RCSL No: 31-D513
Edition: Octcober 1978

Author: Niels Mpller Jgrgensen
Lars Otto Kj®r Nielsen

Title:

Terminal Access Module (TEM)
Reference Manual/Operating Guide

¢REGNECENTRALEN

: af 1979

RCSL 42-i1905

Keywords:

RC8000, RC4000, monitor, terminal access, multiplexing, spooling.

Abstract:
TEM is a service module, which on behalf of applications supports
accessing of terminals.
This manual contains information of interest for the application
programmer, the operator and the system staff.
(44 printed pages)
Copyright © 1982, A/S Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen
g Users of this manual are cautioned that the specifications contai-
= ned harein are subject to change by RC at any time without prior no-
< tice. RC ias not responsible for typographical or arithmetic errors
ﬁ which may appear in this manual and shall not be responsible for

any damages caused by rallance an any of the materials presented.

FOREWORD

First edition: RCSL No 31-D481.

Second edition: RCSL No 31-D513.
The manual describes revision 2 of the terminal access module
TEM.

No differences in functions and formats have been made, but new
facilities have been implemented. The extensions concern mainly
interface functions to the format 8000 system.

The TEM system has been designed and implemented by the authors.

This manual replaces the description of revision 1, January 1978.

Niels Mpller Jgrgensen
A/S REGNECENTRALEN, October 1978

iii

2.1 Some TEM CONCEPLS sesecccosacs cecessssscsesvsnesans

2.1.1

2.1.2
2.1.3
2.1.4

2.1.5
2.1.6

2.2.1

2.2.2

Terminal Pools and Terminal LinksS ceoceescscs

Names Of POOLS ccecococoses cssssssssssssosss

Types and Names of Terminal Links seeeeese .o
Blocks and TransactionS eesssscecesncasasses

Multiplexing ceessenssensscesas cersans

ng)ling #9pepevenoesaen s L I R A A I A R R R
2.2 TEMOE)eratiOﬂs L R I I R I R N RN
COntrOlOperationS R R I R N I]

2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.7

Create POOL cocsscsssosscssoscsscosae
Remove POOl siceeascascass cecscssone
Lookup POOL ccsassoasncossoasssscas
Create Link cceeecesscsssasasssss .s
Remove LinK seessccssscssscscasccas
Lookup Link eeeeeacecas

Tookup Terminal cccesscscscssscsoss

Input/Output Operations ...ceceeessses ceseaaa

2.2.2.1

2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5
2.2.2.6

3. OPERATING GUILE ...

3.1 The Start-Up

Start INPUt eeeeees..

L R N N I N

3-2 ClOSing ﬂ-le System. LI R R R I N I I B I R I A N BN B R I A I A]

3.3 How to Handle Error Situations .ceeceea. esesasasasase

4, SYSTEM GENERATICN

4.1 Loading the System from Tape to Backing Storage ...

4.2 Saving the System from Backing Storage to Tape

4.3 Installation LEL R L A L B B A) LA LI A B L B O B B B

~N T b W N NN

w

11

12
13
13
14
14
16
17
17

19
19
20
20

iv

TARLE, OF CONTENTS (continued) PAGE

404 RESOUI‘CEDEIYBndS B4 40P 660 eHESeee0 e DEESDEE S 2008866 26

4‘;4-] ‘“JhenInStalling e edeseeoe o EER eSS esasacee 26

404-2 mlenRunIﬁ_rlg 58 62088 eSPeESEPeRePENEIROPRGRAELTDOBE 27
APPENDICES:

A- RH‘EREN-ES ------- 58 688060498500 0E0CO0CFROQCEDERRTSRNES sercoas s 29

BO PMWLIES @ e PP PO AL PSNPSPOEOEERSESSEODPREPIPERERERERTRESRR BB RE S 30

Ce TEMIRIM cccacss ceessrsesesasasees et es0es et sesetsusasas 36

INTRODUCTION

This manual contains information about the service module TEM.

Relevant information may be found bv people, who are going to
use, install, generate or work as operators for TEM.

The purpose of TEM is to support access of terminals. TEM aims
specifically at multiplexing of terminal input and cutput to and
fram an application. In addition TEM offers spooling of data in
order to smooth speed differences between an application program

and (slow) external devices.

The facilities of TEM will make programming of oan-line systems
easier, because TEM allows an application written in a higher
programming language to access a number of terminals through ane
stream by means of the standard input/output system included in
the language. Besides TEM operates the devices in parallel with
the application processing transactions, which will ensure a
higher degree of service to the terminals and a better utiliza-

tion of hardware, than if the accessing was performed by the
application itself.

This manual contains the following information:

Chapter 2 describes the functions of TEM. The formats of the in-
formation exchanged between TEM and an application program are

also specified.

Chapter 3 describes the start up procedures and how to cperate
TEM in the day to day running.

Chapter 4 is a guide in system generation. In this chapter the

procedures concerning installation and trimming of TEM is de-
scribed.

REFERENCE MANUAL

2.1

Same TEM Concepts 2.1

2.1.1

Terminal Pools and Terminal Links 2.1.1

When an application program wants to access a set of devices via

TEM, it asks TEM to define a terminal pool. For every device the
application wants to use, a terminal link must be created between

the pool and the external process corresponding to the device.

Accessing of devices is performed by TEM on request from the

application. The mode of cperation is partly defined in the link

creation phase and partly by explicit input/output commands to a

pseudo process corresponding to the pool. .

Names of Pools 2.1.2

The name of a pool must obey the naming rules defined in the
monitor, ref. [3]. These rules state that a name is a textstring
consisting of 12 ISO characters beginning with a small letter
followed by at most 10 small letters or digits, terminated by
NULL characters.

Types and Names of Terminal Links 2.1 ".

When a link from a pool to a device is created, the corresponding

external process must be specified. The process kind may be of
any type, but in the present version of TEM only the following

access protocols are supported:

1) TTY campatible processes.
For this protocol TEM offers two access modes:
a) link type = 0

TTY multi-terminal.

TEM offers spooling and maltiplexing facilities. .

2.1.4

b) link type = 2
TTY single terminal.
Only spooling facilities.

2) Format 8000 termin and termout processes ref. [5] and ref.
[6].
link type = 4
Multiplexing and spocling is supported.

A link is identified by a name (local id), consisting of 24 bits

(3 bytes). This name is defined by the application, and must be
unambiguous within the pool.

