4000

DATAMATICS

r

RCSL No: 55-D18

RC 4000 SOFTWARE

SLANG ASSEMBLER

2. Edition

Edited by
Per Brinch Hansen

A/S REGNECENTRALEN
Copenhagen - May 1969

FOREWORD

This manual is a description of Slang — the symbolic assembly language for the RC
4000 computer. The present version of the assembler, called Slang 3, is designed to
operate under the RC 4000 Multiprogramming system and the File Processor.

Chapter 1 contains a general description of the language. Chapter 2 introduces the
basic constituents of Slang, which are:numbers, identifiers, expressions, instructions,
textstrings. and directives. The overall structure of Slang programs is defined in
Chapter 3, which explains the specification of bytes, words, and double words as well
as the concepts of block and segment. The syntax of the language is defined by means
of the Backus notation.

The manual is concluded by a description in Chapter 4 of the operation of the Slang 3
assembler,

The present language is not compatible with the one described in the first edition of
the Slang manual (1966) due to the adoption of the ISO character set and certain
changes in the operation codes and the assembly dircctives.

The Slang language was defined by the author; the implementation was done by
Torkild Glaven.

INDEX

CONTENTS

1. GENERAL DESCRIPTION
1.1. Language Features
1.2. Programming Examples
2. BASIC ELEMENTSOF SLANG
2.1. CharacterSet
2.2. Numbers
2.3. Identifiers,
2.4. Expressions L
2.5. Instructions
2.6. Textstrings
2.7. Directivesand Comments
3. STRUCTURE OF SLANG PROGRAMS,
3.1. Labels
3.2. Assignment Statements
3.3. Compound Statements
34. Halfword Statements
3.5. Word Statements
3.6. Floating-point Statements
3.7. Programs, Segments, and Blocks
3.8. Conditional Assembly
4. OPERATION OF THE ASSEMBLER
4.1. Introduction
4.2. Sizeand Speed L
4.3. Calling the Assembler,
4.4, Format of Binary Program
45. Assembly Options
4.6. Assembly Messages
4.7. Jump Action L,
APPENDIX A.THE ISO 7 BIT CHARACTER SET
APPENDIX B. MNEMONIC OPERATION CODES

~N g

Chapter 1

GENERAL DESCRIPTION

1.1. Language Features

In Slang the contents of storage locations are described as instructions, numbers, or
textstrings. NMumbers can be of real or integer type. Instructions and data words can
refer to other storage locations by means of symbolic addresses called identifiers. A
symbolic address can be evaluated either absolutely or relatively with respect to the
current load address.

An identifier can also refer to the value of an expression defined during assembly .
Assembly expressions are written in conventional arithmetic notation using paren-
theses and the operators + =% [< (logical left shift) > (logical right shift) a. (logical
and) and o. (logical or). The operands are integers or defined identifiers, i.e. identifiers
to which values have been assigned either by previous expressions or through their use
as labels.

With respect to the scope and usage of identifers, Slang has a block structure similar to
Algol 60:identifiers must be declared in a block head before they are used. They can
only be used within the block in which they are declared and in blocks enclosed by the
former.

The outermost block, which contains all other blocks, delimits the entire program.
Large programs can be divided into segments to facilitate assembly. A segment is a
block for which binary output is produced immediately after the end statement.

To facilitate the handling ot programs that exist in several versions, Slang includes
conditional assembly in the following form: a piece of code can be headed by an
expression, which is evaluated by the assembler. If the result is positive, assembly will
continue after the expression. A negative result, however, will cause the assembler to
skip the following statements up to a given delimiter.

1.2. Programming Examples
The following examples itlustrate the overall structure of Slang programs. Let us first
consider the following picce of code:

¢ procedure read char (char)

. comment: unpacks the next character from a storage

- address initialized by init read.

call: return:
s w(char
twl unchanged
Tw2 unchanged

‘w3 link link

8 1.2. PROGRAMMING EXAMPLES

b.i24 , begin

w.d18: rx.wl il. ;
x.w2 2.
shwl O . if readshift>0 then
jl. i0. ; begin
al wl -16 . readshift:=-16;
al w2 x2+2: readaddr:i=readaddrt2;

i0: r1w0 x2+0; end;

IswO x1+0; char:=word(readaddr) shift readshift;

lawO i3. ; char:=char(17:23),
alwl x1+8: readshift:=readshift+8;
c.(:¢24>19a.1:)-1 , if testoutput then
jd 1<11+28 | typewO(char);
zZ. rx.wl il.
rx.w2 i2.
il x3+0;
il: 0,i2:0 : readshift: readaddr:
i3: 8.177
e. ;end

The texts preceded by semicolons are comments ignored by the assembler. The
example shows a block of code enclosed by begin and end delimiters b. and e. The
block begin is followed by a declaration 124 indicating that the programmer can use
the namesi0, il , i2, - - - up to i24 as local identifiers within the block.
The following lines each describe a single machine instruction or data word. The
delimiter w. means that they are assembled as words (in contrast to bytes and double
words).
An instruction, like the following:

rx.wl il.
consists of a mnemonic operation code (rx meaning register exchange), a modification
part (. meaning relative addressing), a working register part (w1 meaning working
register 1), and an address part (i1. referring to the word labelled i1 :). The period after
the identifier il means that it is evaluated relatively during assembly.
Indexing is used, for example, in the instruction:

rl w0 x2+0

i.e. register load in working register O the word addressed by index register 2.
Indirect addressing (not shown in the above example) is specified by enclosing the
address part in parentheses:

il. (i5.)

