RCSL No: 31-D662

Edition: February 1982

Author: Kirsten Kjgller Hansen
Niels Mgller Jgrgensen
Lars Otto Kjar Nielsen
Edith Rosenberg

Title:

Swopping Online System (S0S)
User's Guide/Reference Manual/Operating Guide/Installation CGuide

¢REGNECENTRALEN

- at 1979

RCSL 42-1005

Keywords:

RC8000, RC4000, operating system, interactive program execution,
terminal access.

Abstract:

(86 printed pages)

This manual describes the operating system SOS. The manual contains
information relevant to users, programmers, operators and system

RCSL 42-11905

Copyright © 1982, A/S Regnecentralen af 1979

RC Computer A/S
Printed by A/S Regnecentraien af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no-
tice. RC is not responsible for typographical or arithmetic errors
which may appear in this manuai and shail not be responsible for
any damages caused by reliance on any of the materiala presented.

FOREWORD

First edition: RCSL No 31-D482.

Second edition: RCSL No 31-D512.

This manual describes the operating system SOS, as it appears in
release 2.0, Octcber 1978. The former version was a preliminary
version intended for multiterminal jobs. The present version in-
cludes interactive miltiterminal jobs (using TEM), interactive
single terminal jobs (with or without using TEM) and batch jobs.
The present version supports in a primitive form access to de-
vices like tape stations and flexible discs.

This manual is an exhaustive description of SOS and it includes
subjects of interest to users, programmers, operators and instal-
lation staff.

Niels Mpller Jérgensen
A/S REGNECENTRALEN, September 1978

Third edition: RCSL No 31-D662.
The changes are indicated by correction lines in the left margin
and concern mainly the description of the new facility for typing

invisible password.

Edith Rosenberg
A/S REGNECENTRALEN af 1979, October 1981

iii

TABLE OF CONTENTS PAGE

]‘ INTRODUCI‘ICET LR RN N I A I I I) LA B I A R R R R R R IO I .]

2, USER'S GUIAE sveesssesssnssssssscssssssacanes cessessenass 4
2.1 S80S Illustrated by Means of EXamplesS ..esesesessess 4
2.2 S0S User Commands seeeees T e

2.2.1 Job Creation CoOmmands sesesssesssscssssssess 14
2.2.2 Multiterminal CoOmMAndS seveceesvascosccnaans 15
2.2.3 Job Intervention COMMANAS svseeseeonseennnes 17
2.2.4 Device Handling Commands «..cesveeescoessess 18
2.2.5 PasSWOLd seveeseesscsssssesscnsscscssnansnns 19
2.3 Terminal ACCESS sesvenccscnes sessssssssssnssssssnss 20
2.4 Resource Allocated to SOS JODS eescsssssscsssseness 2]

3. REFERENCE INFORMATION .vvevvccvccsasas ceasrsrrasssssnaas 22
3.1 Job Scheduling cecesesesssssossnssossenssonssssasanas 22
3.2 Terminal ACCESS seevsvescsscassnscasanas tresarssaas 25
3.3 S80S - Job Intercammnication sesseessssssscsscnanas 26

3.3.1 Primary Input and OULDUL: eeseesssssscsssonces 27
3.3.2 Transparent Communication tO TEM seeseescees 28
3.3.3 Parent MeSSAgES eevesevesssascsssssannas saas 30

4, OPERATING GUIDE; 33
4.1 StArt=Up .e.eeeenn.. U ¢
4.2 Operator INtErvention +eeeesesssssescensenees eee.. 34

4.2.1 System Intervention esvesecessessss vesssenss 34
4,2.2 Job InterventiOn «sesssssssssssssssssssssass 35
4.2.3 Device SUPPOrt .eesesesssssssssssssesssesanse 36
4.3 ClOoSe DOWIl seveseeessncssscsssansnsas sessssessessss 37
4.4 How to Handle System FAQilur€ .eeeveeecosscsoveessss 37

5. INSTAIIATTON NMOTES cvsevssoscesssscsscsasessnacosanannns 40
5.1 System Distribution ...ceveevecsaans tesens vesessass 40

5.2 System TrilMing eeeeevesesesesssensss P § |
5.3 User Catalog vevesessees crenae cesessssssseesnssasess 48
5.3.1 Data per Job (Process) .veieeesneesasnsanns . 49

iv

TABLE OF CONTENTS (continued)

PAGE

5.3.2 Creation and Change of the User Catalog

5.3.2.1 Creation «....
5.3.2.2 Change +seeesee

e e s s s 0 s EsEe

¢ s 2 s a0 0sasuae

5.3.2.3 Listing seeescscesssssasanasnsenns .
5.3.3 Resources Needed for Creating a Catalcg

5.3.4 Error MessagesS .ecceess

5.4 Test Facilities ccecesesasaras

APPENDICES:

RHERWCES 44804000 EBE PSRN BE RS N A R R A A A R I A I I I)

SOS COMMANDS siescsonsssnssoascoass

mssmmmms ''''' LA B B R AR

LR I I A I A A R N N

AN EXAMPLE OF A MILTITERMINAL PROGRAM ssveesnens

EXAMPLE CF A USER CATALOG +eceaecas

THE AUXILIARY FILE "sostrim"

THREE VERSIONS OF A MASTER MIND PROGRAM +vcssvevrsssasscs

G.1

Simple Single Terminal Version

s e e e e

G.2 Single Terminal Version with Input Checking «s.ee..
G.3 Multiterminal Version with Input Checking .

DIDEX LR N NN N NN

H.1

Survey of ExamplesS seveeensnss

LIRS N B)

[A I B

50
51
53

55

56
59

63

64

71

72

73

75
75
76
77

78
78

INTRCDUCTICN

The main purpose of an operating system is to serve the users by
supervising the execution of their programs. In a multiprogram-

ming environment with a number of users running their programs
similtaneously the main tasks include:

1) facilitate resource sharing
2) control and facilitate the access to common equipment

3) prevent unauthorized access to private information

In the case of RCB000 the supervisory functions are performed by

the monitor (ref. [1]). The resources of the computer may be par-

titioned into so-called processes. A process is a set of re-
sources used for program execution. In each process programs may
be executed one at a time. A process may play the role of an
operating system by creating and controlling child processes ac—

cording to same strategy.

SOS is an operating system process and each user logged in is
served by a child process, created by SOS.

In many computer systems the primary store is a key resource. To
obtain a good machine utilization it is important that key re-—

sources are released, when they are not actively used.

At interactive program execution there will be long periods du-
ring which the process waits for the terminal operator to type
same input. In case no resources are released during these per-
icds, the machine utilization will become prohibitively poor.

The main purpose of SOS is to make a mumber of programs (pri-
marily interactive programs) share the same part of primary
store. This is done by supervising the program execution and by
swopping programs (writing the primary store to backing store
during passive pericds).

SOS is mainly intended for supporting interactive program exe—
cution. However, SOS includes facilities for executing batch

jobs, too, and the rescurce scheduling is based on the following
elements: ' .

A series of programs executed in the same process ane after the
other is called a "job".

a) Any job running under SOS is in cne of the following
states:
1) running
2) suspended (ready to run, but the primary store is
occupied by ancother job)
3) waiting (the job is not ready to run - e.g. waiting for

terminal input)

b) Execution time is allocated in slices (of a few seconds). .
In case a job does not suspend itself within a time slice
it will be suspended by SOS.

c) Highly interactive jobs will be favoured by a high pricr-
ity, while more CPU~bound jobs will get descreased prior-
ity. The time slices are allocated according to the prior-
ities of all jobs which are ready to run.

d) Batch (or background) jobs are activated only during pe-
riods where no interactive jobs are ready to run, and a
running batch job is stopped immediately when some inter-—
active job becomes ready for activation (for instance when . |
input arrives fram a terminal).

In RCB000 any program (utility -or user defined program) is ex-

ecuted in a so-called "process", no matter the operating system

controlling the execution. Thus the access to the basic camputing |
facilities (CPU, primary store and backing store) is not affected 1
by the actual cperating system, and all utility programs like ‘
carpilers, editor, catalog handling programs etc. may be used

under SOS exactly as under S or BOSS.

However, S0S does not allow full and direct access to slow de-
vices like printers, paper tape readers etc. This is so because .

the resources occupied by programs using slow devices are often
poorly utilized - it is extremly inconvenient if interactive pro-
grams are blocked by programs using slow devices.

The use of slow devices is assumed to be undertaken by service
modules like the printing module (PRIMD) or the file router.

USER'S GUIDE

The present chapter illustrates by means of examples scme of the
facilities offered by SOS. All facilities of SOS are described in
detail in later sections. According to the intentions of SOS the

examples mainly concern interactive program execution.

50S Illustrated by Means of Examples

Job creation.

SOS is always accessed from a terminal and a session is initiated
by a "job creation". At job creation SOS consults the user cata-
log to check that the user is allowed to use the system and to
know how much resources shall be allocated to him. The job crea-
tion is initiated by pushing the attention key. The user is then
asked for the name of the system, he is going to use. In case of
S0S the user will be answered by a ">" and then he may type his
camand. (In the examples all output written on the terminal is
printed with capital letters while terminal input is printed with
small letters. @ denotes a push on the attention key).

@

ATT sos

> GO rc pass nn

02.06 S0S: RC ENROLLED

Example 1: Job creation.

The cammand (go) creates a set of resources (a process) with the
name "rc" and initiates this process by loading the file proces-
sor FP (see ref. [3]). In this example a password ("mn") is de-
manded to create the Jjob "rc". '

When a user has started a session by creating a job as explained

in the former, his next command(s) will be interpreted by FP and
he will ke able to run the utility programs interactively.

claim

AREA 24 BUF 25 SIZE 60416 FIRST (ORE 65268

DISC: 21 SEGM/SLICE

TEMP 504 SEGM 18 ENTR
LOGIN 315 SEGM 5 ENTR
PERM 315 SEGM 5 ENTR

Example 2: Executing utility program.

Simple program develcpment.

The present part of the chapter primarily deals with interactive
program development (typing and debugging), and readers who are
not familiar with or not interested in program development, may
skip this section and continue at "execution of interactive

programs”.

Assume that same user wants to exercise his mind by playing the
"master mind" game. Then he needs sameone to set up random com-
binations and to answer his guesses. He realizes that in case he
could write a program enabling the camputer to do the job, he

would have the fastest, most reliable and most patient player

ever seern.

After some thinking the user has created a program in his mind
(and on a piece of paper) and he wants to debug it. First of all
he must type in the program text. This is done by using the
utility program "edit". '

e

mastertxt=edit -
EDIT BEGIN.
i/ ®
begin

integer array solution,guess(1:4);

integer 1i,Jj,x,digitok,digitincluded;

setcombination:
for i:=1 step 1 until 4 do
begin
random(x);
solution(i) :=x mod 10;
for j:=1 step 1 until i do
if solution(i) = solytion(j) and i < j then i:=i-~1;
end;
write(out,<:master mind program ready<10>:>):

next:
setposition(out,0,0);
write(out,<: :>);
for i:=lstep 1 until 4 do read(in;guess(i)): .
digitock:=digitincluded:=0;

for i:=1 step 1 until 4 do
begin
for j:=1 step 1 until 4 do
if guess(i) = solution(j) then
begin
if i=7j then digitok:=digitck+]
else digitincluded:=digitincluded+];
end;
write(out,<<dd>,quess(i));
end;
write(out,<: => :>,false add 43,digitock,
false add 32,4-digitck,
false add 45,digitincluded,
false add 10,1):;
if digitok <4 then goto next else
begin :
write (out,<:you got it 1!I<10>:>):
goto setcombination; : ‘l')
end;
/e
£
EDIT END.

Example 3: Creating a text file.

Now the program text has been created and stored in the file
“mastertxt". To save the text for later use it may be permanented
by means of the utility program "scope":

sScope user mastertxt

lockup mastertxt
MASTERTXT =SET 2 DISC D.780930.0207 0 0 0 0 ; USER

; 1886 135 3 810 819
Example 4: Executing utility programs.

After this the program may be translated by calling the ALGOL
campiler.

masterprog = algol mastertxt

MASTERTXT D.780930.0207
1 :BEGIN '

37 :END:
6. LINE 10 . 3 UNDECLARED

LINE 16 . 6 TERMINATION
LINE 16 . 8 DELIMITER
AILGCL END 22

Example 5: Program translation.

