
RCSL Ne: 31-D676

Edition: April 1983

Author. Finn G. Strabech

Title:

System 3 Utility Programs, Part One

User's Guide

§ REGNECENTRALEN

- af 1979ACSL No 42-1 2164

Keywords:

RC8000, RC4000, Basic Software, File Processor, User's Guide.

Abstract:

This first part of the utility program manual describes the central

program in the utility system, the File Processor, which together

with the operating system controls the execution of the user's pro-

gram and the access to his files.

(62 printed pages)

Copyright © 1983, A/S Regnecentralen af 1979

RC Computer A/S

s Printed by A/S Regnecentralen af 1979, Copenhagen

& Users of this manual are cautioned that the specifications contai-
° ned herein are subject to change by RC at any time without prior no- e
z tice. RC is not responsible for typographical or arithmetic errors

a which may appear in this manual and shall not be responsible for
2 any damages caused by raliance on any of the materiais presented.

FOREWORD

First edition: RCSL No 31-D364.

This first part of the utility program manual describes the cen-

tral control program in the utility system, the File Processor

(FP). The first chapter is a general introduction to the utility

system and is intented to be read in parallel with the introduc

tion in ref. [7]. The other chapters give further information

about FP and require further knowledge about the other parts of

the software system.

The second part of the utility program manual consists of de-

scriptions of the individual utility programs (except assembler

and compilers which have their own manuals).

Appendix B contains various tables - in particular a survey of

the error messages from FP.

During the preparation of this manual the author received many

valuable suggestions and corrections from colleques, in particu-

lar Tove Ann Aris and Christian Gram.

The programming of the File Processor and the utility programs in

the RC4000 software system 3 was based on the system 2 versions.

The necessary changes and the programming of the new utility

program was done by Tove Ann Aris, Bo Tveden-J¢érgensen, Jérgen

Zachariassen and the author.

Hans Rischel

A/S REGNECENTRALEN, May 1973

Second edition: RCSL No 31-D676.

The manual has been retyped and the reference list in appendix A

together with the tables in appendix B have been updated.

ii

The only change of technical significance is the inclusion of

kind 6, disc process, in chapter 6. , e@

All changes are marked with a vertical bar to the left of the

text.

Finn G. Strdébech

A/S REGNECENTRALEN af 1979, April 1983

TABLE OF CONTENTS

1. INTRODUCTION ..sceeccccccsccsccccsccees ses escceees coer

].1 The File Processorceccecees coeesceeee eceee

1.2 Files te eeeceeee Benes e renee seec ccc eeeereece

1.3 The FP Command Reading and Executione.seseee

1.4 A Simple Example of FP Commands tvevseseues

1.5 Compound Commands .cccccsccccccsccvcvsvveccssvcce

1.6 Creation of File Names ..cccecccscccccvcsceccess

1.7 Further Examples and Remarks ...scescccccccsccace

1.8 Reselection of Current Input or Output

1.9 Reserved File Namescccceeeccsece eee ececerees

1.10 Positionable and Unpositionable Mediasseeeers

2. COMMAND LANGUAGE ..eec.ee Boe w ec eneeceverececsereccare

2.1 Mata Lanquage ..ccscceuceccccvccccccceseccesacs sees

2.2 Syntax for FP commandsececccescscase es eoceeas

2.3 Semantics of FP commands ...cescseceeses eee eeceees

2.4 Format of the FP Command Stack te eeecuee

3. JOB AND OPERATING SYSTEM ce ccececcucccesceeseseens

3.1 Job and Parent ewe eesaceseceessace eee ceees

3.2 Parent MESSAGES ...eesccceccccccasecees tee nesees

3.3 Job Start, Initialization of FP ...sccccesccceecces

3.4 Job Termination cece ne ecccnvevecesesescns

3.5 Break Actions .cescsccccecccscecs Sere verevevescces

4.1 Current Input and Output, Zone Stackingeee-

4.2 The Mode Bits bee ecacecee eo cerececcceescccnce

4.3 Command Reading ..cssscscessccecoes ererrre rere res

4.4 Program Loadingcccessscsesceees sec ecececene

4.5 Program Terminationccscccecccesscececcecsces

4.6 Resource RequirementS ...cccceccccercscsccvccsreses

_

~_ oO ON UM Fw
12

12

15

16

19

19

19

19

20

21

iv

TABLE OF CONTENTS (continued) PAGE

5. REFERENCES TO FILES eee eescesreccces Swe ewreaceces 29

5.1 Document Name of a Filecesceceeee ese esecseaece 29

5.2 File Descriptor, File Name seeeseseee seeceee 30

5.3 The Constituents of a File Descriptor66. 30

5.4 Catalog Fntriesccccceccece be ecercere seceseseee 31

5.5 Formation of the File Descriptoresccececeees 32

5.6 Entry Tails ses cceeecccrecce secccesecees 34

6. THE FP INPUT/OUTPUT SYSTEM ceresece se ceeececacees 36

6.1 Text Files and EM Charactersseeeees ec ccevecee 36

6.2 Connection of a File tee cece ese ea te aseee eoeee 36

6.3 Termination of the Use of a Filecccscccseaes 33 @

6.4 Data Transfers, Status Wordseeseceees ececene - 39

6.5 Standard Recovery Actions ...ccceccceseseccesssece 4)

6.6 Errors on Current Input or Outputececeaceeee 45

APPENDICES ;

A. REFERENCES eee c cee cee cence A eee ewer enna rere nscccece 47

B TABLES ...ce. eeceee ee escecersreceraeseee ee eerevcnece 48

B.1 Mode-Kindscce ces cevenee occ cccecssee seccseeee 48

B.2 Standard File Names and File Descriptors 438

B.3 Contents Keys seem rete ee cere ecececccnvees 49 @

B.4 EYKOr M@sSAgeS cece e cece cer cscucccccnsccsceveseses 50

C. INDEX ...cccsces ec ccccece Bere eee twee naan c cence nes 53

INTRODUCTION

1.1 The File Processor

1.2

The File Processor - in the sequel called FP - is a control pro-

gram which together with the operating system controls the ex-

ecution of the user‘’s programs and the access to his files.

When an RC4000/RC6000/RC8000 camputer with system 3 software is

ready for use, the system programs are stored partly in core,

partly cn the backing storage. The Monitor program and the

nucleus of the qperating system BOSS are core resident while the

remainder of the programs are stored on the backing storage,

usually consisting of the magnetic drum and one or nore disc

files. The mm of a job is controlled by commands to two control

programs: the operating system and FP. FP may be used in con-

nection with various operating systems - in the sequel we assume

that the operating system BOSS is used.

Files

A file is an unbroken string of data such as a roll of paper

tape, one deck of cards, a data area cn the backing storage, the

data between two tape marks on a magnetic tape reel. A job uses

many different files - beside the files containing the input and

output data we have the files containing the user's programs and

files in the software system (containing compilers, editors

etc.).

The files can he divided into different types according to their

relation to the job:

Standard files of the job:

(1) The job file specifies the tasks of the job. It is entered

into the computer as described in ref. (7]. The job file

contains (except for 'go' jobs) a heading job specification

which is interpreted by BOSS. The rest of the job file is

forwarded by BOSS to the job as the primary input file.

1.1

1.2

(2) The current input file is a file fram which the job reads

canmands to FP and various other input. During the job se-

veral files may in turn be selected as current input file.

At job start the primary input file is selected as current

input.

(3) The current output file is a file used for autput fram the

job. During the job several files may in turn be selected as

current output file - the file selected at job start is cl-

led the primary output file.

(4) Primout is a backing storage area used by BOSS in the spool-

ing of the output printed on the primary output file. After

the termination of an on-line job this area is available ard

contains the data printed on primary output during the job.

In ALGOL/FORTRAN programs the current input and output files are

available via the standard zones IN and OUT. (These zones should

be used for character input/output cmly).

System files:

A mumber of files mainly om the backing storage are permanently

available to all jobs. These files contain compilers, utility

programs and standard library programs.

The paper tape reader, the line printer (and the card reader, if

any) are usually considered as containing files, owned by and

accessed through BOSS.

Private files:

The users programs and data files may be stored on any media

available in the system. The various types of files are described

in ref. [7] chapters 5-6.

