
EF SREGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

55-D99

November 1970

Jørn Jensen

Indexed Sequential Files in RC 4000 Algol

RC 4000, Basic Software, Standard Procedures, Indexed

Sequential File, Algol

Describes a specific structure of an indexed sequential

file stored in a backing storage document and a set of RC 4000 Algol

standard procedures for processing such a file. 32 pages.

mø

IE SYSTEM UBRARY
DK-2500 VALBY - BJERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

Introduction sees 00000 esse 0 eee se see ne sener

1. The Structure of an Indexed Sequential File on

the Backing Storage sveoeeeseeseee0e0s0ee00e00e eos eos eee eee se ee0

1.7 Records secseo0s...e......

1.2 Block tables ssssseeveseseerersserereseoveeresse
 sees senere eee

1.3 Bucket table seeeeessseeeesers00000s
s see 00000800 esse 00 esse

1.4 File head secco ser oo sees e ves e ses eee oe ore

...sc0se0ee0esesssveeos00oeeseee sense

2, An Indexed Sequential File in the Zone Buffer sessererereeeeerere

3. The Creation of a File seere veer ears ease vee see

4, The Processing of a File sees oreroeese 00 ser see ses eee serene

4,1 Opening ssscesesseseseseeee esse esse seen se seen es sees eo Des ee

4,2 Initialization sveeeseeeeeseeeee voor eres sees osse eeeee

4,3 Start seeseosersee...e
4,4 Record processing «...

4,5 Closing seernes neo eee re eos Des eve senere eee

4,6 Zone state vereserneeeeeeeesessse0ereseeoenoe osse ss evne sees

4,7 Results seeeeseeeseee0seose esser 00 esse oe see se tese eee enes

4,8

4.9

......080e00esse0eeeeeee eos eos

8000000
 serene eee server

File status sees oser eee ses esse eee ene 0 ene eee

Error handling sseeeeseee0o0oesee0cenesoeeeeerssesseneeseeseees0

5. Procedure Specifications sssereeseeerecereseesereesesserereserese

buflength I veeeseseesesserese0ees osse sees se eo eee seere se 0

delete rec Ii sereeesse0snsaseseroseeeereseesoen oste eseee

get params i sesseeserseneeeernsessessenosee ser 0 sees ver 00

get rec I svorseessesssseneeeserererseneovereessesseeeseesene

head file i seeseeseeeee0esssesesee eee ses see es eee ves seere es

init file i seeceeeesse0e0oeesees sees enes es eee sove eeeees 0

init rec i ovseeeeses0osseeeesueorerneereroeenesesseeveserere

insert rec i seere 00 ces e eee os rese ere tese

>
6

7
8

9 next rec i seeeerseseeeo0seseeeosere0eee esse nes ene ere eee

1

1

1

1

1

1

1

1

e+ & & FAN DD mm

put rec i seereees0cens0eeenereese oser 0s0 oe eve ...0............

result Ii secsseeesseneesesee0sre0esserseeeeeeseer 00 ses 00000

set params I seesseesese0eseseesesesorseneeuoseeree veere e

set pPUL i sees sees oo rese see ones en oe se eee see

[ej

1

2

3
hk set read i serereeeossess00s00sse0eeeeeoeeeneeseesesenseeeee

5
6

7

0000 eee ces eee seereset test i seveere...

set update i ses

start file i seeceseseseeseeceseeseseseree ser sees Dee seer ee
.........00sssseeovsesseeen eee veer seet eeMJD NJTNST MØNS MJD KØ NJT NJ NT NT MJD SUT SUT NUT AUT UT

Appendix A., Survey of procedures seeseeeceoe0orssereseeeeessereeecee

A1 For creation seeesse00e00mes0s0e00e0osseenessseeseroseeteneer

A2 For processing seseceseeeeseeeeeeeesvoresoseroeserverseeso...se

A3 Alarm causes sereesessenoooeseseeeeverosereser
ese sene essere

Appendix B. Identification of parameters in zone buffer seeereses0oee

B1 To get params Ii seeeseseseose0ero0esee0osoro0s esser serene ee

B2 To set params Ii seseseeveeerserereoseoeeeeesss sees esse ever

Last Page seeren see eee see ves De eee so ses see esse se sees eesee

Gun ÆD TO
D

11

11

11

12

13

13

13

14

12

12

17

17

17

18

18

20

21

23
24

rel

25

25
26

27

28

28

28

29

30

30

30

30

An indexed sequential file is basicly a sequential file, stored on a

random access medium, and augmented by one or more levels of index tab-

les to facilitate random access to records specified by a key.

—— With two levels, buckets and blocks, the search for a record with a

specific key proceeds as follows:

A search for the key in the bucket table, which is common for the

whole file, will yielå a part of the file, the bucket, in which to con-

tinue the search.

Each bucket is preceded by a block table and a search in this will

yleld a part of the bucket, the block, In which the record may be found,

Tme inherent characteristics Tor this type of files are:

1. Fast sequential processing of the whole file, comparable to a

stralightforward sequential file,

2, Fast random access for inspecting and updating of records speci-

filed by their keys

3. Fast deletion of records

4. Slow insertion of new records in a file, especially when the

file is pretty fulle

This paper describes the RC 4000 Algol implementation of an in-

dexed sequential file organisation with two levels of index tables.

The system can be regarded as an extension of the set of the high

level zone procedures and works within the same framework, It consists

of a set of procedures to set up and process an indexed sequential file

in an existing backing storage document which has been opened in a zone.

1. The Structure of an Indexed-sequential file on the Backing Storage

Tne file starts at segment zero of the area and consists of a file head,

a bucket table, and a number of buckets. Each bucket except the first

occupies segsperbuck consecutive segments.

Picture of the file:

file bucket first second last

head table bucket bucket bucket

Cam segsperbuck -=—>K--segsperbuck=- -= -- K-=-segsperbuck-=

SEE At most maxbucks buckets 000000 LL meer

The file head and the bucket table oeccupy an integral number of segments

each, and the first bucket occupies only what is left of the first

segsperbuck segments.

Each bucket consists of a block table, which occupies an integral number

of segments, followed by as many whole blocks as there is room for in the

bucket, leaving a possible rest unused.

Each block occupies segsperbloek consecutive segments.

