RCSL No: 31-De76
Edition: April 1983
Author: Finn G. Strebech

Title:

System 3 Utility Programs, Part One
User's Guide

SREGNECENTRALEN

: af 1979

ACSL No 42-1 2164

Keywords:
RCB8000, RC4000, Basic Software, File Processor, User's Guide.
Abstract:
This first part of the utility program manual describes the central
program in the utility system, the File Processor, which together
with the coperating system controls the execution of the user's pro-
gram and the access to his files.
(62 printed pages)
Copyright © 1983, A/S Regnecentralen af 1979
RC Computer A/S
g Printed by A/S Regnecentralen af 1979, Copenhagen
d Users of this manual are cautioned that the specifications contai-
= ned herein are subject to change by RC at any time without prior no- .
= tice. RC is not responsible for typographical or arithmetic errors
@ which may appear in this manual and shall not be responsible for
2 any damages caused by rallance on any of the materials presented.

FOREWCORD

First edition: RCSL No 31-D364.

This first part of the utility program manual describes the cen-
tral control program in the utility system, the File Processor
(FP). The first chapter is a general introduction to the utility
system and is intented to be read in parallel with the introduc-
tion in ref. [7]. The cther chapters give further information
about FP and require further knowledge about the cother parts of
the software system.

The second part of the utility program manual consists of de-
scriptions of the individual utility programs (except assembler
and compilers which have their own mamials).

Appendix B contains various tables - in particular a survey of

the error messages fraom FP.

During the preparation of this mamial the author received many
valuable suggestions and corrections from collegues, in particu-
lar Tove Ann Aris and Christian Gram.

The programming of the File Processor and the utility programs in
the RC4000 software system 3 was based on the system 2 versions.
The necessary changes and the programming of the new utility
program was done by Tove Ann Aris, Bo Tveden-Jgrgensen, Jgrgen
Zachariassen and the author.

Hans Rischel i
A/S REGNECENTRALEN, May 1973

Second edition: RCSL No 31-D676.
The manual has been retyped and the reference list in appendix A
together with the tables in appendix B have been updated.

ii

The only change of technical significance is the inclusion of
kind 6, disc process, in chapter 6. '

All changes are marked with a vertical bar to the left of the
text.

Finn G. Strg¢bech
A/S REGNECENTRALEN af 1979, April 1983

TABLE OF CONTENTS

INI'RO[IJCI‘ION #4883 S S0 LT ENELGPEE SO BEE S s e s ea e e e s s s e

1.1 The Fille ProCesSOr cesescssessess sesassenss

].2 FileS e 0 o0 e ® s 02 aces e ® 6 8 4 54 S8 08808 ESdEEE 00T aea e

1.3 The FP Command Reading and Executioneeseeeae
1.4 A Simple Example of FP Commands «.... trerancaaes
1.5 Compound COmMANAdS cececcssessessccscnssssssssnass -
1.6 Creation of File Names ..c.seessvncosssssssnsacas
1.7 Further Examples and ReMArKS ..eececcssessccssasne .
1.8 Reselection of Current Input or OULPUL cececssnas .
1.9 PReserved File Names ..c.cscescssscnsoaas csesenessanras
1.10 Positionable and Unpositionable Media .v.eveeessass

COMMAND ITANGUAGE covcaaee cessesssssnssrasesstesunanne aee
2.1 Meta LANgUaAge ..cevecenscssosonessssscssasansass
2.2 Syntax for FP commandsS ...ccescssssssasass
2.3 Semantics of FP conmandsS ...eessessacess cerasesass .
2.4 Format of the FP Command Stack c.eeaseees ceasassens

JOB AND OPERATING SYSTEM «v.... et etteiesieateeaneraeaan
3.1 Job and Parent Ctesssaseaseasasans
3.2 Parent MesSSAges c.ceeesvescsssossssonas seesasans
3.3 Job Start, Initialization Of FP ceeseeccccncoccacas
3.4 Job Terminationcoc.. cesassreresrtessrsarsanaas
3.5 Break ACtiONS .veeessccscsscssans ceserasrsssarasans

THE EXECUTION OF FP COMMANDS 4esesesssaranensassans
4.1 Current Input and Output, Zone Stacking .eevecescees
4.2 The Mode Bits tecacacssnns Gt essesessansarannna
4.3 Camand Reading ..cecssecsssccssnss seevevesreruncns
4.4 Program Loading ..eeeecescccsasaasess Ceseeseanoan .o
4.5 Program Terminationcsscsscescscsssccssanssanas

4.6 Resource ReqUIirementsS ..cccscecsosssasassssscssnaos

)

e
O O w - U !; b W - -

]

12
12
15
16

19
19
19
19
20
21

iv

TABLE OF CONTENTS (continued) PAGE
5. REFERENCES TO FIIES ssesessssrerracas ctsessscusenas 29
5.1 Document Name of a File civvecevennanas ceseasassaca 29
5.2 File Descriptor, File Name ...eese casseanens eeaeseas 30
5.3 The Constituents of a File DesScriptOr .v.ceeceecss. 30
5.4 Catalog Entriesecceescses tesevarnan sessseanss 31
5.5 Formation of the File Descriptor ...icivieeerenceses 32
5‘6 mtry Tails @ S & & % a B 8w S o & & @& &S &S s a0 S & & & & B %4 s a0 AW 34
6. THE FP INPUT/OUTPUT SYSTEM ..ue.. ceeaaeae cetasacecananas 36
6.1 Text Files and EM Charactersseesesss cesssnasas 36
6.2 Comnection of a File «ceaes cecsasessrtarsasasa csess 36
6.3 Termination of the Use Oof @ File tvivvrveenrenvenass 33
6.4 Data Transfers, Status Wordcceeeeveans e evens . 39
6.5 Standard Recovery ACtionS ..eocecevscvsvssccsascaacs 41
6.6 Errors on Current Input of QUEPUL ..oevvecsnocacnsne 45
APPENDICES:
A. TREFERENCES cesscsassecoaan Ssesseesesaasasaasnanaas 47
B. TABLES cceasa cesese tesssscssaseasaanuasns caesasraanen 48
B T Me"'xj_r’ds L N A N N R e e soeenn a8 - - * s 08 48
B.2 sStandard File Names and File Descriptors ..ceeescss 48
B.3 Contents Keys «.eeevsen Cesentesssasencaaasssnssoasans 49
B.d EXror MESSAgES .cueescescesassatscascscsonnonssaanas 50
Co INDEX veevesasnna cesnsaane 4t esvservascanasansacscncsanas 53

INTRODUCTION - 1.

1.1

The File Processor 1.1

1.2

The File Processor - in the sequel called FP - is a control pro-
gram which together with the gperating system controls the ex-
ecution of the user's programs and the access to his files.

When an RC4000/RC6000/RCBO00 camputer with system 3 software is
ready for use, the system programs are stored partly in core,
partly on the backing storage. The Monitor program and the
nucleus of the ¢perating system BOSS are core resident while the
remainder of the programs are stored on the backing storage,
usually consisting of the magnetic drum and one or more disc
files. The run of a job is controlled by cammands to two control
programs: the operating system and FP. FP may be used in con-
nection with various cperating systems - in the sequel we assume
that the operating system BOSS is used.

Files 1.2

A file is an unbroken string of data such as a roll of paper
tape, one deck of cards, a data area on the backing storage, the
data ketween two tape marks cn a magnetic tape reel. A job uses
many different files — beside the files containing the inmput and
output data we have the files containing the user's programs and
files in the software system (containing campilers, editors
etc.).

The files can be divided into different types according to their
relation to the job:

Standard files of the job:

(1) The job file specifies the tasks of the job. It is entered
into the computer as described in ref. [7]. The job file
contains (except for 'go' jobs) a heading job specification
which is interpreted by BOSS. The rest of the job file is
forwarded by BOSS to the Job as the primary input file.

(2) The current input file is a file fram which the job reads

cammands to FP and various cother imput. During the job se- .
veral files may in turn be selected as current imput file.

At job start the primary input file is selected as current

input.

(3) The current output file is a file used for cutput fram the
job. During the job several files may in turn be selected as
current cutput file - the file selected at job start is ml-
led the primary output file.

(4) Primout is a backing storage area used by BOSS in the spool-
ing of the output printed on the primary ocutput file. After
the termination of an an-line job this area is available and .
contains the data printed on primary ocutput during the job.

In ALGOL/FORTRAN programs the current inmput and cutput files are
available via the standard zones IN and OUT. (These zones should
be used for character input/output anly).