FP and the utility programs refer to files by means of names. A

name is a small letter followed by at most 10 digits or small

letters.

1.3 The FP Command Reading and Execution : 1.3

The job execution is governed by the commands which FP reads fran

the current input file. Each command is executed as the call of

one or several programs.

In detail FP acts according to the following:

1) FP reads a command from the current input file. The command

may be a simple command or a compound command consisting of

several simple commands enclosed in brackets.

2) The simple commands are executed one by one. The execution of

a simple command means that a program file is loaded into core

store and entered. Each program terminates by returning to FP

which then executes the next simple command.

3) When the list of simple commands (read as described in 1) is

exhausted FP resumes the command reading fram the current in-

put file.

Remarks:

Re 2) The program called by an FP command may be one of the

user's own binary programs or a utility program which can

perform tasks like:

editing a text file into another text file,

compilation of a source text into a binary program,

reselection of the current input or output file,

termination of the job,

etc.

Re 3) The current input file is used not only by FP but also by

the programs called by the FP commands. The programs can

therefore read ahead in the current input file before FP

starts reading commands again - they may in fact even se-

lect another file as current input.

The command reading and execution is more detailed described in

chapter 4.

1.4 A Simple Example of FP Commands

An FP command consists of one ar several simple commands. A

simple command is a text line (terminated by an NL character) and

has either the form

<result file> = <program name> <parameter list>

or

<program name> <parameter list>

Our example is the example section 1.1.1 in ref. [7]. By removing

the job specification we get the primary input file:

pealgol

begin real a,b;

read(in,a,b);

write(out,a**b);

end

B

2 10

finis

FP reads the command 'p=algol' and executes it by staring the

ALGOL compiler. The compiler takes input from current input (as

no special input file is specified) and reads from the point

where FP stopped i.e. starting with 'begin...'. The reading stops

when the ALGOL source program is completed i.e. after ‘end’. The

object program is stored in a backing storage area named ‘p' and

the compiler terminates by returning to FP which resumes the com

mand reading and thereby reads the command 'p'. This command is

executed as a call of the ALGOL object program which reads the

two integers 2 and 10 fram current input (by the call of pro-

cedure READ on the zone IN). After output of the result the pro-

gram returns to FP which in turn reads the command 'finis' and

thereby the utility program FINIS is called and terminates the

job.

Compound Commands

1.6

A compound command to FP consists of an opening bracket '(' fol-

lowed by one or several FP commands (which may again be compound

commands) and terminated by a closing bracket ')'. As stated

above a compound command is read by FP as a uit. Afterwards the

simple commands in the compound command are executed one by me.

The primary input file

(

pralgol

Pp

finis

)

begin real a,b;

read(in,a,b);

write(out,a**b);

end

2 10

has essentially the same effect as the one above but now FP

starts by reading the entire compound command (the first five li-

nes) and next the commands are executed. The first command calls

the ALGOL compiler which continues reading from current input

where FP stopped. When the translation is done the next command

*p' calls the translated program which reads the integers 2 and

10 as it continues reading where ALGOL left the file. Finally the

command 'finis' is executed.

Creation of File Names

Files are referred to by means of names. New file names can be

‘declared' by means of the utility program SET. By the FP command

pip=set 40 1

1.5

1.6

pip=set 40

creates an area preferably TM drum.

By the FP command

pap=set mto mt471100 0 3

the name 'pap' is declared as pointing to file mmber 3 on the

magnetic tape reel mt471100 (mto=magnetic tape with odd parity). r

Beside these explicit ways of creating a file we have also an

implicit creation of files:

If anon existent file is specified as output file for a

utility program (or if the file specified is protected) the

utility program creates an area on the backing storage and

uses it for the output.

In the earlier examples the call of the ALGOL compiler

p=algol

created the backing storage area 'p' to hold the translated

program. An area created implicitly by the call of a utility

program is in most cases placed on a disc. The ALGOL/FORTRAN

compilers, however, will (if possible) place the translated

program on drum.

Remark: If the access to a magnetic tape is initiated in an

ALGOL/FORTRAN program by means of the standard procedures OPEN

and SETPOSITION, the name of the tape reel is used (mt471100

above) but a 'file name' as ‘pap’ above is not needed.

1.7 Further Examples and Remarks

The program text and the data are often too large to be conveni-

ently included in the primary input file. Consider the input to

FP

pralgol ptext

if ck.no

finis

if warning.yes

(p=algol ptext list.yes

finis)

P pdata

finis

The first line is executed by FP as a call of the ALGOL compiler

which takes input from the file 'ptext' (input is not taken fran

current input because this file is specified). After compilation

the utility program IF is called. It tests the 'ck bit' which has

been set by the compiler. If there was severe errors in the cam

pilation (input file not found, no room for the output), the 'ok

bit' is 'no' and the job is terminated by the following FINIS

cammand - otherwise the 'ok bit' is ‘yes’ and the program IF

skips the next command 'finis'. Next IF is called once more and

tests the 'warning bit' as set by the compiler. If the ‘warning

bit' is 'no', the next command (in the brackets) is skipped. Let

us assume that there are syntax errors in the program. Then the

next command is not skipped and FP executes the two simple com-

mands in the parenthesis. The first causes an extra compilation

but now with a listing of the program. After compilation the run

is terminated by the FINIS command. Next assume that the program

was accepted by the compiler. Then the compound command is skip-

ped by IF and FP reads the command 'p pdata'. This command is

executed as a call of aur program 'p'. The parameter 'pdata' has

the function that 'p' takes input fram the file 'pdata' (more

precisely: the file 'pdata' is current input while the program

"p' is mmning). Finally the job terminates by the FINIS com

mand.

1.7

This example assumes that the files named 'ptext' and 'pdata' are

available to the job. There are many ways of obtaining that, for]
instance:

(1) The files are on paper tapes which are loaded prior to job

start by load commands to BOSS in the job's specification

ref. 17], chapter 3.

(2) The files are permanent files om the backing storage.

(3) The files are available as magnetic tape files. In this case

the names 'ptext' and ‘pdata' must be declared by FP commands

like

ptext=set mto mt471100 O 1

pdata=set mto mt471100 0 2

which declare the names 'ptext' and 'pdata' to describe file

number 1 and 2 respectively on the tape mt471100.

{4) The files are kept om backing storage, when used - on mag-

netic tape when not used: The software admits the so called

login files on the backing storage which are retained as long

as the user is logged in at a terminal but cancelled at log-

out time. If the installation has sufficent login resources

the user may start the cperations from a terminal with a job

which loads the files fram magnetic tape to the backing

storage by calling the utility program LOAD. The files are

now available until the terminal is logged out. If a new

version of the files is produced it mist be output to mag-

netic tape by a job which calls the utility program SAVE.

Reselection of Current Input or Output 1.8

The utility program I selects a new file as current input file in

such a way that reading fram the ‘old' file may later be con-

tinued (at the point where we stopped) by a call of the utility

program END (I performs a 'stacking' - END an ‘unstacking' of the @

current input file).

The command

i commis

selects the file named 'cammis' as new current input file. When

FP resumes the command reading, the commands are input fron

‘commds' (unless current input has changed again in the mean—

time).

The compound conmand

(i cla

pip

end)

has the effect that the file ‘cola’ is current input while the

program 'pip' is running: The first command selects 'cola' as

current input the second calls 'pip' and the third switches

current input back again. Note that FP does not read fram the

file ‘cola’.

The utility program o selects a new file as current output file.

Consider the FP commands

© specialout

P pdata

oc

convert specialout

The first conmand calls o which creates an area 'specialout' on

the backing storage and selects it as aurrent autput file. Next

program 'p' is called and produces artput on 'specialout'. The

second call of o selects the primary autput file (denoted by 'c')

as current output again. The call of CONVERT tells BOSS to print

the contents of the file 'specialout'.

10

Warning: If an ALGOL/FORTRAN program campilation with listing is

performed while a backing storage area is selected as current

output file, the listing and the binary program are camnpeting for

the room cn the backing storage. In advance the area for the

listing (the current output) should be given a size sufficient to

hold the program text (and the error messages). This is done by

commands like

listout=set 40 1

© listout

pealgol ptext list.yes

oc

The following names are reserved for special purposes and cannot

be used as names for private files:

boss, c, fp, primout, s, terminal, v

printer, pumch, reader and other

The names c and v describe the primary output and input files.