1.2. PROGRAMMING EXAMPLLS 9

ie.jump with link relatively and indirectly via the word labelled i5:
Conditional assembly is illustrated by the statement enclosed in delimiters ¢. and z.

c.(:¢24>19a.1:)—1

jd 1<11+28

7.
The value of the expression (:c24>19a.1:)-1 determines whether the instruction jd
1<<11+28 is assembled or skipped. It is assumed that the asscmbly condition has been
defined previously in the program by assigiment to the identifier ¢24:

c24=1<19 ; testoutput:=true;

or:
¢24=0 ; testoutput:=false;
The next example illustrates the assembly of program data:
h t2 :8.3721.115.¢15 : bytevalues:
w. 13 < load crror:> ; textstring:
ford 1332 : floating point number:

Bytevalues are prefixed by the delimiter h. The first value 8.3721 is an octal nunber
with the digits 3721. It is followed by adecimal number 115. The last byte will get the
value of the identifier ¢15, which must be defined elsewhere.

Textstrings are assembled in word mode and enclosed in brackets <: and >, for
example <:load error:>.

Floating-point numbers are prefixed by the delimiter f. The apostroph ' is used
instead of the decimal radix 10 as shown by the example -1.352'6.

Instructions and data can be labelled by identifiers followed by a colon, for example
f3:

Finally, we give the skeleton of a program consisting of two segments (enclosed by
delimiters s. and e.) surrounded by a global block to illustrate the nesting of
segments and blocks:

b.--- , global block
S. - .- :segment |
b.---e. ; local blocks
b. - :
e.
S.--- . segment 2
b.--- . local blocks
b.---¢ ;
€. ;
e.

Chapter 2

BASIC ELEMENTS OF SLANG

2.1. Character Set

2.1.1. Syntax.
<assembly character>::=<digit>! <letter>! <special character>!
<space>!<<new line>
<digit>:= (Q!1121314!516! 71819
Jetter>:=
atbletdle!trathtiti'k!'I!'m!nto! ptqtr!stthulviw!xt vzt et ol a!
A'B'C'D'EYFIGHTT K LMINITOTPI QYR STTIUTVIWEX!TY!Z AT O A

<special character>:= TEEUSTGIQIV (Y EIEL L =
T =t <apostrophe>

<space>:=<§pP>

<new line>n= <NL>!'<VT>! <FF>

2.1.2. Semantics.

Slang accepts a subset of the /SO 7-bit character set consisting of ull graphics plus the
lay'out characters space, new line, vertical tabulation, and form feed. All other 1ISO
characters arc treated as blind symbols by Slang.

2.1.3. Letters and Spaces.
Outside textstrings, Slang does not distinguish between small letters and capital
letters, and all spaces are ignored.

2.1.4. Numerical Representation.
A table of the SO character set and its numerical representation is given in Appendix
A.

2.2. Numbers

2.2.1. Syntax.

<number>:=<rcal number>! <integer>! <radix number>

<real number>::= <decimal number>! <exponent>!<decimal number><exponent>
<decimal number>:=<integer>! <fraction>! <integer> <fraction>

<fraction>::= <unsigned integer>

<exponent>::="Tinteger>

<radix number>::=<radix> <unsigned integer>

<radix>::=<unsigned integer>,

<integer>::= <unsigned integer>! +<unsigned integer>! -<unsigned integer>
<unsigned integer>::=<digit>! <unsigned integer> <digit>

12 2.3. IDENTIFIERS

2.2.2. Semantics.

Slang accepts three types of numbers: real numbers, integers, and radix numbers. Real

numbers and integers have their conventional meaning. The exponent part of a real

number is expressed as an integral power of 10.

Radix numbers are cxpressed as a radix followed by a digitstring, for example,

2.110111 (a binary number) or 8.4357 (an octal number). The radix can be greater

than 9, but in any case the number is converted digit by digit as follows:
number:=radix *number + digit

2.2.3. Examples.

Real: 33 +495'6 -0.67 +8
Integer: 225 +17 -588 0
Radix: 2.101 5.3241 8.4692 129.58

2.3. Identifiers

2.3.1. Syntax.

<identifier>::= <declared identifier>! <load address>
<declared identifier>::=<identifier letter> <unsigned integer>
<identifier letter>n=alblc!d!e! flg!hli!]

<load address>::=k

2.3.2. Semantics.
An identifier is a symbolic name given ecither to a storage location in the object
program or to the value of an expression evaluated by the assembler.

2.3.3. Load Address.
The letter k is a reserved identifier for the load address of the current byte or word.
K is initialized to zero before assembly.

2.3.4. Examples.
k a0 d25s h123

2.4. EXPRLESSIONS 13

2.4. Expressions

2.4.1. Syntax.

<expression>::=<sign> <term>! <expression> <operator> <term>

<term>::=<operand>!(:<expression>:)

<operator>:=+!-1*1 /11>l o,

<sign>n=<empty>!+!-

<operand>::=<unsigned integer>! <radix number>! <identifier>!
<relative identifier>

<relative identifier>::= <declared identifier>.

