RCSL No: 31-D674
Edition: April 1982

Author: Jesper Andreas Tagholt

Title:

ALCOL Coroutine System
User's Guide

RCSL 42-i11805

$REGNECENTRALEN
: af 1979

Keywords:

RCBO00, ALGOLE, activity, coroutines, semaphore.

Abstract:

This manual describes a corcoutine system available to ALGOLS programs.

(52 printed pages)

RCSL 42-11908

Copyright © 1882, A/S Regnecentralen af 1979

RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no-
tice. RC Is not responsible for typographical or arithmetic errors
which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.

TAELE CF CONTENTS PAGE

]- mmcrlw LU R I I B RO I A I B U B A B A N I BT RO BN I AR N I ‘i

d, TSR USRIV B o o s 5 wmmoey 1 momen 8 Sy ¥ wwme 4 P
2.1 The Central Logic Procedure CentralogiC seesecscons
2.2 Standard ProcedUres secessssessssscssscssssostsseans
2.3 Standard VariableS .seesessccsssserasssosssssssnnse
2.4 Procedures in BALGOL Library sesseesssccvecsceasssnss

3o W NN

3. mm}m LA L B B B O I B B BB B BN O B B NI B A B RE N B RN R BE RN T BE N B BE BN BN BN BN AN
3.] Smphgre Tables .l."...l..l..'.“l'."...'l"."f.

3.‘1!1 User S%Phores L BN BN B B O B B B B O O B B O BB BN BN BN NN BN B BN A BN
3.1.2 Central Logic Semaphores ..c..ccecsscesccscess

3.]‘3 Systansem‘p}iores LEC BT BN B B B BN BN BN BN B BN NY BN BN R BN AN BN RE BN BN BE NN O
3:2 Corouting DeBoriptIol .« s swwe s vews s smnen 4 sawes sy

J»3 Mossage BULFers ceseswsssmnersmonss poovs s sawes s sons

O 0O v v w o o W

P

3-4 REferenCevariable 59 8 960508080 ST H DS S000ESSNESS SN

4. CENTRA IOGIC swussavvassmane s swaisswianesinesiovewissonve 13
4.1 Processing of 8000-meSSagesS «ceevescssesssscscssess 15
4,2 Conversion of 8000-answers into-Messages 15
4.3 Demand for Log Display seesesssessascnsnssonvenssows 17

5. TEST FACILITIES IN THE QORCUTINE SYSTEM cecevsscscccenss 18

& PROCEIUNE DESCRYBTIUN & o » sbis 6 § sivis § sasind ¢ s s o TE
6.1 User ProcedUres sissesssssnsssvosnssssnssssressvoses 19
B:1a] BLIOCBES i vims s vaiibs s salnadd wamed peamssbams 19

Gol e2 COrouBines scuwas s smmmme o siewae s smmme s swnn o s wuce L
6.1.3 Initref .eccseeccccccscccsccassncsssocnssass 20
B.1.4 Bet Priority issssssssssvnssvsvecsvsssesnee 2}

Gl w8 BRENEL. s bk & dndisd § 6T 5 ains § et ece 20
6.1.6 Walt seveusussonscsonsssncesasssssssonsessss 23
Bl] WO BBLEEE. aoieie ook o5 bibns & Sk 4 5ai0iis v
6.1.8 Wait time «cveevesnssncanvononaosacsannanses 26

6.2 . Test PRocedUrBs wssssveis swaaassinesisaasasswwasssas 27
6.2.1 Prepare test .vceveecssrcsrscossccscesscnsas 27
6.2.2 SeleCt teSt .oveecscrvsssrsssssascsssessenns 28

ii

TABLE OF CONTENTS (continued)

PAGE

6.3 Auxiliary Central LogiC ProcedUuresceesescssess

6.3-] CO_SOOO_EVent LR N N YRR]
6-3-2 CO__OimmbaSe @ s e s 00 e emane LI I Y

s eoeeeaa

L

80 &d 8

603-3 COr_tO_SQ'ﬂ L R I R I I I T R R
6-3-4 COtin‘ﬁ ------ ® 8 66 e e L0 ReE e LR R N]

6-3-5 CO_tj}TE_base ¢S P 0O LGOS D 0 BBSSENSES GO E D RERO R
6.3-6 SCh.EdUle L N R N N Y]

APPENDICES:

REEMCE ® 0 e Pee R0 B LR RC I I I B R N B B N)

INI“ERM] m L B B B B A R e @ e e & o0 0w
B.1 The Own Core of the Coroutine System
812 a’la.in Elmts * 0 0 000 0 & 8B &0 B Sse e S0 sE S

s s eas0 s ee

e saeess

BreBae e

meeaseo0 e

o s e 0 e

LEC I R)

LR

LR A

B.3 Semaphore Table ...ccevecnccsa sessessescssssssssnns

B.4 The Coroutine Description Table .csseesessoccacscss
BIS Message Buffers LN RS I R B BN IR RN R R)

B.6 Procedures used to Display the Tables .civesososoes

TESTRECORDS CEL R B 2 R R R B I A A A Y

ALARMS FROM THE COROUTINE SYSTEM sevsceocss

® o 00t eae

oooooooo

PROGRAMI‘@DE CECRE R I B I O B RN B B A N 88 8 80P e E B DB E0 s s aen

uuuuuu

28
29
29
29
30
30
30

33

34
35
35
36

37

37

4]

42

45

INTRODUCTICN

This manual describes a coroutine system available to ALGOL8 pro-
grams.

The manual implies a knowledge of the activity concept of ALGOLS.
Various concepts from the RCB000 monitor are used in the descrip-
tion. To avoid confusion the prefix '8000' is used with these

concepts. For a more detailed description, plese see ref. [1] and
ref. [3].