The name of a system program may in principle be used as name for

a private file but this will make the system program inaccessible

for the user. Beside the bulk of system program names we have

standard names for certain files om peripheral devices as given

1.9 Reserved File Names

names of devices.

in appendix B.

1.10 Positionable and Unpositicnable Media

Files on magnetic tape or backing storage admit a ‘positioning’

operation i.e. upspacing or backspacing on the tape station, se-

lection of another segment on backing storage. A similar qper-

ation does not exist on the paper tape reader, the paper tape

1.9

VW

punch or the line printer. This fact is important because a file,

when connected, is ‘taken fram the beginning’ (the only exception

being the unstacking to a former current input file).

A couple of examples illustrate the problem:

The names ‘textl' and ‘text2' denote two text files. If 'f3' is a

name pointing to a magnetic tape file the commands

£3=copy text]

f£3=copy text2

have the effect that 'text]' is oxtput to the file and next the

tape is backspaced and 'text2' output erasing the output just

made. Contrary to that the commands

tpe=copy text]

tpe=copy text2

will produce two paper tapes containing 'text]' and 'text2!'

respectively.

If the data for the binary algol program 'p' is a backing storage

area (or a magnetic tape file) named ‘pdata' the commands

Pp Pdata

Pp pdata

will yield the same output twice. Contrary to that the comands

Pp trt

p trf

cause two calis of the program with (usually) different input as

each command will request the operator to load the next of the

user's paper tapes as input for the program.

The primary input and output files are maintained by BOSS as

unpositionable files i.e. one will never get the same part of the

primary input file twice during the job ami the data written @m

primary output will never overwrite earlier parts of the output.

2.) Meta Language

In the previous section we showed some examples of FP commands.

In this section we will describe the syntax of FP commands by

means of a modified Backus notation. The new meta-language el-

ement introduced is

<string I>

<string m

With one or more strings above each other. The meaning is that

any of these strings may appear at this place in the construc-

tion. A sequence of these strings in any order is denoted by:

<string I> |b

<string nm [a

where a and b give the minimm and the maximum mmber of strings

in the sequence. The synboloce in the place of b means just a

large rumber of times (determined by limitations in core storage

or the like).

22 Syntax for FP Commands

Each time the command reading is started, FP will input oe cam

mand terminated by new line:

<FP input> ::= <command> <new line>

13

A command is a simple command or a sequence of commands enclosed

in a parenthesis. New lines may be inserted in front of a command

or a closing parenthesis:

<command> ::=

<simple command>
<new lines>

(<cammand> {<new line> <coman> }, <new lines>)

A simple command is the name of a program file, possibly preceded

by '<result file>=' and followed by a parameter list:

<simple command> ::=

1(<cosatt file> -\ <program> <parameter list>

Result file and program are given by names

<result file> ::= <name>

<program> ::= <name>

The parameter list is either empty or consisting of one or

several parameters separated by spaces:

00<parameter list> ::= {<s><param } *

A parameter is a sequence of names and integers separated by

points

<name> - <name>
<name> 33=

<integer> -<integer>

14

A name is a small letter followed by at most ten small letters or

digits. A name may be preceded or followed by spaces: @

<name> 3:=

, o

{<s). <small letter>
10

<small letter> f o
<s>

<digit> 0 0

The integers in the commands have at most eight digits and may be

preceded or followed by spaces:

oo 8 3

<integer> ::= {<=>} 0 <aigi} | <s> 5

Camments may be inserted between semicolon or asterisk and new

line:

<NL 7

<new line> ::= 7<text not containing NL> <NL>

*<text not containing NL> <NL>

oo

<new Lines> ::= {<new tine> }

The delimiter <s> has two forms:

<SP>

<s> s:= iy r
, <text not containing NL> <NL>

The second form is used to divide long simple commands into

several text lines.

2.3

15

All characters read by FP mist be coded according to the ISO al-

phabet (ref. [3]). Source texts on paper tape in flexowriter code

or punched cards in EBCDIC code may be used, as the software (the

monitor) converts the characters to the equivalent ISO characters

when the text is read by the computer. Similarly there is a con-

version of capital letters to small letters by input from tele-

typewriters offering capital letters only.

The following ISO characters are meaningful to FP:

1) Small letters, digits, = (equality sign), SP (space), point,

/ (slash), comma, semicolon, asterisk, parenthesis.

2) NL (new line) and FF (form feed, working as new line).

3) CAN (cancel). A line containing a CAN character is skipped by

FP. The qiestion mark button is normally used for the CAN

character.

The following characters are always treated as syntactical

errors:

1) BS (back space), CR (carriage return) and all characters with

a value greater than 127.

2) Graphic characters not mentioned above.

3) Capital letters.

All other characters are skipped by FP.

Semantics of FP Commands

The command (simple or compound) read by FP is stored in the FP

cammand stack (a part of the core area for the job). Next the

simple commands are executed one by one. The simple command

1{<resutt file> -\, <program> <parameter list>

2.3

is executed as a call of the program named <program>. The program

will usually examine the simple command which caused the call of e
the program in order to get the parameter list and find the name

of a possible result file.

The use of result file and parameters depends om the program in

question but as general rules we have:

Result file: For most utility programs this name specifies an

output file. If no file with this name exists or if the file

found is protected, an area on the backing storage is created and

used for the cutput. For some utility programs (SET, ENTRY) the

result file name specifies a catalog entry which is to be created

or changed. In the call of a translated ALGOL/FORTRAN program the 6

result file name has only the function that it is available from

the program by a suitable call of procedure SYSTEM.

Parameter list: The parameters in the parameter list specify

input files, various modes of operation for the program etc. For

programs requiring text input (i.e. compilers, assembler) we have

the convention that input is taken fram current input if no input

files are specified and otherwise fram the specified files. If

the first parameter (following the program name) in the call of a

translated ALGOL/FORTRAN program is a single name (not followed

by a point), the file given by this name is used as current input

for this program; if the parameter is a single integer the pro- e

gram overwrites FP (ref. [5], 10.3). A translated ALGOL/FORTRAN

program may examine the parameter list by means of procedure

SYSTEM.

Format of the FP Conmand Stack 2.4

The FP command stack consists of items each containing a separ-

ator and the succeeding name or integer (if any). The heading

word of an item has the format

<separator> shift 12 + <length>

17

The <separator> is an integer with the values

end of command list

-2: end parenthesis

0: begin parenthesis

2: new line

§of oo

4: space

6: equality sign

8: point or slash

The <length> is an integer with the values

0: nothing follows

2: the next separator follows

4: an integer follows

10: a name follows

The integers in the parameters are converted to binary mmbers

stored in 24 bit words. The names are stored as 8-bit ISO char-

acters with three characters per word.

Example: The command

pip=prog avs.3 2.miks

appears as follows in the FP command stack

2 shift 12+10 ; new line, name follows

pip 7; name, 4 words

6 shift 12+10 ; equality sign, name follows

prog 7; name, 4 words

4 shift 12+10 ; space, name follows

avs 3; name, 4 words

8 shift 12+4 ; point, integer follows

3 ; integer, one word

4 shift 1244 ; space, integer follows

2 ; integer, qe word

8 shift 12+10 ; point, name follows

muks 3; name, 4 words

-4 shift 12+0 ; end command stack

18

The item which terminates the simple command (here: end stack) is

not available by using the procedure SYSTEM in an ALGOL/FORTRAN @
program - the ‘end of simple command' is conveniently signalled

by the value of SYSTEM (ref. [6]).

19

JOB AND OPERATING SYSTEM

The phrase ‘the operating system’ is scmewhat ambiguous as sev-

eral qperating systems may be present. A BOSS job may in fact act

as an operating system and start a ‘child' job inside its own

We will use the term parent to denote the operating system for

A job communicates with its parent by sending parent messages. A

parent message is sent when the job needs the help of the oper-

ator (mounting of magnetic tapes etc.) or when an action fram the

parent is needed (the jcb is through and to be removed, etc.).

