RCSL No: 31-D600

. Edition: June 1980

Author: Inge Borch
Edith Rosenberg

Title:

RC8000 Indexed Sequential Files (ISQ)

® 8§ REGNECENTRALEN
: af 1979

Keywords:
RCB000, Backing Storage Package, Indexed Sequential File, ALGOL.

Abstract:
This manual describes a specific structure of an indexed sequential

file stored in a backing storage document and a set of RC8000 ALGOL
procedures for processing such a file.

(56 printed pages)

Copyright © 1980, AJS Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no- .
tice. RC Is not responsible for typographical or arithmetic errors
which may appear in this manuai and shall not be responsibie for
any damages caused by reliance on any of the materials presented.

42 1301

FOREWORD

Second edition: RCSL No 31-D 558.

The present paper is a revised edition of RCSL No 55-D 99 (Novem—
ber 1970, Jgrn Jensen) and is updated with changes fram the ver-
sion released in 1979. The changes mainly have consequences for
the definition of the file head and the bucket head and make ver-
sions prior to 1979 incampatible with current ones. Correction
lines in the left margin indicate changes of importance to 'old'
users. The pure extensions to the system are described in RCSL No
31-D 601: Extensions to the Indexed Sequential Files System,
April 1979, Inge Borch.

Acknowledgement: The system was designed and implemented in its

first version by J¢rn Jensen in 1970-71. Few systems have claimed
less maintenance.

Inge Borch
A/S Regnecentral‘en, March 1979

Third edition: RCSL No 31-D 600.
This edition has been retyped but is similar to second edition

apart from typographical corrections. The only important correc—
tion is the expression for camputing "segsperbuckettable” {page

9), which is marked by a double correction line.

Edith Rosenberg
A/S Regnecentralen af 1979, June 1980

iii

TABLE OF CONTENTS

PAGE

-[l

2.

4-

INTRODUCTION oseenscssocssassonsssssansssssancsssnsasass

THE

STRUCTURE OF AN INDEXED-SEQUENTIAL FILE ON THE

BA“Im SIOMGE ae a8 & s EseSEe LR B BE R B B BN B B BN BE B B B B BE N BB B N) - e

2.1

2.2
2.3
2.4

RECOLAS sueevrenresnssvsnsnsnssssnssnssnsnssnssnsonns
2.1,1 Key Fi€ldS sevreesoncnesesssnsnasassssssnos
2.1.2 Comparison RULE .eeeessssscssvssscasassasss
2.1.3 ILength Field iiveevesacsssnssssssesssscosas
2.1.4 EXGMPlE cueeenssscssassssssssssansssasssans
Block TableS sevssvsnsssessnssssssssnssancsssssases
Bucket Table .c.eceescrssancansas seessses csseneans

File Head TR IR S I B B B R R B O BE AT BN B BRI B A I BN BT R O Y S BN A

AN INDEXED-SEQUENTIAL FILE IN THE ZCNE BUFFER seeveesas

THE
4.1
4,2
4.3

THE
5.1

5.2

5.3
5.4
5.5
5.6
5.7

5.8

CREATION OF A FILE seesosoncssasessscsanassssncasnss
The AYe8 cceesccsssosncscansass siesseieresanasar e
The File Head sevesresrssessnssesssscsnsssesascnnes
Choice of Parameters to headfilei .vevssevssscsnes

PROCESSING OF A FILE soenscsassassarocsvansssssanas
OPENING cassnovsossssssnssosssssncsssssscacsanss .o
5.1.1 EXample .esveeeee cseresssncscscstssessereee
InitializZation seseeeecscesssescssssnssnsosnoscnss
5.2.1 The Initial Set of RecOrds ..ceveccecansass

‘5.2.2 mle LR R I B BE NN S R B B LR R A R B L IR B B B AL L O B

StArL ciecesrevssenescsocssvosssrsscssasnnsssssnane
Record ProcessSing ceeesessssesssassscssencss sesnase
CloSiNg vceveesssscssnnsa cesssacersesesasssssrsans
Z0Ne State .cuuieeenssssassosvisessssasssrsarrsenssnsss
RESULLS sevesvsssscsscrorsssessassscascnnss creccuss
5.7.1 resulti .i.veenen cancnesesssssesersasieseas
5.7.2 Available ReCOrd .veeesceserssssssssasasscne

5.7.3 mle for Record—Updating sassassEEREERER S
File Status S & B B S 0SSP SRS SRR SRR

O o o Ut e W

14
14

14
14

16
16
17
17
18
18
19
19
20
20
2]
21
21
23
23

iv

TABLE OF CONTENTS (continued)

PAGE

6.

509 Error Handling L L B B B B B B I O I B I RN R SO LI
5'9l‘l Input-output LELEE O B I B O I N I I I O I A I A N]
5.9.2 Programming EXTOYS sessseesessceaansanssnes

PMEUJRE SPECIFI@TImS #0850 088000 Pe s

6.1
6.2
6.3
6.4
6.5

6.6
6.7
£.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15

6.16
6.17

5.9.3 DataErrOrS LI R B R R I B B I O I R A O A I N A W A A I

LEL I B B N B N B O

Integer P’rOcedure bl.lflengt.h.i L R N I N N A A N A
Pz'.'OCEdLIre &leterecj. L L I I I R I o I R I I A R

Integer Procedure getparamSi ...svseesececnss

Procedure getreCl siiiieviessssnscecsnnnesesnsnans
Procedure headfilel .iiveverevencessscnconnansonns
6.5.1 The Zone and the DOCUMENL +eeeevennsnoncass
6.5.2 recdescr, nkey, and maxreclength ..e.eeees.

6-5-2-1 Exal'ﬂple LU R I B B R A R B B IR A] LI)

6-5-2.2 Errors (AR NS R EE NN EE RN NN I AN AW W)

PrOCEdure mitfilei LI L U B B R R N B R B A I A A NN

PrOCEdure i.nitreCi LR R NN EEIE B R R I N N A I A S

Prmedure insertreci LA L L L B BN B L B B I N B N R N N R N N)
6.8.1 Insertion Strategy «eveeeesesccscssssvancons
6.8.1.1 Changing the Strategy ...seeceeea.

6-8‘2 Exaﬂple Te s e e e LRI B I B I S B B B B B N A R R] LI
6.8.3 Example LI BC LI I B 2R BB B B B R IE B O B B B B BN BN N SR Y

Prccedure rEXtrECi LU E IR B B R L A I B N A I B NU R B I S R A

PrOCEdure g.ltreci CECIE B B DY N B LR I LI B I S B B O A B A B Y A Y

Integer resultil siviieeeceenossecsssasasssnancnnns

Integer Procedure setparamSieeee..

ProCedure %tputi LALEE B BB B BT B I I B A I I I N R SN R

PrOCEdLIrE Setreadi LRI B R B A B A I O BT I N A B I A A) LI I A

Integer Procedure settesti .svviveecerensss
6'15.1 Exarrples L N N N N N N N NN NN R R]

Procedure setupdatei
Procedure startfilei .,.......

