8 HEGNECENTRALEN

= II:::

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

55-D99
November 1970

Jgrn Jensen

Indexed Sequential Files in RC 4000 Algol

RC 4000, Basic Software, Standard Procedures, Indexed
Sequential File, Algol

Describes a specific structure of an indexed sequential
file stored in a backing storage document and a set of RC L4000 Algol

standard procedures for pfocessing such a file. 32 pages.

S

'E SYSTEM LIBRARY

DK-2500 VALBY - BJERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

Contents

Introduction ‘.......I.'.......Il'."-ﬂ.ﬂ.ﬂ..D.Il.ﬂ..............‘ﬂ.-

1. The Structure of an Indexed Sequential File on
the Backing StOT'3ZE esessssssercescecsoesccsanesscsssanssssnescssec
1.7 RECOIrGS secseccessssasssteosscossorscctsssessseocassoessnrssasans
1.2 Block 1a8D]128 eessscessssassenscencesossnrsssssassonssssscsnsdise
1.5 Bucket 13D1E cosscessssssssessasoccessesoreescossocssssnsenne

T-h File heGd ceccvecessssssssscssssssrooresnsnasssssssossnssssine
o, An Indexed Sequential File in the Zone Bufferevecececececcse
5. Ihe Crea-tion OfaFilel‘...-..'.D.'.‘...l.l....l..'..-...ll.

u. The ProceSSing Of 2 Fl1le ceescescessosssscecessssssscsasnsnnsssase
h-1 Dpening €2 808 SRS EE AN BN TR AEReERstIEENIESALIIEIRREIESIEEDNERIETS
h.2 Initialization ssescesssessssassscsssscsascsscncssncsecsnnnse
h-ﬁ GLAYt eccessoesssascssnsasnsrassoosnsssessascstesessedsossnsscosss
4,1 Record ProceSsSing ceeesesessccessssasssstnsssssacsonscsosncnces
M.S ClOSing 88 PO B S R0EERENIeIE0INtesTISasaOROasREIAERSIESIPTACTES
1".6 Zone Sta‘te".........0..-.l-ﬂ..o'.@.‘....'-.'-‘..
ll..? ReSUl-tS .ﬂ...-.......0..0.........o.D-....D.'..........'.-...
h 8 File S8LatllS seaseseessascsssorosssescsosssssasssacsssossncnns
L.9

Error handling e PGB G 8RB0 DEIBICENPRONEEIEIBINSRINBERIRROIRAISIDO

5. Procedure SPBCificatiOnS T Y T N NN NN
.buflEngthi o.................O'..D..‘....D--..C..'...‘....Q
delete rec i'.‘o...ﬂ.....0l-‘.......-U..el...........
get params s A T I R R N R R R
get TEC 1 tevesssncssssnnssvsssstorsssssssscsrsantssssnsnsess
head file 1 ceeeesscscscssssrssrssscscsssssusasonnsrssnsnssss
init file 3 ceecesscssesscsassrcrsscssssosnassssncsssvsssnssse
dNdt reC I cesssesssscsscssnsssanssssssrenceensssssssssscsace
Iinsert YeC 1 cesessscssesasssecsncesscasssnssssasnessosesssys

2
6
7
8
9 nex—b reci D.'.......'.ﬂl.--...O'.llﬂ.‘ll.l..l".l.....l."-
1
1
1
1
1
1
1
1

)
AN DD -

0 put rec 1 6 eI BsREINENN08 RPN EEstRs IR0l srRRsIRIRIRISEIRISTICTS
1 eSSt 1 sececesssssnsssssssscscosesnensescsssnsnrcosssessens
2 set params I i e e s0 0000000808008 0080008eD0EN0IRIITREIEIIEIRRETS
5 Se‘t wti .'............'......ﬂ.ol......o..o.....ﬂ.........
h Sel T80 1 sesevesecsssnrorssosssnssesscecenestavisdsssssncs
5 set te8tT 1 tceasvesssscsvsscrssscsnosssancncsscacsronsssaneny
6 set update 1 eeeeesssestsocwtssssssssrsosssasosanssdssseness
I

stm filei I..ﬂ.-.‘...-'..'......l..‘..l..ll.‘.ﬂ..l.!‘....

AT AT A AT N AT AT AT AT N AT AN AT AT T AT NN

Appendix Ao Survey Of procedures C B S NS RNEEBD SRS RESEIRIOENEEIIENIEEARS
A For ocreation ceeecsssossessscassrasscsssracesssnsencsssssncns
A2 For PrOCESSing T T R E AR N R RN
A3 Al CAUSES ser10 8000808000008 s03808680688000000sssssnsssasse

Appendix B, Identification of parameters in zone buffer cseasscesaes

B1 To ge.t Params i‘.n.'ﬂ.l‘!‘...nlﬁ'ou!l-..l.ll....l.'
B2 TO set Paramsi ...l..'.....I.l.I.C..D.....l.‘...l..'.....ll

I-aSt Pagel.l..l....ll..".......l.....l.l.l.‘l.lll.....‘.ll.

1

Cvn B o

D

11
1
11
12
15
13
15
1h
15
15

17
17
17
18

18
20
21

23
2k

2l
25

25
26
o7

28
28
28
29

20
20
30

A0

Introduction

An Indexed sequential file 1s basicly a sequentlial file, stored on a
random access medium, and sugmented by one or more levels of index tab-
les to facilitate random access to records specified by a key.

— With two levels, buckets and blocks, the search for a record with a
specific key proceeds a3 follows:

A seaych for the key in the bucket table, which is common for the
whole file, will yleld a part of The file, the bucket, in which to con-
tinue the szearch.

Each bucket 1s preceded by a block table and a search in this will
yield a part of the bucket, the block, in which the record may be found,

The inherent characteristics for this type of flles are:

1. Fast sequential processing of the whole file, comparable To a

straightforward sequential file,

2. Past random access for inspecting and updating of records speci-

fied by thelr keys

3« Fast deletion of records

4, Slow insertion of new records in a flle, especlally when the

file is pretty full,

This paper deseribes the RC 4000 Algol implementation of an in-
dexed sequential file organisation with two levels of index tables,

The system can be regarded as an extension of the set of the high
level zone procedures and works within the same framework, It consists
of a set of procedures to set up and process an indexed sequential file
in an existing backing storage document which has been cpened in a zone.

1. The Structure of an Indexed-sequential file on the Backing Storage

The file starts at segment zero of the area and consists of a file head,
a bucket table, and a number of buckets. Fach bucket except the first
occuples segsperbuck consecutive segments.

