal processes). Internal processes can therefore regard all input/output as block
oriented.

5.2. Reservation and Release
The use of message buffering provides a direct way of sharing an external process
among a number of internal processes: an external process can simply accept messages
from any internal process and serve them in their order of arrival. An example of this s
the use of a single typewriter for output of messages to a main operator.
This method of sharing a device ensures that a block of data is input or output as an
indivisible entity. When sequential media such as paper tape, punched cards, or
magnetic tape are used, however, an internal process must have exclusive access to the
entire document. This is obtained by calling the following monitor procedure:

reserve process (name, result)
The result indicates whether the reservation has been accepted or not.
An external process that handles sequential documents of this kind rejects messages
from all internal processes except the one that has reserved it. Rejection is indicated
by the result of the procedure wait answer.

5.3. CREATION AND REMOVAL 29

During the removal of an internal process, the monitor removes all reservations made
by it. Internal processes can, however, also do this explicitly by means of the monitor
procedure:

release process (name)

5.3. Creation and Removal
From the operator’s point of view an external process is created when he mounts a
document on a device and names it. The name must, however, be communicated to
the monitor by means of an operating system, i.e. an internal process that controls the
execution of programs. Thus it is more correct to say that external processes are
created when internal processes assign names to peripheral devices. This is done by
means of the monitor procedure:

create peripheral process (name, device number, result)
The monitor has, in fact, no way of ensuring whether a given document is mounted on
a device. Furthermore, there are some devices which operate without documents, e.g.
the real-time clock.
The name of an external process can be explicitly removed by a call of the monitor
procedure:

remove process (name, result)

It is also possible to implement an automatic removal of the process name when the
monitor detects operator intervention in a device. At present, this is done only in
connection with magnetic tapes (see Section 10.1).

5.4. Replacement of External Processes

The decision to control input/output by means of interrupt procedures within the
monitor, instead of using dedicated internal processes for each kind of peripheral
device, was made to obtain immediate initiation of input/output after the sending of
messages. In contrast the activation of an internal process merely implies that it is
linked to the time slice queue; after activation several time slices can elapse before the

internal process actually starts to execute instructions.
The price paid for the present implementation of external processes is a prolongation

of the time spent in the disabled mode within the monitor. This limits the system’s
ability to cope with real-time events, i.e. data that are lost unless they are input and
processed within a certain time.

An important consequence of the uniform handling of internal and external processes
is that it allows us to replace any external process by an internal process of the same
name; other processes that communicate with it are quite unaware of this replace-
ment.

Thus it is possible to improve the response time of the system by replacing a
time-consuming external process, such as the paper tape reader, by a somewhat slower
internal process, which executes privileged instructions in the enabled mode.

30 5.4. REPLACEMENT OF EXTERNAL PROCESSES

This type of replacement also makes it possible to enforce more complex rules of
access to a document. In the interests of security, for example, one might want to limit
the access of an internal process to one of several files recorded on a particular
magnetic tape. This can be ensured by an internal process that traps all messages to the
tape and decides whether they should be passed on to it.

As a final example let us consider the problem of debugging a process control system
before it is connected to an industrial plant. A convenient way of doing this is to
replace analog inputs with an internal process that simulates relevant values of actual
measuring instruments.

We conclude that the ability to replace any process in the system with another process
is a very useful tool. This can now be seen as a practical result of the general, but
somewhat vague idea (expressed in Section 2.2) that internal and external processes
are independent processes, which differ only in their processing capability.

Chapter 6

INTERNAL PROCESSES

This chapter explains the creation and control of internal processes. The emphasis is
on the hierarchal structuring of internal processes. which makes it possible to extend
the system with new operating systems. The dynamic behaviour of the system is
explained in terms of process statesand the transition between these.

6.1. Creation, Control, and Removal
Internal processes are created on request from other internal processes by means of
the monitor procedure:

create internal process (name, parameters, result)
The monitor initializes the process description of the new internal process with its
name and storage arca selected by the parent process. The storage area must be within
the parent’s own area. Also specitied by the parent is a protection key, which must be
set in all storage words of the child process before it is started.

PARENT
PROCESS

CHILD
PROCESS

After creation the child process is simply a named storage area, which is described
within the monitor. It has not yet been linked to the time slice qucue.
The parent process can now load a program into the child process by means of an input
operation. Following this the parent can initialize the registers ot its child using the
monitor procedure:

modify internal process (name. registers. result)

The register values are stored in the process description until the child process is

started. As a standard convention adopted by parent processes (but not entoreed by

32 6.2. PROCESS HIERARCHY

the monitor), the registers inform the child about the process descriptions of itself, its
parent, and the typewriter console it can use for operator communication.
Finally the parent can start program execution within the child by calling:

start internal process (name, result)

which sets the protection keys within the child and links it to the time slice queue. The
child now shares time slices with other active processes including the parent.
On request from a parent process, the monitor waits for the completion of all
input/output initiated by a child process and stops it, i.e. removes it from the time
slice queue:

stop internal process (name, buffer, result)

The meaning of the message buffer will be made clear in Section 6.3.
In the stopped state a child process can be modified and started again, or it can be
completely removed by the parent process:

remove process (name, result)
During removal, the monitor generates dummy answers to all messages sent to the
child and releases all external processes used by it. Finally the protection keys are reset
to the value used within the parent process. The parent can now use the storage area to
create other child processes.

6.2. Process Hierarchy

The idea of the monitor has been described as the simulation of an environment in
which program execution and input/output are handled uniformly as parallel, cooper-
ating processes. A fundamental set of procedures allows the dynamic creation and
control of processes as well as communication among them.

For a given installation we still need, as part of the system, programs that control
strategies for operator communication, program scheduling, and resource allocation.
But it is essential for the orderly growth of the systems that these operating systems be
implemented as other programs. Since the difference between operating systems and
production programs is one of jurisdiction only, this problem is solved by arranging
the internal processes in a hierarchy in which parent processes have complete control
over child processes.

After initial loading the internal store contains the monitor and an internal process, s,
which is the basic operating system. S can create parallel processes, a, b, c, etc., on
request from consoles. These processes can in turn create other processes, d, e, f, etc.
Thus while s acts as a primitive operating system for a, b, and c, these in turn act as
operating systems for their children, d, e, f, etc. This is illustrated by the following
figure, which shows a family tree of processes on the left and the corresponding
storage allocation on the right:

6.2. PROCESS HIERARCHY 33

MONITOR
A D
E
S
B
F G
H
C

This family tree of processes can be extended to any level, subject only to alimitation
of the total number or processes. At present the maximum number of internal
processes is 23 including the basic operating system s. It must, however, be remem-
bered that the storage protection system only provides mutual protection of 8
independent processes. When this number is exceeded, one must rely on some of the
processes being error free.

In this multiprogramming system all privileged functions are implemented in the
monitor, which has no built-in strategy. Strategies can be introduced at the various
higher levels, where each process has the power to control the scheduling and resource
allocation of its own children. The only rules enforced by the monitor are the
following: a process can only allocate a subset of its own resources (including storage)
to its children; a process can only modify, start, stop, and remove its own children.
The structure of the family tree is defined in the process descriptions within the
monitor. We emphasize that the only function of the tree is to define the basic rules of
process control and resource allocation. Time slices are shared evenly among active
processes regardless of their position in the hierarchy, and each process can com-
municate with all other processes.

As regards the future development of operating systems, the most important charac-
teristics can now be seen as the following:

1. New operating systems can be implemented as other programs without modifica-
tion of the monitor. In this connection we should mention that the Algol and Fortran
languages for the RC 4000 contain facilities for calling the monitor and initiating
parallel processes. Thus it is possible to write operating systems in high-level languages.
2. Operating systems can be replaced dynamically, thus enabling an installation to
switch among various modes of operation; several operating systems can, in fact, be
active simultaneously,

34 6.3. PROCESS STATES

3. Standard programs and user programs can be executed under different operating
systems without modification; this is ensured by a standardization of communication
between parents and children.

6.3. Process States

We are now in a position to define the possible states of an internal process as
described within the monitor. An understanding of the transition from one state to
the other is vital as a key to the dynamic behaviour of the system.

An internal process is either running (executing instructions or ready to do so) or
waiting (for an event outside the process). In the running state the process is linked to
the time slice queue; in the waiting state it is temporarily removed from this queue.

A process can either be waiting for a message, an answer, or an event, as explained in
Chapter 4.

Of a more complex nature are the situations in which a process is waiting to be stopped
or started by another process. In order to explain this we shall once more refer to the
family tree shown in the previous section.

Let us say that process b wants to stop its child f. The purpose of doing this is to ensure
that all program execution and input/output within the storage area of process f is
stopped. Since a part of the storage area has been allocated to children of f, it is
obviously necessary to stop not only the child f but also all descendants of f. This is
complicated by the fact that some of these descendants may already have been
stopped by their own parents. In the present example process g may still be running,
while process h may have been stopped by its parent f. Consequently the monitor
should only stop processes fand g.

Consider now the reverse situation, in which process b starts its child f again. Now the
purpose is to reestablish the situation exactly as it was before process f was stopped.
Thus the monitor must be very careful only to start those descendants of f that were
stopped along with f. In our example the monitor must start processes f and gbut not
h. Otherwise we confuse f, which still relies on its child h being stopped.

Obviously, then, the monitor must distinguish between processes that are stopped by
their parents and by their ancestors.

The possible szates of an internal process are the following:
running
running after error
waiting for message
waiting for answer
waiting for event
waiting for start by parent
waiting for stop by parent
waiting for start by ancestor
waiting for stop by ancestor
waiting for process function

6.3. PROCESS STATES 35

A process is created in the state waiting for start by parent. When it is started, its state
becomes running. The meaning of the state running after error is explained in Section
8.1.
When a parent wants to stop a child, the state of the child is changed to waiting for stop
by parent, and all running descendants of the child are described as waiting for stop by
ancestor. At the same time these processes are removed from the time slice queue.
What remains to be done is to ensure that all input/output initiated by these processes
is terminated. In order to control this each internal process description contains an
integer called the stop count. The stop count is increased by one each time the internal
process initiates input/output from an external process. On arrival of an answer from
an external process, the monitor decreases the stop count by one and examines the
state of the internal process. If the stop count becomes zero and the process is waiting
for stop by parent (or ancestor), its state is changed to waiting for start by parent (or
ancestor).
Only when all involved processes are waiting for start is the stop operation finished.
This can last some time, and it may not be acceptable to the parent (being an operating
system with many other duties) to be inactive for so long. For this reason the stop
operation is split into two parts. The stop procedure:

stop internal process (name, buffer, result)
only initializes the stopping of a child and selects a message buffer for the parent.
When the child and its running descendants are completely stopped, the monitor
delivers an answer to the parent in this buffer. Thus the parent can use the procedures
wait answer or wait event to wait for the completion of the stop.
A process can be in any state when a stop is initiated. If it is waiting for a message,
answer, or an event, its state will be changed to waiting for stop, as explained above,
but at the same time its instruction counter is decreased by two in order that it can
repeat the call of wait message, wait answer, or wait event when it is started again.
It should be noted that a process can receive messages and answers in its queue in any
state. This ensures that a process does not loose contact with its surroundings while
stopped.
The meaning of the state waiting for process function is explained in Section 9.1.

Chapter 7

RESOURCE CONTROL

This chapter describes a set of monitor rules that enables a parent process to control
the allocation of resources to its children.
7.1. Introduction
In the multiprogramming system the internal processes compete for the following
limited resources:

computing time

storage and protection keys

message buffers

process descriptions

peripheral devices

backing storage
Initially all resources are owned by the basic operating system s. As a basic principle
enforced by the monitor a process can only allocate a subset of its own resources to a
child process. These are returned to the parent process when the child is removed.

7.2. Time Slice Scheduling

All running processes are allocated time slices in a cyclical manner. Depending on the
interrupt frequency of the hardware interval timer, the length of a time slice can vary
between 1.6 and 1638.4 milliseconds. A reasonable time slice is 25.6 milliseconds:
with shorter intervals the percentage of computing time consumed by timer interrupts
grows drastically; with longer intervals the delay between activation and execution of
an internal process increases,

In practice internal processes often initiate input/output and wait for it in the middle
of a time slice. This creates a scheduling problem when internal processes are activated
by answers: Should the monitor link processes to the beginning or to the end of the
time slice queue? The first possibility ensures that processes can use peripherals with
maximum speed, but there is the danger that a process can monopolize computing
time by communicating frequently with fast devices. The second choice prevents this,
butintroducesa delay in the time slice queue, which slows down peripherals.

We have introduced a modified form of round-robin scheduling to solve this dilemma.
As soon as ¢ process is removed from the time slice queue, the monitor stores the
actual value of the time quantum used by it. When the process is activated again, the
monitor compares this quantuim with the maximum time slice. Aslong as this limit is
not exceeded. the process is linked to the beginning of the queue; otherwise it is linked
to the end of the queue and its time quantum is reset to zero. The same test is applied
when the interval timer interrups an internal process.

This scheduling attempts to share computing time evenly among active internal
processes regardless of their position in the hierarchy. It permits a process to be

7.3. STORAGE ALLOCATION AND PROTECTION 37

activated immediately until it threatens to monopolize the central processor; only
then is it pushed into the background to give other processes a chance. This is
admittedly a built-in strategy at the microlevel. Parent processes can in fact only
control the allocation of computing time to their children in larger portions (on the
order of seconds) by means of the procedures start and stop internal process.

For accounting purposes the monitor retains the following information for each
internal process: the time at which the process was created and the sum of time
quantums used by it: these quantities are denoted start time and run time.

7.3. Storage Allocation and Protection

An internal process can only create child processes within its own storage area. The
monitor does not check whether storage areas of child processes overlap each other.
This freedom can be used to implement time-sharing of a common storage area among
several processes as described in Sections 10.2 and 10 4.

During creation of an internal process the parent must specify the values of the
protection register and the protection key used by the child. In the protection register
each bit corresponds to one of the eight possible protection keys; if a bit is zero the
process can change or execute storage words with the corresponding key.

The protection key is the key that is set in all storage words of the child process itself.
A parent process can only allocate a subset of its own protection keys to a child. It has
complete freedom to allocate identical or different keys to its children. The keys
remain accessible to the parent after creation of a child.

7.4. Message Buffers and Process Descriptions

The monitor only has room for a finite number of message buffers and tables
describing internal processes and the so-called area processes (files on the backing
store used as external processes). A message buffer is selected when a message is sent to
another process; it is released when the sending process receives an answer. A process
description is selected when an internal process creates another internal process or an
area process, and released when the process is removed.

Thus it is clear that message buffers and process descriptions only assume an identity
when they are actually used. As long as they are unused, they can be regarded as
anonymous pools of resources. Consequently it is sufficient to specify the maximum
number of each resource an internal process can use. These so-called buffer claim,
internal claim, and area claim are defined by the parent when a child process is created.
The claims must be a subset of the parent’s own claims, which are diminished
accordingly; they are returned to the parent when the child is removed.

The buffer claim defines the maximum number of messages an internal process can
exchange simultaneously with other internal and external processes. The internal
claim limits the number of children an internal process can have at the same time. The
area claim defines how many backing store areas an internal process can access
simultaneously.

The monitor decreases a claim by one each time a process actually uses one of its

38 7.5. PERIPHERAL DEVICES

resources, and increases it by one when the resource is released again. Thus at any
moment the claims define the number of resources that can still be used by the
process.

7.5. Peripheral Devices
A distinction has been made between peripheral devices and external processes. An
external process is created when a name is assigned to a device.
Thus it is also true of peripheral devices that they only assume an identity when they
are actually used for input/output. Indeed the whole idea of identification by names is
to give the operator complete freedom in allocation of devices. It would therefore
seem natural to control the allocation of devices to internal processes by a complete
set of claims - one for each kind of device.
In a system with remote peripherals, however, it is unrealistic to treat all devices of a
given kind as a single, anonymous pool. An operating system must be able to force its
children and their human operators to remain within a certain geographical configura-
tion of devices. It should be noted that the concept of configuration must be defined
in terms of physical devices and not in terms of external processes, since a parent
generally speaking does not know in advance which documents its children are going
to use.
Configuration control is exercised as follows. From the point of view of other
processes an internal process is identified by a name. Within the monitor, however, an
internal process can also be identified by a single bit in a machine word. The process
descriptions of peripheral devices include a word in which each bit indicates whether
the corresponding internal process is a potential user of the device. Another word
indicates the current user that has reserved the device in order to obtain exclusive
access to adocument.
Initially the basic operating system s is a potential user of all peripherals. A parent
process can include or exclude a child as a user of any device, provided the parent is
also a user of it:

include user (child, device number, result)

exclude user (child, device number, result)

During removal of a child, the monitor excludes it as a user of all devices.
All in all three conditions must be fulfilled before an internal process can initiate
input/output:

The device must be an external process with a unique name.

The internal process must be a user of the device.

The internal process must reserve the external process if
it controls a sequential document.

7.6. PRIVILEGED FUNCTIONS 39

7.6. Privileged Functions
Files on the backing store are described in a catalog, which is also kept on the backing
store. Clearly there isaneed to be able to prevent an internal process from reserving an
excessive amount of space in the catalog or on the backing store as such. It seems
difficult, however, to specify a reasonable rule in the form of a claim that is defined
once and for all when a child process is created. The main difficulty is that catalog
entries and data areas can survive the removal of the process that created them; in
other words backing storage is a resource a parent process can loose permanently by
allocating it to its children.
As a half-hearted solution we have introduced the concept of privileged monitor
procedures. A parent process must supply each of its children with a function mask, in
which each bit specifies whether the child is allowed to perform a certain monitor
function. The mask must be a subset of the parent’s own mask.
At present the privileged functions include all monitor procedures that:

change the catalog on the backing store,

create and remove names of peripheral devices,

change the real-time clock.