System files:
A mmber of files mainly on the backing storage are permanently
available to all jobs. These files contain campilers, utility

programs and standard library programs.

The paper tape reader, the line printer (and the card reader, if
any) are usually considered as comtaining files, owned by and
accessed through BOSS.

Private files:

The users programs and data files may be stored on any media
available in the system. The various types of files are described
in ref. [7] chapters 5-6.

FP and the utility programs refer to files by means of names. A
name is a amll letter followed by at nost 10 digits or small
letters.

1.3

The FP Command Reading and Execution

The job execution is governed by the commands which FP reads fram
the current input file. Each cammand is executed as the eall of
one or several programs.

In detail FP acts according to the following:

1) FP reads a camand fram the current imput file. The command
may be a simple command or a compound command consisting of
several simple commands enclosed in brackets.

2) The simple commands are executed cne by cne. The execution of
a simple command means that a program file is lcaded into core
store and entered. Each program terminates by returning to FP
which then executes the next simple command.

3) When the list of simple cammands (read as described in 1) is
exhausted FP resumes the cammand reading fram the current in-
put file.

Remarks:

Re 2) The program called by an FP cammand may be one of the
user's own binary programs or a utility program which can
perform tasks like:
editing a text file into another text file,
coampilation of a source text into a binary program,
reselection of the current input or cutput file,
termination of the job,
etc.

Re 3) The current input file is used not cnly by FP but also by
the programs called by the FP cammands. The programs can
therefore read ahead in the current input file before FP
starts reading commands again - they may in fact even se-
lect another file as current input.

The command reading and execution is more detailed described in
chapter 4.

1.3

1.4

A Simple Example of FP Commands

An FP cammand consists of one or several simple cammands. A
simple command is a text line (terminated by an NI character) and
has either the form

<result file> = <program name> <parameter list>
or

<program name> <parameter list>

Our example is the example section 1.1.1 in ref. [7]. By removing
the job specification we get the primary input file:

p=algol

begin real a,b:
read(in,a,b);
write(out,a**b);

end

P

2 10

finis

FP reads the camand 'p=algol' and executes it by staring the
ALGOL campiler. The compiler takes input fram current imput (as
no special input file is specified) and reads from the point
where FP stopped i.e. starting with ‘begin...'. The reading stops
when the AIGOL source program is campleted i.e. after ‘end'. The
object program is stored in a backing storage area named 'p' and
the compiler terminates by returning to FP which resumes the ocom—
mand reading and thereby reads the command 'p'. This cammard is
executed as a call of the ALGOL cbject program which reads the
two integers 2 and 10 fraom current input (by the all of pro-
cedure READ on the zone IN). After cutput of the result the pro—
gram returns to FP which in turn reads the command 'finis' and

thereby the utility program FINIS is called and terminates the
job.

1.5

Compound Commands

1.6

A compound command to FP consists of an gpening bracket '(' fol-
lowed by one or several FP cammands (which may again be campound
camards) and terminated by a closing hracket ')'. As stated

above a campound command is read by FP as a unit. Afterwards the
simple cammands in the compound cammand are executed one by cne.

The primary input file

(

p=algol

P

finis

)

begin real a,b;
read(in,a,b);
write(out,a**b);

end

2) 10

has essentially the same effect as the cne above but now FP
starts by reading the entire campound comand (the first five 1li-
nes) and next the cammands are executed. The first cammand calls
the ALGOL campiler which continues reading fram current imput
where FP stopped. When the translation is done the next cammand
'p' calls the translated program which reads the integers 2 and
10 as it continues reading where ALGOL left the file. Finally the
camnard 'finis' is executed.

Creation of File Names

Files are referred to by means of names. New file names can be
‘declared’ by means of the utility program SET. By the FP command

pip=set 40 1

1.5

1.6

an area by the name 'pip' containing 40 segments is created on
the macking storage. The parameter '1' specifies that the area .
should preferably be situated on a disc. The command

pip=set 40
creates an area preferably on drum.
By the FP cammand

pap=set mto mt471100 O 3

the name 'pap' is declared as pointing to file mmber 3 on the
magnetic tape reel mt471100 (mto=magnetic tape with odd parity). .

Beside these explicit ways of creating a file we have also an
implicit creation of files:

If a non existent file is specified as output .file for a
utility program (or if the file specified is protected) the
utility program creates an area on the kacking storage and
uses it for the output.

In the earlier examples the call of the ALGOL campiler
o=algol

created the hacking storage area 'p' to hold the translated
program. An area created implicitly by the call of a utility
program is in most cases placed on a disc. The ALGOL/FORTRAN
canpilers, however, will (if possible) place the translated
program on drum,

Remark: If the access to a magnetic tape is initiated in an
ALGOL/FORTRAN program by means of the standard procedures OPEN
ard SETPOSITICN, the name of the tape reel is used (mt471100
above) but a 'file name' as 'pap’' above is not needed.

1.7

Further Examples and Remarks

The program text and the data are often too large to be conveni-
ently included in the primary input file. Comsider the irput to
FP

p=algol ptext

if ck.no

finis

if warning.yes

(p=algol ptext list.yes
finis)

p pdata

finis

The first line is executed by FP as a call of the ALGOL campiler

which takes input from the file ‘ptext' (input is not taken from

current input because this file is specified). After compilation
the utility program IF is called. It tests the 'ck hit' which has
been set by the campiler. If there was severe errors in the cam~
pilation (input file rot found, no room for the output), the 'ck
bit’ is 'no' and the job is terminated by the following FINIS
command - otherwise the 'ck hit' is 'yes' and the program IF
skips the next cammand 'finis'. Next IF is called once more and
tests the 'warning bit' as set by the campiler. If the ‘warning
bit' is 'no', the next command (in the twackets) is skipped. Let
us assume that there are syntax errcrs in the program. Then the
next command is not skipped and FP executes the two simple cam-
mands in the parenthesis. The first causes an extra campilation
but now with a listing of the program. After compilation the run
is terminated by the FINIS cammand. Next assume that the program
was accepted by the campiler. Then the campound command is skip-
ped by IF and FP reads the cammand 'p pdata'. This cammard is
executed as a all of aur program 'p'. The parameter 'pdata' has
the function that 'p' takes input fram the file 'pdata' (more
precisely: the file 'pdata' is current input while the program
'p' is running). Finally the job terminates by the FINIS com-
mand .

1.7

1.8

This example assumes that the files named 'ptext' and 'pdata' are
available to the job. There are many ways of cbtaining that, for
instance:

(1)

(2)

(3)

(4)

The files are on paper tapes which are loaded prior to job
start by load commands to BOSS in the job's specification
ref. |7], chapter 3.

The files are permanent files on the tacking storage.

The files are available as magnetic tape files. In this case
the names 'ptext' and 'pdata' must be declared by FP cammarnds
like

ptext=set mto mt471100 0O 1
pdata=set mto mt471100 O 2

which declare the names 'ptext' and 'pdata' to describe file
nurtber 1 and 2 respectively on the tape mt471100.

The files are kept on backing storage, when used - on meg-
netic tape when not used: The software admits the so called
login files on the backing storage which are retained as long
as the user is logged in at a terminal but cancelled at log-
out time. If the installation has sufficent login resources
the user may start the operations fram a terminal with a Job
which loads the files fram magnetic tape to the backing
storage by calling the utility program LOAD. The files are
now available wntil the terminal is logged ocut. If a new
version of the files is produced it must be ocutput to mag-
netic tape by a job which calls the utility program SAVE.

Reselection of Current Input or Output

The utility program I selects a new file as current input file in

such a way that reading fram the ‘old' file may later be con-
tinued (at the point where we stopped) by a call of the utility
program END (I performs a 'stacking' - END an 'unstacking' of the

current input file).

The command
i commds

selects the file named 'cammds' as new current imput file. When
FP resumes the caommand reading, the commands are imput fram
‘commds’ (unless current input has changed again in the mean-
time).

The campound command

(i oola
pip
erd)

has the effect that the file ‘cola'’ is current input while the
program 'pip' is running: The first command selects 'cola' as
current input the second calls 'pip' and the third switches

current input back again. Note that FP does not read fram the
file 'cola'.

The utility program o selects a new file as current cutput file.

Cansider the FP commands

o specialout

p pdata

oc

convert specialout

The first conmand calls o which creates an area 'specialout' on
the backing storage and selects it as current cutput file. Next
program 'p' is called and produces cutput on ‘specialout'. The
second call of o selects the primary cutput file (denoted by 'c')
as current cutput again. The call of CONVERT tells BOSS to print
the contents of the file 'specialout’.