Picture of the file:
file bucket first second last
head table bucket bucket bucket
Ko segsperbuck ~>K--segsperbuck-=> «~ «- K-=-segsperbuck-->
PP At most maxbucks buckets =00 =m==- >

The file head and the bucket table occupy an Integral number of segments
each, and the first bucket occuples only what is left of the first

segsperhbuck segments.

Each bucket consists of a block table, which occuples an integral number
of segments, Tollowed by as many whole blocks as there 1s rocm for in the
bucket, leaving & possible rest unused.
Each block occuples segsperblock consecutlve segments,

Picture of one bucket:

block first last unused
table block block
K--Segsperblocke=H w- ~= K--segsperblock-= Kkmm=rest-~=>
(mayte 0)
- One bucket eme=—— >

Each block consists of an integral number of records {possibly zero)
stored tightly together in ascending key order starting at the flrst
byte of the block and leaving a possible rest unused.
ub(recs) denotes the number of bytes used for records, see 1.1.

Picture of one block:
" rirst second third last unused
record record record record
Ko ub(recs) S
K o m o o One Pleck e=mae- >

The file head describes the structure of records, blocks, and buckets
in a form, which 18 convenient for the intermel logic of the standard
procedures processing the file,

The bucket table forms the first level of index tables and ccntains
one entry for each bucket in the file describing the current content of
that bucket.

The block tables, one for each bucket, form the second level of
index tables., The block table for a glven bucket contains one entry for
each block in the bucket describing the current content of that block.

The structure and contents of records, index tables, and the flle

hesd are described below.

1.1. Records

Each record consists of zero or more user fields, a key consisting of an
ordered set of key fields, and maybe a length field. The formats and con-
tents of the user fields are irrelevant to the system. The key- and
length-fields are described by code pleces in the file head. These de~
scriptions are common for all records In the file.

Key fields

The key is an ordered set of one or more key flelds the value of which
is unique identification of the record within the file. Bach key field
is characterized by a field type, which specifies the size of the key
field snd how the value of 1t 1s represented, and a relative position
of the field within the record, The total number of key fields is deno-
ted nkey.

The possible types, the number of bytes In the corresponding key
fields, and the values by which they are specified to the system (see

55y head_file_;) are:

type: nuriber of bytes: value:
12=bit signed integer 1 + 1
integer 2 ¥e
long L T3
real Ly Fl

The sign of the type is used by the comparison rule, see beloiw.
The relative position of a field 1s the byte number within the re-

cord of the last byte of the field, the first byte being byte one.

Comparison rule

The keys of two records can be compared, l.e. the relations key(A) <
key(B), key(A) = key(B), and key(4) > key(B) are defined for two records,
A 2nd B. If each key is composed of nkey keyfields then the comparison
rule 1s defined by the following (not pure algol) algorithm which com-
pares the key flelds, arithmetlcally according to type, two and two:
for i:= 1 step 1 until nkey do
begin
compare:= (keyfield(A,1)~keyfield(B,1))xsign(type(1));
if compare <> 0 then i:= nkey
end s
compare holds now the result of the comparison and we define:
compare < O means key(A)} < key(B).
compare = O means key(A} = keyEB).
compare > O means key(4)} > key(B).
Records are always stored in the file In ascending key order as defined
by the above; i.e. in ascending order of the key field values for posi-
tive types, but in descending order of the key field values for negative

types.

Length field

The length field holds the record length, expressed as number cf double
word items, and is, just as a key fleld, characterized by a type and 2
relative position., Only non-negative types are meaningful for the length

field,

If a1l records in the file have the same length, the length field
may be absent, This is specified to the system by a type velue = Zero,
in which case we have

recordlength = maxreclength, see head flle 1, 5.5,

The different fields of a record may overlap each other In any mamner as
{1lustrated in the following example where the length field and the
third key field occuples the same byte. .

Example
Let the key- and length-fields be specified by
type relatlve position
1. key fleld L 10
2. key field -2 2
3, key field -1 5
length field 1 5

then record A will precede record B in the followlng picture:

byte number:

i 5 10 15
A | 2137 k4 3.71
B: w15m 3 3.71
e k2 - - k3 - K- k1 -
- 1f K-
- 3xh = 12 bytes -
e bxh = 16 bytes _——

1.2, Block Tables

Each entry in a block table describes one block and consists of the
following three flelds: '

ub(recs): An integer holding the mumber of bytes occupied by records

in the block,.
sn(recs): An integer holding the segment number for the first segment

of the block.
sn(recs) may thus be regarded as the identification of the

physical block,
xp{recs): A composite field consisting of the key filelds of a record
packed together in consecutive words and with a value such

that:
kp{reecs) > key{records preceding the block) and

kp{recs) <= key(first record in the block).
kp(recs) may thus be regarded as the ldentification of the

logical block,

The size, in bytes, of one entry in a block table, or in the bucket
table, see below, 13 glven by:

entrysize = 4 + keypartsize, where:

keypartsize = 2 X number of words used for key fields in a record,

N

In the above calculation of keypartsize two successive keyfields of
type + 1 are only counted as one word whereas a single keyfield of
type ¥ 1 counts as a whole word. The algorithm is:

keypartsize:= 03
for 1:= 1 step 1 wntil nkey do
begin
fieldsize:= abs type(i); if fleldsize = 3 then fieldsize:= U
if fieldslize > 1 then keypartsize:= keypartsize + keypartsize mod 2;
keypartsize:= keypartsize + fleldslze
end};
keypartsize:= keypartsize + keypartsize mod 2;
The block table for a non-empty bucket, i.e. a bucket which contains
at least one record, consists of the entries describing non-empty blocks,
stored in ascending kp-order, followed by the entries describing empty
blocks., In these last entries only the value of sn is relevant as the
content of the block itself is undefined.

The size, in bytes, of a block table is glven by
blocktablesize = entrysize X bloéksperbuck, where
blocksperbuck = segsizexsegsperbuck//(segsizexsegsperblock+entrysize) ;
segsize = number of bytes in one segment = 512,

A block table is stored in an integral number of segments:

segsperblocktable = (blocktablesize -1)//segsize + 1.

