
RCSL No: 31-D662

Edition: February 1982

Author. Kirsten Kjgller Hansen

Niels Mgller Jgérgensen

Lars Otto Kjaer Nielsen

Edith Rosenberg

Title:

Swopping Online System (SOS)

User's Guide/Reference Manual/Operating Guide/Installation Guide

§ REGNECENTRALEN

c af 1979RCSL 42-i1905. ;

Keywords:

RC8000, RC4000, operating system, interactive program execution,

terminal access.

Abstract:

This manual describes the operating system SOS. The manual contains

information relevant to users, programmers, operators and system

staff. :

(86 printed pages)

Copyright © 1982, A/S Regnecentralen af 1979

RC Computer A/S

Printed by A/S Regnecentraien af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-

ned herein are subject to change by RC at any time without prior no-

tice. RC is not responsible for typographical or arithmetic errors

which may appear in this manuai and shail not be responsible for:

any damages caused by reliance on any of the materials presented.RCSL 42-11905

FOREWORD

First edition: RCSL No 31-D482.

Second edition: RCSL No 31-D512.

This manual describes the operating system SOS, as it appears in

release 2.0, October 1978. The former version was a preliminary

version intended for multiterminal jobs. The present version in-

cludes interactive miltiterminal jobs (using TEM), interactive

single terminal jobs (with or without using TEM) and batch jobs.

The present version supports in a primitive form access to de-

vices like tape stations and flexible discs.

This manual is an exhaustive description of SOS and it includes

subjects of interest to users, programmers, operators and instal-

lation staff.

Niels Méller Jérgensen

A/S REGNECENTRALEN, September 1978

Third edition: RCSL No 31-D662.

The changes are indicated by correction lines in the left margin

and concern mainly the description of the new facility for typing

invisible password.

Edith Rosenberg

A/S REGNECENTRALEN af 1979, October 1981

iii

TABLE OF CONTENTS PAGE

1. INTRODUCTION sesceeeencncave Se er os]

USER'S Guide cocececccccccccecccceccscsscucs eee eccccees 4

2.1 SOS Illustrated by Means of Examplesseeee00-. 4

2.2 SOS User Commands see eeeecenrececceeeceseses 13

2.2.1 Job Creation Commandssecccccsccccseeeee 14

2.2.2 Multiterminal Commandscseececcuceecaes 15

2.2.3 Job Intervention Commandssseesseeseeees 17

2.2.4 Device Handling Commands ...ssscessseesesess 18

242.5 PaSSwOKd wescssccccnscccccccccenccccensesees 19

2.3 Terminal Access06. sc ececccccevcveccsenes 20

2.4 Resource Allocated to SOS Jobs w.sessccscvecccceses 2]

REFERENCE INFORMATION ...-.ceeceeseses Po eeeerencvevereve 22

3.1 Job Schedulingcceececececcececeeseceteeeeces 22

3.2 Terminal ACCESS-ceeeeececeeccencees eeeceeeeees 25

3.3 SOS ~ Job Intercomminication ..ecccceeceeceeesenens 26

3.3.1 Primary Input and Output.ccssceecceveee 27

3.3.2 Transparent Communication to TEMeeeeee. 28

3.3.3 Parent Messagesceeee se cesensscces weee 30

OPERATING GUIDE sssscecvesccesveccencsccrsensssecncarace 33

4.1 Start-Up Senne nC

4.2 Operator Intervention cc eee eee eeeeeveencs vaseee 34

4.2.1 System Intervention .eseseesceseece seececeee 34

4.2.2 Job Intervention cecesccccecccccsccccccoseee 35

4.2.3 Device Support ...ccececec ccc ccccccccsnane 36

4.3 ClOS@ DOWN ceececcccccescncesecncnces eeccncnceseees 37

4.4 How to Handle System Failureccccccceceeeeevess 37

INSTALLATION NOTES .ccsesecccccccsccccvnccccrssecavetecs 40

5.1 System Distributionecereees ee eene veeeesees 40

5.2 System Trimmingsceeeeeev eens pecceecececeee Al

5.3 User Catalog0.. ae eaee wee ceccceeeseseseseee 48

5.3.1 Data per Job (Process) ...sceseecceeceveceoe 49

iv

TABLE OF CONTENTS (continued) PAGE

5.3.2 Creation and Change of the User Catalog

5.3.2.1 Creation

5.3.2.2 Change

wees eeseeeanve

eee eee eens ane

5.3.2.3 Listing .csccccccccccccranscsceces .

5.3.3 Resources Needed for Creating a Catalog

5.3.4 Error Messages-

5.4 Test Facilitieseseeeseves

APPENDICES:

REFERENCES wescssscsccecccrsnseces ee

SOS COMMANDS ..csesccscsacecevccens

MESSAGES FROM SOS eee eccceveee

AN EXAMPLE OF A MULTITERMINAL PROGRAM ..+eseeees

EXAMPLE OF A USER CATALOGeeee-

THE AUXILIARY FILE "sostrim"

THREE VERSIONS OF A MASTER MIND PROGRAM .cecreceeeseeeees

G.1 Simple Single Terminal Version

G.2 Single Terminal Version with Input Checking

G.3 Multiterminal Version with Input Checking .

INDEX ceccec cece reeves ecesevesesece

H.1 Survey of Exampleseeeeees

50

51

53

55

56

59

63

64

65

7]

72

73

75

75

76

77

78

78

INTRODUCTION

The main purpose of an operating system is to serve the users by

supervising the execution of their programs. In a miltiprogram-

ming environment with a number of users running their programs

simultaneously the main tasks include:

1) facilitate resource sharing

2) control and facilitate the access to common equipment

3) prevent unauthorized access to private information

In the case of RC8000 the supervisory functions are performed by

the monitor (ref. [1]). The resources of the computer may be par-

titioned into so-called processes. A process is a set of re-

sources used for program execution. In each process programs may

be executed one at a time. A process may play the role of an

operating system by creating and controlling child processes ac-

cording to some strategy.

SOS is an operating system process and each user logged in is

served by a child process, created by SOS.

In many computer systems the primary store is a key resource. To

obtain a good machine utilization it is important that key re-

sources are released, when they are not actively used.

At interactive program execution there will be long periods du-

ring which the process waits for the terminal operator to type

same input. In case no resources are released during these per~

iods, the machine utilization will become prohibitively poor.

The main purpose of SOS is to make a number of programs (pri-

marily interactive programs) share the same part of primary

store. This is done by supervising the program execution and by

swopping programs (writing the primary store to backing store

during passive periods).

SOS is mainly intended for supporting interactive program exe-~

cution. However, SOS includes facilities for executing batch

jobs, too, and the resource scheduling is based on the following

elements: ‘ e@

A series of programs executed in the same process me after the

other is called a "job".

a) Any job running under SOS is in me of the following

states:

1) running

2) suspended (ready to run, but the primary store is

occupied by another job)

3) waiting (the job is not ready to run - e.g. waiting for

terminal input)

b) Execution time is allocated in slices (of a few seconds). @
In case a job does not suspend itself within a time slice

it will be suspended by SOS.

c) Highly interactive jobs will be favoured by a high prior-

ity, while more CPU-bound jobs will get descreased prior-

ity. The time slices are allocated according to the prior-

ities of all jobs which are ready to run.

d) Batch (or background) jobs are activated only during pe-

riods where no interactive jobs are ready to run, and a

running batch job is stopped immediately when some inter-

active job becomes ready for activation (for instance when @ |

input arrives from a terminal).

In RCSO00 any program (utility or user defined program) is ex-

ecuted in a so-called "process", no matter the operating system

controlling the execution. Thus the access to the basic computing

facilities (CPU, primary store and backing store) is not affected

by the actual operating system, and all utility programs like

compilers, editor, catalog handling programs etc. may be used

under SOS exactly as under S or BOSS.

However, SOS does not allow full and direct access to slow de-

vices like printers, paper tape readers etc. This is so because e

the resources occupied by programs using slow devices are often

poorly utilized - it is extremly inconvenient if interactive pro-

grams are blocked by programs using slow devices.

The use of slow devices is assumed to be undertaken by service

modules like the printing module (PRIMO) or the file router.

USER'S GUIDE

2.1

The present chapter illustrates by means of examples same of the

facilities offered by SOS. All facilities of SOS are described in

detail in later sections. According to the intentions of SOS the

examples mainly concern interactive program execution.

SOS Illustrated by Means of Examples

Job creation.

SOS is always accessed from a terminal and a session is initiated

by a “job creation". At job creation SOS consults the user cata-

leg to check that the user is allowed to use the system and to

know how much resources shall be allocated to him. The job crea-

tion is initiated by pushing the attention key. The user is then

asked for the name of the system, he is going to use. In case of

SOS the user will be answered by a ">" and then he may type his

command. (In the examples all output written on the terminal is

printed with capital letters while terminal input is printed with

small letters. @ denotes a push on the attention key).

@

ATT sos

> go rc pass nn

02.06 SOS: RC ENROLLED

Example 1: Job creation.

The command (go) creates a set of resources (a process) with the

name "re" and initiates this process by loading the file proces-

sor FP (see ref. [3]). In this example a password ("nn") is de-

manded to create the job "rc".

When a user has started a session by creating a job as explained

in the former, his next conmand(s) will be interpreted by FP and

he will be able to run the utility programs interactively.

claim

AREA 24 BUF 25 SIZE 60416 FIRST CORE 65268

DISC: 21 SEGM/SLICE

TEMP 504 SEGM 18 ENTR
LOGIN 315 SEGM 5 ENTR

PERM 315 SEGM 5 ENTR

Example 2: Executing utility program.

Simple program development.

The present part of the chapter primarily deals with interactive

program development (typing and debugging), and readers who are

not familiar with or not interested in program development, may

skip this section and continue at "execution of interactive

programs".

Assume that some user wants to exercise his mind by playing the

“master mind" game. Then he needs sameone to set up random com

binations and to answer his guesses. He realizes that in case he

could write a program enabling the computer to do the job, he

would have the fastest, most reliable and mst patient player

ever seen.

After some thinking the user has created a program in his mind

(and on a piece of paper) and he wants to debug it. First of all

he mist type in the program text. This is done by using the

utility program "edit". ,

a
mastertxt=edit 7

EDIT BEGIN.i/ @
begin

integer array solution, gquess(1:4);
integer i, j,x,digitok, digitincluded;

setcombination:

for i:=1 step 1 until 4 do

begin

random(x);

solution(i):=x mod 10;

for j:=1 step 1 until i do

if solution(i) = solytion(j) and i <> j then i:=i-1;

end;

write(out,<:master mind program ready<10>:>);

next:

setposition(out,0,0);

write(out,<: 2>)7
for i:=Istep 1 until 4 do read(in;guess(i)); r
digitok:=digitincluded:=0;

for i:=1 step 1 until 4 do

begin

for j:=1 step 1 until 4 do

if guess(i) = solution(j) then

begin

if i=j then digitok:=digitok+]

else digitincluded:=digitincluded+] ;

end;

write(out,<<dd>,guess(i));

end;

write(out,<: => :>,false add 43,digitok,
false add 32,4-digitck,

false add 45,digitincluded,

false add 10,1);
if digitck <4 then goto next else

begin

write (out,<:you got it 1!<10>: >):
goto setcombination; e 4

end;

/.
£

EDIT END.

Example 3: Creating a text file.

Now the program text has been created and stored in the file

“mastertxt". To save the text for later use it may be permanented

by means of the utility program "scope":

scope user mastertxt

lockup mastertxt

MASTERTXT =SET 2 DISC D.780930.0207 0 000 ; USER

3; ©1886 135 3 810 819

Example 4: Executing utility programs.

After this the program may be translated by calling the ALGOL

compiler.

masterprog = algol mastertxt

MASTERTXT D.780930 .0207

1:BEGIN

37:END;

6. LINE 10. 3 UNDECLARED

LINE 16 . 6 TERMINATION

LINE 16. 8 DELIMITER

ALGOL END 22

Example 5: Program translation.