Chapter 8

MONITOR FEATURES

This chapter is a survey of specific monitor features such as internal interruption, the
real-time clock, conversational access from consoles, and permanent storage of files on
the backing store. Although these are not essential primitive concepts, they are
indispensable features of practical multiprogramming systems.

8.1. Internal Interruption
The monitor can assist internal processes with the detection of infrequent events such
as violation of storage protection or arithmetic overflow. This causes an interruption
of the internal process followed by a jump to an interrupt procedure within the
process.
The interrupt procedure is defined by calling the monitor procedure:
set interrupt (interrupt address, interrupt mask)
When an internal interrupt occurs, the monitor stores the values of registers at the
head of the interrupt procedure and continues execution of the internal process in the
body of the procedure
interrupt address: working registers
instruction counter
interrupt cause
(execution continues here)
The system distinguishes between the following causes of internal interruption:
protection violation
integer overflow
floating-point overflow or underflow
parameter error in monitor call
breakpoint forced by parent
The interrupt mask specifies whether arithmetic overflow should cause internal
interruption. Other kinds of internal interrupts cannot be masked off.
If an internal process provokes an interrupt without having defined an interrupt
procedure after its creation, the monitor removes the process from the time slice
queuc and changes its state to running after error. The process does not receive any
more computing time in this state, but from the point of view of other processes it is
still an existing process. The parent of the erroneous process can, however, reactivate
it by means of stop and start.
A parent can force a breakpoint in a child process as follows: first, stop the child;
second, fetch the registers and interrupt address from the process description of the
child and store the registers in the interrupt area together with the cause; third, modify
the registers of the child to ensure that program execution continues in the interrupt
procedure; fourth, start the child again.

8.2. REAL-TIME CLOCK 41

8.2. Real-Time Clock

Real time is measured by means of a hardware interval timer, which counts modulo
16384 in units of 0.1 msec and interrupts the computer regularly (normally every 25.6
msec).

The monitor uses this timer to update a programmed real-time clock of 48 bits. This
clock can be initialized and sensed by means of the procedures:

set clock (clock)
get clock (clock)

The setting of the clock is a privileged function. A standard convention adopted by
operating systems (but not enforced by the monitor) is to let the clock express the
time interval elapsed since midnight 31 December 1967 in units of 0.1 msec.

The interval timer is also used to implement an external process that permits the
synchronization of internal processes with real time. All internal processes can send
messages to this clock process. After the elapse of a time interval specified in the
message, the clock process returns an answer to the sender. In order to avoid a heavy
overhead time of clock administration, the clock process only examines its queue
every second.

8.3. Console Communication

A multiprogramming system encourages a conversational mode of operation, in which
users interact directly with internal processes from typewriter consoles. The external
processes for consoles clearly reflect this objective.

Initially all program execution is ordered by human operators who communicate with
the basic operating system. It would be very wasteful if the operating system had to
examine all consoles regularly for possible operator requests. Therefore our first
requirement is that consoles be able to activate internal processes by sending messages
to them. Note that other external processes are only able to receive messages.

Second, it must of course be possible for an internal process to open a conversation
with any console.

Third. a console should accept messages simultaneously from several internal pro-
cesses. This will enable us to control more than one internal process from the same
console, which is valuable in a small installation.

In short, consoles should be independent processes that can open conversations with
any internal process and vice versa. The console should assist the operator with the
identification of the internal processes using it.

An operator opens a conversation by depressing an interrupt key on the console. This
causes the monitor to select a line buffer and connect it to the console. The operator
must now identify the internal process to which his message is addressed. Following
this he can input a message of one line, which is delivered in the queue of the receiving

process.

42 8.4. 'ILES ON BACKING STORE

A message to the basic operating system s can, for example, look like this (the word in
italics is output by the console process in response to the key interrupt):

tos

new pbh run
An internal process opens a conversation with a console by sending a message to it.
Before the input/output operation is initiated, the console identifies the internal
process to the operator. This identification is suppressed after the first of a series of
messages from the same process.
In the following example internal processes a and b share the same console for
input/output. Process identifications are in italics:

toa

first input line to a

second input line to a

fromb

first output line from b

second output line from b

froma

first output line from a

etc.
Note that these processes are unaware of their sharing the same console. From the
point of view of internal processes the identification of user processes makes it
irrelevant whether the system contains one or more consoles. (Of course one cannot
expect operators to feel the same way about it).

8.4. Files on Backing Store

8.4.1. Introduction

The monitor permits semi-permanent storage of files on a backing store consisting of
one or more drums and disks. The monitor makes these appear as a single backing store
with a number of segments of 256 words each. This logical backing store is organized
as a collection of named data areas. Each area occupies a consecutive number of
segments on a single backing store device. A fixed part of the backing store is reserved
for acatalog describing the names and locations of data areas.

Data areas are treated as external processes by the internal processes; input/output is
initiated by sending messages to the areas specifying input/output operations, storage
areas, and relative segment numbers within the areas. The identification of a data area
requires a catalog search. In order to reduce the number of searches, input/output
must be preceded by an explicit creation of an area process description within the
monitor.

8.4.2. Catalog Entries

The catalog is a fixed area on the backing store divided into a number of entries
identified by unique names. Each entry is of fixed length and consists of a head, which
identifies the entry, and a tail, which contains the rest of the information. The

8.4. FILES ON BACKING STORE 43

monitor distinguishes between entries describing data areas on the backing store and
entries describing other things.
An entry is created by calling the monitor procedure:

create entry (name, tail, result)
The first word of the tail defines the size of an area to be reserved and described in the
entry; if the size is negative or zero, no area is reserved. The rest of the tail contains
nine optional parameters, which can be selected freely by the internal process.
Internal processes can look up, change, rename, or remove existing entries by means of
the procedures:

look up entry (name, tail, resuit)

change entry (name, tail, result)

rename entry (name, new name, result)

remove entry (name, result)

The catalog describes itself in an entry named <:catalog™.
The search for catalog entries is minimized by using a hashed value of names to define

the first segment to be examined. Each segment contains 15 entries; thus most catalog
searches only require the input of a single segment unless the catalog is filled to the
brim. The allocation of data areas is speeded up by keeping a bit table of available
segments within the monitor. In practice the creation or modification of an entry
therefore requires only the input and output of a single catalog segment.

8.4.3. Catalog Protection
Since many users share the backing store as a common data base, it is vital that they

have a means of protectiong their files gainst unintentional modification or complete
removal. The protection system used is similar to the storage protection system: each
catalog entry is supplied with a catalog key in its head; the rules of access within an
internal process are defined by a catalog mask set by the parent of the internal process.
Each bit in this mask corresponds to one of 24 possible catalog keys; if a bit is one, the
internal process can modify or remove entries with the corresponding key; otherwise
it can only look up these entries. A parent can only allocate a subset of its own catalog
keys to a child process. Initially the basic operating system owns all keys.

In order to prevent the catalog and the rest of the backing store from being filled with
irrelevant data, the concept of temporary entry is introduced. This is an entry that can
be removed by another internal process as soon as the internal process that created the
entry has been removed. Typical examples are working areas used during program
compilation and data areas created, but not removed, by faulty programs.

This concept is implemented as follows. After creation of an internal process, the
monitor increases an integer creation number by one and stores it within the new
process description. Each time an internal process creates a catalog entry, the monitor
includes its creation number in the entry head indicating that it is temporary. Internal
processes can at any time scan the catalog and remove all temporary entries provided
the corresponding creators no longer exist within the monitor. Thus in accordance

44 8.4. FILL:S ON BACKING STORE

with our basic philosophy the monitor only provides the necessary mechanism for the
handling of temporary entries, but leaves the actual strategy of removal to the
hierarchy of processes.
In order to ensure the survival of a catalog entry, an internal process must call the
privileged monitor function:

permanent entry (name, catalog key, result)
to replace the creation number with a catalog key. A process can of course only set one
of its own keys in the catalog; otherwise it might fill the catalog with highly protected
entries, which could be difficult to detect and remove.

8.4.3. Area Processes
In order to be used for input/output a data area must be looked up in the catalog and
described as an external process within the monitor:
create area process (name, result)
The area process is created with the same name as the catalogentry.
Following this internal processes can send messages with the following format to the
area process:
message: input/output operation
first storage address
last storage address
first relative segment

The reader is reminded that the tables used to describe area processes within the
monitor are a limited resource, which is controlled by means of area claims defined by
parent processes (Section 7.4).

The backing store is a random access medium that serves as a common data base. In
order to utilize this property fully internal processes should be able to input simulta-
neously from the same area (e.g. when several copies of the Algol compiler are
executed in parallel). On the other hand access to an area should be exclusive during
output, because its content is undefined from the point of view of other processes.
Consequently we distinguish between internal processes that are potential users of an
area process and the single process that may have reserved the area exclusively. This
distinction was also made for peripheral devices (Section 5.2), but the rules of access
are different here: An internal process is a user of an area after the creation of it. This
enables the internal process to perform input as long as no other processreserves it. An
internal process can reserve an area process if its catalog mask permits modification of
the corresponding catalog entry. After reservation the internal process can perform
both input and output.

Finally we should mention that the catalog is described permanently as an area process
within the monitor. This enables internal processes to input and scan the catalog
sequentially, for instance, during the detection and removal of temporary entries.
Only the monitor itself, however, can perform output to the catalog.

Chapter 9

SYSTEMIMPLEMENTATION

This chapter gives important details about the implementation as well as figures about
the size and performance of the system.

9.1. Interruptable Monitor Functions
Some of the monitor functions are too long to be executed entirely in the disabled
mode, e.g. updating of the catalog on the backing store and creation, start, stop, and
removal of processes. These so-called process functions are called as other monitor
procedures, but behind the scenes they are executed by an anonymous internal
process, which only operates in disabled mode for short intervals while updating
monitor tables: otherwise the anonymous process shares computing time with other
internal processes.
When an internal process calls a process function, the following takes place: the calling
process is removed from the time slice queue and its state is changes to waiting for
process function. At the same time the process description is linked to the event queue
of the anonymous process that is activated. The anonymous process serves the calling
processes one by one and returns them to the time slice queue after completion of
each function.
Process functions are interruptable like other internal processes. From the point of
view of calling processes, however, process functions are indivisible, since (1) they are
executed only by the anonymous process one at a time in their order of request, and
(2) calling processes are delayed until the functions are completed.
The following monitor procedures are implemented as interruptable functions:

create entry

look up entry

change entry

rename entry

remove entry

permanententry

create area process

create peripheral process

create internal process

start internal process

stop internal process

modify internal process

TeMOove process

9.2. Stopping Processes
According to theory an internal process cannot be stopped while input/output is in

46 9.2. STOPPING PROCESSES

progress within its storage area (Section 6.3). This requirement is inevitable in the case
of high-speed devices such as a drum or a magnetic tape station, which are beyond
program control during input/output. On the other hand it is not strictly necessary to
enforce this for low-speed devices controlled by the monitor on a charac-
ter-by-character basis.

In practice the monitor handles the stop situation as follows:

Before an external process initiates /igh-speed input/output, it examines the state of
the sending process. If the sender is stopped (or waiting to be stopped), input/output
is not initiated, but the external process immediately returns an answer with block
length zero: the sender must then repeat input/output after restart. If the sender is not
stopped, its stop count is increased and input/output is initiated. Note that if the stop
count was increased immediately after the sending of a message, the sending process
could only be stopped after completion of all previous operations pending in the
external queue. By increasing the stop count as late as possible. we ensure that
high-speed peripherals at most prevent the stopping of internal processes during a
single block transfer.

Low-speed devices never increase the stop count. During output an external process
fetches one word at a time from the sending process and outputs it character by
character regardless of whether the sender is stopped meanwhile. Before fetching a
word the external process examines the state of the sender. If it is stopped (or waiting
to be stopped), output is terminated by an answer defining the actual number of
characters output; otherwise output continues. During input an external process
examines the state of the sender after each character. If the sender is stopped (or
waiting to be stopped), input is terminated by an answer: otherwise the character is
stored and input continues. Some devices. such as the typewriter, lose the last input
character when stopped:; others, such as the paper tape reader, do not. It can be seen
that low-speed devices never delay the stopping of a process.

9.3. SYSTEM SIZE 47

9.3. System Size
After initial system loading the monitor and the basic operating system s occupy a
fixed part of the internal store. The size of a typical system is as follows:

words:
monitor procedures: 2400
code forexternal processes: 1150
clock 50
backing store 100
typewriters 300
paper tape readers 250
paper tape punches 150
line printers 100
magnetic tape stations 200
process descriptions and buffers: 1250
15 peripheral devices 350
20 area processes 200
6 internal processes 200
25 message buffers 300
6 console buffers 200
basic operating system s 1400
total system 6200

It should be noted that the 6 internal processes include the anonymous process and
the basic operating system, thus leaving room for 4 user processes.

As a minimum the standard programs (editor, assembler, and compilers) require an
internal process of 5 — 6000 words for their execution. This means that a 16 k store
can only hold the system plus 1 - 2 standard programs, while a 32 k store enables
parallel execution of 4 such programs. A small store can of course hold more
programs, if these are written in machine code and executed without the assistance of
standard programs.

48 9.4. SYSTEM PERFORMANCE

9.4. System Performance

The following execution times of monitor procedures are conservative estimates based
on a manual count of instructions. The reader should keep in mind that the basic
instruction execution time of the RC 4000 computer is 4 usec.

A complete conversation between two internal processes takes about 2 milliseconds
distributed as follows:

msec
send message 0.6
wait answer 04
wait message 04
send answer 0.6

It can be seen that one internal process can activate another internal process in 0.6
msecs this is also approximately the time required to activate an external process.
An analysis shows that the 2 msec required by an internal communication are used as

follows: percent
validity checking 25
process activation 45
message buffering 30

This distribution is so even that one cannot hope to speed up the system by
introducing additional, ad hoc machine instructions. The only realistic solution is to
make the hardware faster.
The maximum time spent in the disabled mode within the monitor limits the system’s
response to real-time events. The monitor procedures themselves are only disabled for
0.2 — I msec. The situation is worse in the case of interrupt procedures that handle
low-speed devices with hardware buffers, because the monitor empties or fills such
buffers in the disabled mode after each interrupt. For the paper tape reader (flexo-
writer input) and the line printer, the worst-case figures are:

empty reader buffer (256 characters) 20 msec

fill printer buffer (170 characters) 7 msec
It should be noted, however, that these buffers normally only contain 64 - 70
characters corresponding to 4 - 5 msec. The worst-case situations can be remedied
either by using smaller input/output areas within internal processes, or by replacing
these external processes with dedicated internal processes (Section 5.4).
Finally we shall look at the interruptable monitor functions. An internal process of
5000 words can be created and controlled by a parent process with the following
speed:

msec
create internal process 3
modify internal process 2
start internal process 26
stop internal process 4
remove internal process 30

Most of the time required to start and remove an internal process is used to set storage
protections keys.

9.5.SYSTEM TAPE 49

Assuming that the backing store is a drum with a transfer time of 15 msec per segment,
the catalog can be accessed with the following speed:

msec
create entry 38
look up entry 20
change entry 38
rename entry 85
remove entry 38
permanent entry 38

The execution time of process functions should be taken with some reservations. First
it must be remembered that process functions, like other internal processes, can be
delayed for some time before they receive a time slice. In practice process functions
will be activated immediately as long as they have not used a complete time slice
(Section 7.2). Second one must take into consideration the fact that process function
calls are queued within the monitor. Thus when a process wants to stop another
process, the worst thing that can happen is that the anonymous process is engaged in
updating the catalog. In this situation the stop is not initiated before the catalog has
been updated. One also has to keep in mind that process functions share the drum or
disk with other processes, and must wait for the completion of all input/output
operations that preceed their own in the drum or disk queue. The execution times
given here assume that process functions and catalog input/output are initiated
instantly.

9.5. System Tape
The first version of the multiprogramming system consists of the monitor, the basic
operating system s, and a program for initializing the catalog. It is programmed in the
Slang 3 language. Before assembly the system is edited to include process descriptions
of the peripheral devices connected to a particular installation and to define the
following options:

number of storage bytes

number of internal processes

number of area processes

number of message buffers

number of console buffers

maximum time slice

inclusion of code for external processes

backing store configuration

size of catalog
The system is delivered in the form of a binary paper tape, which can autoload and
initialize itself. After loading the system starts the basic operating system. Initially the
operating system executes a program that can initialize the backing store with catalog
entries and binary Slang programs input from paper tape. When this has been done, the
operating system is ready to accept operator commands from consoles.

Chapter 10

SYSTEMPOSSIBILITIES

The strength of the monitor is the generality of its basic concepts, its weakness that it
must be supported by operating systems to obtain realistic multiprogramming. We
beleive that the ultimate limits to the use of the system will depend on the imagination
of designers of future operating systems. The purpose of this chapter is to stimulate
creative thinking by pointing out a few of the possibilities inherent in the system.

10.1. Identification of Documents
In tape-oriented installations, operating systems should assist the operator with
automatic identification of magnetic tapes. At present the external process concept
gives the operator complete freedom to mount a magnetic tape on any station and
identify it by name. When a tape station is set in the local mode, the monitor
immediately removes its name to indicate that the operator has interfered with it. The
station gives an interrupt when the operator returns it to the remote mode. Thus the
monitor distinguishes between three states of a tape station:

document removed(after intervention)

unidentified document mounted (after remote interruption)

identified document mounted (after process creation)
It is a simple matter to introduce a watch-dog process in the monitor, to which internal
processes can send messages in order to receive answers each time an unidentified tape
is mounted somewhere. After reception of an answer, an internal process can give the
actual station a temporary name, identify the tape by reading its label, and rename it
accordingly.
Automatic identification requires general aggreement on the format of tape labels, at
least to the extent of assigning a standard position to the names of tapes.