1.3. Bucket Table

Each entry in the bucket table describes one bucket and consists of
the following three fields:

ub(blocks): An integer holding the relative byte address of the last
non-empty entry in the block table for the bucket, the first
entry having byte address zero; l.e.:
ub(blocks) = entrysize X (number of nonempty blocks = 1 }.
sn(blocks): An integer holding the segment number for the first segment
of the blocktable for the bucket.
sn(blocks) may thus be regarded as the identification of the
vhysical bucket.
kp(blocks): A composite field consisting of the key fields of a record
packed together In consecutive words and with a value such
that:
kp(blocksg > key(records preceding the bucket) and
xp(blocks) <= key(first record in the bucket).
kp(blocks) may thus be regarded as the identification of the

logical bucket.

entrysize and keypartsize is defined as for the block tables above.

The bucket table consists of a bucket table head followed by the
entries describing non-empty buckets, stored in ascending kp-order,
followed by the entries describing empty buckets. In these last entries
only the value of sn is relevant as the content of the bucket itgelf

is undefined,

The bucket table head consists of Tive integer flelds which describe
the current contents of the bucket table and thereby of the whole file:

maxusedbucks: Number of relevant bytes in the bucket table, including
the bucket table head; l.e.:
maxusedbucks = entrysize X number of buckets whlch are or

have been nonempty during the lifetime of the file + 10;

recbytes: Total number of bytes occupied by records in the file,
noofrecs: Total number of records in the file.
ub(file): Relative address of the last non-empty entry in the
bucket tzble, the first entry having byte address zeroj
i.e.t
ub(file) = entrysize X (number of nonempty buckets - 1.
sn(file): Segment mmber for the first segment of the bucket table,

Note that maxusedbucks is the first word on thls segment.

The size, in bytes, of the bucket table 1s given by maxusedbucks, but
it is stored in an integral number of segments which can hold a bucket

table with maxbucks entries:

segsperbucktable = (entrysizexXmaxbucks + 10 - 1)//segsize + 1;

1.4, File Head

The file head describes the structure of the records, blocks, and buckets

of the file as specified in the preceding sectlions. It is generated when

the file is created, see 3 , and is unchanged on the backing storage

during the lifetime of the file. It 1s read in to core and modified when

the file is prepared for processing, see 4.2 and 4,3,

It holds the following five sectlions of informatlon:

zonebufreirel: An integer holding the relative address of the first
byte of fileparameters, see below, flrst byte -cf zone-
bufrefrel being byte one. It is used to facilitate re-
ferences to fileparameters.

kp(save) s A composite working field for holding the keypart of a
record, size = keypartsize, see 1.2,

savelength: A working field for holding the lengthfield of a record;
zero, one, or two words depending on the type of the
lengthfield.

recordcodes: The description of the key and lengthflelds ol a record

in the form of code pieces for comparing and moving
theze flelds, The formats and sizes depend on the spe-
cification of the key.

fi1leparameters: Parameters, working locatlons, and varlables describing
the records, blocks, and buckets in a format which is
independent of the specific file and known by the pro-
cedures processing the file, When the file head is read
into core some of these parameters are modified toc abe
solute addresses which are used to reference other
parts of the zonebuffer, the zone descriptor, and the
share descriptors.
The details about the above sections are not given in this paper as they
mainly are of interest for the umderstanding of the internal logic of
the system.
The total size, in bytes, of the filehead is the sum of the sizes
of each of the sbove sectlons and has at present the value:
fileheadsize =
2+
keypartslze +
(1f lengthtype = O then 0 else if lengthtype < 3 then 2 else b) +

. nkey % 24 + number of type three keyfields x 8 +
(xeypartsize + 2)}//lxdh + (1f lengthtype = O then 6 else 1) +
114

The filehead is stored in an integral number of segments, starting
at first word of the flrst segment of the area:
segsperhead = (fileheadsize - 1)//segsize + 1.

2. An Indexedpseqpential File in the Zone Buffer

During the processing of a file, i.,e., when a record is available (see),
the zone buffer holds in general the following five sections of
information:

‘filehead] bucket current current work,used by
in core table block table block insert rec 1

[
<-share(blocks) ->K-share(recs) =>
K-share(bucks) >t <~ one block ->K- one block -

-= needed buffer size if insertions are simple --X
O needed buffer size for general inserions -

Filehead holds code pieces, absolute addresses, and other parame-
ters used by the file 1 procedures. It is read from the document and mo-
dified by init file i or start file i, see 4.2 and 4.3, and is never
written back. Tt ocoupies only the Hecessary fileheadsize bytes and nor-
mally not an integral number of segments as in the document.

Bucket table holds the bucket table from the document, including
the bucket table head, but only with the number of buckets for which
there are room in the document. The buckettablesize thus satisfies the
condition:

maxusedbucks <= buckettablesize <= entrysizeXmaxbucks + 10
The buckettable is read by init file i or start file 1 and is only writ-
ten back if the contents have been changed during the processing, l.e.
if records have been deleted or inserted. The bucket table is described
in the first share of the zone, dencted share(bucks), as segsperbuck-
table segments and may thus overlap the next share as shown,

Current block table holds the block table from the last accessed
bucket. It occupies segsperblocktable segments and 1is descrived in the
second share, denoted share(blocks). If the current blocktable has been
changed, i.e. records have been inserted or deleted, it will be written
back to the document before another block table 1s read in.

Current block holds the last accessed block from the last accessed
bucket. It occupies segsperblock segments and 1s described in the third
share, denoted share(recs), If the current block has been changed, 1.e.
records have been updated, inserted or deleted, it will be written back

to the document before another block is read in.
Work is an area which only is used by insert rec 1 when two blocks

are needed in the core at the same time. The third share is then tempo-
rarily modified to describe this block. Work need not be present 1f only
simple insertions of new records are needed, see 5.8

The total minimm size, in bytes, of the zonebuffer is the sum of
each of the above sections and has the value!

zonebuffersize =

fileheadsize +
entrysize x ((segsindocument - 1) // segsperbuck + 1) + 10 +

cegsize X segsperblocktable +

segaize X segsperblock +
(if simpleinsertions then O else segsize X segsperblock)

9]

%+ The Creation of a File

An empty indexed sequentizl file with a structure as described in sec-
tion 1 is created by storing a filehead and a bucket table, describing
an empty file, in the first segments of a backing storage area. The file
can then later be initialized and processed as described in section L.

The ares

Must be a backing storage area with a segment length of 256 werds. Tt
mist be opened and closed by explicit calls of the normal standard pro-

cedures, open and close, before and after use,
The size of the area is not used before the file is initialized.

During creation the are need therefore only to be big enough to hold the
file head and the bucket table head, see below,

The file head

Will normally be generated directly into the area by a call of the ex-
ternal algol procedure head file 1, but it may also be copied from some
other document, e.g., if more files with identical structure are needed.