The errors detected by the compiler may be corrected by means of
the editor, like this:

newmaster = edit mastertxt
EDIT BEGIN.
1./solytion/, r/solyt/solut/
IF SOLUTION(I) = SOLUTION(J) AND I <> J THEN I:=I-1;

1./read(in;/

FOR I:=] STEP 1 UNTIL 4 DO READ(IN;GUESS(I)):
r/in?/inr/
c FOR I:=1 STEP 1 UNTIL 4 DO READ(IN,GUESS(I)):

"EDIT END.
mastertxt=move newmaster
masterprog = algol mastertxt

MASTERTXT D.780930.0217
1 :BEGIN

37:END:;
ALGOL END 25

Example 6: Text editing.

The corrected version of the program is translated and in case
the translation was successful the next step will be to run the

program.

Execution of interactive programs.

All programs (utility or user defined) are activated by the file
processor which reads the job control commands (program calls)
loads the actual programs and hands over eventual parameters. The

master mind program just created uses no parameters and it may be
executed like this:

masterprog
MASTER MIND PROGRAM READY
0123

0123=> -—
4567

4567= -
1078

1078=> —
7910

7910=+ -~
7802

7802= ~—
6280

6280=++
3780

3780 = 4+t
YOU GT IT Il
MASTER MIND PROGRAM READY

Example 7: Execution of interactive program.

The master mind program is by its nature an interactive program
as it would not be possible to prepare the input (guesses) in
advance -~ each new input will depend on all answers written by
the program.

The program developed will never terminate. When the user reaches
the solution the program will generate a new one and try again.
The only way to escape is to make a job intervention. To remove
the job the user may proceed like this:

@

ATT sos

>kill

02.23 SOS: READY

02.23 S0S: RC REMOVED AFTER USER KILL

Example 8: Job intervention.

Job termination.
However, most programs will terminate, and the usual way to close
a terminal session is by calling the utility program "finis".

This program tells SOS that the Jjob has finished and the re-
sources allocated may be released.

finis
02.24 S0S: RC REMOVED AFTER FINIS

Example 9: Job termination.

The master mind program may be changed in different ways. In ap-
pendix G is shown two new versions. One of them is a single ter-
minal version performing input check. The other cne is a multi-

terminal version based on the context facility of ALGOL and ac-
cessing the terminals via TEM.

Accessing a Multiterminal Program.

A Multiterminal version of the mastermind program (as shown in
appendix G) may be accessed from a terminal by using the multi-

10

terminal "login" and "logout" facilities of SOS. The session may
lock like this (the program is executed in the job "team"):

@
ATT sos

>in team usera pass al
02.52 S0S: TERMINAI, CONNECTED

FROM TEM
MASTER MIND PROGRAM READY
0123

0123=> -
4567

4567= -
8915

8915=+ ~—
9825

9825 =+ -
9385

9385 = +H+
YOU GOT IT ||

MASTER MIND PROGRAM READY

Example 10: Running a miltiterminal program.

Autamatic Program Activation.

In the examples shown so far the user has controlled his activ-
ities by calling the programs cne by one. In case a user from
time to time runs exactly the same set of programs exactly the
same way, he may get his programs activated autcmatically. This
may be done by stating in the user catalog a set of commands that
‘will be interpreted at login.

11

Same service functions may be implemented by executing automati-
cally activated programs. A program, listing the jobs currently
enrolled, might be run this way:

@
ATT sos
>run display

FROM TEM
02.25 SOS: DISPLAY ENROLLED

DISPLAY AF SOS DEN 78 09 30 KL. 2.25
CLATM:

NAVN START RPRT CPU SIZE BUF AREA
RCSAVE 02.24 02.24 0.0 75264 3 6
TEAM 02.25 02.25 0.0 75264 3 6
DISPLAY 02.25 02.25 0.1 12800 3 5

END 21
02.25 S0OS: DISPLAY REMOVED AFTER FINIS

Example 11: Autamatic program activation.

Running batch Jjobs

A number of activities are not suited for interactive execution.
Often these activities are running for a long time without any
communication with the user. Programs generating safety copies,
translation of large systems or large database reorganizations
are all examples of typical katch programs. Under SOS, batch
programs may be executed, too. However, batch programs will never
be activated when interactive programs are ready for running.

12

A user who wants to "save" his files on a magnetic tape may do
like this:

@
ATT sos

>batch rcsave
02.27 80S: RCSAVE ENROLLED
save mt1k0001.1.label.private tsos ttem

NO DUMPLABEL (N FILE 1
WRITTEN: DUMP MITKOOO] 001 VERS. 300978.02 S=1 PRIVATE

TSOS | 144 PROJECT.DISC D.780929.2137
TTEM 67 PROJECT.DISC D.780926.2015
2 ENTR., 211 SEGM.
WRITTEN: DUMP MILKOOO1 002 EMPTY 300978.02 PRIVATE
END 75
finis

02.29 SOS: RCSAVE REMOVED AFTER FINIS
Example 12: Running a batch job from a terminal.

In case many interactive users are active in the system or in
case the user saves many large files he will have to spend rather
a long time between the "save-command" and the "finis command”.

Instead he might prepare the whole Jjob by creating a Jjobfile with
the same contents:

savejob=edit

EDIT BEGIN

i/

save mtlk0001.1.lakel.private tsos ttem
finis

/£

EDIT END.

scope project savejob

Example 13: Creating a job file.
" The whole job may now ke executed using this jobfile. By doing

so, the user does not have to stay at the terminal during the
run.

2.2

13
@.
ATT sos

>batch rc jobfile saveijob pass nn
02.32 50S: RC ENRCLLED

READ : DUMP MTLKOO0O] 001 VERS. 300978.02 S=1 PRIVATE

WRITTEN: DUMP MILKOOO] 001 VERS. 300978,02 S=1 PRIVATE

TSOS 147 USER.DISC D.780930.0137
TTEM 67 PROJEKT.DISC D.780926.2015

2 ENTR., 214 SEGM. :
WRITTEN: DUMP MTLKOOQO1 002 EMPTY 300978.02 PRIVATE
END 75

02.34 S0S: RC REMOVED AFTER FINIS
Example 14: Running a job using a job file.

Often it would be more convenient if output from batch jobs were
printed on a line printer. This may be done by using the service
module PRIMO (see ref. [5]). The output is currently written into
a backing storage file and at jcb termination, PRIMO is asked to
print the file.

savejob=edit

EDIT BEGIN

i/

o autfile

save mt1k0001.1.label.private tsos ttem
ocC

scope user outfile

filexfer ocutfile 1p queue.paper.ad
finis

/£

EDIT END

Example 15: Jcb file routing job output to printer.

S80S User Cammands

In this section all SOS user commands are described, their syntax

and their semantics. The cammands are grouped accordj.ng to their
functions. In chapter 4 of this manual (the Operating Guide) the

SOS cammands used at cperator intervention are described. In case

2.2

2.2‘1

14
the system is run by the users themselves at least same of the

users will have to know how to use these operator intervention

camands.

Job Creation Cammands

SOS has three different job creation commands: "go", "run" and
"batch". The syntax for the job creation cammands is:

(o] 1
%un <jobname> { jobfile <filename>
batch 0

111
{pass <password> {newpass @assword)} O}O
See examples 1, 11, 12 and 14.

Each of these commands will create a job (a process) with a set

of resources as described in the user catalog. A job started by

the "go" or the "run"-command will be scheduled as an interactive

job while a "batch" job will be scheduled as a background ‘job
(i.e. a "patch" job may only ke active during periods where no

"go" or "run" Jjobs are ready for activation).

The difference between the "go" and the "run" commands concerns

the handling of the terminal only. In case of a "run" command the

terminal is connected via TEM (see ref. [4]), offering ocutput

spooling. In case of a "go" command, the terminal is accessed by

S0S directly - and no spooling is offered. At "batch" jobs, the
terminal is always accessed by SOS directly (as at "go").

The "jobfile" option enables the user to prepare his job by

creating a (permanent) file containing all program calls etc.

necessary for the execution of his job. The Jjobfile is said to be
the primary input document of the job. At jobs not using the job-

file option, the terminal is the primary imput document. In all
cases the terminal is the primary output document of the Jjob.

2.2.1

15

To avoid confusion, SOS will not accept that a given terminal is
the primary input document of more than one job at a time. How—
ever, the same terminal may be the primary output document of

several jobs.

In other words, several jobs may be started from the same termi-
nal (and run simultaneously), but at most one of these Jjobs may
be created without using the jobfile option.

In the description of a process (a job) in the user catalog a
field defining a password is included. In case this password is
nonempty, the job creation will not be accepted unless the com-
mand includes: pass <password>. This facility is included to
check the authorization of the user and to grant privacy. An im-
prove::i security may be cbtained by redefining the password. This
may be done by using the "newpass" option. By means of this op—
tion, the password may be changed at startup like this:

. pass hobo newpass hifi

(if the password of a process has become empty, it is not pos-
sible by the newpass option to create a password - thus "public"
jobs using no password cannot be blocked by a user defining a new
password) .

2.2.2 Multiterminal Commands 2.2.2

Jobs running multiterminal programs may use TEM (see ref. [4])
directly (i.e. transparently via SOS). In any case the job must
ask TEM to create a terminal group (pool) and then the terminals
may be connected to the group (i.e. llnks are created to the ter-
minals). The terminal connections n'ay be established or removed
by the program explicitly asking TEM to create or remove the
links. Principally the same job may be performed by SOS using the
multiterminal commands "in" and “out".

16

A user who wants to be serviced by a multiterminal job may get
connected by using the "in" cammand:

111
in <jobname> <username> {pass <password> {newpass <password>}o}o

See example 10.

S0S then consults the user catalog to check that the jobdescrip-
tion according to <jobname> includes a user description with the

name <username>.

The password and newpass cptions may be used here exactly as at
the job creation commands.

After having connected the terminal, SOS generates a special in-
put line and hands it to the multiterminal job. This input line
is generated to tell the job that a new terminal has "logged in".

When the terminal user wants to leave the job, he may use the

"ou cammand:

aat

This command causes SOS to generate a special input line (as at
"in") to tell the multiterminal job that the terminal "logs out”.

The exact contents of the input lines generated at "in" and
"out" may be found in chapter 3 (the Reference Part).

17

2.2.3 Job Intervention Commands 2.2.3

S80S includes a set of job intervention commands enabling the user
to control his job fully. The commands are:

stop

start . 1
<Jjobname>>
break { } 0

kill
See example 8.

The <jobname> must be stated in case the actual job is created

. using the "jobfile" option. In other words: if the terminal is
the primary input document of the job, the <jobname> is not
necessary. '

In any case the job intervened must be created fram the terminal
that is used for the job interventicn.

The "stop" command is used to suspend a job during execution. SOS

will suspend the job in such a way that it will be possible to

resume the job execution later on (in case input/output to or via

SO0S is programmed in a nonstandard way, data may be lost because

of the intervention, but programs using standard I/O should con-
. tinue wmaffectedly).

The "start” command is used to activate suspended jobs. The
suspension may be caused by a "stop" command, a "pause" parent
message (see chapter 3) or the like.

The “"break" command is used to interrupt a (possibly defective)
program. SOS restarts the program in its interrupt routine,
allowing it to run for at most one time slice. (Standard programs
will use this piece of time to make scme cleaning like: empty
buffers, write error message etc.) After this period SOS aborts
the job. h '

18

However, SOS may be trimmed in such a way that the break command

merely works as “stop load start" when the job is enrolled with- .
cut a Jjobfile. So the user will not lose his temporary files if

he breaks a program.

The "kill" command is used to abort jobs. The actual job will be
stopped immediately and there will be no time for the job to re-
port errors or the like.

It should be menticned here that the job intervention cammands
described in this subsection also exist in a special version as

"operator commands". (The cperator version of the commands is
described in chapter 4). '

2.2.4 Device Handling Commands 2.2.4

As S0S is primarily intended for interactive processing, the use
of devices (apart from backing store) must be limited to a mini-
mum. However, batch jobs will never block interactive jobs so it
is acceptable to allow batch jobs to use some kinds of devices.

The most cbvious need for device access concern printing (on line

printer) and generation of safety copies on magnetic tape or

flexible disc. Printer handling is supposed to be performed by a

service module like PRIMO (printing module). Generation of back

up, however, may be done by katch jobs. .