Picture of one bucket:

block first last unused
table block block

K--segsperblock-=A «== == K--sSegsperblock-=>K-=-rest--->

(maybe 0)
———= One bucket ==)

Each block consists of an integral number of records (possibly zero)
stored tightly together in ascending key order starting at the first

byte of the block and leaving a possible rest unused,.

ub(recs) denotes the number of bytes used for records, see 1.1.

Picture of one block:

first second third last unused
record record record record

- ub(recs) -—>

mmem= One block mmm)

The file head describes the structure of records, blocks, and buckets

in a form, which is convenient for the internal logic of the standard

procedures processing the file.

The bucket table forms the first level of index tables and contains

one entry for each bucket in the file deseribing the current content of

that bucket.

The block tables, one for each bucket, form the second level of

index tables. The block table for a given bucket contains one entry for

each block in the bucket describing the current content of that block.

The structure and contents of records, index tables, and the file

head are described below.

Each record consists of zero or more user fields, a key consisting of an

ordered set of key fields, and maybe a length field, The formats and con-

tents of the user fields are irrelevant to the system. The key- and

length-fields are described by code pieces in the file head. Tnese de-

seriptions are common for all recorås in the file.

Key fields

The key is an ordered set of one or more key fields the value of which

is wnique identification of the record within the file, Each key field

is characterized by a fielå type, which specifies the size of the key

field and how the value of it is represented, and a relative position

of the field within the record, The total number of key fields is deno-

ted nkeye

The possible types, the number of bytes in the corresponding key

fields, and the values by which they are specified to the system (see

5.5, head file i) are:
type: nwber of bytes: value:

12-bit signed integer 1 + 1

integer 2 F 2

long 4 t 3

real 4 FU

The sign of the type is used by the comparison rule, see below.
mme relative position of a field is the byte number within the re-

cord of the last byte of the field, the first byte being byte one.

Comparison rule

The keys of two records can be compared, i.e. the relations key(A) <

key(B), key(A) = key(B), and key(4) > key(B) are defined for two records,

A and B. If each key is composed of nkey keyfields then the comparison

rule is defined by the following (not pure algol) algorithm which com-

pares the key flelds, arithmetically according to type, two and two:

for i:= 1 step 1 until nkey do

begin

compare:= (keyfield(A,i)-keyfield(B,1))xsien(type(i)) ;
if compare <> 0 then i:= nkey

end;

compare holds now the result of the comparison and we define:

compare < 0 means key(4A) < key(B).
compare = 0 means key(A) = key)
compare > 0 means key(4A) > key(B).

Records are always stored in the file in ascending key order as defined

by the above; 1.6. in ascending order of the key field values for posi-

tive types, but in descending order of the key field values for negative

types se

Length field

The length field holds the record length, expressed as number of double

word items, and is, just as a key field, characterized by a type and a

relative position. Only non-negative types are meaningful for the length

field.

If all records in the file have the same length, the length field

may be absent, This is specified to the system by a type value = zero,

in which case we have

recordlength = maxreclength, see head fille i, 525«

Mme different fields of a record may overlap each other in any manner as

illustrated in the following example where the length fieid and the

third key field occupies the same byte. .

Example

Let the key- and length-fields be specified by

type relative position

1. key field 4 10

2. key field -2 2

3. key field 1 5

length field 1 5

then record A will precede record B in the following picture:

byte number:

1 5 10 15

A: 2137 4 3.71 —

B: 4574 3 3.71

K- k2 -d > k3 K- K- k1 ->

«> 1f K=

mm 3x4 = 12 bytes —=

Keene 4xh = 16 bytes 55.

1.2. Block Tables

Each entry in a block table describes one block and consists of the

following three fields: i

ub(recs): An integer holding the mmber of bytes occupied by records

in the blocke

sn(recs): An integer holding the segment number for the first segment

of the block.

sn(recs) may thus be regarded as the identification of the

physical block.

kp(recs): A composite field consisting of the key fields of a record

packed together in consecutive words and with & value such

that:

kp(recs) > kevlrecords preceding the block) and
kp(recs) <= key(first record In the block).

kp(recs) may thus. be regarded as the identification of the

logical block.

The size, in bytes, of one entry in a block table, or in the bucket

table, see below, is given by:

entrysize = 4 + keypartsize, where:

keypartsize = 2 X mumber of words used for key flelds in a record,

Atta!

In the above calculation of keypartsize two successive keyfields of

type £ 1 are only counted as one worå whereas a single keyfield of

type + 1 counts as & whole word. The algorithm is:

keypartsize:= 0;

for i:= 1 step 1 until nkey do

begin

fieldsize:= abs type(1); if flelådsize = 3 then fleldsize:= 4;
if fleldsize > 1 then keypartsize:= keypartsize + keypartsize mod 2;

keypartsize:= keypartsize + fieldsize

end;

keypartsize:= keypartsize + keypartsize mod 2;

The block table for a non-empty bucket, i.e. a bucket which contains

at least one record, consists of the entries describing non-empty blocks,

stored in ascending kp-order, followed by the entries describing empty

blocks. In these last entries only the value of sn is relevant as the

content of the block itself is undefined.

The size, in bytes, of a block table is given byt

blocktablesize = entrysize X blocksperbuck, where

blocksperbuck = segsizeXsegsperbuck//(segsizexsegsperblocktentrysize) ;

segsize = number of bytes in one segment = 512.

A block table is stored in an integral number of segments:

segsperblocktable = (blocktablesize -1)//segsize + 1.

163. Bucket Table

Each entry in the bucket table describes one bucket and consists of

the following three fields:

ub(blocks): An integer holding the relative byte address of the last

non-empty entry in the block table for the bucket, the first

entry having byte address zero; 1.e.:

ub(blocks) = entrysize X (number of nonempty blocks - i).
sn(blocks): An integer holding the segment number for the first segment

of the blocktable for the bucket.

sn(blocks) may thus be regarded as the identification of the

physical bucket.e

kp(blocks): A composite field consisting of the key fields of a record

packed together in consecutive words and with a value such

that:

KPÅ rocks) > key(records preceding the bucket) and
kp(blocks) <= key(first record in the bucket).

kp(blocks) may thus be regarded as the identification of the

logical buckete

entrysize and keypartsize is defined as for the block tables above.