Chapter 2 contains a brief description of the facilities made
available by the system.

Chapter 3 describes a special set of data structures used in the
system.

Chapter 4 describes a central logic procedure of the system.
Chapter 5 describes the test facilities of the system.

Chapter 6 describes the standard procedures and standard
variables of the system.

THE COROUTINE SYSTEM

2.1

The system, which is based on message semaphores, is implemented

as a set of external procedures with the following facilities:

1. Coroutines scheduled by pricrity.

2. Time out on wait operations.

3. Messages cammnicated in order of priority.

4. Messages picked out according to message lock/key.

5. Full index control of messages and semaphores.

6. Easy programming:
a. pre—campiled modules, no source code copying,
b. readymade central logic, scheduling coroutines, communica-—
ting messages,

C. separate campilation of coroutines.

7. Switch to dedicated central logic.

8. Creation of test records.

The Central Logic Procedure Centralogic

The system has a standard procedure, centra logic, which may be
used as central logic for schedulation of coroutines and comma-

nication of messages.
The procedure has the following facilities:

1. Start up of coroutines, queuing them up cn proper start sema-

rhores.

2. Restart of the highest priority coroutine ready to be started

2.2

3. Scheduling coroutines de-activated by implicit passivate or
"stack busy" (virtual coroutines inhibited by a fellow corou—
tine waiting for some i/o operations to camplete).

4. Queuing up 8000-messages on central logic semaphores where it

can be fetched by means of wait operations.

3. Queuing up messages on specified semaphores on the arrival of
certain 8000-answers to the event queue.

6. Time out on wait operations without CPU load.

7. Display of logging records, showing the operation flow and

time consumption.

8. Display of semaphore tables at termination.

Standard Procedures

1. Procedures for System Initialization

Name:

coroutines

allocate

initref

set priority

Task:

make stack reservations for the
semaphore and coroutine description
tables and initialize the tables.

make stack reservation for a mes-

sage buffer and initialize it.

initialize reference variables (see
section 3.4).

change the priority of calling

coroutine.

2.2

2. Commmication Procedures

Name:

signal

wait

3. Test Procedure

Name:

prepare test

4. Auxiliary Procedures

Name:

schedule

COI‘__tO S

Task:

send a message (placed in a message

buffer) to a semaphore queue.

walt for a message in/fetch a mes-

sage fram a semaphore queue.

Task:

create a user test record and .
insert it among system test

records.

Task:

start the next coroutine.

transfer a coroutine description to
a semaphore queue and insert it ac—

cording to its priority. .

The auxiliary procedures are intended to facilitate the construc—

tion of alternative coroutine schedulers, replacing centra logic.

2.3 Standard Variables

1. Standard Variables for Modification of the Next Wait Operation

Name:

wait_select

Name:

wait_time

Meaning:

if zero, the wait operation waits
for/fetches the first message in
the semaphore queue, no matter its
key. If not zero, wait select is a
lock, and the wait operation waits
for/fetches the first message in
the semaphore queue with a key that
fits the lock.

Meaning:

states the maximum waiting time
accepted by the coroutine executing
the wait operation.

If wait time = O there is no limi-
tation to the waiting time.

If wait time < 0 no waiting time is
accepted.

If wvait time > 0 wait time contains
the maximum waiting time measured

in tenth of a second.

The contents of these variables are stored in the calling corou-

tine description each time wait is called and they are reset to

Zero.

2'3

2. Standard Variable for Specification of Test Records

Names:

select__test

3. Standard Variables Used by

Meaning:

contains the test rumbers wanted as
a bit pattern.

The Central Logic

Name:

co__tjme____base

co time

co*_BDOO_event

CO Own base

Procedures in ALGOL Library

The following ALGOL library procedures are used by the system and

the users of the system.

For a detailed description of
[1].

Meanings

8000~clock~time at the last test
for timecut. Basis for time indi-
cation in the coroutine system.
Must not be changed!

the time until the next possible
timeout measured in tenth of a

second from co time base.

the number of unprocessed 8000~
events found in the latest scan of
the 8000-event queue.

the address of the first own vari-

gble in the coroutine system.
Must not be changed.

the individual procedures, cf. ref.

2.4 i
l
|

Name:

activity

new activity

activate

passivate

Functions

Used to create a number of empty
activity descriptors before calling
procedure coroutines.

Initiates an empty activity with a
procedure and starts the activity.

Must be called after procedure co-
routines and before any cother co-

routine procedure.

Activates a non-empty activity in
its restart-point.

Used by procedure schedule. Must
not be used in coroutines scheduled
by this procedure.

De-activates the executing activ-
ity, establishing its restart point
(waiting point).

Used in procedure wait.

May be used in the coroutines, but
dces not change the location in any
semaphore queue of executing corou-

tine,

DATA STRUCTURES

The system introduces 3 data structures and a new type of vari-

able in connection with the coroutine system.
The data structures are:

a) A semaphore table containing chain fields for all semaphores.

b) A coroutine description table containing information about the
priority of each coroutine, the maximum waiting time, what the
coroutine is waiting for and chain fields.

c) Message buffers each consisting of a head and a data part. The
head contains priority, length and chain fields.

The new type of variable is a reference type used to refer to the

messages.

Semaphores in the system are always message semarhores. They are

There are 3 types of semaphores:

a) user semaphores nunbered 1 to max-semaghore,
b) central logic semaphores mumbered -5 to O,

c) system semaphores nurbered =9 to -6.

The semaphore description consists of 8 halfwords per semaphore.

3.1 Semaphore Tables
identified by number.
3.1.1 User Semaphores

The number of user semaphores is stated when the system is start-
ed up calling procedure coroutines. The semaphores are used for

signal and wait operations.