Most parent messages are sent automatically by FP and the cther

programs when needed (e.g. mounting of magnetic tapes), some

FINIS, MOUNTSPEC, TIMER, CONVERT

are sent by calling special utility programs. Ref. [8] contains a

complete list of the parent messages.

3.1 Job and Parent

core area.

the job considered.

3.2 Parent Messages

parent messages like

3.3 Job Start, Initialization of FP

At job start the parent inputs FP (or rather a part of FP) to the

foremost part of the job area and starts the initialization of FP

with information about primary input and output. During the init-

ialization of FP the job creates catalog entries named v ani c

describing the primary input and output files respectively (if

such entries are already present at job start they are removed

3.1

3.2

3.3

3.4

20

by the job, wmless they point to the proper files, in which case

no new v and c are created). The initialization ends by connect-

ing the primary input and output files as current input and aut-

put files and the FP command reading is entered.

At job start the parent imposes three catalog bases on the job:

standard base, user base and max base. These bases determine

which files am the backing storage the job may access amd how the

catalog entries created by the job are placed in the catalog

(ref. [7], 5.2).

The resource claims of the job are fixed at job start. The house-

keeping of the backing storage, message buffer and area process

claims during the job run is done by the monitor (and the actual

values may be found in the monitor's process description of the

job process ref. [2]) the other resources are maintained by the

parent all the time.

Before entering amy program FP selects the full precision mode

for floating point arithmetic (RC4000) and the overflow/underflow

interrupts (integer overflow, floating - point overflow/under-

flow) are masked off.

Job Termination

When the job is terminated by the FP command FINIS, the following

happens: the current output buffer is enptied and a ‘finis' mes-

sage is sent to the parent. The finis message causes BOSS to re-

move the job and afterwards scan the catalog and remove all ter-

porary catalog entries belonging to the job which just finished.

The operating system may remove the job without request fram the

job (a time limit is exceeded, the job is killed by the qerator

etec.). In this case BOSS performs a ‘provoked break’ on the job

(see below). If the FP code is intact (which is nommally the

case) an error text is printed on current output (***break 8) and

a 'break' message is sent to the parent (alias BOSS) who removes

the job.

3.4

3.5

21

Break Actions

In some severe error situations the FP break routine is entered.

The break routine outputs an error text on airrent cutput,

empties the buffer and sends a 'break' message to the parent.

When BOSS receives the break message it makes a partial clearing

after the job and if the job has not used all of its run time and

net read all of its primary input file the job is restarted with

a fresh FP (ref. [8], section 3.4). The error text is:

‘| <instruction counter>
***®preak <cause>

<break 10 reason>

The integer <cause> explains why the break routine was entered:

cause = 0: Internal interrupt

Caused by attempt to execute an illegal instruction (may for

instance occur in an ALGOL/FORTRAN program with index error

and translated with ‘index.no').

2: Integer overflowicause -

cause = 4: Floating point overflow/underflow

cause = 6: Parameter error in monitor call

This error is provoked by the 1/0 system if there are not

‘enough message buffers' - it may also be caused by for in-

stance a wrong parameter to one of the monitor procedures

in an undebugged code procedure.

cause = 8: Parent break

Breakpoint caused by the parent - see above.

cause = 10: Zone stack error

The break routine was entered because of troubles during

stacking or unstacking of a zone (cf. the next chapter). The

zone stack error may occur for various reasons. The most

common is

*** break 10 1

3.5

22

caused by resource limitations (lack of entries or segments

on the backing storage). In details we have the following

possibilities:

reason

reason

reason

reason

reason

reason

reason

Os The zone has too many shares - erroneous zone

stacking in the utility program.

The job does not have the resources (entries ar

segments) on the backing storage for stacking

the zone.

I/O troubles during zone stacking.

The entire buffer area does not comprise a mul-

tiple of 512 storage bytes - erroneous zone

stacking in the utility program.

Same as reason = 3 but during a zone unstacking.

: The zone unstacking cannot proceed because a

previously stacked zone is not found in the

catalog.

I/O troubles during unstacking of the zone.

The reading and execution of FP commands are performed by the

command reading routine, the program leading and the program

termination routine in FP. By setting the mode bits the pro-

grammer may modify the function of these routines in various

ways.

Current Input and Output, Zone Stacking 4.1

The FP commands are read fram the current input file. At job

start, after a break or by a reinitialization of FP, the primary

input and astput files are selected as current input and output

files.

The current input and output files may be reselected during the

run (cf. section 1.8). The selection of a new current input file

by the I command uses a zone stacking where the actual contents

of the data buffer are stored in an area on the backing storage

(the stacked zone) before the new file is connected. The reselec-

tion of the former file by the END command is the opposite pro-

cess - a zone unstacking - where the former contents of the data

buffer are restored from the stacked zone.

Many of the utility programs use zone stacking for internal pur-

poses. The progranmer need normally not care for that, but if the

resources (entries and segments on the backing storage) needed

for the zone stacking are not present it may, however, result in

a "break 10' in unexpected situations.

The current input and output files are available for character

input and output respectively from ALGOL/FORTRAN programs via the

standard zones IN and OUT (cf. sections 1.2 and 1.8). Warning:

Block oriented input/output procedures (INREC, OUTREC) or the

procedures OPEN and CLOSE should not be applied to the zones IN

or OUT as this may have a serious influence on the fiumction of

FP. If a certain file is wanted as current input while an ALGOL/

FORTRAN program is running, the file should be given as parameter

in the program call (cf. section 2.3). If a certain file is want-

ed as current autput the 0 command is at hand.

The Mode Bits

FP contains 24 mode bits each of which has value ‘yes’ or ‘no’.

The mode bits are mimbered 0, .-., 23. They are set by the MODE

command and tested by the IF command. Furthermore FP sets some of

the bits at each program termination.

The bits with mimbers 0 to 1] may be used by the programmer as

‘flags' the other bits have special functions. These special mode

bits have names. At present the following special mode hits are

in use:

bit 23: list

Governs the 'list mode’ of FP: In the list mode each FP

cammand is listed on current cutput just prior to execu-

tion (cf. section 4.4).

bit 20: pause

If this bit is 'yes' the break routine of FP is entered

after program termination (cf. section 4.5).

bit 19: error

If this bit is 'yes' and a program terminates unsuccess-

fully (with ‘cok no' or ‘warning yes’), the FP break rou-

tine is entered (cf. section 4.5).

bit 18: ok

bit 17: warning

These bits are set by FP at program termination reflect-

ing the successfulness of the program just executed.

(bit 16: if

Used internally by FP)

bit 15: listing

This bit is tested by assembler and compilers. If it is

‘yes' the source program is listed unless 'list.no' is

stated in the FP command calling the assembler (cam-

piler).

4.2

4.3

25

At job start and after a "break' all the mode bits have the value

‘no'. The mode bits 'ok' and 'warning' are set by FP at each pro-

gram termination, the other node bits may be changed by the MODE

camands. A severe error which causes a reinitialization of FP

but not a 'break' (e.g. syntax error in the FP commands) sets

the ‘ok’ and ‘warning’ bits but the other mode bits are left

unchanged.

Command Reading

4.4

The FP command reading is entered at job start or whenever all

the simple FP commands read so far are executed (command stack

empty). It proceeds as follows:

An FP command (simple or compound, cf. chapter 2) is read from

current input, syntax checked and stored in the FP command stack

in the 7b process.

The FP command stack pointer is set amd the FP lead program

routine is entered.

If an EM character is found during the command reading, the cur-

rent input file is umstacked and the command reading continued.

An FP syntax error is treated as a severe error: primary output

is selected as current output, an error text containing the last

few characters read from current input and a list-of the chain of

stacked current input files is printed on current output and FP

is reinitialized.

Program Loading

The FP program loading routine proceeds as follows:

The FP command stack pointer is upspaced and if the command stack

is exhausted, the command reading routine is entered.

4.3

4.4

4.5

26

The program name in the actual simple FP command is looked up in

the catalog and it is checked whether the file is a binary

program file (contents key cf. section 5.3).

If the ‘list bit’ is 'yes' the command is listed on current

output.

Full precision mode in floating point arithmetic is selected

(RC4000). The program is loaded into core and entered.

If the program name is not found in the catalog, if the name does

not describe a program file or if the loading of the program

causes troubles (core size too small, I/O troubles), an error

text is printed @ current output and the FP program termination

routine is entered (instead of the program) as after an unsuc-

cessful execution.