LEE R B B IR B IR B Y B O B N O I]

asSs B BETEDIEOEN TSN

23
23
24
24

25
25
26
26
27
28
28
29
30
30
30
31
32
33
35
35
36
36
36
37
37
38
38
39
40
41
41

TABLE OF CONTENTS (continued) PAGE

APPENDICES:

A. SURVEY OF THE PROCEDURES CFFERED BY THE SYSTEM 43
A.1 For Creation and Opening of an Indexed-Sequential

File cevssvenssosrsssssnnsnnnssaarsonssssasnsnsnss 43

A.2 For Processing an Indexed-Sequential File seeeee.. 43

A.3 Alphabetic List of Alarm CauSeS seeeevecesessssoss 45

B. PARAMETERS IN THE ZONE BUFFER sssesesessanssconscsvsoss 46
B.1 Parameter Values to getparamsSi .eeeevessscscssesss 46
B.2 Parameter Values tO SetparamsSi seeescsesscesvesess 46

INTRODUCTICON 1.

An indexed sequential file is basically a sequential file, stored
on a random access medium, and augmented by one or more levels of
index tables to facilitate random access to records specified by
a key.

With two lewvels, buckets and blocks, the search for a record with
a specific key proceeds as follows:

A search for the key in the bucket table, which is cammon for the
whole file, will yield a part of the file, the bucket, in which
to continue the search.

Each bucket is preceded by a block table and a search in this
will yield a part of the bucket, the block, in which the record
may be found.

The inherent characteristics for this type of files are:

1) Fast sequential processing of the whole file, comparable
to a straightforward sequential file.

2) Fast direct access for inspecting and updating of records
specified by their keys.

3) Fast deletion of records.

4) Slow insertion of new records in a file, especially when
the file is pretty full.

This paper describes the RC8000 ALGOL implementation of an
indexed sequential file organization with two levels of index
tables.

The system can be regarded as an extension of the set of the high
level zone procedures and works within the same framework. It
consists of a set of procedures to set w and process an indexed

sequential file in an existing backing storage document which has
been opened in a zone.

THE STRUCTURE OF AN INDEXED~-SEQUENTTAI. FILE ON THE BACKING

STORAGE

The file starts at segment zero of the area and consists of a
file head, a bucket table, and a number of buckets. Each bucket
except the first occupies segsperbuck consecutive segments.

Picture of the file:

file | bucket | first second last

head | table bucket bucket bucket
<— segsperbuck —>K—segsperbuck—> — — K—segsperbuck—>]
S At most maxbucks buckets ——

The file head and the bucket table occupy an integral number of
segments each, and the first bucket occupies only what is left of
the first segsperbuck segments.,

Each bucket consists of a block table, which cccupies an integral
number of segments, followed by as many whole blocks as there is
room for in the bucket, leaving a possible rest unused.
Each block occupies segsperblock consecutive segments.

Picture of one bucket:

block first last unused
table block

<—segsperblock—> — — K——segsperblock—>K~—=rasgt—>
{maybe 0)

One bucket

Each block consists of an integral number of records (possibly
zero) stored tightly together in key order starting at the first
byte of the block and leaving a possible rest unused.

2.1

ub(recs) denotes the number of halfwords used for records within
a block { see section 2.1).

Picture of one block:

first second third last unused
record record record record

e ub{ recs) —_—

K One block e

The file head describes the structure of record, blocks, and
buckets in a form, which is convenient for the internal logic of
the standard procedures processing the file.

The bucket table forms the first level of index tables and con-
tains one entry for each bucket in the file describing the cur-
rent contents of that bucket.

The block tables, one for each bucket, form the second level of
index tables. The block table for a given bucket contains one
entry for each block in the bucket describing the current con-
tents of that block.

The structure and contents of records, index tables, and the file
head are described below. |

Records

Each record consists of zero or more user fields, a key consist-
ing of an ordered set of key fields, and maybe a length field.
The formats and contents of the user fields are irrelevant to the
system. The key- and length-fields are described by code pieces
in the file head. These descriptions are common for all records
in the file.

2.1

2.1

Key Fields

2.1.2

The key is an ordered set of one or more key fields the value of
which is unique identification of the record within the file.

Each key field is characterized by a field type, which specifies
the size of the key field and how the value of it is represented,
and a relative position of the field within the record. The total

nunber of key fields is denoted nkey.

The possible types, the number of halfwords in the corresponding
key fields, and the values by which they are specified to the
system (see section 6.5, head file i) are:

type: number of halfwords:

12-bit signed integer
integer

long

real

The sign of the type is used by the camparison rule, see below,

The relative position of a field is the byte number within the
record of the last byte of the field, the first byte being byte

one.

Comparison Rule

The keys of two records can be campared, i.e. the relations
key(A) < key(B), key(A) = key(B), and key(A) > key(B) are defined

1

2
4
4

value:

I+ 1+ 1+ 1+
e T R S

for two records, A and B. If each key is canposed of nkey

keyfields then the camparison rule is defined by the following

(not pure ALGOL) algorithm which campares the key fields,

arithmetically according to type, two and two:

for i:= 1 step 1 until nkey do
begin

canpare:= (keyfield(A,i)-keyfield(B,1i))*sign(type(i));
if campare <> 0 then i:= nkey '

end;

2.1.1 .

Compare now holds the result of

compare < 0 means key(A)
0 means key(A)
compare > 0 means key(A)

]

compare

Records are always stored in the file in ascending key order as
defined by the above; i.e. in ascending order of the key field
values for positive types, but in descending order of the key
field values for negative types.

Length Field

. 2.1.3

2.1 .4

The length field holds the record length, expressed as number of
double word items, and is, just as a key field, characterized by
a type and a relative position. Only non-negative types are
meaningful for the length field.

If all records in the file have the same length, the length field
may be absent. This is specified to the system by a type value
zero, in which case we have:

recordlength = maxreclength, see head file i (section 6.5.).

The different fields of a record may overlap each other in any
manner as illustrated in the following example where the length
field and the third key field cccupy the same bvyte.

Example

Let the key- and length-fields be specified by

1. key field
2. key field
3. key field
length field

type

>

the comparison and we define:

key(B).
key(B) .
key(B).

relative position
10

2
5
5

2.1.3

2.1.4

then record A will precede record B in the following picture:

halfword number:

1 3 1 L i 1 10 | L . - i 15|

A: | 2137 4 3,71
B: 1514 3 3.71

<= k2 —>‘ -5 k3 k= k- kI =>

- 1f k-
— 3x4 = 12 halfwords —
K — 4x4 = 16 halfwords — .
2.2 Block Tables ' 2.2

Each entry in a block table describes one block and consists of
the following three fields:

ub{ recs):

sn{ recs):

kp(recs):

An integer holding the number of halfwords occupied
by records in the block.

An integer holding the segment number for the first

segment of the block.

s recs) may thus be regarded as the identification .
of the physical block relative to the file-start.