Blocks and Transactions 2.1.4

a) Type = 0 (TTY multi-terminal)
1 transaction = 1 block

local id data

3 bytes

b) Type = 2 (TTY single terminal)
1 transaction = 1 block

data

c) Type = 4 (termmin and termout processes)

1 transaction = n blocks n>1l
Ccu DEV DATA | o DATA e ETX
i’—"‘\r—‘\——-v——’
1 byte 1 byte 1 byte

ref. [4]

2.1.5

Multiplexing 2.1. r.

TEM is able to handle a number of external processes for a mumber
of applications (intermal processes). An external process may not
be included in more than one pool at a time. When an application
sends output to a pool, the link is addressed as part of the
transaction. Depending on the linktype the address information is
stripped off or altered before the transaction is sent to the
device. Correspondingly address information is added to input
before data is delivered to the application.

users APPL 1 APPL 2

pools tpooll tpool? tpooll
Vo] / ‘ @
\ []=

links t1 £2 t1 d1 d2 a3

Figure 1: A TEM Configuration.

In order to equalize differences in speed between the user pro—
cess and the relative slow devices, TEM provides spooling of
input and output. This spooling is done partly in primary store
and partly on backing store. Every link and pool has its own
spool queue with a maximal size which is defined when TEM is

The queues contain all operations not yet performed, i.e. for
links input and output cperations and for pools answers from

An application uses TEM by calling the operations listed in the
next subsections. This is done by means of the send message/wait

answer procedures of the mcnitor, ref. [1].

The operations are divided in the two groups:

1) Control operations.
2) Input/ocutput operations.

The conventions for input and output cperations follow the stan-

dards defined in the monitor, ref. [1], while the control oper-
ations are designed especially for TEM.

2.1.6 Spooling
installed.
input operations.
2,2 TEM Operations
2.2.1

Control Operations

Operations concerning pools are activated by sending a message to

TEM while link cperations are sent to a pseudo process with the

same name as the corresponding pool. This pool is made by TEM
when the pool is created.

The first word of the answer from a control operation contains a

status mask, indicating the result of the operation. The status

2-] L]

2.2

o

2.2.1

word is only defined when the result of the answer is normal (WO .

= 1). Dumy answers are delivered in the following situation:

Result = 3 unintelligible message

Interpretation of the status bits is defined below:

“bit meaning
13 pocl exists or pseudoprocess does not exist and can-—
not be created
14 link exists
15 pool does not exist
17 no free pool
18 no free link .
19 terminal in existing link
20 terminal not in existing link
21 terminal unknown
22 -
23 -
2.2.1.1 Create Pool 2.2.1.,1
message : 90 0 receiver TEM
+ 2:
+ 4 .
+ 6
+ 8
H NAME
+14

The operation creates a terminal pool with the sending process as

exclusive user. A pseudoprocess with the name specified in mes—

sage (8:15) is created. It is legal to define TEM as the pool. In

this case no pseudoprocess is created, but TEM itself will act as

receiver of messages concerning the pool.

N.B. In connection with the creation TEM sends a message with

operation code (halfword 0) equal to -2, Answer cn this mes-
sage will cause the same actions as a call of the operation

remove pool.

Pogssible status bits: 13, 17.

2.2.1.2 Remove Pool
message . 92 0 receiver TEM
+ 2:
+ 4
+ 6
+ 8
: NAME
+14
The cperation removes the terminal pool.
Possible status bits: 15,
2.2.1.3 Lookup Pool
message 94 0 receiver TEM
+ 23 '
+ 4
+ 6
+ 8
: NAME
+14

If the sender is user of the pool the answer contains:

2.2.1.2

2.2.1.3

answer : status

+ 2z
+ 4
+ 6
+ 8
+10 block full

+12 halfword free

+14

'block full' is the number of input blocks spooled for the pool,

i.e. the mmber of blocks read by TEM, but not delivered to the

user yet. 'halfword free' is the mumber of halfwords left for

further input spooling. .
2,2.1.3

Possible status bits: 15.

2.2.1.4 Create Link 2.2.1.4
message @ 100 type receiver terminal
+ 23 local id. B pool
+ 4: ext. proc.
descr. adr.
+ 6: bufs timer
+ 8: mask subst. .

The cperation includes a new terminal in a terminal pool. The lo-
cal name of the link is stated in message (2:3). The terminal is
identified by the process description address (message (4:5)).

'bufs’' (message (6)) is the maximal mmber of spooled indata

transactions. When the user asks for input, a mmber of input

Operations are initiated on all links with fewer input transac—

tions spooled than defined by 'bufs’'.

‘timers' (message (7)) states the maximum mmber of timer pe-
ricds, which may pass before the application is answered. I.e. .

the user may extend the timerperiod for the device n times rela-
tive to standard, by setting message (7) to n-1.

. 'mask' and 'subst' are used in connection with format 8000 links
only.

Explanation is given below.

Input and ocutput operations are queued for the link and executed

in order of arrival.

Depending on the link type input and ocutput are handled as de-

scribed in the following:

1) Type = 0 (TTY multiterminal)

a)

b)

Output.

A transaction matches the link if the first 3 bytes (24
bits) of the transaction equals the local identification of
the link.

Before the transaction is sent to the device, the address
information is stripped off.

Input.

The input transaction sent to the user is the local iden-
tification (3 bytes) concatenated with the block received
from the device. If the data is not terminated with the ISO
character NL (value = 10), 3 bytes are inserted at the end
of the transaction: NL NUL NUL.

2) Type = 2 (TTY single terminal)

Input and output are spooled in TEM and routed between the
user and the external process representing the device
without modification of data.

3) Type = 4 (format 8000 termin and

a)

termout)
Output.
A transaction matches the link if:
(extend CU) and mask = subst and mask

Before the transaction is sent to the device the (U byte is
changed:
CUs:= CU and (-,mask)

b) Input. .
The CU-byte is modified, before the transaction is sent to

the users:

CU:= CU or {(mask and subst) extract 8.

One should notice, that while the length of CUJ is 8 bits,
mask and subst are 12 bits, and when searching for the link
in connection with output operations, 12 bits are compared,
as (U is extended with 4 bits egual to 0.

The purpose of this is the following:

If a pair of links (termin, termout) is connected to the

same pool, the value of (U received by the application fram

the input link ought to be returned unchanged on the cutput .
link. I.e. that mask (4:11) and subst (4:11) for these

links should be equal.