Choice of parameters to head flle 1

The parameters of head file i, see 5.5, determine the storage require-
ments and rumning characteristics of the file i procedures and rust be
chosen with some care. The following is a survey of the influence of
each of the parameters:

recdescr:
nkey: The number of keys determines the slze of entries in

the bucket table and the block tables and thus influ-
ences the size of share(bucks) and share(blocks), see
below, The cholce between fixed and variable record-
length has no significant influence on the rmmnning
characteristics of the system,
maxreclength: defines the minimum usable free space in a block when
insert rec 1 tries to eliminate an cverflow. If this
perameTer Ts chosen too large insert rec i will be
forced to take a too pessimistic view on the amount of
pushing together necessary and the time used for non-
simple insertions will ' be larger than necessary. In
determining whether overflow occurs or nct the actual
record length is used and maxreclength has no influence.
If a small part of a flle consists of very long re-
cords 1t may be advantageous to split these to permit
the system to run with smaller value of maxreclength,
is uzsed to determine the size of the bucket table on
the document. In core the size of the bucket table 1is
determined by the size of the document. The search
strategy in the bucket table is optimal when the docu-
ments contains maxbucks buckets and too large a2 value
of maxbucks may cause a very slight decrease in the
search efficilency.'

maxbucks:

segsperbuck:
segsperblock:

- 10

These parameters (in connection with recdescr) deter-
mines the number of blccks per bucket and thus influ-
ences the size of the blocktables, Note that share(
blocks) occuples an Integral number of segments and
that certailn combinations of blocks per bucket and
entrysize therefore gives an inefficient utilization
of core store. segsperblock defines the size of share(
recs) and the work area. The overall search strategy
will be optimal when the actual rumber of buckets and
the number of blocks per bucket both are equal to max-
bucks, but the effect on the search efficiency is ne-
glivible in almost all cases.

4, The Processing of a File

The system for processing a file with a structure as described in
1, and 2. consists of one standard integer variable, result i, and a
number of standard procedures, programmed in machine language, and in
the following denoted the file 1 proes.

The processing of the fil€ may be split up in four phases: opening,
initialization or start, record processing, and closing. This section
deseribes these four phases and the general rules for the use of the

file i procs.

L]‘. Ta Dpening

The file is opened, i.e. connected with a zone, by a call of the
normal RC 00O Algol standard procedure, open.

The number of elements needed in the zone buffer is a function of
the structure of the file, the number of segments In the document, and
whether or not the full facilities for the insertion of new records is
needed. The exact number ig given in 5., but to avoid that the programs
all should need to know the detailed structure of the file, the system
has been augmented by a small external integer procedure, buf length i,
which yields the needed length. - -

The number of shares in the zone must be three.

Exsmple Loi.1.
The zone declaration and the open call for the file <iplp:i> may

lock as follows:
begin

zone z (buf length i (<:pip:>, true), 3, stderror);
open (z, 4, <:pip:>, giveup);

4,2, Initialization

When a new file has been created 1t mist be initislized with an initial
set of records which have been sorted in ascending key order., When many
records have been inserted by insert rec i, see 5.8, further insertions
become impossible or their cost excessive indiceting that the file
should be reorganized, This is done by dumping all the records in the
file in ascending key order and using this set of records to initialize
the file,
This initialization is prepared by an open call, as described
above, followed by a call of init file 1 which will:
read, check, and modify the Tile Read,
set up an empty bucket table with as many buckets as there is room
for in the document,
set the share deseriptors of the zone to describe the three shares
share(bucks), share(blocks), and share(recs), see 2.

- 11 =

The initialirzation itself 1s effectuated by successive calls of init

rec 1, each call adding one record to the file, and it must be termina-
ted by a call of one of the procedures set read i, set update i, or set
put i. The file is now ready for record processing with the fIrst record
of The file available as the zone record, see 4.7.

The initlial set of records

The file should be initialized by as many records as possible be-
bause it is mich more time consuming to insert unsorted records one at
a time in an already initialized Tile.

If only & small set of records is available for initializaticn,
they should reflect the final distrubution of keys and they should be
spread out uwniformly through the file. This may be achieved through pro-
per use of two of the parameters to init file 1, the buckfactor and the
blockfactor. -7

buckfactor specifies the average number of blocks, useblocks, which
init rec i should use in each bucket, where:
useblocks = buckfactor X blocksperbuck.

blockfactor specifies the average number of bytes, usebytes, which
init rec i should use for records in each block, where:
usebytes = segsperblock X segsize X blockfactor,

E}{ample ll.,2,1;

The open call In example 4.1.1 may be followed by the call:

init Tile i (z, +5, «5)
which wilT specify that init rec i enly should use half of the blocks in
each bucket and half of the bytes in each block. Thus only a quarter of
the full capacity of the file can be used during initialization, but the
unused capacity will be spread out through the fiie and thus facilitate

later insertions of new records.

4,3, Start

When the file is non-empty, i.e. slready has been initialized, proc-
cessed, and closed, it is reopened for processing by an open call fol-
lowed by 2 call of start file 1 which will:

read, check and modIfy the file head,

read the bucket table, compare it with the number of segments in the

document, protest if there are fewer buckets than last time the
file was processed, and extend the bucket table if there are

more,
set the share descriptors,
read the first block table and block, and
return with the first record of the flle avallable as the zone re-

cord,
The file is now ready for record processing in read only mode, see below.

4,4, Record processing

When the file has been properly initialized or started the indivi-
dual records can be handled by means of the following procedures:

get rec 13 Makes a record with a specified key available.

next rec i: Makes the next record avaliable,

delefe rec i: Deletes the available record from the file and
T T makes the next available.

insert_;eq_i: Tnserts a new record in its proper place in the

file and makes 1t available.
This processing will take place in one of three modes:
read only mode: Records can not be changed, blocks will only be
-7 read and not written.

update mode: Records can be changed, all blocks which are read
will also be written before = new block is read,
put_modes: Records may be changed, a call of put rec i will

ensure that the block contalning the current avai-
1lable record will be written back before a new
block is read.
Transitions between these three modes esre performed explicitly by a
eall of on of the procedures set read i, set update 1, or set put 1.
Such z eall is also used to termInate the inTtializmtion or as prepara-

tion for close, see below.

4,5. Closing

A call of one of the mode-changing procedures, set read i, set_update 1,
or set put i will ensure that all relevant informsTion Ts present on The
backing storage and the file can therefore, after such a call, be clesed
by a call of the normal RC 4000 Algol procedure, close.

