
e Edition: June 1980
Author: Inge Borch

Edith Rosenberg

Title:

RC8000 Indexed Sequential Files (IsQ)

] 8 REGNECENTRALEN
| af 1979

Keywords:

RC8000, Backing Storage Package, Indexed Sequential File, ALGOL.

Abstract:

This manual describes a specific structure of an indexed sequential

file stored in a backing storage document and a set of RC8000 ALGOL

procedures for processing such a file.

(56 printed pages)

Copyright © 1980, A/S Regnecentraien af 1979

RC Computer A/S

Printed by A/S Regneceniralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contal-

ned herein are subject to change by RC at any time without prior no- @
tice. AC Is not responsible for typographical or arithmetic errors

which may appear in this manuai and shall not be responsible for

any damages caused by reliance on any of the materials presented.42-1 141

FOREWORD

Second edition: RCSL No 31-D 558.

The present paper is a revised edition of RCSL No 55-D 99 (Noven-

ber 1970, Jgrn Jensen) and is updated with changes fram the ver-

sion released in 1979. The changes mainly have consequences for

the definition of the file head and the bucket head and make ver-

sions prior to 1979 incampatible with current ones. Correction

lines in the left margin indicate changes of importance to 'old'

users. The pure extensions to the system are described in RCSL No

31-D 601: Extensions to the Indexed Sequential Files System,

April 1979, Inge Borch.

Acknowledgement: The system was designed and implemented in its

first version by Jgrn Jensen in 1970-71. Few systems have claimed

less maintenance.

Inge Borch

AS Regnecentralen, March 1979

Third edition: RCSL No 31-D 600.

This edition has been retyped but is similar to second edition

apart from typographical corrections. The only important correc-

tion is the expression for canputing “segsperbuckettable" (page

9), which is marked by a double correction line.

Edith Rosenberg

A/S Regnecentralen af 1979, June 1980

iii

TABLE OF CONTENTS PAGE

1.

2.

3.

INTRODUCTION ccceccccesccccevcenseccssncnesssceseneeucs

THE

BACKING STORAGE .eceecncseee emcee ereseneeee

2.1

2.2

2.3

2.4

STRUCTURE OF AN INDEXED-SEQUENTIAL FILE ON THE

RECOLES cecccececcccevcsercvccesrencnsccessesecens

2.1.1 Key FLclds .. ccc cccccecnececccnccnceseseucee

2.1.2 Comparison Rule .ccccccseccrveccveccssceces

2.1.3 Langth Field wo cccccccescencecccescnssevens

2.1.4 Example co.cc cceccscecensecscescesescncues

BLOCK Tables ceccccsccccccccnecccecceccesevcsecees

Bucket Table ...c.ccceesecncncene aeeeenes ete erenen

Pile Head wc cece ccc cc eres nccccccrevscscecscccsece

AN INDEXED-SEQUENTIAL FILE IN THE ZONE BUFFER ...-..0ee

THE

4.1

4.2

4.3

THE

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

CREATION OF A FILE sccccececcccvcvcscncsccscvcscuce

The ALea wees cccnccecncececce Sen ree

The File Head .ccscsccccccccccccccccccscsenssesaes

Choice of Parameters to headfileiceeceesens

PROCESSING OF A FILE .cccccncccevvesevcvsccsvsvcens

OPEN Ng .crecccvecccesccesesseccsenenesscnsseses oe

5.1.1 Example ae rc cece cceenesereneseees

Initializationccccsccccnccsscevccsenscevceess

5.2.1 The Initial Set of Recordssesessseseee

5.2.2 EXAMpPle weesecccceccccccccvenencsscscesnous

SCALE cece ccc r nen e cence c ns ce cre reeeeeeesweeeeseees

Record Processing ..cesescccccccccccvcceess soveees

CLOSING wesecnesccccnccs rer i

ZONE Sate cessccnssscnvacccccssevessesessessssees

RESULES coccccvevccceccescneceescscssseens we necene

5.7.1 vresulti cane ner ence cece verses oeses

5.7.2 Available Record wscecscevecsccevevescssens

5.7.3 Rule for Record-Updatingsseesceceeees

File StatuS ...ccccc ccc cccccn ence eecccccecsesscess

wow On UW WM & F&F WwW DY
14

14

14

14

16

16

17

17

18

18

19

19

20

20

21

21

21

23

23

PAGE

6.

5.9 Error Handling ..cccccecssscccccccccaccccuscvceces

5.9.1 Input-Output ..cccsscccevecccccccuccccccves

5.9.3 Data ELLOVS ccccssseccvecccccccncscsvecences

PROCEDURE SPECIFICATIONS eeeereeneee)

6.1 Integer Procedure buflengthiccccseeeccscees

6.2 Procedure deletereci wo scccscccecccceevcecencccese

6.3 Integer Procedure getparamSi ...ssseeceaucees eevee

G.4 Procedure getreci ceccscsseccccccccccncscsccsecees

6.5 Procedure headfileiccssccccccccnccccvccsceecs

6.5.1 The Zone and the Document0ceeesees

6.5.2 recdescr, nkey, and maxreclength

6.5.2.1 Example ... cesses cceeeveencncn sees

G.5.2.2 ELLOS cccecsessceeecacncccucvcecs

6.6 Procedure initfilei cc cece cence ec ccccccccees

6.7 Procedure initreci .oscsecccccccsccccceccesccccecs

6.8 Procedure insertreci ...cc eee eeceeecccccceacccecs

6.8.1 Insertion Strategycsccsccccccsvcvesee

6.8.1.1 Changing the Strategy

6.8.2 Example eee ee eee eee ee ve recececn eee

6.8.3 Example .. cscs ccecececcccecccsccereveceees

6.9 Procedure nextreci ...ccceccccccccececccececuceces

6.10 Procedure PutreCi ..seecccccccccceeeccctucecececes

6.11 Integer resulti ... cece cece ecccececccecucecuces

6.12 Integer Procedure setparamsi0.. ees ceneeees

6.13 Procedure Setputi .iseeceecsccccecccccccccceeceeee

6.14 Procedure setreadi ...csscccceccscsccenceece a aneee

6.15 Integer Procedure settesti ..cceeeecccucee pe ceceee

6.15.1 EXAMpPlesccecec cece scesevevecececucucs

6.16 Procedure setupdatei acne meee erence enones

6.17 Procedure startfilei

23

23

24

24

25

25

26

26

27

28

28

29

30

30

30

31

32

33

35

35

36

36

36

37

37

38

38

39

40

4]

4]

TABLE OF CONTENTS (continued) PAGE

APPENDICES:

A. SURVEY OF THE PROCEDURES OFFERED BY THE SYSTEM+- 43

A.1 For Creation and Opening of an Indexed-Sequential

FLL] cccccccccccccccccccccncsesccrecsscssecesessce 43

A.2 For Processing an Indexed-Sequential File 43

A.3 Alphabetic List of Alarm CauseSeccecseeeseess 45

B. PARAMETERS IN THE ZONE BUFFER wsccceccoccnccececceseees 46

B.1 Parameter Values to getparamsi ...scsesesccceseses 46

B.2 Parameter Values to S@tparaMsi .eeeececseccevceses 46

. INTRODUCTION

An indexed sequential file is basically a sequential file, stored

on a random access medium, and augmented by one or more levels of

index tables to facilitate random access to records specified by

a key.