2.4.2. Semantics.
An expression specifies the computation of an integer value during assembly. All
operands and intermediate results are evaluated as 24-bit integers.

2.4.3. Identifiers.

An identifier used as a computational operand must have avalue when the expression
is evaluated, i.e. it must be defined either by a previous expression or through its use as
alabel (see Section 3.1.).

An identifier followed by a period is evaluated relatively to the current load address.
For example the value of b2.is b2 - k

2.4.4. Operators.

The arithmetic operators + - * [have their conventional meanings of addition,
subtraction, multiplication, and division. The shift operators < and > shift the
left-hand operand logically left and right the number of bit positions specified by the
right-hand operand. The Boolean operators a. and o. form the and and or combina-
tions of the two operands bit by bit.

2.4.5. Precedence of Operators.
The sequence of operations in evaluating an expression is from left to right subject to
the following rules of precedence among the operators:

first: <>
second: */
third: +-
fourth: a.
fifth: o.

This can be overruled, however, by the use of parentheses (:and :)

2.4.6. Examples.
-as
k+128

2.1011<20+ 6<18 + g4.
(:(:¢35 — ¢0:)/5:)<3 0. 6.323

14 2.5. INSTRUCTIONS

2.5. Instructions.

2.5.1. Syntax.

<instruction>::=<operation part™> <address part>

<operation part>::=

<operation code> <relative mode> <W register> <lindirect mode> <X register>

<operation code>::= aalac'ad!al'am!as!aw!ba!bl!'bs!bz! cf' ¢ci! dl! ds! fa! fd!
fm!fs!hlthstictiotis!jd!je! jlt kIt ks! latld! lotIs! Ix! ml!
ms! nd! ns! pl! ps! 1l rs?rx!se!sh!sl!sn!so!sp!ss!sx!s/!
wa!wd!wm!ws! xI!xs

<relative mode>::=<cmpty>!.

<W register>n=<cmpty>!wO!wi!w2!w3

<indirect mode>::=<empty>!(

<X register>n=<empty>! x0!'x1!'x2!'x3

<address part>:=<empty>! <expression>

2.5.2. Operation Parts.

The operation part of an instruction is assembled as a 12-bit byte. [t must begin with
one of the mnemonic codes listed in Appendix B; modifications may follow in any
order. If no modifications are specified, w0, X0. and direct addressing are understood.

2.5.3. Address Parts.
The address part of an instruction is evaluated by an expression and assembled as a
12-bit byte. It must be confined to the range:
~2048<= address part<<= 2047
An empty address part is loaded as a zero.

2.5.4. Indirect Addressing.
For aesthetic reasons, Slang permits the programmer to terminate an indircct address
by aright parenthesis). This is trcated as a blind symbol however.

2.5.5. Examples.
Operation Parts:
ac
1 w0
jd x3
bz. w3 (x2)
Instructions:
szwl 2.1110
jl eSS
wa. w3. (x1+f15.)
Is wO 24-(:cl-c1/24%24)

[

2.6. TEXTSRINGS l

2.6. Textstrings

2.6.1. Syntax.

<text>i=<<textstring>:>

<textstring>::= <text character>! <textstring> <text character>
<text character>::=<{assembly character>! <numerical character>
<numerical character>::=<<unsigned integer>>

2.6.2. Internal Representation.

The characters between the delimiters <: and 2> are stored in consecutive words with
3 characters per word. Each character will be represented by its 7-bit numerical
representation defined in Appendix A. Unused character positions at the end of the
last word are filled with NULL characters.

2.6.3. Blind Characters.
All unprintable characters are ignored by Slang (Section 2.1.2). They can. however. be
included in textstrings by means of the numerical notation described below.

2.6.4. Numerical Characters.
An unsigned integer enclosed in brackets <and > is interpreted as an 8-bit character
with a numerical representation defined by the integer modulo 256.
This notation can be used to specify control characters in a textstring. For example:
null <:<0>:>
acknowledge <:<o»:>
Slang interpretes the character pair 2> as a text terminator, and the character <
followed by a digit as the beginning of a numerical character. The numerical notation
can be used to include these symbols in the assembled textstring:
> <L <L58><C62>>
<6> <LO0>0>2>

2.6.5. Examples.
<syntax error<0>>
<:This text includes a
New Line character>
<:too big<10>try again >

16 2.7. DIRECTIVES AND COMMENTS

2.7. Directives and Cormments

2.7.1. Syntax.

<directive>::= <input control>! <identifier listing>! <assembly jump>!
<dummy directive>! <testoutput control>! <end line>

<input control>:=t.!n.

<identifier listing>:=1.

<assembly jump>::=j.

<dummy directive>::=x.'y.

<testoutput control>:=o0.! .

<end line>::=<new line>! <line comment> <new line>>!
m.<line comment><new line>

<line comment>::= <any string not containing a new line>

2.7.2. Semantics.
Directives have no effect on the binary code produced but serve to control the
assembly.

2.7.3. Input Control.

The delimiters t. and n. permit the switching between two alternative input mediums
(originally called typewriter and normal input) during assembly. The exact functions
of the input control depend on the surrounding system (see Section 4.5).