To ensure that the output cperations are really sent on to
the output link, one must in the call of the create link
operation for the termin process put (mask (0:3 and subst
(0:3)) < 0 and for the termout process put (mask (0:3) and
subst (0:3)) = 0.

For the termout link 'bufs' must be equal to 0, while typi-
cally the termin link should be multibuffered.

It is the responsibility of the user to ensure that the addres-
sing of cutput is unambiguous. This should ke noticed particu-

larly if links of different types are connected to the same
pool.

Possible status bits: 14, 15, 18, 19, 21.

11

2.2.1.5 Remove Link 2.2,1.5

message : 102 0/1 receiver terminal

+ 2: localid pool

The operation removes a terminal link from a pool. The removal
may be performed soft or hard, i.e. activities in progress may be
terminated or suspended before the removal. In the first case
message (1) must equal 0, in the second 1. The answer on a soft
. removal is given when the operation is initiated and tells thus
nothing about the termination of the last activity on the link.

Posgible status bits: 15, 16.

2.2.1.6 Lookup Link 2.2.1.6

message : 104 0 receiver terminal

+ 2: localid pool

If the link is known the answer will be:

answer : status = 0
+ 2: localid
+ 4z term.proc.descr.adr.
+ 6: bufs timers
+ 8: pool
+10: blocks full
+12: halfwords free

12

Message (2:7) contains the same information as the corresponding .
fields in the create link message.

Message (8:9) is the process description address of the pseudo

process corresponding to the pool.

Message (10:11) contains the number of operations in queue for
the link. I.e. the number of input and output coperations sent to
the link, but not yet executed.

Message (12:13) tells whether the pool queue to the link is full

or not. If the value is 0 further input/output cperations will be

delayed until some of the activities in progress to the device

has been completed. .

Possible status bits: 15, 16.

2.2.1.7 Lookup Terminal 2.2.1.7
message 106 0 receiver TEM
+ 2:
+ 4 term.proc.descr.adr.

Answer as for lookup link.
Possible status bits: 16, 19, 21,

If bit 19=1, the terminal is in a link, but the corresponding

peol is created by another user.

13

2.2.2 Input/Cutput Operations 2.2.2

The input/output operations of TEM are similar to the operations
known fram the external processes in the monitor ref. [1], ref.
[5], ref. [6].

The following functions have been implemented:

1) Sense.
2) Sense ready.
3) Input.
4) Output,

This means that an application may use the basic I/0O-system of
the file processor or the high level languages.

In addition a few cperations to control the multiplexing and
spooling in TEM is introduced:

1) simulate input.
2) Start input.

The formats for answers are as defined in ref. [1] for external

processes.

TEM generates dummy results (WO <> 1) in the following situ-

ations:

2: Application not user of the pool.
3: Message unintelligible.
4: Link not known in pool.

2.2.2.1 Sense 2.2,2.1

message 0 0 receiver terminal pool
+ 2:
+ 4:

2.2.2.2 Sense Ready

message :

+ 2z
+ 4z

First input operations

receiver terminal pool

0 2
status

0

0

are initiated as described in 2.2.1.4,

Then an answer from an external process is waited for. If data is

ready the sense ready cperation is answered with status = 0. Else

the cperation is returned with the answer delivered by the exter-

nal process.

2.2.2.3 Input

message
+ 2:

+ 4:

+14:

receiver terminal pool

3 mode
first adr.
last adr.

2.2,2.2

2.2.2.3

15

answer status
+ 2: hal fwords
+ 4: no. of chars.
+14:

First input cperations are initiated as described in 2.2.1.4. Se-
condly an answer from same external process in the pool is waited
for. The answer including the indata delivered is returned to the
user, perhaps modified with address information.

Because input may be initiated asynchronous with the input mes-

sage from the user, scme comments may be necessary.

The mode field in the first input operation defines the input
mode in the whole lifetime of the pool. Correspondingly, the in—
data buffer that the application makes available, may be toco
small for the block received from an external process. Normally
TEM delivers data with the original blocking, but in this case
indata is divided into smaller portions.

The first time the indata stream runs empty after a sense ready
operation has been called, the input operation is answered imme-
diately with zero answer. This means that the user may chose
freely between two different input protocols, namely the tradi-
ticnal protocol and the sense ready protocol.

Traditional protocol:

—
input

answer input (data)

Sense ready protocol: "’

sense ready

answer sense ready (timer status)

and when data occurs:

answer sense ready

__answer input (data)

and when there is not more data:

answer input (number of bytes = 0)

2.2.,2.4 OQutput 2.2.2.4
message @ 5 |mode receiver terminal pool
+ 23 first adr.
+ 4: last adr.

+14: .

answer : status = 0
+ 2: halfwords
+ 4 no. of chars.

If the link exists, the result of the operation will be normal
and status = 0. As the operation is taken over by TEM asynchron-

ous with the working of the device, hard errors are not reported
to the application.

17

The spooling facilities of TEM means that the pool will act as a
(very) fast device. Only if the spool queue is full, the answer
will be delayed by the working of the device.

The largest blocksize accepted by TEM is 450 halfwords. This
number is independent of the trimming of TEM.

9 mode

receiver terminalpcol

first adr.

last adr.

status = 0

halfivords

no. of chars.

This operation is defined for links of type O only. The link ad-

dressed in the data area referenced by message (2:3) and message

(4:5) is removed and created again. The data area specified will
be handled by TEM in the same way as indata from the device. I.e.
it will be delivered as data to the user process in a later input

2.2.2.5 Simulate Input
message
+ 2z
+ 4:
+14:
answer s
. operation.
2.2.2.6 Start Input

message
+ 2z
+ 4:
+ B2

+14:

110 mode
local id
bufs

2.2.2.5

2.2.2.6

18

answer : status = 0
2: 9]
H 0
+14:

Independent of the normal input spooling 'bufs' input operations
on the link are initiated.

The autamatic activation of input operations as defined in the
creation of the link is not resumed before the number of ocut-
standing transactions becomes less than standard.

19

The operator's tasks in the day to day running of TEM camprise

3. How to handle error situations.

In the following the operating system 's' is implied. If another
operating system is used, commands and messages may be different.

3. OPERATING GUIDE
the following:
1. The start up.
2. Closing down.
3.1 The Start-Up

During start-up the system calculates the optimal set of re—
sources. If TEM is started with more or less resources than ne-
cessary, the cptimal value is displayed as a parent message. If
resources are missing the message is marked with '***' and the
run is terminated at once.

The name of the program to be loaded is 'btem'. Formulas for
camputing the rescurce claims are given in subsection 4.4.2.