The bucket table consists of a bucket table head followed by the

entries describing non-empty buckets, stored in ascending kp-order,

followed by the entries describing empty buckets. In these last entries

only the value of sn is relevant as the content of the bucket itself

is undefined.

mme bucket table head consists of five integer flelds which describe

the current contents of the bucket table and thereby of the whole file:

maxusedbucks: Number of relevant bytes in the bucket table, including

the bucket table head; i.e.:

maxusedbucks = entrysize X number of buckets which are or

have been nonempty during the lifetime of the file + 10;

recbytes: Total number of bytes occupied by records in the file,

noofrecs: Total number of records in the file.

ub(file): Relative address of the last non-empty entry in the

bucket table, the first entry having byte address zero;

les:

ub(file) = entrysize X (number of nonempty buckets - 1).
sn(file): Segment nwiber for the first segment of the bucket table.

Note that maxusedbucks is the first word on this segment.

The size, in bytes, of the bucket table is given by maxusedbucks, but

it is stored in an integral number of segments which can hold a bucket

table with maxbucks entries:

segsperbucktable = (entrysizexmaxbucks + 10 - 1)//segsize + 1;

1.4. File Head

The file head describes the structure of the records, blocks, and buckets

of the file as specified in the preceding sections. It is generated when

the file is created, see 3 , and is unchanged on the backing storage

during the lifetime of the file. It is read in to core and modified when

the file is prepared for processing, see 4,2 and 4,3.

It holds the following five sections of information:

zonebufrefrel: An integer holding the relative address of the first

byte of fileparameters, see below, first byte of zone-

bufrefrel being byte one. It is used to facilitate re-

ferences to fileparameters....

kp(save): A composite working field for holding the keypart of a

record, size = keypartsize, see 1.2.

savelength: A working field for holding the lengthfield of a record;

zero, one, or two words depending on the type of the

lengthfield.

recordcodes: The description of the key and lengthfields of a record

in the form of code pieces for comparing and moving

these fields. The formats and sizes depend on the spe-

cification of the key.

fileparameters: Parameters, working locations, and variables deseribing

the records, blocks, and buckets in a format which is

independent of the specific file and known by the pro-

cedures processing the file, When the file head is read

into core some of these parameters are modified to ab»

solute addresses which are used to reference other

parts of the zonebuffer, the zone descriptor, and the

share descriptors.

The details about the above sections are not given in this paper as they

mainly are of interest for the understanding of the internal iogic of

the system.

The total size, in bytes, of the filehead is the sum of the sizes

of each of the above sections and has at present the value:

fileheadsize =

2 +

keypartsize +

(1£ lengthtype = 0 then 0 else if lengthtype < 3 then 2 else 4) +

e nkey x 24 + number of type three keyfields X 8 +
y Fevrartsize + 2)//4x + (if lengthtype = 0 then 6 else 14) +

1143

The filehead is stored in an integral number of segments, starting

at first word of the first segment of the area:

segsperhead = (fileheadsize - 1)//segsize + 1.

- <

2. An Indexed=-sequential File in the Zone Buffer

During the processing of a file, i.e. when a record is available (see),
the zone buffer holds in general the following five sections of

information:

filehead! bucket current current work, used by

in core table block table block insert rec i

I
K-share(blocks)->K-share(recs) ->

K=-share(bucks)-Å K- one block -X- one block =>

<= needed buffer size if insertions are simple -->

<= needed buffer size for general inserions =D

Filehead holds code pieces, absolute addresses, and other parame=

ters used by the file i procedures. It is read from the document and mo=

difiled by init file 17or start file i, see 4,2 and 4,3, and is never

written back. Tt ocfupies only the necessary fileheadsize bytes and nor-

mally not an integral number of segments as in the document.

Bucket table holds the bucket table from the document, including

the bucket table head, but only with the number of buckets for which

there are room in the document. The buckettablesize thus satisfies the

condition:

maxusedbucks <= buckettablesize <= entrysizexuaxbucks + 10

Me buckettable is read by init file i or start file i anå is only writ-

ten back if the contents have been changed during the processing, i.e.
if records have been deleted or inserted. Tne bucket table is described

in the first share of the zone, denoted share(bucks), as segsperbuck-

table segments and may thus overlap the next share as shows

Current block table holds the block table from the last accessed

bucket. It occupies segsperblocktable segments and is described in the

second share, denoted share(blocks). If the current blocktable has been

changed, i.e. records have been inserted or deleted, it will be written

back to the document before another block table is read in.

Current block holds the last accessed block from the last accessed

bucket. It occupies segsperblock segments and is described in the third

share, denoted share(recs). If the current block has been changed, i.e.

records have been updated, inserted or deleted, it will be written back

to the document before another block is read in.

Work is an area which only is used by insert rec i when two blocks

are needed in the core at the same time. The third share is then tempo=

rarily modified to describe this block. Work need not be present if only

simple insertions of new records are needed, see 5,8.

The total minimm size, in bytes, of the zonebuffer is the sum of

each of the above sections and has the value:

zonebuffersize =

fileheadsize +

entrysize X ((segsindocwment - 1) // segsperbuck + 1) + 10 +

segsize X segsperblocktable +

segsize X segsperblock +

(if simpleinsertions then 0 else segsize X segsperbiock)

[9]

An empty indexed sequential file with a structure as åeseribed in sec-

tion 1 is created by storing a filehead and a bucket table, desceribing

an empty file, in the first segments of a backing storage area. The file

can then later be initialized and processed as described in section 4.

The area

Must be a backing storage area with a segment length of 256 words. It

must be opened and closed by explicit calls of the normal standard pro=

cedures, open and close, before and after use.

The size of the area is not used before the file is initialized.

During creation the are need therefore only to be big enough to hold the

file head and the bucket table head, see below.

The file head

Will normally be generated directly into the area by a call of the ex-

ternal algol procedure head file i, but it may also be copied from some

other document, e.g. if more files with identical structure are needed.