2.7.4. ldentifier Listing.
The delimiter i. produces a listing of identifier values during assembly. The list
includes only defined identifiers which are local to the current block.

2.7.5. Assembly Jump.
The delimiter j. causes a jump to the last assembled word during assembly. The result is

unpredictable if the last word is undefined when the jump is made. This feature is
intended for the implementation of system dependent functions outside the scope of
the Slang language (see Section 4.7).

The assembly jump is only accepted within word statements (see Section 3.5).

2.7.6. Dummy Directives.

The delimiters x. and y. survive from a previous version of Slang. In the present version
they can be used as separators within statements, but apart from that they have no
directive effect on assembly.

2.7.7. Testoutput Control.

The delimiter 0. causes the assembler to print internal testoutput during assembly; it
can be turned off again by means of the delimiter . This facility is used to debug the
assembler.

2.7. DIRECTIVLES AND COMMENTS 17

2.7.8. Line Comments.
Conunents can be included in the program following the delimiter m. or a semicolon.

This causes everything up to a new line to be ignored. Comments following the
delimiter m. are messages which are displayed on the output medium during assem-

bly.

Chapter 3

STRUCTURE OF SLANG PROGRAMS

3.1. Labels

3.1.1. Syntax.
<label>::=<declared identifier>:

3.1.2. Semantics.

Labels are used as symbolic addresses of storage locations. In halfword and word
statements an identifier used as a label gets the current load address as its value (see
Sections 3.4 and 3.5). In floating-point statements an identifier used as a label gets the
current load address + 2 as its value (see Section 3.6).

An identifier can only be defined once as a label within the block in which it is
declared. It can, however, be redefined by an assignment statement (see Section 3.2).

3.1.3. Examples.
a3: e22: j0:

3.2. Assignment Statements

3.2.1. Syntax.
<assignment>::= <identifier>=<expression>

3.2.2. Semantics.

An assignment statement assigns the value of an expression to an identifier. An
identifier defined by an expression must not be redefined as a label within the block in
which it is declared. It can, however, be redefined by another assignment.

3.2.3. Load Address Control.

The load address k can be changed explicitly by an assignment statement. This effects
the values of subsequent identifiers used as labels.

The binary code produced does not contain explicit information about the change of
load address to be used when the program is actually loaded and executed. The
conventions for program loading in a given system is outside the scope of the Slang
language.

3.2.4. Examples.
k=8
k=k-130
c6=b2.-(g32+4)
i4=2.101<21+5

20 3.3. COMPOUND STATEMENTS

3.3. Compound Statements

3.3.1. Syntax.
<compound statement>::=
h.<prelude>!h.<prelude> <halfword compound> <epilog>!
w.<prelude>! w.<prelude> <word compound> <cpilog>'
f.<prelude>'f.<prelude> <floating-point compound> <epilog>
<prelude> = <empty>! <label>! <directive>! <prelude><prelude>
<epilog>:=<empty>! <separator>
<separator>:= ! <directive>! <separator> <prelude>

3.3.2. Semantics.

A Slang program consists of a sequence of simple statements specifying numbers,
instructions, textstrings. and assignments. To distinguish between the assembly of
halfwords, words, and double words, Slang employs three types of compound
statements. These are prefixed by the delimiters h. w. and f. The full extent of
compound statements will become clear in the following.

3.3.3. Separators.

Slang uses a comma to separate one statement from another. A separating comma can
be replaced or followed by a sequence of directives, comments, or new lines. Labels
can also be inserted after a separator.

3.3.4. Prelude and Epilog.
The first statement within a compound statement can be prefixed by any sequence of
labels and directives. The last statement can be terminated by a separator if desired.

3.3.5. Address Rounding.

A delimiter h. that is followed by a prelude only has no effect on the program. The
delimiters w. and f. have the effect of setting the load address k equal to the nearest
word address. The statements have no effect if k iseven: if k is odd, a byte value zero is
loaded and k is increased by 1.

3.3.6. Examples.

Prelude: a5: 1. b2:g3:x.c27:n. m. message comment
Separator: . t. ,215:y.n.a9:h0: : line comment

3.4. HALFWORD STATEMENTS 21

3.4. Halfword Statements

3.4.1. Syntax.
<halfword compound>::=<byte>! <assignment>! r.<expression>!
<halfword compound> <separator><halfword compound>

<byte>::= <operation part>! <expression>

3.4.2. Semantics.
The operation parts and expression values that follow the delimiter h. are loaded into

consecutive halfwords. After cach byte, the load address k is increased by 1.
A byte value must be confined to the range:
-2048 <=byte <=4095
3.4.3. Undcfined Bytes.
A byte can be an identifier whose value is defined later in the program either by an
assignment or through its use as a label. An undefined byte can only have the following
format:
<undefined byte>::= <declared identifier>! +<{declared identifier>!
<relative identifier>! +<relative identifier>

3.4.4. Assignments.
Assignments to the load address k are not permitted within halfword statements.

3.4.5. Byte Repetition.

An expression following the delimiter r. is evaluated by the assembler. If the result is
greater than zero the last assembled byte is also loaded into the following <ex-
pression>>-1 bytes. The byte value is unpredictable if the last byte contains an
undefined identifier.