Example 1:
Output fram the computer in this and the following examples are

written with capital letters, while input from the operator is
indicated by small letter.

ATT s

new tem size 10000 buf 30 area 4
READY

ATT s

prog btem base -8388607 8388605 run
READY

MESSAGE TEM VERSION: 780928 0
MESSAGE TEM SIZE 9320

MESSAGE TEM *** AREA 6

MESSAGE TEM BUF 20

PAUSE TEM *** INIT TROUELES

3.1

20

ATT s

remove area 6 buf 20 run
READY

MESSAGE TEM VERSION: 780928 O
MESSAGE TEM SIZE 9320
MESSAGE TEM STARTED

TEM is started with too few area processes. Therefore the run is
terminated. The optimal values of coresize, area processes and
message buffers are displayed. Then the TEM process is removed
and started again with a reasonably set of resources, but the

coresize is still larger than necessary.
Syntax of a start up message:

message bl

tem <nessage text>
pause <sp> <sp> <sp>

List of start up message texts

version:<i> <i> the date of the TEM release and the
date of options are displayed.

size <i> optimal value of coresize.

area <i> opticml value of area processes.

buf <> optimal value of message buffers.

<name of area> <i> too few resources for creating work
areas.

started tem is running.

init troubles resources missing, execution terminated.

21

3.2 Closing the System 3.2

There exists no close command in TEM. Closing down after a normal

run is done by simply removing the process as seen below:

ATT s
pProc tem remove
READY

3.3 How to Handle Error Situations 3.3

During the run the system may break down in one of the following

ways:

1. A program error may cause the system to break down, and the
following error message will be printed on the terminal
fraom where the system was started:

PRUSE TEM *** FAULT

2. The system dies without printing a message. Then the pro-
cess cught to be 'breaked' in order to have the last por-
tion of testoutput generated, written on the testarea:

ATT s
proc tem break
READY

3. A hard error in a work area mekes continued running impos—
sible and the system stops after printing the message:
PAUSE TEM STATUS <status word> <area>

In all error situations cne should, if the system has been trim—
med with 'testoutput' move this from the test area TEMIEST to a
work area, from which the TRACE-program can print it for further

analyses.

22

The TRACE program is autamatically génerated by the installation .
of the system. The program is called as follows:

trace <testarea> . <segments>

<testarea> is the name of the area, from which the testoutput is
to be printed (the work area the testoutput has been moved to, or
the test area itself).

<segments> are the maximm nutber of segments to be analyzed.
TRACE always finds the latest generated segments, and counts the
number of segments backwards from there. <segments>» are autcmati-

cally cut to the size of the area, if samething larger has been
specified. .

Example 2:

An s-run; testoutput is printed before a restart.

ATT s

proc tem remove new tem run

READY

o 1p

trace temtest.10000 (everything is printed)

oc

ATT s

proc tem remove .

- (2 new start-up)

Example 3:
A BOSS-run; the testoutput has been moved to the area TESTCOPY.

10 o pip

20 trace testcopy.10000 (everything is printed)
30oc

40 convert pip

50 finis

go

23

4. SYSTEM GENERATION 4.
TEM is distributed as a magnetic tape containing the files below:

0: label

1: temhelp (is used as an auxiliary file when generating
etc.; contains the files "temtrim", "temload",
"temsave" and "temlist").

2: tramol (computer for compilation of “ttem").

3: ttem (system program text). e s

4: ttrace (program for analyzing of testoutput).

5: ttemtest (text file containing ALGOL procedures and
programs for testing the system. The binary
programs are not installed in the standard
generation of the system).

4.1 Loading the System fram Tape to Backing Storage 4.]
The system is loaded by the file temload. If the system tape is
called mttem the backing storage areas might be generated as seen
below:

temdoc = set 1 <discname>

; specify bs—document; default = disc

tamhelp = set mto mttem O 1

1 temhelp

i temload

The system files will be permanented with user scope.
4.2

Saving the System from Backing Storage to Tape 4.2

New system tapes are generated by the file temsave. If the tape
is already labelled mttem the generation is done as follows:

temdoc = set mto mttem
i temhelp

i temsave

24

4,3 Installation 4.3 .

TEM may be installed on the RC4000 and the RCB000 series compu—

ters.

In order to ensure a high degree of flexibility and a good util-
ization of hardware, the system staff may adapt the system.

Before the system is trimmed one has to consider the following

gquantities:
"options" At start up a constant showing the date of the TEM
system will be listed together with this constant.
At each trimming the constant should be changed to .
show the date of the trimming (e.g. 781101). The
standard value is 0 indicating that standard op—
tions are used.
"theount" The maximal number of terminals running under TEM
at the same time.
"phcount" The maximal nmumber of terminal pools.
"phspoolsegm”" Number of spoolsegments per terminal pool. I.e.
the maximal size of the queue used to spool input
to the pool. .
"thspoolsegm" Number of spoolsegment per terminal link. I.e. the

maximal size of the queue used to spool operations
to a terminal.

"thbufsize" Number of spoolbuffers in core (segment buffers).
If this trim parameter is made larger, the number
of transports to and from backing storage in con-—
nection with spooling of data between the appli-
cations and the terminals will decrease. The ex-

pense will be 512 halfwords in primary store pr.
buffer.

25

"testsegments" The number of testoutput segments. If this rumber

is zero no testoutput is generated. Performance is
higher if testoutput is suspended, but the possi-
bilities for discovering system errors will be
minimal. If TEM is running together with systems
also producing testoutput (e.g. S0S) the need for
testoutput will be less and the generation of
testoutput may be stopped.

The system trimming is done by means of the file temtrim (see
appendix C), which contains a set of standard variables plus

camnents for generating the trimmed version of the program.

Installation may be done after the files have been 'loaded to
disc' (section 4.1) or direct from tape.

a) Installation fram tape.

If the system tape is called mttem, the installation is
performed as shown below:

temdoc = set 1 <discname> ; default = disc
temhelp = set mto mttem O 1
i temhelp

xtrim = edit temtrim

EDIT COMMANDS
i xtrim

b) Installation from backing storage.
temdoc = set 1 <discname> ; default = disc
i temhelp

xtrim = edit temtrim

_ EDIT COMMANDS
i xtrim

4.4

Example 4:
The installation is done from the tape mt123456, and the trim

parameters 'thcoount' and 'testsegments' are changed to 10 and
0 respectively.

temdoc = set 1 disc 2
tarhelp = set mto mt123456 0O 1
i temhelp

xtrim = edit temtrim

1./thcount/, x/15/10/, (10 active terminals)
1./testsegments/, r/42/0/, (suspend testoutput)
£

i xtrim

Resource Demands

4.4.1

When Installing

The process used for installation may run with standard resources
except that:

a) Coresize must be >= 50000 halfwords, 60000 reascnable.

b) User scope must equal system scope (-8388607: 8388605). If
this is not the case, the scope of the files btem and trace
must be changed by hand to system scope after the installa-
tion.