3.1

3.1.1

3.1.2

Central Logic Semaphores

3.1.3

These semaphores, defined by the central logic, are used in con-
nection with the facilities made available by the central logic,

The semaphores can be used by means of procedures cor_to sem,

signal and wait.

System Semaphores

3.2

System semaphores are used by the coroutine procedures.

The system semaphores are:

-9 ready semaphore

-8 implicit passivate

semaphore

—6 free semarhore

Coroutine Description

Semaphore queue contains:
coroutines ready to be activated.

coroutines implicitly passivated.

not used.

coroutines not used at present.

The procedure coroutines will create a coroutine description for

each coroutine. The description consists of 16 halfwords per co-
routine. It must not be confused with the activity description

created by procedure activity, consisting of 20 halfwords per ac-

tivity.

Apart from chain fields, the coroutine description contains co-

routine priority, maximum waiting time accepted and a "message
lock", which is the value of wait select the last time procedure
wait was called by the coroutine.

3.1.2

3.1.3

3.2

3.3

10

The coroutine description will always be queued up on a semaphore
in order of priority. When the system is started up, all corou-
tine descriptions are queued up on the free semaphore.

Message Buffers

3.4

Canmmunication between coroutines takes place by means of messages

placed in message buffers. These buffers are allocated in the
stack by means of procedure allocate.

Apart from the data part, a message buffer contains a protected
head with chain fields, the length of the data part and the pri=-
ority of the message buffer.

A message buffer occupies 8 halfwords + the length of the data
part, which mast be at least 6 halfwords.

The system considers the first two words of the data part to be a
message key. If "the message lock" in a coroutine description
queued up on a sempahore is not zero, it will be compared with
the key words in all message buffers arriving at the semaphore,
and only if the key fits will the message be transferred to the
coroutine.

In this way several pairs of coroutines can cammunicate messages

via the same semaphore, or two coroutines can cammunicate differ—

ent types of messages.

Reference Variable

A new type of variable, a reference variable, is used to refer to
messages in the message buffers.

A reference variable can be regarded as an array, whose length

and location in the stack changes according to the state of the
variable.

3.3

3.4

11

The state can be one of the following:

array

nil

The reference variable refers to a

message buffer.

In this state the reference varia-
ble functions as an array contain-
ing the message.

The array has the same length as
the data part of the message buffer
and has lower index =1,

Fielding and indexing are made in
the same way as with a normal

array.

The type of array equals the type
declared for the reference vari-

able, i.e. boolean, integer, real
or long.

The reference variable does not
refer to a message buffer, and it
has the length O.

Fielding and indexing in this state

will cause a field/index alarm.

Reference variables are declared in the following way:

boolean
integer
long
real

T

*

array <name> (1:1) {<name> (1:])} 0 :

12

A reference variable must be initialized before being used. This
is done by calling the procedure:

initref (<name>):
and the state will be 'nil’'.

Note:

1) The array bound (1:1) must be stated in the declaration for
each reference variable separately.

2) A parameter to an ALGOL procedure will be a reference variable
only if:

a) the parameter on the call side is an unfielded reference
variable,

b) the parameter is not fielded or indexed in the procedure
itself,

If fielding or indexing of a reference variable is necessary

in a procedure, this part of the procedure must be transformed

into cne or more procedures called with the reference variable

as actual parameter.

3) At the end of the block in which a reference variable has been
declared, it should be in the 'nil' state, ctherwise the
message buffer referred to will be lost.

4. CENTRA LOGIC ' 4,

The procedure centra logic may be used as central logic to sched-
ule coroutines and communicate messages. It does not return until

a corutine terminates, either wvia its final end or because of an
alarm.

The procedure can be called again.

Call: centra logic (log):
centra logic (return value, long). The result of the last
call of schedule.
log (call value, integer). Log is interpreted as a
bit pattern specifying the log records wanted.
(cf. section 4.3).

Program mode: At call, the program mode must be cor monitor
(cf. appendix C).

Procedure centra logic uses the central logic semaphores in the

following way:

No: Name: Use:

0 wait message pool (cf. section 4.1)
-1 wait message (cf. section 4.1)
-2 wait answer pool (cf. section 4.2)
-3 delay may be used freely
-4 not used
=5 virtual error cf. point 4 below

Procedure centra logic performs the following functions:

1) Starts up coroutines queuing them up on the proper start sema-
phore. (This is due to the fact that the central logic does
not get the result from the call of new activity).

2) Restarts the highest priority coroutine ready to be started.
(Procedure schedule selects the coroutine).

3)

4)

5)

6}

8)

9)

10)

14

Coroutines deactivated with an implicit passivate statement

are queued up on the implicit passivate semaphore. They are .
restarted in order of priority when their 8000-answers are

found in the 8000-event queue.

Coroutines which cannot be restarted because of “stack busy"
(activate result -2) are gqueued up cn the virtual error sema-
phore. When the blocking coroutine later passivates explicit-
ly, the blocked coroutine will be queued up on the ready se—
maphore.

Note: There must be no call, explicitly or implicitly of pass-

ivate between 8000~-send-message and 8000-wait-answer in vir—

tual coroutines. Consequenly virtual coroutines cannot send
8000-messages and receive 8000-answers, in multibuffered im- .

plicit-passivate-zones.

resets wait_time and mit_select before each coroutine is ac—

tivated.
Cammunicates incoming 8000-messages (cf. section 4.1).

Cammunicates on reguest 8000-answers via messages sent to
specified semaphores (cf. section 4.2).

Generates timeocut on 8000-answers (cf. Section 4.2).

If no coroutines are ready to be started, the 8000-event queue
is scanned for external events.

