
RCSLNo: 31-D601

Edition:

Author.

June 1980

Inge Borch

Edith Rosenberg

Title:

Extensions to the RC8000

Indexed Sequential Files System (ISQ)

§ REGNECENTRALEN

af 1979

RC8000, Algol, Backing Storage Package, Indexed Sequential Files,

Manual.

Abstract:

Describes new features in RC8000 Indexed Sequential Files System

(RCSL No 31-D600), which e.g. include checking and recovering of

broken files and 2 new procedures for fast updating of blocks.

(40 printed pages)

Copyright © 1980, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no- e
tice. RC Is not responsible for typographical or arithmetic errors
which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.4241341

FOREWORD

First edition: RCSL No 31-D 559

The indexed Sequential Files System is part of the Backing Stor-

age Package available for RC4000, RC6000, and RC8000 models. No

feature in the system has been changed from the first release in

1971 until the release in April 1979, which holds a subset of the

facilities mentioned in this manual.

RCSL No 31-D 558, RC8000 Indexed Sequential Files, is updated for

the changes the new features have claimed on the 'old' system,

while this manual describes the pure extensions. It replaces a

preliminary manual, RCSL No 31-D 514 (September 1978). The defi-

nition of the update mark facility is slightly changed, and two

more procedures, extendi and priorreci, are included. Procedure

updotheri has been renamed putdirecti.

Inge Borch

A/S Regnecentralen, April 1979

Second edition: RCSL No 31-D 601

This edition contains a few corrections in appendix C and E,

which are marked with correction lines.

Edith Rosenberg

A/S Regnecentralen af 1979, June 1979

iii

PAGE

1.

2.

3.

B.

c.

D.

@-.

INTRODUCTION secescescccscccnccscncscvcvcseccssccceseesceeeeseecs

EXTENSIONS AND MAJOR CHANGES ..cccsccccccccccsccccccccecsccsecees

21 Update Mark cescscscvesccncccccaccvevcvevesesssccesecesvenes

2.2 Standard Integer DLOCKL ..cscecceeccccncccccccccccasevcesecs

223 RECOVEFY PLOGKaAM coceccccccnsrcccccceccccceccscessecseseeses

2.3.1 Errors in isq-fileS .cccccccccccecccccnsesnsecsesecace

2.3.2 Program Functions ...c.ccsesccsccccscccsccessecseeene

2.343 Program RequirementS ..cscsccccccscccvecescccceecesccs

2.4 New Record Processing PrOCceGUureS .ccececccscccccesesssevcece

2.5 New Service ProcedureS ..cceesccccccncccscenccccccencseseees

PROGRAMMING INTERFACES ccccsscccccccccscccccccccceccsscesesecnene

3.1 Standard Integer DlOCKL .evscccersccvcvcccvcccsccecssceesees

3.2 Procedure CXtendi cececcccececccccucccscccscessceccscecesens

3.3 Procedure headparamsi ...sccccceecscccccssccncccesevssessces

3.4 Procedure Priorveci cecscccscccssnvcscnsuccvsssessescnsecece

3.5 Procedure Putblocki ..cccccsccccncccnccccceccuscecevcesceses

3.6 Procedure Putdirecti cccccsccccsccccnvccccevevcesesesevveees

347 PYOGYAM LECOVELL wos cscccevencccccesscesceesceseesseseeseecs

REFERENCES scscccccccccccscccvcccccsececncccscucccsscccseucscssens

B.1 Run Time Alarm MeSSageS ...ccesecccccevcsccvcesccvvescessess

B.2 Warning MeSSageS cecessccccccccccccccccccccccscescsseeescecs

ISQ-SYSTEM RECOVERY DOCUMENTATION ...cccccccceccccccccscsvcsceces

FILE DESCRIPTIONS FOR RECOVER FILES .ccccncecncncscevccsecvescses

D.o1 Insert File wesccccccccccc cece cece sececesssseesesncusesssees

Do2 RECOVEL FILS wocscccveccsccccncscscsccnsscesesesesesessseecs

ZONESTATE LEGALITY AND CHANGING .ccecessccccccccvccccccecsssceene

EXAMPLE OF A RECOVERY RUN wccesceccccccncncccccccnenescssesessess

ON NS > SF BW WwW WwW=

13

13

14

15

16

16

17

21

22

22

23

24

28

28

28

30

31

INTRODUCTION

This manual describes new features for the Indexed Sequential

Files System (ref. 1). Below in this section they are summar-

ized, in chapter 2 explained for potential users, and in chapter

3 exact programming interfaces are given.