¢) At the first installation, permanent backing storage re—

sources must be available for the above menticned files.

4.4

4.4,1

4‘4.2

27

When Running

In the go through below the resource demands of TEM when running
are listed. As it may be seen from the formulas the demands vary
much depending on the TEM trimming.

Primary store (halfwords):

Standard consumption approx: 5400

Terminal pool descriptions: phcount * 74

Terminal link descriptions thcount (100 + termbufsize)
Spoolbuffer spoolbus * 516

Test buffer (optional) 512

Message buffers:

Constant consumption 2
pool consumption phoount x 2
Link consumption theount

Area processes:
Constant consumption 2

Pool consumption phcount

Backing storage segments:

Testarea testsegments

Spool area phoount * (phspool segm +1) +
theount * (thspool segm +1)

Example 5:
If the trim parameters of TEM are set 10

options:= 781001,
theount = 10,
phcount:= 4,
phspoolsegm:= 8,
thspoolsegm:= 8,
spoolbus:= 2,

testsegments:= 42,

4.4.2

28

the resource demands will be

Primary store: 9280
Message buffers: 20
Area processes: 6

Backing storage segments: 168

REFERENCES

[1]

(2]

[3]

(4]

[5]

(6]

RCSL No 31-D476:
Multiprogramming System

RCSL: No 31-D300:

Monitor 3

RCSI. No 31-D477:
RCB000 Monitor, Part 2, Reference Manual

RCSL No 52-AR640:

Format 8000 - A transaction Oriented System General
Description. Revision a

BRI, 22.2.78
Format 8000 termin

BEL 780414
Format 8000 termout

30

PROGRAM EXAMPLES B.

The examples in this appendix illustrate how the facilities of
TEM are used by an application program written in ALGOL.

Example 6: is a set of procedures, which makes it simple to call
the control operations of TEM.

Example 7: is a program communicating with a rumber of terminals.
The terminals are defined at start up. A transaction is read fram
a terminal. The indata is processed and an answer is printed. As

the example should illustrate the use of TEM cnly, the processing
of a transaction is very simple: The rnuumber of lines received

from the terminal is counted, and the input line will be echoed .
on the terminal.

Example 8: is also a multiterminal program. But in this case the
terminals are logged in and logged out dynamically. A terminal is
logged in when the attention button on the keyboard is pressed,
and logged out, after an '*' has been written on the terminal.
The example illustrates the use of the sense ready cperation. The
program handles transactions as in example 7. But when the indata
stream runs empty the reading is interrupted by the block pro-
cedure. Processing is continued in the main loop of the program.
This loop treats events from the monitor. In this simple exanple
only two kinds of events are of interest: attention messages (log

in) and answer an a sense ready operation. .

Example 9: is a utility program, which creates terminal pools and
terminal links. Such a program may be of interest, e.g. when an
application, where the program has communicated with the external
processes itself, is re-layed to use TEM to interface the de—
vices. The utility program is called so that the pools and the
links exist when the application program is started.

31

Example 63

INTEGER PROCEDURE CREATEPOUL(ZIS
TONE 23
HEGIN
INTEGER I:
INTEGEK ARRAY 21AC1:2N),STA(1212}3:
ZONF ITEMCT121,STOERRORY S
OPEN(ZTEM 0 <3TFMI>,1) 3
GETZONES(ZL21R)7
GETSHAREG(ZITEM,81A-1)3
SIAC4) =90 SHIFT 122
FOR It30 STEP 1 UNTIL 3 00 SEA(H+I)s=ZTA(2¢1);
SETSHARES(ZTEMS51A,113
MONTIOR(16-2TEMLT,51A) 7
CREATFEPOOLI®IF MONTITOR(18,2TEM,1,518) <> 1 THEHN =1 ELSE S1Al1):
CLUSE(ZTEMSTHUED S
EnWD CHEATEPOOLS

INTEGEN PRUCEDURE REMQVERPOOL(Z)S
ZONE 15
BEGIN
INTEGER [
INTEGER ARRAY ZIA(1:20),SIa¢1:12):
2ONE ZTFMU1,1.5TDERROR)
OPENCZIEM,UsSITEME2 1)) 5
GETIUNESLZ,ZIA)
GETSHAKREO(ZTEA,S51A-1)2
STaAC4) =92 SHIFT 12}
FOR L:=0 STEP § uUnNTIL 3 D0 SIACR+I):=ZTA(2+1);
SETSHARES(ZTEM514,1)5
MONITORC1622TEM,1,514)
KEMUVEROQLI=LF MUNITOR(CIB,2ZTEM,1,514) <> 1 THES =1 ELSE STA(1);
CLOSE(ZTEM,TRUF};
END REMOVEPOOL S

IMTEGER PROUCEDUWE CREATELINK(Z#TYPE2LD PROCREFsBUFS,TIMERS,
mASk SULSTY S
20hE I32
INTEGER TYPE#ID PROCREF,BUFS,TIMERS,MASKSSURSTS
HEGIA
INTEWER T3
INTEGER ARRAY ZTA(TIJU).STACT212);
LONG ARRAY aER(132):
LONE ZTEM{T1.T,STDERRORYS
GETZOHEC(Z-21A) 2
ARPR(T)i=TACe): ARM{T)t=AKNC(T) ShIET 24 40D 2IAC3):
ARH(ZY:1=2TAC4); A%n{2)23ARR(z) SHIFT 24 ADD ZIA(S):
T:=1:
UPEHGZTEMAUSTHIWG ARRCINCREASE(L))U):
GETSHARES(ITEM,SIfs1)3
STACLY:3=1UL SALIFT 12 ALO TYPES
sTa(S)s=l03
SIACAY :=PROCREF
SIACT)3=8ULS SHIFT 12 ADD TIMERSS
SIA(8):= mASK SHLET 12 ADD SudST:
SETSHAREG(ZTEM,S5Ta.1)2
MONETOR(TS,ZTEMT12514)7
CREATELINK $=IF ®OMITOR(1B,ZTEM,1,51A) <> 1 THEN =1 ELSE SIA(1);
CLOSE(ZTEmMsTRUE):
End CREATELTNKS