The use of magnetic tape, flexible disc and cother devices with
exchangeable documents is supported by a “call" cammand and an

i

"incluy command.

The "call" command looks like this:
call <deviceno> <documentname>

The function performed by the "call" cammand is to name a device
(specified by the device number: <devno>). After having named the
device, all Jjobs enrolled to SOS at present will be included as .

2.2.5

19

users of the device. At magnetic tapes and flexible discs the de-
vice (station or driwve) is usually given the name of the document
currently mounted.

In case of direct access to devices with fixed names (paper tape
punch for instance), the job will have to be included as a user
of the device. This may be done by using the "include" command:

include <devicenc>

All jobs enrolled to SOS at the moment of the inclusion will get
access to the device - but still the device may only be used

(reserved) by aone job at a time.

It should be menticned here that direct access to slow devices

like a paper tape punch may cause a poor resource utilization,
and only batch jobs should use this facility. Direct access to
slow input devices like paper tape readers will not do neither at
batch nor at online jobs.

Password

Instead of typing the password as described in subsections 2.2.1

and 2.2.2, the password may be typed invisible in a separate
line.

If the password information in the login command is amitted, and
the password defined for the job in the user catalog is non—
ampty, then SOS will answer by writing on the terminal:

>password
Now the password can be typed without echo on the screen, but a
possible typing error cannot be corrected by means of backspace
or rubout. The answer is delayed until a timer interrupt has

occured (about 5 seconds).

In this case the password cannot be changed by a newpass—command.

2.2.5

2.3

20

So the syntax for job creation commands using invisible password

is:

go
1
run ;<jobname> {jobfile <filename>} 0 'nl'

batch

">password" <password>
where the text in " " is written by SOS.
The syntax for the "in" command becomes:

in <jobname> <username> 'nl'
">password" <password>

Note! When the terminal is the main console, the password will

not be invisible, neither when the console is a screen.

Terminal Access

A program executed under SOS may perform terminal access in dif-

ferent ways depending on job creation and program behaviour.

Jobs created by the "run" command will access the creating ter—
minal via SOS and TEM, using the spooling facilities of TEM. Jobs
created by "go" or "batch" commands will access the creating ter-
minal via SOS only.

Any job (created by "run", "go" or "batch" cammand) using the
"jobfile" option will use the creating terminal for output only.

In any case the creating terminal is usually accessed by using
the standard zones "in" and "out".

Any job may access one or more terminals via TEM by using the TEM

facilities directly (see ref. [4]). However, all TEM operations

2.3

21
will be communicated via SOS, but they are handled almost trans—

parently so that the user will normally feel no change. (The dif-

ferences are described in chapter 3).

2.4 Resources Allocated to SOS Jobs

According to the main intentions of S0S, the Jjobs should not be
slowed down by accessing slow devices (and thereby block the pri-

mary store for considerable amounts of time).
A reasonable rule for resource allocation may look like this:

A: interactive jobs ("go" or "run" jobs) should nevér access
peripherals slower than backing storage.

B: batch jobs should never access peripherals slower than
flexible discs or magnetic tape.

C: access to slow peripherals like printers should always be
done via a service module like "PRIMO".

As a oconsequence the resources described in the user catalog only

concerns:

1) message buffers
2) area processes
3) backing storage entries
4) Backing storage segments

The direct use of devices (apart from backing storage) is not
supported by the job creaticn (or the user catalog) - the user
himself (or the operator) must use the "call" or "include" cam-
mands for this purpose.

2.4

22

The present chapter contains exact descriptions of subjects and
details that most users do not have to consider. However, it may

be necessary to go into same details to understand the system

3. REFERENCE INFORMATICN
behaviour fully.
3.1 Job Scheduling

SOS handles two kinds of jobs: interactive jobs and batch (or
background) Jjobs. As a consequence the job scheduling is based on
two main queues: a queue of interactive jobs and a queue of batch
jobs. These two queues contain only jobs which are ready to run.
Jobs waiting for external events like terminal input are queued

up in a waiting queue.

Only one job may be active at a time and this Jjob is found like
this:

= If the interactive queue is not empty, then find the
"best" job and activate it.

- If the interactive queue is empty and the batch queue is
not empty, then take the first job in the bkatch queue and
activate it.

- If both queues are ampty, then wait for an event making

same job ready for executicn.

When started, a job will be allowed to run for a period that de-
pends on the kind of job.

1. An interactive Jjob will be stopped
1) when it asks for input,
2) when its terminal output exceeds the spooling capacity,
3) when the time slice expires or
4) when the job ends - whatever happens first.

3.1

23

2. A batch job will be stopped
1) when it asks for input,
2) when its terminal output exceeds the spooling capacity,
3) when the job ends or '

4) when same event arrives that will make an interactive
job ready to run - whatever happens first.

When a batch job is stopped because of an interactive job, it
will remain the first job in the batch queue. When a batch Jjob is
created it is put back on the batch queue. Thus the strateqgy of
the batch job scheduling is a pure first in first out strategy.

However, this strategy may be overwritten by users or coperators
using the job intervention commands "stop" and "start". "Stop"
will move the job from the batch queue to the waiting queue.
“Start” will move the job to the batch queue but in different

ways depending on circumstances:

operator start moves the job to the head of the gueue
user start puts the Jjob back on the queue.

Interactive jobs are scheduled according to dynamically changing
priorities. Each interactive job is equipped with a "priority
class" and an actual "priority".

The priorities (and -classes) change according to the behaviour

of a job and the main rules are:
1. interaction (= terminal input) implies increasing priority

2. heavy cpu-load (= using entire time slices) implies de-

creasing priority.

An interactive job starts at the max. priority of the system

(= 0). No job will ever exceed the max. priority.

24

In the following the main algorithms used at job scheduling are
listed:

A. An interactive job is suspended because it asks for
terminal input:

if priority class + classgain > 0
then priority class: = 0
else priority class:=priority class + classgain;

priority: = priority class:

B. An interactive job is suspended because the time slice had
expired:

if prioi*ity_class - classloss < minprio
then abort job
else priority class: = priority class-classloss;

pricrity: = priority class;

C. When the "best" job is to be found in the interactive
queue, SOS proceeds like this: ’

job: = queue.first;

while job.priority < max priority do

begin '
job.priority: = job.pricrity + priogain;
put_back on queue (job):
job: = queue.first;

end;

thus all interactive Jjobs stay in the same queue no matter the
priority. However, a low priority will imply that the job will be
bypassed by cther jobs a number of times before activation. Dur-
ing a cpu-bound period an interactive job will thus spend in-
creasing periocds of time between its active time slices (in case
the whole system has a steady load).

25

3.2 Terminal Access

Terminals accessed by SOS jobs may be:

1) The primary input/output terminal from which the job was
created,

2) A nurber of terminals connected to a terminal group in TEM.
This terminal group must be created by the job itself.

The message flow controlling the access is described in subsec-
tions 3.3.1 and 3.3.2. In this section some conventions and li-

mitations concerning terminal access shall be mentioned.

A,

Programs using terminal access under SOS must follow the stan-
dard conventions for transfer checking. The most important
rule is that input or output messages answered by an empty
answer (no data transferred) are repeated.

SOS jobs will never see hard errors cn terminals because SOS
will automatically disconnect such a terminal. In case the
terminal was primary input terminal of a job, the job is
aborted. In case the terminal was connected to a mualtitermi-
nal group, it will become disconnected and the job will re—
ceive a special input telling that the terminal is discon-—
nected.

S0S jobs may create at most cne terminal group for multitermi-
nal access. This group must have the name of the terminal ac-
cess module (usually TEM). Jcbs may connect a number of ter-
minals to this pool (by creating TEM-links). In case the ter-
minals are connected by the job itself, SOS is not directly

involved and there will be no possibility for SOS to check the

authorization of the terminal users. This facility may for in—

stance be used for accessing F8000 terminals.

When an SOS job has created a terminal group, SOS may connect
terminals to this group. This is done in case a terminal user

"logs in" by using the "in" command. If the user is allowd to

3.2

3.3

26

be connected to the job (according to the user catalog), SOS
will do so and to inform the job of the arrival of a new user,
SOS generates a special input line. In a similar way SOS may
disconnect terminals using the "out" command. The contents of
these special input lines are:

login: <docalid.><1><1><32>att<32><32><32><process name><NL>

logout: <localid.><2><2><32>0ut<32><32><32><NL>
hard er-

rors: <localid.>2><2><32>hard<32>error<NL>
Only TTY-campatible terminals may use the "in" and "out" faci-

lities of S0S.

SCS - Job Intercommmication

An SOS job may access terminals, backing storage and eventually a
few cther kinds of devices. All kinds of access are on the hasic
level performed by using the "send message~wait answer" func—
tions. The communication with backing storage, for instance, will
never be affected by S0S. However, SOS intervenes all communica-
tion between an SOS job and its terminal(s), to know precisely
the current state of the job.

Thus even though a job "believes" that it communicates with its
primary input/output terminal (and eventually TEM) it really com—
municates with SOS.

Apart fram the terminal comminication there is a "parent commu~
nication" (i.e. jobs send messages to their parent, SOS, when
they finish, in case they want documents mounted, if they detect

severe internal errors or the like).

3.3

27

. 3.3.1 Primary Input and Output 3.3.1

The primary isput and output communication performed by a job may
be visualized like this:

Job SOS Terminal (or TEM)

input message -> stop process
input message ->

(other jcbs may run)
put job into <= input answer
. active queue
copy - input
<- input answer
activate job
output message —> copy output
cutput message ->

<= cutput answer

—

. <- output answer
Only two message operations are involved:

input:

message: + 0 3 mode

+ 2 first address
+ 4 last address
+ 6
+ 8
+10
+12
+14

3.3.2

The input messages may for instance be sent when using the read
procedures of ALGOL. The zone used for terminal communication
should be opened exactly as to a "real" terminal:

open (z, mode shift 12 + 8, <name of SOS system>, give up)

The ocutput messages may for instance be sent, when using the
write procedures of ALGOL. The zones used for output should be
opened exactly as for input.

output:

message:

+ 0
+ 2
+ 4
+ 6
+ 8
+10
+12
+14

28

Transparent Communication to TEM

5

mode

first address

last address

SOS jobs may use TEM by sending messages to the TEM process as
described in the TEM manual (ref. [4]). All messages to TEM will
be sent via S0S and SOS imposes a set of limitations.

1.
2.

An SOS job may only create one terminal group.

The tenm‘nai group created by a job must use the name of the
TEM process (usually TEM).

The uffer length of SOS will ke the max block length of data

transfers.

No dummy message will be returned to the job after pool

creation.

3.3.2

29

As TEM may spool input and cutput, the communication job-SOS-TEM
locks slightly different from the primary input/output communica-

tion:
Job 508 T
output message =-> cutput message ->

send timer

wait first answer

(output or timer)

regret timer <- output answer
<- cutput answer

I
A%

input message input message ->
send timer

wait first answer
(input or timer)

if timer answer first
then stop job

(other jobs may run)
put job into <= input answer
active queue
copy input
<~ input answer
activate job

The reason for using a timer period (of 50-100 m.sec.) is to
avoid swopping a job in case TEM is able to answer within this
period (often TEM will need a little time for transferring
spooled data).

In the comunication between a job and TEM, SOS will offer a
special feature. The usual convention is that each block of out-
put sent to TEM must include address information (in case of TTY

30

carpatible terminals, the first 24 bits of a block is interpreted

as an address). When communicating via SOS, it is possible to use .
an implicit addressing mode for output. In this mode no address
information is needed in the block. Instead the cutput block is

routed to the terminal from which the Jjob has received its latest

input block. (This way of addressing may often be convenient as

most terminal communication looks like terminal commands immedi-

ately followed by an answer).

To use this facility the outputzone must be opened like this:

open (z, 1 shift 18 + mode shift 12 + 8,<name of TEM>,0):

3.3.3 Parent Messages 3.3.3

Jobs may send parent messages to inform the system of job termi-

nation, severe errors or to request operator action.

‘Parent messages all use the following format:

message: + O function | pattern <5 + wait

+ 2 integer or text portion

+ 4 =
+ 6 -

+ 8 =

+0 ®
+12 -
+14 -

"function" specifies the cperation to be performed. Only even
values are allowed.

