
RCSL No: 31-D674

Edition: April 1982

Author Jesper Andreas Tagholt

Title:

ALGOL Coroutine System

User's Guide

RCSL 42-i1905 § REGNECENTRALEN
| af 1979

Keywords:

RC8000, ALGOL8, activity, coroutines, semaphore.

Abstract:

This manual describes a coroutine system available to ALGOL8 programs.

(52 printed pages)

Copyright © 1982, A/S Regnecentralen af 1979

RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-

ned herein are subject to change by RC at any time without prior no-

tice. RC is not responsible for typographical or arithmetic errors

which may appear in this manual and shail not be responsible for

any damages caused by reliance on any of the materials presented.RCSL 42-11805

TABLE OF CONTENTS PAGE

1. INTRODUCTION .eccccssccceccecccscccvsrescccssscscescsece]

2. THE COROUTINE SYSTEM ...ccccccccccccccrccccscesvevcscoes

2.1 The Central Logic Procedure Centralogic .eccsssesce

2.2 Standard Procedures ..cccccccvcsvcccccvsvveveccsess

2.3 Standard Variables ..cccsscccccevcccevscvescecvesee

2.4 Procedures in ALGOL Library .ccccccscsaccccscesccse a uw nv
3. DATA STRUCTURES ccccccsvcccsccccccccsescsscsccessceceses

3.1 Semaphore Tables ...esscsecsseccessoescscvevsevcess

3.1.1 User Semaphores ceoscoevovcvcccccsecsvecccees

3.1.2 Central Logic Semaphores wen neotccesens

3.1.3 System Semaphores ...caccccccccccccvescscces

3.2 Coroutine Description ...ccescccscccscccscccers ween

3.3 Message Buffers ..ccccecccccccccccccccsscsccsccccen oo 0 VM 0 O © OOde3.4 Reference Variable ..csccccccccncevccrseccccessvees

4. CENTRA LOGIC ccccccvcccccccscvcccsccnscvcsacsscescsesese Ia

4.1 Processing of 8000-messages .essecccesocccvcecesees 15

4.2 Conversion of 8000-answers into-Messagese0. 15

4.3 Demand for Log Display ccccoccccccascsrsecceccessses IF

5. TEST FACILITIES IN THE COROUTINE SYSTEM ..ccesceeccecece 18

6. PROCEDURE DESCRIPTION ..ccsescccscccvcsseccscvcsssessese 19

6.1 User Procedures ..cscccccscevccscvevccccecesesssase 19

Gel] Allocate corcccsccccevccescccssccssccsensass 19

6.1.2 Coroutines ..ccccscccsarccce wae e teen senennse 20

6.1.3 Initrefccseceees ee cccccecsces eecscesese 20

6.1.4 Set Priority secccccccccecvcsvesvcsvesecsces 2

6.125 Signal wccscacccccscccncccccccsescsscccsssse 2

Gol eG Walt cocccccccccccccsvcsevcscccscsesescesvecs 23

6.1.7 Wait _select cesscsssesecsocssceccescvccssses 24

Go1.8 Wait time ..cceessesescccsscorececes aa ccecee 26

6.2 Test Procedures .cccesvcccccocsscsseseesvscsscesess 2h

Go2.1 PLEpare teSt ceesseseesccscccsecseesscssesse 27

6.2.2 Select test .cccceecsccecsccccvcsereseresses 29

ii

TABLE OF CONTENTS (continued) PAGE

6.3 Auxiliary Central Logic Procedures ..csccesceescese 28

6.3.1 CO 8000 _eVvert .eccccccccccscscccccccccccsess 29

6.3.2 Co Own _bDase sesseeceears ceeereesercerecccess 29

6.3.3 COF_tO SEM -eccecceccccvccccscvcssvccscosces 29

6.3.4 Co time eee eeeercscens eecceeeeeceveces 30

6.3.5 Co time Dase cececccscccccccscrccsccessssses 30

6.3.6 Schedule .cssccccscccccccccccsccsssccccssese 30

APPENDICES :

A. REFERENCES ...ceececescocs Cece see ocecesscececcvsceeseess 3a

B. INTERNAL TABLES ..csceccccccecs seco eeeeeerccscccccerevess 34

B.] The Own Core of the Coroutine Systemcccesseeeee 34

B.2 Chain Elements obec ereccccecccncs ecesesesees 35

B.3 Semaphore Table ...ccceccscese cc ceereereeesercscess 35

Be4 The Coroutine Description Table ...ccccercecccccees 36

B.5 Message Buffers ..cccccccccescccccesscccccccsssesce 37

B.6 Procedures used to Display the Tablescceseeeees 37

Ce PROGRAM MODE .ccessccecccccccccscne eccceereroserecescces 4]

De TEST RECORDS .ccccccscccccccccccccucceveseersercescences 42

E. ALARMS FROM THE COROUTINE SYSTEM ..cscessccsnccees eeoeee 45

INTRODUCTION

This manual describes a coroutine system available to ALGOL8 pro-

grams .

The manual implies a knowledge of the activity concept of ALGOLS.

Various concepts from the RCS8000 monitor are used in the descrip-

tion. To avoid confusion the prefix ‘8000' is used with these

concepts. For a more detailed description, plese see ref. [1] and

vef. [3].

Chapter 2 contains a brief description of the facilities made

available by the system.

Chapter 3 describes a special set of data structures used in the

system.

Chapter 4 describes a central logic procedure of the system.

Chapter 5 describes the test facilities of the system. |

Chapter 6 describes the standard procedures and standard

variables of the system.