10.2. Temporary Removal of Programs

We have not imposed any restrictions on individual programs with respect to their
demand for storage, run time, and peripherals. It is taken for granted that some
programs will need most of the system resources for several hours. Such large
programs must not, however, prevent other users from obtaining immediate access to
the machine in order to execute more urgent programs of short duration. Thus the
system must permit temporary removal of a program in order to make its storage area
and peripherals available for other programs. One example, where this is absolutely
necessary, is the periodic supervision of a real-time process combined with the
execution of large background programs in idle intervals.

A program can be removed temporarily by stopping the corresponding internal
process and dumping its storage area on the backing store by an output operation.
Note that this dump automatically includes all children and descendants created

10.3. BATCH PROCESSING 51

within the area. The monitor is only aware of the process being stopped; it is still
described within the monitor and can receive messages from other processes.

It is now possible to create and start other processes in the same storage area, since the
monitor does not check whether internal processes overlap each other as long as they
remain within their parent processes. Peripherals can also be taken from the dumped
process and assigned to others simply by mounting new documents and renaming the
peripherals.

Temporary removal makes sense only if it is possible to restart a program at a later
stage. This requires reloading the program into its original storage area as well as
mounting and repositioning of its documents. After restart the internal process can
detect interference with its documents in one of two ways: either it finds that a
document does not exist any more, whereupon it must ask the operator to mount and
name it; or it discovers that an existing document no longer is reserved by it, meaning
that the operator has mounted it, but that it needs to be repositioned. These cases are
indicated by the result parameter after a call of wait answer.

The need for repositioning can also arise during normal program execution, if the
operator interferes with a peripheral device (by mistake or in order to move a
document to a more reliable device). Consequently all major programs should con-
sider each input/output operation as a potential restart situation.

10.3. Batch Processing

In the design of a batch processing system the distinction between parent and child
processes prevents the batch of programs from destroying the operating system. Note
that in general an operating system must remove a child process (and not merely stop
it) to ensure that all its resources are released again (Section 7.4). Even then, it must be
remembered that messages sent by a child to other processes remain in their queues
until these processes either answer them or are removed (Section 4.4).

The multiprogramming capabilities can be utilized to accept job requests in a con-
versational mode during execution of the batch. Thus a batch processing system can
include facilities for rentote job entry combined with priority scheduling of programs.

10.4. Time-Sharing

The basic requirement of a time-sharing system, in which alarge number of users have
conversational access to the system from consoles, is the ability to swap programs
between the internal store and the backing store. A time-sharing operating system
must create an internal process for each user, and make these processes share the same
storage area by frequent removal and restart of programs (say, every few seconds). The
problem is that stopping a process temporarily also means stopping its communication
with peripherals. Thus in order to keep typewriter input/output alive while a user
process is dumped, the system must include an internal process that buffers all data
between programs and consoles.

52 10.5. REAL-TIME SCHEDULING

10.5. Real-Time Scheduling

We conclude these hints with an example of a real-time system. The application we
have in mind is a process control system, in which a number of programs must perform
data logging, alarm scanning, trend logging, and so forth periodically under the
real-time control of an operating system.

This can be organized as follows: initially all task programs send messages to the
operating system and wait for answers. The operating system communicates with the
clock processand is activated every second in order to scan a time table of programs. If
the real time exceeds the start time of a task program, the operating system activates
the program by an answer. After completion of its task, the program again sends a
message to the operating system and waits for the answer. In response the operating
system increases the start time of the program by the period between two successive
executions of the task.

PART Il.
MONITOR FUNCTIONS

Chapter 11

GENERAL MONITOR CONVENTIONS

This chapter explains the general rules of monitor calls, internal interruption, privi-
leged functions, names, and catalog protection.

11.1. Monitor Call
The monitor is called within an internal process by the execution of an instruction
with the format:

jd 1<11 + <unsigned integer>
after loading parameter values in the working registers.
The monitor checks that the <unsigned integer> is the number of a monitor
procedure.
Internal interrupts not recognized as monitor calls cause immediate switching to the
interrupt procedure of the internal process (Section 11.2).
The monitor also checks the validity of procedure parameters. The basic rule is that
the return address and the addresses of stored parameters must be within the calling
process; otherwise the monitor provokes an internal interruption of the process.
The following example shows the notation used to define the call of a monitor
procedure:

look up entry (name address, tail address, result)

wQ result (return)

wl tail address (call)

w2

w3 name address (call)

jd 1<11+42
name address: entry name (call)
tail address: number of segments (return)
+2 9 optional words (return)

The procedure look up entry is called by executing the instruction jd 1<<11+42 with
registers w1 and w3 containing the adresses of two storage areas, called tail and name,
within the calling process. The name area contains an entry name when the procedure
is called.
Upon return from the monitor procedure, register w0 contains a result parameter,
while the other registers are unchanged. The monitor has stored a parameter, called
number of segments, and 9 optional words in the tail area.

11.2. Interrupt Handling

An internal process can call the monitor and define the address of an interrupt
procedure to be called when the process provokes an internal interrupt not recognized
as a monitor call.

56 11.3. FUNCTION MASK

When the interrupt occurs, current register values are stored in the head of the
interrupt procedure and execution of the internal process continues within the
interrupt procedure:

interrupt address: ~ working register O

+2 working register 1

+4 working register 2

+6 working register 3

+8 exception register

+10 instruction counter

+12 interrupt cause

+ 14 first instruction executed after interruption

The interrupt cause has one of the following values:

0 protection violation
integer overflow
floating-point overflow/underflow
parameter error in monitor call
breakpoint forced by parent

o O

An interrupt address equal to zero indicates that no interrupt procedure is defined by
the process. If such a process provokes an internal interrupt, the process is removed
from the timer queue and set in the state running after error. The process does not
receive any more computing time in this state, but from the point of view of other
processes it is still an existing process. The parent of the process can, however,
reactivate it by means of stop and start.

The monitor defines a standard value of the interrupt mask used during execution of
an internal process to ensure that all external interrupts are served. An internal process
can, however, call the monitor and define the interrupt mask bits corresponding to
integer and floating-point overflow. If these interrupts are masked off, they will not
cause internal interruption of the process. Other kinds of internal interrupts cannot be
masked off.

An internal process is created with the interrupt address zero and with arithmetic
interrupts masked off.

11.3. Function Mask

During creation of an internal process the parent specifies a function mask in which
each bit defines whether the child process is allowed to call one of the privileged
monitor procedures. At present the function mask bits have the following meaning (1
=function call allowed, O = function call forbidden):

11.4. NAMES 57

bit: function:

0 create entry

1 change entry, remove entry

2 rename entry

3 permanent entry

4 create peripheral process

5 remove peripheral process

6 generate name

7 set clock

8 can receive last console buffer
11.4. Names

A name is a textstring of 12 ISO characters (equal to 4 words) beginning with a small
letter followed by a maximum of 10 small letters or digits terminated by NULL
characters.
Names are used to identify processes and catalog entries.
A process name must be unique among all internal and external processes.
An entry naine must be unique among all catalog entries.
An area process name must be unique among all process names and entry names.
During creation of a process or a catalog entry the monitor can either use a name
specified by the calling process or it can generate a name. A generated name has the
format:

wrk<{6 digits>
followed by three NULL characters.

11.5. Catalog Protection

All catalog entries are created as temporary entries with the catalog key zero and the
creation number of the calling internal process.

An internal process can only modify or remove a catalog entry and its associated data
area if the following conditions are fulfilled:

1. The catalog register of the internal process must have a one in the bit corresponding
to the catalog key of the entry.

2. The entry must not be a temporary entry created by another existing internal
process.

3. A data area described by the entry must not exist as a process reserved by another
internal process.

If an internal process changes the size or catalog key of anentry, a corresponding area
process is updated accordingly.

If an internal process renames Or removes an entry, a corresponding area process is
removed.

Chapter 12

DEFINITION OF MONITOR PROCEDURES

This chapter defines the functions of monitor procedures and the conventions for
calling them within Slang programs.

12.1. PROCEDURE SET INTERRUPT 59

12.1. Procedure Set Interrupt

set interrupt (interrupt address, interrupt mask)

w0 interrupt mask (call)

wl

w2

w3 interrupt address (call)

jd 1<11+0

interrupt address: (see Section 11.2)
Defines the internal interrupt address of the calling process and the interrupt mask bits
1 and 2 for integer and floating-point overflow, the remaining mask bits are irrelevant
in the call; they are always set to a standard value by the monitor.
The interrupt address must either be zero or point to an area within the calling process.

Parameter error: interrupt area or return address outside calling process.

60 12.2. PROCEDURE PROCESS DESCRIPTION

12.2. Procedure Process Description

process description (name address, result)

w0 result (return)

wl

w2

w3 name address (call)

jd 1<11+4

name address: process name (call)
Checks the existence of a process with a given name. The result is the address of the
process description within the monitor, if the process exists; otherwise the result is
zero.

result =0 processdoesnot exist

>0 processdescription address

Parameter error: process name or return address outside calling process.

12.3. PROCEDURE INITIALIZE PROCESS 61

12.3. Procedure Initialize Process

initialize process (name address, result)

w0 result (return)

wi

w2

w3 name address (call)

id 1<11+6

name address: process name (call)
Checks the existence of a process with a given name and prepares it for com-
munication with the calling process. The initializing depends on the kind of the
process as follows:
Internal Process, Clock, or Typewriter: Only the existence of the process is checked.
Other Peripheral Process: The existence of the peripheral process with the calling
process as a user is checked. If the peripheral process controls a sequential document,
it is reserved for the calling process, unless another process has reserved it.
Area Process: The existence of the area process is checked. If the calling process is not
a user of the area process, it is defined as a user and its area claim decreased by one.
After initialization, only input from the area is allowed.
Messages received by the process before initialization will still be processed and
answered.

result = 0 processinitialized
1 reserved by another process
2 calling process is not a user; area claim exceeded
3 process does not exist

Parameter error. process name or return address outside calling process.

62 12.4. PROCEDURE RESERVE PROCESS

12.4. Procedure Reserve Process

reserve process (name address, result)

w0 result (return)

wl

w2

w3 name address (call)

jd 1<11+8

name address: process name (call)
Reserves a process with a given name for exclusive communication with the calling
process. Reservation depends on the kind of the process as follows:
Internal Process, Clock, or Typewriter: Reservation is not allowed.
Other Peripheral Process: The existence of the peripheral process with the calling
process as a user is checked. It is reserved for the calling process unless another process
has reserved it.
Area Process: The existence of the area process is checked. If the calling process is not
a user of the area process, it is defined as a user and its area claim decreased by one. The
area process is reserved for the calling process provided no other process has reserved
it, and provided the area is not protected against the calling process, i.e. the catalog
mask of the calling process must have a one in the bit corresponding to the catalog key
of the area. After reservation both input and output to the area are allowed.
Messages received by the process before reservation will still be processed and
answered.

result = 0 process reserved

reserved by another process

2 calling process is not a user; area claim exceeded;
process cannot be reserved

3 process does not exist

—_—

Parameter error: process name or return address outside calling process.

12.5. PROCEDURE RELEASE PROCESS 63

12.5. Procedure Release Process
release process (name address)

w0

wl

w2

w3 name address (call)
jd 1<11+10

name address: process name (call)
Releases a possible reservation of a process with a given name. Release depends on the
kind of the process as follows:
Internal Process: Nothing is done.
External Process: If the external process exists and is reserved by the calling process,

the reservation is cancelled.
Messages received by the process before release will still be processed and answered.

Parameter error: process name or return address outside calling process.

64 12.6. PROCEDURE INCLUDE USER

12.6. Procedure Include User
include user (name address, device number, result)
w0 result (return)
wl device number (call)

w2

w3 name address (call)
jd 1<11+12
name address: process name (call)
Includes an internal process with a given namie as a user of a peripheral device with a
given number. The internal process must be a child of the calling process and the latter

must be a user of the device.

result = 0

(3]

W

child included as a user

calling process is not a user
described process is not a child
device number does not exist

Parameter error: process name or return address outside calling process.

12.7. PROCEDURE EXCLUDE USER 65

12.7. Procedure Exclude User

exclude user (name address, device number, result)

w0 result (return)

wl device number (call)

w2

w3 name address (call)

id1<1i+14

name address: process name (call)
Excludes an internal process with a given name as a user and reserver of a peripheral
device with a given number. The internal process must be a child of the calling process
and the latter must be a user of the device.
Messages received by the peripheral process before exclusion of the user will still be
processed and answered.

result = child excluded as a user
calling process is not a user
described process is not a child
device number does not exist

w o O

4

Parameter errvor: process name or return address outside calling process.

66 12.8. PROCEDURE SEND MESSAGE

12.8. Procedure Send Message

send message (name address, message address, buffer address)

w0

wl message address (call)

w2 bufferaddress (return)

w3 name address (call)

jd I<11+16
name address: process name (call)
+8 name table entry (return)

message address: 8 words (call)
Selects an available message buffer, decreases the buffer claim of the calling process by
one, and copies a message of eight words into the buffer. The message is delivered in
the queue of a receiving process with a given name. The receiving process is activated if
it is waiting for a message or an event. The calling process continues after being
informed of the address of the message buffer.
If the receiving process does not exist, the monitor generates a dummy answer to the
message as described in Section 12.9.
The format and interpretation of a message depend on the kind of the receiving
process. For external processes details are given in Chapter 13.
After a call of send message the monitor stores an address, the name table entry, after
the process name. This address is used in subsequent calls of send messages to speed up
identification of the receiver. The name table entry can be destroyed by the calling
process, but this will slow down the next call of send message.
The process description address of the receiver can be loaded by indirect addressing of
the name table entry, for example:

rl wl (name address+8)
If the buffer claim of the calling process is exceeded the buffer address is zero:

bufferaddress =0 buffer claim exceeded

>0 selected buffer address
Parameter error: process name, message, or return address outside calling process.

12.9. PROCEDURE WAIT ANSWER 67

12.9. Procedure Wait Answer
wait answer (result, answer address, buffer address)
w0 result (return)
wl answer address (call)
w2 buffer address (call)
w3
jd1<11+18
answer address: 8 words (return)
Delays the calling process until an answer arrives in a given message buffer. On arrival
the answer, consisting of 8 words, is copied into the calling process. The message
buffer is released and the buffer claim of the calling process is increased by one.
The message buffer must be one that has been assigned to the calling process duringa
previous call of send message.
The format of an answer depends on the kind of the process that has received and
answered the message. For external processes details are given in Chapter 13.
The result specifies whether a normal or dummy answer was received. A normal
answer is delivered by a process in response to a received intelligible message. A
dummy answer is generated by the monitor when a message is addressed to a
non-existent process. A dummy answer can also be generated by the receiving process
in response to an undesired or unintelligible message, or when a malfunction (such asa
disconnected peripheral device) prevents completion of an operation specified in a
message.
result = 1 normal answer
2 dummy answer, message rejected
3 dummy answer, message unintelligible
4 dummy answer, receiver malfunction
5 dummy answer, receiver does not exist

Parameter error: buffer address does not point at message buffer assigned to calling
process; answer area or return address outside calling process.

68 12.10, PROCEDURE WAIT MESSAGE

12.10. Procedure Wait Message

wait message (name address, message address, buffer address, result)

w0 result (return)

wl message address (call)

w2 buffer address (return)

w3 name address (call)

jd 1<11+20

name address: process name (return)

message address: 8 words (return)
Delays the calling process until a message arrives in its queue. On arrival the name of
the sending process and the message, consisting of 8 words, are copied into the calling
process. The address of the message buffer in which the message was transmitted is
delivered as a return parameter. The buffer is removed from the queue and is now
ready to transmit an answer.
The result is the process description address of the sender, if it still exists. If the sender
has been removed, the result is the negative process description address of its parent; in
this case the sender name is not copied into the calling process.

result >0 process description address

<0 -—parent description address

Parameter error: name area, message area, or return address outside calling process.

12.11.PROCEDURE SEND ANSWER 69

12.11. Procedure Send Answer
send answer (result, answer address, buffer address)
w0 result (call)
wl answer address (call)
w2 buffer address (call)
w3
id1<11+22
answer address: 8 words (call)

Copies an answer of eight words into a message buffer in which a message has been
received and delivers it in the queue of the original sender. The sender of the message is
activated if it is waiting for an answer or event. The result defined by the calling
process is delivered to the sender as the result of wait answer; it specifies whether the
answer is normal or dummy.
If the sender no longer exists, the message buffer is released and the buffer claim of the
parent of the sender is increased by one.
At present the sender can be either an internal process or a typewriter. An answer toa
typewriter message merely causes the message buffer and the associated line buffer to
be released (see Section 13.6).
result = 1 normal answer

2 dummy answer, message rejected

3 dummy answer, message unintelligible

4 dummy answer, receiver malfunction

Parameter error: buffer address does not point at message buffer received by calling
process; answer area or return address outside calling process; illegal result value.

70 12.12. PROCEDURE WAIT EVENT

12.12. Procedure Wait Event
wait event (last buffer address, next buffer address, result)
w0 result (return)
wl
w2 last buffer address (call)
next buffer address (return)
w3
jd 1<11+24

Delays the calling process until either a message or an answer arrives in its queue after
the buffer given by the last buffer address. The process is supplied with the address of
the next buffer and a result indicating whether it contains a message or an answer. [f
the last buffer address is zero, the queue is examined from the start.

The wait event procedure does not remove the next buffer from the queue or in any
other way change its status. This must be done by one of the procedures wait answer
or get event.

result= 0 message
1 answer

Parameter error: last buffer address does not point at message buffer in the queue of
the calling process; return address outside calling process.

12.13. PROCEDURE GET EVENT 71

12.13. Procedure Get Event
get event (buffer address)
w0
wl
w2 buffer address (call)
w3
jd 1<11+26

Removes a given buffer from the queue of the calling process. If the buffer contains a
message, it is made ready for the sending of an answer. If the buffer contains an
answer, it is released and the buffer claim of the calling process is increased by one.
The copying of information from the buffer (sender description address, message or
answer, and result) must be done by the calling process itself before get event is called.
This requires a knowledge of the format of a message buffer (see Appendix A.3).