With two levels, buckets and blocks, the search for a record with

a specific key proceeds as follows:

A search for the key in the bucket table, which is common for the

whole file, will yield a part of the file, the bucket, in which

to continue the search.

Each bucket is preceded by a block table and a search in this

will yield a part of the bucket, the block, in which the record

may be found.

The inherent characteristics for this type of files are:

1) Fast sequential processing of the whole file, comparable

to a straightforward sequential file.

2) Fast direct access for inspecting and updating of records

specified by their keys.

3) Fast deletion of records.

4) Slow insertion of new records in a file, especially when

the file is pretty full.

This paper describes the RC8000 ALGOL implementation of an

indexed sequential file organization with two levels of index

tables.

The system can be regarded as an extension of the set of the high

level zone procedures and works within the same framework. It

consists of a set of procedures to set up and process an indexed

sequential file in an existing backing storage document which has

been opened in a zone.

STORAGE

The file starts at segment zero of the area and consists of a

file head, a bucket table, and a number of buckets. Each bucket

except the first occupies segsperbuck consecutive segments.

Picture of the file:

file | bucket | first second last

head | table bucket bucket bucket

<—- segsperbuck —>K—segsperbuck—aA — — K—segsperbuck—>

K<-———— At most maxbucks buckets ————>|

The file head and the bucket table occupy an integral number of

segments each, and the first bucket occupies only what is left of

the first segsperbuck segments.

Each bucket consists of a block table, which occupies an integral

number of segments, followed by as many whole blocks as there is
room for in the bucket, leaving a possible rest unused.

Each block occupies segsperblock consecutive segments.

Picture of one bucket:

block first last unused

table block -

<—segsperblock—xA —- — kK—segsperblock—>k-——rest———>}

(maybe 0)

One bucket —

Each block consists of an integral number of records (possibly

zero) stored tightly together in key order starting at the first

byte of the block and leaving a possible rest unused.

2.1

ub(recs) denotes the number of halfwords used for records within

a block (see section 2.1).

Picture of one block:

first | second third last unused

record record record record

<— ub(recs) —_

K One block _—)

The file head describes the structure of record, blocks, and

buckets in a form, which is convenient for the internal logic of

the standard procedures processing the file.

The bucket table forms the first level of index tables and con-

tains one entry for each bucket in the file describing the cur-

rent contents of that bucket.

The block tables, one for each bucket, form the second level of

index tables. The block table for a given bucket contains one

entry for each block in the bucket describing the current con-

tents of that block.

The structure and contents of records, index tables, and the file

head are described below.

Records 2.1

Each record consists of zero or more user fields, a key consist-

ing of an ordered set of key fields, and maybe a length field.

The formats and contents of the user fields are irrelevant to the

system. The key- and length-fields are described by code pieces

in the file head. These descriptions are common for all records

in the file.

2.1.1

2.1.2

The key is an ordered set of one or more key fields the value of

which is unique identification of the record within the file.

Each key field is characterized by a field type, which specifies

the size of the key field and how the value of it is represented,

and a relative position of the field within the record. The total

number of key fields is denoted nkey.

The possible types, the number of halfwords in the corresponding

key fields, and the values by which they are specified to the

system (see section 6.5, head_file i) are:

type: number of halfwords: value:

12-bit signed integer 1

integer 2

long 4

real 4 I+ [+ [+ [+ ere W rN =
The sign of the type is used by the canparison rule, see below.

The relative position of a field is the byte number within the

record of the last byte of the field, the first byte being byte

one.

Comparison Rule 2.1.2

The keys of two records can be canpared, i.e. the relations

key(A) < key(B), key(A) = key(B), and key(A) > key(B) are defined

for two records, A and B. If each key is camposed of nkey

keyfields then the comparison rule is defined by the following

(not pure ALGOL) algorithm which campares the key fields,

arithmetically according to type, two and two:

for i:= 1 step 1 until nkey do

begin

campare:= (keyfield(A,i)-keyfield(B,i))*sign(type(i)); @

if compare <> 0 then i:= nkey

end;

Compare now holds the result of the comparison and we define:

compare < 0 means key(A) < key(B).

compare = 0 means key(A) = key(B).

compare > 0 means key(A) > key(B).

" "

Records are always stored in the file in ascending key order as

defined by the above; i.e. in ascending order of the key field

values for positive types, but in descending order of the key

field values for negative types.

Length Fielde 2.1.3

2.1.4

The length field holds the record length, expressed as number of

double word items, and is, just as a key field, characterized by

a type and a relative position. Only non-negative types are

meaningful for the length field.

If all records in the file have the same length, the length field

may be absent. This is specified to the system by a type value =

zero, in which case we have:

recordlength = maxreclength, see head file i (section 6.5.).

The different fields of a record may overlap each other in any

manner as illustrated in the following example where the length

field and the third key field occupy the same byte.

Example

Let the key~ and length-fields be specified by

type relative position

1. key field 4 10

2. key field -2 2

3. key field -1 5

length field 1 5

2.1.3

2.1.4

halfword number:

1 i 1 L iL 1 10 1 L 4 i 15,

A: | 2137 4 3.71

B: | 1514 3 3.71

K— k2 I — k3 K- kK- kl ->

-dlf ke

kK 3x4 = 12 halfwords _—>

kK—— 4x4 = 16 halfwords _—

2.2 Block Tables 2.2

Each entry in a block table describes one block and consists of

the following three fields:

ub(recs): An integer holding the number of halfwords occupied

by records in the block.

sn(recs): An integer holding the segment number for the first

segment of the block.

sn(recs) may thus be regarded as the identification

of the physical block relative to the file~start.

kp(recs): A composite field consisting of the key fields of a

record packed together in consecutive words and with

a value such that:

kp(recs) > key(records preceding the block) and

kp(recs) <= key(first record in the block).

kp(recs) may thus be regarded as the identification

of the logical block.

The size, in halfwords, of one entry in a block table, or the

bucket table, see below, is given by:

entrysize = 4 + keypartsize, where:

keypartsize = 2 * number of words used for keyfields in a

record.