The errors detected by the compiler may be corrected by means of

the editor, like this:

newmaster = edit mastertxt

EDIT BEGIN.

1./solytion/, r/solyt/solut/

IF SOLUTION(I) = SOLUTION(J) AND I-<> J THEN I:=I-1;

1./read(in;/

FOR I:=] STEP 1 UNTIL 4 DO READ(IN;GUESS(I));

t FOR I:=] STEP 1 UNTIL 4 DO READ(IN,GUESS(I));

EDIT END.

mastertxt=move newmaster

masterprog = algol mastertxt

MASTERTXT D.780930.0217

1 :BEGIN

37:END;

ALGOL END 25

Example 6: Text editing.

The corrected version of the program is translated and in case

the translation was successful the next step will be to run the @

program.

Execution of interactive programs.

All programs (utility or user defined) are activated by the file

processor which reads the job control commands (program calls)

loads the actual programs and hands over eventual parameters. The

master mind program just created uses no parameters and it may be

executed like this:

masterprog

MASTER MIND PROGRAM READY

0123

0123>=> —

4567 @.
456¢7> -

1078

1078=> —

7910

7910>++-

7802

78302> —

6280

6280=>++

3780

3780>++++

YOU GOT IT !1

MASTER MIND PROGRAM READY

Example 7: Execution of interactive program.

The master mind program is by its nature an interactive program e
as it would not be possible to prepare the input (guesses) in

advance — each new input will depend on all answers written by

the program.

The program developed will never terminate. When the user reaches

the solution the program will generate a new qe and try again.

The only way to escape is to make a job intervention. To remove

the job the user may proceed like this:

@

ATT sos

>kill

02.23 SOS: READY

02.23 SOS: RC REMOVED AFTER USER KILL

Example 8:. Job intervention.

Job termination.

However, most programs will terminate, and the usual way to close

a terminal session is by calling the utility program "finis".

This program tells SOS that the job has finished and the re-

sources allocated my be released.

finis

02.24 SOS: RC REMOVED AFTER FINIS

Example 9: Job termination.

The master mind program may be changed in different ways. In ap-

pendix G is shown two new versions. One of them is a single ter-

minal version performing input check. The other oe is a mlti-

terminal version based on the context facility of ALGOL and ac-

cessing the terminals via TEM.

Accessing a Multiterminal Program.

A Multiterminal version of the mastermind program (as shown in

appendix G) may be accessed from a terminal by using the milti-

10

terminal “login" and "logout" facilities of SOS. The session my

look like this (the program is executed in the job "team"):

@

ATT sos

>in team usera pass al

02.52 SOS: TERMINAL CONNECTED

FROM TEM

MASTER MIND PROGRAM READY

0123

0123=> -
4567

4567= -

8915

8915=>+ _
9825

9825>++ -

9385

9385=> +++

You Gor IT !!

MASTER MIND PROGRAM READY

Example 10: Running a multiterminal program.

Autamatic Program Activation.

In the examples shown so far the user has controlled his activ—

ities by calling the programs one by one. In case a user from

time to time runs exactly the same set of programs exactly the

same way, he may get his programs activated automatically. This

may be done by stating in the user catalog a set of commands that

‘will be interpreted at login.

11

Some service functions may be implemented by executing automati-

cally activated programs. A program, listing the jobs currently

enrolled, might be run this way:

@

ATT sos

>run display

FROM TEM

02.25 SOS: DISPLAY ENROLLED

DISPLAY AF SOS DEN 78 09 30 KL. 2.25

NAVN START

RCSAVE 02.24

TEAM 02.25

DISPLAY 02.25

END 21

RORT

02.24

02.25

02.25

CPU

ie)

0

0

°

.

0

ie)

]

CLAIM:

SIZE BUF AREA

75264 3 6

75264 3 6

12800 3 5

02.25 SOS: DISPLAY REMOVED AFTER FINIS

Example 11: Automatic program activation.

Running batch jobs

A number of activities are not suited for interactive execution.

Often these activities are running for a long time without any

communication with the user. Programs generating safety copies,

translation of large systems or large database reorganizations

are all examples of typical batch programs. Under SOS, batch

programs may be executed, too. However, batch programs will never

be activated when interactive programs are ready for running.

12

A user who wants to "save" his files om a magnetic tape may do

like this:

@

ATT sos

>batch rcsave

02.27 SOS: RCSAVE ENROLLED

save mtlk0001.1.label.private tsos ttem

NO DUMPLABEL ON FILE 1

WRITTEN: DUMP MTLKOO0] 001 VERS. 300978.02 S=1 PRIVATE

TSOS 144 PROJECT.DISC D. 780929 .2137

TTEM 67 PROJECT.DISC D.780926 .2015

2 ENTR., 211 SEGM.

WRITTEN: DUMP MILKOOO1 002 EMPTY 300978 .02 PRIVATE

END 75

finis

02.29 SOS: RCSAVE REMOVED AFTER FINIS

Example 12: Running a batch job from a terminal.

In case many interactive users are active in the system or in

case the user saves many large files he will have to spend rather

a long time between the "save-command" and the "finis conmand".

Instead he might prepare the whole job by creating a jobfile with

the same contents:

savejob=-edit

EDIT BEGIN

i/
save mt1k0001.1.label.private tsos ttem

finis

/,f
EDIT END.

scope project savejob

Example 13: Creating a job file.

The whole job may now be executed using this jobfile. By doing

so, the user does not have to stay at the terminal during the

run.

2.2

13

@
ATT sos

>batch re jobfile savejob pass nn

02.32 SOS: RC ENROLLED

READ : DUMP MILKOOO! 001 VERS. 300978.02 S=] PRIVATE

WRITTEN: DUMP MTLKOOO] 001 VERS. 300978.02 S=] PRIVATE

TSOS 147 USER.DISC D.780930.0137

TTEM 67 PROJEKT.DISC D.780926.2015

2 ENTR., 214 SEGM. .

WRITTEN: DUMP MTLKOOO1 002 EMPTY 300978.02 PRIVATE

END 75

02.34 SOS: RC REMOVED AFTER FINIS

Example 14: Running a job using a job file.

Often it would be more convenient if output from batch jobs were

printed on a line printer. This may be done by using the service

module PRIMO (see ref. [5]). The output is currently written into

a backing storage file and at job termination, PRIMO is asked to

print the file.

save job=edit

EDIT BEGIN

i/
© outfile

save mt1k0001.1.label.private tsos ttem

oc

scope user outfile

filexfer outfile lp queue.paper.a4

finis

/
EDIT END

Example 15: Job file routing job output to printer.

SOS User Commands

In this section all SOS user commands are described, their syntax

and their semantics. The commands are grouped according to their

functions. In chapter 4 of this manual (the Operating Guide) the

SOS commands used at operator intervention are described. In case

2.2

14

the system is run by the users themselves at least some of the

users will have to know how to use these operator intervention @
commands.

2.2.1 Job Creation Commands 2.2.1

SOS has three different job creation commands: "go", "run" and

“batch". The syntax for the job creation commands is:

) 1

eon <jobname> { jobfile <filename>
batch 0

Tf{pas <password> [poss qasorr| i} @

See examples 1, 11, 12 and 14.

Each of these commands will create a job (a process) with a set

of resources as described in the user catalog. A job started by

the "go" or the “run"-command will be scheduled as an interactive

job while a "batch" job will be scheduled as a background job

(i.e. a "batch" job may only be active during periods where no

"go" or "run" jobs are ready for activation).

The difference between the "go" and the "run" commands concerns

the handling of the terminal only. In case of a "run" command the e
terminal is connected via TEM (see ref. [4]), offering output

spooling. In case of a "go" command, the terminal is accessed by

SOS directly - and no spooling is offered. At "batch" jobs, the

terminal is always accessed by SOS directly (as at "go").

The “jobfile" option enables the user to prepare his job by

creating a (permanent) file containing all program calls etc.

necessary for the execution of his job. The jobfile is said to be

the primary input document of the job. At jobs not using the job-

file option, the terminal is the primary input document. In all

cases the terminal is the primary output document of the job.

15

To avoid confusion, SOS will not accept that a given terminal is

the primary input document of more than one job at a time. How

ever, the same terminal may be the primary output document of

several jobs.

In other words, several jobs may be started from the same termi-

nal (and run simultaneously), but at most one of these jobs may

be created without using the jobfile option.

In the description of a process (a job) in the user catalog a

field defining a password is included. In case this password is

nonempty, the job creation will not be accepted unless the com

mand includes: pass <password>. This facility is included to

check the authorization of the user and to grant privacy. An im-

proved security may be obtained by redefining the password. This
may be done by using the “newpass" option. By means of this op-

tion, the password may be changed at startup like this:

+ pass hobo newpass hifi

(if the password of a process has become empty, it is not pos-

sible by the newpass option to create a password - thus "public"

jobs using no password cannot be blocked by a user defining a new

password) .

2.2.2 Multiterminal Commands 2.2.2

Jobs rumiing miltiterminal programs may use TEM (see ref. [4])

directly (i.e. transparently via SOS). In any case the job mst

ask TEM to create a terminal group (pool) and then the terminals

may be connected to the group (i.e. links are created to the ter-

minals). The terminal connections ray be established or removed
by the program explicitly asking TEM to create or remove the

links. Principally the same job may be performed by SOS using the

multiterminal commands "in" and “out".

16

A user who wants to be serviced by a multiterminal job may get

connected by using the "in" command:

T{1in <jobname> <username> (pss <password> (stase caeonno}

See example 10.

SOS then consults the user catalog to check that the jobdescrip-

tion according to <jobname> includes a user description with the

name <username>.

The password and newpass options may be used here exactly as at

the job creation commands.

After having connected the terminal, SOS generates a special in-

put line and hands it to the mititerminal job. This input Line

is generated to tell the job that a new terminal has “logged in".

When the terminal user wants to leave the job, he may use the

"out" command:

out

This command causes SOS to generate a special input line (as at

"in") to tell the multiterminal job that the terminal “logs out".

The exact contents of the input lines generated at "in" and

"out" may be found in chapter 3 (the Reference Part).

17

2.2.3 Job Intervention Commands 2.2.3

SOS includes a set of job intervention commands enabling the user

to control his job fully. The commands are:

stop

start . 1
<jobname>

break 0

kill

See example 8.

The <jobname> must be stated in case the actual job is created

@ using the "jobfile" option. In other words: if the terminal is

the primary input document of the job, the <jobname> is not

necessary.

In any case the job intervened mist be created from the terminal

that is used for the job intervention.

The "stop" command is used to suspend a job during execution. SOS

will suspend the job in such a way that it will be possible to

resume the job execution later on (in case input/output to or via

SOS is programmed in a nonstandard way, data may be lost because

of the intervention, but programs using standard I/O should con~

r) tinue unaffectedly).

The "start" command is used to activate suspended jobs. The

suspension may be caused by a "stop" command, a "pause" parent

message (see chapter 3) or the like.

The “break" command is used to interrupt a (possibly defective)

program. SOS restarts the program in its interrupt routine,

allowing it to run for at most one time slice. (Standard programs

will use this piece of time to make some cleaning like: empty

buffers, write error message etc.) After this period SOS aborts

the job. ,

2.2.4

18

However, SOS may be trimmed in such a way that the break command

merely works as “stop load start" when the job is enrolled with-

cut a jobfile. So the user will not lose his temporary files if

he breaks a program.

The "kill" command is used to abort jobs. The actual job will be

stopped immediately and there will be no time for the job to re-

port errors or the like.

It should be mentioned here that the job intervention commands

described in this subsection also exist in a special version as

“operator commands". (The operator version of the commands is

described in chapter 4).

Device Handling Commands

As SOS is primarily intended for interactive processing, the use

of devices (apart from backing store) mist be limited to a mini-

mum. However, batch jobs will never block interactive jobs so it

is acceptable to allow batch jobs to use some kinds of devices.

The most obvious need for device access concern printing (on line

printer) and generation of safety copies on magnetic tape or

flexible disc. Printer handling is supposed to be performed by a

service module like PRIMO (printing module). Generation of back

up, however, may be done by batch jobs.