3.4.6. Examples.

h. b3: al w2, r1s w3 x2, se. w0 (x3) - thisis a
, comment
294, -45, a5:d8:2.1011
-c66, f99.t. (32-j0:) /5

3.5. Word Statements.

3.5.1. Syntax.
<word compound>::= <word>! <text>! <assignment>! r.<expression>!
<word compound> <separator> <word compound>

<word>::=<instruction>! <expression>

3.5.2. Semantics.
The instructions and expression values that follow the delimiter w. are loaded into

3o}
(3]

3.6. FLOATING-POINT STATEMENTS

consecutive storage words. After each word, the load address k is increased by 2,
A word value must be confined to the range:
-8 388 608 <=word <=8 388 607

3.5.3. Undefined Words.
A data word or an address part can be an undefined identifier in the same sense as
defined in Section 3.4.3.

3.5.4. Instructions with Relative Addressing.
In an instruction, the period for relative addressing is set independently in the
operation part and the address part. For example:

w. a0:jl. w2 bO.
It is important to note that the instruction word above is not equivalent to the
following halfword statement:

h.a0:jl. w2, bO.
In the first case, the value of the relative identifier b0. is: b0 - k =b0 - a0, whereas in the
second b0. becomes: b0-k=b0-(a0+ 1)

3.5.5. Word Repetition.

An expression following the delimiter r. is evaluated by the assembler. If the result is
greater than zero the last assembled word is also loaded in the following <ex-
pression>-1 words. The word value is unpredictable if the last word contains an
undefined identifier.

3.5.6. Examples.
w.t.25:2.101, -8 388608, j87 a. (a4 o. 6:)
<ready<10><0>>, a2:a3:h9=g35<2-11 i. 25, r.8
; the following line shows examples of instructions:
jl x1 8, bd:rs. w2 (d4.), al w0 x2 +16

3.6. Floating-point Statements

3.6.1. Syntax.
<floating-point compound>::= <real number>! <assignment>! r.<expression>!
<floating-point compound> <separator> <floating-point compound>>

3.6.2. Semantics.

The real numbers that follow the delimiter f. are loaded into consecutive double words
as normalized floating-point numbers. After each real the load address is increased by
4.

3.7. PROGRAMS, SEGMENTS, AND BLOCKS

3]
W

3.6.3. Real Repetition,

An expression following the delimiter r. is evaluated by the assembler. If the result is
greater than zero the last assembled double word is also loaded in the following
<expression>-1 double words.

3.6.4. Examples.
f. k=2000, ¢2:233,495'6, c3:¢7: —0.45 t. +9.34" —49 1. 26*2

3.7. Programs, Segments, and Blocks
3.7.1. Syntax.
<program>::= <program comment> <block>
<program comment>::=<any string not containing s. or b.>
<block>::=<block head> <block tail>
<block head>::=

s.<prelude>!s.<prelude><head compound> <epilog>!

b.<prelude>'b.<prelude> <head compound> <epilog>
<head compound>::=<declaration>! <assignment>!

<head compound> <separator><head compound>
<declaration>::=<declared identifier>
<block tail>::=e.! <compound statement> <block tail>!
<block> <block tail>

3.7.2. Semantics.

A block is a sequence of compound statements enclosed by one of the delimiter pairs
s.and e. or b. and e. Blocks can be nested. The block concept is introduced to control
the scope of identifiers in the following way: first, all identifiers must be declared ina
block head before being used; second, identifiers can only be used within the block in
which they are declared and in blocks enclosed by the former; third, if the same
identifier is declared in several nested blocks it will function as several identifiers, each
of which can only be used within its own block.

3.7.3. Declarations.
At each block entry, the assembler reserves a table to contain the values of identifiers
declared in that block. A declaration consists of one of the letters a through j followed
by an unsigned integer. This permits the programmer to use any identifier beginning
with the selected letter followed by an integer less than or equal to the limit specified.
For example, the declaration:

b.c27,a9
initializes a block in which the identifiers c0 to ¢27 and a0 to a9 can be used. A block
end e. deletes all local identifier values from the internal table.

24 3.8. CONDITIONAL ASSEMBLY

3.7.4. Programs and Segmentation.

The outermost block delimits the program to be assembled. A program can be divided
into segments. A segment is ablock headed by the delimiter s. At the end of a segment.
Slang outputs the entire segment as binary machine code. (It should be noted that
binary output is only produced for segments). Segmentation imposes the following
restriction on the use of identifiers: identifiers declared in blocks surrounding a
segment must be defined before they are used within the segment.

3.7.5. Program Comment.

The input control directives t. and n. as well as line comments preceded by a semicolon
are allowed before the first block head of the program; all other characters are,
however, treated as a comment to the program.