Parameter error: buffer address does not point at message buffer in the queue of the
calling process; return address outside calling process.

72 12.14. PROCEDURE TYPE WORKING REGISTER

12.14. Procedure Type Working Register

type w0 jd I<I1+28
typewl jd 1<114+30
type w2 jd 1I<11+32
type w3 jd 1<11+34

These four procedures print the contents of a working register as a signed integer
preceded by theletter w, x,y, or z, followed by a new line character. The register value
is printed in disabled mode on the main typewriter. These procedures are only used
during testing of the system; they are not included in final versions of the monitor.

Parameter error: return address outside calling process; procedure not included in
monitor.

12.15. PROCEDURE GET CLOCK 73

12.15. Procedure Get Clock
get clock (clock)
w0 clock(0:23) (return)
wl clock(24:47) (return)
w2
w3
id1<11+36
Delivers an updated value of the 48-bit clock with unit position 0.1 millisecond.

Parameter error: return address outside calling process.

74 12.16. PROCEDURE SET CLOCK

12.16. Procedure Set Clock
set clock (clock)
w0 clock (0:23) (call)

wl clock (24:47) (call)
w2
w3

jd I<11+38

Initializes the 48-bit clock with unit position 0.1 millisecond. This is a privileged
function.
It should be noted that clock values stored in the process descriptions of internal

processes (start time and wait time) are unchanged after a call of set clock (see
Appendix A.6).

Farameter error. return address outside calling process; function forbidden in calling
process.

12.17. PROCEDURE CREATE ENTRY 75

| 12.17. Procedure Create Entry
| create entry (name address, tail address, result)
w0 result (return)
wl tail address (call)
w2
w3 name address(call)
id 1<11+40
name address: entry name (call)
tail address: number of segments (call)
+ 2 9 optional words (call)
Creates a new entry in the catalog with name and tail as specified in the call. If the first
word of the name is zero. the monitor generates a unique entry name and stores it in
the name area specified in the call. If the first word of the tail is greater than zero, an
area of that size is reserved on the backing store and its first segment number placed in
the entry head. The entry is created as a temporary entry with the catalog key zero and
supplied with the creation number of the calling process. This is a privileged function.
result = 0 entry created
catalog function forbidden in calling process
catalog input/output error
entry with same name already exists
caralog full
contiguous area of requested size not available

]
2
3
4
5

6 name format illegal
Parameter error: name, tail arca, or return address outside calling process.

76 12.18. PROCEDURE LOOK UP ENTRY

12.18. Procedure Look Up Entry
look up entry (name address, tail address, result)
w0 result (return)
wl tail address (call)
w2
w3 name address (call)
jd 1<11+42
name address: entry name (call)
tail address: number of segments (return)
+2 9 optional words (return)
Looks up an entry in the catalog with a given name and copies the entry tail into the
calling process.
result = 0 entry looked up
2 catalog input/output error
3 entry does not exist
6 name format illegal

Parameter error: name, tail area, or return address outside calling process.

12.19. PROCEDURE CHANGL ENTRY 77

12.19. Procedure Change Entry
change entry (name address, tail address, result)

w0 result (return)
wl tail address (call)
w2
w3 name address (call)
jd 1<11+44
name address: entry name (call)
tail address: number of segments (call)
4+ 9 optional words (call)

Changes the tail of an entry in the catalog with a given name provided the catalog
register permits the calling process to modify the entry, and provided the entry is nota
temporary entry created by another existing process.

If the entry describes an area on the backing store, the size of the area, given by the
first word of the tail. can be reduced, but not increased. The area is reduced from the
upper end, that is, the first ssgment number remains unchanged.

If the area is used as a process, it must not be reserved by another internal process. The
area process description is changed in accordance with the new size.

If the entry does not describe an area, the first word of the new tail must be less than or
equal to zero.

This is a privileged function.

result= 0 entry changed
1 catalog function forbidden in calling process
2 catalog input/output error
3 entry doesnot exist
4 entry is protected against calling process
5

area process reserved by another user
6 name format or new size illegal

Parameter error: name, tail area, or return address outside calling process.

78 12.20. PROCEDURLE RENAME ENTRY

12.20. Procedure Rename Entry
rename entry (name address, new name address. result)

w0 result (return)
wl new name address (call)
w2
w3 name address (call)
jd 1<114+46

name address: old entry name (call)

new name address: new entry name (call)
Changes the name of an entry in the catalog provided the catalog register permits the
calling process to modify the entry, and provided the entry is not a temporary entry
created by another existing process.
This procedure leaves the catalog key, the creation number, the first segment number,
and the entry tail unchanged.
If the entry describes an area used as a process, it must not be reserved by another
internal process. The area process description is removed and the area claim of all users
isincreased by one.
This is a privileged function.

result = 0 entry renamed

1 catalog function forbidden in calling process
2 catalog input/output error
3 old entry does not exist or entry with

new name already exists
4 old entry is protected against calling process
5 area process reserved by another user
6 old or new name format illegal

Parameter error: old or new name or return address outside calling process.

12.21. PROCEDURE REMOVE ENTRY 79

12.21. Procedure Remove Entry
remove entry (name address, result)

w0 result (return)

wl

w2

w3 name address (call)
jd 1<11+48

name address: entry name (call)
Removes an entry in the catalog with a given name and its associated area on the
backing store provided the catalog register permits the calling process to modify the
entry, and provided the entry is not a temporary entry created by another existing
process.
If the entry describes an area used as a process, it must not be reserved by another
internal process. The area process description is removed and the area claim of all users
is increased by one.
This is a privileged function.

entry removed

catalog function forbidden in calling process
catalog input/output error

entry does not exist

entry is protected against calling process
area process reserved by another user

name format illegal

result =

N Rk W — O

Parameter error: name or return address outside calling process.

80 12.22. PROCEDURE PERMANENT ENTRY

12.22. Procedure Permanent Entry
permanent entry (name address, catalog key, result)

w0 result (return)

wl catalog key (call)

w2

w3 name address (call)
jd 1<11+50

name address: entry name (call)
Changes the catalog key of anentry in the catalog and sets the creation number to zero
provided the catalog register permits the calling process to modity the entry both
before and after the change of the key. and provided the entry is not a temporary
entry created by another existing process.
This procedure leaves the entry name, the first segment, and the entry tail unchanged.
If the entry describes an area used as a process, it must not be reserved by another
internal process. The area process description is changed in accordance with the new
catalogkey.
This is a privileged function.

result = 0 entry permanent

1 catalog function forbidden in calling process

2 catalog input/output error

3 entry does not exist

4 old or new catalog key protects entry
against calling process

5 area process reserved by another user

6 name format illegal

Parameter error: name or return address outside calling process.

12.23. PROCEDURE CREATE AREA PROCESS 81

12.23. Procedure Create Area Process
create area process (name address. result)

w0 result (return)

wl

w2

w3 name address (call)
jd 1<11+452

name address: process name (call)

Makes an area on the backing store available to the calling process as an external
process with the same name as the corresponding catalog entry. If the area process
does not exist, it is looked up in the catalog and described as a process within the
monitor with the calling process as a user whose area claim is decreased by one. If the
area process already exists. the calling process is defined as a user and its area claim
decreased by one.

; result = area process created

area claim exceeded

catalog input/output error

entry does not exist; process with

same name already exists

entry does not describe area

name format illegal

w to — O

4
6

Parameter error: name or return address outside calling process.

82 12.24. PROCEDURE CREATE PERIPHERAL PROCESS

12.24. Procedure Create Peripheral Process

create peripheral process (name address, device number, result)

w0 result (return)

wl device number (call)

w2

w3 name address (call)

jd I<11+54

name address: process name (call)
Assigns a process name to a peripheral device. If the first word of the name is zero, the
monitor generates a unique process name and stores it in the name area specified in the
call. It is required that the calling process is a user of the device and that no other
process has reserved it.
This is a privileged function.

result = 0 peripheral process created
function forbidden in calling process
calling process is not a user
process with same name already exists
device number does not exist
device is reserved by another user
name format illegal

NV R WN -

Parameter error: name or return address outside calling process.

12.25. PROCEDURE CREATE INTERNAL PROCESS 83

12.25. Procedure Create Internal Process
create internal process (name address, parameter address, result)
w0 result (return)
wl parameter address (call)

w2
w3 name address (call)
jd 1<11+56
name address: process name (call)
parameter address: first storage address (call)
+2 top storage address (call)
+4 buffer claim, area claim (call)
+6 internal claim, function mask (call)
+8 catalog mask (call)
+10 protection register, protection key (call)

Creates a description of an internal process with a given name and parameters. If the
first word of the name is zero, the monitor generates a unique process name and stores
it in the name area given in the call.

The storage area must be within the storage area of the calling process. The first and
top storage addresses point to the first storage word and the last storage word + 2 of
the new process.

The buffer claim and area claim must be less than or equal to the claims of the calling
process, which are decreased accordingly.

The internal claim must be less than the claim of the calling process, which is decreased
by the value specified + 1 to include the new process itself.

In the function and catalog masks a bit equal to one indicates that the process can call
the privileged function or change the catalog entries with the corresponding key.
Consequently the mask bits equal to one must be a subset of those defined for the
calling process. '

In the protection register a bit equal to zero indicates the ability to change or execute
storage words with the corresponding key. Consequently the protection bits equal to
zero must be a subset of those defined for the calling process.

The protection key is the key that is set in all storage words of the new process when it
is started. The corresponding bit in the protection register must be zero; except when
the protection key of the calling process is zero; in that case any protection situation
of the new process is accepted.

The new process is a child of the calling process. It is created in the state waiting for
start by parent, with stop count, interrupt address, time quantum, and run time equal
to zero. while the instruction counter is equal to the first storage address. The
interrupt mask is initialized to prevent internal interruption on arithmetic overflow.
The start time of the process is set equal to the current value of the 48-bit clock.
Finally the creation number is increased by one and stored in the process description.

84 12.25. PROCEDURE CREATE INTERNAL PROCESS

result = 0 internal process created
1 storage area outside calling process;
claim exceeded: illegal protection
3 process with same name already exists
6 name format illegal

Parameter error: name, parameters, or return address outside calling process.

12.26. PROCEDURE START INTERNAL PROCESS 85

12.26. Procedure Start Internal Process
start internal process (name, address, result)

w0 result (return)

wl

w2

w3 name address (call)
jd 1< 1+58

name address: process name (call)
Starts an internal process with a given name provided it is a child of the calling process
in the state waiting for start by parent. Also started are all descendants of the child
that were stopped previously along with it. The start includes a setting of the
protection key in the storage area of the involved processes. It is ensured that no
process is started before its parent has been started. The processes are set in the
running state.
Finally the stop count of the calling process is increased by one to indicate that a
process, the child, is modifying its storage area.

result = 0 internal process started
state of process does not permit start
described process is not a child
name format illegal

2
3
6

Parameter error: name or return address outside calling process.

86 12.27. PROCEDURE STOP INTERNAL PROCESS

12.27. Procedure Stop Internal Process

stop internal process (name address, buffer address, result)

w0 result (return)

wl

w2 bufferaddress (return)

w3 name address (call)

jd 1<11+60

name address: process name (call)
Initiates a stop of an internal process with a given name provided it is a child of the
calling process. Also stopped are all running descendants of the child.When the stop is
initiated, the child is placed in the state waiting for stop by parent, while its
descendants are set to waiting for stop by ancestor. A process can be in any state when
the stop is initiated. If the process is waiting for a message, an answer, an event, or a
process function, its state is changed to waiting for stop, as explained above, but at the
same time its instruction counter is decreased by two to ensure that it will repeat the
call of the corresponding monitor procedure when it is started again.
Finally, the stop procedure selects a message buffer, decreases the buffer claim of the
calling process by one, and returns.
The monitor completes the stop operation as follows: Each time the stop count of one
of the involved processes becomes zero (after the completion of high-speed input/out-
put), the process is transferred to the state waiting for start by ancestor (or parent)and
the stop count of its parent is decreased by one. When all involved processes are
stopped, the monitor delivers an answer in the selected message buffer to the calling
process, which in turn receives it by calling either wait answer or wait event.
If the buffer claim of the calling process is exceeded the buffer address is zero:

bufferaddress =0 buffer claim exceeded

>0 selected buffer address
=0 stopinitiated
3 described processisnot a child
6 name format illegal

result

Parameter error: name or return address outside calling process.

12.28. PROCEDURE MODIFY INTERNAL PROCESS 87

12.28. Procedure Modify Internal Process
modify internal process (name address, register address, result)
w0 result (return)
wl register address (call)

w2

w3 name address (call)
jd 1<11+62

name address: process name (call)

register address: working register O (call)
+2 working register 1 (call)
+4 working register 2 (call)
+6 working register 3 (call)
+8 exception register (call)
+10 instruction counter (call)

Initializes the register values of an internal process with a given name provided it isa
child of the calling process in the state waiting for start by parent.
result = 0 internal process modified
2 state of process does not permit modification
3 described process is not a child
6 name format illegal

Parameter error: name, registers, or return address outside the calling process; instruc-
tion counter outside child process.

88 12.29. PROCEDURE REMOVE PROCLESS

12.29. Procedure Remove Process
remove process (name address, result)
w0 result (return)
wl
w2
w3 name address (call)
jd1<11+64
name address: process name (call)

Removes an internal or external process from the monitor. Removal depends on the
kind of the process:

Peripheral Process: The calling process must be a user of the peripheral process and no
other process must have reserved it. In this case the name of the peripheral process is
removed, but the device itself remains described within the monitor. This is a
privileged function.

Area Process: The calling process must be a user of the area process. In this case the
calling process is removed as a user and reserver of the area process. and its area claim is
increased by one. If the area process has no other users. the process description is also
removed.

Internal Process: The internal process must be a child of the calling process in the state
waiting for start by parent. In this case the child and its descendants are removed as
follows: the process descriptions are removed one by one starting with the youngest
descendants, and the bufter claims, area claims, and internal claims are added to those
of their parents. [n the storage area of the child. the protection key is reset to the value
used within the calling process.

All area processes used by the involved internal processes are removed as described
above.

In all peripheral processes the internal processes are removed as users and reservers,
but the peripheral processes themselves are not removed.

Finally all message buffers are examined for pending messages or answers involving the
processes to be removed. There are the tollowing possibilities:

a) A buffer contains a pending or received message to a removed process. A dummy
answer (receiver does not exist) is delivered if the sending process still exists: otherwise
the buffer is released and the buffer claim of the parent of the sender is increased by
one.

b) A buffer contains a pending answer to a removed process. The buffer is released
and the buffer claim of the parent of the removed process is increased by one.

¢) A buffer contains a pending or received message from the removed process to
another process. The message is left undisturbed with an indication that the buffer
claim of the parent of the removed process should be increased by one when the
receiving process sends an answer.

d) A buffer contains an answer from the removed process to another process. The
answer is left undisturbed.

result = 0
1
2

3
5
6

12.29. PROCEDURE REMOVE PROCESS

process removed

function forbidden in calling process

state of internal process does not permit removal;
calling process is not a user of external process
described process is not a child or does not exist
peripheral process reserved by another process
name format illegal

Paraimeter error: name or return address outside calling process.

89

90 12.30. PROCEDURE TESTCALL
12.30. Procedure Testcall

testcall
w0 1 (return)
wl
w2
w3
jd 1<11+66

Types internal testoutput of process functions in disabled mode on the main
typewriter. This procedure is dummy in final versions of the monitor.

Parameter error: return address outside calling process.

12.31. PROCEDURE GENERATE NAME 91

12.31. Procedure Generate Name

generate name (name address, result)

w0 result (return)

wl

w2

w3 name address (call)

jd 1<11+68

name address: generated name (return)
Generates a name with the format:

wrk<6 digits>
followed by three NULL characters and stores it within the calling process. The six
digits form an octal number modulo 8.777 777.
The generated name does not exist as a process name or a catalog entry name.
Thisis a privileged function.

result = 0 name generated
1 function forbidden in calling process
2 catalog input/output error

Parameter error: name or return address outside calling process.

92
Chapter 13

DEFINITION OF EXTERNAL PROCESSES

This chapter defines the functions of external processes and the conventions for
calling them within Slang programs.

13.1. Process Kind

13.1. PROCLSS KIND 93

At present the following kinds of processes are defined:

0
5

Fa

4
6
8
10
12
14
16
18

internal process

interval clock

backing store area

drum (RC 4320)

typewriter (RC 315)

paper tape reader (RC 2000®
paper tape punch (RC 150)

line printer (RC 610)

punched card reader (RC 405)
magnetic tape station (RC 747)

94 13.2. INPUT/OUTPUT MESSAGES

13.2. Input/Output Messages
Input/Output is initiated when an internal process sends a message to an external
process. A typical message has the following format:
message address: operation

+ 2 first storage address

+4 last storage address
It defines an input/output operation and the first and last address of a data block that
must be within the storage area of the internal process.
After completing the operation the external process returns an answer, which,
typically, has the following format:

answer address: status word

+2 number of bytes transferred

+4 number of characters transferred
It contains a status word sensed from the device after the operation, the actual number
of bytes input or output (always an even number), and the corresponding number of
characters (a word can contain 2, 3, or 4 characters depending on the kind of device).
Dummy answers to input/output messages are delivered in the following situations:
result = 2, message rejected: the external process is reserved by another process, or
demands a reservation that has not been made by the sending process;
result = 3, message unintelligible: the operation parameter has an illegal value, or the
storage area for input/output is outside the sending process;
result = 4, receiver malfunction: the peripheral process is disconnected during the
input/output operation:
result =5, receiver does not exist.

13.3. INTERVAL CLOCK 95

13.3. Interval Clock

General Rules.