The Indexed Sequential Files System is designed to be very effi-

cient in both sequential and direct access mode. The three types

of blocks, the buckettable, the blocktabel and the one holding

records are kept in the primary storage and are only transported,

when it is absolutely necessary. E.g. as the file holds only one

buckettable this is read when the file is started and only writ-

ten when it has been updated and the user claims a mde shift

(e.g. at closing). This may have the sideeffect that if the pro-

gram breaks (e.g. caused by a power lack, or programming bug) a

rewriting of an updated block may be pending, in other words, the

file holds tables and records of different versions.

In the version of the system introduced here, a touch of redun-

dancy has entered the record blocks. This is used by a check and

recover program, recoveri, to examine, if the tables matches the

occuring records. Further an ‘update mark’ guards that a file,

which has not been closed correctly, is not reused accidentially.

A call of one of the mode changing procedures ensures that all

updated blocks are rewritten and they are often called with that

purpose, solely. The new procedure, putblocki, will ensure that

the recordblock is rewritten immediately, which may save two re-

writings compared to the mode procedures. In a break situation

only rewriting of table blocks may be pending, and though the fi-

le is inconsistent, the check and recover program is able to re-

pair the file without loss of records.

Another new updating procedure, putdirecti, updates immediately a

previously fetched record without changing the current record

situation. E.g. it may be used to copy information form the cur-

rent record to another record.

A sequential scanning of the file is performed by repeated calls

of the procedure nextreci. Now it is also possible to fetch rec-

ords in the reverse order, as the new procedure priorreci makes

the record prior to the current record available as current rec-

ord.

Extension of an isq-file means adding new buckets to the file.

The procedure startfilei will automatically include new buckets,

if the area holding the file and the zone have room for it. The

new procedure extendi makes it possible to extend the file during

record processing if only the zone has room for it, and the user

has the necessary backing storage claims for changing of the ca-

talog entry. Extendi can also cut empty buckets in the end of the

file.

For a long time users have asked for a procedure, which can make

the users file parameters available. The procedure headparamsi is

designed to be the inverse procedure of headfilei, and may thus

solve the problem.

EXTENSIONS AND MAJOR CHANGES 2.

Update Mark 2.1

The update mark is actually an integer stored in connection with

the buckettable. Bits are used as flags to indicate some file

states:

- the file is during intialization or recovering

~ the file has entered an updating mode

The check and recover program (see section 3.7) cannot handle a

file, which has not got through the initialization, i.e. passed a

call of one of the mode procedures after the init-procedures, or

a former recovering.

If a file has been in updating mode, it must return to reading

before it is closed. If it does not, the case is signalled as a

result from startfilei (ref. 1). The file may then be read, but

if it enters updating, the system will cause a run time alarm,

and the file must be reestablished by a backup, or by the check

and recover program.

Standard Integer blocki 2.2

Besides the standard integer resulti, the isq-system now supports

an integer, blocki, which will hold the segment number of the

record block in use. It's purpose is to supply the user with the

segment number, which may be used as call value for the new pro-

cedure putdirecti. See example 2.

2.3 Recovery Program 2.3 @ |

2.3.1 Errors in isq-files 2.3.1

2.3.2

Inconsistencies in isq-files may origin from breaks between the

writing of a record block and the corresponding table block, or

between writings of two record blocks in a complicated insertion.

Both cases will be signalled by the update mark. The check and

recover program, recoveri, is able to recover the file without

loss of records in the first case, which is the most probable. In

the second one a number of halfwords (approx. an average record)

may be lost or will exist in duplicate in the broken file, and

recoveri cannot compensate the loss, while it will select a win- @

ner among the duplicates of records.

It is hard to predict, which other types of errors that may be

reflected in a file, as some could occur when it is not reserved

by the isq-system and are thus not signalled by the update mark.