The use of magnetic tape, flexible disc and other devices with

exchangeable documents is supported by a "call" command and an

tt"inclu command.

The "call" command looks like this:

call <deviceno> <documentname>

The function performed by the "call" command is to name a device

(specified by the device number: <devno>). After having named the

device, all jobs enrolled to SOS at present will be included as

2.2.4

19

users of the device. At magnetic tapes and flexible discs the de~

vice (station or drive) is usually given the name of the document

currently mounted.

In case of direct access to devices with fixed names (paper tape

punch for instance), the job will have to be included as a user

of the device. This may be done by using the "include" command:

include <deviceno>

All jobs enrolled to SOS at the moment of the inclusion will get

access to the device ~ but still the device may mmly be used

(reserved) by one job at a time.

It should be mentioned here that direct access to slow devices

like a paper tape punch may cause a poor resource utilization,

and only batch jobs should use this facility. Direct access to

slow input devices like paper tape readers will not do neither at

batch nor at online jobs.

Password

Instead of typing the password as described in subsections 2.2.1

and 2.2.2, the password may be typed invisible in a separate

line.

If the password information in the login command is omitted, and

the password defined for the job in the user catalog is non-_

empty, then SOS will answer by writing q@ the terminal:

>password

Now the password can be typed without echo on the screen, but a

possible typing error cannot be corrected by means of backspace

or rubout. The answer is delayed until a timer interrupt has

occured (about 5 seconds).

In this case the password cannot be changed by a newpass-command.

2.2.5

2.3

20

So the syntax for job creation commands using invisible password

go

]run)<jobname> {snes cettenane| 0 ‘nl'
batch,

“S>password" <password>

where the text in " " is written by SOS.

The syntax for the "in" command becomes:

in <jobname> <username> 'nl'

“>password" <password>

Note! When the terminal is the main console, the password will

not be invisible, neither when the console is a screen.

Terminal Access

A program executed under SOS may perform terminal access in dif-

ferent ways depending on job creation and program behaviour.

Jobs created by the "run" command will access the creating ter-

minal via SOS and TEM, using the spooling facilities of TEM. Jobs

created by "go" or “batch" commands will access the creating ter-

minal via SOS only.

Any job (created by "run", “go" or "batch" command) using the

“jobfile" option will use the creating terminal for output only.

In any case the creating terminal is usually accessed by using

the standard zones "in" and "out".

Any job may access one or more terminals via TEM by using the TEM

facilities directly (see ref. [4]). However, all TEM operations

2.3

2.4

21

will be communicated via SOS, but they are handled almost trans-

parently so that the user will normally feel no change. (The dif-

ferences are described in chapter 3).

Resources Allocated to SOS Jobs

According to the main intentions of SOS, the jobs should not be

slowed down by accessing slow devices (and thereby block the pri-

mary store for considerable amounts of time).

A reasonable rule for resource allocation may look like this:

A: interactive jobs ("go" or “run” jobs) should never access

peripherals slower than backing storage.

B: batch jobs should never access peripherals slower than

flexible discs or magnetic tape.

C: access to slow peripherals like printers should always be

done via a service module like "PRIMO".

As a consequence the resources described in the user catalog only ©

concern:

1) message buffers

2) area processes

3) backing storage entries

4) Backing storage segments

The direct use of devices (apart from backing storage) is not

supported by the job creation (or the user catalog) - the user

himself (or the operator) must use the "call" or “include" com

mands for this purpose.

2.4

22

The present chapter contains exact descriptions of subjects and

details that most users do not have to consider. However, it may

be necessary to go into some details to understand the system

3. REFERENCE INFORMATION

behaviour fully.

3.1 Job Scheduling

SOS handles two kinds of jobs: interactive jobs and batch (or

background) jobs. As a consequence the job scheduling is based @m

two main queues: a queue of interactive jobs and a queue of batch

jobs. These two queues contain only jobs which are ready to run.

Jobs waiting for external events like terminal input are queued

up in a waiting queue.

Only one job may be active at a time and this job is found Like

this:

- If the interactive queue is not empty, then find the

"best" job and activate it.

- If the interactive queue is empty and the batch queue is

not empty, then take the first job in the batch queue and

activate it.

- If both queves are empty, then wait for an event making

same job ready for execution.

When started, a job will be allowed to run for a period that de-

pends on the kind of job.

1. An interactive job will be stopped

1) when it asks for input,

2) when its terminal output exceeds the spooling capacity,

3) when the time slice expires or

4) when the job ends - whatever happens first.

3.1

23

2. A batch job will be stopped

1) when it asks for input,

2) when its terminal output exceeds the spooling capacity,

3) when the job ends or

4) when some event arrives that will make an interactive

job ready to rin — whatever happens first.

When a batch job is stopped because of an interactive job, it

will remain the first job in the batch queue. When a batch job is

created it is put back on the batch queue. Thus the strategy of

the batch job scheduling is a pure first in first out strategy.

However, this strategy may be overwritten by users or operators

using the job intervention commands "stop" and “start". "Stop"

will move the job from the batch queue to the waiting queue.

"Start" will move the job to the batch queue but in different

ways depending on circumstances:

operator start moves the job to the head of the queue

user start puts the job back on the queue.

Interactive jobs are scheduled according to dynamically changing

priorities. Each interactive job is equipped with a "priority

class" and an actual "priority".

The priorities (and -classes) change according to the behaviour

of a job and the main rules are:

1. interaction (= terminal input) implies increasing priority

2. heavy cpu-load (= using entire time slices) implies de—

creasing priority.

An interactive job starts at the mx. priority of the system

(= 0). No job will ever exceed the max. priority.

24

In the following the main algorithms used at job scheduling are

listed:

A. An interactive job is suspended because it asks for

terminal input:

if priority class + classgain > 0

then priority class: = 0

else priority class:=priority class + classgain;

priority: = priority class;

B. An interactive job is suspended because the time slice had

expired:

if priority_class - classloss < minprio

then abort job

else priority class: = priority class-classloss;

priority: = priority class;

C. When the "best" job is to be found in the interactive

queue, SOS proceeds like this: .

job: = queue. first;

while job.priority < max_priority do

begin

job.priority: = job.priority + priogain;

put_back _on_queue (job);

job: = queue. first;

end;

thus all interactive jobs stay in the same queue no matter the

priority. However, a low priority will imply that the job will ke

bypassed by other jobs a number of times before activation. Dur-

ing a cpu-bound period an interactive job will thus spend in-

creasing periods of time between its active time slices (in case

the whole system has a steady load).

25

3.2 Terminal Access

Terminals accessed by SOS jcbs may be:

1) The primary input/output terminal from which the job was

created.

2) A number of terminals connected to a terminal group in TEM.

This terminal group mist be created by the job itself.

The message flow controlling the access is described in subsec-

tions 3.3.1] and 3.3.2. In this section some conventions and li-

mitations concerning terminal access shall be mentioned.

A. Programs using terminal access under SOS must follow the stan-

dard conventions for transfer checking. The most important

rule is that input or output messages answered by an empty

answer (no data transferred) are repeated.

SOS jobs will never see hard errors on terminals because SOS

will automatically disconnect such a terminal. In case the

terminal was primary input terminal of a job, the job is

aborted. In case the terminal was connected to a multitermi-

nal group, it will become disconnected and the job will re-

ceive a special input telling that the terminal is discon-

nected.

SOS jobs may create at most one terminal group for multitermi-

nal access. This group mist have the name of the terminal ac-

cess module (usually TEM). Jobs may connect a number of ter-

minals to this pool (by creating THM links). In case the ter-

minals are connected by the job itself, SOS is not directly

involved and there will be no possibility for SOS to check the

authorization of the terminal users. This facility may for in-

stance be used for accessing F8000 terminals.

When an SOS job has created a terminal group, SOS may connect

terminals to this group. This is done in case a terminal user

"logs in" by using the “in" command. If the user is allow) to

3.2

3.3

26

be connected to the job (according to the user catalog), SOS

will do so and to inform the job of the arrival of a new user,

SOS generates a special input line. In a similar way SOS may

disconnect terminals using the “out" command. The contents of

these special input lines are:

login: <lLocalid.><1><1><32>att<32><32><32><process name><NL>

logout: <localid.><2><2><32>out<32><32><32><NL>

hard er-

ror: <localid.><2><2><32>hard<32>error<NL>

Only TTY-compatible terminals may use the "in" and "out" faci-

lities of SOS.

SOS - Job Interconmmunication 3.3

An SOS job may access terminals, backing storage and eventually a

few other kinds of devices. All kinds of access are om the basic

level performed by using the "send message-wait answer" func~

tions. The communication with backing storage, for instance, will

never be affected by SOS. However, SOS intervenes all commmica-

tion between an SOS job and its terminal(s), to know precisely

the current state of the job.

Thus even though a job “believes" that it communicates with its

primary input/output terminal (and eventually TEM) it really com

municates with SOS.

Apart from the terminal commmication there is a "parent commu~

nication" (i.e. jobs send messages to their parent, SOS, when

they finish, in case they want documents mounted, if they detect

severe internal errors or the like).

27

e 3.3.1 Primary Input and Output 3.3.1

The primary isput and output communication performed by a job my

be visualized like this:

Job sos Terminal (or TEM)

input. message -> stop process

input message ->

(other jobs may run)

put job into < input answer

@ active queue

copy - input

<- input answer

activate job

output message -> copy output

output message ->

< output answer

) <- output answer

Only two message operations are involved:

input:

message: +0 3 mode

+2 first address

+4 last address

+6

+8

+10

+12

+14

28

The input messages may for instance be sent when using the read e@

procedures of ALGOL. The zone used for terminal communication

should be opened exactly as to a "real" terminal:

open (z, mode shift 12 + 8, <name of SOS system>, give up)

output:

5 mode

first address

last address

message:

++ + + + a P bw OC
8

+10

+12 . e@

+14

The output messages may for instance be sent, when using the

write procedures of ALGOL. The zones used for output should be

opened exactly as for input.

3.3.2 Transparent Communication to TEM 3.3.2

SOS jobs may use TEM by sending messages to the TEM process as

described in the TEM manual (ref. [4]). All messages to TEM will

be sent via SOS and SOS imposes a set of limitations. @

1. An SOS job may cnly create me terminal group.

2. The terminal group created by a job mist use the name of the
TEM process (usually TEM).

3. The buffer length of SOS will be the max block length of data

transfers.

4. No dummy message will be returned to the job after pool

creation.

29

As TEM may spool input and output, the communication job-SOS-TEM

locks slightly different from the primary input/output communica-

tion:

Job SOS TEM

output message -> output message ->

send timer

wait first answer

(output or timer)

regret timer < output answer

<- output answer

IVvinput message input message ->

send timer

wait first answer

(input or timer)

if timer answer first

then stop job

(other jobs may run)

put job into <- input answer

active queue

copy input

<- input answer

activate job

The reason for using a timer period (of 50-100 m.sec.) is to

avoid swopping a job in case TEM is able to answer within this

period (often TEM will need a little time for transferring

spooled data).

In the conmunication between a job and TEM, SOS will offer a

special feature. The usual convention is that each block of out-

put sent to TEM must include address information (in case of TIY

30

compatible terminals, the first 24 bits of a block is interpreted e

as an address). When communicating via SOS, it is possible to use

an implicit addressing mode for output. In this mode no address

information is needed in the block. Instead the output block is

routed to the terminal from which the job has received its latest

input block. (This way of addressing may often be convenient as

most terminal communication looks like terminal commands inmmedi-~

ately followed by an answer).

To use this facility the outputzone must be opened like this:

open (z, 1 shift 18 + mode shift 12 + 8,<name of TEM,0);

3.3.3 Parent Messages 3.3.3

Jobs may send parent messages to inform the system of job termi-

nation, severe errors or to request operator action.