3.8. Conditional Assembly

3.8.1. Syntax.
<condition head>::= ¢c.<expression> <separator>
<condition end>:=z.

3.8.2. Semantics.
Conditional assembly of a piece of Slang code is specified by the delimiter c. followed
by an expression that is evaluated by the assembler. If the result is greater than or
equal to zero, assembly continues after the expression. A negative result indicates that
the following statements up to the delimiter z. are to be skipped.
Assembly conditions can be nested but do not necessarily follow the block structure
of the program, i.e. a sequence such as:

c.--b.--z.--¢.
is accepted.
The condition head and condition end can be used in all places where directives are
accepted.

Chapter 4

OPERATION OF THE ASSEMBLER

4.1. Introduction

This chapter describes the features and the operation of the Slang 3 assembler
designed for the RC 4000 multiprogramming system. The assembler is called and
controlled by the file processor (fp). In the following sections it is assumed that the
reader is familiar with the fp manual.

The assembler takes its input from one or more fext files described in the catalogon
the backing store or in the fp notes; it outputs a binary program consisting of one or
more Slang segments on a single file.

The input media can be any media handled by fp, whereas the output medium must be
either backing store or magnetic tape.

4.2. Size and Speed

Slang and the fp occupy about 4000 words of the internal store (including buffers for
the current input and output media). The rest of the available store is divided between
the assembled program and the table of identifiers as follows:
Assembled Program:

code =run time size

k assignment =2 words
Identifier Table:

block head = 3 words

declaration = 1 + 2*identifier index words
The internal assembly speed is about 5000 characters per second.

4.3. Calling the Assembler
FP will load and start the assembler when it reads a call of the following format from
the current input medium:
<result> slang <parameter list>
The result can be empty or of the form:

<fpnote>=

or <files> =

The parameter list can be empty or contain one or more parameters of the form:
<source file>

or <assembly option>.yes

or <assembly option>.no

The assembler can input the source program from one or more text files given in the
parameter list: when the first source file is exhausted, input is taken from the next
source file, and so on. A source file is identified by a name referring to either a catalog

26 4.4. FORMATS OF BINARY PROGRAM

entry or an fp note, which describes the actual input document and its initial position.
If no source file is specified, input is taken from the current input medium,; if this
medium is exhausted, assembly is terminated.

The assembler can output the object program on a single result file. If no result file is
specified, the assembler does not output binary code. If the result file is identified by
the name of an fp note and the note is empty (i.e. does not describe a document), a
temporary area of a standard size is created on the backing store and described in the
note. After assembly the size of the area is decreased in accordance with the actual size
of the object program. If the note already describes a document or if the result file is
identified by the name of a catalog entry, which describes a document, binary code is
output on that document.

4.4. Format of Binary Program

The format of an assembled object program depends on the kind of the output
document:

On backing store the binary segments are output word by word from the beginning of
the area, ignoring the boundaries of backing store segments.

On magnetic tape each binary segment is output as one block; the last block is
terminated by a tape mark.

The present assembler can only deliver output on backing store or magnetic tape. A
separate utility program, binout, must be used to copy binary output on paper tape
with the following format: Each word is output as four 6-bit characters with odd
parity; each binary segment is terminated by a 7-bit character with odd parity in which
the left-most bit is one while the right-most six bits form a checksum of all other
characters in the segment modulo 64.

4.5. Assembly Options
The following is a list of assembly modes that can be turned on or off by explicit
parameters to Slang:
type.yes Defines whether the delimiter t. should cause the assembler
type.no to take input from the current input medium. The delimiter
n. returns the assembler to the normal source file given in
the parameter list.

list.yes Defines whether the assembler should print the source text
list.no (including the typed” input) on the current output medium.
names.yes Defines whether the delimiter i. should cause the assembler
names.no to print identifier values on the current output medium.

message.yes Defines whether the delimiter m. should cause the assembler to
message.no print amessage comment on the current output medium.

4.6. ASSEMBLY MESSAGES 27

warning.yes Defines whether the assembler should print warning messages on
warning.no the current output medium.

entry.yes Defines whether the assembler should change the result descrip tor
entry.no if no errors are found during assembly. The descriptor is changed
as follows:
content:=2;
entry:=4;

length:=total number of bytes output;

remove.yes Defines whether the assembler should remove the catalog entry
remove.no for a temporary backing store area used as result file if
errors are found during assembly.

If no assembly options are defined in the parameter list, the following initial values are
used:

type.no

list.no

names.no

message.yes

warning.yes

entry.yes

remove.yes

4.6. Assembly Messages
During asscmbly, certain control and error messages will be printed on the current
output medium. Most of these include the value of the load address k. This in
combination with a listing of identifier values facilitates the identification of trouble
spots.
The following are normal control messages:
<k> type

The delimiter t. causes switching from a source file to the

current input medium.

<message comment>
The delimiter m. causes printing of a message comment.

;<k>id list

b. <declarations>

<id list>
The delimiter i. causes printing of declarations and identifier
values local to the current block or segment.

28 4.6. ASSEMBLY MESSAGLS

slang ok <slang segments>/<bytes>/<backing store scgments>
Slang returns to the fp and sets the ok bit to true. The size of
the assembled program is ex pressed as the number of Slang segments
bytes, and backing store segments output.

>

During a call of the assembler the following messages can appear:

#*#*slang param <illegal parameter>
Nlegal parameter syntax. The parameter is ignored.