In the above calculation of keypartsize two successive keyfields

of type + 1 are only counted as one word whereas a single key-

field of type + 1 counts as a whole word. ‘he algorithm is:

keypartsize:= 0;

for i:= 1 step 1 until nkey do

begin

fieldsize:= abs type(i); if fieldsize = 3 then fieldsize := 4;

if fieldsize > 1 then keypartsize:= keypartsize + keypartsize mod 2;

keypartsize:= keypartsize + fieldsize

end;

keypartsize:= keypartsize + keypartsize mod 2;

The block table for a non-empty bucket, i.e. a bucket which con-

tains at least one record, consists of the entries describing

non-empty blocks, stored in ascending kp-order, followed by the

entries describing empty blocks. In these last entries only the

value of sn is relevant as the contents of the block itself are

undefined.

The size, in halfwords, of a block table is given by:

blocktablesize " entrysize * blocksperbuck, where

segsize * segsperbuck//(segsize *
segsperblock + entrysize);

blocksperbuck

segsize = number of halfwords in one segment = 512.

A block table is stored in an integral number of segments:

segsperblocktable = (blocktablesize -1)//segsize + 1.

Bucket Table 2.3

Each entry in the bucket table describes one bucket and consists

of the following three fields:

ub(blocks): An integer holding the relative byte address of the

last non-empty entry in the block table for the

bucket, the first entry having byte address zero;

i.e:

ub(blocks) = entrysize * (number of non-empty blocks - 1).

sn(blocks): An integer holding the segment number for the first

segment of the blocktable for the bucket.

sn(blocks) may thus be regarded as the identifica-

tion of the physical bucket relative to the file-

start.

kp(blocks): A canposite field consisting of the key field of a

record packed together in consecutive words and with

a value such that:

kp(blocks) > key(records preceding the bucket) and

kp(blocks) <= key(first record in the bucket).

kp(blocks) may thus be regarded as the identifica-

tion of the logical bucket.

Entrysize and keypartsize are defined as for the block tables

above.

The bucket table consists of a bucket table head followed by the

entries describing non-empty buckets, stored in ascending kp-

order, followed by the entries describing empty buckets. In

these last entries only the value of sn is relevant as the con-

tents of the bucket itself are undefined.

The bucket table head consists of five integer fields which de-

scribe the current contents of the bucket table and thereby of

the whole file:

2.4

maxusedbucks: Number of relevant halfwords in the bucket table,

including the bucket table head; i.e.:

maxusedbucks = entrysize * number of buckets which

are or have been non-enpty during

the lifetime of the file + 30;

recbytes: Total number of halfwords occupied by records in

the file.

noofrecs: Total number of records in the file.

ub({ file): Relative address of the last non-empty entry in

the bucket table, the first entry having halfword

address zero; i.e.:

ub(file) = entrysize * (number of non-empty

buckets -1).

sn(file): Segment number for the first segment of the bucket

table. Note that maxusedbucks is the first word on

this segment.

The size, in halfwords, of the bucket table is given by

maxusedbucks, but it is stored in an integral number of segments

which can hold a bucket table with maxbucks entries:

segsperbucktable = (entrysize * maxbucks + 30 - 1)//segsize + 1;

File Head .

The file head describes the structure of the records, blocks, and

buckets of the file as specified in the preceding sections. It is

generated when the file is created (see chapter 4), and is un-

changed on the backing storage during the lifetime of the file.

It is read in to core and modified when the file is prepared for

processing (see sections 5.2 and 5.3).

It holds the following five sections of information:

2.4

It holds the following five sections of information:

zonebufrefrel: An integer holding the relative address of the

first halfword of fileparameters, see below,

first halfword of zonebufrefrel being halfword

one. It is used to facilitate references to file-

parameters.

kp(save): A camposite working field for holding the keypart

of a record, size = keypartsize (see section 2.2).

savelength: A working field for holding the lengthfield of a

record; zero, one, or two words depending on the

type of the lengthfield.

recordcodes: The description of the key and lengthfields of a

record in the form of code pieces for comparing

and moving these fields. The formats and sizes

depend on the specification of the key.

fileparameters: Parameters, working locations, and variables de-

scribing the records, blocks, and buckets in a

format which is independent of the specific file

and known by the procedures processing the file.

When the file head is read into core some of these

parameters are modified to absolute addresses

which are used to reference other parts of the

zonebuffer, the zone descriptor, and the share

descriptors.

The details about the above sections are not given in this paper

as they mainly are of interest for the understanding of the in-

ternal logic of the system.

11

The total size, in halfwords, of the filehead is the sum of the

sizes of each of the above sections and has at present the value:

fileheadsize =

2+

keypartsize +

(if lengthtype = 0 then 0 else if lengthtype < 3 then 2 else 4) +

nkey * 24 + number of type three keyfields * 8 +

(keypartsize + 2)//4 * 4 + (if lengthtype = 0 then 6 else 14) +

146;

The filehead is stored in a integral number of segments,

starting at first word of the first segment of the area:

segsperhead = (fileheadsize - 1)//segsize + 1.

AN INDEXED-SEQUENTIAL FILE IN THE ZONE BUFFER 3. @

During the processing of a file, i.e. when a record is available

(see sections 5.4 and Appendix A.2), the zone buffer holds in

general the following five sections of information:

filehead | bucket current current work, used by

in core table block table block insert rec i

K-share (blocks)—>K-share (recs)—>}

KX~share (bucks)— K- one block —>K=- one block -—>

K— needed buffer size if insertions are simple —>

K— needed buffer size for general insertions —_>

Filehead holds code pieces, absolute addresses, and other para-

meters used by the file i procedures. It is read from the docu-

ment and modified by init file i or start file i (see sections

5.2 and 5.3), and is never written back. It occupies only the

necessary fileheadsize halfwords and normally not an integral

number of segments as in the document.

Bucket table holds the bucket table from the document, including

the bucket table head, but only with the number of buckets for

which there is room in the document. The buckettablesize thus @
satisfies the condition:

Maxusedbucks <= buckettablesize <= entrysize *« maxbucks + 30

The bucket table is read by init_file i or start_file i and is

only written back if the contents have been changed during the

processing, i.e. if records have been deleted or inserted. The

bucket table is described in the first share of the zone, denoted

share(bucks), as segsperbucktable segments and may thus overlap

the next share as shown.

Current block table holds the block table from the last accessed @

bucket. It occupies segsperblocktable segments and is described

13

in the second share, denoted share(blocks). If the current block-

table has been changed, i.e. records have been inserted or dele—

ted, it will be written back to the document before another block

table is read in.

Current block holds the last accessed block from the last acces-

sed bucket. It occupies segsperblock segments and is described in

the third share, denoted share(recs). If the current block has

been changed, i.e. records have been updated, inserted, or dele-

ted, it will be written back to the document before another block

is read in.

Work is an area which is only used by insert_rec_i when two

blocks are needed in the core at the same time. The third share

is then temporarily modified to describe this block. Work need

not be present if only simple insertions of new records are

needed (see section 6.8).