Parent messages all use the following format:

message: + 0 function | pattern <5 + wait

+2 integer or text portion

+4 -

+ 6 =

+8 =

H0 e
+12 =

+14 -

"function" specifies the operation to be performed. Only even

values are allowed.

"pattern" specifies how the parent (SOS) is to display the mes-

sage (on the system terminal). The “pattern" contains seven bits,

one to each of the last seven words of the message (+2,+4......

+14).

3]

When a bit equals one it means that the corresponding word should

be displayed as an integer, otherwise the word is displayed as a

text portion of 3 characters. Thus bit 1<]1 means that the second

word of the message is an integer and 1<5 means that the last

word of the message is an integer.

"wait" may be zero or one. A zero means that the job wants an

answer immediately, one means that the job should not be answered

(restarted) until some operation (operator action) is completed.

When receiving a parent message, SOS will perform the following

actions depending on the function of the message:

function = 2: finis

The job is aborted. Temporary files are cleared, eventual

TEM pools and links are removed. The job process is re-

moved and a finis message is written on the start-up ter-

minal of the job.

function = 4: break

The actions are exactly as for finis. However, the mes-

sage written on the terminal is different.

function = 14: mount

If the document is already mounted and accessible, the

job will become a user of the device and SOS returns the

answer inmediately. If the document is not mounted, SOS

displays the message and stops the job. When the operator

has mounted the job he may activate it by using the

"start" command.

function = 16: print

Displays the contents of the message according to the

general rules. Is the wait bit zero the job will be an-

swered at once, otherwise it is stopped and the operator

may reactivate it by using the "start" command.

32

function = 32: mount special

Treated exactly as "mount" (function = 14)

All other functions are treated exactly like a "print" message

(function = 16).

4. OPERATING GUIDE

4.1

The operators tasks in the day to day running of the system com

prise the following major points:

a. start-up

b. system and job intervention

c. device support

d. close down

e. system failure.

Start-Up

During the start~up the system calculates a set of minimm re-

sources on the basis of the trimmed values. This set of resources

must be present in order that the run can be succesful, otherwise

the run is immediately terminated with a message specifying the

minimm set of resources. When started with sufficient resources

the resources available for jobs are listed.

@

ATT sos

new sos internal 3

READY

@

ATT s

function 1,2,3,4,5

READY

FROM SOS

02.58

02.58

02.58

02.58

02.58

02.58

02.58

Example 16: SOS

SOS:

SOS:

SOS:

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

started

size 50000 buf 30 area 30 perm disc 1000 40

prog bsos base -8388607 8388605 run

SOS VERSION: 780929 O

SOS CHILD RESOURCES

Sos INTERNAL 3

sos BUF 16

sos AREA 24

SOs SIZE 45568
SOS STARTED

as a child of "s".

4.1

i

4.2

34

@

ATT s e
replace prologue

@

ATT

READY

PROCESS NAME = sos

FROM SOS

PROGRAM NAME = bsos

09.02 SOS: MESSAGE SOS VERSION: 780901 0

09.02 SOS: MESSAGE SOS CHILD RESOURCES

09.02 SOS: MESSAGE SOS INTERNAL 3

09.02 SOS: MESSAGE SOS BUF 147

09.02 SOS: MESSAGE SOS AREA 134

09.02 SOS: MESSAGE SOS SIZE 50688

09.02 SOS: MESSAGE SOS STARTED

Example 17: SOS started using "S-replacement". r

It should be mentioned here that even though all examples use the

system name "SOS", any name of up to 8 characters may be used.

Operator Intervention 4.2

4.2.1

At system trimming an operator key (an operator password) is de-

fined which may be used at operator intervention. Operator inter-

‘ventions are accepted only when initiated from the system terminal

of SOS (the terminal used at SOS start-up).

The operator interventions concern the SOS system (= system inter-

vention) or one or more jobs (= job intervention).

System Intervention 4.2.1

By using the system intervention commands the operator will be

able to change the state of the system. The possible conmands

are:

lock{ | <operator key>
open

(These commands are oly accepted when typed on the system ter- @
minal of SOS).

4.2.2

35

The “lock" command will make SOS refuse all attempts to create

jobs or to connect terminals to multiterminal jobs. The command

may be used for draining the system. As a consequence SOS will

write a message on the system terminal when the last job leaves,

telling the operator that the system is empty.

@

ATT sos

>lock opr

16.56 SOS: READY

Example 18: Operator intervention.

The “open" conmand is the opposite of the "lock" command. After

"open" job creation and terminal connection will be accepted.

Job Intervention

The job intervention commands (described in chapter 2) may ina

changed version be used as operator commands.

In this version the syntax is:

stop

start <operator key> co

break all

kill

In case the “all" option is used, all jobs enrolled will be sub-

ject to the action stated.

The "stop" command will suspend the job(s) in question in such a

way that the execution may be resumed.

The "start" conmand will activate suspended jobs. The suspnesion

may for instance be a "pause" message requesting an operator

action.

4.2.2

4.2.3

36

The "break" and "kill" commands abort the job(s) in question. At

"break" the job will be allowed to write an error message before @

removal.

@

ATT sos

>kill opr all

16.59 SOS: READY

Example 19: Clear system.

Device Support 4.2.3

Usually SOS jobs will not use equipment that requires operator @

support. There will be a need, however, for users to make safety

copies on flexible disc, magnetic tape or the like. Jobs using

that kind of equipment may request documents to get mounted.

These requests will be displayed on the system terminal of SOS.
When the document is mounted, the operator must name the device

(with the name of the document mounted) and then restart the job.

The naming is performed by the “call" command:

call <device number> <document name>

(the "call" command may be immediately followed by the "start"

command) . ; r

16.58 SOS: PAUSE RC MOUNT mr

@

ATT sos

>call 10 mt start opr re

16.59 SOS: READY

Example 20: Tape mounting.

37

Close Down 4.3

4.4

The SOS system is closed by using the "halt" command:

halt <operator key>

The run will terminate immediately without removing active jobs

(remember that the system may be drained before closing). In case

the system generates testoutput “halt" will close the testoutput

file. After closing SOS, the system (the SOS process) may be

removed.

_&@

ATT sos

>lock opr

16.54 SOS: MESSAGE SOS SYSTEM EMPTY

16.54 SOS: READY

@

ATT sos

>halt opr

16.55 SOS: PAUSE SOS SYSTEM CLOSED:

Example 21: Drain system and close down.

How to Handle System Failure 4.4

During the run the system may break down in one of the following

two ways:

1. An internal program error or a transport error from the

program area "bsos" may cause the system to break down and

the following error message will be printed on the system

terminal of SOS.

pause sos ***fault

(Please notice that if this terminal is reserved by other proces-

ses (e.g. by login to BOSS) it will not be possible for SOS to

print these messages).

38

2. A hard error in the swop area makes continued running im

possible and the system stops after having printed the

message:

message sos status <statusword> swpsos

In all error situations one should, if the system has been trinm-

med with 'testoutput', move this from the test area (e.g. TSTSOS)

to a work area, from which the TRACE~program can print it for a

further analysis.

The TRACE program is automatically generated at the installation

of the system. The program is called as follows:

trace <testarea>.<segments>

<testarea> is the name of the area, from which the test output is

to be printed (the work area the test output has been moved to,

or the test area itself).

<segments> are the maximm number of segments to be analyzed.

TRACE always finds the latest generated segment, and counts the

number of segments backwards from there. <segments> are automa-

tically cut to the size of the area, if something larger has been

specified.

@

ATT s

proc sos remove prog fp run

READY

TO Sos

o lp

trace tstsos.10000

oc

@

ATT s

proc sos remove

Example 22: Printing testoutput.

39

(Once again, please notice that the names used (SOS, TSTSOS and

SWPSOS) are only examples, as other names, consisting of up to 8

characters, as well might be used, allowing identical systems

each with its own name to run simultaneously.

5.1]

This chapter concerns the subjects that are relevant for persons

who administers the resources of an installation and for persons

who are actually going to install an SOS system mm a computer of

the RC4000 or RC8000 series.

System Distribution 5.1

The SOS system is usually distributed as a magnetic tape contain-

ing the files below:

O: label

1: soshelp (is used as an auxiliary file when generating @
an SOS system; contains the files "sostrim",

“sossave" and "sosload")

2: traml (compiler for generating "“bsos", "cleartemp"

and "prologue")

3: tsoscat (a simple user catalog)

4: tsos (system program text)

5: tcleartemp (program for clearing temporary files when a

job terminates)

6: tupsoscat (program for generating, updating and listing

the user catalog)

7: ttrace (program for analyzing test output)

8: tsostest (multiterminal program for simple system r

testing)

9: tprologue (program used for starting a system as

"S-replacement")

10: tdisplay (program displaying all jobs actually running

under SOS)

11: tnews (test file to be written on terminals running

the "hotnews" job defined in "tsoscat")

4]

All files of a system tape may be automatically loaded to backing

@ storage like this:

sosdoc = set 1 disc3

soshelp = set mto sostape 0 1

i soshelp

i sosload

In case no "sosdoc" is specified the files will be loaded pri-

marily on the system disc.

On the other hand a system tape may be generated from an SOS

system on disc by:

sosdoc = set mto sostape

i soshelp

i sossave

and a standard system may be generated from tape or disc by using

this set of conmands:

soshelp = set mto sostape 0 1 3; Only for tape

i soshelp

i sostrim

@ :. System Trimming

The quantities to be defined when the system is trimmed, fall in-

to two groups:

a. System constants concerning the strategy of execution, time

slice, test output, the type of machine and the buffer

length for the applications terminal I/o.

b. The minimum of resources available for the applications and

the terminal users. E.g. 1) the minimal core size for ap-

plications, 2) the minimal number of simultaneous applica-

@ tions etc.

5.2

Regarding job resources, the system has been designed to calcu-

late on the basis of its start up resources, how many jobs it

will be able to process simultaneously. If this number is smaller

than the minimm specified in the trinming, or if the remaining

pool of resources (buffers, areas etc.) is smaller than what is

specified in the trimming, the system will stop after the init-

ialization with an error message.

In the following all constants that may be changed in the trin-

ming are mentioned.

"optionid"

At start-up a constant showing the date of the SOS version

will be listed together with this constant. At each trimming

this constant should be changed to show the date of the

trimming (e.g. 780901). The standard value is 0 indicating

that "standard trinming" is used.

“rot

This constant defines the target machine to which the system

is trimmed. The only values accepted are 8000 or 4000.

"minusers"

The minimal number of jobs that may be enrolled simultaneously

(i.e. the number of internal processes allocated to SOS).

"“camdusers"

Even when the maximal number of jobs are running there will be

a need for handling terminals, performing operator commands,

login commands or the Like. "comndusers" defines the minimum

of terminals that will be able to commmicate with SOS without

having created any job.

"“mminbuts"

Defines the minimal set of message buffers in the pool of re-

sources that may be allocated to jobs.

43

“minareas"

Defines the minimal set of area processes in the pool of re-

sources that may be allocated to jobs.

"minsize"

The free size of primary store in an SOS system depends an

the size of the SOS process as defined at start-up. During

initialization SOS will check that the "free size" will be

equal to or exceed "minsize". The standard value (12800) is

sufficient for running most of the utility programs and com

pilers.

“puel"

Defines the size of the I/O buffer used for communicating

data between terminals and jobs. (Communication via TEM will

pass the same buffer - and use the same buffer limit). The

standard value (104) matches the terminal buffer size as de-

fined in the standard I/O system.

"timeslice"

50S allocates computing time in time slices. When a job is

swopped into primary store and activated, it will at the

latest be suspended after the expiration of a time slice.

Then the state and priority of all jobs enrolled will be

evaluated and the "winner" will get the next time slice. A

"large" time slice will decrease overhead and increase re-

sponse time variations. The standard value (3 seconds) will

often do.

"cpulimit"

Interactive jobs running under SOS will not be allowed to

cycle indefinitely. At most it will be allocated "cpulimit"/

"classloss" timeslices before being removed from the system.