1.9

10

Warning: If an ALGOL/FORTRAN program campilation with listing is
performed while a backing storage area is selected as current .
cutput file, the listing and the hinary program are campeting for

the roaom an the backing storage. In advance the area for the

listing (the current cutput) should be given a size sufficient to

hold the program text (and the error messages). This is done by

camands like

listout=set 40 1

o listout

p=algol ptext list.yes
ocC

Reserved File Names 1.9

The following names are reserved for special purpcses and cannot

be used as names for private files:

boss, ¢, fp, primout, s, terminal, v
printer, pamch, reader ard other

names of devices.
The names ¢ and v describe the primary cutput ard irput files.

The name of a system program may in principle be used as name for .
a mivate file but this will meke the system program inaccessible

for the user. Beside the bulk of system program names we have

standard names for certain files on peripheral devices as given

in appendix B.

Positionable and Unpositicnable Media 1.10

Files on magnetic tape or backing storage admit a 'positioning'’

operation i.e. upspacing or ackspacing on the tape station, se-

lection of ancther segment an backing storage. A similar cper-

ation does not exist on the paper tape reader, the paper tape .

11

punch or the line printer. This fact is important because a file,
when connected, is 'taken fram the beginning' (the cnly exception
being the unstacking to a former current input file).

A couple of examples illustrate the problem:

The names 'textl' and 'text2' denote two text files. If 'f£3' is a
name pointing to a magnetic tape file the camards

f3=copy textl
f3=copy text2

have the effect that 'textl' is cutput to the file and next the
tape is backspaced and 'text2' output erasing the cutput just
made. Contrary to that the commands

tpe=copy textl
tpe=copy text2

will produce two paper tapes containing 'text]' and ‘text2'
respectively.

If the data for the binary algol program 'p' is a backing storage
area (or a magnetic tape file) named 'pdata’ the commands

p pdata
p pdata

will yield the same cutput twice. Contrary to that the cammands

p txrf
p trf

cause two calls of the program with (usually) different irmput as
each command will request the cperator to load the next of the
user's paper tapes as input for the program.

The primary input and output files are maintained by BOSS as
unpositionable files i.e. one will never get the same part of the
primary input file twice during the job and the data written on
primary autput will never overwrite earlier parts of the autput.

2. COMMAND LANGUAGE 2. .
2.1 Meta Lanquage 2.1
In the previous section we showed some examples of FP cammards.
In this section we will describe the syntax of FP commards by
means of a modified Backus notation. The new meta-language el-
ement intrcduced is
<string 1>
<string n>
With ane or more strings above each other. The meaning is that @
any of these strings may appear at this place in the construc-
tion. A sequence of these strings in any order is dencted Dby:
<string 1> | b
<string n> | a
where a and b give the minimm and the maximum nurber of strings
in the sequence. The symboloe in the place of b means just a
large rumber of times (determined by limitations in core storage
or the like).
2.2 Syntax for FP Commands 2.2

Each time the cammand reading is started, FP will irput cne com-
mand terminated by new line:

<FP input> ::= <command> <new line>

13

A camand is a sinmple command or a sequence of cammands enclosed
in a parenthesis. New lines may be inserted in front of a conmand
or a closing parenthesis:

<command> :1:=
<simple command>

<new lines>
(<command> {mew line> <ccmzand>} <new lines>)

A simple camand is the name of a program file, possibly preceded
by ‘<result file>=' and followed by a parameter list:
<simple camand> ::=

1
{}r&sult file> =}0 <program> <parameter list>
Result file and program are given by names

<result file> ::= <name>
<program> ::= <name>

The parameter list is either empty or consisting of one or
several parameters separated by spaces:

2]
<parameter list> ::= {j<s><param>}0

A parameter is a sequence of names and integers separated by
points

o0
- <name>
<name> ::=
<integer> .<integer> 5

14

A name is a small letter followed by at most ten small letters ar
digits. A name mey be preceded or followed by spaces:

<name> =

» 10
o <small letter> >
<g> <small letter> <s>
0 <digit> 0 0

The integers in the caommands have at most eight digits and may be
preceded or followed by spaces:

™ 8 0
<integer> ::= {<s>} o <digit>}} <s> 0

Caments may be inserted between semicolon or asterisk and new

line:

<NL)
<new line> ::= ;<text not containing NL> <NL>
*<text not containing NL> <NL>

o
<new lines> ::= {mew line>}0
The delimiter <s> has two forms:

<SP>
, <text not containing NL> <NL>

<> 1:=

The second form is used to divide long simple camands into
several text lines.

2.3

15

All characters read by FP must be coded according to the ISO al-
phabet (ref. [3]). Source texts on paper tape in flexowriter code
or puanched cards in EBCDIC code may be used, as the software (the
monitor) converts the characters to the equivalent ISO characters
when the text is read by the computer. Similarly there is a con-
version of capital letters to small letters by input from tele-
typewriters offering capital letters only.

The following ISO characters are meaningful to FP:

1) small letters, digits, = (equality sign), SP (space), point,
/ (slash), comma, semicolon, asterisk, parenthesis.

2) NL (new line) and FF (form feed, working as new line).

3) AN (cancel). A line containing a CAN character is skipped by
FP. The question mark button is normally used for the CAN
character. |

The following characters are always treated as syntactical

errors:

1) BS (back space), CR (carriage return) and all characters with
a value greater than 127.

2) Graphic characters not mentioned above.

3) Capital letters.

All other characters are skipped by FP.

Semantics of FP Commands 2.3

The camand {simple or campound) read by FP is stored in the FP
cammand stack (a part of the core area for the job). Next the
simple commands are executed one by one. The simple command

' 1
{<result file> %O <program> <parameter list>

2.4

16

is executed as a call of the program named <program>. The program

will usually examine the simple cammand which caused the call of .
the program in order to get the parameter list and find the name

of a possible result file.

The use of result file and parameters depends on the program in

guestion but as general rules we have:

Result file: For most utility programs this name specifies an

output file. If no file with this name exists ar if the file

found is protected, an area an the backing storage is created and

used for the ocutput. For same utility programs (SET, ENTRY) the

result file name specifies a catalog entry which is to be created

or changed. In the call of a translated ALGOL/FORTRAN program the C]
result file name has only the fimction that it is available from

the program by a suitable call of procedure SYSTEM.

Parameter list: The parameters in the parameter list specify

input files, various modes of cperation for the program etc. For
programs requiring text input (i.e. campilers, assembler) we have
the convention that input is taken fram current input if no input
files are specified and otherwise fram the specified files. If
the first parameter (following the program name) in the call of a
translated ALGOL/FORTRAN program is a single name (not followed
by a point), the file given by this name is used as current input
for this program; if the parameter is a single integer the pro- .
gram overwrites FP (ref. [S5], 10.3). A translated ALGOL/FORTRAN
program mey examine the parameter list by means of procedure
SYSTEM.

Format of the FP Commmnd Stack 2.4

The FP ccrmand stack consists of items each containing a separ-

ator and the succeeding name or integer (if any). The heading
word of an item has the format

<separator> shift 12 + <length>

17

The <separator> is an integer with the values
-4: end of cammand list
-=2: end parenthesis
0: begin parenthesis
2: new line
4: space
6: equality sign
8: point or slash

The <length> is an integer with the values
0: nothing follows
2: the next separator follows
4: an integer follows
10: a name follows

The integers in the parameters are converted to binary munbers
stored in 24 bit words. The names are stored as 8-bit ISO char-
acters with three characters per word.
Example: The command

pip=prog avs.3 2.miks

appears as follows in the FP cammand stack

2 shift 12410 ; new line, name follows

pPip ; name, 4 words

6 shift 12410 ; equality sign, name follows
prog ; name, 4 words

4 shift 12+10 ; space, name follows
avs ; name, 4 words

8 shift 1244 ; point, integer follows
3 : integer, one word

4 shift 1244 ; space, integer follows
2 ; integer, one word

8 shift 12410 ; point, name follows
muks : name, 4 words

=4 shift 1240 ; end command stack

18

The item which terminates the simple cammand (here: end stack) is

not available by using the procedure SYSTEM in an ALGOL/FORTRAN .
program - the ‘end of simple command' is conveniently signalled

by the value of SYSTEM (ref. [6]).

19

JOB AND OPERATING SYSTEM

3.1

Job and Parent

3.2

The phrase 'the gperating system' is somewhat ambiquous as sev-
eral cperating systems may be present. A BOSS job may in fact act
as an gperating system and start a 'child' job inside its own
core area.