One event to be found is the answer from the 8000 clock pro-
cess to a delay operation sent by centra logic itself with the

purpose of being timed out from the event queue to restart
timed-out coroutines.

Displays logging records showing operation flow and time

consumption.

15

4.1 Processing of 8000-messages
The semaphores 0 and -1 are used in connection with commnication
of 8000-messages.
If a coroutine wishes to receive an 8000-message there must be a
message queued up on the semaphore wait message pool.
When, scanning the event queue, an 8000-message is found,
centra logic will examine whether there is a message queued up on
the wait message > pool semaphore. If a message is found and a co-
routine is queued up on the wait message semaphore waiting for
the 8000-message, the 8000-message buffer will be copied to the
message, which is signalled to the wait message semaphore:
field addr.
+2 sender process description addr.
+4 receiver process description addr.
+6 8000-message buffer addr.
+8
. 8000-message
+22
If the message is less than 22 halfwords, cnly the part of 8000-
message for which there is room will be copied. If the message is
greater than 22 halfwords the rest of the message will be unde—
fined.
By means of wait select it is possible for a coroutine to wait
for a message from a particular process or/and a particular
pseudo process.

4,2 Conversion of 8000-answers into Messages

In connection with conversion of an 8000-answer into a message,

semaphore -2 (wait answer pool) is used.

4.2

16

This facility can be used if:
1) A coroutine has to wait for one or more 8000-answers.

2) A coroutine has to wait for the first of either a message or
an 8000-answer.

3) A coroutine wishes to regret an 8000-message, if no 8000-an-
swer is received within a certain time (timeout).

4) A coroutine has sent an 8000~message via a global zone, and
another coroutine has to wait for the 8000-answer.

The facility is used in the following way:
When an 8000-message has been sent by means of monitor (16

<*send message*>, ...) a message with the following format is
signalled to wait answer pool:

field addr.

+2 not used

+4 8000-message-buffer-address
+5 answer semaphore

Whenever procedure centra logic finds an 8000-answer in the 8000~
event queue, it is examined whether a message with this 8000-mes-
sage-buffer-address is queued up on wait answer pool. If so, the
message is camminicated to the samaphore stated in the 3rd word

of the message.

Procedure centra logic does not change the message, which only
need to consist of 6 halfwords.

In case 3 where the coroutine does not wait for the 8000-answer,
the coroutine must withdraw its message from wait answer pool

before calling 8000-regret-message.

4.3

17

Demand for Log Display

The log display wanted by procedure centra logic is stated by the
parameter log. The log display is printed on current cutput.

The parameter log must contain the sum of the mumbers of the
printouts wanted:

No Meaning

1 Various counters.

2 The semaphore table and associated records at normal
coroutine termination.

4 The semaphore table and associated records at coroutine
termination with alarm.

8 The semaphore table and associated records at start up.

4.3

18

TEST FACILITIES IN THE COROUTINE SYSTEM

The coroutine procedures contain a possibility of creation of

test records in a zone belonging to the coroutine system.

The zone, which must be declared and opened in the user program,
is the second parameter to the procedure coroutines. The creation
of test records is demanded by means of the standard integer
variable select test. The different test record types have a
ber, which is a power of two and so select test must have a value
corresponding to the sum of the nurbers of the test record types
wanted.

The following test record types exist:

: the first part of message at call of procedure signal
: the first part of message at return fram procedure wait
: call of procedure signal
8: call of procedure wait

P

16: return from procedure wait

32: not used

64: transfer of coroutine to another semaphore queue
128: start up of coroutine

The system contains a procedure prepare test, which creates a
test record containing test type (= 1024), coroutine mumber, the

hour and zeroes in the remaining fields.

When prepare test has been called, the test record is the current

zone record and may be changed freely.

19

The following procedure description, which describes standard
procedures as well as standard variables, is divided into 3

sections: user procedures, test procedures and central logic

6. PROCEDURE DESCRIPTICN
procedures.
6.1 User Procedures

6.1.1

Allocate

This standard procedure is used to allocate stack space for a
message buffer, initialize it with priority and a message, which
in the second word contains the message buffer length and other-
wise is zerofilled. This message is signalled to the semaphore.
The procedure must be called after the procedure coroutines and
at the same block level.

Call: allocate (sem, message size, prio):

sam (call value, integer). The number of the se—

maphore to which the message is to be signal-

led.
0 <= sem <= max_semaphore.

message size (call value, integer). The length in half-
words of the message buffer to be reserved.

6 <= message size.

prio (call value, integer). The priority to be
assigned to the message buffer.
=2048 <= prio <= 2047.
(2047 is the highest priority).

Program mode: The program mode mist be cor_menitor.

6.] ‘2

20

Coroutines 6.1.2

6'} .3

This standard procedure is used to allocate stack space for se—
maphore and coroutine descriptions. The coroutine descriptions

are queued up on the free semaphore with the priority O.

The procedure activity must be called before procedure coroutines
and at the same block level.

Procedure coroutines must be called before procedure new activity
and before all other coroutine procedures.

Call: coroutines (max semaphore, test zone)
max_semaphore (call value, integer). The mumber of user
samaphores. These semaphores are numbered .

from 1 to max semaphore.

test zone (call value, zone). The zone in which test
records are created. The zone mist be open
and ready for record ocutput when the creation
of test records is enabled (cf. prepare test
and select test).

Program mode: At call the program mode must be act monitor,
at return it will be cor monitor.

Initref 6.1.3

This standard procedure is used to initialize a reference vari-

able.

Call: initref (ref);
ref (call and return value, boolean array, inte-
ger array, long array or real array). The ar-
ray to be transformed into a reference vari-
able. At return the state of the reference
variable will be 'nil’.

6.1.4

21

Program modes The program mode must be cne of the

cor modes (cf. appendix C).