Program Termination

A program can terminate in four different ways:

1) Exit to the FP program termination routine.

2) Termination caused by hard error on a file (1/0 troubles).

3) Exit to the FP break routine.

4) Exit to FP job finis.

In the two last cases the 'break' or ‘finis’ action as described

in chapter 3 is performed and the FP code, which is currently in

the job core area, does not return to normal operation: the

parent may remove the job or load a fresh FP.

If the termination is caused by I/O troubles an error text

(*** device status...) identifying the file and the error is

printed @TM current output and the FP program termination routine

is entered with 'ok.no' and 'warning.yes’. (Hard errors on cur-

rent input or astput causes further action before the program

termination routine is entered).

4.6

27

The FP program termination routine has the following function:

The 'ok' and ‘warning’ bits are set as signalled by the program.

If the 'pause' bit is ‘yes’ or if the ‘error’ bit is 'yes' and

either the ‘ok’ bit is 'no’ or the ‘warning’ bit is 'yes' the FP

break action is entered.

Remark: The IF and MODE programs make an anomalous exit to FP

which bypasses the actions described so far.

The overflow/underflow interrupts are masked off.

A NULL character is printed q@m current output. If current output

is connected to a character oriented device (typewriter, printer,

punch), the data buffer is output. If the current input zone has

been stacked by the program for internal purposes, the zone is

unstacked. (The I program tells that the current input zone

should not be unstacked by setting the 'i-bit': bit 1 shift 0 in

the give up mask in qirrent input zone).

The area processes in the monitor’are scanned. If the job is user

of an area process it is removed.

The event queue of the job process is scanned and pending answers

not belonging to the current input file are waited for. The FP

load program routine is entered. (The terms: area process, event

queues, answer are explained in the ref. [1] and [2]).

Resource Requirements

The File Processor needs a minimum core area of 3584 storage

halfwords in order to be able to qperate. The core area is used

as follows:

4.6

2592 storage halfwords are occupied by the resident FP code

and buffers for current input and output. ®

A variable part (usually small) is used for the command stack.

512 further storage halfwords are used by FP between execution

of the programs.

When a program is executed a core area of the size:

job size - 2592 - command stack size

is available for the program.

Beside core storage the programs and FP need other system re-

sources like message buffers, area processes, segments and en-

tries am the backing storage etc. Note that many utility programs

perform cne or several zone stackings each of which uses an entry

and one or two slices am backing storage.

The standard resources of a BOSS job are usually chosen to be

enough to execute any of the utility programs.

REFERENCES TO FILES

5.1 Document Name of a File

All data transfers in RC4000/RC6000/RC8000 are under supervision

of the monitor: the transfer of a data block is initiated by a

call of the monitor procedure ‘send message' and the campletion

of the transfer is awaited by a call of the monitor procedure

‘wait answer’. An 'I/O message' sent by a ‘send message' is ai-

dressed to a process which is so to say the monitor's represen-

tative of the data file. The I/O messages are sent automatically

by the I/O system. The name of the process (representing the data

file) is called the document name of the file.

Corresponding to the different types of peripheral equipment, the

monitor has various types of processes: the line printer corre-

sponds to a process named ‘printer', the paper tape reader to a

process named ‘reader', the paper tape punch to a process named

“punch', the console and terminal typewriters to processes with

names like 'consolel', ‘terminal3' etc. A magnetic tape station

corresponds to a process carrying the same name as the magnetic

tape reel, which is currently mounted on the station.

The backing storage is treated in a special way because one

single device (a drum or a disc) is divided into several files

(data areas). An area on the backing storage is identified by

its name and this area name becomes the document name when the

area is used for input/output: the I/O system prepares the access

to the area by calling the monitor procedure 'create area pro-

cess’ with the area name as parameter; this results in an area

precess to which the I/O messages are addressed.

Remark: Each drum or disc kit has a name which distinguishes it

among other drums or disc kits. This name is of interest to the

programmer in other connections, for instance when a new area is

created. The use of the term ‘document name’ in the monitor man-

ual to denote this device name should not be confused with the

above concept of document name for a file.

5.1

5.2

30

File Descriptor, File Name

5.3

The software has two I/O systems, the ALGOL/FORTRAN I/O system

and the FP I/O system. The first is used by translated ALGOL/

FORTRAN programs, the second by FP itself and the machine coded

utility programs. The two I/O systems differ in the way the pro-

grammer has to specify the files.

The information needed in order to connect a file forms a file

descriptor. It includes (among other things) the document name of

the file. When an ALGOL/FORTRAN program connects a file, the file

descriptor is given in the list of parameters to the procedures

OPEN and SETPOSITION. ,

When a file is connected by the FP I/O system, a file name is

used to specify the file (cf. chapter 1). This file name is the

name of a catalog entry containing the file descriptor for our

file. The use of the catalog entry is described in section 5.5.

The Constituents of a File Descriptor

Document name: The significance of this name is explained above.

Kind: This integer selects the actions to be taken by

the I/O system when the file is connected, when

the use of the file is terminated and if special

situations should occur during a data transfer

(see the next chapter for further details). Each

kind corresponds roughly to a type (or a class of

types) of peripheral equipment.

Mode: This integer specifies a certain hardware mode

(e.g. density or paricy on magnetic tape) or a

code conversion (e.g. conversion fram flexo to ISO

code by paper tape input). The mode is a part of

the I/O message which starts the transfer of a

data block and the mode specified is contained in

each I/O message.

5.2

5.3

5.4

File count:

Block count:

Contents keys

Load length

31

Integer, relevant for magnetic tape only. A mag-

netic tape reel is divided into files numbered

0, 1, 2, ... by tape marks. Usually the file mm

ber 0 contains an ISO label identifying the tape

reel ref. [7], 6.1.

Integer, relevant for backing storage and magnetic

tape. The blocks are mmbered 0, 1, 2, «+. By

specifying a block count different from zero, the

‘subfile' starting at this block is obtained.

Integer, specifying the intended use of the con-

tents of the file (e.g. text file, binary program

etc.). A list of the values is given in appendix

B.3.

Integer, relevant for binary programs only. Spe-

cifies the entry point address relative to the

start of the program.

Integer, specifies, for a binary program, the mm

ber of halfwords which should be loaded into core

before the program is entered (for a program using

segmentation only a part of the program needs to

be loaded).

The carbination of mode and kind is called the mode-kind. For

each kind only certain modes can be used. The commonly used mde-

kinds are listed in appendix B.1.

Catalog Entries

The monitor maintains a file catalog on the backing storage. This

catalog is a backing storage area named ‘catalog' and consists of

records called catalog entries. Changes in the catalog i.e. crea~

tion, change or removal of catalog entries are done by the moni-

tor on request from internal processes (e.g. the job, BOSS) cal-

ling the special monitor procedures ‘create entry', ‘change entry’

5.4

5.5

‘rename entry', ‘remove entry’ etc. The use of these ‘catalog

procedures' are subject to certain restraints as described in ©

the Monitor and the BOSS2 Manuals, ref. [1], [2] and [7].

A catalog entry consists of a 7 word entry head and a 10 word

entry tail: when a catalog entry is created or changed, the name

and the entry tail is specified (and based on this, the monitor

camputes the entry head). The utility programs SET and ENTRY

create or change catalog entries by calling the relevant monitor

procedures. The entry name and tail in these monitor procedure

calls are taken from the parameters in the SET (or ENTRY) con

mand.

By means of the sign of the first word in the entry tail, the @

monitor distinguishes between two types of catalog entries. If

the first word is non-negative the entry is an area entry, other-

wise the entry is a non-area entry. The area entries are used by

the monitor in the management of the backing storage. Each area

entry defines a data area where the size and physical location is

determined by means of the entry head and the first five words of

the entry tail. The first word in the entry tail contains the

number of segments in the area, the next four contains the name

of the drum or disc kit on which the area is located.

Formation of the File Descriptor 5.5

The connection of a file by the FP I/O system starts with a cata-

leg lookup for the file name. The tail of the entry found is used

to form the file descriptor as follows:

a) Document name, mode, kind:

al) Area entry: If the entry is an area entry the file name is

used as document name and the values :

mode=0, kind=4

as mode-kind. This means simply that we are going to connect e@

the data area determined by the area entry.