The process kind is 2. Operations can be initiated by any internal process. /nitial-
ization has no effect, reservation is forbidden. The clock accepts messages simultane-
ously from more than one internal process.

Delay Operation.

A message to the clock specifies a time interval either in seconds or in 0,1 milli-
seconds. After the elapse of the interval the clock returns an answer. The time inter-
val must be from 0 to 24 hours, otherwise the message is treated as unintelligible.
The clock process is synchronized with the hardware interval timer; it is activated
when a multiple of time slices exceed the monitor constant, inspection interval; it
then decreases all delays in its queue by this value and returns answers for delays
that become zero or negative.

Thus the actual delay can have a maximum error equal to the value of the inspection
interval depending on whether a message is sent at the beginning or at the end of the
inspection interval. Exact time intervals can only be measured by means of the mo-
nitor procedure get clock.

The value of the inspection interval is normally one second but can be redefined
during translation of the monitor. The lower limit for the value is one time slice but
for practical use the value should not be less than 0.1 second.

Message and Answer:

operation: message: answer:
delay in seconds 0 0
seconds 0
0
delay in 0.1 msecs 2 0
interval (0:23) 0

interval (24:47) 0

96 13.4. BACKING STORE AREA

13.4. Backing Store Area

General Rules.
The process kind is 4. Sense and input operations can be initiated by an internal

process that is a user of the area process. An arca process accepts input messages
simultaneously from more than one process provided no process has reserved it.
Output operations require that the area process has been reserved.

Sense Operation.
The device on which the area is stored is sensed and the status word is delivered as an
answer.

Input Operation.
A number of consecutive segments of 256 words each is input to a storage area within
the sending process. The first segment number relative to the beginning of the area on
the backing store is also given in the message.
The operation transters the maximum number of segments for which there is room
within the storage area. i.e.

number of segments =

(last storage address + 2 - first storage address)//512
If the input block thus specified exceeds the upper limit of the area on the backing
store, input is performed only of that part of the block that is within the area. In any
case the actual number of bytes transferred is given in the answer.
The number of bytes transferred is a multiple of 512. The number of characters is
defined as three times the number of words transferred.
If the answer indicates parity error, svachronization error, or data overrun, the
operation has been performed three times without success.
If the first segment is outside the limits of the area. input is not initiated. but the
answer contains a status bit. end of arca, and the block length zero.

Output Operation.
Equivalent to the input operation.

Status Bits.

1 parity error

2 synchronization error

3 data overrun

S end of area (generated by monitor)

Messages and Answers.

operation: message: answer:

sense 0 status word
0
0

input

output

13.4. BACKING STORE AREA

3<12 status word
first storage address number of bytes
last storage address number of characters

first segment number

5<12 status word
first storage address number of bytes
last storage address number of characters

first segment number

97

98 13.5. DRUM (RC 4320)

13.5. Drum (RC 4320)

General Rules.

The process kind is 6. At present the drum is only used in connection with areas
described in the catalog. The drum itself is therefore not accessible as a separate
process within internal processes.

13.6. TYPEWRITER (RC 315) 99

13.6. Typewriter (RC 315)

General Rules.

The process kind is 8. Operations can be initiated by any internal process that is a user
of the device. Initialization has no effect: reservation is forbidden. A typewriter
accepts messages simultaneously from more than one process.

Setting the device in the local state has no effect other than delaying input/output
until the device is set rermote again.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Input Operation.
It the name of the sender differs from the name of the last internal process that
communicated with the typewriter, the name of the sender is output in the following
format:

<new line> to <name of sender> <new line>
The operator can now input one line of characters to a storage area within the sending
process. Characters are represented in the 1SO 7-bit character code with three
characters per word. Unused character positions in the last input word are filled with
NULL characters.
Input characters with parity error are replaced by SUBSTITUTE characters, after
which input is continued.
If the operator waits more than 2 seconds between the typing of two characters, the
typewriter repeats the input operation of the missing character unless the interrupt
key has been depressed or the sending process has been stopped. Associated with each
typewriter is a constant defining the maximum number of timer interrupts allowed
during input of one line (0 to 2047 times 2 seconds).
Input is terminated in the following situations: the area is full: after input of a NEW
LINE, END MEDIUM, or CANCEL character; after depression of the interrupt key;
after a maximum number of timer interrupts: when the sending process is stopped,
whichever occurs first. In the latter case the last input character is lost.
In all cases input is terminated by an answer defining the actual number of characters
mnput.

Output Operation.
If the name of the sender differs from the name of the last internal process that
communicated with the typewriter, the name of the sender is output in the following
format:

<new line> from <name of sender><new line>
A textstring consisting of one or more lines is output from a storage area within the
sending process. Characters must be represented in the ISO 7-bit character code with
three characters per word.
After a parity error output continues.

100 13.6. TYPEWRITER (RC 315)

Output is terminated in the following situations: the area is empty; after depression of
the interrupt key; after a timer interrupt; when the sending process is stopped,
whichever occurs first.

In all cases a multiple of three characters has been output, and output is terminated by
an answer defining the actual number of characters output.

Status Bits.
0 intervention
2 timer
Messages and Answers.
operation: message: answer:
sense 0 status word
0
0
input <12 status word
first storage address number of bytes
last storage address number of characters
output 5<12 status word
first storage address number of bytes
last storage address number of characters

Operator Input Request.
The typewriter is not only able to receive messages from internal processes, it can also,
on request from an operator, send messages to internal processes.
An operator message is transmitted in a typewriter storage area selected from a
common pool within the monitor. Each typewriter area consists of an ordinary
message buffer (which identifies the sender and the address of the input text) and a
line buffer (in which the text is stored).
An operator request is made by depressing the interrupt key on the typewriter. The
typewriter responds by outputting the following:

<new line> to
The operator can now type the name of the receiving process terminated by a NEW
LINE character. If the operator only types a NEW LINE character, the receiving
process is the last internal process with which the typewriter has communicated.
After this the operator can input one line of text. Characters are represented in the
ISO 7-bit character code with three characters per word. Unused character positions in
the last input word are filled with NULL characters.
Input characters with parity error are replaced by SUBSTITUTE characters, after
which input is continued.

13.6. TYPEWRITER (RC 315) 101

Input is terminated in the following situations: the area is full; after input of a NEW
LINE, END MEDIUM, or CANCEL character; after depression of the interrupt key;
after a maximum of timer interrupts; whichever occurs first.

The typewriter now examines whether the receiving process exists. If it does, the
message is linked to its queue. Otherwise the typewriter releases the storage area and

announces that the receiver is:
<new line>>unknown<new line>

Associated with each typewriter is a buffer claim defining the maximum number of
messages that can be sent simultaneously from the typewriter. The buffer claim is
decreased by one when the typewriter sends a message, and increased by one when the
receiving process sends an answer in the selected message buffer.
A typewriter can only send its last buffer to an internal process that has a one in the
function mask bit called can receive last console buffer (see Section 11.3).
If all buffers are used or an attempt is made to send the last one to an internal process
that cannot receive it, the following is output:

<new line> wait <new line>
The operator must then repeat the request later.

Operator Message.
An operator message, as received by an internal process, has the following format:
5<12
first storage address
last storage address
status word
If no characters are input and input is terminated by depressing the interrupt key or
after a maximum number of timer interrupts, the last storage address equals first

storage address — 2.

102 13.7. PAPLR TAPE READER (RC 2000)

13.7. Paper Tape Reader (RC 2000)

General Rules.
The process kind is 10. Operations can only be initiated by an internal process that has

initialized or reserved the device.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Input Operation.

Characters are input to a storage area within the sending process. Three 8-bit
characters are packed in each word. Unused character positions in the last input word
are filled with NULL characters.

Input is terminated when the area is full, at the end of the paper tape. or when the
sending process is stopped. whichever occurs first.

Input Mode.

Characters can be input atter removal of an odd or even parity bit, or directly as 8 bits
without parity checking.

Finally they can be input and converted from the Flexowriter code to the 1SO
7-bit code as defined in Section 13.13. The case situation is set to lower case when the
reader is initialized or reserved.

The input mode is part of the message:

mode: 0 odd parity
2 even parity
4 no parity
6 Flexowriter to ISO conversion

In modes O, 2, and 6 input is terminated after a parity error. The erroneous
character is replaced by a SUBSTITUTE character. In mode 6 however ALL HOLES
characters are skipped.

Status Bits.

1 parity

5 end of paper
It should be noted that the input block can have a length greater than zero when the
status word indicates an end of paper.

Messages and Answers.

operation: message: ANSWer:
sense 0 status word
0

0

13.7. PAPER TAPE READER (RC 2000) 103

input 3<12 + mode status word
first storage address number of bytes
last storage address number of characters

104 13.8. PAPER TAPE PUNCH (RC 150)

13.8. Paper Tape Punch (RC 150)

General Rules.

The process kind is 12. Operations can only be initiated by an internal process that
has initialized or reserved the device.

Setting the device in the local state has no effect other than delaying output until the
device is set remote again.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Output Operation.

Characters are output from a storage area within the sending process. Each storage
word is output as three 8-bit characters.

Output is terminated when the area is empty, after a timer error, or when the sending
process is stopped, whichever occurs first.

In all cases a multiple of three characters has been output, and output is terminated by
an answer defining the actual number of characters output.

Output Mode.
Characters can be output after the addition of an odd or even parity bit, or directly as
8 bits without a parity bit.
Finally they can be converted from the ISO 7-bit code to the Flexowriter code and
output as defined in Section 13.12. The case situation is set to lower case when the
punch is initialized or reserved.
The output mode is part of the message:
mode: 0 odd parity

2 even parity

4 no parity

6 ISO to Flexowriter conversion

Status Bits.
0 intervention
2 timer
5 paper tape supply low
Messages and Answers.
operation: message: answer:
sense 0 status word
0
0
output 5<12 + mode status word

first storage address number of bytes
last storage address number of characters

13.9. LINE PRINTER (RC 610) 105

13.9. Line Printer (RC 610)

General Rules.

The process kind is 14. Operations can be initiated by an internal process that has
initialized or reserved the device.

Setting the device in the local state has no effect other than delaying output until the
device is set remote again.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Output Operation.

Characters are output from a storage word within the sending process. Characters
must be represented in the ISO 7-bit code with three characters per word.

Output is terminated when the area is empty, when the sending process is stopped,
after a parity error, after a timer error, or at end of paper, whichever occurs first. In
the two first cases a multiple of three characters has been output.

Output is terminated by an answer defining the actual number of characters output.
However at end of paper this number is decreased by three so no characters will be
skipped when the rest of the buffer is output.

Status Bits.

0 intervention
1 parity
2 timer
5 end of paper
Messages and Answers.
operation: message: answer:
sense 0 status word
0
0
output 5<12 status word

first storage address number of bytes
last storage address number of characters

106 13.10. PUNCHED CARD READER (RC 405)

13.10. Punched Card Reader (RC 405)

General Rules.

The process kind is 16, Operations can be initiated by an internal process that has
initialized or reserved the device.

When the device is local input operations will be terminated after a period of
approximately one second with the intervention bit set. However if no cards are
read the answer will be delivered after a number of periods defined by the fourth
word of the message or when the device is set remote again, whichever occurs first.
The device is set local when the local push-button is activated, after a timer error,
when the input tray is empty, when the output tray is full, or when the reject tray
is full. The device is set remote when the remote push-button is activated.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Input Operation.

A number of punched cards of 80 or 51 characters each are input to a storage area
within the sending process.

Input is terminated when there is no room for an entire card, when any status bit is
set, or when the sending process is stopped, whichever occurs first,

In all cases input is terminated by an answer defining the actual number of charac-
ters transferred to the storage area.

Input Mode.
A card can be input in binary mode with two 12-bit characters per word. It can also
be input in decimal or converted mode with three 8-bit characters per word. The
input mode is part of the message. When it is zero, 80 column cards are read in
binary mode without any conversion and all cards are returned to the output tray.
The mode can be changed by adding the following values:
2 EBCD to ISO conversion
4 51 column cards
8 decimal
16 card to reject tray if reading error
32 card to reject tray if parity error
The EBCD to ISO conversion has a meaning only together with decimal mode. The
conversion is defined in section 13.14.
Depending on the mode modulo 16 the following is inserted after each card:

0 nothing
4 a character with value =0
8 a character with value =0

10 a NL character (value = 10)
12 nothing
14 CR, NL, and CR characters (values = 13, 10, and 13)

13.10. PUNCHED CARD READER (RC 405) 107

In case of parity error or reading error the erroneous character is set to all ones in
decimal mode and to a SUBSTITUTE character in conversion mode. The remaining
characters are set to zero in decimal mode and in conversion mode. The above men-
tioned characters will, however, still be inserted after the card. The fourth word of the
answer will contain the number of error-free characters. The number of characters
transferred includes the entire card.

Status Bits.

0] intervention
parity error (conversion error)
timer (fail to feed after 500 msec)
data overrun
end of deck
output tray or reject tray full
reading error
card rejected

—_ O N W

— —

Messages and Answers.

operation: message: answer:
sense 0 status word
0
0
input 3< 12+ mode status word

first storage address ~ number of bytes
last storage address number of characters
local periods number of error-free characters

108 13.11. MAGNETIC TAPE STATION (RC 747)

13.11. Magnetic Tape Station (RC 747)

General Rules.

The process kind is 18. Operations can be initiated by an internal process that has
initialized orreserved the device.

The device is sensed before each operation. If the status word indicates an intervention
by the operator in the local mode, the name of the process is removed (together with
the present reservation) and all messages are answered with the result: receiver does
notexist. The device is now in the state: document removed.

When the operator switches back to remote mode, the device produces an interrupt.
This causes the setting of the device state to: unidentified document mounted.

When the device is named by the procedure create peripheral process, the device state
becomes: identified document mounted.

All answers from magnetic tapes contain a file and block number defining the position
of the tape after the operation.

At load point both file and block numbers are zero.

The file number is increased by one after the output of a tape mark or the sensing of a
tape mark during a forward operation. It is decreased by one when a tape mark is
sensed after a backward operation.

The block number is increased by one when a block is input, output, or upspaced. If a
tape mark is sensed during a forward operation, however, the block number is set to
zero. It is decreased by one when a block is backspaced. If a tape mark is sensed during
a backward operation, however, the block number is set to —1 indicating that the
position is unknown.

These simple file and block numbers are based solely on a count of initiated operations
and sensed status bits. There is no check against file and block numbers recorded in
labels and data blocks.

Sense Operation.
The device is sensed and the status word delivered as an answer.

Input Block Operation.

A block of characters is input to a storage area within the sending process. Each
storage word contains four 6-bit characters. Unused character positions in the last
input word are filled with NULL characters.

Input is terminated when the storage area is full or the whole block has been
transferred, whichever occurs first.

Output Block Operation.
A storage area within the sending process is output as one block. Each storage word is
output as four 6-bit characters.

Erase Operation.
Erasesalength of tape.

13.11. MAGNETIC TAPE STATION (RC 747) 109

Move Operation.
Moves the tape in accordance with the move operation defined in the message (if
the move operation is negative it is treated as a sense operation):

move operation: 0 upspace file

1 upspace block

2 backspace file

3 backspace block

4 rewind tape

S unwind tape

>5 sense tape

Output Tape Mark.
Outputs a block consisting of four characters with the decimal value 15 with even
parity.
Input/Output Mode.

Characters can be input and output with even or odd parity as defined by a mode in
the message:
mode: 0 odd parity
2 even parity

Status Bits.

parity error (after input and output)

timer (after input)

data overrun (after input and output)

block length error (after input)

EOT sensed (after input, output, and upspace)

BOT sensed (after rewind and backspace)

tape mark sensed (after input, backspace, and upspace)
write-enable sensed (permanent)

high density selected (permanent)

O 00 13 O N AW —

Messages and Answers.
operation: message: answer:

sense 0 status word
0
0
file number
block number

110
input block

output block

erase

move

output mark

13.11, MAGNETIC TAPE STATION (RC 747)

3<12 + mode
first storage address
last storage address

5<12+mode
first storage address
last storage address

6<12

8<12
move operation

10<12

status word

number of bytes
number of characters
file number

block number

status word

number of bytes
number of characters
file number

block number

status word

0

0

file number
block number

status word

0

0

file number
block number

status word

0

0

file number
block number

13.12. ISO TO FLEXOWRITER CONVERSION 111

13.12.1SO0 to Flexowriter Conversion

In the table below, each element corresponds to an ISO character with a decimal value
equal to the sum of the column and row numbers. To the left in the element is shown
the I1SO character, while the corresponding Flexowriter character is shown to the
right. The decimal value of Flexowriter characters is defined in Section 13.13.
Flex owriter to [SO Conversion.

As an example, the [SO character & has the decimal value 32 +6 = 38, and is converted
to the upper case Flexowriter character /

0 16 32 48 64 80 96 112

0 |NUL DLE S SP| 00O @ PP \ p p
1 1 SOH DC1 ! ° 11 AA | QQ | aa q q
2 |STX DC2 ! 22 B B RR | bb I T
3|ETX DC3 £ 33 cC SS ¢ c s $
4 [EOT DC4 $ 4 4 DD | TT d d t t
5| ENQ NAK e 55 EE | UU | ece u u
6| ACK SYN & N 6 6 F F vv | ff v v
7|BEL ETB © 10}l 77| GG | WW | gg | W W
8| BS CAN ((8 8 HH | XX | hh X X
9 |HT TAB| EM END))) 99 I 1 YY | ii y y
10 | NL CAR| SUB * X Do J] ZZ\|ji z z
11| VT ESC + + R K K A A k k F: &
12| FF STP | FS , , <<| LL|OQ0O0 |11 0)
13{CR GS - = | == MM | AA | mm| & a
14| SO RS . . >>| NN - nn|
15| SI Us / / ? 00 —e oo DEL

e An exclamation mark ! and an underline _ are converted to the special

characters | and _ followed by a space.