A composite field consisting of the key fields of a
record packed together in consecutive words and with
a value such that:
kp(recs) > key(records preceding the block) and
kp(recs) <= key(first record in the block).
kp(recs) may thus be regarded as the identification
of the logical block.

The size, in halfwords, of one entry in a block table, or the

bucket table, see below, is given by:

entrysize = 4 + keypartsize, where:

keypartsize = 2 * number of words used for keyfields in a
record.

In the above calculation of keypartsize two successive keyfields
of type + 1 are only counted as one word whereas a single key-
field of type + 1 counts as a whole word. The algorithm is:

keypartsize:= 0;

for i:= 1 step 1 until nkey do

begin
fieldsize:= abs type(i); if fieldsize = 3 then fieldsize := 4;
if fieldsize > 1 then keypartsize:= keypartsize + keypartsize mod 2;
keypartsize:= keypartsize + fieldsize

end;

keypartsize:= keypartsize + keypartsize mod 2;

The block table for a non—empty bucket, i.e. a bucket which con—
tains at least one record, consists of the entries describing
non-empty blocks, stored in ascending kp-order, followed by the
entries describing empty blocks. In these last entries only the
value of sn is relevant as the contents of the block itself are
undefined.

The size, in halfwords, of a block table is given by:

]

blocktablesize = entrysize * blocksperbuck, where

segsize * segsperbﬁck//(segsize *
segsperblock + entrysize);

blocksperbuck

segsize = number of halfwords in one segment = 512.

A block table is stored in an integral number of segments:

segsperblocktable = (blocktablesize -1)//segsize + 1.

2.3

Bucket Table 2.3 @

Each entry in the bucket table describes one bucket and consists
of the following three fields:

ub(blecks): An integer holding the relative byte address of the
last non-empty entry in the block table for the
bucket, the first entry having byte address zero;
i.e.:
ub(blocks) = entrysize * (rumber of non—empty blocks - 1).

sn(blocks): An integer holding the segment number for the first
segment of the blocktable for the bucket.

sn(blocks) may thus be regarded as the identifica— .
tion of the physical bucket relative to the file-
start.

kp(blocks): A camposite field consisting of the key field of a
record packed together in consecutive words and with
a value such that:
kp(blocks) > key(records preceding the bucket) and
kp(blocks) <= key(first record in the bucket).
kp(blocks) may thus be regarded as the identifica-
tion of the logical bucket.

Entrysize and keypartsize are defined as for the block tables .
above,

The bucket table consists of a bucket table head followed by the
entries describing non-empty buckets, stored in ascending kp—
order, followed by the entries describing empty buckets. In
these last entries only the value of sn is relevant as the con-
tents of the bucket itself are undefined.

The bucket table head consists of five integer fields which de-
scribe the current contents of the bucket table and thereby of
the whole file:

2.4

maxusedbucks: Number of relevant halfwords in the bucket table,
including the bucket table head; i.e.:
maxusedbucks = entrysize * number of buckets which
are or have been non-empty during
the lifetime of the file + 30;

recbytes: Total number of halfwords occupied by records in
the file.

noofrecs: Total number of records in the file.

ub(file): Relative address of the last non—empty entry in

the bucket table, the first entry having hal fword

address zero; i.e.:

ub(file) = entrysize * (number of non-empty
buckets -1).

sn{ file): Segment number for the first segment of the bucket
table. Note that maxusedbucks is the first word on
this segment.

The size, in halfwords, of the bucket table is given by

maxusedbucks, but it is stored in an integral number of segments
which can hold a bucket table with maxbucks entries:

segsperbucktable = (entrysize * maxbucks + 30 - 1)//segsize + 1;

File Head . 2.4

The file head describes the structure of the records, blocks, and
buckets of the file as specified in the preceding sections. It is
generated when the file is created (see chapter 4), and is -
changed on the backing storage during the lifetime of the file.
It is read in to core and modified when the file is prepared for
processing (see sections 5.2 and 5.3).

It holds the following five sections of information:

10

It holds the following five sections of information: .

zonebufrefrel: An integer holding the relative address of the
first halfword of fileparameters, see below,
first halfword of zonebufrefrel being hal fword
one., It is used to facilitate references to file-
parameters,

kp(save): A camposite working field for holding the keypart
of a record, size = keypartsize (see section 2.2).

savelength: A working field for lplding the lengthfield of a
record; zero, one, or two words depending on the .
type of the lengthfield.

recordcodes: The description of the key and lengthfields of a
record in the form of code pieces for camparing
and moving these fields. The formats and sizes
depend on the specification of the key.

fileparameters: Parameters, working locations, and variables de-
scribing the records, blccks, and buckets in a
format which is independent of the specific file
and known by the procedures processing the file.
When the file head is read into core some of these
parameters are modified to adbsolute addresses .
which are used to reference other parts of the
zonebuffer, the zone descriptor, and the share
descriptors.

The details about the above sections are not given in this paper
as they mainly are of interest for the understanding of the in-
ternal logic of the system.

11

The total size, in halfwords, of the filehead is the sum of the
sizes of each of the above sections and has at present the value:

fileheadsize =
2 +
keypartsize +
(if lengthtype = 0 then 0 else if lengthtype < 3 then 2 else 4) +
nkey * 24 + number of type three keyfields * 8 +

(keypartsize + 2)//4 * 4 + (if lengthtype = 0 then 6 else 14) +
146;

The filehead is stored in an integral number of segments,
starting at first word of the first segment of the area:

segsperhead = (fileheadsize - 1)//segsize + 1.

12

AN INDEXED-SEQUENTIAL FILE IN THE ZONE BUFFER 3. .

During the processing of a file, i.e. when a record is available
(see sections 5.4 and Appendix A.2), the zone buffer holds in
general the following five sections of information:

filehead | bucket current current work, used by
in core table block table block insert rec i

|

K—share (blocks }->K-share (recs) —>i
<-share(bucks)- <= one block ->k=- one block ->

<— needed buffer size if insertions are simple —>

< needed buffer size for general insertions —

Filehead holds code pieces, absolute addresses, and other para-
meters used by the file i procedures. It is read from the docu—
ment and modified by init file i or start file i (see sections
5.2 and 5.3), and is never written back. It occupies only the
necessary fileheadsize halfwords and normally not an integral
number of segments as in the document.

Bucket table holds the bucket table from the document, including
the bucket table head, but only with the number of buckets for .
which there is room in the document. The buckettablesize thus

satisfies the condition:

maxusedbucks <= buckettablesize <= entrysize * maxbucks + 30

The bucket table is read by init file i or start file i and is
only written back if the contents have been changed during the
processing, i.e. if records have been deleted or inserted. The
bucket table is described in the first share of the zone, denoted

share(bucks), as segsperbucktable segments and may thus overlap
the next share as shown.

Current block table holds the block table from the last accessed .
bucket. It occupies segsperblocktable segments and is described

13

in the second share, denoted share(blocks). If the current block-
table has been changed, i.e. records have been inserted or dele-
ted, it will be written back to the document before another block
table is read in.