We will use the term parent to denote the cperating system for
the job considered.

Parent Messages

3-3

A job camumicates with its parent by sending parent messages. A
parent message is sent when the job needs the help of the cper-
ator (mounting of magnetic tapes etc.) or when an action fram the
parent is needed (the job is throucgh and to be removed, etc.).

Most parent messages are sent autamatically by FP and the cther
programs when needed (e.g. mounting of magnetic tapes), scme
parent messages like

FINIS, MOUNTSPEC, TIMER, CONVERT

are sent by calling special utility programs. Ref. |8] contains a
camnplete list of the parent messages.

Jcob Start, Initialization of FP

At job start the parent inputs FP (or rather a part of FP) to the
foremost part of the job area and starts the initialization of FP
with information about primary input and cutput. During the init-
ialization of FP the job creates catalog entries named v amd c
describing the primary input and cutput files respectively (if
such entries are already present at job start they are removed

3.1

3.2

3.3

3.4

20

by the job, unless they point to the proper files, in which case
no new v and ¢ are created). The initialization ends by connect-
ing the primary input and cutput files as current imput and cut-
put files and the FP cammard reading is entered.

At job start the parent imposes three catalog bases on the job:
standard base, user base and max base. These Imses determine
which files an the backing storage the job may access and how the

catalog entries created by the job are placed in the catalog
(ref. [7], 5.2).

The resource claims of the job are fixed at job start. The house-
keeping of the backing storage, message buffer and area process
claims during the job run is done by the monitor {and the actual
values may be found in the monitor's process description of the
job process ref. [2]) the cother resources are mmintained by the
parent all the time.

Before entering any program FP selects the full precision mode
for floating point arithmetic (RC4000) and the overflow/underflow
interrupts (integer overflow, floating - point overflow/under-
flow) are masked off.

Job Termination

When the jcb is terminated by the FP cammand FINIS, the following
happens: the current cutput buffer is emptied and a 'finis' mes-
sage is sent to the parent. The finis message causes BOSS to re-
move the job and afterwards scan the catalog and remove all tem-
porary catalog entries belonging to the job which just finished.
The cperating system may remove the job without request fram the
job (a time limit is exceeded, the job is killed by the cperator
etc.). In this case BOSS performs a ‘provoked break' on the job
(see below). If the FP code is intact (which is normally the
case) an error text is printed on current cutput (***break 8) and
a 'break' message is sent to the parent (alias BOSS) who removes
the Job.

3.4

3.5

21

Break Actions

In some severe error situations the FP break routine is entered.
The break routine cutputs an error text on current cutput,
empties the buffer and sends a 'break' message to the parent.
When BOSS receives the break message it mekes a partial clearing
after the job and if the jcb has not used all of its run time and
not read all of its primary input file the job is restarted with
a fresh FP (ref. [8], section 3.4). The error text is:

<instruction counter>
**¥preak <cause> drade 18
r reascorn>

The integer <cause> explains why the break routine was entered:

cause = 0: Internal interrupt
Caused by attempt to execute an illegal instruction (may for
instance occur in an ALGOL/FORTRAN program with index error
and translated with 'index.no').

I

cause = 2: integer averflow

cause = 4: Floating point overflow/underflow

cause = 6: Parameter error in monitor call
This error is provoked by the I/0 system if there are not
'enough message huffers' - it may also be caused by for in-
stance a wrong parameter to cne of the monitor procedures
in an undebugged code procedure.

cause = 8: Parent hreak
Breakpoint caused by the parent - see above.

cause = 10: Zone stack error
The break routine was entered because of troubles during
stacking or unstacking of a zone (cf. the next chapter). The
zone stack error may occur for various reasons. The most

cammon is

*** break 10 1

3.5

22

caused by resource limitations (lack of entries or segments
on the backing storage). In details we have the following
possibilities:

reason

reason

reascr

reason

reasorn

reason

reason

0:

The zcne has too many shares - erronecus zone
stacking in the utility program.

The job does not have the resources (entries or
segments) on the backing storage for stacking
the zme.

I/0 troubles during zone stacking.

The entire buffer area does not camprise a mal-
tiple of 512 storage bytes - erranecus zone
stacking in the utility program.

Same as reason = 3 but during a zone unstacking.

: The zone unstacking cannot proceed because a

previcusly stacked zone is not found in the

-catalog.

I/0 troubles during wunstacking of the zone.

THE EXECUTION OF FP COMMANDS 4.

The reading and execution of FP cammands are performed by the
camand reading routine, the program loading and the program
termination routine in FP. By setting the node bits the pro-
grammer may modify the function of these routines in various
ways.

Current Input and Output, Zone Stacking 4.1

The FP commands are read fram the current inmput file. At job
start, after a break ar by a reinitialization of FP, the primary
input and autput files are selected as current imput and output
files.

The current input and cutput files may be reselected during the
run (cf. section 1.8). The selection of a new current irput file
by the I cammand uses a zone stacking where the actual contents
of the data buffer are stored in an area on the backing storage
(the stacked zone) before the new file is comnected. The reselec-—
tion of the former file by the END command is the opposite pro-
cess - a zone unstacking - where the former contents of the data
buffer are restored fram the stacked zone.

Many of the utility programs use zone stacking for internmal pur-
poses. The programmer need normally not care for that, but if the
resources {entries and segments on the backing storage) needed
for the zcne stacking are not present it may, however, result in
a 'break 10' in unexpected situations.

The current input and cutput files are available for character
input and cutput respectively from ALGOL/FORTRAN programs via the
standard zones IN and OUT (cf. sections 1.2 and 1.8). Warning:
Block criented input/output procedures (INREC, QUTREC) or the
procedures OPEN and CLOSE should not be applied to the zones IN
or OUT as this may have a seriocus influence on the function of
FP. If a certain file is wanted as current imput while an ALGOL/
FORTRAN program is running, the file should be given as parameter
in the program call (cf. section 2.3). If a certain file is want-
ed as current cutput the 0 cammand is at hand.

4.2

The Mode Bits

FP contains 24 mode bits each of which has value 'yes' or 'mo'.
The mode bits are runbered 0, ..., 23. They are set by the MODE
camand and tested by the IF cammand. Furthermore FP sets same of
the hits at each program termination.

The hits with mumbers O to 11 may be used by the programmer as

‘flags'

the other hits have special functions. These special mode

bits have names. At present the following special node hits are

in use:

bit 23:

bit 20:

bit 19:

bit 18:

bit 17:

list

Governs the 'list mode' of FP: In the list mode each FP
cammand is listed on current cutput just prior to execu-
tion (cf. section 4.4).

pause
If this bit is 'ves' the break routine of FP is entered
after program termination (cf. section 4.5).

error

If this bit is 'yes' and a program terminates unsuccess-
fully (with 'ck no' or 'warning yes'), the FP break rou-
tine is entered {cf. section 4.5}.

ok

warning
These bits are set by FP at program termination reflect-
ing the successfulness of the program just executed.

(bit 16: if

bit 15:

Used internally by FP)

listing

This bit is tested by assembler and campilers. If it is
'ves' the source program is listed unless 'list.no' is
stated in the FP camwmand calling the assenbler (cam-
piler).

4'2

4.3

25

At job start and after a 'break' all the mode hits have the value
'no'. The mode hits 'ck' and 'warning' are set by FP at each pro-
gram termination, the cother mode bits may be changed by the MODE
cammands. A severe error which causes a reinitialization of FP
but not a 'break’' (e.g. syntax error in the FP cammands) sets
the 'ok' and 'warning' bits but the cother mode hits are left
unchanged.

Command Reading

4.4

The FP cammand reading is entered at job start or whenever all
thesinpleFPccrrmndsxeadsofarareexem:ted (cammand stack
empty). It proceeds as follows:

An FP command (simple or campound, cf. chapter 2) is read from

current input, syntax checked ard stored in the FP cammand stack
in the job process.

The FP cammand stack pointer is set amd the FP lcad program
routine is entered.

If an EM character is found during the cammand reading, the cur-
rent input file is unstacked and the command reading continued.

An FP syntax error is treated as a severe error: primary ocutput
is selected as awrrent acutput, an error text containing the last
few characters read fraom current input and a list of the chain of

stacked current input files is printed on current output ard FP
is reinitialized.

Program Loading

The FP program loading routine proceeds as follows:

The FP cammand stack pointer is upspaced and if the cammand stack
is exhausted, the cammand reading routine is entered.

4.3

4.4

4.5

26

The program name in the actual simple FP cammand is locked up in
the catalog and it is checked whether the file is a hinary
program file (contents key cf. section 5.3).