The total minimum size, in halfwords, of the zonebuffer is the

sum of each of the above sections and has the value:

zonebuffersize =

fileheadsize +

entrysize * ((segsindocument - 1) // segsperbuck + 1) + 30 +

segsize * segsperblocktable +

segsize * segsperblock +

(if simpleinsertions then 0 else segsize * segsperblock)

14

4.1

THE CREATION OF A FILE 4 ©

An empty indexed sequential file with a structure as described in

chapter 1 is created by storing a filehead and a bucket table,

describing an enpty file, in the first segments of a backing sto-

rage area. The file can then later be initialized and processed

as described in chapter 5.

The Area 4.1

4.2

The area must be a backing storage area with a segment length of

256 words. It must be opened and closed by explicit calls of the

nomnal standard procedures, open and close, before and after use. e

The size of the area is not used before the file is initialized.

During creation the area needs therefore only be big enough to

hold the file head and the bucket table head, see below.

The File Head 4.2

4.3

The file head will nommally be generated directly into the area

by a call of the external ALGOL procedure head_file i, but it may

also be copied fram some other document, e.g. if more files with

identical structure are needed. r

Choice of Parameters to headfilei 4.3

The parameters of head file i (see section 6.5) determine the

storage requirements and running characteristics of the file_i

procedures and must be chosen with some care. The following is a

survey of the influence of each of the parameters:

recdescr:

nkey: The number of keys determines the size of entries

in the bucket table and the block tables and thus

influences the size of share(bucks) and share (blocks), @

maxreclength:

maxbucks :

segsperbuck:

segsperblock:

15

see below. The choice between fixed and variable

recordlength has no significant influence on the

running characteristics of the system.

Defines the maximum length (or fixed length) of a

record, besides that it influences the strategy

for elimination of overflow. If this parameter is

chosen too large insert_rec_i will be forced to

take a too pessimistic view on the anount of push-

ing together necessary, and the time used for non-

simple insertions will be larger than necessary.

In determining whether overflow occurs or not the

actual record length is used and maxreclength has

no influence. If a small part of a file consists

of very long records it may be a&ivantageous to

split these to permit the system to mn with a

smaller value of maxreclength.

Is used to determine the size of the bucket table

on the document. In core the size of the bucket

table is determined by the size of the document.

The search strategy in the bucket table is optimal

when the documents contain maxbucks buckets and

too large a value of maxbucks may cause a very

slight decrease in the search efficiency.

These parameters (in connection with recdescr) de—

termine the number of blocks per bucket and thus

influence the size of the blocktables. Note that

share(blocks) occupies an integral number of seg-

ments and that certain combinations of blocks per

bucket and entrysize therefore give an inefficient

utilization of core store. segsperblock defines

the size of share(recs) and the work area. The

overall search strategy will be optimal when the

actual number of buckets and the number of blocks

both are equal to maxbucks, but the effect on the

search efficiency is negligible in almost all

cases.

Segsperblock must be able to hold at least 2

records of maxreclength.

16

5. THE PROCESSING OF A FILE 5.

The system for processing a file with a structure as described in

chapters 2 and 3 consists of one standard integer variable,

result_i, and a number of standard procedures, in the following

denoted the file_i procs.

The processing of the file may be split up in four phases:

opening,

‘initialization or start,

record processing, and

closing.

This chapter describes these four phases and the general rules

for the use of the file_i procs.

5.1 Opening 5.1

The file is opened, i.e. connected with a zone, by a call of the

normal RC8000 ALGOL standard procedure, open.

The minimum length of the zone buffer is a function of the

structure of the file, as defined by the procedure head file i,

the number of segments in the document, and whether or not the

full facilities for the insertions of new records are needed. The

exact length is given in chapter 3, but to avoid that the pro-

grams all should need to know the detailed structure of the file,

the system has been augmented by an integer procedure,

buf_length_i, which yields the needed length.

The number of shares in the zone must be three.

7

5.1.1 Example 5.1.1

5.2

The zone declaration and the open call for the file <:pip:> may

lock as follows:

begin

zone z(buf_length i (<:pip:>, true), 3, stderror);

open(z, 4, <:pip:>, giveup);

eae

Initialization 5.2

When a new file has been created it must be initialized with an

initial set of records which have been sorted in ascending key

order. When many records have been inserted by insert_i (see

section 6.8), further insertions become impossible or their cost

excessive indicating that the file should be reorganized. This is

done by dumping all the records in the file in ascending key

order and using this set of records to initialize the file.

This initialization is prepared by an open call, as described

above, followed by a call of init file i which will:

read, check, and modify the file head,

set up an empty bucket table with as many buckets as there

is room for in the document,

set the share descriptors of the zone to describe the three

shares share(bucks), share(blocks), and share(recs)

(see chapter 3).

The initialization itself is affected by successive calls of

init_rec i, each call adding one record to the file, and it mst

be terminated by a call of one of the procedures set_read_i,

set_update_i, or set_put i. The file is now ready for record

processing with the first record of the file available as the

zone record (see section 5.7).

18

5.2.1 The Initial Set of Records 5.2.1 @

The file should be initialized by as many records as possible

because it is much more time consuming to insert unsorted records

one at a time in an already initialized file.

If only a small set of records is available for initialization,

they should reflect the final distribution of keys and they

should be spread out uniformly through the file. This may be

achieved through proper use of two of the parameters to

init _file_i, the buckfactor and the blockfactor (see section

6.6).

buckfactor specifies the average number of blocks, useblocks, @
which init_rec_i should use in each bucket, where:

useblocks = buckfactor * blocksperbuck.

blockfactor specifies the average number of halfwords, usebytes,

which init_rec_i should use for records in each block, where:

usebytes = segsperblock * segsize * blockfactor.

5.2.2 Example 5.2.2

The open call in example 4.1.1 may be followed by the call:

init file i (z, .5, .5)

which will specify that init_rec_i should only use half of the

blocks in each bucket and half of the room in each used block.

Thus only a quarter of the full capacity of the file can be used

during initialization, but the unused capacity will be spread out

through the file and thus facilitate later insertions of new

records.

5.4

19

Start 5.3

When the file is non-empty, i.e. already has been initialized,

processed, and closed, it is reopened for processing by an open

call followed by a call of start_file_i which will:

read, check, and modify the file head,

read the bucket table, compare it with the number of

segments in the document, protest if there are fewer

buckets than last time the file was processed, and

extend the bucket table if there are more,

set the share descriptors,

read the first block table and block, and

return with the first record of the file available as the

zone record.

The file is now ready for record processing in read_only mode,

see below.

Record Processing - 5.4

When the file has been properly initialized or started, the

individual records can be handled by means of the following

procedures:

get_rec_i: Makes a record with a specified key available.

next_rec_i: Makes the next record available.

delete_rec_i: Deletes the available record from the file and

makes the next available.

insert_rec_i: Inserts a new record in its proper place in the

file and makes it available.

20

This processing will take place in one of three modes:

read_only mode: Records cannot be changed, blocks will only be

read and not written.

update_mode: Records can be changed, all blocks which are

read will also be written before a new block is

read.

put_mode: Records may be changed, a call of put_rec_i will

ensure that the block containing the current

available record will be written back before a

new block is read.