Current block holds the last accessed block from the last acces-
sed bucket. It occupies segsperblock segments and is described in
the third share, denoted share(recs). If the current block has

been changed, i.e. records have been updated, inserted, or dele-
ted, it will be written back to the document before another block

is read in.

Work is an area which is only used by insert rec i when two
blocks are needed in the core at the same time. The third share
is then temporarily modified to describe this block. Work need
not be present if only simple insertions of new records are
needed (see section 6.8).

The total minimum size, in halfwords, of the zonebuffer is the
sun of each of the above sections and has the value:

zonebuffersize =
fileheadsize +
entrysize * ((segsindocument - 1) // segsperbuck + 1) + 30 +
segsize * segsperblocktable +
segsize * segsperblock +
(if simpleinsertions then 0 else segsize * segsperblock)

14

THE CREATION OF A FILE .. @

4.1

An empty indexed sequential file with a structure as described in
chapter 1 is created by storing a filehead and a bucket table,
describing an empty file, in the first segments of a backing sto-
rage area. The file can then later be initialized and processed
as described in chapter 5.

The Area 4,1

4.2

The area must be a backing storage area with a segment length of
256 words. It must be opened and closed by explicit calls of the
normal standard procedures, open and close, before and after use. .

The size of the area is not used before the file is initialized.

During creation the area needs therefore only be big enough to
hold the file head and the bucket table head, see below.

The File Head 4.2

4.3

The file head will nommally be generated directly into the area
by a call of the external ALGOL procedure head file i, but it may

also be copied fram some other document, e.g. if more files with
identical structure are needed. .

Choice of Parameters to headfilei 4.3

The parameters of head file i (see section 6.5) determine the
storage requirements and running characteristics of the file i
procedures and must be chosen with some care. The following is a
survey of the influence of each of the parameters:

recdescr:
nkey: The number of keys determines the size of entries
in the bucket table and the block tables and thus
influences the size of share(bucks) and share {blocks), .

maxreclength:

maxbucks:

segsperbuck:
segsperblock:

15

see below. The choice between fixed and variable
recordlength has no significant influence on the
running characteristics of the system.

Defines the maximum length (or fixed length) of a
record, besides that it influences the strategy
for elimination of overflow. If this parameter is
chosen o large insert rec i will be forced to
take a too pessimistic view on the amount of push-
ing together necessary, and the time used for ron—
simple insertions will be larger than necessary.
In determining whether wverflow occurs or not the
actual record length is used and maxreclength has
no influence. If a small part of a file consists
of very lorg records it may be advantageous to
split these to permit the system to run with a
smaller value of maxreclength.

Is used to determine the size of the bucket table
on the document. In core the size of the bucket
table is determined by the size of the decument.
The search strategy in the bucket table is optimal
when the documents contain maxbucks buckets and
too large a value of maxbucks may cause a very
slight decrease in the search efficiency.

These rarameters (in connection with recdescr} de—
termine the number of blocks per bucket and thus
influence the size of the blocktables. Note that
share(blocks) occupies an integral number of seg-
ments and that certain canbinations of blocks per
bucket and entrysize therefore give an inefficient
utilization of core store. segsperblock defines
the size of share(recs) and the work area. The
overall search strategy will be optimal when the
actual number of buckets and the number of blocks
both are equal to maxbucks, but the effect on the
search efficiency is negligible in almost all
cases.

Segsperblock must be able to hold at least 2
records of maxreclength.

16

THE PROCESSING OF A FILE 5.

5.1

The system for processing a file with a structure as described in
chapters 2 and 3 consists of one standard integer variable,
result i, and a number of standard procedures, in the following
denoted the file i procs.

The processing of the file may be split up in four ghases:
opening,
-initialization or start,

record processing, and
closing.

This chapter describes these four phases and the general rules
for the use of the file i procs.

Opening 5.1

The file is opened, i.e. connected with a zone, by a call of the
normal RC8000 ALMOL standard mocedure, open.

The minimum length of the zone buffer is a function of the
structure of the file, as defined by the procedure head file i,
the number of segments in the document, and whether or not the
full facilities for the insertions of new records are needed. The
exact length is given in chapter 3, but to avoid thét the pro-
grams all should need to know the detailed structure of the file,
the system has been augmented by an integer procedure,

buf length i, which yields the needed length.

The number of shares in the zone must be three.

. 5.1.1

17

Example 5.1.1

5.2

The zone declaration and the open call for the file <:pip:> may
lock as follows:

begin

zone z(buf length i (<:pip:>, true), 3, stderror);

open(z, 4, <:pip:>, giveup);

LI

Initialization 5.2

When a new file has been created it must be initialized with an
initial set of records which have been sorted in ascending key
order. When many records have been inserted by insert i (see
section 6.8), further insertions become impossible or their cost
excessive indicating that the file should ke reorganized. This is
done by dumping all the records in the file in ascending key
order and using this set of records to initialize the file.

This initialization is prepared by an open call, as described
above, followed by a call of init file i which will:

read, check, and modify the file head,

set up an empty bucket table with as many buckets as there
is room for in the document,

set the share descriptors of the zone to describe the three
shares share(bucks), share(blocks), and share(recs)
{see chapter 3).

The initialization itself is affected by successive calls of
init rec i, each call adding one record to the file, and it must
be terminated by a call of ocne of the procedures set read i,
set_update i, or set put i. The file is now ready for record
processing with the first record of the file available as the
zone record (see section 5.7).

18

5.2.1 The Initial Set of Records 5.2.1 .

The file should be initialized by as many records as possible
because it is much more time consuming to insert unsorted records
one at a time in an already initialized file.

If only a small set of records is available for initialization,
they should reflect the final distribution of keys and they

should be spread ocut wiformly through the file. This may be
achieved through proper use of two of the parameters to

init file i, the buckfactor and the blockfactor (see section
6.6).

buckfactor specifies the average number of blocks, useblocks, .
which init rec i should use in each bucket, where:

useblocks = buckfactor * blocksperbuck.

blockfactor specifies the average number of hal fwords, usebytes,
which init rec i should use for records in each block, where:

usebytes = segsperblock * segsize * blockfactor.

5.2.2 Exanmple 5.2.2

The open call in example 4.1.1 may be followed by the call:
init file i (z, .5, .5)

which will specify that init rec i should only use half of the
blocks in each bucket and half of the room in each used block.
Thus only a quarter of the full capacity of the file can be used
during initialization, but the unused capacity will be spread cut
throuwgh the file and thus facilitate later insertions of new
records.

19

Start 5.3

5.4

When the file is non-empty, i.e. already has been initialized,
processed, and closed, it is reopened for processing by an cpen
call followed by a call of start file i which will:

read, check, and modify the file head,

read the bucket table, compare it with the number of
segments in the document, protest if there are fewer
buckets than last time the file was processed, and
extend the bucket table if there are more,

set the share descriptors,

read the first block table and block, and

return with the first record of the file available as the
zone record.

The file is now ready for record processing in read only mode,
see below.