Choice of parameters to head file i

The parameters of head file i, see 5.5, determine the storage require=

ments and running characteristics of the file i procedures and must be

chosen with some care. The following is a survey of the influence of

each of the parameters:

recdeser:

nkey: The number of keys determines the size of entries in

the bucket table and the block tables and thus influ-

ences the size of share(bucks) and share(blocks), see
below, The choice between fixed and variable record-=-

length has no significant influence on the running

characteristics of the systems

maxreclength: defines the minimum usable free space in a block when

insert rec i tries to eliminate an overflow. If this

parameter Ts chosen too large insert rec i will be

forced to take a too pessimistic view on the amount of

pushing together necessary and the time used for non-

simple insertions will ' be larger than necessary. In

determining whether overflow occurs or not the actual

record length is used and maxreclength has no influence.

If a small part of a file consists of very long re-

cords it may be advantageous to split these to permit

the system to run with smaller value of maxreclength.

is used to determine the size of the bucket table on

the document, In core the size of the bucket table is

determined by the size of the document, The search

strategy in the bucket table is optimal when the docu-

ments contains maxbucks buckets and too large a value

of maxbucks may cause a very slight decrease in the

search efficiency."

maxbucks:

segsperbuck:

segsperblock:

- 10

These parameters (in connection with recdeser) deter-
mines the number of blocks per bucket and thus influ-

ences the size of the blocktables. Note that share(
blocks) occupies an integral number of segments and

that certain combinations of blocks per bucket and

entrysize therefore gives an inefficient utilization

of core store. segsperblock defines the size of share(
recs) and the work area. The overall search strategy

will be optimal when the actual number of buckets and

the number of blocks per bucket both are egqual to max-

bucks, but the effect on the search efficiency is ne-

&glibible in almost all cases.

«11 -

4, Tne Processing of a File

The system for processing a file with a structure as described in

1. and 2. consists of one standard integer variable, result i, and a

number of standard procedures, programmed in machine language, and in

the following denoted the file i procs.

The processing of the file may be split up in four phases: opening,

initialization or start, record processing, and closing. This section

describes these four phases and the general rules for the use of the

file i procse

4,1. Opening

Me file is opened, i.e. connected with a zone, by a call of the

normal RC 4000 Algol standard procedure, open.

me number of elements needed in the zone buffer is a funetion of

the structure of the file, the nwber of segments in the document, and

whether or not the full facilities for the insertion of new records is

needed. The exact number is given in 3., but to avoid that the programs

all should need to know the detailed structure of the file, the system

has been augmented by a small external integer procedure, buf length i,

which ylelds the needed length. ” 7
The number of shares in the zone must be three.

Example 4.1.1.

Me zone declaration and the open call for the file <:pip:> may

look as follows:

begin

zone z (buf length i (<:pip:>, true), 3, ståerror) ;

open (z, 4, <:pip:>, giveup);

14,2. Initialization

When a new file has been created it must be initialized with an initial

set of records which have been sorted in ascending key order, When many

records have been inserted by insert rec i, see 5.8, further insertions

become impossible or their cost exceSsive indicating that the file

should be reorganized, This is done by dumping all the records in the

file in ascending key order and using this set of records to initialize

the files

This initialization is prepared by an open call, as described

above, followed by a call of init file i which will:

read, check, and modify the Tile Head,
set up an empty bucket table with as many buckets as there is room

for in the document,

set the share descriptors of the zone to describe the three shares

share(bucks), share(blocks), and share(recs), see 2.

Mme initialization itself is effectuated by successive calls of init

rec 1, each call adding one record to the file, and it must be termina-
ted by a call of one of the procedures set read i, set update i, or set

put i. The file is now ready for record processing witA the first record
of The file available as the zone record, see 4.7.

The initial set of records

Tme file should be initialized by as many records as possible be-

bause it is mich more time consuming to insert unsorted records one at

a time in an already initialized file,

If only a small set of records is available for initialization,

they should reflect the final distrubution of keys and they should be

spread out uniformly through the file. This may be achieved through pro-

per use of two of the parameters to init file i, the buckfaetor and the

blockfactor. "7
buckfactor specifies the average number of blocks, useblocks, which

init rec i should use in each bucket, where:

usebIockSs = buckfactor X blocksperbuck.

blockfactor specifies the average number of bytes, usebytes, which

init rec i should use for recorås in each block, where:

usebytes = segsperblock X segsize X blockfactor.

Example ELELEKT

The open call in example 4,171 may be followed by the call:

init file i (2, .5, +5)

which wilI specify that init rec i only should use half of the blocks in

each bucket and half of the Bytes in each block. Thus only a quarter of

the full capacity of the file can be used during initialization, but the

unused capacity will be spread out through the file and thus facilitate

later insertions of new records.

4,3. Start

When the file is non=-empty, i.e. already has been initialized, pro-

cessed, and closed, it is reopened for processing by an open call fol-

lowed. by a call of start file i which will:

read, check and modIfy the file head,

read the bucket table, compare it with the number of segments in the

docwment, protest if there are fewer buckets than last time the

file was processed, and extend the bucket table if there are

more,

set the share descriptors,

read the first block table and block, and

retwum with the first record of the file available as the zone re=

cord,

mme file is now ready for record processing in read only mode, see belowe

4.4. Record processing

When the file has been properly initialized or started the indivi-

dual records can be handled by means of the following procedures:

get rec i: Makes a record with a specified key available.

next rec i: Makes the next record available.

delete rec i: Deletes the avallable record from the file and

” makes the next available.

insert rec i: Inserts a new record in its proper place in the

file and makes it available.

This processing will take place in one of three modes:

read only mode: Records can not be changed, blocks will only be

” 7 read and not written.

upåate mode: Records can be changed, all blocks which are read

will also be written before a new block is read.

put mode: Records may be changed, a call of put rec i will
ensure that the block containing the current avai-

lable record will be written back before a new

block is read.

Transitions between these three modes are performed explicitly by a

call of on of the procedures set read i, set update i, or set put i.

Such a call is also used to terminate”the inItialization or as prepara-
tion for close, see belowe

4.5. Closing

A call of one of the mode-changing procedures, set read i, set update i,

or set put i will ensure that all relevant Information Is present on The
backinZ storage and the file can therefore, after such a call, be ciosed

by a call of the normal RC 4000 Algol procedure, close.