In case the priority of the job was lower than the maximum

priority when the cycle started, then it will be allocated

less than “cpulimit"/"classloss” timeslices before removal.

(For further investigations see chapter 3).

Please notice: 0 < ("cpulimit" + "classloss") < 2048.

44

"“classloss", “classgain", “priogain".

These three constants all concern the scheduling strategy of

SOS. This strategy is explained in detail in chapter 3. Here

some rules of thumb shall be stated:

a. 1 < <constant> < 2048

b. when "classloss" is large, jobs will rapidly be removed by

“time exceeded";

c. when "classgain" is large, jobs will quickly forget that

they have had a cpu-bound period (a period of low prior-

ity);

d. when "priogain" is large, the response time will (statisti-

cally) be proportional to the computing time, while a small

value of "priogain" will give response times that increase

more than proportional to the computing time.

"testsegmts"

The SOS system may currently generate testoutput for mainten-

ance purposes. The testoutput is cyclically written into a

testoutput file. "testsegmts" defines the size of this area.

Obviously the size of the testoutput area is proportional to

the period of time that may be "traced". If "testsegmts"

equals "0" no testoutput will be generated. It is recommended

that testoutput is generated at least during some period after

the first installation of the system. (The testoutput is

necessary in case you want the RC maintenance staff to analyze

and solve your problems. However, you should not waste your

time trying to analyze the testoutput yourself).

"conditions"

This constant is a bitpattern defining the reaction om time

exceeded (see “cpulimit") and break. The standard value is

2'000000. The bits used are:

2'000001 = abort job at time exceeded. When this bit is

zero, an online job may run for ever.

2'000010 = abort job after break command. When this bit is

zero, a user break or operator break will work

as “stop load start" when the terminal is run-

ning a job without jobfile.

45

"oprkey"

Defines a text used as operator password. Default is "opr".

This text must be nonempty.

“swopdoc", “testdoc"

In case these two texts are empty, the swop area and the test-

output area are usually placed on the system disc (they are

actually placed on the first disc on which the SOS process has

got backing storage resources). To smooth disc load it may be

reasonable to place two areas on some other disc than the sys-

tem disc.

The system trimming is actually done by means of the file

“sostrim" (see appendix F) which contains the standard trimming

plus commands for generating the trinmed program version together

with some utility and test programs.

The individual trinming consists of changing some values in

“sostrim" in case standard values do not apply. This is done by

simple editing e.g.:

xtrim = edit sostrim

EDIT BEGIN

1./optionid:=/, r/0/780901/,

1./minsize:=/, x/12800/20000/,

]./timeslice:=/,r/3/5/,

1./testsegmts:=/,1/42/168/,

£

EDIT END.

. Example 23: Individual trimming.

The commands stated in the file "sostrim" (and here "xtrim") will

generate an SOS system like this:

a. load a compiler for translating SOS system

b. generate SOS system program: "bsos"

c. generate catalog cleaning program: "cleartemp"

d. generate user catalog program: "upsoscat"

46

e. generate testoutput analyzing program: "trace"

£. generate S-replacement loader: "prologue"

In case a file with the name "soscat" already exists, the system

generation will stop here. If no “soscat" exists, it is assumed

that SOS has not been running on the installation before and

therefore a set of testprograms and testfiles is generated to

facilitate a system test. The generation proceeds Like this:

g- generate a simple user catalog: "soscat"

h. generate a miltiterminal program: "sostest"

i. generate a display program: "bdisplay”

j. generate a news-file:"tnews".

47

@

ATT s

all sos run

READY

TO SOS

soshelp = set mto sostape 0 1

i soshelp

FROM S

PAUSE SOS MOUNT SOSTAPE

@

ATT s

call 10 sostape start

READY

FROM SOS

xtrim = edit sostrim

Er BEGIN.) /
1./optionid/, x, '0/780901

1./minsize/, ’ r/12800/20000/,
£

EDIT END.

i xtrim

EDIT BEGIN.

EDIT END.

TRCMOL

1:(RCMOL=SET 1 DISC

1 :RCMOL=ALGOL

1:SCOPE USER RCMOL

1:END

1:BEGIN

3068 :END

ALGOL END 168

XSOS D.781003.1610

RCMOL/011 D.781003.1616
TRANSLATION TIME = 199.85 SEC

CORE AREA CLAIM = 12246 BYTES

DISC AREA CLAIM = 24 SEGMENTS

TCLEARTEMP D.781003.1615

RCMOL/O11 D.781003.1616

TRANSLATION TIME = 8.34 SEC

CORE AREA CLAIM = 504 BYTES

DISC AREA CLAIM = 1 SEGMENTS

END 125

(to be continued)

5.3

TUPSOSCAT

1 :BEGIN

2013:END;

ALGOL END 97

TTRACE

TRACE

PROGRAM FOR ANALYZING TESTOUTPUT

as 00 oeee :BEGIN
174:END

ALGOL END 34

TPROLOGUE

RCMOL/011 D.781003.1617
TRANSLATION TIME 14.26 SEC

CORE AREA CLAIM 996 BYTES

DISC AREA CLAIM 2 SEGMENTS

“ou

END 122

END 59

TDISPLAY

] :BEGIN

53:END

ALGOL END 29

SYSTEM GENERATION COMPLETED

Example 24: System installing and trinming.

User Catalog

Any job executed under SOS must be described in the user catalog.

The user catalog contains information about resource demands,

scope (file access), password, start-up commands and in case of a

multiterminal job, descriptions of terminal users who are allowed

to login to this job.

The user catalog is created and updated by the program

“upsoscat". This program may list the actual contents of a user

5.3-

5.3.1

49

catalog in such a way that the listing may be used as input for

generating a new catalog. As users may change their passwords, it

is not convenient to generate a changed catalog from an edited

version of the original catalog text. Instead a new catalog my

be generated without destroying actual passwords, by using an

edited version of an actual catalog listing.

The user catalog consists of a set of job (process) descriptions.

Data per Job (Process)

The user catalog must contain the following information per

process:

process name max. 8 characters

buffers : the process' demands on buffers and

areas : areas

bases : the standard-, user- and max (project)

base of the process

password * MAX. 11 characters

minsize : the minimum size acceptable for the process

maxsize : the max size bsed for the job (even though

SOS may have room for more)

FP-commands : max. 59 characters

are executed when the job is created.

Can be used to start-up an application.

bs-claims : device-name (max. 11 characters) plus

entries and segments for keyO, keyl, key2

and key3.

Max. 12 units.

terminals : external identification (max. 11 charcters),

local identification (max. 3 characters),

password (max. 11 characters),

5.3.1

50

input buffering (max.no of input buffers

spooled by TEM)

timercount (max.no of timeout periods

expired before TEM returns an answer).

The process name must identify the job unambiguously.

An arbitrary number of terminals can be registered under a pro-

cess. The external id. and the local id. must be unambiguous for

terminals under the same process.

Parts of the descriptions may be amittted. The "upsoscat" program

will then generate default values. In the following all default

values that are not 0 (or nonempty) are Listed.

buffers 2 4

areas :7

maxsize : 8388608

bs-claims : disc keyO 6 O keyl O O key2 0 O key3 0 0

terminal input

buffering : 1

terminal timer

count : 40

At catalog generation it is checked that process names, buffers

and areas are given values different from 0.

5.3.2 Creation and Change of the User Catalog 5.3.2

The program “upsoscat", which is used for generating the user

catalog, is called as follows:

]] <cat> 1
<newcat> = upsoscat <input> oldeat

i) 16) no 0

. <outfile> 1
list.

no ie)

543.241

51

<newcat> : the name of the new user catalog

<input> : the name of the file containing the

input. If this is amitted, input is

taken from the lines following the

program call

<cat> H the name of the user catalog to be

updated

<outfile> : the name of the file in which the

contents of the catalog is to be

printed.

If the parameter oldcat is amitted or oldcat.no is stated, a new

user catalog is created in <newcat>; otherwise <newcat> will

contain an updated version of <cat>.

If list is oamitted or list.no is stated, the new contents of the

catalog are not printed; otherwise the contents will be printed

in the <outfile> in a manner making it possible to use it as in-

put for upsoscat.

<newcat>: is reserved by the program throughout the run, whereas

<cat> is only reserved during the period of copying (this is done

at the beginning of the mun).

<newcat>: is extended by the program if necessary. If this is not

possible, the program stops with the message ‘lookup <i>' or

‘ch.entr <i>'. In case of an error in the input, the OK-bit is

set to 'no'. (The program ends by writing ‘errors 0').

Creation

For each process to be created, the data described in subsection

5.3.1 may be stated.

The syntax for input:

5.3.2.1

52 .

{maxprocess <number> 35 @

process <proc-name> max.

{out <u>}!

]
{area <area> }

-stdbase <numiber> <number>

userbase <number> <number>

maxbase <number> <number>

{passwor " (<xey>}) "};

{minsize <number> } @

{maxsize <number> 33

bs <name> — key <entr> <segn> 12

keyl <entr> <segm>

key2 <entr> <segm>

key3 <entr> <segm> 0

{corm <name> " {<local ia} soe {<rey>} "
L 0) @

(coute> {<timeouts>); 3 ate | 3

(2),

<proc-name> : max. 8 characters, letters or digits.

<name> : max. 1] characters, letters or digits.

<buf, <area>, <entr>, <segm>: non-negative integers.

<text> : max. 59 characters, all characters

except " are allowed.

<local.id : max. 3 characters, all characters

except “ are allowed. e

<key> 2 max. 1] characters, all characters

except " are allowed.

53

Note! The "term" option must not be followed by any other

option within a process description. (When used, the ter-

minal should be the last part of the process description).

On the basis of <number> after maxprocess it is calculated how

many processes <max>, there must be room for in the user catalog.

Max is the smallest number, which is a miltiple of 50 and which

is bigger than or equals <number>.

Is maxprocess omitted max is set to 50.

The catalog bases are defined by right and left limits for the

base intervals.

The parameter 'end' need not be included if input is specified in

the program call.

If the demands described in subsection 5.3.1] are not met, the

process is not registered. Errors in the terminal parameters will

only effect that the terminal is not registered.

The catalog is created directly in <neweat>. After being created,

<newcat> will always contain a correct user catalog, but if there

have been errors in the input, the catalog will not correspond to

what was wanted. By errors it is recommended to make a rerun

instead of updating <newcat>.

5.3.2.2 Change

There are three types of updating which concern a process:

correction (cprocess), creation (iprocess) and deletion

(dprocess) .

When correcting, the information to be changed plus its new value

must be stated. If all the entries and segments of a unit are

zero, the unit is deleted. The terminal can be created and de-

leted (with the parameters term and dterm). The terminal correc-

tions mist be the last changes, which are specified for a pro-

cess.

5.3.2.2

r

cprocess <proc-name>

{out <but> } b

farea <area> } }

{stdbase <number> <nurber> } }

{userbase <number> <nunber>})

{raxbase <nutber> <number> }5

{password « {xey>}) " 1

{minsize <number> }
0

{maxsize <number> } 6

{f " {text>}! " 3s

12

bs <name> — keyO <entr> <seqn>

key] <entr> <segm>

key2 <entr> <seqm>

key3 <entr> <segm>

10]

{term <name> " {<tocal id.>}) “oe {<cey>}) " { <nmber>}é

{<nunivex> } i } 5

[(aterm <name> " {<1ocal ia.>}" IS _

(iprocess <proc-name> max

buf <buP

(as for catalog creation)

(eprecess <proc-nane |"

(era } 9
See the note about "term" in subsection 5.3.2.1.

55

The changes of <cat> are made in a temporary file.

After the updating is finished, this file is copied to <newceat>.

As when created, <newcat> will contain a correct user catalog,

but in case of errors it is recommended to make a rerun instead

of updating newcat.

5.3.2.3 Listing 5.3.2.3

When the creating/change processes are completed, the contents of

<newcat> are listed as described for the input syntax. If this

listing is used as input in a catalog creation, the new catalog

will become identical with the me listed from <newcat>.