Transitions between these three modes are performed explicitly by .

a call of the procedures set_read_i, set_update_i, or set_put_i.

Such a call is also used to terminate the initialization or as

preparation for close, see below.

5.5 Closing 5.5

5.6

After updating, a call of one of the mode-changing procedures,

set_read_i, set_update_i, or set_put_i will ensure that all re-

levant information is present on the backing storage. The update

Mark in the filehead, however, can only be removed by set_reai i,

which must be called before the file can be closed by a call of

the normal RC8000 ALGOL procedure, close.

Zone State 5.6

As the file_i procs assume a specific contents of the zone buffer

and the share descriptors, the zone should not be used by any

procedure outside this system. The following five consecutive

values of zone state are therefore reserved to describe a zone

when it is used by the file i procs:

5.7

5.7.1

5.7.2

21

£0+0, read_only i: In read_only mode, except after

call of next rec i.

+1, read_next_i: In read_only mode, after call of

next_rec_i.

+2, put_i: In put_mode.

+3, update _i: ~In update_mode.

+4, initialize i: After call of init _file_i or

init_rec_ i.

The zone state is checked by all the file i procs and an illegal

value will terminate the run with an error message.

At present f0 = 10.

Results

The result of a call of a file_i proc is an integer, delivered in

the standard integer variable result_i, and a zone record, the

available record.

resulti

The value of result_i after a call tells about the overall result

of the call; e.g. whether or not a search for a record succeeded,

that the end of the file has been reached, that the record in the

call has an improper length field value.

The possible values of result_i and their meanings are listed in

the specification for each procedure. These values are, for each

procedure, in the range from one and upwards; this makes it easy

to switch on result_i or ‘to use it in a case statement.

Available Record

During record processing there will always be an available record

upon return from the file _i procs. To achieve this the file mst

always contain at least one record and it will be regarded as

5.7

5.7.1]

5.7.2

cyclic; i.e. a 'wrap-around' will be performed at the end of the @
file.

The available record is a normal zone record and has not been

copied from the block buffer. The system relies, however, on the

key- and length-fields of the record and therefore saves these

before exit and restores them at the next entry; a disastrous

effect of an accidental change of these fields is thus avoided.

The effect of changes made in the user fields between calls &-

pends both on the current mode and on how the records happen to

be stored in the blocks:

Let a program perform the following sequence of operations on two

records, A and B:

get_rec_i (z, A); comment yields an available record, oldA;

change some user fields in the available record giving newA;

get_rec_i (z, B);

get_rec i (z, A);

If A and B happen to be in the same block then the last operation

will always yield the changed version of A, i.e. newA.

If A and B are in different blocks then the last operation will

yield oldA if we are in readonly-mode or in put-mode but newA if

we are in update-mode, because only in the last case will the e
block containing A have been written when B was accessed.

Another example, this time in put-mode:

get_rec_i (z, A); comment yields olda;

change available record yielding newA;

pur_rec i (z);

change available record yielding newnewA;

As the block is written when a new block is wanted the put_rec i

will include any changes made to the block from it was read-in to

a new block is needed; i.e. newnewA will be the latest version of eo

A even though it comes after the put.

23

In view of the uncontrolable side effects illustrated by the

above examples the following rule should be obeyed.

Rule for Record-Updating 5.7.3

A nice program will only change the contents of the user fields

in a record and only in update-mode or put-mode and only when the

File Status 5.8

The file head and the bucket table head contain several par-

ameters which describe the overall status of the file; e.g.

noofrecs, recbytes, and transports, which is a counter holding

the number of input-output operations perfomned. There are also a

few parameters which it is meaningful to change; e.g. the price-

In principle the normal get_zone - set_zone mechanisms could be

used to inspect, and even change, any parts of the zone buffer.

For safety-reasons these mechanisms should not be used. the sys-

tem therefore provides two procedures, get_params i and

set_params_i, which allow parts of the zone buffer to be inspect-

ed and selected parts to be changed (see these procedures for

Error Handling 5.9

The different kinds of errors and other abnormal situations are

5.7.3

new version may go out to the file.

5.8

list (see insert_rec_i).

further details).

5.9

treated as follows.

5.9.1 Input-Output 5.9.1

All transports to and fram the document are initiated by explicit

send-message, but they are waited for and checked by the check

5.9.2

routine in the normal ALGOL running system. Errors and abnormal

situations concerning the document are therefore handled as for

any other standard input-output, i.e. the block-procedure of the

zone and the giveup-mask of the cpen call have their usual

meaning.

Output operations are normally not performed before a new con-

tents of a buffer are needed. Whenever the system decides that a

buffer has to be written before a new read is performed, it notes

this by setting a write-operation in the corresponding share. In

an emergency situation, e.g. an unexpected termination of the

run, the file may therefore be in a bad shape. If the pending

write-operations somehow, e.g. by analysis of a core-dump, can be @
performed, this may repair the situation. The system contains,

however, no facilities for this.

Programming Errors 5.9.2

5.9.3

Logical errors, e.g. a wrong zone state at a procedure call, are

treated as programming errors and will terminate the run with a

cun time alarm.

The possible messages are listed in A3 and they may occur if the

requirements specified for each procedure are not fulfilled when r

that procedure is called.

Data Errors 5.9.3

Errors in record formats and other abnormal situations arising

from the data may be detected by inspection of the result_i value

upon return from a procedure call.

The user may also define that specific result_i values from spe-

cific file i procs should invoke a call of a user specified pro-

cedure just before the file _i proc returns to the main program

{see section 6.15 for further details). @

25

PROCEDURE SPECIFICATIONS

6.1

This chapter contains, in alphabetic order, the specifications of

all the procedures offered by the system. To each file processing

procedure is assigned a number, procno i, by which the procedure

is identified in the use of the test facilities (see section

6.15).

A survey of the procedures, in procno_i order, is given in Appen-

dix A together with the possible result_i values, their meaning,

and the corresponding values of available record.

Integer Procedure buflengthi

Function:

Errors:

buflength_i (filename, full_insert)

buflength_i (return value, integer). Number of double-

worditems needed in the zone buffer for

processing the indexed-sequential file

given by filename.

filename (call value, string). The name of a backing

storage area containing an indexed-sequen-

tial file.

full_insert (call value, boolean). True if a buffer

with room for general insertions is wanted.

Reads the first segments of the document given by

filename into a local zone and computes the needed

buflength. The area is not released.

Uses stderror and giveup = 0. If the needed parameters

in the file head do not conform to an indexed-sequen-

tial file buflength_i will yield the value zero.

6.1

26

6.2 Procedure deletereci 6.2

Call: delete rec i (z)

Zz (call and return value, zone).

Specifies the file.

Function: Deletes the available record from the file and

makes the successor available.