#**slang work area connect <result>
The result file cannot be connected for output. Assembly is
performed without binary output.

***slang work area kind <result>
The kind of the result file is neither backing store nor magnetic
tape. Assembly is performed without binary output.

During assembly warnings are printed in the following cases:

<k> cancel
Input of a CAN character from typewriter causes all previous
characters on the current text line to be skipped.

<k> illegal <character value>
Input of a blind control character other than NUL, CR, or DEL.

<k> file mark

Troubles encountered during output of final tape mark on magnetic tape.

<k> byte value
A byte value is outside the range —2048 to 4095; or an address
part has a value outside the range —2048 to 2047. (The address
part of ajd instruction can, however, be in the range —2048 to
4095. Thus monitor calls will not cause warnings during assembly.)

<k> relative
A relative identifier is used as address part in an instruction
without relative addressing.

<k> repetition
A repetition expression with a value less than 1.

4.6. ASSEMBLY MESSAGES 29

The following error messages cause everything up to the next separator to be skipped:

<k> syntax
Illegal structure of delimiters and operands.

<k><identifier> declaration
An identifier is declared twice in the same block head, or a
declaration index exceeds 4095.

<k> <identifier> undeclared
An identifier is used without being declared.

<k> <identifier> definition
An identifier that has been defined elsewhere by a label or an
assignment is redefined by a label within the same block.

<k><identifier> undefined
An identifier is undefined when an expression is evaluated; or an
identifier declared outside of a segment is undefined when it is
used within the segment.

<k>undefined at end
One or more identifiers that have been used as bytes or words are
undefined on exit from the block in which they are declared. Each
undefined identifier is followed by the addresses at which it has
been used.

<k> program too big
The binary output exceeds the capacity of the result file.
Assembly continues without binary output.

The following situations cause immediate termination of assembly:

<k> stack
The size of the object code and the identifier table exceeds the
available internal store. This can be remedied either by using a
larger internal store during assembly or by dividing the source
program into segments.

<k> connect <source file>
A source file cannot be connected for input.

30 4.7. JUMP ACTION

<k>no text <source file>
A source file contains a character with a value > 127.

<k> end source
The last source file is empty before the logical program end.
The missing number of z. and e. are generated by the assembler.

<k> jump
Working register 2<> 0 on return from a jump action (see¢
Section 4.7).

<k> slang fault
Caused by a programming error in the assembler. Please send a
listing of the source text and the assembly messages to
Regnecentralen.

If the assembler has printed one or more error messages or a termination message
during assembly, it will return to the fp at the end of the program and set the ok bit to
false. In this case the final assembly message is:

##%slang sorry <slang segments>/<bytes>/< backing store segments>

If the source text is empty before a block begin (b. or s.) is read, the ok bit is also sct to
false and the assembly message is:

*#**slang no program

4.7. Jump Action

When the assembler reads the delimiter j. it performs a jump to the last assembled
word with the following register values:

wl: fpbase

w2: slangbase

w3: return address
All entries in the fp are defined relative to the fp base as described in the manual of the
file processor.
The slang base is the address of a table within the assembler, which contains the
following entities:

slang base: program top (first free word)
+2 stack top (last free word)
+4 result note address (—1 if no note)
+6 last k assignment

+8 result name address (— | if no name)

4.7. JUMP ACTION Ry

The meaning of the addresses program top and stack top is illustrated by the following

map of the internal store:
assembled code

jump entry:
program top:

free area

stack top:

identifier stack

The result note address points to the fp note describing the object program file. The
format of the note is defined in the manual of the file processor.
The last k assignment is the address of a word defining the value of the last k
assignment. The current value of k (corresponding to the next word to be assembled in
program top) can be calculated as follows:

1l wl x2+0 ; k= program top

ws wl x2+6 | — last k assignment
al owl x1-2 -2
wa wl (x2+6) | + word (last k assignment);

The result naine address is the address of the first of four words defining the name of

the catalog entry, which describes the object program file.
On return from a jump action the assembler interprets the registers as follows:

If w0 <> 0 the textstring addressed by the register is printed

up to a NUL character on the current output medium.

If w2 < 0 assembly is terminated by the jump message (see Section

4.6); otherwise assembly continues.
The following example shows a jump action that looks up and changes the catalog
entry describing the result file. At the end the jump action decreases the program top
with the size of the jump code, thus preventing it from being included in the final

program:

4.7. JUMP ACTION

b. a4 ; begin
w.a0: rs. w3 a3. ; jump action:
al. wl a2 ;
rl w3 x2+8
jd 1<11+42 ; look up entry (result name, tail, result),
se w0 O s ifresult<>0
jl. al. ; then terminate slang;
----- ; change tail as desired;
jd 1<11+44 ; change entry (result name, tail, result);
se w0 O 1 ifresult<>0
jl. al. s then terminate stang;
1l wl x2+0
al wl xl+a4 ; program top:=
rs wl x2+0 ; program top — size of jump action;
al w2 0 :
al: al w0 O ., continue slang;
jl. (a3.) ;
a2: 0, r.10 S tail:
a3: 0 , return address:
jl. a0. ; entry point:
a4=a0. k=a0 ; size of jump action:
j. : gotojump action;
e. , end

APPENDIX A: THE ISO 7 BIT CHARACTER SET

The character set contains 128 7-bit characters. In the numerical representation of any
one character the bits are identified by:
b7b6bS b4 b3 b2 bl
which have the following significance in the binary system:
643216 8 4 2 1
In the code table below the columns and rows are identified by the decimal equivalent
of the following binary numbers:
column: b7b6b5 0 0 0 O
row: 0 0 0 b4b3b2bl
Accordingly, the decimal value of a character is the sum of the column and row
numbers. For instance, the character H has the numerical representation 64 + 8 =72.
Empty positions in the code table specify characters that are ignored by Slang.