Unassigned codes and codes > 127 are skipped during output.

112 13.13. FLEXOWRITER TO ISO CONVERSION

13.13. Flexowriter to ISO Conversion

In the table below, each element corresponds to a Flexowriter character in lower or
upper case with a decimal value equal to the sum of the column and row numbers. To
the left in the element is shown the Flexowriter character, while the corresponding
ISO character is shown to the right. The decimal value of ISO characters is defined in
Section 13.12.1SO to Flexowriter Conversion.

As an example, the Flexowriter character A is an upper case character with the
decimal value 16 +0 = 16; it is converted to the ISO character &

0 16 32 48
LC uc LC uc LC uc LC uc

0} SP SP| SP SP| O 0 A & | — — | + + e = |A K
11 1 v ! < <> > JJ a a A A
212 2 X * s $ S S k k KK]b b B B
3] 3 3 / / t t T T 11 LL ¢ ¢ C C
41 4 4 = = u u U U| mm| MM | d d D D
S| S 5 R ; % v \% \Y n n N N e e E E
6| 6 6 [Al w w W W] oo 00 f f F F
717 7 I Alx x| X X|pp|PP g g G G
818 8 | ((Yy vy !Y Yiqq | QQ|h h |H H
919 9)) z z Z Z rr R R i i I I
10 LC LC
11 | STP FF| STP FF| , , o o0 00 |. :
12 | END EM| END EM uc uc
13] a a A A
14| o — | e ! TAB HT| TAB HT
15
16 NL C NL CAR

® An underline_ or a bar | followed by a space are converted to the special
characters_ and ! respectively. Multiple underlines or bars, case shifts, and unassigned
codes are skipped between the first underline or bar and the space. An underline or bar
followed by a graphic character are converted to the SUB character.

Unassigned codes and codes 65 - 127 are skipped during input.

13.14, EBCD TO ISO CONVERSION 113

13.14. EBCD to ISO Conversion
In the table below, each element corresponds to an EBCD character with a decimal

value equal to the sum of the column and row numbers. In the element is shown
the corresponding ISO character. The decimal value of ISO characters is defined in

Section 13.12. ISO to Flexowriter Conversion.
As an example, the character + has the decimal value 64 + 14 = 78 and the hole

pattern 12-8-6.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

1212121 12 1211211212
11] 11 11] 11 1111 11111
holes 0 0 0 0 0 0 0 0
91 9| 9| 9| 9| 9| 9| 9
0 SPl 0| — & 9 |z |r z |i i |r
1 {11! /1; ala|j DC1 SOH
2 212 stk |s|b|b |k SYN|FS |DC2 STX
3 313 (tfl |t fclc |l ETX
4 44 | y|mfu|d|d|m
5 S|{S|v|n|v iy e|e |n DC4 NL HT
6 66 | wlo|w|f|f]o ETB|BS
7 717 x|plx|glglp EOT|ESC{NUL)| DEL
818 8 |yla |y |h|h|q CAN
918 1 EM NUL|DLE
108 2: !
11|18 3|2, |a VT
1218 4le | %|* < DC4 FF
1318 5" 1_D (NAKIENQ| CR
14|18 6l=1|>1; + AC SO
158 7772 SUB|BEL SI

Unassigned codes are converted to the SUB character.
A NL character is inserted after each card during input.

PART I1l. CATALOG INITIALIZATION

Chapter 14
INITIALIZING FUNCTIONS

This chapter ilustrates by means of examples the initialization of the backing store
after system loading.

14.1. Introduction
After autoloading of the system tape the basic operating system is started. Initially the
operating system executes a program that can initialize the backing store with catalog
entries and binary Slang programs input from paper tape.
The initializing program starts by typing:
initialize catalog

on the main console. The operator can now insert a binary paper tape in the reader and
type a NL character on the console.
The program reads one Slang segment at a time and interprets it as a sequence of
initializing commands. Basically there are four kinds of initializing functions:

definition of backing store and catalog,

creation and modification of catalog entries,

loading of data areas, and

end of initialization.

14.2. Definition of Backing Store
The initializing commands are identified by textstrings followed by a fixed number of
parameters. Normally the first Slang segment begins with the command<:newcat:>:
s.w.<wmewcat>
e.
This causes the program to copy a description of the backing store into the monitor
and clear all entries in the catalog. Following this it creates the entry named
<:catalog™> which describes the catalog itself.
The backing store consists of one or more drums and disks divided into segments of
256 words. The system makes these appear as a single backing store with segments
numbered from 0 to N across all devices. This logical backing store is described by two
tables: a device table and a segment table.
The device table describes the actual configuration of the backing store. Each entry in
this table defines the device number of a drum or disk and the logical number of its
first segment. This table is copied from the initializing program into the monitor.
The seginent table contains one bit for each segment of the logical backing store
defining whether the segment is available or reserved. This table is initializing to all
segments available. To prevent future areas from extending over more than one drum
or disk, a non-existing logical segment is reserved at the end of each device. Finally the
segments occupied by the catalog itself are reserved.

118 14.3. LOADING OF BACKING STORE

The first Slang segment input from paper tape can also begin with the command
<:oldcat:>:

s.w.<:oldcat>

e.
In this case the program copies the device table into the monitor and re-establishes the
segment table by scanning the existing catalog.
The first initializing command must always be either <:newcat:>> or <:oldcat:>:
otherwise the state of the multiprogramming system is undefined.

14.3. Loading of Backing Store
A set of commands permits the creation and modification of catalog entries. These
commands have exactly the same effect as the monitor procedures:

create entry

change entry

rename entry

remove entry

permanent entry
A load command enables the loading of binary segments from paper tape to an area
described in the catalog.
As an example consider a paper tape with a command segment followed by two
program segments and terminated by another command segment. Let all segments be
surrounded by a global block with a-names, which are used to transmit Slang
parameters from the program to the catalog:

b.a9
S.W. <:newcat:>
<create>, <eeditorprog: >.10.0.r.9
. <load>,<eeditorprog:>.2
§ (program segment 1)
e.
.
(program segment 2)
e.

S.W. <:change:> <editorprog:>a0,al,---.2a9
<:perman > <:editorprog:>, |
<:end:>

e.

e.

The <:newcat:>command creates a new catalog.

The <:create:> command creates a catalog entry named <:editorprog:>. which
describes an area of 10 backing store segments: the nine optional words in the entry
are set to zero.

14.3. LOADING OF BACKING STORL 119

The <:load > command reads the following two program segments and moves them to
the beginning of the area named <:editorprog=>.
The first command segment has now been processed; the program continues to
interprete the next segment as commands:
The <:change>> command modifies the entry named <:editorprog=> in accordance
with a-names defined during assembly of the program segments: the area size is
reduced to a0 and the optional words become al to a9.
The <:perman=> command makes the entry named <:editorprog:=> pcrmanent with
the catalogkey 1.
Finally the <:end>command terminates initialization of the catalog by typing:

ready
on the main console. The operating system is now ready to receive normal operator
requests from consoles.

Chapter 15

DEFINITION OF INITIALIZING COMMANDS

In the following the syntax and functions of the initializing commands are described
in detail.

15.1. Command Language

The program reads a sequence of binary Slang segments terminated by checksums
from paper tape. The first segment is input and interpreted as a sequence of initializing
commands. When a command segment has been processed. the program continues to
read and interpret the next segment. After a load command a number of segments
following the present command segment is input and moved to a backing store area.
The following segments are then interpreted as commands until another load com-
mand occurs, and so on. At the end of a paper tape the program repeats input until
another paper tape is inserted in the reader.

This cycle continues until an <:end>> ends initialization and starts the normal
function of the basic operating system.

A command segment must not exceed 256 words; a program segment to be loaded can
be of any length.

A command is identified by a textstring followed by a fixed number of parameters.
Parameters can be catalog entry names and Slang words. An entry name is a textstring
of 12 ISO characters beginning with a small letter followed by a maximum of 10 small
letters or digits terminated by NULL characters.

15.2. Newcat Command

<:newcat>
Copies the device table into the monitor, initializes the segment table, clears all catalog
entries, and creates the entry describing the catalog itself.

15.3. Oldcat Command

<:oldcat:>
Copies the device table into the monitor and re-establishes the segment table by
scanning the existing catalog.

15.4. Create Command

<create >>,<name>,<number of segments>,<9 optional words>
Creates a temporary catalog entry with the name and contents as specified. If the
number of segments is greater than zero, an area of that size is reserved on the backing
store and described in the entry.

15.5. CHANGE COMMAND 21

15.5. Change Command

<:change > <name> <number of segments> <9 optional words>
Changes an existing catalog entry with a given name as specified. If the entry describes
an area on the backing store, the number of segments is reduced to the value specified.

15.6. Rename Command
<:rename > ,<name>> <new name>>

Renames an existing entry with a given name as specified.

15.7. Remove Command

<:remove >, <name>
Removes an existing entry with a given name along with its associated area on the
backing store.

15.8. Perman Command

<:perman:>,<name> <catalog key>
Makes an existing catalog entry with a given name permanent with the catalog key as
specified.

15.9. Load Command

<load:> <name> <number of slang segments>
Loads a number of Slang segments following the present command segment to an
existing area with a given name. The Slang segments are loaded word by word from the
beginning of the area, ignoring the boundaries of backing store segments. Checksums
are controlled during input. but not transferred to the backing store.

15.10. Console Messages
When the initializing program is started, it prints the message:

initialize catalog
The operator should now insert the first binary tape in the reader and type a NL
character.
After reading the <:end:> command, the message:

ready

is output, and the operating system is now ready to receive normal operator requests
from consoles.
After detection of an error the program types an error message and returns to the
initial situation, in which the operator can repeat the entire initialization of the
catalog. The following is a list of error messages printed by the program. The meaning
of the result values and status bits are defined in Chapters 12 and 13 (Definition of
Monitor Procedures and External Processes).

122 15.10. CONSOLE MESSAGES

C€Irror message:

<command name> syntaxerror
reader result <result>

reader status <bit no>

reader sumerror

reader sizeerror

catalog result <result>

catalog status <bit no>
catalogerror

create <name> result <result>
change <name> result <result>
rename <name>> result <result>
remove <name> result <result>
perman <name> result <result>
load <name> result <result>
<name> result <result>
<name> status <bit no>

meaning:

undefined command

dummy answer after reader input
status bit after reader input
sumerror in Slang segment
command segment > 256 words
dummy answer after catalog input/output
status bit after catalog input/output
old catalog inconsistent

create entry, result <> 0

change entry, result <>0

rename entry, result <>0

remove entry, result <> 0
permanent entry, result <> 0
create area process, result <> 0
dummy answer after area output
status bit after area output

PART IV. BASIC OPERATING SYSTEM

Chapter 16

OPERATING SYSTEM FUNCTIONS

This chapter illustrates by means of examples the functions of the basic operating
system, which can initiate and control the execution of parallel programs on request
from typewriter consoles.

16.1. Introduction

After initial system loading, the internal store contains the monitor and the basic
operating system s. S enables independent operators to initiate and control internal
processes from typewriter consoles. In addition to this, s can name peripheral devices
and keep track of the date and time.

S is the “pater familias™ of the family tree of internal processes. Initially it owns ail
system resources such as storage, protection keys, peripherals, message buffers, and
process description tables. Apart from being a permanent process in the system, s has
no special status, but is treated by the monitor as any other internal process. In the
present implementation s shares the protection key zero with the monitor. This is only
done, however, to save a protection key for the user processes. Although the
protection key enables it to do so, s does not execute privileged instructions or modify
process descriptions within the monitor. Thus it is possible on the system tape to
replace s with another basic operating system.

16.2. Control of Internal Processes
In the following the creation and control of internal processes from consoles is
explained. An operator sends a message to operating system s by depressing the
interrupt key on a console and typing the name s followed by a command line. A
message, such as the following:

tos

new pbh run
causes s to create an internal process with the name pbh, load a program into it from
the backing store, and start its execution. When the process has been created, s outputs
the message:

ready
In this case the process was created with a standard set of resources, which enables it to
execute system programs such as the Editor, Slang assembler, or Algol compiler. The
program loaded into the process was the File processor, which can input and interpret
further job control statements.
The operator can also explicitly specify the resources he wants; for example, the size
of the storage area, the number of message buffers. and the program to be loaded:

tos

new pbh size 16000 buf I8 prog opsys2 run

126 16.2. CONTROL OF INTERNAL PROCESSES

Resources not mentioned (e.g. the number of area processes) are still given standard
values.
Normally s chooses the actual location of storage areas and the values of protection
keys. The operator can, however, specify these absolutely:

tos

new pbh addr=13500, pr=2/3/4, pk=2 run
but s will only accept this if the storage area is available.
After creation and start the user process can communicate with the console according
to its own rules:

from pbh
When the operator wants to stop program execution temporarily within his process,
he types:

tos

stop
He can start it again at any time by the command:

tos

start
If the user process sends a message to operating system s, the process is stopped by s,
and the following message is output:

froms

pause pbh
At this point the operator has the choice of starting the process again or removing it
completely from the system:

tos

remove
During execution a break point can be made from the console by typing:

tos

break
This causes the operating system to interrupt the user process and continue execution
within the internal interrupt procedure of the user process.
It is possible to create and control more than one process from the same console, for
example:

tos

new ls run new pbh run
But in this case the operator must preface subsequent commands with the naine of the
process he is referring to:

tos

procls stop
Actually the operating system remembers the name of the last process referred to
from a console. It is therefore only necessary to mention the process name explicitly
each time the operator refers to a new process.

16.3. CONTROL OF EXTERNAL PROCESSES 127

16.3. Control of External Processes
After its creation an internal process is included as a user of astandard configuration
defined within s; but the operator can also explicitly include or exclude his process asa
user of other devices as well:

tos

include 7,9, 13 exclude 5,4

After mounting documents the operator can assign names to peripherals, for example:
tos

call 5/printer, 8/magtape3
This must always be done after mounting magnetic tapes because the monitor removes
their names when the stations are set to local.

16.4. Date and Time
The monitor updates an integer clock of 48 bits with units of 0.1 milliseconds. The
operator can initialize this clock from a console. The clock is input as day, month. year
followed by hour, minute, second:

tos

newdate 31.3.69 14,55 42
Operating system s converts this to a 48-bit clock value, which defines the time
interval elapsed since midnight 31 December 1967.
The operator can also ask s to output the clock with the same format by typing a date
command:

tos

date

16.5. System Status
The operating system prints an error message when it is unable to honor a request, for
example:

tos

new pbh size 20000 run

no core
In this situation the operator can ask s to list the maximum number of each resource
available at present:

tos

max

max 18000181426
In this example the largest available storage area contains 18000 bytes, whereas the
number of message buffers, area process descriptions, internal process descriptions,
and protection keys available are 18, 14, 2, and 6. Note that this is a snapshot of
available resources. It can happen that some of them will be reserved from other
consoles before the operator in question makes another request.
Finally the operating system can output a list of all internal processes created by it.
These are listed in the order their storage areas follow each other from low toward high

128 16.6. COMMUNICATION STRATEGY

addresses. Each process is described by name, first storage address, size of storage area,
and the protection key set within the area:

tos

list

1s12216 10000 3

pbh 22216 6000 1

jz 40000 15000 2

16.6. Communication Strategy

Commands from a console are served in the order of their arrival. The processing of a
command line is terminated by a short reply printed on the console. The normal, but
not required, mode of operation should therefore be to wait for this response before
sending the next message to s from this console.

The monitor permits simultaneous input of messages from all consoles. The operating
system, however, can only respond simultaneously to a limited number of messages.
For each simultaneous conversation s uses a working area to process a command line.
When s must wait for console output, the current value of registers and the address of
the message buffer involved are stored in the working area before s inspects its event
queue for other messages or answers. An answer to s causes retrieval of the correspond-
ing working area and continuation of the interrupted action.

A message to s is only processed when a working area is available and all previous
messages from the same console have been served.

The maximum number of simultaneous conversations within s is an assembly option.

Chapter 17

DEFINITION OF CONSOLE COMMANDS

In the following the syntax and functions of the console command language are
described in detail.

17.1. Console Parameters

The basic purpose of the command language is to enable an operator to describe the
resource requirements of an internal process and to create and control the process
from a console. The operating system attempts to minimize the amount of operator
input in two ways: by supplying standard values of parameters not defined explicitly;
by storing the latest value of all parameters defined from a console.

Associated with each console is a description within s of an internal process consisting
of the following parameters:

textstrings: process name
program name
integers: first storage address

size of storage area

buffer claim

area claim

internal claim

function mask

catalog mask

protection register

protection key

number of keys

booleans: absolute address

absolute protection
The process name, storage address, size, buffer claim, area claim, internal claim,
function mask, catalog mask, protection register, and protection key are the para-
meters required by the monitor when an internal process is created. The booleans
specify whether the storage area and protection keys should be allocated absolutely as
stated by the operator; if not, the operating system can assign available values to them
according to its own strategy. Finally the program name is the name of an entry in the
catalog on the backing store, which describes the program to be loaded after the
creation of an internal process.
We emphasize that the console parameters do not necessarily describe an internal
process. The command language distinguishes between commands that merely assign
values to the console parameters and commands that check parameter values during
the creation and control of an actual process.

130 17.2. CONSOLE CLASSIFICATION

17.2. Console Classification
Also associated with each console is a fixed bit pattern, the command mask, which
defines the set of commands accepted from the console. This assembly option makes
it possible to give various degrees of freedom to different consoles.
At present the ability to issue commands is defined by six bits within the command
mask:

bita: privileged console

bitb: new, proc, prog, create, load, start,

init, run, stop, break, and remove allowed

bitc: size,addr, buf, area, internal and key allowed

bitd: function, catalog, pr, and pk allowed

bite: call allowed

bit f: list, max and date allowed
Normally an internal process can only be controlled and removed from the console
where it was created. Privileged consoles are, however, able to control and remove any
internal process created by operating system s. Furthermore privileged consoles are
the only ones able to initiate date and time.