If the 'list bit' is 'yes' the cammand is listed on current
output .

Full precision mode in floating point arithmetic is selected
(RC4000). The program is loaded into core and entered.

If the program name is not found in the catalog, if the name does
not describe a program file or if the loading of the program
causes troubles (core size too small, I/0 troubles), an error
text is printed an current output and the FP program termination

rastine is entered (instead of the program) as after an unsuc—
cessful execution.

Program Termination

A program can terminate in four different ways:

1) Exit to the FP program termination routine.

2) Termination caused by hard error on a file (I/0 troubles).
3) Exit to the FP break routine.

4) Exit to FP job finis.

In the two last cases the 'break' or 'finis' action as described
in chapter 3 is performed and the FP code, which is currently in
the Jjob core area, does not return to normal gperation: the
parent may remove the Jjob or locad a fresh FP.

If the termination is caused by I/0 troubles an error text

(*** device status...) identifying the file ard the error is
printed on current output and the FP program termination routine
is entered with 'ck.no' and 'warning.yes'. (Bard errors on cur-
rent input or autput causes further action before the program
termination routine is entered).

4.6

27
The FP program termination routine has the following function:

The 'ok' and 'warning' bits are set as signalled by the program.
If the 'pause' bit is 'yes' or if the 'error' bit is 'yes' and
either the 'ok' bit is 'no' or the 'warning’ bit is 'yes' the FP
break action is entered.

Remark: The IF and MODE programs make an anomalous exit to FP
which bypasses the actions described so far.

The overflow/underflow interrupts are masked off.

A NULL character is printed on current output. If current autput
is connected to a character oriented device (typewriter, printer,
punch), the data tuffer is output. If the current input zone has
been stacked by the program for internal purposes, the zone is
unstacked. (The I program tells that the current input zone
should not be unstacked by setting the 'i-bit': bit 1 shift 0 in
the give up mask in current input zone).

The area processes in the monitor-are scamned. If the job is user
of an area process it is removed.

The event queue of the job process is scanned and pending answers
not belonging to the current input file are waited for. The FP
load program routine is entered. (The terms: area process, event
queues, answer are explained in the ref. [1] and [2]).

Resource Requirements

The File Processor needs a minimum core area of 3584 storage
halfwords in arder to be able to operate. The core area is used
as follows:

4.6

28

2592 storage halfwords are coccupied by the resident FP code
and buffers for current input and cutput. .

A variable part (usually small) is used for the cammand stack.

512 further storage halfwords are used by FP between execution
of the programs.

When a program is executed a core area of the size:
job size - 2592 - cammand stack size
is available for the program.

Beside core storage the programs and FP need cother system re-
sources like message buffers, area processes, segments and en-
tries on the backing storage etc. Note that many utility programs
perform ane or several zone stackings each of which uses an entry
and cne or two slices on backing storage.

The standard resources of a BOSS job are usually chosen to be
enough to execute any of the utility programs.

REFERENCES TO FILES

5.1

Document Name of a File

All data transfers in RC4000/RC6000/RCBO00 are under supervision
of the monitor: the transfer of a data block is initiated by a
call of the monitor procedure 'send message' and the campletion
of the transfer is awaited by a call of the monitor procedure
'wait answer'. An 'I/O message' sent by a ‘send message' is ad-
dressed to a process which is so to say the monitor's represen-
tative of the data file. The I/O messages are sent automatically
by the I/0 system. The name of the process (representing the data
file) is called the document name of the file.

Carresponding to the different types of peripheral equipment, the
monitor has various types of processes: the line printer corre-
sponds to a process named ‘printer’, the paper tape reader to a
process named ‘reader', the paper tape punch to a process named
'‘punch’, the console and terminal typewriters to processes with
names like 'consclel', 'terminal3' etc. A magnetic tape station
corresponds to a process carrying the same name as the magnetic
tape reel, vwhich is currently mounted on the station.

The backing storage is treated in a special way because one
single device (a drum or a disc) is divided into several files
(data areas). An area on the backing storage is identified by
its name and this area name becomes the document name when the
area is used for input/output: the I/0 system prepares the access
to the area by calling the nonitor procedure 'create area pro—
cess' with the area name as parameter; this results in an area
process to which the I/O messages are addressed.

Remark: Each d&rum or disc kit has a name which distinguishes it
among other drums or disc kits. This name is of interest to the
programmer in other oconnections, for instance when a new area is
created. The use of the term 'document name' in the monitor man-
ual to denote this device name should not be confused with the
above concept of document name for a file.

5.1

5.2

30

File Descriptor, File Name

5.3

The software has two I/0 systems, the ALGOL/FORTRAN I/O system
and the FP I/0 system. The first is used by translated ALGOL/
FORTRAN programs, the second by FP itself and the machine ooded
utility programs. The two I/0 systems differ in the way the pro-
grammer has to specify the files.

The information needed in order to connect a file forms a file
descriptor. It includes (among cother things) the document name of
the file. When an ALGCL/FORTRAN program connects a file, the file

descriptor is given in the list of parameters to the procedures
OPEN and SETPOSITION. '

When a file is connected by the FP I/0 system, a file name is

used to specify the file (cf. chapter 1). This file name is the
name of a catalog entry containing the file descriptor for cur
file. The use of the catalog entry is described in section 5.5.

The Constituents of a File Descriptor

Document name: The significance of this name is explained above.

Kind:s This integer selects the actions to be taken by
the I/0 system when the file is connected, when
the use of the file is terminated and if special
situations should occur during a data transfer
(see the next chapter for further details). Each
kind corresponds roughly to a type (or a class of
types) of peripheral equipment.

Mode: This integer specifies a certain hardware mode

(e.g. density or paricy on magnetic tape) or a
code conversion (e.g. conversion fram flexo to ISO
code by paper tape imput). The mode is a part of
the I/0 message which starts the transfer of a
data block and the mode specified is contained in
each I/0 message.

5.2

5.3

5.4

File count:

Block count:

Cantents key:

Entry point:

Load lgx_gth___:

31

Integer, relevant for magnetic tape only. A mag-
netic tape reel is divided into files mnbered
0,1, 2, ... by tape marks. Usually the file rum-
ber 0 contains an ISO label identifying the tape
reel ref. [7], 6.1.

Integer, relevant for backing storage and magnetic
tape. The blocks are numbered 0, 1, 2, By

specifying a block count different fram zero, the
‘subfile' starting at this block is obtained.

Integer, specifying the intended use of the con-
tents of the file (e.g. text file, binary program
etc.). A list of the values is given in appendix
B.3.

Integer, relevant for hinary programs only. Spe-
cifies the entry point address relative to the
start of the program.

Integer, specifies, for a bhinary program, the mm-
ber of halfwords which should be loaded into core
before the program is entered (for a program using
segmentation only a part of the program needs to
be loaded).

The cambination of mode and kind is called the mode—kind. Far
each kind only certain modes can be used. The camonly used mode-
kinds are listed in appendix B.1.

Catalog Entries 5.4

The monitor maintains a file catalog on the backing storage. This
catalog is a backing storage area named ‘'catalog' and consists of
records called catalog entries. Changes in the catalog i.e. crea-
tion, change ar removal of catalog entries are done by the moni-
tor on request fram internal processes (e.g. the job, BOSS) cal-

ling the special monitor procedures 'create entry', 'change entry',

32

'rename entry', 'remove entry' etc. The use of these 'catalog
procedures’' are subject to certain restraints as described in .
the Monitor and the BOSS2 Mamuwals, ref. [1], (2] ard [7].

A catalog entry consists of a 7 word entry head and a 10 word
entry tail: when a catalog entry is created or changed, the name
and the entry tail is specified (and based on this, the monitor
canputes the entry head). The utility programs SET and ENTRY
create or change catalog entries by calling the relevant monitor
procedures. The entry name and tail in these monitor procedure
calls are taken fram the parameters in the SET (or ENTRY) cam-
mand.

By means of the sign of the first word in the entry tail, the .
monitor distinguishes between two types of catalcg entries. If

the first word is non-negative the entry is an area entry, other-

wise the entry is a non-area entry. The area entries are used by

the monitor in the management of the backing storage. Each area

entry defines a data area where the size and physical location is
determined by means of the entry head and the first five words of

the entry tail. The first word in the entry tail contains the

nurber of segments in the area, the next four contains the name

of the drum ar disc kit on which the area is located.