It is recommended to check the file regulary by recoveri.

Program Functions 2.3.2

recoveri is designed to check that a file is correct and to re-

pair an incorrect file, so that usage can be resumed as soon as

possible. e

It consists of two parts, which may be executed separately or as

a whole. Fig. 1 shows the two parts and the files they have in

use.

check

part

a ~\
H index- \ block

\ f iles 1 file
. /

so ”

recover

part

Figur 1: ‘The recovery program.

In the check part the isq-file is scanned sequentially, and it is

only repaired in the recover part, which gives the user the pos-_

sibility to assess the damages before the recovery. Errors are

listed at the text file ‘doc file', while the two files ‘insert

file’ and 'block file', together named the ‘recovery files', hold

records, which act as transactions to the recovery process. See

the survey in app. D. 'Indexfiles' are generated in the primary

storage during the scanning of 'isq-file' to check the logical

structure of ‘isq-file'.

Reading of the remaining part of this section claims some knowl-

edge of the isq-file structure (see ref. 1, sec. 1).

In the check part the record blocks are checked for 1) legal rec-

ord length values, 2) correct key sequence, and 3) fillers (ze-

roes) in the free words of the blocks. Errors found in those tests

For correct record blocks in a bucket an index is created with el-

ements holding the first and the last key and the number of used

bytes in the record block. The index is sorted to check that the

keys don't overlap each other, and the sorted index is matched

with the blocktable in 'isq-file’ to find any deviations. Overlap-

ping blocks will be dismissed by 'delete block'-records like

above, but the records are extracted and written at ‘insert file’.

Deviations from the blocktable are recorded at ‘block file’ as

"block table element'-records. Errors found as overlapping keys or

blocktable deviations may very well origin from breaks like those

mentioned in the beginning of section 2.2.1.

For all the buckets in the file an index is created with elements

holding the first and the last key and the size of the block table

for the bucket. Analogously with the blockindex, this index is

sorted, checked for overlaps, and matched with the bucket table.

If overlapping buckets exist, all blocks in the involved buckets

will be dismissed by 'delete block'-records and the records ex-

tracted and written at ‘insert file’. Deviations from the bucket

table are recorded at ‘block file’ as ‘bucket table element'~ rec~

ords.

Overlapping buckets should not be possible seen from the isq-sys-

tem, while bucket table deviations may possibly origin from a

break during updating of tables, and this gives no loss of rec-

ords.

At the end of the check part the recovery files are sorted, the

"block file' primarily according to segment numbers in 'isq-file',

and insert file accordng to the key fields of ‘isq-file’ plus a

field (may be user defined), which may queue duplicates of rec-

ords. 2

In the recover part the records of ‘block file' are interpreted

sequentially and 'isq file’ repaired blockwise. The tables are

adjusted and record blocks cleared, and the ‘isq file' is ready

for isq-processing. Then the ‘insert file’ is read and the rec-

ords inserted in ‘isq file’ by the isq-procedure insertreci. Du-

plicates of records are dismissed with a diagnostic at ‘doc

file’.

"recoveri' uses current output for run time alarm messages and

warning messages, see app. B, while error diagnostics are written

at ‘doc file', which may be handled as a normal text file. An

error diagnostic consists of an explanatory text and various

fields, which identify the error. A survey is given in app. C.

The core requirements for 'recoveri' may be as low as 23000 hw

for files with minimal block lengths, but as the program reads

‘isq file’ with super-buffering and have internal sortings the

processing time will decrease much with a greater core area. A

sensible lower limit will be about 50000 hw for small files to

which may be added the size of 'isq-file' to get the upper limit

for profitable core utilization. If more than one error is found

"recoveri' may need some working area at the backing storage as

4

Files which have been broken during initialization or recovering

2.3.3 Program Requirements

mentioned in ref. 3.

cannot be handled by recoveri.

2.4 New Record Processing Procedures

The system is extended with two procedures which may speed up the

updating of an isq-file, putblocki and putdirecti, and one pro-

cedure, which reads the record prior to the current record, name—-

ly priorreci.

2.3.3

2.4

Putblocki will ensure that the currently available record block

is immediately written at the backing storage, while other

writings take place when a block change is needed or when a

mode procedure is called.