Requirements: zonestate = update_i or put_i.

Results: zonestate: unchanged.

procno_i: 9

result_i : Available record:

1 Deleted The successor to the

available.

2 Deleted, end of file The first in the file.

3 Not deleted, only The one.

one record left

6.3 Integer Procedure getparamsi 6.3

Call: get_params_i (z) One or more pairs:(paramno, val)

get_params i (return value, integer). Overall

result of call:

0 : All parameters processed.

> 0: Exit on error in parameter pair

number get_params_i.

Z (call value, zone). Specifies the

file.

paramno (call value, integer). Identifies the

wanted value.

val (return value, integer). Receives the

value identified by paramno.

Function:

Requirements:

Results:

27

Yields the values of a selected set of parameters

from the zone buffer of an indexed~sequential

file.

The possible values of paramno and their meanings

are listed in Appendix B.

zone state = any file i state.

No change of the file.

procno_i: 12.

Procedure getreci

Call:

r Function:

Requirements:

Results:

get_rec_i (z, key)

z (call and return value, zone).

Specifies the file.

key (call value, real array). A record,

at least up to and including all the

key fields, with the same key as the

one to search, i.e. key fields in the

same positions as in the records with

lexicographical index 1 as the base.

Searches a record with the specified key and makes

it available.

zonestate = read_only i, read_next_i, update_i, or

put_i.

zonestate: if zonestate = readnext_i then

read_ only i else unchanged.

procno_i: 7

result_i: Available record:

1 Found The found.

2 Not found The successor to the

specified.

3 Not found, end of file The first in the file.

6.4

28

6.5 Procedure headfilei 6.5

Call: head file i (z, recdescr, nkey, maxreclength,

maxbucks, segsperbuck, segsperblock)

Z (call and return value, zone). Spec~

ifies the document to which the gen-

erated head is output.

recdesr {call value, integer array). A two-

dimensional array specifying the

types and relative positions of the

key- and length-fields of records.

nkey (call value, integer). The number of

key fields in records.

maxreclength (call value, integer). The maximum

number of doubleword items in a

record. (0 < maxreclength <= 2500).

maxbucks {call value, integer). The maximum

number of buckets to provide for in

the bucket table of the final file.

(0 < maxbucks <= 10000).

segsperbuck (call value, integer). The number of

segments in a bucket in the file.

Includes the segments for the block

table. (1 < segsperbuck <= 1000).

segsperblock (call value, integer). The number og

segments in a block in the file. (0 <

segsperblock <= 50).

Function: Generates the head of an indexed-sequential file

and a bucket table describing an empty file and

outputs it to the document connected with z.

6.5.1 The Zone and the Document 6.5.1

The zone must be open. Only one share is needed, but it should be

able to hold at least nkey * 10 + 45 double-words as one record

in an integral number of segments. Note that this zone needs not

6.5.2

29

have anything to do with the zone in which the created file later

is processed.

The document will be positioned at 0, 0 and the generated file

head will be output as at most two blocks by means of outrec.

The contents of the file head are independent of the document to

which it is output. It may be copied to any number of documents

and thus be used as head of different files which use identical

record formats and block- and bucket-structure.

recdescr, nkey, and maxreclength

The array recdescr is assumed to be declared as:

integer array recdescr (1:nkey+1, 1:2)

Each of the first nkey rows describes one key field and row nkey

+ 1 describes the length field. The first column holds the field

types and the last column the relative positions coded with the

values described in section 2.1. If we have 1 = maxreclength * 4

then only the following relative positions are legal:

type: relative position:

+1 1,273, e0e,1-1,1

+2 214,67 000,1-2,1

+3 4,6,8,.-.,1-2,1

+4 4,6,8,..+,1-2,1

Constant length records are coded by recdescr(nkey+1, 1) = 0 and

vecdescr(nkey+1, 2) = anything. The record length is then assumed

to be maxreclength.

!

6.5.2

30

6.5.2.1 Example 6.5.2.1

The record in the example in section 2.1 may be described by

nkey:= 3;

recdescr(1,1):= 4; recdescr(1,2):= 10;

recdescr(2,1):= -2; vecdescr(2,2):= 2;

recdescr(3,1):= -1; recdescr(3,2):= 5;

recdescr(4,1):= 1; vecdescr(4,2):= 5;

6.5.2.2 Errors 6.5.2.2

head _file_ i may terminate the run with a run time alarm.

Possible causes:

recdescr <i> Error detected during processing of field i

in recdescr or, if i > 2044, key exceeds

capacity of a file head, only possible for

nkey > 50.

head_ip<i> Other errors in parameters to head file i.

The value of i indicates the further cause:

1 Block too small, must at least be able to

hold two records of maxlength.

2 Bucket too small, already the first bucket

must hold at least one block. @
Q Other errors, normally absurd, e.g.

negative parameters.

6.6 Procedure initfilei 6.6

Call: init_file i (z, buckfactor, blockfactor)

Zz {call and return value, zone).

Specifies the file.

buckfactor (call value, real). The number of

blocks, useblocks, to be used in each e

bucket during initialization is given

6.7

Function:

Requirements:

Results:

31

by: useblocks = buckfactor *

blocksperbuck.

blockfactor (call value, real). The number of

bytes, usebytes, to be used in each

used block during initialization is

given by: usebytes = blockfactor *

segsize * segsperblock.

Prepares an indexed-sequential file for initiali-

zation.

zonestate = 0 after opening of an indexed-sequen-

tial file which may be empty or non-empty.

The zone must have three shares and a sufficiently

large buffer (see section 5.1).

zonestate: initialize i, i.e. ready for

init_rec_i.

procno iz 1

result_i: Available record:

1 Ready None

2 Ready, only room for None

simple insertions in

the zone buffer

Procedure initreci

Call:

Function:

init_rec_i (z, record)

Zz (call and return value, zone). Spec-

ifies the file.

record (call value, real array). Holds the

record to be added from lexicographi-

cal index 1 and on.

Initializes the file with the next of a sorted set

of records; buckfactor and blockfactor, which have

been specified to init_file_i, will determine when

a new bucket or block is taken into use.

6.7

32

Requirements: zonestate = initialize_i after call of init file i

or init _rec_i.

Results: zonestate: initialize_i, i.e. unchanged.

procno_i: 2

result_i: Available record:

1 Record Added None

2 Record not added, None

file is full

3 Record not added, None

improper length

4 Record not added, None

not ascending key

6.8 Procedure insertreci

Call: insert_rec_i (z, record)

Zz (call and return value, zone). Spec-

ifies the file.

record (call value, real array). Holds the

record to be inserted fram lexicogra-

phical index 1 and on.

Function: Inserts the specified record in its proper place

in the file and makes it available. See below for

details.

Requirements: zonestate = update_i or put_i.

Results: zonestate: unchanged

procno_i: 10

result_i: Available record:

1 Inserted The inserted

2 Not inserted, record The one in the file

with the same key

already in file.