INTEGER PROCFDURE RAEMOVELINK(Z,ID,IMFEDLIATE):
ZaNE Z3:
INITEGER 1D5
BOOLEAN IMMEDIATES
REGIN
INTEGER I3
INTEGER ARRAY 21AC1:20),5IA(1:92);
LONG ARRAY AWRR(122)3
2ONME ITEM(1,1,5TOERROR);
GETZONEG(Z,21A08
ARRCTYe=ITA(2)3 AMR(1):=ARR(1) SWIFT 24 ADD ZLA(3):
ARR(2):=21A04) ARRI2) 1=AQR(2) ShIFT 24 ADD ZIAa(5);
Iim1;
OPEN(ITEM,U,STRING AHR(INCREASE(I))0);
GETSHAREA(ZTEM,S[A-1)¢
SIACL)2®102 SHIFT 12 +(IF IMMEDIATE THEN 1 ELSE L)}
SIA(S)i=]D;
SETSHAREG(ZTEM STA-1)3
MONITOR{162ZTEM1251A)3
REMOVELINKI=IF MOMITOR(I1B,2TEM,1,5IA) > 1 THEW =1 ELSE SIAC1):
END REMOVELINK;

INTEGER PHOCEOURE TERMINALID(TERMINALNUMHER): '

INTEGEH TERMINALNUMRERS

TERMINALID;m ({TERMINALNUMBER/ /10 ¢ 48) SHIFY B ADO
(TERMINALNUMBER MOD 10) + &R) SHIFT & ADD 327

32

Example 7:

wwwr | TTEMTEST waw

A TERTPROGRAM FOR SIMPEL TESTING OF THE TEM SYSTEM

e Se ba Be W W

PROGRAM CALL:

THE PROGRAM ACTS Llke THIS:

CREATE TERmMINAL POOL

CREATE LIWKS JO ALL TERMIMALS SPECIFIED IN PROGRAM CALL
LOaR

READ AN InNPUT LINE FHROM A COMNECTED TERMINAL

(THIS TNPUT LINE STARTS WITH A TERMIMAL NUMAER)

TNCREASFE LINECOUNT(TERMINAL NUMABER)

wHITE TEHMINAL [DENTIFICATION

whITE TEWRMINAL MUMAER

wR1TE LINE COUNT

WRITE CONTEDT OF IwPUT LINk

G0T0 LOOP

Mma Ba N Wa We We e Be Be We %y 85 Be Se e

BEGIN
ZONE Z(26:1,5TOERROR);

TEMTEST TERM <TERMINALNAME=1> CTERMINALNAME=2>, .o, <TEHRMINALNAME=N>

INTEGER [+ACTIVETERMINALS 4MAXTERMINALS oCURRTERMINMAL RESULTTERMINALREF

REAL AWARAY ARR(1:2):

A1L.6OL COPY.1: <= COPY TEM™ PROCEDLURES x>

<w CHEATE TERMIwaL RFIOL >

OPEN(Z 8,CiTEMER)2
CREATFPOOLKZ)
MAXTERMINALSs=ACTIVETERMINALS 1 =04

€% COMNECT ALL TERMINALS SPECIFTIED IN PROGRAM CALL u>

bEGIN
INTEGER 4a
INTEGER ARRAY La{1:idd:
IONE DUMMY(1-1,5TOERRUK)
li=d;
FOR 1:=1 wHlibk SYSTE(4,f.ARw) = ¥ SHIFT 12 + 10 DO
HEGIN
MAKTERMINALSs=mMAXTERMINALS+1:
Jrsi:
OFEM{DUMMY, (1,STRING ARR{INCREASECII)A0);
TEXAINALREFtamONITOR(4sNUMNMY 0, TA)
RESULTI=CReATELINK(Z,
LaTERMINALTOCMANTERMINALS) +TERMINALREF 150005033
TF HESUIT <> O THEW
WRITE(UUT s €2 CTO>CHEATELINK (230D TERMINALREF <) = s3,RESULT)
ACTIVETERMINALS e ACTIVETERMINAL S+
Ii=1¢1;
CLOSE(DuMMY . TRUE) §
EnDZ
ENDS
1F ACTIVETERMINALS <€ 1 THFN GOTO STOK;

BEGIN
INTEGFR Isd;
INTEGER ARKAY LINEBUF(T$TUU) »LINECULINT(] tMAXTERRINALS)Y S
FOr L:m1 STEP 1 uUNMTTL MAXTERMINALS 00 LINECOUNT(I):=0;

<x READ A LINE AND DISPLAY IT ON CORRESPONDING TEKMINAL >

LOUP:
PEADCZ,CURRTERMINGL) ;
le=1;
FOR 1:m] WwHILE REAOCHAR(Z,LINEBUF(I}) <> & 00 l:=l+1:
SETPOSITIONCZ,0.012
LINECOUNTI(CURRTERMINAL) :mL [INECUUNT(CURRTERMINAL)+1;
WHITE(Z,<<2D>,CUHRTERMINAL <3 TERM & :»,<<Z0>,CURRTERMINAL .
<3 LINE = $3,€<DOD2LINECOUNT(CURRTERMINAL) »<22 22)i
FOR Jes] STEP 1 uMTIL I D0 QUTLHAR{ZALINEBUF(J))S
[F LIMEBUF(1) = &2 THEN
BEGIN <® A STAR N FIRST POSITION MEANS LOGOUT >
MHITECZ,<ITERMINAL LOGGED OUT<IUDI3);
SETPOSTITIONCZ,dsb)i
REMOVELINK (Zs TERMINALIOCCURRTERMINAL) S FALSE) S
ACTIVETERMIMALSSSACTIVETERMINALS=1S
ENDZ

SETPOSITIONCL.U,U)2
IF ACTIVETERMINALS > U THEN GOTO LOOP;
ENDS

iTOPg
REMOVEPOOLIZ) T

ELSF

33

Example 8:

wxx TEM SENSE KEADY TEST aww

A TESTPROGRARM FOR SIMPEL TeSTIhe OF THE TEM SYSTEM

PROGRAM CALL:
<PROGRAMHNANED

THE PROGRAF® ACTS LIKE FHLS:

CREATF TERMINAL POOL
Loor
WALT ATTEMTION OR IWNPUT READY
IF aTT THFN LOGIN GOTO LOOF
RFAD LINE FROM JERMINAL
wHLlTE [FWmIhAL WUMBER AND LINE MUMRER
ECHO InDATA
IF FTRST CHAR = # THEN LOGOUT
GUTO LOOP

%o Ma ME ME B Wa B S W8 W A e

BEGLM
[ATEGER mMAXTENATMALS;

ALGUL COPY.1; <% COPY TEM PROCEDURES »)>

MAXTVERMInALS = 1UJ

BFGIN
HOOLEAN ARRAY PASSIVETFRM{T1:mAXTERMINALS)S
1NTEGER ANRAY LIMEBUF(I:1UD),LINECOUNT(I s®AXTERMINALS)
ZONE 2IMN(26,1,E4DOFDATA) A ZOUT(24,1,STRERROR) 5
SENSEREADY., ZHELP(1,1-,5TDERKOR) S
INTFGEX [oJ ACTIVETERMINALS »CURRYERMINALHESULT,
TERMTUALWEF »BUFFERBASES
LOOLFA~N POCLSENSEN
THTEGER ARRAY IA(1:2u)7

PROCEDURE ENDOFDATA(Z,S.8)}
LZONE 22
IMTEGER S, HZ
BEGIN
LF B=0 AmMD S=2 THEN
GOTO CERTRALWALTS
EbQ;

<x CREATE TERMINAL POOL #>

OPENCZIN,Be<sTEMEID-2) 3

UPFN(20UT 8,43 TEMI>,0) 3

CREATEPOUL(ZOUT)YS

OPENCZHELP,U-<3s2,0);

OPENCSENSEREADY0,<C2TEM>.0)3

GETSHARFA(SENSEREAOY.LA,1);

TA(Ads® 0 SKIFT 12 # 27 <% PREPARE SENSE READY OPERATION >
SETSHARESL(SENSEREADY ,TA#1)7

ACTIVETERMINALS:® u;

BUFFERAASEz= N2

POOLSEMNSED:® FALSES

FOR Ig= 1 STEP 1 UNTIL MAXTERMINALS DO PASSIVETERM(I):s TRUE:

{to be continued)

34

(continued)

CENTHALWLATT:
1F sCTIVETERMINALSDU AND =,PO0LSENNED [HEN
BEGIN
MUNTTOR{14) SENDMESSAGE;(SENSEREADY,1.18);
FOOLSEnSED = TRUES
ENO;
Lz= RUFFERKASFS

RESULT:I= WMONITORCP4)4ALTEVENT s{ZRELPoLoTA);

IF #ESULT=uU THEN
FEGIN €% (ETTENTION) MESSAGE AwPIVeD 43>
LE LAGIY<>(THEM
HEGIN
HUFFEWRAASE:= [a
GQOTO CENTHALWALT:
Enyg
AONITORP(26) kT EVENTICIHELPTI.LA);
ITaiwls= 17
MIMITORCEZ) SEND ANSWERI(IWELP L TA)S
TERMIMALHEF: = mMUNLIIOR(L) GET OESCRIPTION: (ZHELP,O-TA):
FOr T:= mAATERMIwALS STFEP =1 UNTLIL 1 DO
[F PASSIVETENR™(L) THEN CURRTEeRMINAL®= [; <x FIND FREE TERMINAL NO 2>
HESUI Te=CHEATELINK(ZOUT»Us TERMINALID(CURRTERMINAL) S TERMINALREF ,
10,2067 ,00007
LE ®ESULT<>u THEH
BEGIN
ARTTE(OUT» < CTUBCREATELLINKL:24<<00>, TERMINALREF»<2) = 12,
KESULT <scTu>>)
SFTRPOSTITIONI{OUT 20007
Erp
ELSE
BEGIN
WRITECLOUT2€<L0>,CURRTERFILALAFALSE ADD 3241
<CiTERMIAAL LOGGEE [n<1bid3d);
SETFASITINNCZINUT 02003
ACTLvETERmINALS 23 ACTIVETenmInNaLS+T;
FPASSIVETENWMICURKTERMINAL) 8= FALSESZ
LINECOLMTCCURRTERMINAL) 2 UJ
EWf S
GOTU CFuiRaLWALT;
Eny
ELSE
BEGIM <* ANSwEW (SENSE READY) %>
MONTTORLTBIMATT ANSWEHILSENSERFALY 21,1403
POULSENSED s FALSES

RFPEAT
HEAD(ZIn,CURRTEKAINALYZ <* EnD OF DATA HANDLED HY dLOCKPROCEDURE =>
Li= 13
FOex Ti= I wHlle READCHARCZINSLINERUF(L)) <>8 00 I:t= [+#1;
SETPOSITIUNMEZ TN, U007
LINECUUNTSCCHRRTERMEINAL) e LINECOUNT(CURRTERMINAL)®YZ
wRITHF{IO0UT << U2, CUHRTERMINAL.FALSE ADD 3251,
<: TERM 3 13,CURKTERMINALS,
€1 LINE = 32,4<DDD>,LIMNECOUNT(CURKTERMINALY #<23 $2) 3
FOR Ji= 1 STEP 1 UNTLIL [0L OUTCHAR(ZOUT,LINESBUF(J)]Z
[F LINERUF(T) = 42 THEN
dEGIN <% A STAR IN FIRST PUSITION MEANS LOGOUT =>
WHITECZOUT,<oTERMINAL LOGGED QUTLIO>E>):
SETPOSITIONCLQUT»UL0) 3
HEMOYVEL INCC20UT TERMINALLOCCURRTERMINALY »FALSED S
ACTIVEIERMINALS:= ACTLVETERMINALS=1;
PASSIVETERM(CURRTERMINAL):= THUE;
EHD
ELSE SETPOSITION{ZUUT.0-uld;
UnTIL ACTIVETERMINALSaU;
END
REMOVEPOOLCZOUT);
CLOSECZINSTRUED)S CLOSE(ZUUT,TRUE):
EMDS
END