Example 1, putblocki:

setputi(z);

getreci(z, key);

if resulti = 1 then

begin

zecash:= z.cash + money;

putblocki(z);

comment now money is in cash, if the system breaks.

as the file is in put mode, this record block

will not automatically be rewritten at a later

block change.

end;

Zeat= nothing;

z.b:= something;

comment nothing and something will be remembered,

if the system does not break.

:

‘

setreadi(z);

comment the record block and the updated table

blocks are rewritten now.

close(z, true);

Putdirecti makes it possible to update a record without changing

the current record situation. The procedure uses the same work

area in the zone buffer as insertreci for complicated insertions

(vef. 1) and accesses the file directly by blockaddressing, not

by indexing as the other procedures. The user must yield the

block address, but this can easily be obtained from the stan-

dard integer blocki.

Example 2, putdirecti:

camment while traversing a file the greatest value of a field i

immediately copied to a distinct record in the same file.

;

startfilei(z);

if resulti > 1 then system(9, resulti, <:<10>bad start:>;

firstrec.key:= z.key;

maxrec.key:= 8000000;

getreci(z, maxrec);

if resulti = 1 then

maxaddr:= blocki

else

systemi(9, maxrec.key, <:<10>lost rec:>);

getreci(z, firstrec);

setupdatei(z);

while resulti = 1 do

if z.n > maxrec.n then

begin

maxrec.n:= Z.n;

rep:

putdirecti(z, maxrec, maxaddr);

case resulti of

begin

3 <*resulti = 1, ok*>

begin <*resulti = 2, maxrec lost*>

getreci(z, maxrec);

if resulti = 1 then

begin

maxaddr:= blocki;

getreci(zm, key);

goto rep;

end

else ;

system(9, maxrec.key. <:<10>lost rec:>);

end;

system(9, maxrec.1, <:<10>length:>);

system(9, 0, <:<10>no buf:>)

end; ”

nextreci(z);

end while if;

2.5

10

Priorreci makes the record prior to the current record available

as current record and may thus be used to scan the file from the

final record to the first one, but it is faster to use the re-

verse order with nextreci (ref. 1).

Example 3, priorreci:

startfilei(z); <*get the first record*>

priorreci(z); <*get the last record, resulti 2*>

comment count the records;

i:= 0;

repeat

priorreci(z);

i:= i+1;

until resulti <> 1;

New Service Procedures 2.5

Two new file handling procedures are introduced, headparamsi,

which reads the file definition parameters from a file head, and

extendi, which may extend a file with more buckets or cut unused

buckets. See the procedure definitions in section 3.3 and 3.2 re-

spectively.

headparamsi may be perceived as the reverse procedure of

headfilei (ref.1), which creates an isq-file head from the user's

parameters. headparamsi reads a file head and supplies the user

with the original file head parameters.

Example 4, headparamsi:

comment create a file head for file b, which is equal

to that of file a, except that it has an extra key

field.

open(za, 4, <:a:>, 0);

open(zb, 4, <:b:>, 0);

11

headparamsi(za, recdescr, nkey, maxreclength, maxlength,

segsperbuck, segsperblock) ;

nkey:= nkey +1;

comment move the length definition:;

recdescr(nkey +1, 1):= recdescr(nkey, 1);

vecdescr(nkey +1, 2):= recdescr(nkey, 2);

comment the extra field is of type integer and placed two

hw after the previous field:

?

recdescr(nkey, 1):= 2;

recdescr(nkey, 2):= recdescr(nkey -1, 2) +2;

extendi may be used when the file is in an updating mode or during

initialization. It includes new buckets in the file or excludes un-

used buckets and segments in the end of the file by changing the

catalog entry and the buckettable. New buckets will hold an empty

blocktable and cleared record blocks. For the extension extendi u-

ses the work area in the zone, so this must be declared for full

insert besides some extra double words for addition of new bucket

table entries. The size of an entry is given in ref. 1 section 1.3.