THE COROUTINE SYSTEM 26

2.1

The system, which is based on message semaphores, is implemented

as a set of external procedures with the following facilities:

1. Coroutines scheduled by priority.

2. Time out on wait operations.

3. Messages commmnicated in order of priority.

4. Messages picked out according to message lock/key.

5. Full index control of messages and semaphores.

6. Easy programming:

a. pre-campiled modules, no source code copying,

b. readymade central logic, scheduling coroutines, communica-

ting messages,

Cc. separate compilation of coroutines.

7. Switch to dedicated central logic.

8. Creation of test records.

The Central Logic Procedure Centralogic 2.1 @

The system has a standard procedure, centra_logic, which may be

used as central logic for schedulation of coroutines and comm-

nication of messages.

The procedure has the following facilities:

1. Start up of coroutines, queuing them up on proper start sema-
!

phores.

. |
2. Restart of the highest priority coroutine ready to be started |

|

|

3. Scheduling coroutines de-activated by implicit passivate or

“stack busy" (virtual coroutines inhibited by a fellow corou-

tine waiting for some i/o operations to complete).

4. Queuing up 8000-messages on central logic semaphores where it

can be fetched by means of wait operations.

5. Queuing up messages on specified semaphores on the arrival of

certain 8000-answers to the event queue.

6. Time out on wait operations without CPU load.

7. Display of logging records, showing the operation flow and

time consumption.

8. Display of semaphore tables at termination.

Standard Procedures

1. Procedures for System Initialization

Name: Task:

coroutines make stack reservations for the

semaphore and coroutine description

tables and initialize the tables.

allocate make stack reservation for a mes~

sage buffer and initialize it.

initref initialize reference variables (see

section 3.4).

set priority change the priority of calling

coroutine.

2. Commmication Procedures

Name:

signal

wait

3. Test Procedure

Name:

prepare test

4. Auxiliary Procedures

Names

schedule

cor _to sem

Task:

send a message (placed in a message

buffer) to a semaphore queue.

wait for a message in/fetch a mes-

sage from a semaphore queue.

Task:

create a user test record and

insert it among system test

records.

Task:

start the next coroutine.

transfer a coroutine description to

a semaphore queue and insert it ac—

cording to its priority.

The auxiliary procedures are intended to facilitate the construc

tion of alternative coroutine schedulers, replacing centra_logic.

2.3 Standard Variables

1. Standard Variables for Modification of the Next Wait Operation

Name: Meaning:

wait_select if zero, the wait operation waits

for/fetches the first message in

the semaphore queue, no matter its

key. If not zero, wait_select is a

lock, and the wait operation waits

for/fetches the first message in

the semaphore queue with a key that

r fits the lock.

Name: Meaning:

wait _time states the maximum waiting time

accepted by the coroutine executing

the wait operation.

| If wait_time = 0 there is no limi-

| tation to the waiting time.

| . If wait_time < 0 no waiting time is
| accepted
@ °

| If wait_time > 0 wait time contains

the maximum waiting time measured

in tenth of a second.

The contents of these variables are stored in the calling corou-

tine description each time wait is called and they are reset to

Zero.

2.4

Names

select_test

3. Standard Variables Used by

Meaning:

contains the test numbers wanted as

a bit pattern.

The Central Logic

Name:

co_time_base

co time

co_8000_event

co own base

Procedures in ALGOL Library

Meaning:

8000—clock-time at the last test

for timeout. Basis for time indi-

cation in the coroutine system.

Must not be changed!

the time until the next possible

timeout measured in tenth of a

second from co time base.

the number of unprocessed 8000-

events found in the latest scan of

the 8000-event queue.

the address of the first own vari-

able in the coroutine system.

Must not be changed.

The following ALGOL library procedures are used by the system and

the users of the system.

For a detailed description of

fi].

the individual procedures, cf. ref.

2.4

|

|

Name:

activity

new_activity

activate

passivate

Function:

Used to create a number of empty

activity descriptors before calling

procedure coroutines.

Initiates an empty activity with a

procedure and starts the activity.

Must be called after procedure co-

routines and before any other co-

routine procedure.

Activates a non-empty activity in

its restart-point.

Used by procedure schedule. Must

not be used in coroutines scheduled

by this procedure.

De-activates the executing activ—

ity, establishing its restart point

(waiting point).

Used in procedure wait.

May be used in the coroutines, but

dces not change the location in any

semaphore queue of executing corou~

tine.

3.1

The system introduces 3 data structures and a new type of vari-

able in connection with the coroutine system.

The data structures are:

a) A semaphore table containing chain fields for all semaphores.

b) A coroutine description table containing information about the

priority of each coroutine, the maximm waiting time, what the

coroutine is waiting for and chain fields.

c) Message buffers each consisting of a head and a data part. The

head contains priority, length and chain fields.

The new type of variable is a reference type used to refer to the

messages.

Semaphore Tables

3.1.1

Semaphores in the system are always message semaphores. They are

identified by number.

There are 3 types of semaphores:

a) user semaphores numbered 1 to max~semaphore,

b) central logic semaphores numbered -5 to 0,

¢) system semaphores numbered -9 to -6.

The semaphore description consists of 8 halfwords per semaphore.

User Semaphores

The number of user semaphores is stated when the system is start-

ed up calling procedure coroutines. The semaphores are used for

signal and wait operations.

3.1

3.1.6]

3.1.2 Central Logic Semaphores 3.1.2

These semaphores, defined by the central logic, are used in con-

nection with the facilities made available by the central logic.

The semaphores can be used by means of procedures cor_to_sem,

signal and wait.