"pattern" specifies how the parent (SOS) is to display the mes-—
sage (on the system terminal). The "pattern" contains seven bits,
one to each of the last seven words of the message (+2,+4......
+14).

31

When a bit equals cne it means that the corresponding word should
be displayed as an integer, otherwise the word is displayed as a
text portion of 3 characters. Thus bit 1<11 means that the second
word of the message is an integer and 1<5 means that the last

word of the message is an integer.

"wait" may be zero or cne. A zero means that the job wants an
answer immediately, one means that the job should not be answered

(restarted) until scme operation (operator action) is completed.

When receiving a parent message, SOS will perform the following
actions depending on the function of the message:

function = 2: finis

The job is aborted. Temporary files are cleared, eventual
TEM pools and links are removed. The job process is re—
moved and a finis message is written on the start-up ter-

minal of the job.
function = 4: break

The actions are exactly as for finis. However, the mes-
sage written on the terminal is different.

If

function = 14: mount

If the document is already mounted and accessible, the
job will become a user of the device and SOS returns the
answer immediately. If the document is not mounted, SOS
displays the message and stops the job. When the operator
has mounted the job he may activate it by using the

"start" command.
function = 16: print

Displays the contents of the message according to the
general rules. Is the wait bit zero the job will be an-
swered at aonce, otherwise it is stopped and the operator
may reactivate it by using the "start" command.

32

function = 32: mount special

Treated exactly as "mount" (function = 14)

All other functions are treated exactly like a "print" message
(function = 16).

4.

CPERATING GUIDE

4.1

33

The operators tasks in the day to day running of the system com—

prise the following major points:

a. start-up

b. system and job intervention

c. device support
d. close down

e. system failure.

Start-Up

During the start-up the system calculates a set of minimm re—
sources can the basis of the trimmed values. This set of resources

must be present in order that the run can be succesful, ctherwise

the run is immediately terminated with a message specifying the

minimm set of resources. When started with sufficient resources

the resocurces available for jobs are listed.

@
ATT scs

new sos internal 3

READY

@
ATT s

function 1,

READY

FROM S80S

02.58 80s:
02.58 S0s:
02.58
02.58
02.58

02.58
02.58

8

Example 16: SOS

2,3,4,5

MESSAGE
MESSAGE
MESSAGE
MESSAGE
MESSAGE

MESSAGE
MESSAGE

started

size 50000 buf 30 area 30 perm disc 1000 40

prog bsos base -8388607 8388605 run

S0S VERSION: 780929 0
SOS (HILD RESOURCES

S08 INTERNAL 3

S0s BUF 16

S0Ss AREA 24

S0S SIZE 45568

SOS STARTED

as a child of "s".

4.1

e

34

@

AlT s .

replace prologque

@

ATT

READY

PROCESS NAME = sos

FROM S80S

PROGRAM NAME = bsos

09.02 S0S: MESSAGE SOS VERSION: 780901 O
09,02 SOS: MESSAGE SOS CHILD RESOURCES
09.02 S0S: MESSAGE SOS INTERNAL 3

09.02 S0S: MESSAGE SOS BUF 147
09.02 80S: MESSAGE S0S AREA 134
09.02 s0S: MESSAGE SOS SIZE 50688
09.02 S0S: MESSAGE SOS STARTED

Example 17: SOS started using "S-replacement". .

It should be mentioned here that even though all examples use the
system name "SOS", any name of up to 8 characters may be used.

4.2 Operator Intervention 4.2
At system trimming an operator key (an operator password) is de—
fined which may be used at operator intervention. Operator inter-—
'ventions are accepted only when initiated from the system terminal
of SOS (the terminal used at SOS start-up).
The operator interventions concern the SOS system (= system inter-
vention) or one or more jobs (= job intervention).

4.2.1 System Intervention 4.2.1

By using the system intervention commands the operator will be
able to change the state of the system. The possible commands
are:

lock
{ } <operator key>
open

(These commands are anly accepted when typed on the system ter— .
minal of SOS).

4.2.2

35

The "lock" command will make SOS refuse all attempts to create
jobs or to comnect terminals to multiterminal fjobs. The cammand
may be used for draining the system. As a consequence SOS will
write a message on the system terminal when the last job leaves,

telling the operator that the system is empty.

@

ATT sos

>lock opr

16.56 SOS: READY

Example 18: Operator intervention.

The "open" command is the opposite of the "lock" command. After
"open" job creation and terminal connection will be accepted.

Job Intervention

The job intervention commands (described in chapter 2) may in a
changed version be used as operator cammands.

In this version the syntax is:

stop

start <operator key> {<jobname>}
break all
kill

In case the "all" option is used, all jobs enrolled will be sub-
ject to the action stated.

The "stop" command will suspend the job(s) in question in such a
way that the execution may be resumed.

The "start" command will activate suspended jobs. The suspnesion
may for instance be a "pause" message requesting an operator
action.

4.,2.2

4.2.3

36

The "break" and "kill" commands abort the job(s) in question. At
"break" the job will be allowed to write an error message before .
removal.

@
ATT sos

»kill opr all
16.59 S0S: READY

Example 19: Clear system.

Device Support 4.2.3

Usually SOS jobs will not use equipment that requires cperator .
support. There will ke a need, however, for users to make safety

copies on flexible disc, magnetic tape or the like. Jobs using

that kind of equipment may request documents to get mounted.

These requests will be displayed on the s;}stem terminal of SOS.

When the document is mounted, the operator must name the device

(with the name of the document mounted) and then restart the job.

The naming is performed by the "call" command:

call <device number> <document name>

(the "call" command may be immediately followed by the “start"
cammand) . . .

16.58 SOS: PAUSE RC MOUNT MT

@
ATT sos

>call 10 mt start opr rc
16.59 S0S: READY

Example 20: Tape mounting.

37

4.3 Close Down
The SOS system is closed by using the "halt" command:
halt <operator key>
The run will terminate immediately without removing active jobs
(remember that the system may be drained before closing). In case
the system generates testoutput "halt" will close the testoutput
file. After closing SOS, the system (the SOS process) may be
removed.
e
ATT sos
>lock opr
16.54 SOS: MESSAGE SOS SYSTEM EMPTY
16.54 S0OS: READY
@
ATT sos
>halt ocpr
16.55 S0S: PAUSE SOS SYSTEM CLOSED:
Example 21: Drain system and close down.
4.4 How to Handle System Failure

During the run the system may hreak down in cne of the following
two ways:

1. An internal program error or a transport error from the
program area "bsos" may cause the system to break down and

the following error message will be printed on the system
terminal of SOS.

pause sos ***fault

(Please notice that if this terminal is reserved by other proces— |

ses (e.g. by login to BOSS) it will not be possible for SOS to
print these messages).

4,3

4.4

38

2. A hard error in the swop area makes continued running im-

possible and the system stops after having printed the
message:

message sos status <statusword> swpsos

In all error situations one should, if the system has been trim-
med with 'testoutput’, move this from the test area (e.g. TSTSOS)

to a work area, from which the TRACE-program can print it for a
further analysis. '

The TRACE program is autamatically generated at the installation
of the system. The program is called as follows:

trace <testarea>.<segments>

<testarea> is the name of the area, from which the test ocutput is
to be printed (the work area the test output has been moved to,
or the test area itself).

<segments> are the maximumm number of segments to be analyzed.
TRACE always finds the latest generated segment, and counts the
number of segments backwards from there. <segments> are automa—
tically cut to the size of the area, if something larger has been
specified.

@
ATT s

proc sos remove prog fp run

READY
TO 808
o lp

trace tstses.10000

o cC
@
ATT s

Proc sos remove

Example 22: Printing testoutput.

39

(Once again, please notice that the names used (SOS, TSTSOS and
SWPSOS) are only examples, as other names, consisting of up to 8
characters, as well might be used, allowing identical systems
each with its own name to run simultaneously.

INSTALLATION NOTES 5. “

5.1

This chapter concerns the subjects that are relevant for persons

who administers the resources of an installation and for persons
who are actually going to install an SOS system on a computer of

the RC4000 or RCBO00 series.

System Distribution 5.1

The SOS system is usually distributed as a magnetic tape contain-
ing the files below:

0: label

1: soshelp (is used as an auxiliary file when generating .
an SOS system; contains the files "sostrim",
"sossave" and "sosload")

2: tramwl (compiler for generating "bsos", "cleartemp"
and "prologue")

3: tsoscat (2 simple user catalog)

4: tsos (system program text)

5: tcleartemp (program for clearing temporary files when a

job terminates)
6: tupsoscat (program for generating, updating and listing
the user catalog)

7: ttrace (program for analyzing test output)
8: tsostest (multiterminal program for simple system .
testing)

9: tprologue (program used for starting a system as
"S—-replacement")

10: tdisplay (program displaying all jobs actually running
under SOS)

11: tnews (test file to be written on terminals running
the "hotnews" job defined in "tsoscat")

41

All files of a system tape may be automatically loaded to backing
. storage like this:

sosdoc = set 1 disc3
soshelp = set mto sostape 0 1
i scshelp

i sosload

In case mo "sosdoc" is specified the files will be loaded pri-
marily on the system disc.

On the other hand a system tape may be generated from an SoOS
system on disc by:

sosdoc = set mto sostape
i soshelp

i sossave

and a standard system may be generated from tape or disc by using
this set of commands:

soshelp = set mto sostape 0 1 ; only for tape
i soshelp

i sostrim

® .

System Trimming

The quantities to be defined when the system is trimmed, fall in-
to two groups:

a. System constants concerning the strategy of executicn, time
slice, test output, the type of machine and the buffer
length for the applications terminal I/O.

b. The minimm of resources available for the applications and

the terminal users. E.g. 1) the minimal core size for ap-
plications, 2) the minimal mmber of simultaneous applica-

. tions etc.

5.2

42

Regarding job resources, the system has been designed to calcu- .
late on the basis of its start up resources, how many jobs it

will be able to process simultaneously. If this number is smaller

than the minimum specified in the trimming, or if the remaining

pool of resources (buffers, areas etc.) is smaller than what is

specified in the tfirrming, the system will stop after the init-

ialization with an error message.

In the following all constants that may be changed in the trim-

ming are mentioned.

"optionid"
At start-up a constant showing the date of the SOS version
will be listed together with this constant. At each trimming .

this constant should be changed to show the date of the
trimming (e.g. 780901). The standard value is 0 indicating
that "standard trimming" is used.

L1 1"

rc
This constant defines the target machine to which the system
is trimmed. The only values accepted are 8000 or 4000.

"minusers"
The minimal number of jobs that may ke enrolled simultaneously
(i.e. the number of internal processes allocated to SOS).

"camdusers"
Even when the maximal mumber of jobs are running there will be
a need for handling terminals, performing operator cammands,

login commands or the like. "comndusers" defines the minimum
of terminals that will be able to commmicate with SOS without

having created any job.

“minbufs"
Defines the minimal set of message buffers in the pool of re—
sources that may be allocated to jobs.

43

"minareas"
Defines the minimal set of area processes in the pool of re-
sources that may be allocated to jobs.

"minsize"
The free size of primary store in an SOS system depends on
the size of the SOS process as defined at start-up. During
initialization SOS will check that the "free size" will be
equal to or exceed "minsize". The standard value (12800) is
sufficient for running most of the utility programs and com-

pilers.

l'bL]f'! n) -
Defines the size of the I/O buffer used for communicating
data between terminals and jobs. (Communication via TEM will
pass the same buffer - and use the same buffer limit). The

standard value (104) matches the terminal buffer size as de-
fined in the standard I/0 system.

"timeslice"
S0S allocates computing time in time slices. When a job is
swopped into primary store and activated, it will at the
latest be suspended after the expiration of a time slice.
Then the state and priority of all jobs enrolled will be
evaluated and the "winner" will get the next time slice. A
"large" time slice will decrease overhead and increase re—

sponse time variations. The standard value (3 seconds) will
often do.

"cpulimit"
Interactive jobs running under SOS will not be allowed to
cycle indefinitely. At most it will be allocated "cpulimit"/
"classloss" timeslices before being removed from the system.
In case the priority of the job was lower than the maximum
priority when the cycle started, then it will be allocated
less than "cpulimit"/"classloss" timeslices before removal.
(For further investigations see chapter 3).
Please notice: 0 < ("cpulimit" + "classloss") < 2048.