Record Processing - 5.4

When the file has been properly initialized or started, the
individual records can be handled by means of the following
procedures:

get rec i: Makes a record with a specified key available.

next_rec i: Makes the next record available.

delete rec i: Deletes the available record from the file and
makes the next available,

insert__rec__i: Inserts a new record in its proper place in the
file and makes it available.

5.5

20

This processing will take place in one of three modes:

read only mode: Records cannot be changed, blocks will only be
read and not written.

update mode: Records can be changed, all blocks which are
read will also be written before a new block is
read.

put_mcde: Records may be changed, a call of put rec i will

ensure that the block containing the current
available record will be written back before a
new block is read.

Transitions between these three modes are performed explicitly by .
a call of the procedures set read i, set update i, or set put i.
Such a call is also used to terminate the initialization or as

preparation for close, see below.

Closing 5.5

5.6

After updating, a call of one of the mcde-changing procedures,
set read i, set update i, or set put i will ensure that all re-
levant information is present on the backing storage. The update
mark in the filehead, however, can only be removed by set read i,
which must be called before the file can be closed by a call of
the normal RC8000 ALROL procedure, close,

Zone State 5.6

As the file i procs assume a specific contents of the zone buffer
and the share descriptors, the zone should mot be used by any
procedure outside this system. The following five consecutive
values of zone state are therefore reserved t describe a zone
when it is used by the file i procs:

21

£0+0, read only i: In read only mode, except after
call of next rec i.
+1, read next i: In read only mode, after call of
next rec i.
+2, put_i: In put mode.
+3, update i: - In update mode.
+4, initialize i: After call of init file i or

init rec i.

The zone state is checked by all the file i procs and an illegal
value will terminate the run with an error message.
At present £0 = 10.

The result of a call of a file i proc is an integer, delivered in
the standard integer variable result i, and a zone record, the
available record.

The value of result i after a call tells about the overall result
of the call; e.g. whether or not a search for a record succeeded,
that the end of the file has heen reached, that the record in the
call has an improper length field value.

The possible values of result i and their meanings are listed in
the specification fc_n: each procedure. These values are, for each
procedure, in the range from one and upwards; this makes it easy

to switch on result i or to use it in a case statement.

5.7 Results
5.7.1 resulti
5.7.2

Available Record

During record processing there will always be an available record
upon return from the file i procs. To achieve this the file must
always contain at least one record and it will be regarded as

5.7

5.7.1

5.7.2

22

cyclic; i.e. a 'wrap—around' will be performed at the end of the .
file,

The available record is a normal zone record and has not been
copied from the block buffer. The system relies, however, on the
key- and length-fields of the record and therefore saves these
before exit and restores them at the next entry; a disastrous
effect of an accidental change of these fields is thus avoided.

The effect of changes made in the user fields between calls de-
pends both on the current mode and on how the records happen to
be stored in the blocks:

Let a program perform the following sequence of cperations on two
records, A and B:

get rec_i (z, A); comment yields an available record, oldA;
change some user fields in the available record giving newA;
get rec i (z, B);

get_rec i (z, A);

If A and B happen to ke in the same block then the last cperation

will always yield the changed version of A, i.e. newA.

If A and B are in different blocks then the last operation will

vield oldA if we are in readonly-mode or in put-mode but newA if

we are in update-mode, because only in the last case will the .
block containing A have been written when B was accessed.

Ancther example, this time in put-mcde:

get rec i (z, A); comment yields olda;
change available record yielding newh;
pur_rec i (z);

change available record yielding newnewA;

As the block is written when a new block is wanted the put rec i

will include any changes made to the block from it was read-in to

a new block is needed; i.e. newnewA will be the latest wersion of .
A even though it comes after the put.

23

In view of the uncontrolable side effects illustrated by the
above examples the following rule should be ocbeyed.

A nice program will only change the contents of the user fields
in a record and only in update-mode or put-mode and only when the

The file head and the bucket table head contain several par—
ameters which describe the overall status of the file; e.qg.
noofrecs, recbytes, and transports, which is a counter holding
the number of input—output operations perfommed. There are also a
few parameters which it is meaningful to change; e.g. the price-

In principle the nommal get zone - set zone mechanisms could be
used t inspect, and even change, any parts of the zone buffer.
For safety-reasons these mechanisms should not be used. The sys-
tem therefore provides two procedures, get params i and

set params i, which allow parts of the zone buffer to be inspect-
ed and selected parts to be changed (see these procedures for

The different kinds of errors and other abnomal situations are

5.7.3 Rule for Record-Updating
new version may go out to the file.
5.8 File Status
list (see insert rec i).
further details).
5.9 Error Handling
treated as follows.
5.9.1 Input—Output

All transports to and fraom the document are initiated by explicit
send-message, but they are waited for and checked by the check

5.7.3

5.8

5.9

5.9.1

5.9.2

24)

routine in the normal ALGOL running system. Errors and abnormal
situations concerning the document are therefore handled as for
any other standard input—output, i.e. the block-procedure of the
zone and the giveup-mask of the cpen call have their usual
meaning.

Output operations are normally not performed before a new con-

tents of a buffer are needed. Whenever the system decides that a

buffer has to be written before a new read is performed, it notes

this by setting a write—operation in the corresponding share. In

an emergency situation, e.qg. an unexpected termination of the

run, the file may therefore be in a bad shape. If the pending
write-operations somehow, e.g. by analysis of a core-dump, can be .
performed, this may repair the situation. The system contains,

however, no facilities for this.,

Programming Errors 5.9.2

5.9.3

Logical errors, e.g. a wrong zone state at a procedure call, are
treated as programming errors and will terminate the run with a
run time alarm.

The possible messages are listed in A3 and they may occur if the

requirements specified for each procedure are not fulfilled when .
that procedure is called.

Data Errors 5.9.3

Errors in record formats and other abnormal situations arising
from the data may be detected by inspection of the result i value
upon return from a procedure call.

The user may also define that specific result i values from spe-

cific file i procs should invoke a call of a user specified pro-

cedure just before the file i proc returns to the main program

(see section 6.15 for further details). .

25

PROCEDURE SPECIFICATIONS 6.

6.1

This chapter contains, in alphabetic order, the specifications of
all the procedures offered by the system. To each file processing
procedure is assigned a number, procno i, by which the procedure

is identified in the use of the test facilities (see section
6.15),

A survey of the procedures, in procno i order, is given in Appen-

dix A together with the possible result i values, their meaning,
and the corresponding values of available record.

Integer Procedure buflengthi 6.1

Call: buflength i (filename, full insert)

buflength i (return value, integer). Number of double-
worditems needed in the zone buffer for
processing the indexed-sequential file
given by filename.

filename (call value, string). The name of a backing
storage area containing an indexed-sequen-
tial file.

full insert (call value, bcolean). True if a buffer
with room for general insertions is wanted.

Function: Reads the first segments of the document given by
filename into a local zone and computes the needed
buflength. The area is not released.