Example 5, extendi, include new buckets:

zone zi(buflengthi(<:i:>, true) +10, 3, stderror);

comment the zone is declared to hold five extra bucket

table entries of the size 1 + keypartsize = 1+ 1 =

2.

insertreci(zi, record);

case resulti of

begin

3 <*insert ok*>

result2;

12

result3;

begin <* resulti = 4, file is full*>

extendi(zi, 1):

if resulti <> 1 then

system(9, resulti, <:<10> extend:>)

else

begin

insertreci(zi, record);

if resulti <> 1 then

system(9, resulti, <:<10>2nd insr:>);

end

end

result 5;

result 6;

end

Example 6, extendi, exclude unused segments:

comment the program reorganizes an isq-file by

sequential copying from one file to another.

initfilei(zo, 0.8, 0.8);

startfilei(zi);

while resulti = 1 do

begin

initreci(zo, zi);

if resulti <> 1 then

begin

end;

nextreci(zi);

end;

extendi(zo, -1);

if resulti <> 1 then

system(9, resulti, <:<10>no cut:>);

13

PROGRAMMING INTERFACES 3.

In this chapter the new entries to the isq-system are described

in alphabetic order.

3.1 Standard Integer blocki 3.1

Function: After the call of an isq record processing pro-

cedure, this integer holds the segment number of

the available record block.

3.2 Procedure extendi ’ : 3.2

Call: extendi(z, segments)

z(call and return value, zone).

Specifies the file.

segments (call value, integer).

If segments > 0, the file will be extended with as

many buckets as needed to include ‘segments’.

If segments < 0, unused segments in the end of the
file area are released.

If segments = 0, the catalog entry is updated with

shortclock.

Function: The procedure changes the catalog entry of the

file, so that it may either be extended or cut. If

extension is wanted, the zone should be declared

for full insertion and with some extra room for

extension of the buck table.

Requirements: zonestate = initializei, puti, or updatei.

Results: zonestate unchanged.

procnoi: 17

Available record: unchanged

3.3

1 Done

2 Not done. Only room for simple insertion.

3 Not done. The length of z can not accomodate

the new buckets.

4 Not done. Maxbucks exceeded.

> 10000 Not done. Error at a call of a monitor function:

resulti = monitor result *10000 + monitor

function no.

Probable results:

40044 changeentry, protected

60044 changeentry, claims exeeded @

See ref. 5 for monitor functions.

Procedure headparamsi 3.3

Call:

Function:

Errors:

headparamsi(z, recdescr, nkey, maxreclength, maxbucks,

segsperbucks, segsperblock)

The parameters are similar to those of headfilei (ref. 1),

but they are all used for return values.

Extracts from the head of an indexed sequential @
file connected to the zone z, the call values of

the original call of headfilei. The zone should be

able to hold at least nkey* 10 + 45 double words.

Zonestate is 0 after the call.

The run may be terminated with an alarm, if the

parameters z and recdescr cannot hold the return

values or if one of the following rare causes coin-

cides:

head i <i>

relative position in the filehead exceeds limits. <i> e

displays the position.

15

comp ins <i>

the compare code in the filehead is erroneous. <i> displays

the value for an instruction.

gets ins <i>

the getsize code in the filehead is erroneous. <i> displays

the value for an instruction.

The three error causes above will normally indicate that the filehead has

been violated and it will not be possible to initialize, start or recover

the file. Otherwise the cause should be reported as a basic program error.

Procedure priorreci 3.4

Call: priorreci(z)

z (call and return value, zone)

Specifies the file.

Function: Makes the prior record available. The function is

the inverse of that of nextreci, but is more time

consuming.

Requirements: zonestate = readonlyi, readnexti, updatei, or puti.

Results: zonestate:= if readnexti then readonlyi else

unchanged.

procnoi: 18

resulti: Available record:

1 Found The predecessor to

the available.

2 Found, start of file The last in the file.

3.5 Procedure putblocki 3.5

Call: putblocki(z)

z (call and return value, zone). Specifies the file.

Function: The current block, i.e. the block containing the

currently available record, is immediately rewritten

to the backing storage.

Requirements: zonestate = updatei or puti.

Results: zonestate: unchanged

procnoi : 15

resulti: Available record:

1 Done Unchanged

Note: Further updatings in the current block will be handled

in the usual way. See example 1 in section 2.4.