If a listing, without updating, of an already existing catalog

is wanted, the program call below is used:

upsoscat oldcat. <cat> list.<outfile>

end

5.3.3 Resources Needed for Creating a Catalog 5.3.3

After creation the user catalog will contain index segments and

process segments. There will be 1 index segment for each 50 pro-

cesses in the catalog. Each process will occupy one segment con-

taining the process description and up to 5 terminal descrip-

tions. Processes with more than 5 terminal descriptions will

occupy one more segment per 19 terminals (exceeding the first

5).

As updating, the size of the user catalog may increase. The ca-

talog can be compressed by making a printout of the catalog and

use this in a re-creation process.

5.3.4

56 -

upsoscat oldcat.soscat list.out e

end

END 59

clear project soscat

soscat = set 1

soscat = upsoscat out

END 55

scope project soscat

Example 25: Compressing user catalog.

When creating a user catalog by means of listing, at least 5 buf-

fers will have to be used, and by updating at least 6 buffers.

Error Messages 5.3.4

In case of an error, an error message plus the input line with

the error is printed.

- Below the word "parameter" is used covering the input keywords:

end, maxprocess, process, dprocess, corocess, iprocess, buf,

area, stdbase, userbase, maxbase, maxsize, minsize, password, fp,

bs, keyO, keyl, key2, key3, term, dterm. The word transaction is

used for the 6 first words mentioned above:

Error text Explanation

line too long more than 120 characters in an input ‘line.

The line is not processed and is not

printed.

illegal char illegal character in an input line.

The rest of the line is processed.

buf illegal buf-value.

The processing is continued with the next

parameter.

area illegal area-value.

The processing is continued with the next

userbase

stdbase

maxbase

password

minsize |

maxsize

device name

bs

bsfull

proc~params

missing

base error

claim error

abnormal end

trans

57

illegal base-value

The processing is continued with the next

parameter.

illegal password. The processing is

continued with the next parameter.

illegal size value.

The processing is continued with the next

parameter.

an error in the text.

The processing is continued with the next

parameter.

as for "name"

illegal bs value.

The processing is continued with the next

parameter.

more than four bs units.

The unit is not registered.

The processing is continued with the next

parameter.

incomplete process description.

The process is not registered/detected.

the values of the bases are inconsistent.

The process is not registered/detected.

the internal relationship of entries and

segments from keyO - key3 is not correct.

The process is not registered/updated.

input ends where further input was expect-

ed.

The process, which was last processed, is

not registered/updated.

an illegal parameter was read where a

transaction was expected.

The processing continues with the next

parameter.

58

name illegal name.

The processing is continued with the next

transaction or parameter dependent on the

situation.

proc in cat the process already exists in the catalog.

The processing is continued with the next

transaction.

loc id illegal local identification.

The terminal is not registered.

The processing is continued with the next

parameter.

term key illegal user~key.

The terminal is not registered.

The processing is continued with the next

parameter.

cat full an insertion of a process exceeding the

maximum allowed is attempted.

By creation the processing is terminated

and by updating the processing is continued

with the next parameter.

term in cat a terminal with the same local id already

exists at this process.

Apart from these error messages, the errors below may occur, all

causing the termination of the program.

lookup i an error in oe of the data areas.

_ Ought not appear.

ch.entry i the catalog cannot be extended; too few

resources or an error in the catalog.

Ought not appear. .

call 0 an error in the call of the program.

temp cre work areas cannot be created (too few

resources).

newceat i an error in the <cat> specified in the

; program call.

oldeat i an error in the <outfile> specified in the

program call.

5.4

59

remove i an error in connection with the removal of

a work area.

Ought not appear.

errors 0 is printed after a completed creation,

updating, if there has been any errors in

the input.

Test Facilities 5.4

After the installation of an SOS system (at least including SOS

and TEM) it may be checked that the system installed really

works. As explained in section 5.2 a set of test programs and

test files will be loaded in case no "soscat" existed before the

generation. A simple system test using a variety of the facil-

ities offered by SOS and TEM is shown below.

This example consists of three terminal logs as it includes a

maltiterminal test (using the tesprogram "tsostest").

>go team pass hobo

16.53 SOS: TEAM ENROLLED

© Fp
bealgol tsostest

oc

b

16 53 43: LOGIN: . ATT SUBO102

16 53 59: LOGIN: 9, AIT SUBO11

16 54 09:

16 54 12:

END 23

LOGOUT: 9,OUT

LOGOUT: 2,OUT

The log of two terminals serviced by the miltiterminal job

"team" may look Like:

@

ATT sos

>in team nn

16.54 SOS: TERMINAL CONNECTED

_ FROM TEM

SOS TESTPROGRAM READY

qwaqwaqwaqwacqwaqwaqwaqwaqwaq
TERM = 9 LINE = 1: QWAQWAQWAQWAQWAQWAQWAQWAQWAQ

1234567890

TERM = 9 LINE

0987654321

TERM = 9 LINE

@

ATT sos

>out

2: 1234567890

3: 0987654321

TO TEM

FROM SOS

16.54 SOS: TERMINAL DISCONNECTED

@

ATT sos

>in term userb pass b2

16.54 SOS: TERMINAL CONNECTED

FROM TEM

SOS TESTPROGRAM READY

abns jdgehbsgfa

TERM = 2 LINE = 1: ABNSJDGEHBSGFA

qverthj

TERM = 2 LINE = 2: QWERTHI

dftyuiop

TERM = 2 LINE = 3: DFTYUIOP

(to be continued)

5.5

61

(continued)

ATT sos

pout

TO TEM

FROM SOS

16.54 SOS: TERMINAL DISCONNECTED

Example 26: System test after installation.

It is obvious that an operating system is not really tested by

running some test programs. The only way to make a realistic test

is to use the system for normal routine duties. As a consequence,

faults may appear from time to time, especially during the first

period after installing the system. To be able to remove the

errors causing system failure, SOS may produce testoutput (as

explained in section 5.2). The RC maintenance staff. will have

almost no chances of detecting the errors mless the system

failure is documented by means of testoutput, so during the first

period after the installation the testoutput facility should be

switched on.

Resource Demands

When installing the SOS system (or generating a new version) a

process with the following set of resources will do:

area 6

buf 6

size 60000

work 20 20 300 disc

When running, the SOS system will need a set of resources for its

private use (apart from the resources set aside for SOS jobs).

5.5

62 ©

The resource demands may be computed like this: e

Primary store: (halfwords)

resident code app = 4000

test buffer (optional) 512Wt

descriptions and I/O buffers

= (users + command users) * (bufsize + 36)

Message buffers:

constant consumption: = 4

varying consumption

= (users + command users) * 2

Area processes: @

constant consumption 6

Backing storage segments:

testoutput = (as defined in trinming)

swop area =

(size of a user process)/512 * (users + conmand users)

The standard trimming of SOS (as defined in the file "sostrim")

will have the following demands:

Primary store:

Code: 4000 @

testbuffer: 512

descriptions and buffers: (3+2)*

(104+36) 700

4302

message buffers: 4 + (3+2)*2 _14

area processes: 6

It should also be mentioned here that each job created by the

“run" command uses one pool and one link in TEM. Apart from this,

jobs using multiterminal access via TEM, will need one more pool

plus a mmber of terminal links depending on the max. number of

terminals simultaneously "logged in" to the job.

63

REFERENCES

[1]

[2]

[3]

[4]

[5]

RCSL No 31-D476:

RC8000 Monitor, Part 1

RCSL No 31-D477:

RC8000 Monitor, Part 2

RCSL No 31-D364, 31-D607 and 31D379:

System 3, Utility Programs, Part 1, 2 and 3

RCSL No 31-D513:

Terminal Access Module (TEM)

RCSL No 31-D571:

PRIMO (2. edition)

Command Parameters Ref.

batch <jobname> { jontire <filename> \s { pass cpassiord>{ newpass passwort)! \a 2.2.1
<operatar rae (iran) 4.2.2

break

<jcbname> ¢ 2.2.3

call <devicenco> <document name> 224

go <jobname> (iontite “file name> Jo(pass <password> (newpass <password> 4 so 2.2.1

halt “operator key> 4a

in “etrume> “username? { poss ‘passion { newpass spesnare |) 2.2.2

include <devicenc> $35

<jobname> 1 4.2.2concn tap (=m)kinh all } 22.3
<jobname> 0 22,

lock <operatar key> 4.2.1

open operator key> 4.2.1

out 2.2.2

mun <jobname> { jobfile <file rane } { pass <password> {newpass casssonts) 2.2.1

= =

operator key> <gurane>| 4.2.2
start

<jobname> Jo 2.2.3

<operatar key> { <girame } ' 4.2.2
i) 2.2.3<jJobname>

65

MESSAGES FROM SOS

SOS may write messages of the following kinds:

1) System messages

2) User messages

3) Parent messages from jobs

In class 1 and 2 there will be normal messages and error messages.

The layout of SOS messages is:

<hour> . <minute> SOS: <message> (normal)

<hour> . <minute> *** SOS: <message> (error)

The system messages may concern start-up or system failure:

System messages at start-up:

area <number>

normal: number of areas in job resource pool

error : min. number of areas requested

buf <number>

normal: number of buffers in job resource pool

error : min. number of buffers requested

buflength <size>

error: the buffer length mist at least be <size>

function 1,2,3,4,5

error: min. function requested

init troubles

error: system initialization not ck, run terminated

internal <number>

normal: max. number of jobs enrolled

(appears only at RC4000)

size <number>

normal: max. size available for jobs

error : min. size requested

started

normal: telling that the initialization was successful

version: <date of system> <date of options>

normal: indicating the version of the SOS system.

<area name> <integer>

error: written because SOS is not able to read one of its

areas; the following messages may appear:

swpsos <size>

the swoparea could not be created with the size

specified (too few resources cn “swopdoc" ~ see

section 5.2),

tstsos <size>

the testoutput area could not be created with the

size specified (too few resources a "“testdoc" -

see section 5.2),

fp <result>

SOS could not read the file processor

(should never occur),

cleartemp <result>

SOS could not read the catalog cleaning program

“cleartemp"; maybe because it does not exist

(result = 3), :

soscat <result>

SOS could not read the SOS catalog "soscat";

maybe because it does not exist (result = 3).

67

System messages at runtime:

fault

error: caused by an internal error in SOS, monitor or

hardware (most likely: SOS)

fault 8' <octal status> <program area>

error: transport error concerning program area

(dise failure)

status <decimal status> <area name>

error: transport error concerning swop area or testoutput

area (disc failure)

User messages:

bad password

error: password not correct (or missing).

bs claims exceeded

error: SOS has not sufficient backing storage resources for

creating the job.

call not ok .

error: the "calling" of a device has been rejected (cause:

the device is reserved, the device does not exist or

the like).

canmand unknown

error: the command typed is not an SOS command.

disconnection not ok

error: the disconnection of a terminal (at “out") has been

refused by TEM (should never occur).

forbidden

error: the user is not authorized for using the command in

question.

identification illegal

error: the jobname of a job creation command is not in-

cluded in the user catalog, or the username of an

"in" command does not belong to the jobname spec-—

ified.

include not ok

error: the device inclusion has been rejected (cause: the

device does not exist). ,

jobfile does not exist

error: the jobfile started in a job creation command is

not visible from the catalog bases of the job.

no room in primary store

error: the min. size of the job exceeded the max. size

available for SOS jobs. (The min. size may be

stated in the user catalog).

process creation not ok

error: a job creation has been refused due to resource

limitation in SOS.

process unknown

error: a job intervention command has been rejected

because the job stated was not found.

ready

normal: indicates that a command has been sucessfully

interpreted.

syntax

error: the command was rejected because of a syntax error

(illegal character, missing parameter or the like).

69

terminal busy

error: a job creation connecting the terminal via TEM was

refused, because the terminal was already connected

to some pool in TEM.

terminal connected

normal: a message telling that an "in" command has been

successfully interpreted.

terminal connection not ck

error: an "in" command has been rejected because TEM

refused connecting the terminal (maybe because the

actual job has not created a terminal pool).

terminal not connected

error: an “out" command or a job intervention command has

been rejected because the terminal was not connected

to the actual job.

user conflict

error: a job creation command has been rejected because the

job existed in advance or because an existing job

was using the same standard base as the new one.