.6, Zone state

As the file i procs assume a specific content of the zone buffer and the
share descriptors, the zone should not be used by any procedure outside
this system, The followlng flve consecutlve values of zone state are
therefore reserved to describe a zone when it 1s used by the file 1

procs:

£0+0, read only 1: In read only mode, except after call of next_

rec io
+1, resd nmext i: In Tead only mode, after call of next rec 1.
+2, updale i: In upda¥e mode
+3, put 13" In put mode

+l, 1niTialize 1: After Call of init file 1 or init_rec_i

The zone state is checked by all the file_; procs and en illegal value
will terminate the run with an error message.
At present fO = 10.

- 14 -

4,7. Results

The rTesult of a call of a file i proc is an integer, delivered in the
standard integer variable result 1, and a zone record, the available
record. =

result 1

The value of result i after a call tells sbout the overall result
of the callj e.g.: whether or not a search for a record succeeded, that
the end of the file has been reached, that the record In the call has an

improper length field value.
The possible values of result i and their meanings are lisfted in the

specification for each procedure. Mese values are, for each procedure,
en the range from one and upwards; this makes it easy to switch on re-
sult 1 or to use it in a case statement.

Avallable record

During record processing there will always be an available record
upon return from the file i procs, To achleve this the file must always
contain at least one record and it will be regarded as cyelic; i.e. A
syrap-around’ will be performed at the end of the file.

The available record is a normal zone record and it has not been
copied from the block buffer. The system relies however on the key- and
length-fields of the record and saves therefore these before exit and
restores them at the next entry; a disastrous effect of an accidental
change of these filelds is thus avoided,

The effect of changes made in the user fields between calls depends
both on the current mode and on how the records happen to be stored in
the blocks:

Let a program perform the following sequence of operations on two
records, A and B:

cet rec 1 (z, A); coment ylelds an available record, oldhj

chefice Some user fields in the avallable record giving newh;

get rec i iz, B);

get rec i (z, A);

If A and B happen to be in the same block then the last operation will
always yield the changed version of A, 1.e. nevh,

If A and B are in different blocks then the last operation will yield
0ldA if we are in readonly-mode or in put-mode but newhA if we are in up-
date-mode, because only in the last case will the block containing A
have been written when B was accessed.

Another example, this time in put-mode:

cet rec i (z, Aj; comment yields oldAj;

chalge available record ylelding newA;

put rec i (2);

change available record ylelding newnewA;

As the block only is written when a new block 1s wanted the put rec 1
will include any changes made to the block from it was read-in Tc a new
block is neededj i.e. newnewA will be the latest version of A even
though it comes after the rut.

Tn view of the uncontrolable side effects illustrated by the above

examples the following rule should be obeyed:

12

Rule for record-updating

A nlece program will only change the contents of the user fields in
a record and only in update-mode or put-mode and only when the new ver-
sion may go out to the file.

4.8, File status

The file head and the bucket table head contain seversl paremeters which
describe the overall status of the file; e.g. noofrecs, recbytes, and
transports, which is a counter holding the number of input-output opera-
tions performed. There are also a few parameters which it is meaningful
to change; e.g. the pricelist, see insert rec i.

In principle the normal get zone - set zone mechanisms could be
used to inspect, and even change? any parts of the zone buffer, Yor
safety-reasons these mechanisms should not be used, The system provides
therefore two procedures, get params i and set params i, which allow any
part of the zone buffer to be inspecTed and selected Parts to be
changed, see these procedures for further details.

4,9, Error Handling

The different kinds of errors and other unnormal situaticns are treated
as follows:

Input-Outpud

All transports to and from the document are initiated by explicit
send-message, but they are waited for and checked by the check routine
in the normal Algol running system. Errors and unnormal situaticns con-
cerning the document are therefore handled as for any other standard in-
put-output, i.e. the block-procedure of the zone and the giveup-mask of
the open call have their usual meaning.

Output operations are normally not performed before a new content
of z buffer is needed. Whenever the ststem decides that a puffer has to
be written before a new read is performed, it notes this by setting a
write-operation in the corresponding share. In an emergency situation,
e.g. an unexpected termination of the run, the file may therefore be in
& bad shape, If the pending write-operations somehow, e.g. by analysis
of a core-dump, can be performed, this may repalr the situation. The sy-
stem contains, however, no facilltles for this,

Programming Errors

Logical errors, e€.8. 8 wrong zone state value at a procedure cali,
are treated as programming errors and will terminate the run with a run

time alarm.
The possible messages are listed in A3 and they may occur if the

Requirements specified for each procedure are not fulfilled when that
procedure is called.

Datg, Errors

Errors in record formats and other unncrmal situations arising from
the data may be detected by inspection of the result 1 value upon retwn

from a procedure call.
The user may also define that specific result i values from speci-

fic file i-proes should invoke a call of a user specified procedure just
vefore the file i-proc returns to the main program, see 5.15 for further

details,

5« Procedure Specifications

This section contains, in alphabetic order, the specifications of all
the procedures offered by the system., To each procedure, except the ex-
ternal ones, 1s assigned a number, procno i, by which the procedure is
jdentified in error messages and in the use of the test facilities, see
A3 and 5.15 respectively.

A survey of the procedures, in procno_ i order, is given in appendix
A together with the possible result i values, their meaning, and the
corresponding values of avallable record.,

5.1. External integer procedure buflength 1

Call: buflength i (filename, full_;nsert)

buflength 1 (return value, integer). Number of deubleworditems
needed in the zone buffer for processing the in-
dexed-sequential file given by filename.

filename (call value, string). The name of a backing storage
area containing an indexed-sequential file.

full insert (call value, boolean). True if a buffer with room
for general insertions is wanted.

Function: Reads the first segments of the document given by filename
into a local zone and computes the needed buflength.

Errors: Uses stderror and giveup = 0. If the needed parameters in
the file head do not conform to an Indexed-sequential file

buflength 1 will yield the value zero.

5.2+ Procedure delete reec 1

Call: delete rec i (z)
z {call and return value, zone). Specifies the file.

Funetion: Deletes the available record from the file and makes the
successor available, .

Requirements: zonestate = update 1 or put i.

Results:
zonestate: 1f the file became empty then empty i else unchanged.

procno it g

result 1: Availsble record:
1 Deleted The successor to the available.
2 Deleted, end of file The first in the file.