3.6 Procedure putdirecti 3.6

Call: putdirecti(z, record, blockaddr)

z (call and return value, zone). Specifies the file.

Should be declared as for full insertion.

record (call value, real array). Holds a record from

lexicographical index 1 and on.

blockaddr (call value, integer). Segment no. of a

block which holds a record with the same key and

length as the one in the former parameter.

Function: The block addressed by blockaddr is read and the ele-

ments of "record' are copied to the matching record in

the block.

17

Requirements: zonestate = updatei or puti.

blockaddr must specify a block used for records.

Results: zonestate: unchanged

procnoi : 16

resulti: Available record:

1 Done, Unchanged

2 Not done, the key Unchanged

is not present in the

block addressed.

3 Not done, improper Unchanged

length.

4 No buffer, the zone Unchanged

should be declared for

full insertion.

3.7 Program recoveri 3.7

1

Call: recoveri <isq file> <recover files> <doc>

0

1 1 1

<tuntype> <dupspec> | <maxerror>

0

<isq file> (area entry). The name of the isq-file.

<recover files>:: = <insert file> <block file>

(area entries). If a pure checking is wan-

ted the two file names may be omitted. If

errors a the two files are used for the

recovering information.

<doc> (key word parameter)

doc.<doc file>

<doc file> is the name of an area to be

used for error listing and run summary.

18

<runtype> (key word parameter))
check

run. /{ recover

all

If ‘check’ is specified only the file checking

will be run.

If 'recover' is specified only the file recovering

will be run, which requires that a ‘check’-run has

filled <recover files>.

If ‘all' is specified both checking and recovering

will be run.

vrun.all is default.

<dupspec> (key word parameter) @

dup .<duptype>.<dupaddr>

This parameter is the specification of the winner

record in the case of duplicates in the file. See

section 2.3.

half

integer

<duptype>:: = long

real @

<dupaddr>:: = <fieldaddr>

asc means ascending order (default).

des means descending order.

dup. integer.<last +2> is default, <last +2>

meaning the word after the last defined key field.

<maxerror> (key word parameter)

max.<unsigned integer>

if the number of erroneous blocks exceeds the

specified value, the run stops after the checking.

Default is no stop. e

Function:

Requirements:

Results:

19

The program holds two phases, the checking and the re-

covering, which may be called separately. During the

checking errors are reported at <doc file> and records

for. recovering stored at <recover files>. The recove-

ving part will read <recover files> and repair <isq

file>. The user may modify <recover files>, see the

file formats in app. D.

Any trouble caused by parameters will cause a run time

alarm. A list is given in app. B.1.

After the recovering <isq file> may be accessed the

normal way. If the program breaks during the recover-

ing phase it cannot be guaranteed that <isq file> may

be accessed again by this program or the isq-procedu-

res. (Therefore it is recommended to take a backup co~-

py before a complex recovering, see app. F).

After run.all or run.check with errors in <isq file>

the fp-bit warning is true. After run.recover the same

bit means that some of the records of <insert file>

cannot be inserted.

REFERENCES

1.

2.

21

RCSL No 31-D 600, June 1980, Inge Borch

RC8000 Indexed Sequential Files.

RCSL No 31-D 602, June 1980, Inge Borch

RC8000 SQ-SYSTEM.

RCSL No 31-D 562, April 1979, Jgrgen Winther

RC8000 Backing Storage Area Sorting.

RCSL No 42-i 1278

ALGOL7, User's Manual, Part 2.

If this is not yet available, please use

RCSL No 31-D 322

ALGOL6, User's Manual.

RCSL No 31-D 477, January 1978, Tove Ann Aris

RC8000 MONITOR, PART 2, Reference Manual.

A.

MESSAGES FROM THE RECOVERY PROGRAM B.

B.1 Run Time Alarm Messages B.1

In the case that a requirement of an isq-procedure is violated, a

message is printed at current output and a run time alarm is

invoked. A list of the messages is given in ref. 1.