<jobname> enrolled

normal: a message telling that a job creation has

succeeded.

<jobname> removed after <cause>

normal: a message telling that the job has been removed

from the system. The cause may be:

finis: normal finis message from job

break: abnormal termination caused by an

internal job error (a "break")

terminal failure: a hard error has occured om the

primary input terminal

operator break: the operator has provoked a

“parent break" (break 8)

user break: the user has provoked a "parent e@
break" (break 8) ,

operator kill: the operator has killed the job

userkill: the user has killed the job

time exceeded: an interactive job has been too

cpu-bound (i.e. the priority has

decreased and reached the min.

priority accepted by the system).

Parent messages fram jobs

Jobs using devices like magnetic tape stations or jobs running

into severe errors may send "parent messages" to SOS. SOS handles

parent messages as described in subsection 3.3.3. Some parent @
messages are printed on the system terminal. This is done with

the following format:

message

<hour> . <minute> SOS: | <jobname> <contents>
pause

The <contents> is totally specified by the job as explained in

subsection 3.3.3.

7)

AN EXAMPLE OF A MULTITERMINAL PROGRAM

wan TSOSTEST #**

A SIMPLE TESTPROGRAM FOR TESTING THE SOS SYSTEM

THE PROGRAM ACTS LIKE THIS.

CREATE TERMINAL POOL

LOOP:

READ AN INPUT LINE FROM A CONNECTED TERMINAL

{THIS INPUT LINE STARTS WITH A TERMINAL NUMBER)

INCREASE LINECOUNT (TERMINAL NUMBER)

WRITE TERMINAL NUMBER

WRITE LINECOUNT

WRITE CONTENT OF LNFUT LINE

Garo LooPr

SEIN

ZONE FOOLINsPOOLOUT (26+1+STOERROR) #

REAL TIME +R

INTEGER IyACTIVETERMINALS » MAXTERMINALS + CURRTERMINAL§

INTEGER PROCEDURE CREATEPOOL (Z)7

ZONE Zi

BEGIN

INTEGER T#

INTEGER ARRAY ZLA(1220) +SIA(1212) 5

ZUNE ZTEM (Led +STDERROR) §

OPEN CZTEM+ On (2 TEM2 > 105

GETZONES(ZrZIA

GETSHARES(ZTEMsGIAy1) §

SIA(4)2=90 SHIFT 127

FOR 1:0 STEP 1 UNTIL 3 DO SLACBrI) r=ZLACQ+1DF

SETSHARES (ZTEMs SIAL) +

MONITOR (16eZTEM+12SIAdE

CREATEPOUL2=IF MONITOR (i8eZTEMrirSiAd (> 4 THEN ~1 ELSE SIA(i)5

CLOSE (ZTEMs TRUE) ¢

END CREATEPOOL?

MAX TERMINALS 310%

ACTIVETERMINALS §=03

BEGIN

INTEGER Led?

INTEGER ARRAY LINEBUF (12100) sLINECOUNT (1 2MAXTERMINALS) 3

FOR [isl STEP 1 UNTIL MAXTERMINALS 00 LINECOUNT (1) 250%

OPEN (POOLIN? Ge (2 TEM?) 1007

OPEN(POOLOUT? 1 SHIFT 18 + Ae Ce TEMa 9005

CREATEPOOL (POOLIND #

ie READ A LINE AND DISPLAY IT ON CORRESPONDING TERMINAL *)

LOUPs

READ (POULINeCURRTERMINAL) #

Liste

FOK [ssl WHILE READCHAR (FOULIN®LINEBUF (L)) <> 8 DO List+di

SETPOSITION(FOOLIN?0+0)7 +

LINECQUNT (CURRTERMINAL?

IF LINEWUF (1) = 1 THEN

- “BEGIN COMMENT LOGIN?

LINECOUNT (CURRTERMINAL) 2=03

WRITE (POOLQUT+<#SOS TESTFROGRAM REAUTC 10) 200%

ACTIVETERMINALS: sACTIVETERMINALS +13

SYSTIME (170+ TIME) ¢

SYSTIME (4¢TIMEs RDF

WRITE (OUT ®<¢<00 UD DORE

WRITE COUT s<¢22 ROGINE 2) +¢ (0D) +CURKTERMINAL + (iri) 5
FOR J#=1 STEP L UNTIL £ DO GUTCHAK (OUT rLINEBUF (29%

SETPOSITION(QUT+0+0)>#

END ELSE

TF LLNEBUF (1) = 2 THEN

BEGIN COMMENT LOGOUT?

ACT IVETERMINALS: SACTIVE TERMINAL S~19

SYSTIME(1+O+ TIMED?

SYSTIME (4+ TIMEsR)?

WRITECQUT+<<DD DD DD>rRDs

WRITE (QUT y< 33 LOGOUTS ty

¢<DD) eCURRTERMLNAL ¢ Cb 9 2d F

FOR J?#1 STEP 1 UNTIL I LO OUTCHAR (OUT+LINEBUF (4008

SETPOSITION (OUT#Or0>5

END ELSE

BEGIN

WRITE CPOOLOUT® <2 TERM = 3>9¢ (DU) sCURRTERMINAL »

42 LINE # 8)+(<DDD>»LINECOUNT(CURRTERMINAL) + (38 9905

FOR Jt=1 STEP 1 UNTIL I DO QUICHAR (POOLOUT rLINEBUF (J)>6

ENDS

SETPOSITION (POOLOUT ?O+0) 7

IF ACTIVETERMINALS > 0 THEN GOTO LOurs

END?

INECGOUNT (CURR TERMINAL) +13

END

E. AN EXAMPLE OF A USER CATALOG

PROCESS kC

STDBASE

USERBASE

MAXBASE

MAXSIZE

PASSWORD

BS OSE

PROCESS HOTNEWS

STOBASE

USERBASE

MAXBASE

MAXSIZE

FPO" (O PP

C=COFY YNEWS

FINIS)

BS DISC

FP “BOISPLAY

FINIS

BS DISC

PRUCESS RKCSAVE

STUBASE

USERBASE

MAXBASE

us OLse

PROCESS TEAM

STUBASE

USERHASE

MAXBASE

MINSIZE

PASSWORD

bS DISC

TERM USERA

TEKM USERB

TERM USERC

TERM NN

ENE

BUF 29 AREA 25

810 810

810 819

800 Bam

60000
“NNO

KEYO 20 SOO KREYL 20 SOO KEYS S 300 KEYS

BUF 4 AREA 4

BP9 Ho

B99 B99

B99 899

12800

KEYO 4 SO NEY Q O REY2Z 0 O KEYS 0 0

a7 Bog

aes 873

gos 878

12800

KEYO 4 SO KEY1 O O KEY2 © 0 KEY3 0 0

BUF 4 AREA 7

B77 897

B90 ar?

B00 87? .

KEYO 10 150 KEYL 0 O KEY2 O O KEYS 0 0

BUF 4 AREA 7

820 9

820 ?

800 B99

30000

“HOBO”

KEYO 4 300 KEY1 1 20 KEY2 1 20 KEY3 1 20

" 1” “al”

“ 2e” “B2”
~ 3," apge

- Oy" wn

5
300

THE AUXILIARY FILE “sostrim"

wee SOSTRIM wae

CONTAINS OPTIONS FOR TRIMMING SOS SYSTEM

SUSDUMMYOUTSSET 1

xSO0S = EDIT TSaS * EDIT OFTIONS INTO PRUGRAM TEXT

L./BODY OF INIT/>

L./sssTRIMSTART/ +

D./s2=TRIMFINIS/»

Iv

! DATE OF OPTIONS

! TARGET MACHINE (RC4000=4000+RCG000=8000)

! MIN. NO OF USER PROCESSES ACTIVE AT THE SAME TIME

! MIN, NO OF ENTRIES FOR TERMINALS PERFORMING OS COMMANDS

1 MIN. NO OF BUFFERS RESERVED FOR USER FROCESSES

! MIN. NO OF AREAS RESERVED FOR USER PROCESSES

! MIN. CORE SIZE FOR USER PROCESSES (HALFWORDS)

! SIZE OF I-O BUFFER FOR EACH USER PROCESS (HALFWURDS)

' LENGTH OF A TIME SLICE (SECONDS)

! MAX NO OF TIME SLICES USED IN CPU (NG INPUT)

! LOSS OF PRIORITY CLASS WHEN TIMED OUT

! PRIORITY CLASS GAIN AT INPUT (IF CLASS ¢ 0)

! PRIORITY GAIN WHEN FIRST IN ACTIVEQUEUE

! SIZE OF TESTOGUTFUT AREA (SEGMENTS)

VRIMTEXTS# TEXT(11)

! UPEKATOR KEY

! DOCUMENT FOR SWOPAREA

! DOCUMENT FOR TEST AREA

FeF

AND COMMANDS FOR AUTOMATIC SYSTEM GENERATION FROM THE SOS SYSTEM TAPE

OFPTIONID td

RC a=

MINUSERS t=

COMNOUSERS t=

MINBUFS to

MINAREAS is

MINSIZE i=

BUF. hd

TIMESLICE t=

CPULIMIT i

CLASSLOSS fe

CLASSGAIN fe

PRIOGAIN is

TESTSEGMNTS?=

OPRREY a=

SWOPDOC ts

TESTBOC ia

Or

8000,

“OPR“ 5

“My

74

O SOSBUNMYOUT

MODE 1.NQ

LOOKUP SsOsDOc

IF OK.NO

MOLE 1.YES

oc

IF 1.YES

SOSDOC = SET 1

RCMOL = ALGOL TRCMOL

IF ¢SOSb0C> IS NOT FRESENT

THEN CREATE IT PREFERRABLY ON DIGC

THEN GENERATE A TEMPORARY ONE

BSOS = ENTRY 20 SOSDOC

BSOS = RCMOL xsUs 3 TRANSLATE TRIMMED PROGRAM TEXT

CLEARTEMP = ENTRY 10 SOSDOC

CLEARTEMP = RCMOL TCLEARTEMP 3$ TRANSLATE CATALOG CLEANING FROGRAM

UPSOSCAT = ENTRY 100 SaSspOc

UPSOSCAT = ALGOL TUFSOSCAT + TRANSLATE PROGRAM FOR GENERATING SOS USER CATALOG

TRACE = ENTRY SO SOSsDOC

TRACE * ALGOL TTRACE 3 TRANSLATE PROGRAM FOR ANALYSING TESTOUTFUT

PROLOGUE = ENTRY 4 SOSDOC

PROLOGUE = RCMOL TPROLOGUE # GENERATE LOADER FOR S-REPLACEMENT

PROLOGUE = CHANGEENTRY PROLOGUE PROLOGUE PROLOGUE FROLOGUE PROLOGUE @.PROLOGUE PROLOGUE

0 SOSDUMMYOUT

MUGE 1.NO

LOOKUP SOSCAT * IF SOSCAT IS NOT PRESENT

IF ON.NO

MODE 1.YES

oc

IF 1.YES THEN

¢ SOscaT = ENTRY 1 SOSDOC BEGIN

SOSCAY = UFSOSCAT TSOSCAT

XSOSTEST = ENTRY SO sasbOCc

XSOSTEST = MOVE TSOSTEST

BUISPLAY = ENTRY 20 SQOSBOC

BUISPLAY = ALGOL TDISFLAY

XNEWS = ENTRY 1 SOSDOC

XNEWS = MOVE TNEWS

CLEAR TEMP TSOSTEST TNEWS

RENAME XSOSTEST.TSOSTEST

RENAME XNEWS. TNEWS

SCOPE USER BDISPLAY TNEWS

SCOPE USER SOSCAT TSOSTEST

>

GENERATE AN EXPERIMENTAL USER CATALOG ANDES

A SIMPLE SYSTEM TEST FROGRAM

A PROGRAM DISPLAYING RUNNING SUS -JUBS

AN EXAMPLE OF A “NEWS-FILE~

END

SCOPE USER BSOS UPSOSCAT TRACE CLEARTEMP

G@ SOSDUMMYOUT

CLEAR TEMP XSOS TRCMOL RKCMQL. SOSTRIM TSUSCAT 1S0S TUPSOSCAT TTRACE»

TSOQSTEST SOSLOAD SOSSAVE SUSLIST TCLEARTEMP TPROLOQGUE TDISPLAY TNEWS

ac

CLEAR TEMP SOSDUMMYOUT

MESSAGE SYSTEM GENERATION COMPLETED

fa

75

THREE VERSIONS OF A MASTER MIND PROGRAM

Simple Single Terminal Version

JER ARRAY SOLUTION» GUESS (124) 3

¢ TydeXe GIGITON DIGITINCLULEDS

SETCOMBINATION:

Ok Ts=1 STEP 1 UNTIL 4 LO

BEGIN

RANDOM (X) 5

SOLUTION(I)s=X MOD 103

FOR J#31 STEP 1 UNTIL I 00

IF SQLUTION(I> = SOLUTION() AND L «> J THEN Li=I~13

END?