44

"classloss", "classgain", "priogain".
These three constants all concern the scheduling strategy of
SOS. This strategy is explained in detail in chapter 3. Here
some rules of thumb shall be stated:

a. 1 < <constant> < 2048

b. when "classloss" is large, jobs will rapidly be removed by
"time exceeded";

c. when "classgain" is large, jobs will quickly forget that
they have had a cpu-bound period (a period of low prior-
ity)s ‘

d. when "priogain" is large, the respcnse time will (statisti-
cally) be proportional to the computing time, while a small
value of “"priogain" will give response times that increase

more than proportional to the computing time.

"testsegmts”
The SOS system may currently generate testoutput for mainten-
ance purposes. The testoutput is cyclically written into a
testoutput file. "testsegmts" defines the size of this area.
Obviously the size of the testoutput area is proporticnal to
the period of time that may be "traced". If "testsegmts"
equals "0" no testoutput will be generated. It is recommended
that testoutput is generated at least during some pericd after
the first installation of the system. (The testoutput is
necessary in case you want the RC maintenance staff to analyze
and solve your problems. However, you should not waste your
time trying to analyze the testoutput yourself).

"conditions"
This constant is a bitpattern defining the reaction on time
exceeded (see "cpulimit") and break. The standard value is
2'000000. The bits used are:

2'000001 = abort job at time exceeded. When this bit is
zero, an online job may run for ever.
2'000010 = abort job after break command. When this bit is

zero, a user break or cperator break will work
as "stop load start" when the terminal is run-

ning a job without jobfile.

45

lloprkey"
Defines a text used as operator password. Default is "opr".
This text must be nonempty.

"swopdoc", "“testdoc"
In case these two texts are ampty, the swop area and the test-
output area are usually placed on the system disc (they are
actually placed on the first disc on which the SOS process has
got backing storage resources). To smooth disc load it may be
reasonable to place two areas on same other disc than the sys-
tem disc.

The system trimming is actually done by means of the file
"sostrim" (see appendix F) which contains the standard trimming
plus commands for generating the trimmed program version together
with some utility and test programs.

The individual trimming consists of changing some values in
"sostrim" in case standard values do not apply. This is done by
simple editing e.g.:

xtrim = edit sostrim
EDIT BEGIN
1./optionid:=/, r/0/780901/,

' 1./minsize:=/, ¥/12800/20000/,
1./timeslice:=/,x/3/5/,
1./testsegmts:=/,r/42/168/,
£
EDIT END.

.Example 23: Individual trimming.

The commands stated in the file "sostrim" (and here "xtrim") will
generate an SOS system like this:

a. load a campiler for translating SOS system

b. generate SOS system program: "bsos"

c. generate catalog cleaning program: "cleartemp"
d. generate user catalog program: "upsoscat”

46

e. generate testoutput analyzing program: "trace"
f. generate S-replacement loader: "prologue"

In case a file with the name "soscat" already exists, the system
generation will stop here. If no "soscat" exists, it is assumed
that SOS has not been running on the installation before and
therefore a set of testprograms and testfiles is generated to
facilitate a system test. The generation proceeds like this:

g. generate a simple user catalog:'soscat"
h. generate a multiterminal program:"sostest"
i. generate a display program: "bdisplay"

Jj. generate a news-file:"tnews".

47

@

ATT s

all sos run
READY

TO S80S
soshelp = set mto sostape 0 1
1 soshelp

FROM S

PAIISE SOS MOUNT SOSTAFE
@

AlT s

call 10 sostape start
READY

FROM SOS
xtrim = edit sostrim

EDIT BEGJNé/)
1./optionid/, r/0/780901/
1./minsize/, r/12800/20000/,
£

EDIT END.
i xtrim

EDIT BEGIN.
EDIT END.

TRCMOL
1:(RCMOL=SET 1 DISC
T :RCMOL~ALGOL
1:SCOPE USER RCMOL
1 :END
1 :BEGIN

3068 :END
ALGOL END 168
XS0s D.781003.1610

RCMOL/011 D.781003.1616
TRANSLATION TIME = 199.85 SEC

CORE AREA CLATM 12246 BYTES
DISC AREA CLAIM 24 SEGMENTS

"TCLEARTEMP D.781003.1615

RCMOL/011 D.781003.1616
TRANSLATION TIME = 8.34 SEC
CORE AREA CIATM = 504 BYTES
DISC AREA CIAIM = 1 SEGMENTS

END 125
(to be continued)

5.3

(continued)

TUPSOSCAT

1 :BEGIN

2013 :END;
ALGOL END 97

:

TRACE

LU DT B Y

PROGRAM FOR ANALYZING TESTOUTPUT

= *e we

e d el et md d

=

174 :END

ALGOL END 34

TPROLOGUE,

RCMOL/011 D.781003.1617

TRANSLATICN TIME 14,26 SEC
CORE AREA CLATM 996 BYTES

DISC AREA CLAIM 2 SEGMENTS

nu

END 122
END 59

TDISPLAY
1 :BEGIN

53:END
ALGOL END 29
SYSTEM GENERATION COMPLETED

Example 24: System installing and trimming.

User Catalog

Any job executed under SOS must be described in the user catalog.
‘The user catalog contains information about resource demands,

scope (file access), password, start-up commands and in case of a
miltiterminal job, descriptions of terminal users who are allowed

to login to this job.

The user catalog is created and updated by the program
"upsoscat". This program may list the actual contents of a user

5.3-

5.3.]

49

catalog in such a way that the listing may be used as input for
generating a new catalog. As users may change their passwords, it
is not convenient to generate a changed catalog from an edited
version of the original catalog text. Instead a new catalog may
be generated without destroying actual passwords, by using an
edited version of an actual catalog listing.

The user catalog consists of a set of job (process) descriptions.

Data per Job (Process)

The user catalog must contain the following information per

process:
process name : max. 8 characters
buffers : the process' demands on buffers and
areas : areas
bases : the standard-, user- and max (projeét)
base of the process
password : max. 11 characters
minsize : the minimum size acceptable for the process
maxsize : the max size lused for the job (even though
SOS may have room for more)
FP-commands : max. 59 characters
are executed when the job is created.
Can ke used to start-up an application.
bs-claims : device—name (max. 11 characters) plus
entries and segments for key0, keyl, key2
and key3.
Max. 12 units.
terminals : external identification (max. 11 charcters),

local identification (max. 3 characters),

password (max. 11 characters),

5.3.1

50

input buffering (max.no of input buffers
spooled by TEM)
timercount (max.no of timeout pericds

expired before TEM returns an answer).

The process name must identify the job unambiguously.

An arbitrary number of terminals can be registered under a pro-
cess. The external id. and the local id. must be unanmbiguous for
terminals under the same process.

Parts of the descriptions may be anittted. The "upsoscat" program
will then generate default values. In the following all default
values that are not 0 (or nonempty) are listed.

buffers : 4

areas : 7

maxsize : 8383608

bs-claims : disc key0 6 O keyl 0 O key2 O O key3 O O

terminal input
buffering : 1
terminal timer

count : 40

At catalog generation it is checked that process names, buffers

and areas are given values different from O.

5.3.2 Creation and Change of the User Catalog 5.3.2

The program "upsoscat", which is used for generating the user
catalog, is called as follows:

1 1 <cat> 1
<newcat> = upsoscat <input> oldcat
0 0 no 0

. <outfile> 1
list.

no 0

51

<newcat> : the name of the new user catalog

<input> : the name of the file containing the

' input. If this is omitted, input is
taken from the lines following the
program call

<cat> : the name of the user catalog to be
updated

<outfile> : the name of the file in which the

contents of the catalog is to be
printed.

If the parameter cldcat is amitted or oldcat.no is stated, a new
user catalog is created in <newcat>; otherwise <newcat> will
contain an updated version of <cat>.

If list is amitted or list.no is stated, the new contents of the
catalog are not printed; otherwise the contents will be printed
in the <outfile> in a manner meking it possible to use it as in-

put for upsoscat.

<newcat>: is reserved by the program throughout the run, whereas
<cat> 1is only reserved during the period of copying (this is done
at the beginning of the run).

<newcat>: is extended by the program if necessary. If this is not
possible, the program stops with the message 'lookup <i>' or
'ch.entr <i>'. In case of an error in the input, the CK-bit is
set to 'no'. (The program ends by writing 'errors 0').

Creation

5.3.2.1

For each process to be created, the data described in subsection
5.3.1 may be stated.

The syntax for input:

5.3.2.1

52

1
{:maxprocess <nuniber> }0

-~

procesé <proc-name>

@Juf <‘.buf>_-} ;

1
{gxrea <area> :}O

1
%ninsize <nmtber>} o

[mxsize <nuribers> :}:}

{pr " {:tew}é ":};

bs <name> key0
keyl
key2
key3

HE:e.rm <name> " {:<local

ena],

<proc-name>
<name>

"

<buf>, <area>, <entr>,
<text> :

<local.id>

<key> :

_stdbase <number> <nurber>

userbase <nurber> <nurmber>
maxbase <nurber> <nurber>

{:password " {d(ey>}(]3 “};

<entr> <segm> 12
<entr> <seqm>
<entr> <segm>
<entr> <segm> 0
a3} 0 (e}
0 0

{<bufs.> {<tin‘eouts>}; } ;]:_ o

max. 8 characters, letters or digits.
max. 11 characters, letters or digits.
<segni>: non-negative integers.

max. 59 characters, all characters

except " are allowed.

max. 3 characters, all characters
except " are allowed.
max. 11 characters, all characters
except " are allowed.

5.3.2.2

53

Note! The "term" option must not be followed by any other
option within a process description. (When used, the ter-
minal should be the last part of the process description).

On the basis of <number> after maxprocess it is calculated how
many processes <max>, there must be rocam for in the user catalog.
Max is the smallest number, which is a multiple of 50 and which
is bigger than or equals <number>.

Is maxprocess amitted max is set to 50.

The catalog bases are defined by right and left limits for the
base intervals.

The parameter 'end' need not be included if input is specified in
the program call.

If the demands described in subsection 5.3.1 are not met, the
process is not registered. Errors in the terminal parameters will
only effect that the terminal is not registered.

The catalog is created directly in <newcat>. After being created,
<newcat> will always contain a correct user catalog, but if there
have been errors in the input, the catalog will not correspond to
what was wanted. By errors it is recommended to make a rerun
instead of updating <newcat>.

Change

There are three types of updating which concern a process:

correction (cprocess), creation (iprocess) and deletion
(dprocess).

When correcting, the information to be changed plus its new value
must be stated. If all the entries and segments of a unit are
zero, the unit is deleted. The terminal can be created and de-
leted (with the parameters term and dterm). The terminal correc—
tions must be the last changes, which are specified for a pro-

cess.

5.3.2.2

The syntax for input is:

-~

cprocess <proc-name>
{buf <buf>} é

{area <area>} g)

{:minsize <number> :)g}

{maxsize <mm1ber>} g)

e

bs <name> key0
keyl
key?2
key3

{%nmrber>} é } :

 [iprocess <proc—name>
buf <buf>

o {(text)}é " }3}

{stdbase <number> <number>_}g)
(l.lserbase <number> <1’M:Imbe1:'>3gj

{inaxbase <number> <number> } {])

{passmrd " {<key>}g) " }2)

<entr>
<entr>
<entr>
<entr>

E-,em <name> " {docal id.>_}é "

L-{dte:::m <name> " {f:local id..‘{}:]"

(as for catalog creation)

-
{Eiprocess <proc—name>}m

)

0

<segm>
seI
<segm>
<segm>

+ fad)) * [cnmbers)]

Jo J

See the note about "term" in subsection 5.3.2.1.

55
The changes of <cat> are made in a temporary file.
After the updating is finished, this file is copied to <newcat>.
As when created, <newcat> will contain a correct user catalog,

but in case of errors it is reconmended to make a rerun instead
of updating newcat.

5.3.2.3 Listing 5.3.2.3

When the creating/change processes are campleted, the contents of
<newcat> are listed as described for the input syntax. If this
listing is used as input in a catalog creation, the new catalog

will become identical with the one listed from <newcat>.

If a listing, without updating, of an already existing catalog
is wanted, the program call below is used:

upsoscat oldcat. <cat> list.<outfile>
end

5.3.3 Resources Needed for Creating a Catalog 5.3.3

After creation the user catalog will contain index segments and
process segments. There will be 1 index segment for each 50 pro—
cesses in the catalog. Each process will occupy cne segment con—
taining the process description and up to 5 terminal descrip-
tions. Processes with more than 5 terminal descriptions will

occupy one more segment per 19 terminals (exceeding the first
5).