Errors: Uses stderror and giveup = 0. If the needed parameters
in the file head do not conform to an indexed-sequen-
tial file buflength i will yield the value zero.

26

6.2 Procedure deletereci 6.2 .

Call:

delete rec i (z)

zZ (call and return value, zone).
Specifies the file.

Function: Deletes the available record from the file and
makes the successor available.
Requirements: zonestate = update i or put i.
Results: zonestate: unchanged. .
procno i : 9
result i : Available record:
1 Deleted The successor to the
available.
2 Deleted, end of file The first in the file.
3 Not deleted, only The one.
ocne record left
6.3 Integer Procedure getparamsi 6.3
Call: get params i (z) One or more pairs:(paramno, val)

get params i (return value, integer). Overall
result of call:
0 : BAll parameters processed,
> 0: Exit on error in parameter pair
number get params i.

Zz (call value, zone). Specifies the
file.

paramno (call value, integer). Identifies the
wanted value.

val (return value, integer). Receives the

value identified by paramno.

Function:

Requirements:

Results:

27

Yields the values of a selected set of parameters
from the zone buffer of an indexed-sequential
file.

The possible values of paramno and their meanings
are listed in Appendix B.

zone state = any file i state.

No change of the file,
procno i : 12.

Procedure getreci

Call:

. Functions:

Requirements:

Results:

get rec i (z, key)

z (call and return value, zone).
Specifies the file.

key (call value, real array). A record,
at least up to and including all the
key fields, with the same key as the
one to search, i.e. key fields in the
same positions as in the records with
lexicographical index 1 as the base.

Searches a record with the specified key and makes
it available.

zonestate = read only i, read next i, update i, or

put i.

zonestate: if zonestate = readnext i then
read only i else unchanged.
procno _i: 7

result i: Available record:

1 Found The found.

2 Not found The successor to the
specified.

3 Not found, end of file The first in the file.

6.4

28

6.5 Procedure headfilei 6.5
Call: head file i (z, recdescr, nkey, maxreclength,

maxbucks, segsperbuck, segsperblock)

z (call and return value, zone)., Spec—
ifies the document to which the gen-
erated head is output.

recdesr (call value, integer array). A two—
dimensional array specifying the
types and relative positions of the
key— and length-fields of records.

nkey (call value, integer). The number of
key fields in records.

maxreclength (call value, integer). The maximum
number of doubleword items in a
record. (0 < maxreclength <= 2500).

maxbucks {call value, integer). The maximum
nurber of buckets to provide for in
the bucket table of the final file,
(0 < maxbucks <= 10000).

segsperbuck (call value, integer). The number of
segments in a bucket in the file.
Includes the segments for the block
table. (1 < segsperbuck <= 1000).

segsperblock (call value, integer). The number og
segments in a block in the file., (0 <
segsperblock <= 50).

Function: Generates the head of an indexed-sequential file
and a bucket table describing an empty file and
outputs it to the document connected with z.
6.5.1 The Zone and the Document : 6.5.1

The zone must be open. Only one share is needed, but it should be
able to hold at least nkey * 10 + 45 double-words as one record

in an integral number of segments. Note that this zone needs not

6.5.2

29

have anything to do with the zone in which the created file later
is processed.

The document will be positioned at 0, 0 and the generated file
head will be output as at most two blocks by means of outrec.

The contents of the file head are independent of the document to
which it is output. It may be copied to any number of documents
and thus be used as head of different files which use identical
record formats and block- and bucket-structure.

recdescr, nkey, and maxreclength

The array recdescr is assumed to be declared as:

integer array recdescr (1:nkey+l, 1:2)

Each of the first nkey rows describes one key field and row nkey
+ 1 describes the length field. The first column holds the field
types and the last column the relative positions coded with the
values described in section 2.1. If we have 1 = maxreclength * 4
then only the following relative positions are legal:

type: relative position:
+1 1,2,37604,1-1,1
+2 2,4,6,...,1-2,1
+3 4,6,8,...,1-2,1
+ 4 4,6,8,...,1-2,1

Constant length records are ccded by recdescr(nkeYH r 1) =0 and
recdescr(nkey+1, 2) = anything. The record length is then assumed
to be maxreclength.

I

6.5.2

30

0.5.2.,1 Example 6.5.2.1.

The record in the example in section 2.1 may be described by

nkey:= 3;

recdescr(1,1):= 4; recdescr(1,2):= 10;
recdescr(2,1):= -2; recdescr(2,2):= 2;
recdescr(3,1):= -1; recdescr(3,2):= 5;
recdescr(4,1):= 1; recdescr(4,2):= 5;

6.5.2.2 Errors 6.5.2.2

head file i may terminate the run with a run time alarm.
Possible causes:

recdescr <i> Error detected during processing of field i
in recdescr or, if i > 2044, key exceeds
capacity of a file head, only possible for
nkey > 50,

head i p <i> Other errors in parameters to head file i.

The value of i indicates the further cause:
1 Block too gmall, must at least be able to

hold two records of maxlength.
2 Bucket too small, already the first bucket

must hold at least one block. .
0 Other errors, normally absurd, e.g.

negative parameters.

6.6 Procedure initfilei 6.6
Call: init file i (z, buckfactor, blockfactor)
A {call and return value, zone).

Specifies the file.
buckfactor (call value, real). The number of

blocks, useblocks, to be used in each .
bucket during initialization is given

6.7

Function:

Requirements:

Results:

31

by: useblocks = buckfactor *
blocksperbuck.

blockfactor (call value, real). The number of
bytes, usebytes, to be used in each
used block during initialization is
given by: usebytes = blockfactor *
segsize * segsperblock.

Prepares an indexed-sequential file for initiali-

zation.

zonestate = 0 after opening of an indexed-sequen-—
tial file which may be empty or non-empty.

The zone must have three shares and a sufficiently
large buffer (see section 5.1).

zonestate: initialize i, i.e. ready for
init rec i.
procrno_i: 1
result i: Available record:
1 Ready None
2 Ready, only roam for None
simple insertions in
the zone buffer

Procedure initreci

Call:

Function:

init rec i (z, record)

A (call and return value, zone). Spec-

ifies the file,
record {call valwue, real array). Holds the

record to be added from lexicographi-
cal index 1 and on.

Initializes the file with the next of a sorted set
of records; buckfactor and blockfactor, which have
been specified to init file i, will determine when
a new bucket or block is taken into use.

6.7

Requirements:

Results:

32

zonestate = initialize i after call of init file i

or init rec i.

zZonestate:

procno i: 2

result i:

1
2

Record Added
Record not added,
file is full
Record not added,
improper length
Record not added,

not ascending key

6.8 Procedure insertreci

Call:

Function:

Requirements:

Results:

insert rec i (z, record)

record

Inserts the
in the file

initialize i, i.e. unchanged.

Available record:
None
None

Nene

None

6.8

(call and return value, zone). Spec—
ifies the file.