33

a2) Non-area entry: Document name, mode and kind are taken from

the first five words of the entry tail as follows:

word 7 1 shift 23 + mode shift 12 + kind

word 2-5: document name

b) The rest of the file descriptor:

The rest of the file descriptor is determined by word 6-10 in

the entry tail. The use of this part of the entry tail de-

pends on the value of the left byte of word mmber 9 (the

contents key)

bl) Contents key <> 4 and < 32:

word 6 : not used

word 7 file camt

word 8 : block count

word 9 : contents key shift 12 + entry point

word 10: load length

oo

b2) Contens key = 4 or >= 32:

The file is an ALGOL/FORTRAN procedure.

The values

file count = block count = 0

are used. Entry point and load length are irrelevant, as FP

dees not interpret the file as a program file. The five last

words in the entry tail are used (by the ALGOL/FORTRAN com

pilers) as follows:

word 6 : procedure code entry specification

word 7-8: procedure parameter specifications

word 9 : contents key shift 12 + start ext. list

word 10 oo code segm. shift 12 + own core area.

Further details are found in the ref. [4].

Entry Tails

By collecting the information above, we find that there are four

types of entry tails:

I. Area entry, not ALGOL/FORTRAN procedure:

word 1 : number of segments in the area

word 2-5: name of drum or disc kit

word 6 : shortclock

word 7 : file count

word 8 : block count

word 9 : contents key shift 12 + entry point

load lengthword 10 oo

Remark: The area entries are characterized by word 1 >= 0. The

name in word 2-5 is not used by FP when the file is con-

nected, but the entry nam is used as document name. The

value of contents key is <> 4 and < 32.

II. Area entry describing ALGOL/FORTRAN procedure:

word 1 : nunber of segments in the area

word 2-5: name of drum or disc kit

word 6 : procedure code entry specification

word 7-8: procedure parameter specifications

word 9 : contents key shift 12 + start ext. list

word 10 : code segments shift 12 + own core area

Remark: Further details are given in the ref. {4].

35

III. Non-area entry, not ALGOL/FORTRAN procedure:

@ word 1 : 1 shift 23 + mode shift 12 + kind

word 2-5: document name

word 6 : not used

word 7 : file count

word 8 : block count

word 9 : contents key shift 12 + entry point

word 10 : load length

IV. Non-area entry describing ALGOL/FORTRAN procedure:

word 1 : 1 shift 23 + mode shift 12 + kind

word 2-5: document name

word 6 : procedure code entry specification

r word 7-8: procedure parameter specification

word 9 : contents key shift 12 + start ext. list

word 10 : code segments shift 12 + own core area

36

THE FP INPUT/OUTPUT SYSTEM 6.

6.1 Text Files and EM Characters 6.1

6.2

The I/O system is concerned with the proper transfer of the data

only, and not with the meaning of the contents of the data

blocks. This fact is important in dealing with text files, where

the appearance of an EM character signals the end of the text. As

the I/O system does not examine the individual characters, the IM

character does not cause any 'end text signal' fram the I/O sy-

stem but the program which is processing the text, has instead to

discover the EM character by inspecting each character in the

input.

An EM character need not be present, but the file may instead

just finish (e.g. end of a paper tape). In this situation the I/o

system simnlates the input of a data block containing an EM char-

acter and in this way the program still gets the proper informe-

tion about the text end.

The utility programs write a terminating EM character in text

files on backing storage or magnetic tape but not in text files

on other media. It is advisable to do so whenever the output of a

text file is terminated.

Connection of a File 6.28

The connection of a file is based on a file descriptor (obtained

fram the file name as described in the previous chapter). The

connection includes initialization of various tables (zone and

share descriptions) and some sort of initialization of the pro-

cess associated to the file. The I/O system is able to operate

under the primitive qperating system s as well as the advanced

operating system BOSS. In the latter case same of the devices

(typewriters, tape reader, card reader, line printer) are spooled

and the 'I/O conversation’ goes via pseudoprocesses (ref. [2],

2.80). The I/O system is suited to deal with this type of proces-

ses too. r

37

The connection proceeds according to the kind specified in the

descriptor:file

Kind

Kind

u

Os

10:

12:

(Internal process). The maximum buffer length is set

to 512 halfwords (768 characters) and the existence of

the process is checked.

(Clock process). Not allowed.

(Backing storage area process). The maximum buffer

length is set to 512 halfwords (768 characters). If

the process is not already present, the area process

is created. The connection may also - depending on

circumstances - include creation of the area.

(Disc process). As for area process, except no area or

area process is created. Instead the existence of the

disc process with executing process as user is check-

ed.

(Typewriters). The maximum buffer length is set to 104

halfwords (156 characters) and the existence of the

process is checked.

(Paper tape reader). The maximum buffer length is set

to 36 halfwords (54 characters). The process is

reserved and input messages are sent until ‘empty

reader' is sensed. Then a 'load reader' message is

sent to the parent and the mounting of the tape is

awaited by attempting a block input once every second

until a non-empty block is obtained. If the reader was

reserved by another process, a ‘wait for reader’

message is sent to the parent and the job awaits the

reader by making an attempt to reserve it once every

second until the reservation is successful. (Under

BOSS the major part of these actions are dummy).

(Paper tape punch). The maximum buffer length is set

to 80 halfwords (120 characters). Tne process is re-

served and 100 NULL characters (blank tape feed) are

output.

6.3

38

Kind = 14: (Line printer). The maximum buffer length is set to 80

halfwords (120 characters) and the process is reserv-

ed.

Kind = 16: (Card reader). The maximum buffer length is set to 80

halfwords (120 characters). Apart from that the

connection proceeds as for kind = 10 (paper tape

reader).

Kind = 18: (Magnetic tape). The maximum buffer length is set to

512 halfwords (768 characters) and the process is

reserved. If the process is not available for the jcb,

. a ‘mount tape' message is sent to the parent. If the

file is to be used for output and the write-enable

ring is not mounted, a ‘mount ring' message is sent to

the parent. Finally a 'set mode' and a ‘position’

message is sent to the process - the latter starts the

positioning to the file ami block count given in the

file descriptor.

Kind = 20: (Plotter). Treated as a line printer.

Termination of the Use of a File

When the use of a file is terminated, the process is released in

order to make it available to others, and the area process (if

any) is removed in order to retain the area claims. On a punch

(kind = 12) a tape feed of 100 NULL characters is artput. For

magnetic tape cutput two tape marks are written after the last

block.

Note that a 'release message’ is not sent to the parent when a

magnetic tape file is terminated and hence BOSS (if it is the

parent) will keep the magnetic tape on the station so that a new

mounting is not needed if the tape is used later in the job. The

release message to the parent may be sent by a RELEASE command.

In this way the station is made available for mounting of another

tape reel (cf. ref. 17], 6.1).

6.3

39

Data Transfers, Status Word

When the transfer of a data block is checked, the autcome of the

transfer is expressed by the mumber of storage bytes transferred

and a 24 bit status word. The 12 leftmost status bits are gener-

ated by the monitor which takes most of the hits directly fran

the hardware, the other bits are generated by the I/O system. The

two I/O systems (ALGOL/FORTRAN and FP) use the same status hits

(ref. [5], chapter 2).

The meaning of the bits is as follows:

1 shift 23: (Intervention). The device was in the local mode.

1 shift

1 shift

1 shift

1 shift

1 shift

1 shift

1 shift

22:

2l2

20:

193

18:

V7:

16:

15:

14:

(Parity error). A parity error was detected during

the transfer.

(Timer). The operation was not completed within a

certain time defined by the hardware or the monitor.

(Data overun). The high speed data channel was over-

loaded and could not transfer the data.

(Block length error). A block input fran magnetic

tape was longer than the buffer area allowed for it.

(End of document). Means various things on the dif-

ferent types of devices: data transfer outside the

backing storage area was attempted, the paper tape

reader was empty, the paper tape was exhausted on the

punch, the paper supply was low mm the printer, the

input hopper was empty on the card reader, the end of

tape reel was sensed on magnetic tape, the pen got

off the paper on the plotter.