WRITE COUT? 2MASTER MIND FROGKAM READY(10>5>)¢

NEX

SETPOSLITION COUT ?O90)F

WRITE (OUT s <2 2>)F

FOR I:=1 STEP 1 UNTIL 4 DO REAL CINyGUESS(L))#

DIGITONs=DIGITINCLUDEDs +03

FOR Tesi STEP 1 UNTIL 4 10

BEGIN

FOR J3=1 STEP 1 UNTIL 4 LO

IF GUESS(I> = SOLUTION(U> THEN

BEGIN

IF L # J THEN DIGITONs=01GLITOK+1

ELSE DIGITINCLUDEDS=DIGITINCLUDED+15

ENDS

WRITE (OUT? << 00) eGUESS (I) 25

ENDS

WRITE (QUTs<¢s =) >»

. FALSE ADD 43,DIGITORK?

FALSE ADD 3274-DIGITOK»

FALSE ADD 452DIGITINCLULED,

FALSE ADD 10913

IF OLGLTON ¢ 4 THEN GOTO NEXT ELSE

BEGIN

WRITE (COUT? <sYOU GOT IT ['<lLodsdds

GOTO SETCOMBINATION?

ENDS

ENDS

G.l

G.2

76

Single Terminal Version with Input Checking

BEGIN

INTEGER ARKAY SOLUTIGN® GUESS (134) 7

INTEGER ITyJeXeNeMe CLASS» CHARACTER ULGITOR +e BIGITINCLUDEDS

SETCOMBINATION:

FOR Tz31 STEP 1 UNTIL 4 iQ

BEGIN

RANEIOG CX) #

SOLUTION(T) #=X man 107

FOR J#51 STEP 1 UNTIL T oO

IF SOLUTION(T) = SOLUTION(J) AND I ¢> J THEN Lest~1i

END?

WRITE COUT? <SMASTER MIND PROGRAM REALIY<1022))5

NEXT =

POSITION COUT 20+0) ¢

>

CLASS! =READCHAR CIN» CHARACT

BEGIN <* ANALYZE ALL CHARACTE!

IF CLASS = 2 (* DIGIT «> THEN

BEGIN

Tistl+a3

GUESS (L) #=CHARACTER-485

END ELSE

IF CHARACTER (>) 32 ¢(% SPACE *> THEN

BEGIN

WRITE COUT + < S###SYNTAX ERRORCLOOTRY AGAING10># DDG

GOTO NEXT?

ENDS

END

IF fT = O THEN GOTO NEXT?

iF ¥ ¢ 4 THEN

BEGIN

WRITE COUT s Ca e**GUESS NOT COMPLETES LOD TRY AGAINCLOD§ 205

GOTO NEXT

ENDS

FOR Ne=2 STEP 1 UNTIL 4 LO

WHILE CLASS ¢> 8 AND T

S UP TO «NL? #>

FOR M STEP 1 UNTIL N-1 D0

IF GUESS(N)? = GUESS (M) THEN

BEGIN

WRITE COUT? (z#e* DIGIT DUPLICATEDCLOOTRY AGAINC10)8>)%

GOTO NEXT$

ENDS

WRITE (QUT C3 BDF

DIGITOK?=DIGITINCLUDEDS=08

STEP 1 UNTIL 4 10

BEGIN

FUR J3=1 STEP 1 UNTIL 4 LO

IF GUESS(I) = SOLUTION(J) THEN

BEGIN

IF To = J YHEN GIGITON?=DIGITOR+1

ELSE DLGLTINCLUDEDs=R1GTTINCLUDED+ LE

END

WRITE (OUTs<¢ (DD) sGUESS¢1) 5

END#

WRITE COUT#<S => fds

FALSE ADD 43¢R1G1 70K,

FALSE AUD 32*4-LIGITONs

FALSE ADD 45/DIGITINGLUDELy

FALSE ADL 10¥1)7

IF OIGITOK ¢ 4 THEN GOTO NEXT ELSE

BEGIN

WRITE COUTe Ca YOU GOT LT 11¢1dos>0%

GOTO SETCOMBINATION:

ENDS

ENE

« 4 50

G.2)

+

G.3

77

Multiterminal Version with Input Checking G.3

BEGIN

INTEGER TERMNO?

ZUNE ZIN? ZOUT (266 1L STDERROR) 5

INTEGER ACTIVETERMINALSrFIRSTCHAR?

ACTIVETERMINALS i

OPEN (ZINets C8TEMS > 2005 ~
OPEN (ZOU + Oe ¢ STEMS > 2005

CENTRALWALTS

SETPOSITION(ZIN+O10)7

REAU(ZIN» TERMNO) ¢

READCHAR (ZINsFLRSTCHAR) §

IF FIRSTCHAR = 2 THEN

BEGIN (* LOGOUT #>

acti RMINALS 1 SACTIVETERMINALS=~L
IF ACTIVETERMINALS > O THEN GOTO CENTRALWALT ELSE UID STUPPRKOGKAMS

END ELSE

IF FIRSTCHAR = 1 THEN
BEGIN (* LOGIN #)

ACTIVETERMINALSsSACTIVETERMINALS+1 7
END ELSE REPEATCHAR(ZIND¢

WRITE CZOUTs (<DD> eTERMNOs (a2))F

BEGIN CONTEXTS (TERMNO? 1023) 7

INTEGER ARRAY SOLUTION? GUESS (124)7
INTEGER I+JeX+Ne Me CLASS» CHARACTER DIGITON? DIGLT INCLUDEDS
CONTINUE?

SETCOMBLNATION:

FUR itei STEP 1 UNTIL 4 DO

BEGIN

RANUUM AX) F

SOLUTION(I) s=x MOD 103

FOR 3:51 STEP 1 UNTIL I DO

IF SOLUTION(Y) = SOLUTION(J) AND I (> J THEN [sei—13
ENGE

WRITE (ZOUT*<2MASTER MIND PRUGRAM READY<10>2>)3

NEXT?

SETPOSITION(ZOUTFO+O)

EXIT (CENTRALWALT) #

Lesos

FOR CLASS! #READCHAR(ZIN*CHARACTER) WHILE CLASS (> 3 AND I ¢ 4 DO
BEGIN (® ANALYZE ALL CHARACTERS UP TO (NLD «>

IF CLASS = 2 (* DIGIT #> THEN

BEGIN

Tisiel3

GUESS (1) =CHARACTER-443

END ELSE

IF CHARACTER (> 32 (* SPACE. «> THEN

BEGIN

WRITE (ZOUT?{ 24##SYNTAX ERRORC1O>TRY AGAING10)2))3
GOTO NEXT#

ENDS

END:

IF I = 0 THEN GOTO NEXT?

ir I ¢ 4 THEN

BEGIN

WRITE CZOUT?<¢ t¥eeGUESS NOT COMPLETE(1O>TRY AGAIN(10)1>) 6
GOTO NEXT

ENDe

FORK Nes2 STEP 1 UNTIL 4 DO

FOR Misl STEP i UNTIL N-1 DO

IF GUESS(N) = GUESS(M) THEN

BEGIN

WRITE (ZOUTs{s*#eDIGIT DUPLICATELC 10> TRY AGAING10>009F
GOTO NEXTs

END?

WRITE CZOUTs Ca me

DIGITOK@=OIGITINCLUDED: =03
FOR 1#=1 STEF i UNTIL 4 DO

BEGIN

FOR Ji=1 STEP 1 UNTIL 4 LO

IF GUESS(I) = SOLUTION(J) THEN

BEGIN

IF I = J THEN DIGITORI=DLGITON+L

ELSE DIGITINCLUDEDI=DIGITINGLUDEDTLE

ENDF

WRITE (ZOUT + ((DD) eGUESS (122%

ENDS .

WRITE (ZOUT»<¢s => tde

FALSE ADD 43-DIGITOK?

FALSE ADD 3274-UIGITON,

FALSE ADD 45-0I1GITINCLUDED,

FALSE ALD 1091)3

If DAGITOK ¢ 4 THEN GOTO NEXT ELSE

BEGIN

WRIVECZOUT ACs YOU GOT IT $1¢10)8905

GOTO SETCOMBINATION?

END?

ENDE

STOPPRUGRAMs

ENG

Survey of Examples

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Exanple

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

1:

2:

3:

5:

73

8:

26:

TOD CLEAtLON ceccecececcccereceseveseesesensceees

Executing utility program cseeseesecscesuscsceas

Creating a text file we nec ce ene neeees eeee

Executing utility programs ccsesesesscsensscscees

Program translation sececececccecersesvsssevssecs

Text editing ..sccsccsceseeeecees wee eeeeeeeeesees

Execution of interactive Program ..eeessscssssses

Job intervention ...scssseceese cere cen eeccesesces

Job termination ..scscececees eave cere ee cereneeces

Running a miltiterminal program cee eescece

Automatic program activationsssseseee cesece

Running a batch job from a terminale.seeeee

Creating a job file cere cece cee eceeecaee

Running a job using a job file ..ccesesecevecaces

Job file routing job output to printer eeee

Sos started as a child of "s" vecev senses

SOS started using "S-replacement” ...sseeseeeeees

Operator intervention ...ceecccceeeccesesccessace

Clear SYSteM .eceseccccececererevens ee ee ecnceeees

Tape MOUTIEING coe cc ee cece eee eeesecsessvasenenene

Drain system and close down ...-seeeeeee sevescceee

: Printing testoutput eee eee eee eee eee

2 Individual trimming .eccececscvccacevsssceseseces

System installing and trimming ...eseceeesesesene

: Compressing user Catalog ceveeeeevceeecssssscecas

System test after installation ees ceseeer

~

9

9

10

om

12

12

13

13

33

34

35

36

36

37

38

45

47

56

60

4 RETURN LETTER
Swopping Online System (SOS)

«,. User's Guide/Reference Manual/ cy NO. ~D662
@ Title: Operating Guide/Installation Guide RCSLNo.: 31

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,

| and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

, Date:

Thank you 42-4 1288

beeen ete eee wees Do not tear - Fold here and staple00005

Affix

postage

here

§ REGNECENTRALEN

af 1979

@Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

RCSL No: 42-4 1321

page 7Ai ’ . iden’
IE information |‘ ® FB 820302

: RCB000 RC4000 ‘| class

Subi-Supplement to RCSL No 31-D662, Swopping Online System (sos)

MIPS/TS SW8100/1 Release 3.0 introduces a changed reaction to the ©

BREAK command.

Use of the BREAK command causes a new FP to be loaded in the user's

alter the system trimming parameter "CONDITIONS" to preserve the

former mode of reaction.

- For further information please refer to: RCSL No 31-D662, Swopping

Online System (SOS), section 5.2.

process - without starting the 'RUNNING' process in its BREAK-routine.

In installations where this changed reaction is unacceptable, one may