(call value, real array). Holds the

record to be inserted fram lexicogra—
phical index 1 and on.

details.

zonestate =

Zzonestate:

procno_i: 10
result i:

1
2

Inserted

Not inserted, record
with the same key

already in file.

unchanged

specified record in its proper place
and makes it available. See below for

update i or put i.

Available record:

The inserted
The one in the file

33

Not inserted, too
expensive, can only

occur with a modified

insertion strategy,
see below.

Not inserted, file
is full.

Not inserted,
improper length
Not inserted, there
was no room for the

The successor to the
specified

The successor to the
specified
The successor to the
specified
The successor to the

specified

record in the block
to which it belonged
and the zone buffer
is too small for a
more complicated

insertion, see below.

6.8.1 Insertion Strategy . 6.8.1

If there is room for the record in the block to which it belongs,
it can ke inserted without further trouble; otherwise a more
camplicated strategy is used. This requires an extra block in the
zone buffer. Unless this block is present it is therefore pure
luck if the insertion succeeds.

The following describes the full insertion strategy, it may be
skipped unless you want to modify it.

The organization of the file requires that records are stored in
keyorder. This means that the insertion of a new record in ge-

neral will involve a reorganization of some parts of the file in
order to get room for the record in the proper block.

The cost of an insertion, in terms of segment transports and
other use of resources, depends strongly on how this recrganiza-
tion is done. The insertion algorithm implements the following

34

scheme which, by taking prices imposed on the involved resources
into account, tries to strike a reasonable balance between a ful-
ly automatic and a user controlled strategy.

The file head holds a list of relative prices imposed on resour-
ces and with initial values assigned by head file i:

Name, initial value:
emptybuckprice,
emptyblockprice,
canpresspr ice,

priceperblcck,

priceperbuck,

pricelimit,

Meaning:

The value of having an ampty bucket.
The value of having an empty block.
The initial cost of campressing, i.e.
of the pushing together of records in
consecutive blocks.,

The cost of (two block transports +
central processor time) for one block
involved in canpressing.

The cost of (two block transports +
two block table transports + central
processor time) for moving an empty
block over cne bucket.

The maximum price accepted for an in-
sertion. If the total cost, as can—
puted below, exceeds pricelimit then

the insertion will rnot be done.

These prices are used to canpute the total cost of an insertion in
step 2, 3, and 4 of the following 7 steps which the algorithm goes

through:

13

There is roam for the record in the block in which it be—
longs: The insertion is done without further analysis.

Otherwise the insertion will push one or more records out
of the bloeck and thus create an overflow, and:

A pushing together of records in at most n (key—) consecu—
tive blocks will &bsorb the overflow:
cost: n * priceperblock + canpressprice.

and/or:

6.8.1.1

35

3: An énpty block, not more than n buckets removed fram the
current, can be inserted in the block table after the
current block and can thus absorb the overflow:
cost: n * priceperbuck + emptyblockprice; n may be zero;
and/or:

4: An eupty bucket can be inserted in the bucket table and a
block from this bucket used as in 3:
cost: emptybuckprice;
or:

5: None of the situations 2, 3, or 4 exists: The insertion
is not possible, the file is regarded as full,
exit with result i = 4;

6: None of the costs camputed in step 2, 3, or 4 are less
than pricelimit: The insertion is too expensive,
exit with result i = 3;

7: The insertion is possible and is done according to the
smallest cost;
exit with result i = 1,

Changing the Strateqgy

6.8.2

A call of set params i can be used to set new values in the
pricelist. The strategy can thereby be modified within the
limits imposed by the above algorithm.

Example

Let us assume that we want to insert a whole bunch of, say, 'Jen-
sens' in a file which is sorted according to last and first name.
It may then be useful to force the system to take an empty bucket
into use immediately, instead of wasting time on a more and more
time consuming campressing. This can be done by assigning a low
value to empty buckprice and a high value to campress price.

6.8.1.1

6.8.2

36

6.8.3 Example 6.8.3 @

In an on-line system it may be necessary to reject insertions
which are too time consuming. This can be done by assigning a
proper value to pricelimit. The number of rejected insertions may

be counted and be used to indicate when a reorganization of the
total file is required.

6.9 Procedure nextreci 6.9
Call: next rec i (z)
Z (call and return value). Specifies the .
file.
Function: Makes the next record available.

Requirements: zonestate = read only i, read next i, update i, or
put_i.

Results: zonestate: 1if zonestate = readonly i then
readnext i else unchanged

procno i: 8

result i: Available record:
1 Found The successor to the .
available.

2 Found, end of file The first in the file.

6.10 Procedure putreci 6.10
Call: put rec i (z)
z (call and return value, zone). Spec—

ifies the file.

Functions: Notes that the cwrrent block, i.e. the block con- ' .
taining the currently available record, must be

Requirements:

Results:

37

written back to the document before a new block is
read or the mode is changed.

zonestate =

zonestate:
procno i:
result i:

1 Done

Integer resulti

update i or put i.

unchanged

1
Available record:
Unchanged

Yields the result of the latest call of one of the processing

procedures (see Appendix A.2).

Integer Procedure setparamsi

Call:

Functions

set params 1 (z) One or more pairs:(paramno, val)

set params i (return value, integer). Overall

paramno

val

result of the call:

0: All parameters processed.

> 0: Exit on error in parameter pair
number set params i.

(call and return value, zone). Spec—

ifies the file.

(call value, integer). Identifies the

parameter in the zone buffer to which

val is assigned.

(call value, integer). The value to

be assigned to the parameter ident-

ified by paramno.

Assigns values to a selected set of parameters in
the zone buffer of an indexed-sequential file.

The possible values of paramno and their meanings

are listed in Appendix B.

38

Requirements: zonestate = any file i state. .
Results: Affects only the parameters assigned to.

procno i: 13

6.13 Procedure setputi 6.13
Call: set put i (z)
A (call and return value, zone). Spec-
ifies the file.
Function: Terminates the current mode and sets put-mode. .
Requirements: zonestate = any file i state.
Results: zonestate: put i.
procno i: 5
result i: Available record:
1 Normal mode change Unchanged,
2 Initialization The first in the file,
terminated
6.14 Procedure setreadi 6.14 .
Call: set read i (z)
z (call and return value, zone). Spec—

ifies the file.
Function: Terminates the current mode and sets readonly-mode.

Requirements: zonestate = any file i state.

39

Results: zonestate: read only i
procno_i: 4
result i: Available record:
1 Normal mode change Unchanged.
2 Initialization The first in the file.
terminated
6.15 Integer Procedure settesti _ 6.15
Call: set test i (z) Optional parameter:(test proc)

one or more pairs:(procno i,
results)

set_test i (return value, integer). Overall
result of call:
- 1: Exit on error in first parameter.
0: All parameters processed.
> 0: Exit on error in parameter pair
number set test i.
p4 (call and return value, zone). Spec—-
ifies the file.
test proc (call value, procedure). The name of a
procedure which must be declared at
the same level as the zone or at an
outer level.
It must conform to the declaration:
procedure test proc (z, record,
procno i); zone z; array record;
integer procno i; .
It will, when specified, see bkelow, be
called just before the exit from a
file i proc with the following
parameters:
z: The zone of the file i
proc call.
record: The array of the file i
proc call or, if not

present, the zone z.