4,6. Zone state

As the file i procs assume a specific content of the zone buffer and the

share deserIptors, the zone should not be used by any procedure outside

this system. The following five consecutive values of zone state are

therefore reserved to describe a zone when it is used by the file i

procs:

f04+0, read only i: Im read only mode, except after call of next |
rec i.e

+1, read next i: In Tead only mode, after call of next rec i.

+2, update i: In update mode
+3, put i:7 In put mode

+4, initialize i: After Tall of init file i or init rec i

The zone state is checked by all the file i procs and an illegal value

will terminate the run with an error message.

At present fo = 10.

— 14

Te result of a call of a file i proc is an integer, delivered in the

standard integer variable result i, anå a zone record, the available

record. ”

result i

mme value of result i after a call tells about the overall result

of the call3 e.£0: whethær or not a search for a record succeeded, that

the end of the file has been reached, that the record in the call has an

improper length field value.

The possible values of result i and their meanings are listed in the

specification for each procedure. Mlese values are, for each procedure,

en the range from one and upwards; this makes it easy to switch on re-

sult i or to use it in a case statement.

Avallable record

During record processing there will always be an available record

upon return from the file i procs. To achieve this the file must always

contain at least one record and it wiil be regarded as cyclic; i.e. a

” vrap-around? will be performed at the end of the file.

The available record is a normal zone record and it has not been

copied from the block buffer. The system relies however on the key- and

length-fields of the record and saves therefore these before exit and

restores them at the next entry; a disastrous effect of an accidental

change of these fields is thus avoidede

The effect of changes made in the user fields between calls depends

both on the current mode and on how the records happen to be stored in

the blocks:

Let a program perform the following sequence of operations on two

records, A and B:

get rec i (z, 4); corment yields an available record, oldå;

chalize Some user fields in the available record giving newA;

get rec i (2 B);

get reci (2, 4);

If A and”B happen to be in the same block then the last operation will

always yield the changed version of A, i.e» newÅ.

Tf A and B are in different blocks then the last operation will yileld

oldA if we are in readonly=-mode or in put-mode but newA if we are in up-

date-mode, because only in the last case will the block containing A

have been written when B was accessed.

Another example, this time in put-mode:

get rec i (2, Å; comment yields oldA;
chalige &vailable record ylelding newåÅ;

put rec i (2);

change available record yielding newnewA;

As the block only is written when a new block is wanted the put rec i

will include any changes made to the block from it was read-in To a new
block is needed; i.e. nevnewA will be the latest version of A even

though it comes after the pute
In view of the uncontrolable side effects illustrated by the above

examples the following rule should be obeyed:

Rule for record-updating

A niece program will only change the contents of the user fields in

a record anå only in update-mode or put-mode and only when the new ver-

sion may go out to the file.

4,8. File status

The file head and the bucket table head contain several parameters which

describe the overall status of the file; e.g. noofrecs, recbytes, and

transports, which is a counter holding the number of input-output opera=

tions performed. There are also a few parameters which it is meaningful

to change; ee&g. the pricelist, see insert rec i.

In principle the normal get zone - set zone mechanisms could be

used to inspect, and even change, any parts”of the zone buffer. For

safety-reasons these mechanisms should not be used. The system provides

therefore two procedures, get params i and set params i, which allow any

part of the zone buffer to be”inspected anå selected parts to be

changed, see these procedures for further details.

4,9. Error Handling

me different kinds of errors and other unnormal situations are treated

as follows:

Input-Output

All transports to and from the document are initiated by explicit

send-message, but they are waited for and checked by the check routine

in the normal Algol running system. Errors and unnormal situations con=

cerning the document are therefore handled as for any other standard in=

put-output, i.e. the block-procedure of the zone and the giveup-mask of

the open call have their usual meaning e

Output operations are normally not performed before a new content

of a buffer is needed. Whenever the ststem decides that a buffer has to

be written before a new read is performed, it notes this by setting a

write-operation in the corresponding share. In an emergency situation,

ege an unexpected termination of the run, the file may therefore be in

a bad shape. If the pending write-operations somehow, e.g. by analysis

of a core=dump, can be performed, this may repalr the situation. The sy-

stem contains, however, no facilities for this.

Programming Errors

logical errors, €.&e« åa wrong zone state value at a procedure call,

are treated as programming errors and will terminate the run with a run

time alarm.

The possible messages are listed in A3 and they may occur if the

Requirements specified for each procedure are not fulfilled when that

procedure is called.

Errors in record formats and other unnormal situations arising from

the data may be detected by inspection of the result i value upon return

from a procedure call.

The user may also define that specific result i values from speci-

fic file i-procs should invoke a call of a user specified procedure just

before the file i-proc returns to the main program, see 3.13 for further

detailse ”

- 17 -

This section contains, in alphabetic order, the specifications of all

the procedures offered by the system. To each procedure, except the ex=

ternal ones, is assigned a number, procno | i, by which the procedure is

identifiled in error messages and in the use of the test facilities, see

A3 and 5.15 respectively.

A survey of the procedures, in proeno | i order, is given in appendix

A together with the possible result i values, their meaning, and the

corresponding values of available record.

5el. External integer procedure buflength i

Call: buflength i (filename, full insert)

buflength i (retwm value, integer). Number of doubleworditems

needed in the zone buffer for processing the in-

dexed-sequential file given by filename.

filename (call value, string). The name of a backing storage

area containing an indexed-sequential file.

full : insert (call value, boolean). True if a buffer with room

for general insertions is wanted.

Function: Reads the first segments of the document given by filename

into a local zone and computes the needed buflength.

Errors: Uses stderror and giveup = 0. If the needed parameters in

the file head do not conform to an indexed-sequential file

buflength i will yield the value zero.

5.2. Procedure delete rec i

Call: delete rec i (z)

z (call and return value, zone). Specifies the file.

Function: Deletes the available record from the file and makes the

successor available...s

Requirements: zonestate = update i or put i.

Results:

Zzonestate: if the file became empty then empty i else unchanged.

procno i: 9

result i: Aveilable record:

1 Deleted The successor to the available.

2 Deleted, end of file The first in the file.

3 Not deleted, only one record left The one

- 18 -

583. Integer procedure get params i

Call: get params 1 (2) One or more pairs:(paramno, val)

get params i (return value, integer). Overall resuit of call:

0: All parameters processed.