Formation of the File Descriptor 5.5

The connection of a file by the FP I/0 system starts with a cata-
log lookup for the file name. The tail of the entry found is used
to form the file descriptor as follows:

a) Docurent name, mode, kind:

al) Area entry: If the entry is an area entry the file name is
used as document name and the values '

mode=0, kind=4

as mode-kind. This means simply that we are going to connect .
the data area determined by the area entry.

33

a2) Non—-area emtry: Document name, mode and kind are taken from
the first five wards of the entry tail as follows:

word 1 ¢ 1 shift 23 + mode shift 12 + kind
word 2-5: document name

b) The rest of the file descriptor:
The rest of the file descriptor is determined by word 610 in
the entry tail. The use of this part of the entry tail de-
pends an the value of the left byte of word rumber 9 (the
contents key)

bl) Contents key <> 4 and < 32:

word 6 : not used

word 7 : file count

word 8 : block count

word 9 : contents key shift 12 + entry point

word 10: load length
b2) Contens key = 4 or >= 32:
The file is an ALGOL/FORTRAN procedure.
The values
file count = block count = 0
are used. Entry point and load length are irrelevant, as FP
does not interpret the file as a program file. The five last
words in the entry tail are used {by the ALGOL/FORTRAN cam—
pilers) as follows:
word 6 : procedure code entry specification
word 7-8: procedure parameter specifications
word 9 : contents key shift 12 + start ext. list

word 10 : code segm. shift 12 + own core area.

Further details are found in the ref. [4].

5.6

Entry Tails

5.6

By collecting the information above, we find that there are four
types of entry tails:

I. Area entry, not ALGOL/FORTRAN procedure:

word

word 2-5

1

word 6

word

=

word 8

word 9

word

10

e

nunber of segments in the area
name of drum or disc kit
shortclock

file count

block count

contents key shift 12 + entry point

load length

Remark: The area entries are characterized by word 1 >= 0. The
name in word 2-5 is not used by FP when the file is con-
nected, but the entry name is used as document name. The
value of contents key is <> 4 and < 32.

II. Area
word
word
word
word
word
word

entry describing ALGOL/FORTRAN procedure:

1

nunber of segments in the area

2-5: name of drum ar disc kit

6

7-8:

9
10

procedure code entry specification

procedure parameter specifications

contents key shift 12 + start ext. list

code segments shift 12 + own core area .

Remark: Further details are given in the ref. [4].

35

III. Non-area entry, not ALGOL/FORTRAN procedure:

word 1 : 1 shift 23 + mode shift 12 + kind
word 2-5: document name

word 6 : not used

word 7 : file count

word 8 : block count

word 9 : contents key shift 12 + entry point
word 10 : load length

IV. Non—area entry describing ALGOL/FORTRAN procedure:
word 1 : 1 shift 23 + mode shift 12 + kind
word 2-5: document name
word 6 : procedure code entry specification
word 7-8: procedure parameter specification
word 9 : contents key shift 12 + start ext. list
word 10

code segments shift 12 + own core area

36

THE FP INPUT/COUTPUT SYSTEM ‘ 6.

Text Files and BEM Characters 6.1

6.2

The I/O system is concerned with the proper transfer of the data
only, and not with the meaning of the contents of the data
blocks. This fact is important in dealing with text files, where
the appearance of an EM character signals the erd of the text. As
the I/0 system does not examine the individual characters, the EM
character does not cause any 'end text signal' fram the I/0 sy-
stem but the program which is processing the text, has instead to
discover the EM character by inspecting each character in the
input.

An EM character need not be present, but the file may instead
just finish (e.g. end of a paper tape). In this situation the I/0O
system simulates the input of a data block containing an EM char-
acter and in this way the program still gets the proper informa-
tion about the text end.

The utility programs write a terminating EM character in text
files an backing storage or magnetic tape but not in text files
on other media. It is advisable to do so whenever the cutput of a
text file is terminated.

Connection of a File 6.2 .

The connection of a file is based on a file descriptor (obtained
fram the file name as described in the previous chapter). The
connection includes initialization of various tables {(zone and
share descriptions) and same sort of initialization of the pro-
cess associated to the file. The I/0 system is able to cperate
under the primitive operating system s as well as the advanced
operating system BOSS. In the latter case same of the devices
(typewriters, tape reader, card reader, line printer) are spooled
ard the 'I/0 comversation' goes via pseudoprocesses (ref. [2],
2.80). The I/0 system is suited to deal with this type of proces-

ses too. .

37

The connection proceeds according to the kind specified in the
file descriptor:

0: (Internal process). The maximum buffer length is set
to 5312 halfwords (768 characters) and the existence of
the process is checked.

Kind

Kind = 2: (Clock process). Not allowed.

Kind = 4: (Backing storage area process). The maximum buffer
length is set to 512 halfwords (768 characters). If
the process is not already present, the area process
is created. The connection may also - depending on

circumstances - include creation of the area.

Kind = 6: (Disc process). As for area process, except no area or
area process is created. Instead the existence of the
disc process with executing process as user is check-
ed.

Kind = 8: (Typewriters). The maximum buffer length is set to 104
halfwords (156 characters) and the existence of the
process is checked.

Kind = 10: (Paper tape reader). The maximmm buffer length is set
to 36 halfwords (54 characters). The process is
reserved and input messages are sent until ‘empty
reader' is sensed. Then a 'load reader' message is
sent to the parent and the mounting of the tape is
awaited by attempting a block input once every second
until a non-enpty block is dbtained. If the reader was
reserved by another process, a 'wait for reader’
message is sent to the parent and the job awaits the
reader by making an attempt to reserve it once every
second until the reservation is successful. (Under
BOSS the major part of these actions are durmy).

Kind = 12: (Paper tape punch). The maximmm buffer length is set
to 80 halfwords (120 characters). The process is re-
served and 100 NULL characters (blank tape feed) are
output.

6.3

38

Kind = 14: (Line printer). The maximm buffer length is set to 80
halfwards (120 characters) and the process is reserv- .
ed.

Kind = 16

o

(Card reader). The maximum buffer length is set to 80
halfwords (120 characters). Apart from that the
cannection proceeds as for kind = 10 (paper tape
reader).

Kind = 18: (Magnetic tape). The meximum buffer length is set to

512 halfwords (768 characters) and the process is

reserved. If the process is not available for the iob,
. a 'mount tape' message is sent to the parent. If the

file is to be used for cutput and the write—enable o
ring is not mounted, a 'mount ring' message is sent to

the parent. Finally a 'set mode' and a ‘position’

message is sent to the process - the latter starts the
positioning to the file and block count given in the

file descriptor.

Kind = 20: (Plotter). Treated as a line printer.

Termination of the Use of a File 6.3

When the use of a file is terminated, the process is released in
order to meke it available to cthers, and the area process (if
any) is removed in order to retain the area claims. On a punch
(kind = 12) a tape feed of 100 NULL characters is cutput. For
magnetic tape cutput two tape marks are written after the last
block.

Note that a 'release message' is not sent to the parent when a

magnetic tape file is terminated and hence BOSS (if it is the

parent) will keep the magnetic tape on the station so that a new
mounting is not needed if the tape is used later in the Jjob. The

release message to the parent may be sent by a RELEASE coammand.

In this way the station is made available for mounting of ancther

tape reel (cf. ref. [7], 6.1). .

Data Transfers, Status Word

When the transfer of a data block is checked, the cutcome of the

transfer is

expressed by the number of storage bytes transferred

and a 24 bit status word. The 12 leftnost status bits are gener-

ated by the

monitor which takes most of the bits directly from

the hardware, the other hits are generated by the I/0 system. The
two I/0 systems (ALGOL/FORTRAN and FP) use the same status bits
(ref. 5], chapter 2).

The meaning

1 shift 23:
1 shift 22:

1 shift 21:

1 shift 20:

1 shift 19:

1 shift 18:

1 shift 17:

1 shift 16:

1 shift 15:

1 shift 14:

of the hits is as follows:

(Intervention). The device was in the local mode.
(Parity error). A parity error was detected during
the transfer.

(Timer). The cperation was not campleted within a
certain time defined by the hardware or the monitor.
(Data overun). The high speed data channel was over-
loaded and could not transfer the data,

(Block length error). A block imput fram magnetic
tape was longer than the buffer area allowed for it.
(End of document). Means various things on the dif-
ferent types of devices: data transfer cutside the
backing storage area was attempted, the paper tape
reader was empty, the paper tape was exhausted on the
punch, the paper supply was low on the printer, the
input hopper was empty on the card reader, the end of
tape reel was sensed on magnetic tape, the pen got
off the paper on the plotter.