The array ref must be declared in the following way:

1
boolean
integer *
array <name> (1:1) {,«mame> (1:1) ;
real 0
long
J 0

Set Priority

This standard procedure changes the priority of a coroutine. When
the change has been made, the coroutine is queued up on the ready

samaphore in order of its new priority and is passivated.

Call: set priority (prio);
prio (call value, integer). The new priority.
=2048 <= prio <= 2047.
(2047 is the highest priority).

Program mode: The program mode must be cor activity.

As the procedure queues up the coroutine on the ready semaphore
after all coroutines with the same or higher priority, the call:

set pricrity (act prio):

act prio being the priority of the coroutine, will queue up the

coroutine kbehind all coroutines with the same priority.

. Signal

This boolean standard procedure signals a message to a semaphore.

6.1.4

6.1.5

Call: signal (sem, ref);

signal (return value, boolean). True if the message
key fits the lock of a waiting coroutine
(i.e. a coroutine is transferred to the ready

semaphore, queue), false otherwise.

sem (call value, integer). The nmumber of the
semaphore to which the referenced message is
signalled.

-5 <= sem <= max_semaphore.

ref (call and return value, reference variable).
ref is a reference variable which refers to
the message. At call the state of ref must be

‘array', at return the state is 'nil'.
Function:
Procedure signal proceeds in the following steps:

1) If one or more coroutines are queued up on the specified
semaphore, they are examined, in order of priority, to have a
message lock in their coroutine description to which the

message key fits. {see subsection 6.1.7).

2) If a coroutine is found, the message buffer address will be
inserted in the coroutine description, and the coroutine is

queued up on the ready semaphore in order of priority.

[#8]

If no coroutine is found, the message is cqueued up on the

semaphore message queue in order of priority.
4) The procedure returns.

Program mode: The program mode must be one of the cor modes (cf.

appendix C).

Even if the procedure transfers a coroutine with a higher prior-
ity than that of calling coroutine to the ready semaphore, the

procedure will not de-activate calling coroutine.

Wait

23

This integer standard procedure waits for a message at a sema-

rhore.

Call: wait (sem, ref):

wait

s&m

ref

Functions:

(return value, integer).

= 0: timeout, no message received

> 0: length in halfwords of the data part of
message received (the data part is al-
ways greater than five halfwords).

(call value, integer). The number of the
semaphore where to wait for the message.
=5 <= sem <= max semaghore.

(call and return value, reference variable).
At call, the state of ref must be 'nil'.

At return the state of ref is 'array' and the
value of ref will refer to the message re—

ceived, if one is received.

Procedure wait proceeds in the following steps:

1} Current values of the standard variables wait select and

wait time are inserted in the coroutine description.

2) If one or more messages are queued up on the semaphore spec—

ified, they are examined, in order of priority, to have a mes-
sage key that fits the message lock stored in the coroutine
description (cf. subsection 6.1.7).

If more messages of the same priority are found, the one which

has been queued up for the longest time is taken.

3. If program mode is cor monitor or cor disable, or if wait time

< 0, the procedure proceeds at point 7. with message found or

timeout if no message was found.

6-1 @6

4,

24

If no message was found, the coroutine is queued uwp on the
semaphore specified. .

If a message was found the coroutine stays in the ready sema-

phore gqueue.

The procedure examines whether there is timeout for any of the

other coroutines in the system or, if any higher priority co-

. routine is implicitly passivated, whether there is an 8000-

answer for any of the implicitly passivated coroutines. If so,
they are gqueued up on the ready semaphore in order of prior-

ity.

If a message was found, and calling coroutine is the first in _
the ready semaphcore queue, the procedure proceeds at 7., else '
the coroutine is passivated.

This is a re-start point with a delay in case the message
waited for is received or in case of timeout. It is the con-
tinue point with no delay, whether or not a message is receiv-
ed in case the procedure is called in cor disable or
cor_monitor mode or if the coroutine will accept no delay.

If a message is received, the reference variable specified is
changed to refer it, and its state is changed to 'array'.

If a message is received, wait returns with the length of the .
datapart, else with the value O.

Program mode: The program mode must be cor_modes (cf. appendix

C).

Wait_select 6.1.7

This long standard variable affects the progress of the next

walt.

25

Procedure wait starts by inserting the value as a message lock in
the coroutine description, whereupon wait select is zeroed.

A coroutine must not passivate, explicitly or implicitly, between
an assignment to wait select and a call of wait, because
wait select is zerced by procedure centra logic.

A reactivated coroutine will always find wait select = 0.

The value wait select is inserted as a message lock in the co-
routine description, which must be fitted by a message key found
in the first two words of a message.

The lock/key camparison made by procedure wait as well as by pro-
cedure signal both use the value of wait select inserted in the
coroutine description by procedure wait.

Two integer arrays, message key and message lock, centaining the
first two words of the message as a message key and the message
lock from the coroutine description respectively, are used in the
canparison algorithm.

The camparison is made according to the following algorithm:
accept:= true:

for i:= 1,2 do
if message lock(i) <> 0 then
begin
if message lock(i) > O then
begin
if message lock(i) <> message key(i) then accept:= false
end else
begin <* message lock(i) < 0 *>
if logand (message lock(i), message key(i)) = O then
accept:= false
end

end;

If accept is still true, the message key fits the lock.

6.1.8

Wait time

This integer standard variable affects the progress of the next
wait.

Procedure wait starts by inserting the value as maximal delay

accepted in the coroutine description, whereupon wait time is
zZeroed.

A coroutine must not be passivated, explicitly or implicitly,
between an assigrment to wait time and a call of wait because
wait time is zeroed by procedure centra logic.

A re-activated coroutine will always find wait time = O.