> 0: Exit on error in parameter pair mmber get

params i.

z (call value, zone). Specifies the file.

varamo (call value, integer), Identifles the wanted value.

val (return value, integer). Receives the value identified by

paramo....

Function: Yields the values of a selected set of parameters from the

zone buffer of an indexed-sequential file.

me possible values of paramno and their meanings are listed

in appendix B.

Requirements: zone state = any file 1 state.

Results: No change of the file.

procno i: 12

5.4. Procedure get rec i

Call: get rec i (z, key)

z. (call and retwn value, zone). Specifies the file.

key (call value, real array). A record, at least up to and in-

cCluding all the key fields, with the same key as the one to

search. It must be stored in the lexicographically first

elements of an arbitrary real array.

Function: Searches a record with the specified key and makes it
availables

Requirements: zonestate = read only i, read next i, update i, or put i.

Results:

zonestate: if zonestate = readnext i then read only i else un-

changed. — mi -

procno i: 7

result i: . Avallable record:

1. Found The found.

2. Not found Tme successor to the specified.

3. Not found, end of file The first in the file.

5.5. External procedure head file i

Call: head file i (z, recdeser, nkey, maxreclength, maxbucks,

— TT segsperbuck, segsperblock)

- 19 -

Z (call and return value, zone). Specifies the docu-

ment to which the generated head is output.

recdesr (call value, integer array). A two-dimensional ar-

ray specifying the types and relative positions of

the key= and length-fields of records.

nkey (call value, integer). The number of key fields in

recordse

maxreclength (call value, integer). The maximum nunber of double-

word items in a record.

maxbucks (call value, integer). The maximum nwber of bu-=

ckets to provide for in the bucket table of the

final file...

segsperbuck (call value, integer). The number of segments in a

bucket in the file. Includes the segments for the

block table.

segsperblock (call value, integer). The number of segments in 2

block in the files

Function: Cenerates the head of an indexed-squential file and a bucket

table describing an empty file and outputs it to the docu-

ment connected with Ze

The zone and the document

The zone must be open. Only one share is needed, but it should be

able to hold at least nkey X 10 + 35 double-words as one record in an

integral number of segments. Note that this zone need not have anything

to do with the zone in which the created file later is processed.

mme document will be positioned at 0, 0 and the generated file head

will be output as at most two blocks by means of outrec.

mme content of the file head is independent of the document to

which it is output. It may be copied to any number of documents and thus

be used as head of different files which use identical record formats

and block= and bucket-structure...

Recdeser, nkey, and maxreclength

me array recdeser is assumed to be declared as:

integer array recdeser (iinkeyt1, 1:2)
Each of the first nkey rows desceribes one key field anå row nkey +

] describes the length rield, The first colum holds the field types and

the last colwm the relative positions coded wlth the values described

in 1.1. If we have 1 = maxreclength X 4 then only the following relative

positions are legal:

type: relative position:

+ 1 1,2,3900091=141

Fr 2 2,4,6,00071=281

F3 4,6,8, 800312,
FU 4 ,6,8,00031=241

Constant length records are coded by recdescr(nkey+1, 1) = 0 and rec-
deser(nkey+1, 2) = anything. The record length is then assumed to be

maxreclength.e

- 20 -

Example

The record in the example in 1.1 may be deseribed by

nkey:= 3;

reder ls 1) E= hs recdeser(1,2):= 10;
recdeser(2,1):= -2; recdeser(2,2):= 2;

recdeser(3,1):= =1; recdeser(5,2):= 5;

recdeser(4,1):= 1; recdesecr(4,2):= 5;

Errors

head file i may terminate the run with a run time alarm.

Pcssible Causes:

recdeser <i> Error detected during processing of field i in rec-

deser or, if i > 2044, key exceeds capacity of a

file head, only possible for nkey > 50.

e head i p<l> Other errors in parameters to head file i.
Te value of i indicates the further cause:

1 Block too small, must at least be able to hold

two records of maxlength.e

2. Bucket too small, already the first bucket must

hold at least one block.

0 Other errors, normally absurd, e.g. negative,

parameters e

5,6. Procedure init file i

Call: init file i (2, buckfactor, blockfactor)

z (call and return value, zone). Specifies the file.

buckfactor (call value, real). The number of blocks, useblocks,

to be used in each bucket during initialization is

given by: useblocks = buckfactor X blocksperbuck se

blockfactor(call value, real). The number of bytes, usebytes, to

e be used in each block during initialization is given
by:

usebytes = blockfactor X segsize X segsperblock.

Function: Prepares an indexed-squential file for initialization.

Requirements: zonestate = 0 after opening of an indexed-sequentialfile

bre which may be empty or non-empty.
The zone must have three shares and a sufficiently large

buffer, see 4.1.

Results:

zonestate: initialize i, ise. ready for init rec i.

procno i: 1

resulti: Available record:

1. Reådy None

2. Ready, only room for simple None

insertions in the zone buffer

2 21

5,7. Procedure init rec i

Call: init rec i (2, record)

z (call and return value, zone). Specifies the file.

record (call value, real array). The record to be added
stored

in the lexicographically first recordlength elements
 of

an arbitrary real arrays

Function: Initializes the file witn the next of a sorted set of re
-

corås; buckfactor and vlockfactor, which have been sp
ecified

to init file i, will determine when a new bucket or block is

taken into use.

Requirements: gonestate = initialize i after call of init file i or
init rec i. - El

Results

zonestate: initialize i, i.e. unchanged.

proeno i: 2

result i: Available record

1. Record Added None.

2. Record not added, file is full None.

3. Record not added, improper length None.

4 Record not added, not ascending None.

key

5,8, Procedure insert rec i

Call: insert rec i (2, record)

z (call and return value, zone). Specifies the f
ile.

record (call value, real array). The recorå to be i
nserted

stored in the lexicographically first recordlengt
h ele-

ments of an arbitrary real array.

Function: Inserts the specified record in its proper place in the file
and makes it available. See below for details

.

Requirements: zonestate = update i or put i.

Results:

zonestate: unchanged

procno i: 10

result i: Avallable record:

1. InSerted The inserted

2. Not inserted, record with the The one in the file

same key already in file.