3.1.3 System Semachores 3.1.3

System semaphores are used by the coroutine procedures.

e@ The system semaphores are:

No: Name: Semaphore queue contains:

-9 ready semaphore coroutines ready to be activated.

~8 implicit passivate coroutines implicitly passivated.

| semaphore

|
| -7 not used.

|
|
| -6 free semaphore coroutines not used at present.

3.2 Coroutine Description 3.2

| The procedure coroutines will create a coroutine description for

each coroutine. The description consists of 16 halfwords per co-

| routine. It mist not be confused with the activity description

created by procedure activity, consisting of 20 halfwords per ac-

tivity.

| Apart from chain fields, the coroutine description contains co-

| routine priority, maximum waiting time accepted and a "message

lock", which is the value of wait_select the last time procedure

r wait was called by the coroutine.

The coroutine description will always be queued up on a semaphore

in order of priority. When the system is started up, all corou-

tine descriptions are queued up on the free semaphore.

Communication between coroutines takes place by means of messages

placed in message buffers. These buffers are allocated in the

stack by means of procedure allocate.

Apart from the data part, a message buffer contains a protected

head with chain fields, the length of the data part and the pri-

ority of the message buffer.

A message buffer occupies 8 halfwords + the length of the data

part, which must be at least 6 halfwords.

The system considers the first two words of the data part to be a

message key. If "the message lock" in a coroutine description

queued up on a sempahore is not zero, it will be compared with

the key words in all message buffers arriving at the semaphore,

and only if the key fits will the message be transferred to the

In this way several pairs of coroutines can communicate messages

via the same semaphore, or two coroutines can communicate differ-

3.3 Message Buffers

coroutine.

ent types of messages.

3.4 Reference Variable

A new type of variable, a reference variable, is used to refer to

messages in the message buffers.

A reference variable can be regarded as an array, whose length

and location in the stack changes according to the state of the

variable.

3.3

3.4

11

The state can be one of the following:

array The reference variable refers to a

message buffer.

In this state the reference varia-~

ble functions as an array contain-

ing the message.

The array has the same length as

the data part of the message buffer

and has lower index = 1.

Fielding and indexing are made in

the same way as with a normal

array.

The type of array equals the type

declared for the reference vari-

able, i.e. boolean, integer, real

or long.

The reference variable does not

refer to a message buffer, and it

has the length 0.

Fielding and indexing in this state

will cause a field/index alarm.

Reference variables are declared in the following way:

boolean

integer

long

real

array <name> (1:1) {<name> ca} ?
*

)

A reference variable must be initialized before being used. This

is done by calling the procedure:

initref (<name>);

and the state will be 'nil'.

Note:

1) The array bound (1:1) must be stated in the declaration for

each reference variable separately.

2) A parameter to an ALGOL procedure will be a reference variable

only if:

a) the parameter on the call side is an ufielded reference

variable,

b) the parameter is not fielded or indexed in the procedure

itself.

If fielding or indexing of a reference’ variable is necessary

in a procedure, this part of the procedure mst be transformed

into one or more procedures called with the reference variable

as actual parameter.

3) At the end of the block in which a reference variable has been

declared, it should be in the 'nil' state, otherwise the

message buffer referred to will be lost.

The procedure centra_logic may be used as central logic to sched-

ule coroutines and communicate messages. It does not return until

a corutine terminates, either via its final end or because of an

alarm.

The procedure can be called again.

Call: centra_logic (log);

centra_logic (return value, long). The result of the last

call of schedule.

leg (call value, integer). Log is interpreted as a

bit pattern specifying the log records wanted.

(cf. section 4.3).

Program mode: At call, the program mode mist be cor_monitor

(cf. appendix Cc).

Procedure centra_logic uses the central logic semaphores in the

following way:

No: Name: Use:

O wait_message_pool (cf. section 4.1)

-1 wait_message (cf. section 4.1)

“2 wait_answer_pool (cf. section 4.2)

-3 delay may be used freely

4 not used

-5 virtual_error cf. point 4 below

Procedure centra_logic performs the following functions:

1) Starts up coroutines queuing them up on the proper start sema-

phore. (This is due to the fact that the central logic does

not get the result from the call of new activity).

2) Restarts the highest priority coroutine ready to be started.

(Procedure schedule selects the coroutine).

3)

4)

5)

6)

7)

8)

9)

10)

Coroutines deactivated with an implicit passivate statement

are queued up on the implicit passivate semaphore. They are e@

restarted in order of priority when their 8000-answers are

found in the 8000-event queue.

Coroutines which cannot be restarted because of "stack busy"

(activate result -2) are queued up on the virtual _error sema-

phore. When the blocking coroutine later passivates explicit~

ly, the blocked coroutine will be queued up mm the ready se~

maphore.

Note: There must be no call, explicitly or implicitly of pass-~

ivate between 8000-send-message and 8000-wait-answer in vir-

tual coroutines. Consequenly virtual coroutines cannot send

8000-messages and receive 8000-answers, in multibuffered im-)
plicit-passivate-zones.

resets wait time and wait_select before each coroutine is ac-

tivated.

Comminicates incoming 8000-messages (cf. section 4.1).

Communicates on request 8000-answers via messages sent to

specified semaphores (cf. section 4.2).

Generates timeout on 8000-answers (cf. Section 4.2).

If no coroutines are ready to be started, the 8000-event queue

is scanned for external events.

One event to be found is the answer from the 8000 clock pro-

cess to a delay operation sent by centra_logic itself with the

purpose of being timed out from the event queue to restart

timed-out coroutines.

Displays logging records showing operation flow and time

consumption.

4.1

15

Processing of 8000-messages 4.1

4.2

The semaphores 0 and -1 are used in connection with caommmication

of 8000-messages.