17.3. Command Syntax
A message to the operating system is one /ine. which can be empty or contain a
number of commands. A line is either terminated by a new line character or by a
semicolon followed by a comment consisting of any string of characters terminated by
anew line character.
A command is identified by a name followed by a number of parameters. Parameters
can be names or numbers.
A name is a textstring of small letters and digits beginning with a small letter. Its
maximum length is 11 characters.
A number is a string of digits interpreted as an unsigned integer modulo 2**12 or
2*%24 depending on context.
Commands and parameters are separated by one or more spaces, or by one of the
special characters , . / = followed by zero or more spaces.
In the following definitions of commands, separators are not shown explicitly. It is
understood that a definition like the following:
call <device number> <device name>
strictly speaking means:
call<separator><device number><separator><device name>
In some cases a command can be followed by a variable number of parameters, for
example:
include <device number>. ..

17.4. NEW COMMAND 131

This notation means that parameters between the command name and the three dots
can be omitted or typed one or more times as illustrated below:

include

include 5

include 3,7, 1
The first of these commands has no effect.

17.4. New Command

new <process name>>
Assigns a name to the console parameter: process name, and initializes the rest of the
console parameters with standard values as required by the system programs (Editor,
Slang. Algol, etc.). The booleans absolute address and absolute protection are set to
false. The program name is initialized with the name of the File Processor on the
backing store.
Example: newts

17.5. Proc Command

proc <process name>>
Assigns a name to the console parameter: process name.
Example: procsl

17.6. Prog Command

prog <program name>>
Assigns a name to the console parame ter: program name.
Example: progbatchsystem

17.7.Size Command

size <size of storage area>
Assigns a 24-bit number to the console parameter: size of storage area. An odd num-
ber is decreased by one.

Example: size 12000

17.8. Addr Command

addr <first storage address>
Assigns a 24-bit number to the console parameter: first storage address, and sets the
boolean absolute address to true. An odd number is decreased by one.

Example: addr16320

17.9. Buf Command

buf <buffer claim>
Assigns a 12-bit number to the console parameter:buffer claim.
Example: buf7

132 17.10. AREA COMMAND

17.10. Area Command

area <area claim>
Assigns a 12-bit number to the console parameter:area claim.
Example: area0

17.11. Internal Command ‘
internal <internal claim>

Assigns a 12-bit number to the console parameter:internal claim.

Example: internal 2

17.12. Function Command
function <bit number> . ..
Defines a sequence of bit numbers that are set to one in the 12-bit console parameter:
function mask. The rest of the bits are set to zero.
Example: function=4,5,6
results in the function mask 2.000011 100000

17.13. Catalog Command

catalog <bit number> . ..
Defines a sequence of bit numbers that are set to one in the 24-bit console parameter:
catalog mask. Bit 23 (corresponding to the catalog key of the catalog itself) is always
set to zero. The rest of the bits are also set to zero.
Example: catalog1/3/5/8/12/22/23
results in the catalog mask 2.010101 001000 100000 000010

17.14.Key Command
key<<number of keys>
Assigns a 12-bit number to the console parameter: number of keys, and sets the
boolean absolute protection to false.
Example: key?2

17.15.Pr Command

pr <bit number>. ..
Defines a sequence of bit numbers that are set to zero in the 12-bit console parameter:
protection register. Bit O (corresponding to the protection key used within the
monitor) is always set to one. The rest of the bits are also set to one.
Example: pr=2,5,3
results in the protection register 2.1100 1011

17.16. Pk Command

pk<protection key>
Assigns a 12-bit number to the console parameter: protection key, and sets the
boolean absolute protection to true.
Example: pk=5

17.17. CREATE COMMAND 133

17.17. Create Command
create

Creates an internal process as described by the console parameters.
If absolute addressing is specified, the availability of the storage area is checked. If
only the size is specified, the operating system scans the store from low to high
addresses and chooses the first available area of sufficient size.
If absolute protection is specified, the protection register and the protection key are
accepted as stated. (The user is warned that the entire system can collapse, if an
erroneous program is executed in monitor mode, i.e. with a protection register in
which the bit corresponding to the protection key used within the process is one). If
only the number of keys is specified, the operating system scans all internal processes
and creates a protection register with zeroes for all keys that have not been assigned to
any process. From this possible register an actual register with zeroes corresponding
to the specified number of keys is selected from left to right, and the protection key
is set equal to the right-most assigned key.
The ability of the operating system to supply the number of message buffers, area
process descriptions, and internal process descriptions specified is then checked.
During the actual creation of the process the monitor checks that its name is unique.
After creation the operating system includes the process as a user of a standard
configuration of peripherals.
Finally the registers of the internal process are initialized as follows:

w0 =0

wl =process description of s

w2 =process description of console

w3 =process description of child

EX =0

IC =first storage address

17.18. Load Command

load
Loads a program defined by the console parameter: program name, from the backing
store into the beginning of an internal process defined by the console parameter:
process naime.
The program name must refer to a catalog entry that describes an area on the backing
store, and the entry must not exist as an area process reserved by another internal
process.
The optional words in the entry must describe the contents of the area as a directly
executable program in accordance with the specifications given in the File Processor
manual.
The number of bytes to load and the relative entry point of the program must not
exceed the size of the internal process.
The console must be either the console from which the internal process was created or
a privileged console.

134 17.19. START COMMAND

After loading, the registers of the process are initialized as follows:
w0 =0
wl =process description of s
w2 =process description of parent console
w3 =process description of child
EX =0
IC =absolute address of entry point

17.19. Start Command

start
Starts the execution of an internal process defined by the console parameter: process
name.
The console must be either the console from which the process was created or a
privileged console.

17.20. Init Command

init
The initialize command has the same effect as a create command followed by aload
command (Sections 12.17 and 12.18)

17.21. Run Command

. run
The run command has the same effect as a create command followed by a load
command and a start command (Sections 12.17,12.18, and 12.19).

17.22. Stop Command

stop
Stops the execution of an internal process defined by the console parameter: process
name.
The console must be either the console from which the process was created or a
privileged console,

17.23. Break Command
break

Stops the execution of an internal process, defined by the console parameter:process
name, stores its registers and an interrupt cause (= 8) at the head of its internal
interrupt procedure, and continues the execution of the process within the interrupt
procedure.
The console must be either the console from which the process was created or a
privileged console.
After the break point the registers of the process have the following contents:

w0 =0

wl =process description of s

17.24. REMOVE COMMAND 135

w2 = process description of parent console
w3 = process description of child

EX =0

IC =internal interrupt address + 14

The break command has no effect if the internal interrupt address of the process is
zero.

17.24. Remove Command

remove
Stops and removes an internal process defined by the console parameter: process
nanie.
The console must be either the console from which the process was created or a
privileged console.
The console parameters are unchanged.

17.25. Include Command

include <device number>. ..
Includes an internal process, defined by the console parameter: process name, as a user
of a sequence of peripheral devices.
The console must be either the console from which the process was created or a
privileged console.
Example: include 3,6,7

17.26. Exclude Command

exclude <device number> ...
Excludes an internal process, defined by the console parameter: process name, as a
user of a sequence of peripheral devices.
The console must either be the console from which the process was created or a
privileged console.
Example: excludel

17.27. Call Command
call <device number><(device name> ...
Assigns names to a sequence of peripheral devices. The devices must not be reserved by
internal processes.
Example: call O/reader 5/magtapel 7/printer

17.28. Newdate Command

newdate <day> <month> <year> <hour><minute> <second>
Initializes the clock with the number of 0.1 milliseconds elapsed since midnight 31
December 1967. The conversion algorithm is valid in the interval: 68 <= year<=99
The console must be privileged.
Example: newdate 29.2.72 13,30,0

136 17.29. DATE COMMAND

17.29. Date Command
date
Prints the current value of the clock with the format:
date <day>.<month>.<year> <hour> <minute> <second>

17.30. Max Command
max
Prints the maximum number of available resources with the format:
max <max storage area> <buf claim> <area claim> <internal claim> <keys>

17.31. List Command
list
Prints a list of all internal processes created by operating system s in the same order
their storage areas follow each other from low toward high addresses. Each process is
described on one line with the format:
<process name> <first storage address> <size of storage area> <key>

17.32. Console Messages

When the operating system has processed a line of commands, it prints the message:
ready

After detection of an error the rest of the command line is ignored, and the console

returns to the ready situation. The following is a list of error messages printed by the

operating system:

eITor message:

syntax error

not allowed

not implemented
no core

no buffers

no areas

no internals

key trouble
process exists
area unknown
area reserved
program too big
catalogerror

area error
process unknown
device unknown
device reserved

meaning:

illegal command syntax

command forbidden from this console
optional command not assembled

storage area not available

message buffers not available

area process descriptions not available
internal process descriptions not available
incorrect use of protection keys

process name not unique

area not described correctly in catalog
area reserved by another process
program size or entry point exceeds storage area
input/output error during catalog look up
input/output error during area loading
process does not exist

device number does not exist

device reserved by another process

17.33. CHILD MESSAGES 137

17.33. Child Messages
When the operating system receives a message from one of its child processes, the

following is done: the child process is stopped, an answer is sent to the process, and a
message is printed on the console from which the process was created:

pause <process name>>
The operator can now start, break, or remove the process.

APPENDIX
IMPLEMENTATION DETAILS
The appendix defines the format of queues, buffers, process descriptions, and the

catalog on the backingstore. It also defines how these entities can be addressed within
internal processes.

A.1. ADMINISTRATION OF QUEULS 139

A.1. Administration of Queues
The monitor administers the following queues:

a time slice queue

a message buffer pool

a console buffer pool

an event queue for each process
A queue consists of a head and a number of elements, which are linked cyclically. A
head or element consists of two consecutive words defining the addresses of the next
and last elements in the queue, for example:

head q: elema: elemb: elemec:

a b c q

¢ q a b
When the queue is erpty, the head points to itself:

head q:

q

q

Also when an element is removed from the queue without being linked to another
queue, the element points to itself:

elemb:

b

b

140 A.2. ADMINISTRATION OF TIME SLICES

A.2. Administration of Time Slices
The queue of running internal processes is described in the following storage locations
within the monitor:

absolute address: contents:
66 <current internal process>
68 <next running process>
70 <last running process>
102 <time slice>

Current internal process is the process description address of the process executing
instructions right now.

Next and last running process are the head of the time slice queue that links the
process descriptions of all running processes cyclically. Note that these links are not
process description addresses, but process description addresses + 18 (see Section A.6.
Format of Internal Process Description).

Time slice is a constant defining the maximum time quantum, in units of 0.1
millisecond, allotted to each process in turn.

A.3. ADMINISTRATION OF MESSAGE BUFFERS 141

A.3. Administration of Message Buffers

A.3.1. Message Buffer Pool
The message buffer pool is described in the following storage locations within the

monitor:

absolute address: contents:
82 <next message buffer>
84 <Jast message buffer>
86 <message pool start>
88 <message pool end>
90 <message buffer size>

Next and last message buffer are the head of the queue of available message buffers
that are linked cyclically.

Message pool start and end are the first and last addresses of the contiguous storage
area containing all message buffers.

Message buffer size is the number of bytes per message buffer (at present = 24 bytes).

A.3.2. Message Buffer Format
A message buffer has the following format:

buffer address: contents:

+0 <next buffer>

+2 <last buffer>

+4 <receiver>

+6 <sender>

+8 <message Or answer>

+22 <message or answer>
Next and last buffer are the link that connects the buffer cyclically to other buffersin
its present queue.

Receiver and sender define the state of the buffer as described in Section A.3.3.
Message or answer are eight words exchanged between two communicating processes.

A.3.3. Message Buffer States
The possible states of a message buffer are defined by the values of the sender and
receiver parameters:

sender: receiver: state:
0 0 buffer available
sender addr receiver addr message from existing sender pending
sender addr —receiver addr message from existing sender received
—parent addr receiver addr message from removed sender pending
—parent addr —receiver addr message from removed sender received
sender addr 1 normal answer pending
sender addr 2 dummy answer, message rejected
sender addr 3 dummy answer, message unintelligible

142 A.3. ADMINISTRATION OF MESSAGE BUFFERS

sender addr 4 dummy answer, receiver malfunction
sender addr S dummy answer, receiver unknown

The sender and receiver addresses are the process description addresses of the two
processes that communicate in the buffer.

The parent address is the process description address of the process whose buffer claim
should be increased by one when the receiver sends an answer after the removal of the
sender.

In pending answers the receiver address has been replaced by the result parameter of
the procedure wait answer.

The transitions between these states are clarified by the following scheme:

after calling: buffer state: queue situation:

send message message pending buffer in receiver queue
wait message message received buffer in no queue

send answer answer pending buffer in sender queue

wait answer buffer available buffer in pool

A.4. ADMINISTRATION OF CONSOLE BUFFERS 143

A.4. Administration of Console Buffers
A.4.1.Console Buffer Pool

The console buffer pool is described in the following storage locations within the
monitor:

absolute address: contents:
92 <next console buffer>
94 <last console buffer>
96 <console pool start>
98 <console pool end>
100 <console buffer size>

The meaning of these parameters is the same as for message buffers (see Section
A.3.1). At present the size of a console buffer is 66 bytes.

A.4.2.Console Buffer Format
A console buffer has the following format:

buffer address: contents:
+0 <next buffer>
+2 <Jast buffer>
+4 <receiver>
+6 <sender>
+8 <message>
+16 <input line>
+ 64 <input line>

The first part has the same format as a message buffer except that the message itself
occupies four instead of eight words. The meaning of these parameters is defined in
Section A.3.2.

The second part is a line buffer that contains the textstring input by the operator. At
present it has room for SO bytes =75 characters.

A.4.3.Console Buffer States
The possible states of a console buffer are the same as for a message buffer except that
the sender (i.e. the console) cannot be renoved (see Section A.3.3).

144 A.5. ADMINISTRATION OF PROCESS DESCRIPTIONS

A.5. Administration of Process Descriptions
The format of a process description depends on the kind of the process; common to all
process descriptions, however, is a head defining the kind and nanie of the process:

process description address: contents:
+0 <kind>
+2 <name>
+10 <other parameters>

A process is considered removed if the first word of its name is zero.

The monitor has a name table containing the base addresses of all process descriptions
(including those of removed processes). The name table is described in the following
storage locations:

absolute address: contents:
72 <name table start>
74 <first device in name table>
76 <first area in name table>
78 <first internal in name table>

80 <name table end>
Name table start is the address of the first name table entry. This and the following
name table entries contain process description addresses of pseudo-processes, used
during debugging of the system, and external processes corresponding to pure inter-
rupt sources.
First device in name table is the address of the name table entry that contains the
process description address of peripheral device number 0. The following name table
entries contain process description addresses of peripheral devices 1,2,3, etc.
First area in name table is the address of the name table entry that contains the process
description address of the first area process. The following name table entries contain
the rest of the area process description addresses.
First internal in name table is the address of the name table entry that contains the
process description address of the first internal process. The following name table
entries contain the rest of the internal process description addresses.
Name table end is the address of the last name table entry. This entry does not contain
a process description address.

A.6. FORMAT OF INTERNAL PROCESS DESCRIPTION 145

A.6. Format of Internal Process Description
An internal process is described in a table with the following format:

relative address: contents:
0 <kind>
2 <name>
10-11 <stop count><state>
12 <identification bit>
14 <next event>
16 <last event>
18 <next process>
20 <Jast process>
22 first storage address>
24 <top storage address>
26-27 <buffer claim><area claim>
28-29 <internal claim><function mask>
30 <catalog mask>
32-33 <protection register><protection key>
34 <interrupt mask>
36 <internal interrupt address >
38 <working register 0>
40 <working register 1>
42 <working register 2>
44 <working register 3>
46 <exception register>
48 <instruction counter>
50 <parent description address>
52 <time quantum>
54 <run time>
58 <start time>>
62 <waiting time>
66 <wait address>
68 <creation number>

Kind is O for an internal process.
Name is a textstring of 12 ISO characters beginning with a small letter followed by a
maximum of 10 small letters or digits terminated by NULL characters.
Stop count defines the number of internal and external processes modifying the
storage area of the present process.
State has one of the following values:

2.0100 1000 running

2.0000 1000 running after error

2.1011 0000 waiting for stop by parent

2.10100000 waiting for stop by ancestor

2.10111000 waiting for start by parent

146 A.6. FORMAT OFF INTERNAL PROCESS DISCRIPTION

2.10101000 waiting for start by ancestor

2.1100 1100 waiting for process function

2.1000 1101 waiting for message

2.10001110 waiting for answer

2.10001111 waiting for event
The meaning of these states is defined in Sections 6.3, 8.1, and 9.1,
Identification bit is a word in which a single bit is one. It is used to check the access to
external processes (see Section A.7).
Next and last event are the head of the event queue that links all pending messages and
answers cyclically to the process.
Next and last process are the element that links the present process to other internal
processes in the time slice queue.
First and top alldress point 10 the first storage word and the last storage word + 2 of
the process.
Buffer claim, area claim, and internal claim define the number of me ssage buffers, area
process descriptions,and internal process descriptions that are still available to the
process.
Function mask defines the privileged monitor functions that can be called by the
process. The meaning of the mask bits is given in Section 11.3.
Catalog mask is a bit pattern in which a one in bit number N indicates that the process
can change or remove catalog entries with the catalog key N.
Protection register is a bit pattern in which a zero in bit number N indicates that the
process can change or execute storage words with the protection key N.
Protection key is the key that is set in all storage words of the process when it is
started.
Interrupt mask is the value of the interrupt mask register used during execution of the
process.
Interrupt address is the address of the internal interrupt procedure.
Working registers, exception register, and instruction counter contain a dump of
register values when the process does not execute instructions.
Parent description address is the process description address of the process that has
created the present process.
Time quantum is the amount of execution time used by the process during the last
time slice.
Run time is the total execution time used by the process since its creation.
Start time is the value of the clock when the process was created.
Waiting time is the value of the clock when the process started to wait for something.
Wait address is the address of the buffer in which the process awaits an answer.
Creation number is used to identify temporary catalog entries created by the process.