3. Not inserted, too expensive, can The successor to the specified
only occur with a modified ensertion

strategy, see below.

hk Not inserted, file is full The successor to the specified

5. Not inserted, improper length The succe

6. Not inserted, there was no room The sucen:

for the recorå in the block to

which it belonged and the zone

buffer is too small for a more

complicated insertion, see below.

Insertion Strategy

If there is room for the recorå in the block to which it be
longs, it can

be inserted without further trouble; otherwise a more compli
cated stra-

tegy is used. This requires an extra block in the zone bu
ffer. Unless

this block is present it is therefore pure luck if the inserti
on succeeds.

The following describes the full insertion strategy, it may be

skipped unless you want to modify it.

The organization of the file requires that records are sto
red in ascen-

ding key-order., This means that the insertion of a new record
in general

will involve a reorganization of some parts of the file in or
der to get

room for the record in the proper blocke

The cost of an insertion, in terms of segment transports a
nd other

use of resources, depends strongly on how this reorganization
is done.

The insertion algorithm implements the following scheme whic
h, by taking

prices imposed on the involved resources into account, tr
ies to strike a

reasonable balance between a fully automatic and a user cont
rolled stra-

tegy:

The file head holds a list of relative prices imposed on res
ources and

with initial values assigned by init file i or start fi
le i:

Name, initial value: Meaning:

emptybuckprice, The value of having an empty bucket.e
emptyblockprice, The value of having an empty block.

compressprice, The initial cost of compressing, 1.
of the pushing together of records in

consecutive blocks.

priceperblock, The cost of (two block transports +
central processor time) for one block

involved in compressing.

priceperbuck, The cost of (two block transports + two
block table transports + central pro-

cessor time) for moving an empty block

over one bucket.

pricelimit, The maximum price accepted for an in-=
sertion. If the total cost, as computed

below, exceeds pricelimit then the in-

sertion will not be done.

These prices is used to compute the total cost of an inserti
on in step

2, 3, and hk of the following 7 steps which the algorithm goes through
:

13 Tnere is room for the record in the block which it be
longs:

The insertion is done without further analysis.

Otherwise the insertion will push one or more records
out of the

block and thus create an overflow, and:

- 23 -

2: A pushing together of records in at most n consecutive blocks

will absorb the overflow:

cost: n X priceperblock + compressprice.

and/or:

3: An empty block, not more than n buckets removed from the cur
-

rent, can be inserted in the block table after the current

block and can thus absorb the overflow:

cost: n X priceperbuck + emptyblockprice; n may be zer
o;

and/or:

4: An empty bucket can be inserted in the bucket table and a block

from this bucket used as in 5:

cost: emptybuckprice;

or:

5; None of the situations 2, 3, or 4 exists: The insertion is not

possible, the file is regaråed as full,

exit with result i = 4;

6: None of the cost& computed in step 2, 3, or 4 are less than

pricelimit: The insertion is too expensive,

exit witn result i = 5;

mme insertion is possible and is done according to the smallest

cost;

exit with result i =1....

Q ”...

Changing the strategy

A call of set params i can be used to set new values in the pric
elist.

The strategy Can thereby be modified within the limits impose
d by the

above algorithm.

Example 5.8.1.

Let us assume that we want to insert a wholw bunch of, say, ”Jen=-

sen?s? in a file which is sorted according to first and last
 name.

It may then be useful to force the system to take an empty bu
cket

into use immediately, instead of wasting time on a more
and more

time consuming compressing. This can be done by assignin
g a low va-

lue to empty buckprice and a high value to compress price.

Example 5.8.2.

In an on-line system it may be necessary to reject insertions
 which

are too time consuming. This can be done by assigni
ng a proper va=

lue to pricelimit. The number of rejected insertions may be
counted

and be used to indicate when a reorganization of the total f
ile is

required.

5,9. Procedure next rec 1

Call: next rec i (z)

z (call and return value). Specifies the file.

Function: Makes the next record available.
e——

24

Requirements: zonestate = read only i, read next i, update i, or put i.

Results:

zonestate: if zonestate = readonly i then readnext i else unchanged

procno i: 8

result i: Available record:

1 Found The successor to the available.

2 Found, end of file The first in the file.

5,10. Procedure put rec Ii

Call: put rec i (z)

z (call and return value, zone). Specifies the file.

Function: Notes that the current block, 1.e. the block containing the

currently available record, mist be written back to the do-

cument before a new block is reaå or the mode is changed.

Requirements: zonestate = update i or put 1.

Results:

zonestate: unchanged

procno i: 11

result i: Avallable record:

1] Done Unchanged

5.12. Integer procedure set params i

Call: set params 1 (z) One or more pairs: (paramo, val)

set params 1 (retum value, integer). Overall result of the call:
0: All parameters processed.

e > 0: Exit on error in parameter pair number set
params i. -

Z (call and return value, Zone). Specifies the file.

paramno (call value, integer). Identifies the parameter in the

zone buffer to which val is assigned.

val (call value, integer). The value to be assigned to the para-

meter identified by paramno.

Function: Assigns values to a selected set of parameters in the zone

buffer of an indexed-sequential file.

The possible values of paramno and their meanings are listed

in appendix B.

Requirements: zonestate = any file i state.

Results: Affects only the parameters assigned to.

procno i: 13

- 25

Call: set put i (z)
(4

z (call and return value, zone), Specifies the file.

Funetlion: Terminates the current mode and sets put-mode.

Requirements: zonestate = any file i state except empty i.

Results:

———Tønestate: put i.

procno i: 5 7” '

result”i: . Avallable record:

1. Normal mode change Unchanged.

2 Initialization terminated The first in the file.

5.14. Procedure set read i

Call: set read i (z)

zZ (call and return value, zone). Specifies the file.

Function: Terminates the current mode and sets readonly-mode,

Requirements: zonestate = any file 1 state except empty i.

Results:

zonestate: read only i

procno i: 4

result i: Available record:

1 Normal mode change Unchanged.

2 Initiallzation terminated | The first in the file.

5.15. Integer procedure set test i

Call: set test i (z) Optional parameter: (test proc)
One or more pairs:(procno i, results)

set test | 1 (return value, integer). Overall result of call:

-1: Exit on error in first parameter.

O: All parameters processed.
> 0: Exit on error in parameter pair number set

test i.

z (call and return valte, zone). Specifies the file.

test Proc (cal value, procedure) . The name of a procedure which
must be declared at the same level as the zone or at

an outer level.