The value of wait time is inserted as maximal delay accepted

waiting for a message.

wait time > 0: the maximum waiting time accepted in tenth of se—
conds. If no message is received within this per-
icd of time, procedure wait returns without a mes-

sage.
wait time = 0: no limits to the waiting time.

wait time < 0: procedure wait accepts no delay and returns at

Qrce .

If a message is received it is returned, else wait
returns without a message. The coroutine is not
passivated even if higher priority coroutines are

queued up on the ready semaphore.

6.1.8 -

6.2

27

Example 1

Coroutine that prints out the time every 5 minutes.

procedure write time (z);:
zone z;
begin
real time;
integer delay sem;
integer array dummy (1:1);
initref (dummy);
delay sem:= -3;
repeat
systime (5, 0.0, time);
write (z, <:<'nl'>time:>, <<dd dd>, (entier time)//100);
setposition(z,0,0):

wait_times= 5 * 60 / 0.1024; <* 5 min *>
wait(delay sem, dummy);
until false
end:

Tast Procedures

6.2.1

Prepare test

This standard procedure creates a test record in the test zone
buffer. The test record, which consists of 16 halfwords, is
created by means of ocutrecs.

The record is initialized with test type, current coroutine and

hour, cf. appendix D.
After return from the procedure, further specification may be in-
serted in the test record, which is available in the test zone

buffer.

Call: prepare test

6.2

6.2.1

28

At call the zone state for the test zone (2nd parameter in the
call of procedure coroutines) must be O or 6 (ready for record
output) .

6.2.2 Select test 6.2.2
This integer standard variable selects the test records to be
created. The value of the variable can be changed dynamically
during program execution if only the test zone is open and ready
for record output (zone state 0 or 6), before select test is
given a value different from 0.
Standard procedure coroutines zeroes select test.
The value of select test must be the sum of the numbers of the
test record types wanted:
Test record type Meaning
1 Message buffer at call of procedure signal
2 Message buffer at return fram procedure wait
4 Call of procedure signal
8 Call of procedure wait
16 Return from procedure wait
64 : Transfer of coroutine to another semaphore
queue
128 Start up of coroutine.
6.3 Auxiliary Central Logic Procedures 6.3

These standard procedures and standard variables are used in the

central logic procedure of the system (centra logic).

The procedures are thus only interesting if an alternative cen—

tral logic is to be made, or if one wishes to know how
centra logic works.

29

Co 8000 event 6.3.1

This integer standard variable holds information about unprocess-
ed 8000-events, if any, from the last scan of the 8000-event

queue.
If the value of co 8000 event differs fram O at entry to pro-
cedure centra logic the procedure will scan the 8000 event queue
before starting up the next coroutine.

co_8000_event is assigned by procedures schedule and centra logic

after each scan of the 8000 event queue.

Co_own base 6.3.2

6.3.1
®
. 6.3.2
6.3.3

This standard integer contains the start address of the own core
of the coroutine system. See appendix B.

Cor_to sem) 6.3.3

This standard procedure is called by the central logic to trans-

fer coroutines from cne semaphore queue to ancother. A coroutine
is always inserted in order of priority.

Call: cor to sem (sem, cor);
sem (call value, integer). The number of the
semaphore where the coroutine is queued up.
-9 <= gem <= -] '

cor (call value, integer). The mumber of the
coroutine.

Program mcde: The program mode must be cor monitor (cf. appendix

c).

Alarm: The procedure must not be called as a formal procedure or

with formal expressions.

6.3.4

Co time 6.3.4

6.3.5

This integer standard variable controls - together with the
variable co time base - when the next possible timeout can take
place.

The time of the next possible timeout is

co_time base + (extend co time shift 10);

Co_time base 6.3.5

6.3‘6

This long standard variable contains the basis of time measure-
ments in the coroutine system. .

The value of the variable must not be changed.
co time and remaining wait time in the coroutine descriptions are

measured in units of 0.1024 sec and are used relative to

co_tjme‘_base .

Schedule 6.3.6

This long standard procedure is used by the central logic instead .
of procedure activate.

The procedure starts by searching for the next coroutine to be ‘
started. If one is found, schedule calls activate. In this case
the result value is the same as the result value fram activate,

and the return value of the parameter is the number of the corou-
tine activated/attempted activated.

If no coroutine is found, the procedure returns with the result

value 0 and the parameter value O.

31

Call: schedule (cor);
schedule (return value, long).
If activate has been called, the return value
of procedure activate, ctherwise 0.

cor (return value, integer).
If activate has been called, the murber of
the coroutine activated, otherwise 0.

Program mode: The program mode must be cor monitor (cf. appendix
c).

Alarm: The procedure gives parameter error if called with expres-

sion or a constant as parameter.
Function:
T. If co 8000 event is negative, the 8000-event queue is scanned.

At a scan of the 8000-event-queue, coroutines queued up on the

implicit-passivate semaphore are transferred to the ready
queue when the 8000-answers waited for are found in the gueue.

At the same time, the number of events in the 8000-wait-queue,
which are not answers to coroutines implicitly passivated, are
counted in the variable co 8000 event.

2. If the ready semaphore is empty, coroutines which have exceed-
ed their maximum waiting time are transferred to the ready

semaphore queue.

If no coroutines are transferred to the ready semaphore queue,
the 8000-event queue will be scanned as described in 1.

3. If the ready semaphore queue is still emoty, procedure sched-
ule returns, else the first coroutine on the ready semaphors

queue is activated.

33

REFERENCES

[1] RCSL No 42-i1278:
AIGOL8, User's Guide, Part 2

[2] RCSL No 31-D476:
RCE000 MONITOR, Part 1, System Design

[3] RCSL No 31-D477:
RCB000 MONITOR, Part 2, Reference Manual

34

INTERNAL TARLES ' B.