If a coroutine wishes to receive an 8000-message there must be a

message queued up on the semaphore wait_message_pool.

When, scanning the event queue, an 8000-message is found,

centra_logic will examine whether there is a message queued up mm

the wait_message_pool semaphore. If a message is found and a co-

routine is queued up on the wait_message semaphore waiting for

the 8000-message, the 8000-message buffer will be copied to the

message, which is signalled to the wait_message semaphore:

field addr.

+2 sender process description addr.

+4 receiver process description addr.

+6 8000-message buffer addr.

+8

. g000-message

°

+22

If the message is less than 22 halfwords, only the part of 8000-

message for which there is room will be copied. If the message is

greater than 22 halfwords the rest of the message will be unde-

fined.

By means of wait_select it is possible for a coroutine to wait

for a message from a particular process or/and a particular

pseudo process.

Conversion of 8000-answers into Messages 4.2

In connection with conversion of an 8000~answer into a message,

semaphore -2 (wait_answer_pool) is used.

1) A coroutine has to wait for ane or more 8000-answers.

2) A coroutine has to wait for the first of either a message or

an 8000—answer.

3) A coroutine wishes to regret an 8000-message, if no 8000—an-

swer is received within a certain time (timeout).

4) A coroutine has sent an 8000-message via a global zone, and

another coroutine has to wait for the 8000—answer.

The facility is used in the following way:

When an 8000-message has been sent by means of monitor (16

<*send_message*>, ...) a message with the following format is

signalled to wait_answer_pool:

field addr.

+2 not used

+4 8000-message-buffer-address

+6 answer semaphore

Whenever procedure centra_logic finds an 8000-answer in the 8000-

event queue, it is examined whether a message with this 8000-mes-

sage~buffer—address is queued up on wait_answer_pool. If so, the

message is communicated to the semaphore stated in the 3rd word

of the message.

Procedure centra_logic does not change the message, which only

need to consist of 6 halfwords.

In case 3 where the coroutine does not wait for the 8000-answer,

the coroutine must withdraw its message from wait _answer_ pool

before calling 8000-regret-message.

4.3

17

Demand for Log Display

The log display wanted by procedure centra_logic is stated by the

parameter log. The log display is printed on current output.

The parameter log must contain the sum of the numbers of the

printouts wanted;

No

1

Meaning

Various counters.

The semaphore table and associated records at normal

coroutine termination.

The semaphore table and associated records at coroutine

termination with alarm.

The semaphore table and associated records at start up.

TEST FACILITIES IN THE COROUTINE SYSTEM

The coroutine procedures contain a possibility of creation of

test records in a zone belonging to the coroutine system.

The zone, which mist be declared and opened in the user program,

is the second parameter to the procedure coroutines. The creation

of test records is demanded by means of the standard integer

variable select test. The different test record types have a num

ber, which is a power of two and so select test mist have a value

corresponding to the sum of the numbers of the test record types

wanted.

The following test record types exist:

1: the first part of message at call of procedure signal

2: the first part of message at return from procedure wait

4: call of procedure signal

8: call of procedure wait

16: return from procedure wait

32: not used

64: transfer of coroutine to another semaphore queue

128: start up of coroutine

The system contains a procedure prepare test, which creates a

test record containing test type (= 1024), coroutine mmber, the

hour and zeroes in the remaining fields.

When prepare test has been called, the test record is the current

zone record and may be changed freely.

19

The following procedure description, which describes standard

procedures as well as standard variables, is divided into 3

sections: user procedures, test procedures and central logic

6. PROCEDURE DESCRIPTION

procedures.

6.1 User Procedures

6.1.1 Allocate

This standard procedure is used to allocate stack space for a

message buffer, initialize it with priority and a message, which

in the second word contains the message buffer length and other-

wise is zerofilled. This message is signalled to the semaphore.

The procedure must be called after the procedure coroutines and

at the same block level.

Call: allocate (sem, message size, prio);

sen (call value, integer). The mmber of the se-

maphore to which the message is to be signal-

led.

O <= sem <= max_semaphore.

message _size (call value, integer). The length in half-

words of the message buffer to be reserved.

6 <= message size.

prio (call value, integer). The priority to be

assigned to the message buffer.

~2048 <= prio <= 2047.

(2047 is the highest priority).

Program mode: The program mode mist be cor_monitor.

6.1

6.1.1

6.1.2

6.1.3

This standard procedure is used to allocate stack space for se

maphore and coroutine descriptions. The coroutine descriptions

are queued up on the free semaphore with the priority 0.

The procedure activity must be called before procedure coroutines

and at the same block level.

Procedure coroutines mist be called before procedure new activity

and before all other coroutine procedures.

Call: coroutines (max_semaphore, test_zone)

max_semaphore (call value, integer). The number of user

semaphores. These semaphores are numbered @
from 1 to max semaphore.

test_zone {call value, zone). The zone in which test

records are created. The zone must be open

and ready for record output when the creation

of test records is enabled (cf. prepare test

and select_test).

Program mode: At call the program mode must be act_monitor,

at return it will be cor_monitor.

Initref 6.1.3

This standard procedure is used to initialize a reference vari-

able.

Call: initref (ref);

ref (call and return value, boolean array, inte-

ger array, long array or real array). The ar-

ray to be transformed into a reference vari-

able. At return the state of the reference

variable will be ‘nil’.

6.1.4

21

Program mode: The program mode must be one of the

cor_modes (cf. appendix C).