3 Not deleted, only one record left The one

- 17 -

- 18 -

5.3. Integer procedure get params 1

Call: get params 1 (z) One or more pairs:(paramno, val)

get_params_1i (return value, integer). Overall result of call:

01 A1l parameters processed.
> 0: Exit on error in parameter pair number get
params i,

z {call value, zone). Specifies the file.
paramo (call value, integer). Identifies the wanted value.
val (return value, integer). Receives the value identified by

Pararmo.

Function: vields the values of a selected set of parameters from the
zone buffer of an Indexed-sequential file.

The possible values of parammo and their meanings are listed
in appendix B.

Requirements: zone state = any file_; state.

Results: No change of the file.
procno_;: 12

5.4, Procedure get rec i

Call: get_rec 1 (z, key)

z {call and return value, zone). Specifies the file.

xey (call value, real array). A record, at least up to and in-
cluding all the key fields, with the same key as the one to
search, It mist be stored in the lexlcographically first

elements of an arbitrary real array.

Tunction: Searches a record with the specified key and makes it
available.

Requirements: zonestate = read only i, read next i, update_i, or put_i.

Results:
——sSestate: if zonestate = readnext 1 then read only i else un-
changed. - - -
procno 1 T
result 1% . Avallable record:
1 Found The found.
2 Not found The successor to the specified.
3 Not found, end of file The first in the file.

5,5, External procedure head file 1

Call: head file i (z, recdescr, nkey, maxreclength, mexbucks,
= = = segsperbuck, segsperblock)

- 10 -

Z (call and return value, zone). Specifies the docu-
ment o which the generated head 1s cutput.

recdesr (cail value, integer array). A two-dimensional ar-
ray specifying the types and relative positions of
the key- and length-flelds of records.

nkey (call value, integer). The number of key fields in

records,
maxreclength (call value, integer). The maximum number of double-

word 1tems in a record.
(call value, integer). The maximum mumber of bu-
ckets to provide for in the bucket table of the

final file.

maxbucks

segsperbuck (call velue, integer). The number
bucket in the file. Includes the
block table.

segsperblock (call value, integer). The number
block in the file,

Function: Generates the head of an indexed-squential

of segments in a
segments for the

of segments "1 &

file and a bucket

S ——

table describing an empty file and outputs it Lo the docu-
ment connected with z.

The zone and the document

The zone must be open. Only one share is needed, but it should be
able to hold at least nkey X 10 + 35 double-words as one record in an
integral number of segments. Note that this zone need not have anything
+o do with the zone in which the created file later is processed.

The dociment will be positicned at C, O and the generated file head
will be cuiput as at most two blocks by means of outrec.

The content of the file head 1s independent of the document to
which it is outpub. It may be copled to any number of documents and thus
be used as head of different files which use identical record formats

and bloek~ and bucket-structure.

Recdeser, nkey, and maxreclength

The array recdescr is assumed to be declared as:
integer array recdescr (1:nkey+1, 1:2)
Each of the first nkey rows describes one key field and row nkey +
1 describes the length rield. The first colurm holds the field types and
the last colum the relative positions coded with the values described
in 1.1. If we have 1 = maxreclength X 4 then only the following relative

positions are legal:

type: relative position:
+ 1 1,2,3,000y1=1,1
: 2 2,“,6,.0.,1"2,1
: 5 LI-,6’8, 00031-2,1
Th 4,6,8, 400,1-2,1

Constant length records are coded by recdescr{nkey+i, 1) = C and rec-
descr(nkey+1, 2) = anything, The record length is then assumed to be

maxreclength,

- 20 -

Example

The record in the example in 1.1 may be described by

nkey:= 33

recdescr%],1):= s recdeser(i,2):= 10;
recdeser(2,1) 1= =23 recdeser(2,2}:= 2;
recdescer(3,1):= =13 recdeser(3,2) 1= 5;
recdeser(b, 1} := 13 recdescr(b,2) 1= 5;

Errors

head file i may terminate the run with a run time alarm.
Pcssible causes:
recdescr <i> Error detected during processing of field 1 in rec-
descr or, if i > 20lh, key exceeds capacity of a
file head, only possible for nkey > 50
head 1 p <I> Other errors in parsmeters to head file 1.
- Trhe value of i indicates the further cause:
1 Block too small, must at least be able to hold
two records of maxlength.
2 PBucket too small, already the first bucket must
hold at least one btlock.
0 Other errors, normally sbsurd, e.g. negative,
Tarameters,

5.6. Procedure init file 1

Call: init file 1 (z, buckfactor, blockfactor)

z (call and return value, zone). Specifies the file.

buckfactor (eall value, real)., The number of blocks, useblocks,
to be used in each bucket during initialization is
given by: useblocks = buckfactor X blocksperbuck.

blockfactor{call value, real), The number of bytes, usebytes, to
pe used in each block during initializaticn is given
by
usebytes = blockfactor X segsize X segsperblock,

Functions Prepares an indexed-squential file for initialization.

zonestate = 0 after opening of an indexed-sequentialfile

Requirements:
which may be empty or non-empty.
The zone nust have three shares and a sufficiently large
buffer, see h.1.

Results:

zZonestate: initialize i, i.e. ready for init_;ec_i.
proeno i: 1

result i: Available record:
1 Ready None
2 Ready, only room for simple None

insertions in the zone buffer

- 21 -

5.7. Procedure init rec i

Call: Init rec 1 (z, reccrd)

z (call and return value, zone). Specifies the file.
record {call value, real array). The record to be added stored
in the lexicographicelly first recordlength elements of

an arbltrary real array.

Function: Tnitializes the file with the next of a sorted set of re-
cords; buckfactor and plockfactor, which have been gspecified
to init file i, will determine when a new bucket or block is

teken into use.

Requirements: sonestate = initilalize i after call of init_file_; or

init rec_i.
. Results
= estate: initialize 1, i.e. unchanged.

proenc i: 2

result 1t Available record
1 Record Added None.
2 Record not added, flle is full None.
% Record not added, improper length None.
L Record not added, not ascending None.

key

5.8, Procedure insert rec I

Cail: insert rec i (z, record)

z (call snd return value, zone). Specifies the file.
record {call value, real array). The record 1o be inserted
stored in the lexicogrephically first recordlength ele-

. ments of an arbitrary real array.

Function: Inserts the specified record in 1ts proper place in the file
and mekes it available, See below for detalls.

Requirements: zonestate = update 1 or put_i.