The recover-program uses the algol i/o-System, the SQ-System,

mdsortproc, as well as the isq-system itself, and therefore some

of the messages listed in ref. 1, 2, 3, and 4 may appear as a run

time alarm from this program, but often the alarm is supplied

with one of the messages listed below:

freecore <i> the program needs more 'core' to handle

the isq-file. <i> is the number of half-

words left for a single share and should

be increased to hold as many segments as

possible to decrease processing time.

initmark <i> an initmark was found in the isq-file,

meaning that an initialization run was

not campleted and the file cannot be

recovered. <i> is irrelevant.

lookup <i> lookup of the isq-file without success.

See ref. 4 and 5, monitor function 42.

<i> is the monitor result. (<i> = 3 means

file does not exist).

progeall <i> error in the program call at parameter

no. <i>.

sortdisc <i> too few backing storage claims for sort-

ing of recover files. <i> <0 means lack-

ing entries, <i> > 0 means lacking seg-

ments.

B.2

23

sortout <i> the backing storage device for the reco-

verfiles does not exist or the user has

too few claims on it. <i> = -1 means does

not exist, otherwise the segment claim.

sortsize <i> the program needs more core to sort the

recoverfiles. <i> is the extra core claim

in halfwords.

The three messages above are preceded by an indication of which

recover file is to be sorted. The insertfile is sorted primarily.

Warning Messages B.2

If errors are found by the recover-program, the messages below are

printed at current output,

***isq-check warning: <i> errors,

or

***isq-recover warning: <i> errors.

The first means that <i> blocks or tables in the isg-file are in-

terpreted as being erroneous, and the second that <i> recover-re-

cords are rejected in the recovery-phase. The types of errors are

explained in the documentation file.

ISQ-SYSTEM RECOVERY DOCUMENTATION

The recovery documentation is stored in the file named at the key-

wordparameter 'doc', see sec. 3.7.

The types of recovery informations are identified by a unique num-

ber, which is printed in the beginning of each information line

prefixed by two asterixes, e.g. **09. After the number follows an

explaning text and depending on the type, some leading texts and

data from the isq-file that may help the user to get a survey of

the needed recovery actions.

The recovery informations are listed in the orders in which they

are discovered, which may differ from the sequential scanning of

the file, and from the key-order.

Below the possible types of recovery informations are listed and

commented. The underlining of some terms means that the quantity

is printed. Key fields are printed with the algol standard layout

for their types.

This appendix is enclosed by an example.

**0] RECORDLENGTH

The recordblock starting at segm.no has a record at field-

address which has an illegal length. The id. of the first

record of the block is printed if possible. The type may

origin from some rubbish in the block so length, record, and

first rec. may not be informative.

The block will be scratched.

**02 CLEARED BLOCK

Not used.

**03 KEY SEQUENCE

The recordblock starting at segmmo has a record at field-

address which is out of sequence order. The id. of the

Cc.

EQOA

**05

**06

*407

@ kkOg

#EQOQ

25

first record of the block is printed.

The block will be scratched.

OVERLAP BLOCK

The recordblock starting at segmno has records with keys

that overlap the keys of another block in the same bucket.

The id. of the first rec and the last rec are printed.

The block will be scratched and the records written at the

insertfile.

NEW BLOCKTABLE

Because of errors in the recordblocks of the bucket starting

at segm.no, a new blocktable will be created and written.

OVERLAP BUCKET

The bucket starting at segmno holds records with keys which

overlap the keys of another bucket. The id. of the first rec

and the lastrec in the bucket are printed.

All the blocks in the bucket and the blocktable at segmno

will be scratched and the records written at insertfile. -

NEW BUCKETTABLE

Because of errors which cannot be repaired within bucket-

limits, a new bucket table will be created and written.

BUCKETHEAD

The file needs correction for internal purposes. A new

buckettable will be written.

BLOCKTAB. ERROR

The recordblocks of the bucket starting at segmno are accep-

ted, but the corresponding blocktable is not correct. The

key of the firstrec in the bucket is printed.

The blocktable will be corrected.

RT]

RET 2

#*Y3

#e1A

BUCKET DELETE

A whole bucket starting at segmno is lost because of errors in

the record blocks.

BUCK. TAB. ERROR

All the buckets of the file are accepted, but the buckettable

is not correct.

The buckettable will be corrected.

FILE DELETE

The file is so damaged that no record is accepted. After

vevocering the file will contain only records from the insert

file.