(Load point). The load point was sensed after an
operation an magnetic tape.

(Tape mark or attention). The attention button was
pressed during I/0 to the typewriter, a tape mark was
sensed or written on the magnetic tape.

(Writing enabled). A writing enable ring is mounted
on the magnetic tape.

(Mode error). A wrong mode (density or parity) was
selected an the magnetic tape station.

shift
shift

shift

shift

shift
shift

shift

shift

shift

shift

shift

shift

13:
12:

11:

40

(Read error). Read error on the card reader.

(Card rejected). The card was rejected by the card .
reader.

(Checksum error). Checksum error detected by the

invar/outvar system.

(Bit 13). Not used.

: (Bit 14). Not used.

(Stopped). Less than wanted was output to a file of
any kind or no data was imput fram a backing storage
area. The bit appears for instance if the job was
stopped (swopped) during the data transfer.

(Word defect). The murber of characters transferred
to or from a magnetic tape is not divisible by the
nunber of words transferred, i.e. only a part of the .
last word was transferred.

(Position error). The position on the magnetic tape
(file and block count) reported by the monitor dif-
fers fram the position expected (e.g. an wmexisting
position was specified in a positioning, by mistake
the magnetic tape was used for two purposes at the
same time).

(Process does not exist). The document name does not
correspond to any process. For backing storage this
may indicate that the area does not exist or that the
job does not have the resources to create the area .
process (area claim too small),

(Disconnected). The power on the device was switched
off.

(Unintelligible). The cperation attempted is illegal
on that device (e.g. input from a printer).
(Rejected}. The job is not allowed to use the process
as it should be reserved first (the device was not
claimed in the job specification, the aree is pro-
tected against ocutput fram the job. Can also occur if
the file by mistake was used for two purposes at the
same time and then released by the termination of one
of the uses).

6.5

41

1 shift 1: None of the status hits 1 shift 5 to 1 shift 2 are
set, i.e. the nonitor has accepted the cperation and
the device has attempted to execute the operation.

1 shift 0: The standard recovery actions ocould not succeed, i.e.
hard error on the transfer.

If a hard error an a file causes a program termination, a 'device

status' errcor text containing the status word of the wumsuccessful
transfer is printed. The status bits are given by the labelling
texts in the brackets above (the hits 1 shift 1 and 1 shift 0 are
ignored in printing the error text).

If the error is caused by hardware malfunction, the FP end pro-
gram routine reports the error not only to the programmer (by the
‘device status' text) but also to the parent by sending a 'sta-
tus’' message. The parent may then attend the cperator (BOSS
displays the status message on the main console).

Standard Recovery Actions

The FP I/O system has a standard recovery routine which is en
tered if an ancmalous status word appears. The recovery proceeds
according to the kind specified. All situations not covered are
treated as hard errors. A hard error causes termination of the
program and cutput of an error text on current cutput (see
above) . If the hard error is on the current imput or cutput file,
special measures are taken before the error text is autput (cf.
section 6.6).

Kind = 0: Intervention: Ignored.

End of document during input: Ignored.

Erd of document during cutput: A 'change' message is
sent to the parent. Upon the receipt of the answer
fram the parent, the remaining part of the data
block is output.

Stopped: The remaining part of the data block is
transferred.

6.5

42

4: (Backing storage area).

Data overrun: the transfer is repeated. .
Erd of document during input: If nothing has been
transferred, the imput of two bytes containing
three EM characters is simulated, else the hit is
ignored.
End of document during cutput: The area is enlarged
and the transfer is repeated.
Stopped: If the end document bit is not present, the
remaining part of the data block is transferred.
Process does not exist: The area process is created
and furthermore reserved if the gperation is out-
put. After this the transfer is repeated.
Rejected during cutput: The area process is reserved .
arnd the transfer is repeated.
Rejected during input: Hard error.

(Disc process)

Data overrun: the transfer is repeated.

End of document during input: As for area process.

End of document during all other cperations: Hard
error.

Stopped: May appear at all cperations. The operation
is repeated except if it has been overruled by the
end of document action or the two actions below.

Process does not exist: An area process is created and .
the action proceeds as for area process.

Rejected: The process is reserved and the operation is
repeated. ‘

Note that if the process does not exist, an area pro-

cess will be created only if an entry of the process

name exists in the main catalog. If not so, a hard

eITor OCCUrs.

(Typewriters).
Timer during input: Ignored.
Tape mark or attention (attention button pushed): Ig-
nared as the action on the stopped bit makes the
necessary repeating of the transfer. .

Kind = 10:
Kind = 12:
Kind = 14:
Kind = 16:
Kind = 18:

43

Stopped: The transfer of the remaining part of the
data block is repeated.

(Paper tape reader):

Intervention: Ignored.

Parity error: Ignored. (The monitor replaces the in-
valid character by a SUB character).

Erd of document: If the munber of bytes transferred is
zero, the input of an EM character is simulated.

Load point: Ignored.

Tape mark or attention: Ignored.

Read error: Ignored.

Card rejected: Igncred.

(Paper tape punch):

Intervention: Ignored.

Emd of document: A 'change' message is sent to the
parent. Upon the receipt of the answer fram the
parent, the remaining part of the data block is
output.

Stopped: If the end of document bit is not present,

the remaining part of the data block is cutput.

(Line printer):
Same actions as for kind = 12.

(Card reader):
Same actions as for kind = 10.

(Magnetic tape):

Interventions: Ignored.

Parity error: The operation is repeated up to five
times. In case of cutput the bad spot on the tape
is erased.

Data overrun: Treated as parity error.

Block length error: Treated as parity error.

Load point: Ignored during data transfers but used in
positioning of the tape.

44

Tape mark: The expected position on the tape is
calculated once more as the tape mark may indicate
shift to another file, ard next the position error
bit is recalculated by comparing the position
obtained with the one given by the monitor. If a
tape mark is read, the input of an EM character is
similated.

Writing enabled: This bit is checked during the action
on the stopped bit but does not in itself cause any

special action.

Stopped: If the writing enabled bit is set (ring pre-
sent) the cutput transfer is repeated, cotherwise a
‘mount ring' message is sent to the parent and the
mounting awaited. When the answer fram the parent
is received the process is reserved, the tape is
positioned and the transfer is repeated.

Word defect: Treated as parity error.

Position error: Hard error if anything was transferred
(but the presence of the tape mark hit may cause a
recalculation of the position which removes the
error).

Process does not exist: A 'mount tape' message is sent
to the parent. When the answer is received, the
process is reserved, the tape is positioned and the
transfer is repeated.

Rejected: The process is reserved and the operation is
repeated.

Kind = 20: (Plotter):
Same actions as for kind = 12.

If anything goes wrong during a recovery action (reservation im-
possible, area claim exceeded, no segments available for exten-
sion of the area, etc.), the error is classified as a hard
error.

Sane of the utility programs have private recovery actions dif-
ferent fram the standard ones (especially programs dealing with
files which are not text files).

6.6

45

Errors on Current Input or OQutput

Hard errors on current input or output are treated in a special
way because of the key role played by these files.

Hard error on the current input file:

The primary ocutput file is selected as current cutput file.

The 'device status' error text is printed.

The primary input file is selected as current input file and the
chain of stacked current input zones is abandoned.

The remaining part of the FP cammand stack (if any) is skipped.

Hard error on the current ocutput file:
The primary cutput file is selected as current cutput file.
The 'device status' error text is printed.

6.6

47

REFERENCES

tv]

t2]

13]

15)

L6}

7]

L8]

RCSL Mo 31-D476:
RCBO0O Monitor, Part 1
System Design

RCSL Mo 31-DE97:
RCEO00 Monitor, Part 2
Reference Mamial

RCSL Mo 31-D478:
RCBOOO Monitor, Part 3
Definition of External Processes

RCSL No 31-D199:
Code Procedures and Run Time Organization
of ALGOL Programs

RCSL No 42-i0781:
AIGOL 7

User's Mamial, Part 1

RCSI, No 42-i1278:
AILGOL 8
User's Guide, Part 2

RCSL Mo 42-i1265:
BOSS?
User's Mamial

RCSL Mo 31-D610:
Parent Messages in RCB00O

A.

48 /rev. 8350225

TABLES B.

Mode-kinds B.1 .