40

procno_i: The identification of (]
the file i proc.

The parameter test proc may be left

out if it already has been given in a

previous call of set test i.

procno i (call value, integer).

Specifies the

result i values for which test proc

should be called upon exit from the

file i proc identified by procno i.

Any number of result i values can be
specified in one parameter by

representing each result i value as

one digit in the decimal representa-

tion of results.

Function: Specifies a procedure to be called upon exit from
certain file i procs with certain result i values.

The parameter pairs, procno i - results, are processed in order
and only specified changes in the situation will be effectuated

but with the following additional conventions:

procno_i = 0 denotes all file i procs.

results

result i values for procno i.
Non-existing result i values are ignored.

Requirements: zonestate = any file i state.

Results: Affects only the test situation.
procno_i: 14

Examples

The call
set test i (z, 0, 0)

will prevent any further calls of the current

0 denotes clearing of all previously specified

6.15.1

test proc. .

41

. The call
set_test i (z, testit, 0, 123456)
will ensure that the procedure testit will be called upon
exit fram any file i proc with any result i and thus provide
a means for supervising the main program.

The call

set test i (z, through, 0, 0, 8, 2)

will invoke a call of the procedure through when, and only
when next rec i has reached the end of the file.

next rec i, procno_i = 8, yields result i = 2 at end of

file.
@
6.16 Procedure setupdateil : 6.16
Call: set update i (z)
z (call and return value, zone). Spec-
ifies the file.
Function: Terminates the current mode and sets update—mode.

Requirements: zonestate = any file i state.

. Results: zonestate: update i.

procno i: 6

result i: Available record:

1 Nomal mode change Unchanged.

2 Initialization The first in the file.
terminated

6.17 Procedure startfilei : 6.17
Call: start file i (z)
z (call and return value, zone). Spec-

. ifies the file.

Function:

Requirements:

Results:

42

Prepares an indexed-sequential file for record .

processing.

zonestate = 0 after opening of an indexed—-sequen-
tial file containing at least one record.

The document must hold at least the same number of
buckets as was used last time the file was open,
it may hold more.

The zone must have three shares and a sufficiently
large buffer (see chapter 3).

zonestate: readonly i, i.e. readonly-mcde.

procno_i: 3

result i: Available record: .
1 Record available The first in the file.

2 Record available, The first in the file.

only roam for simple
insertions in the
zone buffer

3 As 1, but updatemark The first in the file.

found

4 As 2, but updatemark The first in the file.
found

Note on resulti = 3 or 4: These results are

implemented in version 12, April 1979. The file .
may be accessed only with zonestates readonly i or

next i.

SURVEY OF THE PROCEDURES OFFERED BY THE SYSTEM

43

A.1 For Creation and Opening of an Indexed-Sequential File
head file i (see section 6.5). External procedure which generates
a file head.
buflength i (see section 6.1) External procedure which yields
the buffer size needed for
processing a file.
A.2 For Processing an Indexed-Sequential File

Each mocedure is described below in order of their

identification number, procno i, and with possible values of
result i and available record.

procno i, name

1,

2,

3r

5,

init file i

init rec i

start file i

set read i

set put i

result i value and meaning

1 Ready
2 Ready, short buffer

Record added
File is full
Improper length
Not ascerding key

W -

Ready
Ready, short buffer

As 1, but updatemark found
As 2, but updatemark found

[W % Y

OK
OK, after initialization

N

1 CK
2 OR, after initialization

Available record

None
None

None
None
None
None

First in file
First in file
First in file
First in file

Unchanged
First in file

Unchanged
First in file

A.2

procno i, name

6, setéupdate_i

7, get rec i

8, next rec i

9, delete rec i

10, insert rec i

11, put rec i

44

result i value and meaning

k.

OK
2 CK, after initialization

Found
Not found
Not found, end of file

WM —

Found
Found, end of file

| S -

1 Deleted
2 Deleted, erd of file
3 Not deleted, cne record left

1 Inserted

2 Already in file
3 Too expensive

4 File is full

5 Improper length
6 Short buffer

1 Done

Available record

Unchanged
First in file

The found
The successor
First in file

The next in file
First in file

The next in the file
First in file
The one left

The inserted
The one in the file
The sSUCCessor
The successor
The successor
The successor

Unchanged

The following utility procedures do not change result i or available
record and they cannot invoke a call of the test proc:

12, get_params i
13, set params i
14, set test i

@®::

45

Alphabetic List of Alarm Causes A.3

The system adds the messages below to the list of possible alarm
causes from the standard procedures of RC8000 ALGOL.

head i p <i> Parameter error in call of head file i:
i = 1: Not room for two records in a block.
2: Not room for at least one block in the first
bucket.
0: Cther illegal parameter values.

prep i <i> Error during init file i, init rec i, or
start file i: .
i = 1: Too few or many segments in the document.
2: The bucket head is not consistent.
3: Too small a zone buffer.
4: The file head is not consistent.
: Not three shares.
Zone state < 0.
: Bmpty file after start file i or mode change.
Contents field of catalog entry < 22.
Updatemark found.

w oo 1 o N
»

recdescr <i> Error or inconsistency in the record description in
the call of head file i.
i < 2044: Error in field i.
i >= 2044: Key too big.

state i <i> Zonestate error in call of any file i proc:
1 = zonestate * 100 + procno_i.

PARAMETERS IN THE ZONE BUFFER B. .

The lists below define the values of aranno to be used in calls
of get params i or set params i.

The lists may be extended when it appears that more parameters
are of interest to the user.

B.1 Parameter Values to getparamsi B.1
paramno name meaning
1 recsinfile number of records in the file
2 recbytes mmber of hal fwords used for records ¢
3 transports nunber of input or output operations
performmed since the processing was
started
4 pricelimit for 4-9, see section 6.8, insert rec i
5 amptybuckprice
6 emptyblockprice
7 canpressprice
8 priceperblock
9 priceperbuck
10 canputed cost the cost camputed in the last call of
insert rec i
B.2 Parameter Values to setparamsi B.2 .

The following of the parameters above may also be assigned to by
set _params i with values in the intervals shown:

paramno name legal values

4 pricelimit 0 <= val <= wper limit for integers
5 emptybuckprice 0 <= val < 2048

6 emptyblockprice 0 <= val < 2048

7 canpressprice 0 <= val < 2048

8 priceperblock 0 <=vwval < 2048

9 priceperbuck 0 <=val < 2048

4 RETURN LETTER

. ~ Title: RC8000 Indexed Sequential Files RCSL No.: 31-D600

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:

Thank you

42-i 1288

........................... Foldhere
................. Do not tear - Fold hereand staple
Affix
postage
here
s - REGNECENTRALEN

r af 1979
Information Department
Lautrupbjerg 1
DK-2750 Ballerup
Denmark