The array ref mist be declared in the following way:

boolean

integer
array <name> (1:1) { r<nane> cam} ;

real ie)

Set Priority

6.1.5

This standard procedure changes the priority of a coroutine. When

the change has been made, the coroutine is queued up on the ready

semaphore in order of its new priority and is passivated.

Call: set_priority (prio);

prio (call value, integer). The new priority.

-2048 <= prio <= 2047.

(2047 is the highest priority).

Program mode: The program mode mist be cor_activity.

As the procedure queues up the coroutine on the ready semaphore

after all coroutines with the same or higher priority, the call:

set_priority (act_prio);

act_prio being the priority of the coroutine, will queve up the

coroutine behind all coroutines with the same priority.

. Signal

This boolean standard procedure signals a message to a semaphore.

6.124

6.1.5

signal (return value, boolean). True if the message

key fits the lock of a waiting coroutine

(i.e. a coroutine is transferred to the ready

semaphore, queue), false otherwise.

sem (call value, integer). The mmber of the

semaphore to which the referenced message is

signalled.

-5 <= sem <= max_semaphore.

ref {call and return value, reference variable).

ref is a reference variable which refers to

the message. At call the state of ref must be

‘array', at return the state is ‘nil’.

Function:

Procedure signal proceeds in the following steps:

1) If one or more coroutines are queued up on the specified

semaphore, they are examined, in order of priority, to have a

message lock in their coroutine description to which the

message key fits. (see subsection 6.1.7).

2) If a coroutine is found, the message buffer address will be

inserted in the coroutine description, and the coroutine is

queued up on the ready semaphore in order of priority.

w If no coroutine is found, the message is queued up on the

semaphore message queue in order of priority.

4) The procedure returns.

Program mode: The program mode must be one of the cor_modes (cf.

appendix C).

Even if the procedure transfers a coroutine with a higher prior-

ity than that of calling coroutine to the ready semaphore, the

procedure will not de-activate calling coroutine.

23

Wait

This integer standard procedure waits for a message at a sem-

phore.

Call: wait (sem, ref);

wait (return value, integer).

= 0: timeout, no message received

> O: length in halfwords of the data part of

message received (the data part is al-

ways greater than five halfwords).

sem (call value, integer). The number of the

semaphore where to wait for the message.

-5 <= sem <= max_semaphore.

ref (call and return value, reference variable).

At call, the state of ref mist be 'nil'.

At return the state of ref is ‘array’ and the

value of ref will refer to the message re-

ceived, if one is received.

Function:

Procedure wait proceeds in the following steps:

1) Current values of the standard variables wait_select and

wait_time are inserted in the coroutine description.

2) If one or more messages are queued up on the semaphore spec-

ified, they are examined, in order of priority, to have a mes-

sage key that fits the message lock stored in the coroutine

description (cf. subsection 6.1.7).

If more messages of the same priority are found, the one which

has been queued up for the longest time is taken.

3. If program mode is cor_monitor or cor_disable, or if wait_time

< 0, the procedure proceeds at point 7. with message found or

timeout if no message was found.

6.1.6

6.1.7

4. If no message was found, the coroutine is queued up on the

semaphore specified. e@

If a message was found the coroutine stays in the ready sema-

phore queue.

The procedure examines whether there is timeout for any of the

other coroutines in the system or, if any higher priority co-

routine is implicitly passivated, whether there is an 8000-

answer for any of the implicitly passivated coroutines. If so,

they are queued up on the ready semaphore in order of prior-

ity.

If a message was found, and calling coroutine is the first in

the ready semaphore queue, the procedure proceeds at 7., else ®

the coroutine is passivated.

This is a re-start point with a delay in case the message

waited for is received or in case of timeout. It is the con-

tinue point with no delay, whether or not a message is receiv-

ed in case the procedure is called in cor_disable or

cor_monitor mode or if the coroutine will accept no delay.

If a message is received, the reference variable specified is

changed to refer it, and its state is changed to ‘array’.

If a message is received, wait returns with the length of the @

datapart, else with the value 0.

Program mode: The program mode must be cor_ modes (cf. appendix

Cc).

Wait_select 6.1.7

This long standard variable affects the progress of the next

wait.

25

Procedure wait starts by inserting the value as a message lock in

the coroutine description, whereupon wait_select is zeroed.

A coroutine mist not passivate, explicitly or implicitly, between

an assignment to wait_select and a call of wait, because

wait_select is zeroed by procedure centra_logic.

A reactivated coroutine will always find wait_select = 0.

The value wait select is inserted as a message lock in the co-

routine description, which must be fitted by a message key found

in the first two words of a message.

The lock/key camparison made by procedure wait as well as by pro-

cedure signal both use the value of wait_select inserted in the

coroutine description by procedure wait.

Two integer arrays, message key and message_lock, containing the

first two words of the message as a message key and the message

lock from the coroutine description respectively, are used in the

canparison algorithm.

The comparison is made according to the following algorithm:

accept:= true;

for i:= 1,2 do

if message_lock(i) <0 then

begin

if message_lock(i) > 0 then

begin

if message_lock(i) <> message_key(i) then accept:= false

end else

begin <* message_lock(i) <0 *>

if logand (message_lock(i), message_key(i)) = 0 then

accept:= false

end

end;

Tf accept is still true, the message key fits the lock.

6.1.8 Wait_time

This integer standard variable affects the progress of the next

wait.

Procedure wait starts by inserting the value as maximal delay

accepted in the coroutine description, whereupon wait_time is

zeroed.

A coroutine must not be passivated, explicitly or implicitly,

between an assignment to wait_time and a call of wait because

wait_time is zeroed by procedure centra_logic.

A re-activated coroutine will always find wait_time = 0.