(Load point). The load point was sensed after an

Operation a magnetic tape.

(Tape mark or attention). The attention button was

pressed during I/O to the typewriter, a tape mark was

sensed or written on the magnetic tape.

(Writing enabled). A writing enable ring is mounted

on the magnetic tape.

(Mode error). A wrong mode (density ar parity) was

selected on the magnetic tape station.

6.4

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

13s

12:

11s

(Read error). Read error on the card reader.

(Card rejected). The card was rejected by the card @
reader.

(Checksum error). Checksum error detected by the

invar/outvar system.

(Bit 13). Not used.

(Bit 14). Not used.

(Stopped). Less than wanted was output to a file of

any kind or no data was input fram a backing storage

area. The bit appears for instance if the job was

stopped (swopped) during the data transfer.

(Word defect). The mumber of characters transferred

to or from a magnetic tape is not divisible by the

nunber of words transferred, i.e. only a part of the 6

last word was transferred.

(Position error). The position on the magnetic tape

(file and block camt) reported by the monitor dif-

fers fran the position expected (e.g. an mexisting

position was specified in a positioning, by mistake

the magnetic tape wes used for two purposes at the

same time).

(Process does not exist). The document name does not

correspond to any process. For backing storage this

may indicate that the area does not exist or that the

job does not have the resources to create the area r)

process (area claim too small).

(Disconnected). The power on the device was switched

off.

(Unintelligible). The operation attempted is illegal

on that device (e.g. input from a printer).

(Rejected). The job is not allowed to use the process

as it should be reserved first (the device was not

claimed in the job specification, the aree is pro-

tected against output from the job. Can also occur if

the file by mistake was used for two purposes at the

same time and then released by the termination of one

of the uses).

6.5

41

1 shift 1: None of the status bits 1 shift 5 to 1 shift 2 are

set, i.e. the monitor has accepted the operation and

the device has attempted to execute the operation.

1 shift 0: The standard recovery actions could not succeed, i.e.

hard error on the transfer.

If a hard error m a file causes a program termination, a 'device

status’ error text containing the status word of the unsuccessful

transfer is printed. The status bits are given by the labelling

texts in the brackets above (the bits 1 shift 1 and 1 shift 0 are

ignored in printing the error text).

If the error is caused by hardware malfunction, the FP end pro-

gram routine reports the error not only to the programmer (by the

‘device status' text) but also to the parent by sending a 'sta-

tus’ message. The parent may then attend the qperator (BOSS

displays the status message on the main console).

Standard Recovery Actions

The FP I/O system has a standard recovery routine which is en-

tered if an anomalous status word appears. The recovery proceeds

according to the kind specified. All situations not covered are

treated as hard errors. A hard error causes termination of the

program and output of an error text on current autput (see

above). If the hard error is on the current input or output file,

special measures are taken before the error text is artput (cf.

section 6.6).

Kind = 0: Intervention: Ignored.

End of document during input: Ignored.

End of document during output: A ‘change’ message is

sent to the parent. Upon the receipt of the answer

fran the parent, the remaining part of the data

block is output.

Stopped: The remaining part of the data block is

transferred.

6.5

Kind = 4:

Kind = 6:

Kind = 8:

42

(Backing storage area).

Data overrun: the transfer is repeated.

End of document during input: If nothing has been

transferred, the input of two bytes containing

three EM characters is simlated, else the bit is

ignored.

End of document during output: The area is enlarged

and the transfer is repeated.

Stopped: If the end decument bit is not present, the

remaining part of the data block is transferred.

Process does not exist: The area process is created

and furthermore reserved if the operation is out-

put. After this the transfer is repeated.

Rejected during output: The area process is reserved

and the transfer is repeated.

Rejected during input: Hard error.

(Dise process)

Data overrun: the transfer is repeated.

End of document during input: As for area process.

End of document during all other operations: Hard

error.

Stopped: May appear at all cperations. The qperation

is repeated except if it has been overruled by the

end of document action or the two actions below.

Process does not exist: An area process is created and

the action proceeds as for area process.

Rejected: The process is reserved and the operation is

repeated. ;

Note that if the process does not exist, an area pro-

cess will be created only if an entry of the process

name exists in the main catalog. If not so, a hard

error occurs.

(Typewriters) .

Timer during input: Ionored.

Tape mark or attention (attention button pushed): Ig-

nored as the action on the stopped bit makes the

necessary repeating of the transfer.

Kind =

e
Kind =

Kind =

e Kind =

Kind =

10:

12:

14;

16:

18:

Stopped: The transfer of the remaining part of the

data block is repeated.

(Paper tape reader):

Intervention: Ignored.

Parity error: Ignored. (The monitor replaces the in-

valid character by a SUB character).

End of document: If the mumber of bytes transferred is

zero, the input of an EM character is simulated.

Lead point: Ignored.

Tape mark or attention: Ignored.

Read error: Ignored.

Card rejected: Ignored.

(Paper tape punch):

Intervention: Ignored.

End of document: A ‘change’ message is sent to the

parent. Upon the receipt of the answer fram the

parent, the remaining part of the data block is

output.

Stopped: If the end of document bit is not present,

the remaining part of the data block is output.

(Line printer):

Same actions as for kind = 12.

(Card reader):

Same actions as for kind = 10.

(Magnetic tape):

Interventions: Ignored.

Parity error: The operation is repeated up to five

times. In case of output the bad spot on the tape

is erased.

Data overrun: Treated as parity error.

Block length error: Treated as parity error.

Load point: Ignored during data transfers but used in

positioning of the tape.

Tape mark: The expected position on the tape is

calculated once more as the tape mark may indicate

shift to another file, and next the position error

bit is recalculated by comparing the position

obtained with the one given by the monitor. If a

tape mark is read, the input of an EM character is

simulated.

Writing enabled: This bit is checked during the action

on the stopped bit but does not in itself cause any

special action.

Stopped: If the writing enabled bit is set (ring pre-

sent) the output transfer is repeated, otherwise a

‘mount ring' message is sent to the parent and the

mounting awaited. When the answer fram the parent

is received the process is reserved, the tape is

positioned and the transfer is repeated.

Word defect: Treated as parity error.

Position error: Hard error if anything was transferred

(but the presence of the tape mark bit may cause a

recalculation of the position which removes the

error).

Process does not exist: A 'mount tape' message is sent

to the parent. When the answer is received, the

process is reserved, the tape is positioned and the

transfer is repeated.

Rejected: The process is reserved and the cperation is

repeated.

Kind = 20: (Plotter):

Same actions as for kind = 12.

If anything goes wrong during a recovery action (reservation im-

possible, area claim exceeded, no segments available for exten-

sion of the area, etc.), the error is classified as a hard

error.

Some of the utility programs have private recovery actions dif-

ferent from the standard ones (especially programs dealing with

files which are not text files).

6.6

45

Errors on Current Input or Output

Hard errors on current input or output are treated in a special

way because of the key role played by these files.

Hard error on the current input file:

The primary output file is selected as current output file.

The 'device status' error text is printed.

The primary input file is selected as current input file and the

chain of stacked current input zones is abandoned.

The remaining part of the FP command stack (if any) is skipped.

Hard error_on the current output file:

The primary output file is selected as current autput file.

The 'device status' error text is printed.

6.6

47

REFERENCES

1]

(2]

13]

14]

(5)

16]

(7]

18]

RCSL No 31=D476:

RCS000 Monitor, Part 1

System Design

RCSL No 31-D697;

RC8000 Monitor, Part 2

Reference Mammal

RCSL No 31-D478:

RCB000 Monitor, Part 3

Definition of External Processes

RCSL No 31-D199:

Code Procedures and Rum Time Organization

of ALGOL Programs

RCSL No 42-i0781: |

ALGOL 7

User's Mamual, Part 1

RCSL No 42-11278:

ALGOL 8

User's Guide, Part 2

RCSL No 42-i11265:

BOSS2

User's Manual

RCSL No 31-D610:

Parent Messages in RC8000

A.

48/rev. 850225

TABLES B.