At updating, the size of the user catalog may increase. The ca-

talog can be compressed by making a printout of the catalog and
use this in a re-creation process.

5.3.4

56

upsoscat oldcat.soscat list.out
end

END 59

clear project soscat

soscat = set 1

soscat = upsocscat cut

END 55

scope project soscat

Example 25: Campressing user catalog.

When creating a user catalog by means of listing, at least 5 buf-
fers will have to be used, and by updating at least & buffers.

Error Messages

In case of an error, an error message plus the input line with
the error is printed.

- Below the word "parameter" is used covering the input keywords:

end, maxprocess, process, dprocess, cprocess, iprocess, buf,
area, stdbase, userbase, maxbase, maxsize, minsize, password, fp,
bs, key0, keyl, key2, key3, term, dterm. The word transaction is
used for the 6 first words menticned above:

Error text Explanation

line too long more than 120 characters in an input line.
The line is not processed and is not
printed.

illegal char © illegal character in an input line.
The rest of the line is processed.

buf illegal buf-value.
The processing is continued with the next
parameter.

area illegal area-value.

The processing is continued with the next
parameter.

5.3.4

stdbase -
userbase }

maxbase

password

minsize }

maxsize

device name
bs

bsfull

proc—-params
missing
base error

claim error

abnormal end

trans

57

illegal base-value
The processing is continued with the next
parameter.

illegal password. The processing is
continued with the next parameter.

illegal size value.

The processing is continued with the next
parameter.

an errcor in the text.

The processing is continued with the next
parameter.

as for "name"

illegal bs value.

The processing is continued with the next
parameter.

more than four bs units.

The unit is not registered.

The processing is continued with the next
parameter.

incomplete process description.

The process is not registered/detected.
the values of the bases are inconsistent.
The process is not registered/detected.
the internal relationship of entries and
segments from key0 - key3 is not correct.
The process is not registered/updated.
input ends where further input was expect-
ed.

The process, which was last processed, is
not registered/updated.

an illegal parameter was read where a
transaction was expected.

The processing continues with the next
parameter.

58

name illegal name.
The processing is continued with the next
transaction or parameter dependent on the
situation.

proc in cat the process already exists in the catalog.
The processing is continhued with the next
transaction.

loc id illegal local identification.
The terminal is not registered.
The processing is continued with the next
parameter.

term-key illegal user-key.
The terminal is not registered.
The processing is continued with the next
parameter.

cat full an insertion of a process exceeding the
maximm allowed is attempted.
By creation the processing is terminated
and by updating the processing is continued
with the next parameter{

term in cat a terminal with the same local id already

exists at this process.

Apart fram these error messages, the errcrs below may occur, all

causing the termination of the program.

lockup i an error in ane of the data areas.
- Ought not appear.
ch.entry i the catalog cannot be extended; too few

resources or an error in the catalog.
Ought not appear. _

call O an error in the call of the program.

temp cre work areas cannot be created (too few
resources) .

newcat i an error in the <cat> specified in the

. program call.

oldeat i an error in the <outfile> specified in the
program call.

5.4

59

remove i an error in connection with the removal of
a work area.
Ought not appear.

errors O is printed after a campleted creation,
updating, if there has been any errors in
the input.

Test Facilities

After the installation of an SOS system (at least including SOS
and TEM) it may be checked that the system installed really
works. As explained in section 5.2 a set of test programs and
test files will be loaded in case no "soscat" existed before the
generation. A sitfple system test using a variety of the facil-
ities offered by SOS and TEM is shown below.

This example consists of three terminal 'logs as it includes a
multiterminal test (using the tesprogram "tsostest").

5.4

@
ATT sos

&0

>go team pass hobo
16.53 S0S: TEAM ENROLLED

P

b=algol tsostest

o C
b

16 53 43:
16 53 59:
16 54 09:

16 54 12:

END 23

LOGIN:
LOGIN:

SUBO10
SUBO11

ATT

LoGOUT: 9,0UT
LOoGOUT: 2,0UT

The log of two terminals serviced by the multiterminal job
"team" may look like:

@
ATT sos

>in team mn
16.54 S0S:

_ FROM TEM

TERMINAI, CONNECTED

SOS TESTPROGRAM READY
gwagwagwadgwadgwagwagwagwagwaq

TERM = 9 LINE
1234567890
TERM = 9 LINE
0987654321
TERM = 9 LINE
@

ATT sos

>out

TO TEM

FROM S0OS

i

13 OWACQWAOWAQWAOWAOWAQWAQWACWAQ

: 1234567890

3: 0987654321

16.54 S0S: TERMINAL DISCONNECTED

@
ATT sos

>in term userb pass b2
16,54 S0S: TERMINAL CONNECTED

FROM TEM

SOS TESTPROGRAM READY
abnsjdgehbsgfa

TERM = 2 LINE
qverth]
TERM = 2 LINE
dftyuiop
TERM = 2 LINE

Il

1: ABNSIDGEHBSGFA

2: OWERTHJ

3: DFTYUIOP

(to ke continued)

5.5

el

(continued)
ATT sos

>out
TO TEM

FROM SOS
16.54 S0S: TERMINAL DISCONNECTED

Example 26: System test after installation.

It is cbvious that an operating system is not really tested by
running some test programs. The only way to make a realistic test
is to use the system for normal routine duties. As a consequence,
faults may appear from time to time, especially during the first
period after installing the system. To be able to remove the

errors causing system failure, SOS may prbduce testoutput (as
explained in section 5.2). The RC maintenance staff will have

almost no chances of detecting the errors unless the system
failure is documented by means of testoutput, so during the first
period after the installation the testoutput facility should be
switched on.

Resource Demands

When installing the SOS system (or generating a new version) a

process with the following set of resources will do:

area 6
buf 6
size 60000

work 20 20 300 disc

When running, the SOS system will need a set of resources for its

private use (apart from the resources set aside for SOS jobs).

5‘5

62

The resocurce demands may be computed like this:

Primary store: (halfwords)
resident code app = 4000
test buffer (optiocnal) 512
descriptions and I/0 buffers

i

= (users + command users) * (bufsize + 36)

Message buffers:
constant consumption: = 4
varying consumpticn
= (users + command users) * 2

Area processes:

constant consurption 6

Backing storage segments:
testoutput = (as defined in trimming)
sSwop area =
(size of a user process)/512 * (users + command users)

The standard trimming of SOS (as defined in the file "sostrim")

will have the following demands:

Primary store:

Code: 4000

testbuffer: 512
descriptions and buffers:(3+2)*

(104+36) 700

4302

message buffers: 4 + (3+2)*2 14

area processes: <)

It should also be mentioned here that each job created by the
"run" command uses one pool and one link in TEM. Apart from this,
jobs using multiterminal access via TEM, will need cne more pool
plus a number of terminal links depending on the max. nunber of
terminals simultaneously "logged in" to the job.

63

REFERENCES

[1]

(2]

[3]

[4]

(5]

RCSL No 31-D476:
RCBOOO Monitor, Part 1

RCSL, No 31-D477:
RCBOOO Monitor, Part 2

RCSL No 31-D364, 31-D607 and 31D379:
System 3, Utility Programs, Part 1, 2 and 3

RCSI, No 31-D513:
Terminal Access Module (TEM)

RCSL No 31-D571:
PRIMO (2. edition)

64
B. S0OS COMMANDS
Command Parameters Ref.
batch <jckbname> {jd:fj_l.e <filename> }('J { pass ﬂpasmtd>{m-pass ?aswd>}é }; 2.2
T T

<operator key>» i ;Lm 4.2.2

break
<jcbname> 0 2.2.3
call “deviceno> <docurent name> ig;
go <jobname> Qobfu.e <file narre>};£pass <password> {neng:ass “password> (1] }; 2.2.1
halt <operator key> 4.3
in <jchnam>w>{pass ‘P“SWN’{W <pasmd>};}; 2.2.2
include <davicenc> 3-%-;
il <“gperator key> {:.%.1 ° } ! 4.2.2
<ickname> o 2.2.3
lock <cperator key> 4.2
open <gperator key> 4.2.1
out 2.2.2
n <jobnamex { jobflle <file naw}é { pass <password> {nﬂ.@ﬂss @m};}; 2.2

- o -

{ operatar keys ‘gﬁ'_‘m"} } 4.2.2

start
<jobnames Ja 2.2.3
<cperator kay> {‘L"b‘l’a“e’ } ! 4.2.2
<jobname> g 2.2.3

65

MESSAGES FROM S0S

SOS may write messages of the following kinds:
1) System messages
2) User messages
3) Parent messages from jobs
In class 1 and 2 there will be normal messages and error messages.

The layout of SOS messages is:

<hour> . <minute> SOS: <message> (normal)
<hour> . <minute> *** 50S: <message> (error)

The system messages may concern start-up or system failure:

System mess'ages at start-up:

area <number>
normal: number of areas in job resource pool
error : min. number of areas requested

buf <number>
normal: nmumber of buffers in job resource pool
error : min. number of buffers requested

buflength <size>
error: the buffer length must at least be <size>

function 1,2,3,4,5
error: min. function requested

init troubles
error: system initialization not ck, run terminated

internal <number>

normal: max. number of jobs enrolled

66 *

key <number> .
error: at least 1 free protection key must be available
(appears only at RC4000)

size <number>
normal: max. size available for Jjobs

error : min. size requested

started

normal: telling that the initialization was successful

version: <date of systeam> <date of options>
normal: indicating the version of the SOS system.

<area name> <integer>
error: written because SOS is not able to read one of its

areas; the following messages may appear:

swpsos <size>
the swoparea could not be created with the size
specified (too few resources on "swopdoc" - see
section 5.2},

tstsos <size>
the testoutput area could not be created with the

size specified (tco few resources on "testdoc” -~ .
see section 5.2),

fp <result>
SOS could not read the file processor

{should never occur),

cleartemp <result>
SOS could not read the catalog cleaning program
"cleartemp"; maybe because it does not exist
(result = 3),

soscat <result>
S0S could not read the SOS catalog "soscat'; .
maybe because it does not exist (result = 3).

. System messages at runtime:

fault

error: caused by an internal error in SOS, monitor or
hardware (most likely: SOS)

fault 8' <octal status> <program area>

error: transport error concerning program area
(disc failure)

status <decimal status> <area name>
error: transport error concerning swop area or testoutput

area (disc failure)

User messages:

bad password

error: password not correct (or missing).

bs claims exceeded
errcr: SOS has not sufficient backing storage resources for
creating the ‘job.

call not ok :
error: the "calling" of a device has been rejected (cause:
. the device is reserved, the device does not exist or
the like).

cammand unknown

error: the command typed is not an SOS command.

disconnection not ok
error: the disconnection of a terminal (at "out") has been
refused by TEM (should never occur).

forbidden
error: the user is not authorized for using the command in
question.

forbidden - system locked .
error: a job creation command or an "in" command has been
refused because the system is locked (by the oper-

ator).

identification illegal
error: the jobname of a job creation cammand is not in-
cluded in the user catalog, or the username of an

"in" camand does not belong to the Jjobname spec—
ified.

include ot ck

error: the device inclusion has been rejected (cause: the

device does not exist).

jobfile does not exist
error: the jobfile started in a job creation command is
not visible fram the catalog bases of the Job.

no roam in primary store
error: the min. size of the job exceeded the max. size
available for SOS jobs. (The min. size may be
stated in the user catalog).

process creation not ck
error: a Jjob creation has been refused due to resource
limitation in SOS.

process unknown

error: a job intervention command has been rejected
because the job stated was not found.

ready

normal: indicates that a command has been sucessfully

interpreted.

syntax
error: the command was rejected because of a syntax error
(illegal character, missing parameter or the like).

69

terminal busy
error: a job creation connecting the terminal via TEM was
refused, because the terminal was already connected
to some pool in TEM.

terminal connected
normal: a message telling that an "in" command has been

successfully interpreted.

terminal connection not ck
error: an "in" command has been rejected because TEM
refused connecting the terminal (maybe because the
actual job has not created a terminal pool).

terminal not connected
error: an "out" command or a job intervention command has
been rejected because the terminal was not connected
to the actual job.

user conflict
error: a job creation command has been rejected because the
job existed in advance or because an existing job
was ﬁsing the same standard base as the new one.