It must conform to the declaration:

procedure test ...proc (2, record, procno ; i);
zone Z; array record; integer procno i;

U Da CV I

It will, when specified, see below, be called just

before the exit from a file i proc with the foliow-

ing parameters: E

VÆ The zone of the file i proc call.

record: The array of the file i proc call or,

if not present, the zone 2.
procno i: Tne identification of the file i proc.

The paramet&r test proc may be left out if it 2al-
ready has been given in a previous call of set test i.

procno i (call value, integer). Specifies the result i values 7
ml for which test proc should be called upon exit from

the file i proc identified by procno i.

Any number of result i values can be specified in

one parameter by representing each result i value as

one digit in the decimal representation of results.

Function: Specifies a procedure to be called upon exit from certain

file i procs with certain result i values.

The parameter pairs,procno i - results, are processed in order and only

specified changes in the sTtuation will be effectuated but with the fol-

lowing additional conventions:

procno i = 0 denotes all file i proces,

resultS = 0 denotes clearing Of all priviously specified result i

values for procno i. EH
Non-existing result i Values are ignored.

Requirements: gonestate = any file i state.

Results: Affeets only the test situation.

procno i: 14

Examples:

The call

set test i (2, 0, 0)
will prevent any further calls of the current test proc.

The call

set test i (2, testit, 0, 123456)
wilT ensure that the procedure testit will be called upon exit from

any file i proc with any result i and thus provide a means for su-

pervising the main program.

The call

set test i (z, through, 0, 0, 8, 2)

wilI invoke a call of the procedure through when, and only when

next rec i has reached the end of the file.

next'rec i, procno i = 8, yields result i = 2 at end of file.

5,16. Procedure set update i

Call: set update i (z)

z (call and return value, zone). Specifies the file.

- 27 -

Function: Terminates the current mode and sets update-mode.

Requirements: zonestate = any file i state except empty i.

Results:

zonestate: update i.

procno i: 6 —

result”i: Available record:
1. Normal mode change Unchanged.

2 Initialization terminated | The first in the file...

5.17. Procedure start file i

Call: start file i (z)

z (call and return value, zone). Specifies the file.

Function: Prepares an indexed-sequential file for record processinge

Requirements: zone state = 0 after opening of an indexed-sequential-

file containing at least one record.

The document must hold at least the same number of bu-

ckets as was used last time the file was open, it may

hold more.

Mme zone must have three shares and a sufficiently large

buffer, see

Results:

Zonestate: readonly 1, i.e. readonly-mode.

procno i: 35 —
result”: Available record:

1 ReCord available The first in the file.

2 Record available, only room The first in the file.

for simple insertions in the

zone buffer.

- PE -

Appendix AA, Survey of the Procedures Offered by the Systeni

A1. For Creation and Opening of an Indexed-sequential File

head file i (see 5.5). External procedure which generates a file head.

buflength i (see 581). External procedure which yields the buffer size

needed for processing a file.

42, For Processing an Indexed-sequential File

Each procedure is described below in order of their identification num=

ber, procno 1, and with possible values of result i and available record.

procno i, name result i value and meaning Avallable record

e 1, init file 1 1 Ready None
HE 2 Ready, short buffer None

2, init rec i 1 Record added None

hulen 2 File is full None

3 Improper length None

4 Not ascending key None

3, start file i 1 Ready First in file

— 2 Ready, short buffer First in file

4, set read i 1 Ok Unchanged

7” rm 2 Ok, after initialization First in file

5, set put 1 1 ck Unchanged

— 2 Ok, after initialization First in file

6, set update i 10k Unchanged

e ” 7 2 Ok, after initialization First in file

7, get rec i 1 Found The found

== 2 Not found The successor

3 Not found, end of file First in file

8, next rec i 1 Found The next in the file

” 2 Found, end of file First in file

9, delete rec i 1 Deleted The next in the file

7 7. 2 Deleted, end of file First in file

3 Not deleted, one record left The one left

10, insert rec 1 1 Inserted The inserted

7 7. 2 Already in file The one in the file

3 Too expensive The successor

4 File is fwil The successor

5 Improper length The successor

6 Short buffer The successor

e 11, put rec 1 1 Done Unchanged

The following utility procedures do not change result i or available re-

cord and they can not invoke a call of the test proc:

12, get params i

13, set params i

14, set test i r .

A3. AÅlphabetic List of Alarm Causes

The system adds the messages below to the list of possible alarm causes

from the standard procedures of RC 4000 Algol.

head ip <i> Parameter error in call of head file i:

i = 1: Not room for two recordS in & block.
2: Not room for at least one block in the first

buckete

0: Other illegal parameter values.

prep i <i> Error during init file i, init rec i, or start file i:

i= 1: Too féw segments in the document. ”
2: The bucket head is not consistent.

3: Too small a zone buffer.

4: The file head is not consistent.

5: Not three shares.

6: Zone state <> 0.

7: Empty file after start file i or mode change.

recdeser <i> Error or inconsistency in the recorå description in the

call of head fije i.

i < 20k: Error if field i.

i >= 2044: Key too bige '

state i <i> Zonestate error in call of any file i proc:

i = zonestate X 100 + procno is

- 30 -

Appendix B. Parameters in the Zone Buffer

The lists below defines the values of paramno to be used in calls of

get params i or set params i.

The lists may be extended When it appears that more parameters are of

interest to the user.

B1. paramo values to get params i:

paramo, name, meaning

Be.

recsinfile

recbytes

transports

pricelimit

emptybuckprice

Number of records in the file

Number of bytes used for records

Nwber of input or output operations performed since

the processing was started.

For 4 - 9, see 5.8, insert rec 1.

emptyblockprice

compressprice

priceperblock

priceperbuck

computed cost The cost computed in the last cali of insert rec i

paramno values to set params i:

The following of the parameters above may also be assigned to by set

params i with values in the intervals shown: E

paramo, name, legal values

pricelimit

emptybuckprice

emptyblockprice

compressprice

priceperblock

priceperbuck

o <=

0 <=

oOo <=

oOo <=

o <=

0 <=

val <= upper limit for integers

val < 2048
val < 2048

val < 2048

val < 2018
val < 2048