A.7. FORMAT OF PERIPHERAL PROCIESS DESCRIPTION 147

A.7. Format of Peripheral Process Description
A peripheral process is described in a table with the following format:

relative address: contents:
0 <kind>
2 <name>
10 <device number*64>
12 <reserver>
14 <users>
16 <next message>>
18 <Jast message>
20 <interrupt address>
22 <other parameters>

Kind is greater than zero.

Name is a textstring of 12 [SO characters beginning with a small letter followed by a
maximum of 10 small letters or digits terminated by NULL characters.

Device number is the data channel identification of the peripheral device.

Reserver contains the identification bit of the internal process having reserved the
peripheral process.

Users contains the identification bits of all internal processes that are potential users
of the peripheral process.

Next and last message are the head of the queue that links all messages to the process
cyclically.

Interrupt address is the address of the monitor code to be executed when the device
delivers an interrupt.

Other parameters are an optional number of working locations that are specific for
each kind of peripheral process.

148 A.8. FORMAT OF AREA PROCESS DESCRIPTION

A.8. Format of Area Process Description
An area process is described in a table with the following format:

relative address: contents:
0 <kind>
2 <name>
10-11 <device number*2><catalog key>
12 <reserver>
14 <users>
16 <first absolute segment number>
18 <number of segments>

Kind is4.
Name is a textstring of 12 ISO characters beginning with a small letter followed by a
maximum of 10 small letters or digits terminated by NULL characters.
Device Number is the data channel identification of the peripheral device on which the
area is stored.
Catalog Key is the number of a bit within the catalog mask of internal processes that
defines whether these can change or remove the area on the backing store.
Reserver contains the identification bit of the internal process having reserved the area
process.
Users contains the identification bits of all internal processes that are potential users
of the area process.
First segment number is the absolute number of the first area segment on the given
backing store device.
Number of segments defines the size of the area.
The area process description is only used to check the validity of messages to the area.
If a message is accepted, the device number is used to find a peripheral process
description of the drum or disk on which the area is stored, and the message is linked
to the queue of this device:

entry:=first device in name table + device number*2;

backing store description:= name table (entry);

A.9. ADMINISTRATION OF BACKING STORE 149

A.9. Administration of Backing Store

A.9.1. Device and Segment Tables

The composition of the backing store is described by adevice table. Each device table
entry defines the device number of a drum or disk and the logical number of its first
segment. Segments are numbered consecutively from O to N across all backing store
devices. The device table is terminated by a description of a dummy device zero:

first device: <device no*8192>
<first logical segment>
last device: <device no*8192>
<first logical segment>
dummy device: O
<last logical segment>

A segment table with one bit for each logical segment is used to distinguish between
available (bit = 1) and reserved (bit = 0) segments. To prevent data areas from
extending across more than one drum or disk, a non-existing logical segment is
reserved at the end of each device.
The device and segment tables are kept in the top of the internal store, and describes as
follows:
<segment table>
<device table>
— 20 <number of catalog segments>
— 18 <last generated name>
— 10 <catalog device number>
— 8 <device table address>
— 6 <segment table address>
_ 4 <number of available catalog entries>
_ 2 <number of available area segments>
top address = storage capacity

Number of catalog segments defines the size of the catalog.
Catalog device number is the number of the device on which the catalog is stored.

A.9.2. Format of Catalog
A catalog entry has the following format:

relative address: contents:
0-1 <name key> <catalog key>
2 <creation number>
4 <first logical segment>
6 <name>
14 <number of segments>
16 <optional word 1>

32 go-l;tional word 9>

150 A.9. ADMINISTRATION OF BACKING STORE

Name key is a hashed value of the entry name formed as follows:

double word suin:= (name(0:47) + name(48:95)) modulo 2**48:

word sum:= (double word sum(0:23) + double word sum(24:47))

modulo 2*¥*24;

byte sum:=word sum(0:11) + word sum(12:23):

name key := byte sum modulo number of catalog segments;
During creation of an entry the monitor scans the catalog cyclically , starting with the
relative segment number given by name key. until it finds an available entry (the first
word of an available entry is - 1). The same strategy is used to look up an entry.
Catalog key is the number of a bit within the catalog mask of internal processes that
defines whether these can change or remove the entry.
Creation number identifies the internal process having created the entry: it is zero in a
permanent entry.
First segment is the logical number of the first segment of an area described by the
entry. During creation of an area process the logical segment number is transformed to
a device number and an absolute segment number within the device by means of the
device table. The value of the first segment is undefined if the entry does not describe
an area.
Name is a textstring of 12 ISO characters beginning with a small letter followed by a
maximum of 10 small letters or digits terminated by NULL characters.
Number of segments defines the size of an area described by the entry. If it is less than
or equal to zero, the entry does not describe an area.
Optional words have no pre-assigned meaning within the monitor, but are defined by
the internal process during creation or modification of the entry.
The catalog itself is an area on the backing store. Each catalog segment contains 15
entries of 17 words each plus one word that defines the number of entries created with
the name key equal to the relative segment number. This is used to limit the search for
anon-existing entry.
The catalog describes itself in an entry named <:catalog=> with the catalog key 23. It
is also described permanently as an area process of the same name within the monitor.

A.10. SELECTED EXECUTION TIMES 151

A.10. Selected Execution Times

The following is a list of typical execution times of monitor procedures and external
processes. It is based on a manual count of instructions and should be taken with some
caution as explained in Section 9.4.

Disabled Monitor Procedures: msec:

set interrupt 0.2

process description 0.6

initialize, reserve, and release process 0.6

include and exclude user 1.0

send message, send answer 0.6

wait message, wait answer 0.4

wait event, get event 0.3

get clock, set clock 0.2

Enabled Monitor Procedures: msec:

create, change, remove, and permanent entry 8+ 2 segment transfers
look up entry, create area process 5+ 1 segment transfer
rename entry 10 + 5 segment transfers
create peripheral process 3

create internal process

start internal process

stop internal process

modify internal process

remove process (external process)
remove process (internal process)

+ 1.2 per core segment

o AW

+ 1.2 per core segment

The following execution times are required to process interrupts from external
processes (the figures in parentheses apply if the interrupt terminates an operation
with an answer):

clock (after 25.6 msec) 0.5 (1.0)
typewriter (after 1 character) 0.2 (0.7
paper tape reader (after 64 1SO characters) 3.2 (3.7
paper tape reader (after 64 Flexowriter characters) 45 (5.0)
paper tape punch (after 1 ISO character) 0.2 (0.5)
paper tape punch (after 1 Flexowriter character) 0.25(0.5)
line printer (after 70 characters) 3.0 (0.5)

backing store, magnetic tape (0.6)

VOCABULARY OF MONITOR CONCEPTS

ACTIVATE PROCESS (TO) To link an internal process to the time slice queue in
order to make it running.

ANCESTOR PROCESS An internal process described as the grandparent, or
great- grandparent, etc. of another internal process
in the process hierarchy.

AREA PROCESS Input/output of a data area on the backing store
identified by name.
CATALOG A fixed part of the backing store divided into named

entries. An entry can describe a data area on the
backingstore or anythingelse.

CHILD PROCESS An internal process created by another internal pro-
cess. The latter is described as the parent in the
process hierarchy.

CREATE PROCESS (TO) To create a table within the monitor describing a
process by its kind, name, resources, event queue,
and current state.

DELAY PROCESS (TO) To remove an internal process temporarily from the
time slice queue in order to make it wait for an event
outside the process.

|
|
|
DESCENDANT PROCESS An internal process described as a grandchild, or 1
great-grandchild, etc. of another internal process in
the process hierarciry.

DOCUMENT A physical medium in which a specific collection of
data is stored, e.g. a roll of paper tape, a deck of
punched cards, a printer form, a reel of magnetic
tape, or a data area on the backing store.

EVENT QUEUE The queue in which a process receives messages and
answers from other processes.

EXTERNAL PROCESS A general term for an area process or a peripheral
process.

VOCABULARY OF MONITOR CONCEPTS 153

INTERNAL INTERRUPT

INTERNAL PROCESS

MONITOR

MULTIPROGRAMMING

OPERATING SYSTEM

PARENT PROCESS

PERIPHERAL PROCESS

PROCESS

PROCESS HIERARCHY

An interruption of an internal process caused by
protection violation, arithmetic overflow, or errone-
ous monitor call, or caused by the parent of the
process.

The execution of one or more interruptable pro-
grams in a contiguous storage area identified by
name.

A resident program with complete control of stor-
age protection, input/output, and interrupts. It con-
tains descriptions of all processes and controls the
sharing of computing time among them. It also
contains procedures that processes can call in order
to create and control other processes and communi-
cate with them.

Simultaneous execution of several programs loaded
in the store by multiplexing of the central processor
controlled by clock interrupts.

A program that controls the scheduling and resource
allocation of other programs in order to obtain a
specific mode of operation, e.g. batch processing,
real-time scheduling, or time-sharing. During execu-
tion an operating system is synonymous with a
parent process.

An internal process that creates and controls an-
other internal process. The latter is described as the
child in the process hierarchy.

Input/output or interrupt signals of a peripheral
device identified by name. It usually involves the use
of a specific document mounted on the device.

A general term for an external process or an internal
process.

A family tree describing the control relations among
internal processes. Processes are called ancestors,
parents, children, and descendants depending on
their position in the hierarchy relative to a given

154 VOCABULARY OF MONITOR CONCI'PTS

PROGRAM

REAL-TIME SCHEDULING

REMOVE PROCESS (TO)

RESOURCES

RUNNING PROCESS

START PROCESS (TO)

STOP PROCESS (TO)

TIME-SHARING

TIME SLICE QUEUE

WAITING PROCESS

process. An internal process can only szart, stop, and
remove its own child processes and their de-
scendants.

A collection of instructions specifying a computa-
tional process.

A mode of operation in which program execution is
synchronized with real time or external events su-
pervised by the computer,

To remove a table within the monitor describing a
process by its kind, name, resources, event queue,
and current state,

A general term for the amount of computing time,
storage, protection keys, peripheral devices. mes-
sage buffers, and process descriptions available to an
internal process.

An internal process in the time slice queue which is
executing instructions or ready to do so.

To activate an internal process on request from its
parent.

To delay an internal process on request from its
parent.

A mode of operation in which several programs
share a common storage area during execution by
frequent swapping of programs between the internal
store and the backing store.

A queue of internal processes that share computing
time in a cyclical manner.

An internal process that has been removed tempora-
rily from the time slice queue in order to wait for an
event outside the process.

Activation of process 21
Ancestor process 341,152
Answer 21ff
dummy 67
fromexternal process 27ff
frominternal process 69
normal 67
Areaonbackingstore 42ff
Areaclaim 37
Areaprocess 44152
communication with 96ff
creationof 81
descriptionof 148
initializationof 61
releaseof 63
removalof 88
reservationof 62
userof 44
Backingstore 42ff
catalog 421f,149ff
dataarea 42ff
devicetable 117,149
initializationof 117ff
protectionof 43,57
segmenttable 117,149
Batch processing 51
Basic operating system 125ff
address of storagearea 131
areaclaim 132
breakpoint 134
call peripheral device 135
catalogmask 132
child message 137
clock 135ff
console classification 130

console communication 128

console messages 136
console parameters 129
create internal process 133

date 136

155

INDEX

excludedevice 135
external processes 127
functionmask 132
includedevice 135
initialize process 134
internal claim 132
internal processes 125ff
keys 132
list processes 136
load program 133
max resources 136
newdate 135
Nnew process 131
privileged console 130
processname 131
programname 131
protectionkey 132
protectionregister 132
remove process 135
FUNPIOCeSS 134
size of storagearea 131
startprocess 134
stopprocess 134
Buffer (see message buffer)
Bufferclaim 37
Catalog 42ff
formatof 149ff
initializatjonof 117ff
Catalogareaprocess 44
Catalogentry 42ff
changeof 77
creationof 75
headof 42
lookupof 76
nameof 57
permanent 43ff,80
removalof 79
renamingof 78
tailof 42

156 INDEX

temporary 43
Catalogkey 43
Catalogmask 43
Catalogprotection 4357
Changeentry 77
Childprocess 31ff
Clock 41
Clock process 41,95
Console 41f(,99ff
Console buffer 41ff

formatof 143

stateof 143

poolof 143
Conversational access 41ff
Create area process 81
Createentry 75
Create internal process 83

Create peripheral process 82

Creationnumber 43,146
Dataarea 42ff
Delay of process 21
Descendant process 34ff. 152
Devicetable 117.149
Document 19ff
identificationof 50
EBCD code input 106,113
Entry (see catalogentry)
Event 23ff
Eventqueue 152
Excludeuser 38,65
Executiontimes 48ff,151
External process 19ff,271f
communication with . .. 27{f,94
creationof 29.82
descriptionof 147ff
initializationof 61
kindof 2093
nameof 20,57
releaseof 28,63
removalof 88
replacementof 29

reservationof 28,62
userof 38 .44
Family tree of processes 32ff
Flexowriter code input . 102,112
Flexowriter code output ... 104,111
Floating-point overflow 56
Functionmask ,.......... 39,56
Generatename 91
Getclock 73
Getevent 71
Hierarchy of processes 32ff
Identificationbit 146
Includeuser 38,64
Initialization of catalog 117ff
changeentry 121
console messages 122
createentry 120
endof 120
loadarea 121
newcatalog 120
oldcatalog 120
permanententry 121
removeentry 121
renameentry 121
Initialize process 61
Input/Qutput 27 92ff
Integeroverflow 56
Intervalclock 4195
Internal claim 37
Internal interrupt 40,55ff
Internal process 18ff 3 1ff
ancestorsof 34ff,152
activationof 21
areaclaim 37
bufferclaim 37
catalogmask 43
childrenof 31ff
creationof 83
creationnumber3546

INDEX 157

delayof 21 (see event queue)
descendantsof 341,152 Modify internal process 87
descriptionof 145ff Monitor 20
eventqueue 23 Monitor procedure S5ff
first storage address 146 callof 55
functionmask 39,56 changeentry 77
identificationbit 146 create area process 81
interruptaddress S5ff createentry 75
interruptmask 56 create internal process 83
kind 145 create peripheral process ... 82
modificationof 31,87 excludeuser 65
parentof 31ff generatename 91
removal of 88 getclock 73
resource allocation 36ff getevent 71
runtime 37 includeuser 64
startof 34£f.85 initialize process 61
starttime 37 lookupentry 76
state 34ff modify internal process 87
stopof 341 4511 .86 permanententry 80
storage allocation 37 processdescription 60
storage protection 37 release process 63
topstorageaddress 146 removeentry 79
Interruptaddress SS5ff Temove process 88
Interrupt cause 56 renameentry 78
Interruptmask 56 reserve process 62
sendanswer 69
Kind of process 20,93 send message 66
setclock 74
Lineprinter 105 setinterrupt 59
Loading of program 31 start internal process 85
Lookupentry 76 stop internal process 86
testcali 90
Magnetic tape station 108ff type working register 72
Message 21ff waitanswer 67
toareaprocess 44 96ff waitevent 70
to internal process 66 waitmessage 68
to peripheral process 27ff,92ff Multiprogramming 13ff,15
Messagebuffer 21ff Mutual exclusion 16
advantagesof 25ff Mutual synchronization 17
formatof 141
stateof 141 Name 57
poolof 141 of catalogentry 42
Message buffer queue

158 INDEX

of process 18,20
Namekey 150
Nametable 144
Name tableentry 66
Objectives 13ff
Operating system 13ff,153

for batch processing 51

forreal-time scheduling 52

for time-sharing 51

hierarchyof 32ff

modificationof 13ff
Parallel processes 15
Papertapepunch 104
Papertapereader 102
Parentprocess 31ff
Peripheral device 19
Peripheral process 153
Permanententry 43ff.80
Privileged functions 39

Process (see area process,
external process, and
internal process)

Process communication - 2Iff
Process description 19ff,144ff
Process functions 45
Processhierarchy 32ff
Processkind 20,93
Processname 18ff
Processstate 34ff
Program 19

loadingof 31

temporary removal of 50ff

swappingof Sl
Protection of catalog entries . . .43,57
Protection of internal processes . 37
Protectionkey 37

settingof 32
Protection register 37
Protectionviolation 56
Punched card reader 106

Queue 19,21
administrationof 139
of message buffers 21,141
of running processes 19,140
Real-timeclock 41
Real-time scheduling 52.154
Release process 28,63
Removeentry 79
Remove process 88
Renameentry 78
Reserve process 28.62
Resourcecontrol 36ff
of area processes 37
of internal processes 37
of message buffers 37
of peripheral devices 38
ofruntime 36
ofstorage 37
Running process 154
aftererror 40
Runtime 37.146
Segment table 117,149
Sendanswer 69
Sendmessage 66
Setclock 74
Setinterrupt 59
Sizeof system 47
Stateof buffer 141ff
State of process 341f
Start internal process 34ff 85
Starttime 37,146
Storage allocation 31ff,37
Storage protection 37
Stopcount 3546
Stop internal process . . . 34ff,45ff,86
Stopped process 34ff.154
Swapping of programs 51
Systemtape 49
Temporaryentry 43
Testcall 90

INDEX

Time-sharing 51.154
Time quantum 36
Timeslice 19 301t
Timeslicequeue 19.140
Time slice scheduling 36ff
Type workingregister 72
Typewriter 41119911
Waitanswer 67
Waitevent 23ft.70
Waiting process 341154
Waitmessage 68
Waittime 146
User .o 38.44

159

Photografic Reprint by
R. Roussell, Denmark