This appendix contains the formats of the internal tables.

The addresses of the fields are relative addresses measured in
halfwords relative to the base address of the table.

Section B.1 contains a description of the own core of the corou-

tine system.
Section B.2 contains a description of chain elements.
Section B.3 contains a description of the semaphore table.
Section B.4 contains a description of the coroutine descriptions. .
Section B.5 contains a description of the message buffers.

Section B.6 contains procedures for displaying the tables.

The Own Core of the Coroutine Svstem B.1

External procedure coroutines own core.

rel. addr.
_#0 ' : "max_semaphore" .
+2 "base address of the semaphore table"
+4 “the address of the last coroutine"
+6 "the address of the coroutine 0"
+8 co 8000 event
+10 co_time
+12 co_time base
+14
+16 wait time
+18 ‘ wait select
+20
+22 coO_own base "base address of this table"
+24 "the length of activity's description per .

coroutine”

B.2

35
+261 "testzone formals"

+30 seleé@_test

+36) "testrecord"

Chain Elements

B.3

Semaghore tables, coroutine descriptions and message buffers con-
tain chain elements. These chain elements consist of the address
of the next element and the address of the previous element.

A chain element looks like this:

rel. addr. i

-2 . the address of the next element (towards Iower
priority)

+0 the address of the previous element (towards
higher priority)

If a chain element has no references it points at itself (i.e. at
the field with the relative address 0).

Semaphore Table

The table is placed as an array from -9 to max_semaphore of sema-—
phore elements each consisting of 8 halfwords.

Each semaphore element consists of a message chain element and a
coroutine chain element.

"Base address of the semaphore table" (see B.1) contains the ad-
dress of the coroutine chain element of semaphore 0.

B.2

B.3

B.4

A semaphore element has the following fields:

36

rel. addr. .
-6 Ithe address of the first message (highest priority)

-4 the address of the last message (lowest priority)

-2 the address of the first coroutine (highest priority)

+0 the address of the last coroutine (lcwesﬁ priority)

NB: When coroutines/messages are queued-up on a semaphore gqueue

in order of priority, the first address of the previous chain
element is used as priority. This implies that no signals are
sent to the lowest semaphore (the ready semaphore) and that
addresses always exceed 2047, which is in fact the case.

The Coroutine Description Table B.4

The table is placed as an array fram 0 to no of coroutines of co-

routine description elements each consisting of 16 halfwords. An
element has the following fields:

rel. addr.

-6 the priority of the coroutine
-4 message buffer address if a message has been found
=2 the address of the next coroutine (towards lower prior- ’
ity) | .
0 the address of the previous corcutine (towards higher
priority)
+2 wait select shift (-24)
+4 walt select extract 24
+6 remaining wait time in relation to co time base
+8 coroutine munber

The coroutine descriptions can be found either by means of the

semaphore tables or by means of "the address of coroutine 0.

B.5

37

Message Buffers

B.6

A message buffer has a head of 8 halfwords and a data part of at
least & halfwords. A message buffer can anly be found by means of
the address, as it must be either queued up on a semaphore or re-
ferred to by a reference variable.

The message buffer has the following format:

rel. addr.

-5 the priority of the message buffer

~4 the length of the message buffer data field in half-
words

-2 the address of the next message buffer (towards lower

| priority) |

0 the address of the previous message buffer (towards
higher priority)

+2 message key 1 message

+4 message key 2 message

+6 . message

- L]
-* L

» P

Procedures used to Display the Tables

own integer max sem, sem basis, cor_basis, max cor:

procedure initowns;
begin
integer array own core(1:4);

system(5, 'co_own base, own_core);

max sem := own_core(1);
sem basis := own core(2);
cor_basis := own_core(4);
max_cor = (own_core(3) - cor basis) shift (-4)

end:

B.5

B.6

procedure writesem(sem): *

integer sem; .
begin
. write(out, <:sem:>, <<-ddd >, sem,
<* pos *> if sem>0 then <:user:> else
case sem+10 of(
-9 *> <:ready:>,

=7 ¥ L::>,<*not used*>
—6 *>» <:free:>,
<*F 5 ¥ Lavirt., error:>,
<* 4 *> <>, <*not used*>
<* =3 *> <:delayi>,
<* =2 *> <:wait answ. pool:>,
<* =1 *> <:;wait mess.:>, .
<* 0 *> <:wait mess. pool:>))

<*
<* =8 *> <:impl. pass.:>,
<*
<*

end:

integer procedure where(cor);
value cor;
integer cor;
begin
<* the procedure returns the number of the semaphore cn which
the coroutine is queued up.
*> -
integer addr;
integer array chain field(1:4); ’ .
initowns;
addr:=cor shift 4 + cor basis;
for addr:=addr, chain field(4) while chain field(1)<2048 do
begin
where:=(addr-sem basis)//8;
system(5, addr-6, chain field)
end

l
end; _ }

39

procedure printsemtable;
begin
<* for all semaphores the procedure will display the
coroutines/messages in the queue.
*>
integer array sem descr(1:3), cor_descr(1:8), mess head(1:9);
integer addr, sem;

procedure printsem(semaddr);
value semaddr;
integer semaddr;
begin
integer addr;
procedure printcor;
begin
system(5, addr-6, cor_descr);
write{out, <:<'nl'> cor:>, <<ddd >, cor_descr(8),
<<=dddd >, <:pric=:>, cor descr(1l),
<:ident:>, <<-ddddddd>, cor_descr(5), cor _descr(6));

if cor descr(7) > 0 then
writeint(out, <: wait time:>, << d.&>, cor descr(7));
addr:=cor_descr(3)

end;

procedure printmess:;
begin
integer i, size:
system(5, addr-6, mess head);
write{out, <:<'nl'> mess pric=:>, <<~dddd >,
mess_head(1), <:size:>, mess head(2));
size:=if mess head(2) > 10 then 5 else mess head(2)//2;
for i:=1 step 1 until size do write(out, mess head(4+i));

addr:=mess head(3)
end;