The value of wait_time is inserted as maximal delay accepted

waiting for a

wait_time > 0:

wait_time = 0:

wait time < 0:

message.

the maximum waiting time accepted in tenth of se-

conds. If no message is received within this per-

ied of time, procedure wait returns without a mes-

sage.

no limits to the waiting time.

procedure wait accepts no delay and returns at

Once.

If a message is received it is returned, else wait

returns without a message. The coroutine is not

passivated even if higher priority coroutines are

queued up on the ready semaphore.

6.2

27

Example 1:

Coroutine that prints out the time every 5 minutes.

procedure write time (z);

zone Zz;

begin

real time;

integer delay sem;

integer array dummy (1:1);

initref (dummy);

delay _sem:= -3;

repeat

systime (5, 0.0, time);

write (z, <:<'nl'>times>, <<dd dd>, (entier time)//100);

setposition(z,0,0);

wait _times= 5 * 60 / 0.1024; <* 5 min »

wait(delay sem, dummy);

until false

end;

Test Procedures

6.2.1 Prepare test

This standard procedure creates a test record in the test zone

buffer. The test record, which consists of 16 halfwords, is

created by means of outrecé.

The record is initialized with test type, current coroutine and

hour, cf. appendix D.

After return from the procedure, further specification my be in-

serted in the test record, which is available in the test zone

buffer.

Call: prepare test

6.2

6.2.1

At call the zone state for the test zone (2nd parameter in the

call of procedure coroutines) mst be 0 or 6 (ready for record

output).

6.2.2 Select_test 60262

This integer standard variable selects the test records to be

created. The value of the variable can be changed dynamically

during program execution if only the test zone is open and ready

for record output (zone state 0 or 6), before select test is

given a value different from 0.

Standard procedure coroutines zeroes select_test.

The value of select_test must be the sum of the numbers of the

test record types wanted:

Test record type Meaning

] Message buffer at call of procedure signal

2 Message buffer at return from procedure wait

4 Call of procedure signal

8 Call of procedure wait

16 Return from procedure wait

64 . Transfer of coroutine to another semaphore

queue

128 Start up of coroutine.

6.3 Auxillary Central Logic Procedures 6.3

These standard procedures and standard variables are used in the

central logic procedure of the system (centra_logic).

The procedures are thus only interesting if an alternative cen-

tral logic is to be made, or if one wishes to know how

centra_logic works.

29

Co_8000_ event

This integer standard variable holds information about unprocess-

ed 8000-events, if any, from the last scan of the 8000-event

queue.

If the value of co_ 8000 event differs from 0 at entry to pro-

cedure centra_logic the procedure will scan the 8000 event queue

before starting up the next coroutine.

co_8000_event is assigned by procedures schedule and centra_logic

after each scan of the 8000 event queue.

Co_own_base

6.3.1

@

® 6.3.2

6.3.3

This standard integer contains the start address of the ow core

of the coroutine system. See appendix B.

Cor_to sem

This standard procedure is called by the central logic to trans-

fer coroutines from one semaphore queue to another. A coroutine

is always inserted in order of priority.

Call: cor_to sem (sem, cor);

sem (call value, integer). The number of the

semaphore where the coroutine is queued up.

-9 <= sem <= -1 ,

cor (call value, integer). The number of the

coroutine.

Program mode: The program mode must be cor_monitor (cf. appendix

Cc).

Alarm: The procedure mist not be called as a formal procedure or

with formal expressions.

6.361

6.3.2

6.3.3

Co_time

This integer standard variable controls - together with the

variable co_time base - when the next possible timeout can take

place.

The time of the next possible timeout is

co_time_base + (extend co_time shift 10);

This long standard variable contains the basis of time measure-

ments in the coroutine system.

The value of the variable mist not be changed.

co_time and remaining wait_time in the coroutine descriptions are

measured in units of 0.1024 sec and are used relative to

6.3.5 Co time base

co_ time base.

6.3.6 Schedule

This long standard procedure is used by the central logic instead

of procedure activate.

The procedure starts by searching for the next coroutine to be

started. If one is found, schedule calls activate. In this case

the result value is the same as the result value from activate,

and the return value of the parameter is the number of the corou-

tine activated/attempted activated.

If no coroutine is found, the procedure returns with the result

value 0 and the parameter value 0.

6.3.5

6.3.6

31

Call: schedule (cor);

schedule (return value, long).

If activate has been called, the return value

of procedure activate, otherwise 0.

cor (return value, integer).

If activate has been called, the number of

the coroutine activated, otherwise 0.

Program mode: The program mode mist be cor_monitor (cf. appendix

c).

Alarm: The procedure gives parameter error if called with expres-

sion or a constant as parameter.

Function:

1. If co_8000_ event is negative, the 8000-event queue is scanned.

At a scan of the 8000-event-queue, coroutines queued up mTMm the

implicit-passivate semaphore are transferred to the ready

queue when the 8000-answers waited for are found in the queue.

At the same time, the number of events in the 8000-wait—queue,

which are not answers to coroutines implicitly passivated, are

counted in the variable co_8000_event.

2. If the ready semaphore is empty, coroutines which have exceed-

ed their maximum waiting time are transferred to the ready

semaphore queue.

If no coroutines are transferred to the ready semaphore queue,

the 8000-event queue will be scanned as described in 1.

3. If the ready semaphore queue is still empty, procedure sched-

ule returns, else the first coroutine on the ready semaphore

queue is activated.

33

REFERENCES

[1] RCSL No 42-i1278:

ALGOL8, User's Guide, Part 2

[2] RCSL No 31-D476;

RC8000 MONITOR, Part 1, System Design

[3] RCSL No 31-D477:

RC8000 MONITOR, Part 2, Reference Manual

This appendix contains the formats of the internal tables.