Resultsi
zonestate: unchanged

procne 1: 10
result i: Availavle record:

1 Inserted The inserted
5 Not inserted, record with the The one in the file

seme key already in file.
3 Not inserted, too expensive, can The successor to the specified

only occur with a modified ensertion

strategy, see below,
L Not inserted, file is full The successor to the specified

1
N3
"
1

5 Hot inserted, improper length The successor to the speciiie’
6 Not inserted, there was no room The succesce Lo the gpesiiing
for the record in the block to
which it belonged and the zone
puffer is too small for a more
complicated insertion, see below.

Insertion Strategy

If there is room for the record 1n the block to which it belongs, 1t can
be inserted without further trouble; otherwise a more complicated stra-
tegy is used. This requires an extra block in the zcne buffer. Unless
this block is present 1t is therefore pure luck if the insertion succeeds.

The following describes the full insertion stratecy, it may be
skipped unless you want to modify 1t.

The organizaticn of the flle requires that records are stored in ascen-
ding key-order., This means that the insertion of a new record in general
will invoive a reorganization of some parts of the file in order to get
room for the record in the proper block.

The cost of an insertion, in terms of segment transports and other
use of resources, depends strongly on how this reorganization is done.
The insertion algorithm implements the following scheme which, by taking
prices imposed on the involved resources Into account, tries to strike a
reasonable balance between a fully automatic and a user controlled stra-

tegy:

The file head holds a Xist of relative prices imposed on resources and
wlth initial values assigned by Init file i cr startﬂfile_i:

Name, initial value: Meaning:

emptybuckprice, The value of having an empty bucket,
emptyblockprice, The value of having an empty block.
compressprice, The initial cost of compressing, 1.e.

of the pushing together of records in
congecutive blocks.

priceperblock, The cost of (two block transperts +
central processor time} for one block
involved in compressing.

priceperbuck, The cost of (two block transports + two
block table transports + central pro-
cessor time) for moving an empty block
over cne bucket.

pricelimit, The maximum price accepted for an in-
sertion. If the total cost, as computed
below, exceeds pricelimit then the in-
gertion will not be done.

These prices is used to compute the total cost of an insertion in step
2, 3, and L of the following 7 steps which the algorithm goes through:

1: There is room for the record in the block which it belongs:
The insertion 1s done without further analysis,

Otherwise the insertion will push one Or more records ocut of the

block and thus create an overflow, and:

- 25 -

2: A pushing together of records in at most n consecutive blocks
will absorb the overflow:
cost: n X priceperblock + compressprice.
and/or:

3: An empty block, not more than n buckets removed from the cur-
rent, can be Inserted In the block table after the current
block and can thus absorb the overflow:
cost: n X priceperbuck + emptyblockprice; n may be Zero;
and/or:

s+ An empty bucket can be inserted in the bucket taple and a block
from this bucket used as in 3:
cost: emptybuckprice;
ore

5: Nome of the situations 2, 5, or I} exists: The insertion is not
possible, the file is regarded as full,
exit with result 1 = L; e

6: None of the costs computed in step 2, 3, or 4 are less than
pricelimit: The insertlon is too expensive,
exit with result i = 3;

7: The insertion is possible and 1s done according to the smallest
cest;
exit with result_} = 1.

Changing the strategy

A ecall of set_params_i can be used to set new values in the pricelist.
The strategy can thereby be modified within the limits imposed by the

above algorithm.

Example 5.8.1.

Let us assume that we want to insert a wholw bunch of, say, ’Jen-
sen’s’ in a file which is sorted according to first and last name.
It may then be useful to force the system to take an emply bucket
into use immedlately, instead of wasting time on a more and more
time consuming compressing. Thils can ve done by assigning a low va-
lue to empty buckprice and a high value to compress price.

Example 5.8.2.

In an on-line system it may be necessary to reject insertions which
are too time consuming. This can be done by assigning a proper va-
lue to pricelimit. The number of rejected insertions may be counted
and be used to indicate when a reorganization of the total file is

required.

5.9, Procedure next rec 1

Call: next rec i (z)
z {call and return value). Specifies the file.

Function: Makes the next record available,

S ——————

- 24

Requirements: zonestate = read only i, read next i, update i, or put 1.

Results:
zonestate: if zonestate = readonly i then readnext i1 else unchanged
procno i: 8 - -
result 1: Avallable record:
1 Found The successor to the available.
2 Found, end of flle The first in the Tile,

5.10, Procedure put rec 1

Call: put rec 1 (z)
z (call end return value, zone). Specifies the file.
Function: Notes that the current block, l.e, the block containing the

currently available record, must be written back to the do-
cument before a new block 1s read or the mode 1s changed.

Requirements: zonestate = update 1 or put i.

Results:
zonestate: unchanged

procno_;: 11
result i Avallable record:

1 Dohe Unchanged

5.12. Integer procedure set params 1

Call: set params i (z) One or more pairs:(parammc, val)

set_params_i (return value, integer). Overall result of the call:

0: All parameters processed.
. > 0: Exit on error in parameter palr number set_
params 1.

z (call and return value, Zone). Specifies the file,

paramno (call value, integer). Identifies the parameter in the
zone buffer to which val is assigned.

val (eall value, integer). The value to be assigned to the para-
meter ldentified by parsmmo.

Fanction: Assigns values to a selected set of parameters in the zone
buffer of an indexed-sequential file.
The possible values of parammo and their meanings are listed

in appendix B,

Requirements: zonestate = any file_i state.

Results: Affects only the parameters assigned to.
procno_i: 13

- 25 -

5.13, Procedure set put 1

Call: set put 1 (z)

L4

z (call and return value, zone), Specifies the file.

Functlon: Terminates the ecurrent mode and sets put-mede.

Requirements: zonestate = any file_} state except empty 1.

Results:
zonestate: put_i.

procno 1: 5 s }
result 1i: . Available record:

1 Normel mode change Unchanged.
2 Initislization terminated The first in the file.

5.14, Procedure set read i

Call: set read i (z)
z (call and return value, zone). Specifies the file.

Function: Terminates the current mode and sets readonly-mode,

Requirements: zonestate = any file_i state except empty 1.
Results:
= Zonestate: read only i

procno i: 4 - - ' _

result 1: Avallable record:

1 Normal mode change . Unchanged.

2 Initialization terminated . The first in the file,

5¢15a Integer procedure set test 1

Call: set test i (z) Optional parsmeter: (test proc)
Une or more pairs:(procno i, results)

set test 1 (return value, integer). Overall result of call:
= T -1: Exit on error in first parameter,

0: All parameters processed.
> 03 Exit on error in parameter palr number set
test 1,

z (call and return valle, zone). Specifies the file.
test _proc (cal value, procedure). The name of & procedure which
mugt be declared at the same level as the zone or at
an outer lewvel.
It mist conform to the declaration:
procedure test_proc (z, record, procno_ i);
zone z} array record; integer procno i,

]
o
[N

1

It will, when specified, see below, be called just
before the exit from a file i proc with the follow-
ing parameters: -
z: The zone of the flle 1 proc call.
record: The array of the file 1 proc call or,
1f not present, the zone z,
procno 1: The identification of the file i1 proc.
The paremet®r test proc may be left out if it al-
ready has been given in a previous call of set test i.
procno i (call value, integer). Specifles the result i values
= for which test proc should be called upon exit from
the file 1 proc identified by procno 1.
Any number of result i values can be specified in
one parameter by representing each resuit i value as
one digit in the decimal representation ol results.