The list contains the commonly used mode-kinds together
with the abbreviations used by the ENTRY, SET LOOKUP and
SEARCH programs.

abbreviation mode kind use of the mode-kind

ip 0 Q I/0 via internal process

bs 0 4 backing storage

tw 0 10 typewriter

tro 0 10 tape reader, odd parity

tre 2 10 tape reader, even parity

trn & 10 tape reader, no parity

trf 6 10 tape reader, flexo code

trz 8 10 tape reader, no parity, nulls read

t po 0 12 tape punch, odd parity

t pe 2 12 - tape punch, even parity

tpn b4 12 tape punch, no parity

tpf 6 12 tape punch, flexo code

epf 8 12 tape punch, teletype code .

1p 0 14 line printer

crb 0 16 card reader, binary

crd 8 16 card reader, decimal

crc 10 16 card reader, EBCDIC

mtlh mto O 18 mag.tape, low speed, high density,
odd

mte 2 18 mag.tape, low speed, high density,

even

mtll nrz 4 18 mag.tape, low speed, low density,
odd

nrze 6 18 mag.tape, low speed, low density,

even

mthh 128 18 mag.tape, high speed, high density

mthl 132 18 mag.tape, high speed, low density

pl 0 20 plotter

Standard File Names and File Descriptors B.2 ‘.

The software contains a number of standard file names
corresponding to commonly used files on peripheral devi-
ces . A standard file name is the name of a catalog entry
containing a file descriptor (cf. chapter 5) of the file
in question. The use of the standard file names pre-
sumes that the peripheral units have the staandard names
e.g. reader, printer, punch, as it is normally the

49

case. Most of the standard file names coincide with modekind
abbreviations hut this does not cause any conflict as the use of

the

mode-kind abbreviations is 'a private agreement’ between the

four programs SET, ENTRY, LOOKUP and SEARCH.

At present the following standard names exist:

File name document name mode kind mode-kind abb.

term terminal 0 8 tw
tro reader 0] 10 tro
tre reader 2 10 tre
trm reader 4 10 tm
; % = reader <] 10 trf
[trz reader 8 10 trz
tpo puanch 0 12 tpo
tpe punch 2 12 tpe
tm punch 4 12 tpn
tpf panch 6 12 tpf
tpt punch 8 12 tpt
1p printer 0 14 1p
crb cardreader 0 16 crb
crd cardreader 8 16 cxrd
cre cardreader 10 16 crc
pl plotter 0 20 j=3 8
B.3 Contents Keys
0 Text file
1 Reserved

2 Rinary program to be lcaded by FP i.e. a utility program, a
translated ALGOL/FORTRAN program etc.

3 Directly executable program. FP itself is of this type.

4 Translated ALGOL/FORTRAN procedure.

5 Stacked zone {cf. section 4.1).

6 Program file in logical blocks with the block length in the
first word of each logical block.

7 Dumped core area.

B.3

B.4

50

8 'Self contained' binary program, i.e. a program which can

be loaded by FP, instead of FP, as well as instead of s. .
The program BOS, which is loaded when BOSS is started, is
of this type.

9 Virtual core in ALGOL, initialized context data.
10 Files campressed by the program ocontract.
11 QOBOL, cbject program.
13 QUBOL, data file.
14 Update mark in RCEBO00 SHIPPING
15 Program to be loaded by the RCS000 loader/paging system.
17 Reserved by GIER similator,
20 Files belonging to the bs-system.
21 Files belonging to the sg—-system.
22 Files belonging to the isg-system. .
23 Files belonging to the sysB80 system.
30 Files campressed by the program lib
31 Reserved for various installations.
>=32 Reserved for special purposes in the ALGOL/FORTRAN system.

Error Messages B.4

The list contains only the error messages from FP itself. An
error message fram a utility program has the form

*%** <program name> <text>

The meaning of the error text is found in the description of the
program.

FP can ocutput the following error messages:

***preak <cause> <instruction counter/break 10 reason>
The break routine of FP was entered because of som2 severe
error (see list of causes in section 3.5). BOSS restarts the
job with a fresh FP and contimues with the next line in the
job file.

*breakpoint <testoutput> :
Private test autput fram a utility program. The program
contimies after printing of the test cutput.

***device status <document name> <status word>

Hard exror on the file specified. The status hits are given
by text lines (cf. section 6.4). The actual program is ter-
minated with 'ck mo' and 'warning yes'. If the file is the
current input file, the current imput and ocutput files are
switched back to the primary inmput and output files. If the
file is the current cutput file, the current autput file is
switched back to primary cutput.

***fp call <program>
The name specified was not the name of a program file (cf.
section 4.4). FP continues with 'ock no' and 'warning yes'.

***fp cancel .
A line was cancelled during the cammand reading because of

the appearance of a CAN character (cf. section 2.2). FP
caontinues the command reading.

***fp connect <program>
The program file could not be connected (cf. section 4.4).
FP continues with 'ck no' and 'warning yes'.

***fp init troubles
The FP initialization (or reinitialization) could not suc-
ceed and the job is terminated. For a BOSS job the error
message is displayed on the main console (the error message
is actually a parent message).

***fp job termination
The job was terminated because 10 syntax errcrs were found
in the input to FP.

***fp name <program> _
The program name was not found in the catalog (of. section .

4.4). FP continues with 'ck no' and 'warning ves'.

***£fp reinitialized
The FP initialization was entered because of scme severe
error (cf. sections 3.3 and 4.1).

***fp size <program>
The core area could not hold the program or the entry point
was artside the program {cf. section 4.4). FP continues with

'ck no' and 'warning ves'.

***fp stack <last few characters input> .
Overflow of the FP command stack.

***fp syntax <last few characters input>
Syntax error in the input to FP. After a stack or a syntax

error FP is reinitialized.

***fp troubles with ¢
The job was terminated because the primary cutput file could
not be connected in the proper way (with creation of the
catalog entry c etc.). For a BOSS job the message is printed

on the main console.

INDEX

The entries below refer to chapter or section munbers.

Area (on backing storage) 1.6, 5.1

area process 5.1
area entry 5.4, 5.6
attention 6.4

Backing storage 1.1, 1.6, 5.1
backing storage area 1.6, 5.1
backing storage wnit 1.6, 5.1
block count 5.3

block length error 6.4

break 3.5

break message 3.5

breakpoint B.4

C 3.3

call of program 1.3, 4.4
card reader 6

card rejected 6.4
catalog 5.4

catalog base 3.3

catalog entry 5.4

change message 6.5
checksum error 6.4

claims 3.3, 4.6

cammand reading 1.3, 4.3
camand stack 2.4
canpound command 1.5
connection of a file 6.2
contents key 5.3, 7.3
current input 1.2, 1.8
current output 1.2, 1.8

Data area 1.6, 5.1
data overrun 6.4
device status 6.4

disconnected 6.4
document name 5.1

M character 6.1

end of document 6.4

entry (in catalog) 5.4, 5.6
entry head 5.4

entry point 5.3
error 4.2

File 1.2

file count 5.3

file descriptor 5.3
file name 1.6, 5.5
finis message 3.4, 4.5

Head (of emtry) 5.4

I-bit 4.5
irl 1 I2
intervention 6.4

Job file 1.2
job start 3.3
job termination 3.4

Kird 5.3, 7.1

Line printer 6
list bit 4.2
listing bit 4.2
load length 5.3
load message 6.2
load point 6.4

Mcde 5.3, B.1
mode bit 4.2

mode error 6.4
mode-kind 5.3, B.]
moumt message 6.2

mount ring message 6.2

Non—area entry 5.4, 5.6

ot 1.2
overflow 3.3, 4.5

Paper tape punch 6
paper tape reader 6
parent 3.1

parent message 3.2
Parameter list 2.2
parity error 6.4

pause it 4.2

position error 6.4
precision mode 3.3, 3.4
primary input 1.2, 3.3
primary cutput 1.2, 3.3
primout 1.2

process does not exist 6.4

Read error 6.4
rejected 6.4

release message 6.4

Shortclock 5.6

stack zone 1.8, 3.5, 4.1
status 6.4

status bit 6.4

status word 6.4

stopped 6.4

54

Tail (of catalog entry) 5.6
tape mark 5.3

tape mark or attention 6.4
text file 6.1, B.3

timer 6.4

typewriter 6

Underflow 3.3, 4.5
unintelligible 6.4

v 3.3

warning bit 4.2

wrod defect 6.4
writing enabled 6.4
write-enable-ring 6.2

RETURN LETTER

Title: System 3 Utility Programs, Part One RCSL No.: 31-D676
User's Guide

AfS Regnecentralen af 1979/RC Computer A/S maintains 2 continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:
Thank you

42-1 1288

........................... Foldhere
................. Do not tear - Fold hereand staple
Affix
postage
here
¢REGNECENTRALEN

af 1979 .

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