40

system(5, semaddr-6, sem descr);
if sem descr(1)<>semaddr-4 or sem descr(3)<semaddr then
begin

write(out, <:<'nl'><'nl'>:>):

writesem(sem):

addr:=sem descr(3):;
while addr<>semaddr do printcor;

addr:=sem descr(1);
while addr<>semaddr-4 do printmess;
end
end;
~ initowns;
for sem:=-9 step 1 until max sem do printsem(sem*8 + sembasis)
end;

procedure printcorsem;
begin
<* for all coroutines the procedure displays the number and
possible name of the semaphore on which the coroutines are
queued up.
*>
integer cor;
initowns;
for cor:= 1 step 1 until max cor do
begin
write(out, <:<'nl'>cor:>, <<dddd>, cor, <: on :>);
writesem(where(cor))
end

end:

41

PROGRAM MODE

The coroutine system defines certain program modes not used by
activity. '

The following program modes exist:

mode

value| program mode of the coroutine system|activity program mode
8 neutral neutral

17 act_monitor monitor

18 act activity) activity

20 act disable disable

33 cor_monitor monitor

34 cor_activity cor_modes activity

36 cor_disable disable

The mode values stated will be displayed in the alarm caused by a
procedure called in an illegal program mode.

Survey of the use of program modes:

program mode

procedure before the call after the call
allocate 33 unchanged
coroutines 17 33
initref 33, 34, 36 unchanged
set priority 34 unchanged
signal 33, 34, 36 unchanged
wait 33, 34, 36 unchanged
cor to sam 33 unchanged
schedule 33 33

42 s

TEST RECORDS D.

The individual test records consist of 16 halfwords and are
created by means of ocutrecé. The format of the different test re-
cords are shown in fig. 1.

Camments to the table:

re [1]: The first 7 words of the message. If the message is
shorter, the rest is undefined.

re [2]: If s~data is requested, the value is 5 and the following
record an s-data record, cotherwise the value is 4.

re [3]: The coroutine fram which the procedure is called. If the .
procedure is called in the disable mode, the value is the
negative value of coroutine number, and if it is called
in the monitor mode, the value is 0.

re [4]: If w-data is recquested, the value is 18, and the follow-

ing record is a w-data record, otherwise the value is 16.

re [5]: This record is created by means of the procedure
prepare test. The fields can be changed freely after the
call, only the test number must be cutside the interval
0 - 1023.

re [6]: The hour contains 8000_time (measured in 0.1 msec). The
value can be printed cut in readable form:

begin
real date, times
long field hour: |
hour:= 16: i
date:= systime(4, z.hour/10000, time): “
write(out, << dd 4dd 43>, date, time) |
|

end:

43

- [€] ot aco-3j0e 0 0 0 | [s] veol J9sn
- 0 pautFepun pSuUTFepUn peuTIepUN ~ Bzl s3eATIOR
- 0 - - peutIspun pautgspun ON* 3N0I0D +9 u®s 03 100
- -~ - - Kprorad-o pbusT yngw “Jngew | [#] 81/91 | 3ITXe-3TRM
- - - - aurry 3Tem Jo8Tes JTEM 8 ITeM
[9] omoy [g] oN*aooc3oe o Joydewss — Aqtaotadew wpbusy cgnqew cappe cynqew | [g] S/% Teubts
Au [1] ebesseu uv Z eyep-M
Aﬂ [1] sbessau Uv | elep-s
adAay T

8-L 9 S ¢. [L | qaom

1.

Fig.

44

After end of execution the test records can be displayed by means

of print. It can be done by means of the following call, in which
each test record is printed ocut in a separate line: .

print testfile word words.8

45

ALARMS FROM THE COROUTINE SYSTEM

alarm text

c~level coroutines

index <Jj> coroutines

index <j> schedule

index <j> signal/wait

not ref. signal/wait

p-mode <j> coroutines

p-mode <j> schedule

param schedule

procedure

coroutines

allocate

coroutines

allocate

cor_to_sem

signal

wait

signal
wait

coroutines

allocate

initref
cor”tca__sem
schedule

set priority

initref

cor__to___san
schedule

explanation

The procedure has not
been called at the same
block level as activity.

The parameter
max_semaphore has the
illegal wvalue <j>.

The parameter 'sem' has
the illegal value <j>.

The parameter ‘cor' has
the illegal value <3j>.
The parameter ‘sem' has
the illegal value <j>

. 2nd parameter in the

procedure call is not a

reference variable.

The procedure has been
called in a wrong program
mode <j>. Cf. appendix C.

The procedure has been
called in a wrong program
mode <j>. Cf. appendix C.

first parameter in the
call has not been declar-
ed as a reference vari-
able.

the procedure has been
called either as a formal
procedure or by means of

a formal expression.

E.

alarm text

param signal/wait

ref.arr signal/wait

ref.nil signal/wait

procedure

signal

wait

wait

signal

explanation

The procedure has not
been called in cor_modes.

The reference variable
has the state 'array' at
call.

The reference variable
has the state 'nil' at

@

RETURN LETTER

Title: AIGOL Coroutine System RCSL No.: 31-D674
User's Guide : _

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability: ' '

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:
Thank you

~

421 1284

.................

¢REGNECENTRALEN
af 1979

Information Department
Lautrupbjerg 1
DK-2750 Ballerup
Denmark

...................

Affix
postage
here