Mode-kinds B.] @

The list contains the commonly used mode-kinds together

with the abbreviations used by the ENTRY, SET LOOKUP and

SEARCH programs.

abbreviation mode kind use of the mode-kind

ip 0 (e) 1/0 via internal process
bs 0 4 backing storage

tw 0 10 typewriter

tro 0 10 tape reader, odd parity

tre 2 10 tape reader, even parity

tron 4 10 tape reader, no parity

trf 6 10 tape reader, flexo code

trz 8 10 tape reader, no parity, nulls read

t po a) 12 tape punch, odd parity

tpe 2 12 +> tape punch, even parity

tpn 4 12 tape punch, no parity

tpt 6 12 tape punch, flexo code

tpf 8 12 tape punch, teletype code e
lp 0 14 line printer

erb 0 16 card reader, binary

erd 8 16 card reader, decimal

ere 10 16 card reader, EBCDIC

mtlh mto 0O 18 mag.tape, low speed, high density,

odd

mte 2 18 mag.tape, low speed, high density,

even

mtll nrz 4 18 mag.tape, low speed, low density,

odd

ntze 6 18 mag-tape, low speed, low density,

even

mthh 128 18 mag-tape, high speed, high density

mthl 132 18 mag.tape, high speed, low density

pl 0 20 plotter

Standard File Names and File Descriptors B.2 r

The software contains a number of standard file names

corresponding to commonly used files on peripheral devi-

ces . A standard file name is the name of a catalog entry

containing a file descriptor (cf. chapter 5) of the file

in question. The use of the standard file names pre-

sumes that the peripheral units have the standard names

e.g. reader, printer, punch, as it is normally the

49

case. Most of the standard file names coincide with modekind

@ abbreviations but this does not cause any conflict as the use of
the mode-kind abbreviations is 'a private agreement’ between the

four programs SET, ENTRY, LOOKUP and SEARCH.

At present the following standard names exist:

File name document name mode kind mode-kind abb.

term terminal is) 8 tw

tro reader 0 10 tro

tre reader 2 10 tre

tm reader 4 10 tim

trft reader 6 10 trf

e | trz reader 8 10 trz

tpo punch 0 12 tpo

tpe punch 2 12 tpe

tpn punch 4 12 tpn

tpf punch 6 12 tpt

tpt punch 8 12 tpt

lp printer ie) 14 lp

crb cardreader ie) 16 crb

erd cardreader 8 16 crd

cre cardreader 10 16 ere

pl plotter 0 20 pl

e B.3 Contents Keys

O Text file

} Reserved

2 Binary program to be loaded by FP i.e. a utility program, a

translated ALGOL/FORTRAN program etc.

Directly executable program. FP itself is of this type.

Translated ALGOL/FORTRAN procedure.

Stacked zone (cf. section 4.1).

Program file in logical blocks with the block length in the

first word of each logical block.

7 Dumped core area.

a um & WwW

B.4

8

10

17

13

14

15

17

20

21

22

23

30

31

>=32

Error

50

‘Self contained’ binary program, i.e. a program which can

be loaded by FP, instead of FP, as well as instead of s. @
The program BOS, which is loaded when BOSS is started, is

of this type.

Virtual core in ALGOL, initialized context data.

Files compressed by the program contract.

COBOL, object program.

COBOL, data file.

Update mark in RC8000 SHIPPING

Program to be leaded by the RC8000 loader/paging system.

Reserved by GIER simulator.

Files belonging to the bs-systen.

Files belonging to the sq~system.

Files belonging to the isq-system. e

Files belonging to the sys80 system.

Files compressed by the program lib

Reserved for various installations.

Reserved for special purposes in the ALGOL/FORTRAN system.

Messages B.4

The list contains amily the error messages fran FP itself. An

error message fran a utility program has the form

*** <program name> <text>

The meaning of the error text is found in the description of the

program.

FP can output the following error messages:

***break <cause> <instruction counter/break 10 reason>

The break routine of FP was entered because of som? severe

error (see list of causes in section 3.5). BOSS restarts the

job with a fresh FP and contimes with the next line in the

job file.

**%*device status <document name> <status word>

Hard error on the file specified. The status bits are given

by text lines (cf. section 6.4). The actual program is ter-

minated with ‘ok no' and ‘warning yes'. If the file is the

current input file, the current input and output files are

switched back to the primary input and output files. If the

file is the current output file, the current autput file is

switched back to primary output.

***fo call <program

The name specified was not the name of a program file (cf.

section 4.4). FP continues with ‘ok no' and ‘warming yes’.

***Ep cancel .

A line was cancelled during the command reading because of

the appearance of a CAN character (cf. section 2.2). FP

continues the command reading.

***fp connect <program>

The program file could not be connected (cf. section 4.4).

FP continues with 'ck no' and 'warning yes’.

***£p init troubles

The FP initialization (or reinitialization) could not suc-

ceed and the job is terminated. For a BOSS job the error

message is displayed on the main console (the error message

is actually a parent message).

**#kED job termination

The job was terminated because 10 syntax errors were found

in the input to FP.

***£p reinitialized

The FP initialization was entered because of some severe

error (cf. sections 3.3 and 4.1).

***fD size <program>

The core area could not hold the program or the entry point

was outside the program (cf. section 4.4). FP continues with

‘ok no' and ‘warning yes’.

***£p stack <last few characters input> ©

Overflow of the FP command stack.

***fp syntax <last few characters input>

Syntax error in the input to FP. After a stack or a syntax

error FP is reinitialized.

***fp troubles with ec

The job was terminated because the primary autput file could

not be connected in the proper way (with creation of the

catalog entry c etc.). For a BOSS job the message is printed

on the main console.

INDEX

The entries below refer to chapter or section munbers.

Area (on backing storage) 1.6, 5.1

area process 5.1

area entry 5.4, 5.6

attention 6.4.

Backing storage 1.1, 1.6, 5.1

backing storage area 1.6, 5.1

backing storage mit 1.6, 5.1

block count 5.3

block length error 6.4

break 3.5

break message 3.5

breakpoint B.4

Cc 3.3

call of program 1.3, 4.4

card reader 6

card rejected 6.4

catalog 5.4

catalog base 3.3

catalog entry 5.4

change message 6.5

checksum error 6.4

claims 3.3, 4.6

camand reading 1.3, 4.3

command stack 2.4

compound command 1.5

connection of a file 6.2

contents key 5.3, 7.3

current input 1.2, 1.8

current aitput 1.2, 1.8

Data area 1.6, 5.1

data overrun 6.4

device status 6.4

disconnected 6.4

document name 5.1

EM character 6.1

end of document 6.4

entry (in catalog) 5.4, 5.6

entry head 5.4

entry point 5.3

error 4.2

File 1.2

file count 5.3

file descriptor 5.3

file name 1.6, 5.5

finis message 3.4, 4.5

Head (of entry) 5.4

I-bit 4.5

in 1.2

intervention 6.4

Job file 1.2

job start 3.3

job termination 3.4

Kind 5.3, 7.1

Line printer 6"

list bit 4.2

listing bit 4.2

load length 5.3

load message 6.2

load point 6.4

54

Mode 5.3, B.1 Tail (of catalog entry) 5.6

mode bit 4.2 tape mark 5.3

mode error 6.4 tape mark or attention 6.4

mode-kind 5.3, B.l text file 6.1, B.3

mount message 6.2 timer 6.4

mount ring message 6.2 typewriter 6

Non-area entry 5.4, 5.6 Underflow 3.3, 4.5

unintelligible 6.4

Ok-bit 4.2

out 1.2 V 3.3

overflow 3.3, 4.5 warning bit 4.2

wrod defect 6.4

Paper tape pumch 6 writing enabled 6.4

paper tape reader 6 write-enable-ring 6.2

parent 3.1

parent message 3.2

Parameter list 2.2

parity error 6.4

pause hit 4.2

position error 6.4

precision mode 3.3, 3.4

primary input 1.2, 3.3

primary output 1.2, 3.3

primout 1.2

process does not exist 6.4

Read error 6.4

rejected 6.4

release message 6.4

Shortclock 5.6

stack zone 1.8, 3.5, 4.1

status 6.4

status bit 6.4

status word 6.4

stopped 6.4

RETURN LETTER

Title: System 3 Utility Programs, Part One RCSLNo.: 31-D676
User's Guide

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42-4 1288

Affix

postage

here

ro § REGNECENTRALEN

af 1979

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