Function: Specifies a procedure to be called upon exit from certalin
file 1 procs with certain result i values.

The parameter palrs,proeno 1 - results, are processed in order and oniy
specified changes in the sTtuation will be effectuated but with the fol-
lowing additional conventions:
procno 1 = 0 denotes all file 1 proes,
results = 0 denotes clearing of sll priviously specified result 1
values for procno i. -
Non-existing result i Values are lgnored.

Requirements: zonestate = any flle i state.

Results: Affects only the test situation,
procno_i: 14

Examples:

The ecall
set test 1 (z, 0, 0)
will preVent any further calls of the current test proc.

The call
set test 1 (z, testit, 0, 123456)
w11Y ensire that the procedure testit will be called upon exit from

any file i1 proc with any result_i and thus provide a means for su-
pervising the main program. -

The call

set test i (=, through, 0, 0, 8, 2)

wilT invoke a call of the procedure through when, and only when
next rec i has reached the end of the file,

next_rec_1, proeno 1 = 8, ylelds result 1 = 2 at end of file.

5.16, Procedure set update 1

Call: set_update 1 {z)

z (call and return value, zone). Specifies the file,

- 27 -

Function: Terminates the current mode and sets update-mode,

Requirements: zonestate = any file_i state except empty;;.
Results:
“ Zonestate: wupdate i.

procno i: 6 - ,

result 1: Avallable record:

1 Normal mode change Unchanged.

2 Initialization terminated The first in the file.

5.17. Procedure start file 1

Call:

start_file 1 (z)

z {call and return value, zone). Specifies the Tile.

Function: Prepares an indexed-sequential file for record processing.

Requirements: zone state = 0 after opening of an indexed-sequential-

Results:

file contalning at least one record.
The document must hold at least the same number of bu-
ckets as was used last time the file was open, 1t may

hold more,
The zone rmst have three shares and a sufficlently large

buffer, see

zonestate: readonly 1, i.e. readonly-mode.
proenc i: 3 -

result 13 Available record:
1 Record available The first in the file,
2 Record available, only room The first in the file,

for simple insertions in the
zone buffer.

- DHE

Appendix A, Survey of the Procedures Offered by the dysten

A1, For Creation and Opening of an Indexed-sequentisl Flle

head file 1 (see 5.5). External procedure which generates a file head.

buflength 1 (see 5.1). External procedure which yields the buffer size
- needed for ‘processing a file.

A2, For Processing an Indexed-sequential File

Each procedure is described below in order of their identification num-
ber, procno 1, and with possible values of result 1 and avallable record.

proeno i, name result i1 value and meaning Avallable reccrd
. 1, init file_i 1 Ready None
- 2 Ready, short buffer None
2, init rec 1 1 Record added None
-7 2 File is full None
3 Improper length None
4 Not ascending key None
3, start file 1 1 Ready First in file
= T 2 Ready, short buffer First in file
L, set read i 1 Ok Unchanged
- T 2 Ok, after initialization First in file
5, set _put 1 1 Ok Unchanged
- 2 Ok, after initislization First in file
6, set update i 1 Ok Unchanged
. - - 2 0k, after initialization First in file
T, get rec 1 1 Found The found
- T 2 Not found The successor
3 Not found, end of file First in Tile
8, next rec_1 1 Found The next in the file
- 2 Found, end of file First in file
g, delete rec i 1 Deleted The next in the file
~ T 2 Deleted, end of file First in file
3 Not deleted, one record left The one left
10, Insert rec 1 1 Inserted The inserted
= T 2 Already in file The one in the file
3 Too expensive The successor
4 FPile 1s full The successor
5 Improper length The successor
6 Short buffer The successor

11, put rec 1 1 Done Unchanged

- 25 -

The following utility procedures do not change result i1 or available re-
cord and they can not invcke a call of the test proc:™

12, get_params_i
15, set_params_i

14, set test i ro)

A3, Alghabetic List of Alarm Caunses

The system adds the messages below to the list of possible alarm causes
from the standard procedures of RC 4000 Algol,

head i p <I> Parameter error in call of head file i:
i = 1: Not room for two records in a block,
2: Not room for at least one block iIn the first
bucket.
0: Other illegal parameter values,

prep 1 <i> Error during init file i, init rec i, or start file i:

i =1: Too few sezmenTs in the document. -7
2: The bucket head is not consistent.

: Too small a zone buffer.

: The file head is not consistent.

: Not three shares.

: Zone state < Q.

Empty file after start file_i or mode change.

=1 Ovan AN

recdeser <i> Error or inconsistency in the record description in the
call of head fille 1.
i < 204h: Error in field 1.
1 >= 204l4: Key too big. '

state 1 <I> Zonestate error in call of eny file 1 proe:
i = zonestate X 100 + procno 1.

- 30 -

Appendix B, Parameters in the Zone Buffer

The ilsts below defines the values of parammo to be used in calls of

get params_; or set params 1.
The lists may be extended When it appears that more parameters are of

interest to the user.

B1. parammc values to get params i1:

paramo, name, meaning

1, recsinfile Number of records in the file

2, recbytes Number of bytes used for records

3, transports Number of input or output operations performed since

the processing was started.

4, pricelimit For 4 - 9, see 5.8, insert rec i,

5, emptybuckprice -

6, emptyblockprice

7, compressprice

8, priceperblock

9, priceperbuck

10, computed cost The cost computed in the last call of insert_rec_}
B2, paramo wvalues to set params i3

The following of the parameters above may also be assigned to by set_
parems i with vaiues in the intervals shown:

parammo, name, legal values

pricelimit
emptybuckprice
emptyblockprice
compressprice
priceperblock
priceperbuck

Q0 <= val <= upper limit for integers
0 <= val < 2048
0 <= val < 2048
0 <= val < 2048
0 <= val < 2048
0 <= val < 2048