6.8

6.8.1

33

Not inserted, too

expensive, can only

occur with a modified

insertion strategy,

see below.

Not inserted, file

is full.

Not inserted,

improper length

Not inserted, there

was no room for the

The successor to the

specified

The successor to the

specified

The successor to the

specified

The successor to the

specified

record in the block

to which it belonged

and the zone buffer

is too small for a

more complicated

insertion, see below.

Insertion Strategy

If there is room for the record in the block to which it belongs,

it can be inserted without further trouble; otherwise a more

complicated strategy is used. This requires an extra block in the

zone buffer. Unless this block is present it is therefore pure

luck if the insertion succeeds.

The following describes the full insertion strategy, it may be

skipped unless you want to modify it.

The organization of the file requires that records are stored in

keyorder. This means that the insertion of a new record in ge-

neral will involve a reorganization of some parts of the file in

order to get room for the record in the proper block.

The cost of an insertion, in terms of segment transports and

other use of resources, depends strongly on how this reorganiza-

tion is done. The insertion algorithm implements the following

6.8.1

34

scheme which, by taking prices imposed on the involved resources

into account, tries to strike a reasonable balance between a ful-

ly automatic and a user controlled strategy.

The file head holds a list of relative prices imposed on resour-

ces and with initial values assigned by head file i:

Name, initial value:

emptybuckprice,

emptyblockprice,

canpressprice,

priceperblock,

priceperbuck,

pricelimit,

Meaning:

The value of having an empty bucket.

The value of having an empty block.

The initial cost of compressing, i.e.

of the pushing together of records in

consecutive blocks.

The cost of (two block transports +

central processor time) for one block

involved in canpressing.

The cost of (two block transports +

two block table transports + central

processor time) for moving an empty

block over one bucket.

The maximum price accepted for an in-

sertion. If the total cost, as can-

puted below, exceeds pricelimit then

the insertion will not be done.

These prices are used to canpute the total cost of an insertion in

step 2, 3, and 4 of the following 7 steps which the algorithm goes

through:

1: There is room for the record in the block in which it be-

longs: The insertion is done without further analysis.

Otherwise the insertion will push one or more records out

of the block and thus create an overflow, and:

A pushing together of records in at most n (key-) consecu-

tive blocks will absorb the overflow:

cost: n * priceperblock + campressprice.

and/or:

35

3: An empty block, not more than n buckets removed fran the

current, can be inserted in the block table after the

current block and can thus absorb the overflow:

cost: n * priceperbuck + emptyblockprice; n may be zero;

and/or:

4: An empty bucket can be inserted in the bucket table and a

block from this bucket used as in 3:

cost: emptybuckpr ice;

or:

5: None of the situations 2, 3, or 4 exists: The insertion

is not possible, the file is regarded as full,

exit with result_i = 4;

6: None of the costs camputed in step 2, 3, or 4 are less

than pricelimit: The insertion is too expensive,

exit with result_i = 3;

7: The insertion is possible and is done according to the

smallest cost;

exit with result_i= 1.

6.8.1.1 Changing the Strategy

A call of set_params_ i can be used to set new values in the

pricelist. The strategy can thereby be modified within the

limits imposed by the above algorithm.

6.8.2 Example

Let us assume that we want to insert a whole bunch of, say, 'Jen-

sens’ in a file which is sorted according to last and first name.

It may then be useful to force the system to take an empty bucket

into use immediately, instead of wasting time on a more and more

time consuming campressing. This can be done by assigning a low

value to empty buckprice and a high value to campress price.

6.8.1.1

6.8.2

36

6.8.3 Example 6.8.3 @

In an on-line system it may be necessary to reject insertions

which are too time consuming. This can be done by assigning a

proper value to pricelimit. The number of rejected insertions may

be counted and be used to indicate when a reorganization of the

total file is required.

6.9 Procedure nextreci 6.9

Call: next_rec_i (2)

Zz (call and return value). Specifies the @
file.

Function: Makes the next record available.

Requirements: zonestate = read only i, read_next_i, update_i, or

put_i.

Results: zonestate: if zonestate = readonly i then

readnext_i else mchanged

procno_i: 8

result_i: Available record:

1 Found The successor to the rd]
available.

2 Found, end of file The first in the file.

6.10 Procedure putreci 6.10

Cali: put_rec_i (2)

Zz (call and return value, zone). Spec-

ifies the file.

Functions: Notes that the current block, i.e. the block con- @

taining the currently available record, must be

37

written back to the document before a new block is

read or the mode is changed.

Requirements: zonestate = update i or put_i.

Results: zonestate: unchanged

procno_i: 11

result_is Available record:

1 Done Unchanged

6.11 Integer resulti 6.11

Yields the result of the latest call of one of the processing

procedures. (see Appendix A.2).

Integer Procedure setparamsi 6.12

Call: set_params_i (z) One or more pairs: (paramno, val)

set_ params i (return value, integer). Overall

result of the call:

0: All parameters processed.

> O: Exit on error in parameter pair

number set_params i.

Zz (call and return value, zone). Spec~

ifies the file.

paramno (call value, integer). Identifies the

parameter in the zone buffer to which

val is assigned.

val (call value, integer). The value to

be assigned to the parameter ident-

ified by paramno.

Function: Assigns values to a selected set of parameters in

the zone buffer of an indexed-sequential file.

The possible values of paramno and their meanings

are listed in Appendix B.

Requirements:

Results:

zonestate = any file i state,

Affects only the parameters assigned to.

procno_i: 13

6.13 Procedure setputi

Call: set_put_ i (z)

Zz (call and return value, zone). Spec-

ifies the file.

Function: Terminates the current mode and sets put-mode.

Requirements: zonestate = any file_i state.

Results: zonestate: put i.

procno_i: 5

result_i: Available record:

1 Normal mode change Unchanged.

2 Initialization The first in the file.

terminated

6.14 Procedure setreadi

Function:

Requirements:

set_read_i (z)

Zz {call and return value, zone). Spec-

ifies the file.

Terminates the current mode and sets readonly-mode.

zonestate = any file i state.

6.14

39

Results: zonestate: read_only i

procno iz: 4

result_i: Available record:

1 Normal mode change Unchanged.

2 Initialization The first in the file.

terminated

6.15 Integer Procedure settesti

Call: set_test i (z) Optional parameter: (test _proc)

set_test i

test_proc

one or more pairs:(procno_i,

results)

(return value, integer). Overall

vesult of call:

- 1: Exit om error in first parameter.

0: All parameters processed.

> 0: Exit on error in parameter pair

number set_test_i.

(call and return value, zone). Spec-

ifies the file.

(call value, procedure). The name of a

procedure which must be declared at

the same level as the zone or at an

outer level.

It must conform to the declaration:

procedure test proc (z, record,

procno_i); zone z; array record;

integer procno_i; .