The addresses of the fields are relative addresses measured in

halfwords relative to the base address of the table.

Section B.1 contains a description of the own core of the corou-

tine system.

Section B.2 contains a description of chain elements.

Section B.3 contains a description of the semaphore table.

Section B.4 contains a description of the coroutine descriptions. @

Section B.5 contains a description of the message buffers.

Section B.6 contains procedures for displaying the tables.

The Own Core of the Coroutine System B.1

External procedure coroutines own core.

rel. addr.

“+40 , "max _semaphoreTM @
+2 "pase address of the semaphore table"

+4 “the address of the last coroutine"

+6 "the address of the coroutine 0"

+8 co_8000_ event

+10 co_time

+12 co_time base

+14

+16 wait _time

+18 wait_select

+20

+22 co_own_base “base address of this table"

+24 “the length of activity's description per r

coroutine"

B.2

35

+26 | "testzone formals"

+30 select_test

+36} “testrecord"

Chain Elements

B.3

Semaphore tables, coroutine descriptions and message buffers con-

tain chain elements. These chain elements consist of the address

of the next element and the address of the previous element.

A chain element looks like this:

rel. addr.

-2 : the address of the next element (towards lower

priority)

+0 the address of the previous element (towards

higher priority)

If a chain element has no references it points at itself (i.e. at

the field with the relative address 0).

Semaphore Table

The table is placed as an array from -9 to max_semaphore of sema-

phore elements each consisting of 8 halfwords.

Each semaphore element consists of a message chain element and a

coroutine chain element.

“Base address of the semaphore table" (see B.1) contains the ad-

dress of the coroutine chain element of semaphore 0.

Be2

B.3

B.4

A semaphore element has

rel. addr.

6 the address

4, the address

“2 the address

+0 the address

the fo.

of the

of the

of the

of the

lowing fields:

first message (highest priority)

last message (lowest priority)

first coroutine (highest priority)

last coroutine (lowest priority)

NB: When coroutines/messages are queued-up on a semaphore queue

in order of priority, the first address of the previous chain

element is used as priority. This implies that no signals are

sent to the lowest semaphore (the ready semaphore) and that

addresses always exceed 2047, which is in fact the case.

The Coroutine Description Table

The table is placed as an array from 0 to no of coroutines of co-

routine description elements each consisting of 16 halfwords. An

element has the following fields:

the priority of the coroutine

message buffer address if a message has been found

the address of the next coroutine (towards lower prior- |

the address of the previous coroutine (towards higher

remaining wait_time in relation to co_time base

rel. addr.

6

4.

—2

ity)

0

priority)

+2 wait_select shift (-24)

+4 wait_select extract 24

+6

+8 coroutine number

The coroutine descriptions can be found either by means of the

semaphore tables or by means of "the address of coroutine 0".

B.5

37

Message Buffers B.5

B.6

A message buffer has a head of 8 halfwords and a data part of at

least 6 halfwords. A message buffer can only be found by means of

the address, as it must be either queued up on a semaphore or re-

ferred to by a reference variable.

The message buffer has the following format:

rel. addr.

-6 the priority of the message buffer

~4 the length of the message buffer data field in half-

words

~2 the address of the next message buffer (towards lower

priority)

0 the address of the previous message buffer (towards

higher priority)

+2 message key 1 message

+4 message key 2 message

+6 - message

° o

Procedures used to Display the Tables B.6

own integer max_sem, sem basis, cor_basis, max cor;

procedure initowns;

begin

integer array owm_core(1:4);

system(5, - co_own_base, own_core);

max_sem := own_core(1);

sem_basis := own_core(2);

cor basis : own_core(4);

max_cor

end;

(own_core(3) - cor_basis) shift (-4)

integer sem; e@

begin

. write(out, <:sem:>, <<-ddd >, sem,

<* pos *> if sem>0 then <:user:> else

case sem+]0 of(

<* +9 *> <:ready:>,

<* -8 *> <:impl. pass.:>,

<*) -7 *> <::>,<*not used*>

<* -6 * <:free:>,

<* -5 *> <:virt. error:>,

<* =-4 *> <::>,<*not used*>

<* ~-3 *> <:delay:>,

<* -2 *> <:wait answ. pool:>,

<* -] “> <:wait mess.:>, e@
<* 0 *> <:wait mess. pool:>))

end;

integer procedure where(cor);

value cor;

integer cor;

begin

<* the procedure returns the number of the semaphore on which

the coroutine is queued up.

*> -

integer addr;

integer array chain field(1:4); ; e
initowns;

addr:=cor shift 4 + cor_basis;

for addr:=addr, chain field(4) while chain field(1)<2048 do

begin

where:=(addr-sem_ basis) //8;

system(5, addr-6, chain field)

end |
end; |

|
|

39

procedure printsemtable;

begin

<* for all semaphores the procedure will display the

coroutines/messages in the queue.