35

Example 9:

wunnrwenwar TEM TeST CHEATE POOL AND CREATE LINK mesawmamwwdnn

PRUGRAM CALL:
SPROGRAMNAMED <PNDOLNAME>(,<TYPE>,<LOCID> <PROCESS NAME>.<BUFS>,
STIMERS? ;<MASK>,<5UBST>) Q2N

CPOOLNAMED »<LOCLO>,<PROCESS NAMEDS:m <TEXT>
KTYPEDP s CHUFS s CTIMERSD) <MASKD o <SUBSTY> 228 <INTEGERD

THE PROGRAM CREATES A TERMIWNAL WITH THE NAME <POOLNAME>., FOR EVERY
SET OF Link PARAMETERS A TEwMINAL LINK IS CREATED

dEGIN
ALGOL COPY,1i <u COPY TEM CONTROL PROCEDUMES =>

INTEGER [, Js RESULT,
TYPEs, LuCl0, TERMINALREF, BUFS.TIMERS, MASK, SUAST;
INTEGER AnRAY Ta{1:20):
REAL ARRAY ARRCTIzE):
LONE 24 DUMMY(1,1.5TDERROR);

IF SYSTEM(L, 1, AuR)IC2G SHIET 12¢10 THEN SYSTEM(9.1.<3PARAMID);
I;a 13

OPEN(2-ds5TRINGIARKRUINCREASECID DY U

RESULTS= ChEATEROUL(2)]

TF RESULT<>) THEN SYSTEM(9,RESULT,<:CRPOOL:>);

OPENCDUMMY ,,Da<ss> U
Tem OF
REPEAT <o GET DUMMY MESSAGE FROM TEM =)
HESULT:= MOMETOR{(26) WARIT EVENTS(DUMMY.T,1A0;
1F RESULT=U THEN
AEGIN
IF IA{1) 8 =2 SHIFT 12 THEN
BELIN
MONITOR{20) GET EVENT:(DUMMY, f,14)3
lim Uz
Enb:
ENDJ
UNTEIL lau;
CLOSECOUmMMY o TWiie)

T:a 1;
FOR L1:= 41 wHILE SYSTEMChoIoARRI®mY SHIFT 12+4 00U
BEGLN
TYPE:m AWR(T1):
LR L]
IF SYSTEM(4aTARKI<PS SHIFT 12+10 THEN SYSTEM(Y,[,<:PAHAMI>);
LOCIWLE® ARKLT) SHLIFT (=24) EXTKRACT 26)
I3 [+%;
IF SYSTEM(h,1,ARRI<DHE SHIFT 12 +10 THEN SYSTEM(Y T <sPARAMI»};
Jim 15
OQPEN{DUMMY suls s T NG CARRCINCREASECID I LU
TERMIMALREF:® mONITOR(4, QUMMY,UoLA)S
CLOSE(OUmMMY , TRUE) ;
Iz=s 1413
[F SYSTEM{4,1,ARRICOE SHIFT 12%4 THEN SYSTEM(D,1,<:PARAM:D);
BUFS2a Auk(1);
Isa Let3
IF SYSTEM(G, [ARK)<> 8 SHIFT 1244 THEN SYSTEM(Y.I,<:PARARAI>)}
TIMERS:®s ARN(1);
L[i= [e1;
IF SYSTEMILsLoAKRIC> 8 SHLFT 1&+4 THEN SYSTEM(Y,T.<iPARAMEID) S
KRASK:®™ awpr(1);
Ii= 1+1;
IF SYSTEMCL4 T Arn)4dd SHIFT 1294 ThEN SYSTEM(9.Ls<iPARAMID)S
SudSTea ARRC(1)}

RESULT:= CHEATELINK(ZATVYPE-LUCLO) TERMINALMEFsBUFSeTIAERS»MASK SUBSET)
TF RESULT<20 THEm SYSTEM{9sRESULT,<3CRLInEI>);
EnD:
IF SYSTEMC4sLloAmm)ed) THEN SYSTEM(&s1,<2PANAMED)
CLOSE(Z-THUED}
END

.JF

sk TEMTRIM mwask

CONTAINS OPTIONS FOKW TRIMMING TEK SYSTEM
AND COMMANDS FOR AUTOMATIC SYSTEM GENERATION FROM THE TEM SYSTEM TAPE

i
H
-
*
H
i

MESSAGE TEM RELEASE 2.0

TEMDUMMYQUT=SET 1

XTE = EwIT TTE™ 7 EDLYT OFTIONS INTO THE PROGRAM TEXT
Lo/R0DY OF INLY/,
Le/==sTRIMSTARTY/,»

Do/s=sTRIMFINLS/, ‘
’; @

! DATE UF OPTIONMS ¢ OPTIONS = Ues
LONUMBER OF ACTLIVE TERMIMALS POTHCOUNT 1= 15,
I nUMBRER OF ACTIVFE TERMIMNAL GHOUPRS ! PHCOUNT s Se
P ONUMRER OF SPOCL SEGHWENTS FOR EACH TERMINAL GROUP ! PHSPOOLSEGM 1= 10,
! NUMRER OF SPOOL SEGMENTS FOR EACH TEKRMIMAL ! THSPOJLSEGM 3= 10,
! SIZE QOF TERMLIMAL RUFFER [M CORE (HALF WORDS) I TERMBUFSIZE := 104,
PONUMHER OF SPOOL SFGMENT BUFFERS IN CURE | SPOOQLJUFS H 2e
ESIZE OF TESTOUTPUT AHEA (SEGMENTS) | TESTSEGMNTS = 42,
I’

fF

0 TEMDUMMYOUT

MODE 1.0

LOOKUR TEMDROC ;7 TF <TEmDUC> NOT PHESENT

IF QK.ND

mMOQE 1.YFS

n ¢

IF taYES

TEMDOC = SET 1 s THEN CHEATE IT PRFFERRARLY 0N DISC

RCMOL = ALGOL TRCHOL H

dTEM = EnTRY 20 TEMOUC .
BTE® = RCAMOL XTEM™ s THRANSLATE TPLIMMED PRUGRAM TEXT

TRACE = FMTRY 40 TeEmMDQC

TRACE = ALGCL TTRACE s GENERATE PROGRAM FOR AMALYSING TESTOUTPUT

SCNPE USER BTEM TRACE
O TEMDUMMYOUT

CLEAK TEMP ATEM RCMOL TEMTRIM TRCMGL TYEM TTRACE TTEMTEST TEMLOAD TEMSAVE.
TEmLIST

0 c
CLEAR TEmP TEMDUmMmYOUT

RETURN LETTER

Terminal Access Module (TEM)
Title: Reference Manual/Operating Guide RCSL No.: 31-D513

A[S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-.

prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:
Thank you

42-1 1288

................. Do not-tear - Fold hereand staple

Affix
postage
here

E ¢REGNECENTRALEN

af 1979 ‘

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