<jobname> enrolled
. normal: a message telling that a job creation has
succeeded. '

<jobname> removed after <cause>

normal: a message telling that the job has been removed
from the system. The cause may be:

finiss normal finis message from job

break: abnormal termination caused by an
internal job error (a "break")

terminal failure: a hard error has occured on the
primary input terminal

operator break: the operator has provoked a
"parent break" (break 8)

70

user break: the user has provoked a "parent .
break" (break 8) '

operator kill: the operator has killed the jcb

userkill: the user has killed the job

time exceeded: an interactive job has been too
cpu-bound (i.e. the priority has
decreased and reached the min.

priority accepted by the system).

Parent messages fram Jjobs

Jobs using devices like magnetic tape stations or jobs running

into severe errors may send "parent messages"” to SOS. SOS handles

parent messages as described in subsection 3.3.3. Some parent .
messages are printed on the system terminal. This is done with

the following format:

message
<hour> . <minute> S0S:

} <jobname> <contents>
pause

The <contents> is totally specified by the job as explained in
subsection 3.3.3.

7

AN EXAMPLE OF A MULTITERMINAL PROGRAM

wxa THSOSTESY #us

A SIMPLE TESTPROGRAM FOR TESTING THE S05 SYSTENM

THE PROGRAM ACTS LIKE THIS

CREATE TERMINAL POOL

W wE WE W W wE W MR wE wE WP oWR wE e M Wb

LOOF 3
READ AN INPUT LINE FRUM A CONNECTED TERMINAL
(THIS INFUT LINE STARTS WITH A TERMINAL NUMBER)
INCREASE LINECOUNT(TERMINAL NUMBER)
WRITE TERMINAL NUMBER
WRITE LINECOUNT
WRITE CONTENT OF LNFPUT LINE
GATO LOQOF
BEUIN

LUNE FOOLIN-POQLOUT (2&+1STDERKROR) ¢
REAL TIME.Rj
INTEGER IvACTIVETERMINALS»MAXTERMINALS CURRTERMINAL G

INTEGER FROCEDURE CREATEPOOL(Z) 7§
ZUNE Z7F
BEGIN
INTEGER ¥
INTEGER ARRAY ZIA(1:20).SIA(1:1)§
ZUNE ZTEM(1r1,STDERROR) 7
OFEN(ZTEH 0 {3 TEM2)»0) §
GETZONEG(ZZIA) §
GETSHARES (ZTEM» SIAr1) §
SIA(4):=9Q SHIFT 123
FOR I:=0Q STEP 1 UNTIL 3 DO SIA(B+I) s=Z1A(2+I1)§
SETSHAREA (ZTEMsSIA#L) 5
MONITOR(16+ZTEMs128IA) 1
CREATEPOUL.:=IF MONITOR{18rZTEM+1,8LA) (> 1 THEN ~1 ELBE SIA(1)§
CLOSE (ZTEM» TRUE) # ’
END CREATEFPOOLG

MAXTERMINALG:=10%
ACTIVETERMINALS =04

BEGIN
INTEGER Lrdi
INTEGER ARRAY LINEBUF (1:100) »LINECOUNT {1 3MAXTERMINALS) §
FOR Ta=1 STEP 1 UNTIL HAXTERMINALS 00 LINECOUNT (L) 3=0j
UFEN(POOLINs B (2TEMI Y O) F
UPEN(POOLOUT» 1 SHIFT 18 + B2 (:TEMID»0) i
CREATEPOOL (POOLIMN) §

i READ A LINE AND DISPLAY IT ON CORKESPONDING TERMINAL *)

LOUkFs:
READ (POULIN+s CURRTERMINAL) #
Lli=13%
FOK I3=] WHILE READCHAR (FOOL IN»LINEBUF (1)) <> 8 DO Ii=I+1;
SETPOSITION(FOOLINsO»Q)
LINECDUNT (CURRTERMINAL) i =LINECOUNT (CURKYERMINAL) 1§
IF LINEHUF (1) = 1 THEN
- “BEGIN COMMENT LOGIN?
LINECOUNT (CURRTERMINAL) : =03
WRITE(FOOLOUT»{ 2S08 TESTFROGRAM READT(10)X:))7
ACTIVETERMINALS:=ACTIVETERMINALS+17
SYSTIME{(1:0,TIME) 5
SYSTIME(4+:TIMER) 5
WRITE(QUT<{DD 0D DO2yR)
WRIVECQUT»¢ 3 LOGINE: 20 (L) vCURKKTERMINAL # (2p 300§
FOR Ji=1 STEP L UNTIL I DO OUTCHAR{OUT »LLINEBUF <))}
SETPOSITIONLOUT 1 0»0) ¥
END ELSE
IF LINEBUF(1) = 2 THEN
BEGIN COMMENT LOGQUTS
ACTIVETERMINALS s =ALTIVE TERMINALS- 15
SYSTIME(L+Qe TIMED 7
SYSTIME(4» TIHEsR) 7
WRITE(QUT»<<DD DD DOXsR)#
WRITE(QUT» (32 L.OGOUT:)y
{{DD? P CURRTERMLNALp {2 si) §
FUR Ji=1 STEF 1 UNTIL I DO OQUTCHAR(OUT (LINEBUF (1)) 1§
SETFOSITIONCOUT»0+0) 5
END ELSE
BEGIN
WRITE(POOLOUT <2 TERM = 3>y <{(DUYyCURRTERMINAL ¢
{2 LINE = 30+ ({DDD>s LINECOUNT (CURRTERMINAL) s (353 3))} 7}
FOR Ji=1 STEP 1 UNTIL I DO QUICHAR (POOLOUT (LINEBUF¢J))}
END§
SETPOSITION (POOLOUT Qs D) #
IF ACTIVETERMINALS) O THEN GOTOD LOUFF
END#

END

E.

72

AN EXAMPLE OF A USER CATALOG

FROUCESS kG
SThBASE
USERDASE
MAXBASGE
MAXSIZE
PASSWORD
BS DlsC

PROCESS HOTNEWS
STDBASE
USERHASE
MAXBASE
HAXSIZE
FF (0 pE
C=COFY TNEWS
FINIS)

BS DISC

FROCESS DLISFLAY
STYLBASE
USERBASE
MAXHASE
MAXSIZE
FP “BODISFLAY
FINIS

BS DLISC

FRUCESS RUSAVE
STOHASE
USERBASE
MAXBASE
BS DISC

PROCESS TEAM
STOEASE
USERHASE
MAXBASE
MINSIZE
PASSWORD
BS DISC
TERM USERA
TEKM USERE
TERM USERC
TEKM NN

END

BUF 29 ARKEA 25
810 810

glo H19

800 8YY
&0000

~ NN~

REYO 20 500 KEYL
BUF 4 AREA 4
899 a99
899 899
899 899
12800

REYO 4 50

898 8948
a98 498
898 898
12800

REYQ 4 ¢

BUF 4 AREA 7
897 8y7
890 a%¢
800 899
KEYO 10 130 KEYL 0 O KEY2
BUF 4 AREA 7
820 820
820 829
800 899
30000

"HOEO”

REYO &4 300 KEY1 1
R ¥ R “al”

T 2" “Ba2-

R T “oar

. g, v e

REYL O O REYZ Q0 & KEYS O ©

KEY1 O O KEY2 O 0 KEY3 0 0O

20 300 REYZH

QO 0 REYZ 0 0

73

THE AUXILIARY FILE "sostrim"

#xx SOSTRIM wux

CONTAINS OPTIONS FOR TRIMMING S0S8 SYSTEM
AND COMMANDS FOR AUTOMATIC SYSTEM GENERATION FROM THE 508 SYSTEM TAPE

SUSDUMMYDUT=SET 1

X808 = EDIT TS4aS i EDIT OFTIONS INTO PROGRAM TEXT
L./BODY OF INIT/»
L./===TRIMSTART/»
D./s==TRIMFINIS/

I/

! DATE OF OPTIONS | OPTIONID = O
TARGET MACHINE (RC400Q0=4000,RCE000=8000) RC i= 8000
MIN. NO OF USER PROCESSES ACTIVE AT THE SAME TIME MINUSERS = 1y
MIN. NO OF ENTRIES FOR TERMINALS PERFORMING 05 CORMANDS COMNDUSERS 1= 2
HIN. NO OF BUFFERS RESERVED FOR USER FROCESSES HINBUFS t= 4
MIN. NO OF AREAS RESERVED FOR USER PROCESSES MINAREAS = 7
HIN. CORE SIZE FOR USER PROCESSES (HALFWORDS) HINSIZE 1= 12800,

BUF1. i= 104y

]
]
]
i
]
'
! SIZE OF I-0 BUFFER FOR EACH USER PROCESS (HALFWURDS)
1]
! MAX NO OF TIME SLICES USED IN GPU (NO INFUT} CPULIMIT &= 2%,
]
!
i
]

|
[
|
[
[
|
|
LENGTH OF A TIME SLICE (SECONDS) | TIMESLICE &= 3
|
|
[
}
!

LOSS OF PRIOGRITY CLASS WHEN TIMED OUT CLABBLOSE 1w 1
PRIORITY CLASS GAIN AT INPUT (IF CLASS ¢ O CLASSGAIN 1= 1y
FRLIORITY GAIMN WHEN FIRST IN ACTIVEQUEUE PRIOGAIN i= 1
SIZE OF TESTOUTPUT AREA (SEGMENTS) TESTHEBMNT St = 43y
FHIMTEXTS? TEXT(1l)
! UPERATOR REY . t OPRREY i= “0OPR”r
! DOCUMENT FOR SWOFAREA I swarDOC = "y
| DOCUMENT FOR TEST AREA t TESTDOC ia .

FoF

74

0 SOSDUMHMYOUT

MODE 1.NO

LOOKUP SUSDOC

IF OK.NO

HOLE 1.YES

ocC

IF 1.YES

505000 = SET 1

RCMOL = aALGOL TRCHOL

IF (SOSDUCY IS NAOT FRESENT

THEN CREATE IT PREFERRABLY ON DIGC
THEN GENERATE A TEMPORARY ONE

BSOS = ENTRY 20 S0SD0OC
BSOS = RCMOL XS08 i TRANSBLATE TRIMMED FROGRAM TEXT

CLEARTEHP = ENTRY 10 SOSDOC
CLEARTEMP = RCMOL TCLEARTEMP 3 TRANSLATE CATALOU CLEANING FROGRAM

UPSOSCAT = ENTRY 100 S0SDOC
UFPSOSCAT = ALGOL TUFSOSCAT 7 TRANSLATE FROGRAM FOR GENERATING $0§ USER CATALODG

TRACE = ENTRY S50 s0spac
TRACE = ALGOL TTRACE ¥ TRANSLATE FROGRAM FOR ANALYSING TESTOQUTFUT

FROLOGUE = ENTRY 4 50S00C
PROLOGUE = RCHMOL TPROL.OGUE i GENERATE LOADER FOR S-REFPLACEMENT
PROLOGUE = CHANGEENTRY FROLOGUE FROLOGUE FROLOGUE FROLOGUE PROLOGUE 8.FROLOGUE PROLOGUE

0 S0SDUMMYOUT

MUDE 1.NO

LOONUP SOGCAT i IF S0SCAT IS NOT PRESENT

IF OK.NO

HODE 1,.YES

ac

IF L.YES

(S0SCAT = ENTRY 1 S0SDQAC
S08CAY = UPSOSCAT TSOSCAT
XG0STEST = ENTRY 50 S0SD0C
XSOSTEST = MOVE THOSTEST
BDISPLAY = ENTRY 20 S0SD0OC
BUISPLAY = ALGOL TDISPLAY
ANEWS = ENTRY 1 SOSDOC
ANEWS = MOVE TNEWS
CLEAR TEMF TSOSTEST TNEWS
RENAME XSOSTEST.TSOSTEST
RENAME XNEWS. TNEWS
SCOFE USER BDISFLAY TNEWS
SCOFE USER SOSCAT TSOSTEST

)

THEN
BEGIN
GENERATE AN EXPERIMENTAL USER CATALING ANDS
A SIMPLE SYSITEM TEST FROGRAM
A FROGRAM DIBFLAYLNG RUNNING SU08-JUbBS