*>

integer array sem_descr(1:3), cor_descr(1:8), mess head(1:9);

integer addr, sem;

procedure printsem(semaddr) ;

value semaddr;

integer semaddr;

begin

integer addr;

procedure printcor;

begin

system(5, addr-6, cor_descr);

write(out, <:<'nl'> cor:>, <<ddd >, cor_descr(8),

<<-dddd >, <:prio=:>, cor_descr(1),

<sident:>, <<-ddddddd>, cor_deser(5), cor_descr(6));

if cor_deser(7) > 0 then

writeint(out, <: wait_time:>, << d.d>, cor_deser(7));

addr:=cor_deser(3)

end;

procedure printmess;

begin

integer i, size;

system(5, addr-6, mess _head);

write(out, <:<'nl'> mess pric=:>, <<-dddd >,

mess_head(1), <:size:>, mess head(2));

size:=if mess_head(2) > 10 then 5 else mess_head(2)//2;

for i:=] step 1 until size do write(out, mess_head(4+i));

addr:=mess_head(3)

end;

system(5, semaddr-6, sem_descr);

if sem_descr(1)<semaddr-4 or sem deser(3)<>semaddr then

begin

write(out, <:<'nl'><'nl'>:>);

writesem(sem) ;

addr:=sem_descr(3);

while addr<>semaddr do printcor;

addr:=sem_descr(1);

while addr<>semaddr-4 do printmess;

end

end;

for sem:=-9 step 1 until max_sem do printsem(sem*8 + sembasis)

end;

procedure printcorsem;

begin

<* for all coroutines the procedure displays the number and

possible name of the semaphore on which the coroutines are

queued up.

*>

integer cor;

initowns;

for cor:= 1 step 1] until max_cor do

begin

write(out, <:<'nl'>cor:>, <<dddd>, cor, <: on :>);

writesem(where(cor))

end

end;

4]

PROGRAM MODE

The coroutine system defines certain program modes not used by

activity.

The following program modes exist:

mode

value} program mode of the coroutine system|activity program mode

8 neutral neutral

17 act_monitor monitor

18 act_activity . activity

20 act_disable disable

33 cor_monitor monitor

34 cor_activity cor_modes activity

36 cor_disable disable

The mode values stated will be displayed in the alarm caused by a

procedure called in an illegal program mode.

Survey of the use of program modes:

program mode

rocedure before the call after the call

allocate 33 unchanged

coroutines 17 33

initref 33, 34, 36 unchanged

set priority 34 unchanged

signal 33, 34, 36 unchanged

wait 33, 34, 36 unchanged

cor to sem 33 unchanged

schedule 33 33

The individual test records consist of 16 halfwords and are

created by means of outrec6é. The format of the different test re-

cords are shown in fig. 1.

Comments to the table:

re [1]: The first 7 words of the message. If the message is

re

re

re

re

re

[2]

[3]:

[4]:

(5]:

[6]:

shorter, the rest is undefined.

If s-data is requested, the value is 5 and the following

record an s-data record, otherwise the value is 4.

The coroutine from which the procedure is called. If the

procedure is called in the disable mode, the value is the

negative value of coroutine number, and if it is called

in the monitor mode, the value is 0.

If wdata is requested, the value is 18, and the follow

ing record is a wdata record, otherwise the value is 16.

This record is created by means of the procedure

prepare test. The fields can be changed freely after the

call, only the test number must be outside the interval

0 = 1023.

The hour contains 8000_time (measured in 0.1 msec). The

value can be printed out in readable form:

begin

real date, time;

long field hour;

hour:= 16;

date:= systime(4, z.hour/10000, time);

write(out, << dd dd dd>, date, time)

end;

43 - — [€] oN a00°35e)) o | {s] ¥zoL zesn- cy) peutyepun peutyepun peuTyepun - 8ZL eqeaTqoe- 0 ~ - peuTyzepun peuTyepun ON* NOZ0O $9 wes 0} 100- - - - Ayqazoyad*o yabuet yng -azppe -gnqew | [%] Sl/9l | afxe-aTem- - - - out? 3Ten qoeTes 4TeM 8 3TeM[9] znoy = [€] ON*aCO*qoe «oN aoudeues «= AQTAOTad*w yAbueT -Fnqru cappe -gnqrur | [z] S/F Teubts< {t] ebessou > Z eqepK< [1] e6essou => l eep-saddé3 LXaL

8-L 9 S ca z L | qaow
1.Fig.

After end of execution the test records can be displayed by means

of print. It can be done by means of the following call, in which

each test record is printed out in a separate line: e@

print testfile word words.8

45

ALARMS FROM THE COROUTINE SYSTEM

alarm text procedure

c-level coroutines coroutines

allocate

index <j> coroutines coroutines

allocate

index <j> schedule cor_to_sem

index <j> signal/wait signal

wait

not ref. signal/wait signal

wait

p-moede <j> coroutines coroutines

allocate

p-mode <j> schedule initref

cor_to_sem

schedule

set_priority

param schedule initref

cor_to_sem

schedule

E.

explanation

The procedure has not

been called at the same

block level as activity.

The parameter

max semaphore has the

illegal value <j>.

The parameter 'sem' has

the illegal value <j>.

The parameter ‘cor' has

the illegal value <}j>.

The parameter ‘sem’ has

the illegal value <j>

2nd parameter in the

procedure call is not a

reference variable.

The procedure has been

called in a wrong program

mode <j>. Cf. appendix Cc.

The procedure has been

called in a wrong program

mode <j>. Cf. appendix C.

first parameter in the

call has not been declar-

ed as a reference vari-

able.

the procedure has been

called either as a formal

procedure or by means of

a formal expression.

alarm text

param signal/wait

vef.arr signal/wait

ref.nil signal/wait

procedure

signal

wait

wait

signal

explanation

The procedure has not

been called in cor_modes.

The reference variable

has the state ‘array’ at

call.

The reference variable

has the state ‘nil’ at

call.

RETURN LETTER

Title: ALGOL Coroutine System RCSL No.: 31-D674
User's Guide — .

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on. this manual’s completeness, accuracy, organization, usability,
and readability: ; :

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42-1 ban

& REGNECENTRALEN

[7 af 1979
Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

Affix

postage

here