0 16 32 48 o064 80 96 112
0 SPI O] @ | P \ P
1 ! 1 Al Q| a q
2 A 2 B | R | b I
3 L 3 C S c s
4 S | 4 D|T}| d t
5 % 5 E U e u
6 6 F \ f \
7 ! 71 G| W| g w
8 (8 H| X | h X
9 EM[) 911 Y]]y
10 [NL * : J Z|j z
11 | VT + | ; K| £ k &
12 | FF , <] L]1O]1 0
13 - | = M| A m| i
14 > | N ~ !l n| —
15 / ? O] _| o

APPENDIX B: MNEMONIC OPERATION CODES

The following is a list of mnemonic codes for the instruction set of the RC 4000. The
two columns give the mnemonic code and the complete name of each instruction.

AA
AC
AD
AL
AM
AS
AW
BA
BL
BS
BZ
CF
Cl
DL
DS
FA
FD
FM
FS
HL
HS
IC
10
IS
JD
JE
JL
KL
KS

Add Integer Double Word
Load Address Complemented
Shift Double Arithmetically
Load Address

Modify Next Address

Shift Single Arithmetically
Autoload Word

Add Integer Byte

Load Integer Byte

Subtract Integer Byte

Load Byte with Zeroes
Convert Floating to Integer
Convert Integer to Floating
Load Double Register

Store Double Register

Add Floating

Divide Floating

Multiply Floating

Subtract Floating

Load Half Register

Store Half Register

Clear Interrupt Bits

Input Output

Store Interrupt Register
Jump with Interrupt Disabled
Jump with Interrupt Enabled
Jump with Register Link
Load Protection Key

Store Protection Key

LA
LD
LO
LS
LX
ML
MS
ND
NS
PL
PS
RL
RS
RX
SE
SH
SL
SN
SO
Sp
SS
SX
SZ
WA
WD
WM
WS
XL
XS

Logical And

Shift Double Logically
Logical Or

Shift Single Logically
Logical Exclusive Or
Load Mask Register

Store Mask Register
Normalize Double
Normalize Single

Load Protection Register
Store Protection Register
Load Register

Store Register

Exchange Register and Store
Skip if Register Equal
Skip if Register High

Skip if Register Low

Skip if Register Not Equal
Skip if Register Bits One
Skip if No Protection
Subtract Integer Double Word
Skip if No Exceptions
Skip if Register Bits Zero
Add Integer Word

Divide Integer Word
Multiply Integer Word
Subtract Integer Word
Load Exception Register
Store Exception Register

INDEX

Address modification 14
Address part 14
Address rounding 20
Assembly jump ..., 16
Assembly messages 27
Assembly options 26ff

Assembly parameters 25

Assignment statements 19
Backing store output 26
Blind symbols 15
Block 23
Byte 2

Call of assembler 25
Cancel character 28
Characterset 11.33
Comments 17
Compound statements 20
Conditional assembly 4
Declaration of identifiers 23
Definition of identifiers 19
Directives 16
Endline 16
Entry option 27
Epilog 20
Error messages 29
Expression 13
Floating-point statements 22
Form feed character 11
FPbase 30
Halfword statements 21
Identifier 12
Identifier listing 16
Index register 14

Indirect addressing
Input control
Instruction
Integer

ISO character set

Jumpaction
Label
Line comment
List option

Load address
Load address assignment

Magnctic tape output
Message comment
Message option

Names option
New line character
Number
Numerical character

Object program
Operands
Operation codes
Operation part

Operators

Paper tape output
Prelude
Program
Program comment
Program format

Programming examples
Program top

Radix number
Real number
Redefinition of identifiers

38

Relative addressing
Relative identifier
Remove option
Repetition statements
Result file
Result name
Resultnote

Segment
Separator
Size of assembler
Slang base
Source program
Spaces
Speed of assembler
Stacktop

Testoutput control
Textfile
Textstring
Typcoption

Undefined address part
Undefined byte
Undefined word

Vertical tabulation
Warning messages

Warning options
Word

24
20
25
30
25
11
25
31

16
25
15

26

21

21

M

11

Printed in Denmark by
A/S I Andersen & Son, Computer Dept.
Lay-out Freddi Schlechter

8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

HEADQUARTERS: FALKONER ALLE 1 - DK-2000 COPENHAGEN F - DENMARK
PHONE: (01) 10 53 66 - TELEX: 6282 RCHQ DK - CABLES: REGNECENTRALEN

AUSTRIA
BENELUX
DENMARK
GERMANY
NORWAY
SWEDEN