It will, when specified, see below, be

called just before the exit froma

file i proc with the following

parameters:

Zs The zone of the file i

proc call.

record: The array of the file i

proc call or, if not

present, the zone z.

6.15.1

procno_i: The identification of r

the file _i proc,

The parameter test_proc may be left

out if it already has been given in a

previous call of set_test_i.

procno_i (call value, integer). Specifies the

result_i values for which test_proc

should be called upon exit from the

file i proc identified by procno i.

Any number of result_i values can be

specified in one parameter by

representing each result_i value as

one digit in the decimal representa-

tion of results.

Function: Specifies a procedure to be called upon exit from

certain file i procs with certain result_i values.

The parameter pairs, procno_i - results, are processed in order

and only specified changes in the situation will be effectuated

but with the following additional conventions:

procno_i = 0 denotes all file i procs.

results

result_i values for procno i.

Non-existing result_i values are ignored.

Requirements: zonestate = any file i state.

Results: Affects only the test situation.

procno_i: 14

Examples

The call

set test_i (z, 0, 0)

will prevent any further calls of the current

0 denotes clearing of all previously specified

6.15.1

test_proc.)

41

The call

set_test_i (z, testit, 0, 123456)

will ensure that the procedure testit will be called upon

exit from any file_i proc with any result_i and thus provide

a means for supervising the main program.

The call

set_test_i (z, through, 0, 0, 8, 2)

will invoke a call of the procedure through when, and only

when next_rec_i has reached the end of the file.

next_rec_i, procno_i = 8, yields result_i = 2 at end of

file.

6.16 Procedure setupdatei 6.16

Call: set_update_i (z)

Zz (call and return value, zone). Spec-

ifies the file.

Function: Terminates the current mode and sets update-mode.

Requirements: zonestate = any file i state.

Results: zonestate: update_i.

procno_i: 6

result_i: Available record:

1 Normal mode change Unchanged.

2 Initialization The first in the file.

terminated

6.17 Procedure startfilei 6.17

Call: start _file i (z)

Zz (call and return value, zone). Spec-

ifies the file.

Function:

Requirements:

Results:

Prepares an indexed-sequential file for record e

processing.

zonestate = 0 after opening of an indexed-sequen-

tial file containing at least one record.

The document must hold at least the same number of

buckets as was used last time the file was open,

it may hold more.

The zone must have three shares and a sufficiently

large buffer (see chapter 3).

zonestate: readonly i, i.e. readonly-mode.

procno_i: 3

result_i: Available record: @

1 Record available The first in the file.

2 Record available, The first in the file.

only roam for simple

insertions in the

zone buffer

3 As 1, but updatemark The first in the file.

found

4 As 2, but updatemark The first in the file.

found

Note on resulti = 3 or 4: These results are

implemented in version 12, April 1979. The file @

may be accessed only with zonestates readonly i or

next_i.

SURVEY OF THE PROCEDURES OFFERED BY THE SYSTEM

43

Ai For Creation and Opening of an Indexed-Sequential File

head_file i (see section 6.5). External procedure which generates

a file head.

buflength_i (see section 6.1) External procedure which yields

the buffer size needed for

processing a file.

A.2 For Processing an Indexed-Sequential File

Each procedure is described below in order of their

identification number, procno_i, and with possible values of

result_i and available record.

procno_i, name

1,

2,

3,

5,

init file i

init_rec_i

start_file i

set_read i

set put i

result_i value and meaning

1 Ready

2 Ready, short buffer

1 Record added

2 File is full

3 Improper length

4 Not ascending key

1 Ready

2 Ready, short buffer

3 As 1, but updatemark found

4 As 2, but updatemark found

1 OK

2 OK, after initialization

1 OK

2 OK, after initialization

Available record

None

None

None

None

None

None

First in file

First in file

First in file

First in file

Unchanged

First in file

Unchanged

First in file

A.

procno i, name

6, set fupdate_i

7, get_rec i

next_rec i

9, delete rec i

10, insert_rec_ i

11, pat_rec_i

result_i value and meaning

“ OK

CK, after initialization

Found

Not found

Not found, end of file

Found

Found, end of file

Deleted

Deleted, end of file

Not deleted, one record left

Inserted

Already in file

Too expensive

File is full

Improper length

Short buffer

Done

Available record

Unchanged

First in file

The found

The successor

First in file

The next in file

First in file

The next in the file

First in file

The one left

The

The

The

The

The

The

inserted

one in the file

successor

successor

successor

successor

Unchanged

The following utility procedures do not change result_i or available

record and they cannot invoke a call of the test_proc:

12, get_params_i

13, set_params_i

14, set_test i

@ as

45

Alphabetic List of Alarm Causes

The system adds the messages below to the list of possible alarm

causes from the standard procedures of RC8000 ALGOL.

head i p <i> Parameter error in call of head_file i:

i = 1: Not room for two records in a block.

2: Not room for at least one block in the first

bucket.

0: Other illegal parameter values.

prep i <i> Error during init file i, init_rec_i, or

start file i: .

i= 1: Too few or many segments in the document.

2: The bucket head is not consistent.

3: Too small a zone buffer.

4: The file head is not consistent.

5: Not three shares.

6: Zone state > 0.

7: Empty file after start_file i or mode change.

8: Contents field of catalog entry < 22.

9: Updatemark found.

recdescr <i> Error or inconsistency in the record description in

the call of head_file i.

i< 2044: Error in field i.

i >= 2044: Key too big.

state i <i> Zonestate error in call of any file i proc:

i = zonestate * 100 + procno_i.

A.3

The lists below define the values of paramno to be used in calls

of get_params i or set_params i.

The lists may be extended when it appears that more parameters

are of interest to the user.

meaning

number of records in the file

number of halfwords used for records

number of input or output operations

performed since the processing was

started

for 4-9, see section 6.8, insert_rec_i

the cost computed in the last call of

insert_rec_i

B.1 Parameter Values to getparamsi

paramno name

1 recsinfile

2 recbytes

3 transports

4 pricelimit

5 enptybuckpr ice

6 emptyblockprice

7 canpresspr ice

8 priceperblock

9 pr iceperbuck

10 canputed cost

B.2 Parameter Values to setparamsi

The following of the parameters above may also be assigned to by

set _params_i with values in the intervals shown:

paramno name

pricelimit

enptybuckprice

enptyblockpr ice

canpressprice

priceperblock

priceperbuckwon va Wu sf

legal values

Q <= val <= upper limit for integers

0 <= val < 2048

0 <= val < 2048

0 <= val < 2048

0 <= val < 2048

0 <= val < 2048

B.1

22 ©

r RETURN LETTER

r Title; RC8000 Indexed Sequential Files RCSL No.: 31-D600

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,

and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42-1 1288

Seca e ee ences Do not tear - Fold here and staple00.

Affix

postage

here

mms & REGNECENTRALEN

| af 1979
Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