AN EXAMPLE (OF A "NEWS-FILE"

wEowr NI WK I WE WE WE WS B wr w3 wr w2

END

SCOFE USER BSOS UPSOSCAT TRACE CLEARTEHP
0 SO0SDuUMMYOUT
CLEAR TEMP XS0§ TROMOL RCMOL SOSTRIM TSOSCAT 17808 TUFPSOSCAT TTRACES
TSQSTEST S0SLOAD S0SSAVE SOSLIST TCLEARTEMP TPROLOGUE TDISPLAY TNEWS

ac
CLEAR TEMP SO0SDUMMYOUT

MESHAGE SYSTEM GENERATION COMPLETED

"

75

THREE VERSICNS OF A MASTER MIND PROGRAM

Simple Single Terminal Version

BEGIN

INTEGER ARRAY SOLUTIONSGUESS (12475
INTEGER TrJeXsDIGITOK DIGITINCLULED

SETCOMBINATION:
FOR Is=1 STEP 1 UNTIL 4 DO
BEGIN
RANLIOM (X) §
SOLUTIONCL) s=X MOD 105
FOR J3=1 STEF 1 UNTIL I DO

[F SOLUTIONCL) = SOLUTION(J) AND I <) J THEN Lli=l-13

ENDJ

WRITE (DUT s {$HASTER MIND FROGRAM READY(10):5>)}
NEXT =

SETPOSLTIONCOUT » 0900 §

WRITE(OUT (2 22

FOR L:=1 STEF 1 UNTIL 4 DO KEAD(IN,GUESS(L));
DIGITOR:=DIGITINCLUDED 22203
FUR Ls=1 STEF 1 UNTIL 4 DO
BEGIN ,
FOR Js=L STEP 1 UNTIL 4 LQ
IF GUESS(I) = SOLUTION(J) THEN
BEGIN
IF I = J THEN DIGITOK3=DIGITUK+L
ELSE DIGITINCLUDED:=DIGITINCLUDED+1j
ENL
WRITE (QUT» ¢(<{DD) »BUESS (1)) 5
END3 :
WRITE(OUT» (3 =) 2)»
: FALSE ADD 43sLIGITOK.
FALSE ADD 32,4-DIGLITOK»
FALSE ADD 45sDIGITINCLUDEDs
FALSE ADD 1Cs1)7

IF DIGLTOR ¢ 4 THEN GOTO NEXT ELSE
BEGIN .
WRITE(QUT»(32YOU GOT IT [1<10y:))5
GOTO SETCOMBINATIONGF
END¥
END§

G.2

76

Single Terminal Version with Input Checking

BEGIN
INTEGER ARRAY SOLUTION»GUESS(134)§
INTEGER IrsJdeX»NyMrCLASSyCHARACTER yDIGITORwBIGLTINCLUBEDS

SETCOMBINATION:
FOrR lz=1 STEF 1| UNTIL 4 DO
BEGIN
RANDIOH () §
SOLUTIONCIY 2=X MOD L10j
FOR J:=1 STEF 1 UNTIL I 00O
IF SOLUTIONCIY = SOLUTIONC)Y AND I (» J THEN Lisl-1F
END§
WRITE (OUT» <sMASTER MIND FROGRAM READYCLIQ023)) 5

NEXTz
SETFOSITIONCQUT » 09 0) #
I:=0%
FOR CLASS:=READCHAR (INsCHARACTER) WHILE CLASS () 8 anND I
BEGIN {(* ANALYZE ALL CHARACTERS UP TO (NL) >
IF CLASS = 2 (* DIGIT =) THEN
BEGIN
Ti=l+1%
GUESS (L) s=CHARACTER=-48}
END ELSE
IF CHARACTER () 32 (% SFACE #)> THEN
BEGIN
WRITE(OUT y (2% ASYNTAX ERRORS1I0TRY AGAINC10XI)) 5
GOTO NEXTS
END 3
END 3
IF I = 0 THEN GOTO NEXTH
iF I ¢ &4 THEN
BEGIN
WHRIFE (QUT » (i xx%GUESS NOT COMPLETECLOXTRY AGAINCLOYS) ¥
GUTO NEXT?H
ENDY
FOR Ni=2 STEF 1 UNTIL 4 DO
FOR Mz:=1 STEPFP 1 UNTIL N-1 [0
[F GUESS (N) = GUESS (M) THEN
BEGIN
WRITE(QUT »{c%xxDIGIT DUFLICATEDCLOXTRY AGALNIIOYEX) 7§
GOTO MEXTS
EMD§
WHRITE(UUT» (5 20
DEGLITUORN s=DIGITINCLULED==0F
FOR I:=1 STEPFP 1 UNTIL 4 DO
BEGIN
FUR J3=1 STEF 1 UNTIL 4 LO
IF GUESS(1) = SOLUTIONC{J) THENM
BEGIN
IF I = J THEN DIGITOK:=DIGITOK+1
ELSE DIGITINCLUDED=DIGITINCLUDED+L
ENDLG
WRITE(OUT s { <D0 »GUESS(I))5
EmD§
WRITE (QUT <= =3 HS N
FALSE ADD 43-DIGLTOK
FALSE ADD 32:4-DIGITOK»
FALSE ADD 45»DIGITINCLUDEL
FALSE ADD 101075

IF DIGITOR (4 THEN GOTO NEXT ELSE
BEWLIN
WRITEOQUT» CaYOQU GOT IT H1CL00320 35
GOTO SETCOMBINATIONF
ENDF
ENII3

{ 4 o

G.2 ‘Il'

“ w

G.3

77

Multiterminal Version with Input Checking G.3

BEGIN

INTEGER TERMNOG

ZUNE ZINyZOUT {261+) s STOERROR) 5
INTEGER ACTIVETERMINALS +FIRSTCHARS
ALTIVETERMINALS 1207
OFENC(ZIN t» CITEHS) pO) §
UPEN(ZOUT s8p {3 TEM3)+0) §

CENTRALWALTS

SETHOSITION(ZINSO»O) i

READ(ZIN: TERMND) 3

REARDCHAR (ZINsFLRSTCHAR) 3

IF FIRSTCHAR = 2 THEN

BEGIN (= LOGOUT =)
ACTIVETERMINALS i sALTIVETERMINAL S ~1§
IF ACTIVETERMINALS 3 O THEN GOTO CENTRALWAIT ELSE LOI0 STUFFROGRAM §

END ELSE

IF FIRSTCHAR = 1 THEN

BEGIN (» LOGIN =)
ACTIVETERHINALS s =sACT IVETERMINALS+1 5

END ELSE REFEATUHAR(ZIN)

WRITE (ZOUT s <<DD>+ YERMNU+ <3 52)) 5

BEGIN CONTEXT (TERMNO»1023) 5
INTEGER ARRAY SOLUTIONsGUESS (134);
INTEGER IrJsXsNrH»CLASS»CHARACTERyDIGITOK»DIGLT INCLUDED
CONTINUES?

SETCOMBINATION:
FUR I3=1 STEF 1 UNTIL 4 DO
BEGIN
RANDUM (X) §
SULUTIONCI) s=X MOD 10%F
FOR Ji=1 STEF 1 UNTIL I DO
IF SOLUTIONCL) = SOLUTIONCD AND I () J THEN lswmf—-17
ENDF
WRITE(ZOUT,{:MASTER MIND FRUCKRAM KEADY{(10)1))3

NEXT 3
SETPOSITION(ZOUT»0+0) %
EXIT (CENTRALWAITY §
Is=03
FOR CLASSI=READLHAR (ZIN/CHARACTER) WHILE CLASSE () 8 ANU T { & DO
BEGIN {® ANALYZE ALL CHARACTERS UP YO <NL}> =)
IF CLASS = 2 {(# DIGIT #)> THEN
BEGIN
Li=l+li . .
GUESE (I) s=CHARACTER=-48 7
END ELSE
IF CHARACTER (> 32 (®» SPACE =) THEN
BEGIN
WRITE(ZOUTy { s k% #SYNTAX ERRORC10)TRY AGAINC10)2))3;
GUTU NEXT?
ENDF
ENDF
IF I = 0 THEN GOTO NEXT;
IF I ¢ 4 THEN
BEGIN
WR1TE(ZOUT » € s ###GUESS NOT COMPLETECL1O0XTRY AGAINSLOY 1))
GOTO NEXT#
ENDG
FOk N3=2 STEP 1 UNTIL 4 DO
FOR Mi=1 STEF 1 UNTIL N-1 DO
IF GUESS(N) = GUESS‘H{ THEN
BEGIN
WHITE (ZOUT» (3##aDIGIT LUPLICATEDLCLIO>TRY AGALINC10)8))1]
GOTO NEXTS
ENDi} .
WRITE(ZOUTs ¢ LR
DIGITOKi=DIGITINCLUDED:=0}
FOR 1:=1 STEF 1 UNTIL 4 DO
BEGIN
FOR J3=1 STEP 1 UNTIL 4 [0
IF QUESS(I) = SOLUTION(S) THEN
BEGIN
IF I = J THEN DIGITOR:=DIGITON+1
ELSE DIGITINCLUDED:=DIGITINCLUDED+1}
END}F
WRITE(ZOUT#<{{DDYsQUESS(I)) 7
ENDY :
WRITE(ZOUT»<3 =) $)s
FALSE ADD 43:DIGITOK»
FALSE ADD 32:4~DIGITON,
FALSE ADD 45sDIGITINCLUDEL,
FALSE ADD 10,105

IF LIGITOK ¢ 4 THEN BOTO NEXT ELSE
BEGIN
WRITE(ZOUTC2YOU GOT IT '1C10X2))75
GOTO SETCOMBINATIONG
END#
ENDF
STUFFRUGRAM:
END

INDEX

78

Survey of Examples

Example
Example
Exarrplg
Example
Exanmple
Example
Example
Example
Example
Example
Exanmple
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Exanmple
Example

1: Job creation esessesuttesetsasseasssrasanan
2: Executing utility program «..sssesesssssassscaas
3: Creating a text file cencsesencereras
: Executing utility programs scisseesssscassscacascs
5: Program translation ..cvesevoccscesssessscssanans
: Text editing ceeeecacesasanaccass
7: Execution of interactive program ..secececesssaas
8: Job intervention ssceesscsssses sesscessssssnsness
9: Job termination ..cescesseses teeesssrasssreasncas
10: Running a multiterminal program .ee.... cosesvense
11: Autamatic program activation s.esecescesaes cerene
12: Running a batch job from a terminal ...eccevevsns
13: Creating a job file sesasasasassssasanes

26z

Running a job using a job file .cceevsevrencesanns

Job file routing job cutput to printer .

S0S started as a child of "s"

------ * e e

LI I N B B A]

SOS started using "S-replacement” ...icicevieiieen

System test after installation

~—

: Compressing user Catalog ececeessscesssssscasanns.
. 60

>

9

9
10
1
12
12
13
13
33
34

Operator intervention sssviesesencssssssscacasans 35
Clear SYStEM .cevescosnsesesssensnsss P
Tape MOUNting eseeecescssessscssssssssasascncnnas 36
Drain system and CloSE AOWN tevvevsenns cevesenses 37
: Printing testoutput teesescecsarssessasacas 38
: Individual trimming veeeeescessssssscssnsnsasasae 45
System installing and trimming .eeeveeecescsveess 47

56

L RETURN LETTER
Swopping Online System (SOS)
1.. User's Guide/Reference Manual/ SL No.- 31-D662
o Title: S erating Guide/Installation Guide RCSL No.:

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved ?

Other comments?

Name: - Title:

. Company:
Address:

;0 Date:

Thank you

42-i 1288

................. Do not tear - Fold hereand staple
Affix
postage
here
¢REGNECENTRALEN

af 1979
®

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

42-1 1321

RCSLL No:

page

11

: : . iden
IE information | t FB 820302
‘ RCBOOO RC4000

-1 class

subl-gupplement to RCSL Mo 31-D662, Swopping Online System (SOS)

BREAK command.

former mode of reaction.

Online System (S0S), section 5.2.

MIPS/TS SWB100/1 Release 3.0 introduces a changed reaction to the

Use of the BREAK cammand causes a new FP to be loaded in the user's
process - without starting the 'RUNNING' process in its BREAK-routine.

- For further information please refer to: RCSL No 31-D662, Swopping

In installations where this changed reaction is unacceptable, cne may
alter the system trimming parameter "CONDITIONS" to preserve the