FILE DESCRIPT

The number of records or of halfwords used for records stored

in the file differs from the number counted during the check-

ing. The deviation is printed (number counted-number stored).

The number in the file does not need to be exact for proces-

sing of the file.

This recovery information type may include the text ‘update

mark found', in which case the file must be recovered before

updating by the file-i procedures.

INSERT RESULT

During recovering of the file records may be dismissed by the

file~i procedure insertreci, see ref.1. The reasons are indi-

cated in clear text and the key of the record is printed.

An example of recovery documentation is shown next page.

27

@ ISQ-SYSTEM RECOVERY DOCUMENTATION 79 03 02 FILE: ISQFILE PAGE 1

**04 OVERLAP BLOCK SEGM NO: 11 FIRST REC : 110010 LAST REC : 190020

**04 OVERLAP BLOCK SEGM NO: 7 FIRST REC : 180000 LAST REC : 180000

**01 REC LENGTH SEGM NO: 19 FIELD: 504 LENGTH: 0

RECORD: 0 FIRST REC : 201230

**01 REC LENGTH SEGM NO: 20 FIELD: 16 LENGTH: -1

RECORD: -1 FIRST REC : 190430

r **03 KEY SEQUENCE SEGM NO: 21 FIELD: 16 RECORD: 210421

FIRST REC : 210420

**03 KEY SEQUENCE SEGM NO: 22 FIELD: 16 RECORD: 221230

FIRST REC : 221210

**05 NEW BLOCKTABLE SEGM NO: 18

**04 OVERLAP BLOCK SEGM NO: 25 FIRST REC 250011 LAST REC : 250422

**04 OVERLAP BLOCK SEGM NOs: 26 FIRST REC 250420 LAST REC : 261250

250011e **09 BLOCKTAB ERROR SEGM NO: 24 FIRST REC

**09 BLOCKTAB ERROR SEGM NO: 30 FIRST REC 300000

**07 NEW BUCKETTABLE SEGM NO: 1

Zonestate Legality and Changing

(non filled field means illegal relation)

8
3

E
et oO

n My u Fs : ist oe
a) o ca a is at
ge gles 8 / Ela) 4
N iy 3 4 q 8, 5 4

4 0 10 1 12 13 14

procedure ref. :

close 4 4 4 4

deletereci 1 | 12 13

extendi - 12 13 14

‘getparamsi 1 10 11 12 13 14

getreci 1 10 1 12 13

headfilei 1 0

headparamsi -

initfilei 1 14

initreci 1 14

insertreci 1 12 13

nextreci 1 11 11 12 13

open 4 0

priorreci - 10 10 12 13

putblocki ~ 12 13

putdirecti - 12 13

putreci 1 12 13

setparamsi] 10 11 12 13 14

setputi 1 12 12 12 12 12

setreadi 1 10 10 10 10 10

settesti 1 10 11 12 13 14

setupdatei 1 13 13 13 13 13

startfilei 1 10

31

Example of a Recovery Run F.

This example shows a job with a separate checking and a backup

before the recovery:

recoveri isqfile recover insert doc.pap run.check

; check if parameter problems:

if ok.no

(message stop caused by recoveri call

finis ‘

)

>; check if isqfile ok

if warning.yes

(convert pap

message recoveri dok converted

} take backup

claimtest perm.discn.1000.1

if ok.no

finis

oldisgq = entry isqfile discn isqfile isqfile isqfile isqfile isqfile

scope user oldisq

oldisq = move isqfile

recoveri isqfile recover insert doc.pap run.recover

if warning.yes

convert pap

After a recovery run it may happen that the quantities ‘recbytes' and

"noofrecs', ref. 1 sec. 1.3, are not exact, but this has no

consequences for the further processing. They may be repaired by an

extra recovery, @.g.:

recoveri isqfile a b doc.pap

if warning.yes

convert pap

32

RETURN LETTER

Title: Extensions to RC8000 Indexed Sequential Rcs, No.: 31-D601

Files System (ISQ)

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,

and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:_

Thank you 42-11288

thence ween nenes Do not tear - Fold here and staple--.-0-0--

Affix

postage

here

§REGNECENTRALEN
af 1979 r

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

