
RC International

RC9000-10/RC8000

SW8S58S Compiler Collection

RC FORTRAN, User's Manual

Keywords:

RC9000-10, RC8000, FORTRAN, Compiler, ALGOL

Abstract:

This manual desribes the RC FORTRAN Compiler for RC8000 and

RC9000-10.

Date:

January 1989

PN: 991 11292

Copyright
Copyright e 1989 RC International (Regnecentralen a/s) A/S Reg.no. 62 420

All rights reserved, No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval

system, or translated into any language or computer language in any form or by any means, electronic, mechanical,

magnetic, optical, chemical, manual, or otherwise without the prior written permission of RC International,

Lautrupbjerg 1, DK-2750 Ballerup, Denmark.

Disclaimer

RC Intemational makes no representations or warranties with respect to the contents of this publication and

ifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore,

C International reserves the night to revise this publication and to make changes from time to time in the content
hereof without obligation of RC International to notify any person of such revision or changes.

RC FORTRAN, User's Manual

Table of Contents

1. External and Internal Representations

1.1 Character Set and Compounds...

1.2 Line Format...

1.3 Constants and Representation 0

1.3.1 INTEGER........

1.3.2 LONG....

1.3.1 REAL...

1.3.4 DOUBLE PRECISION

1.3.5 COMPLEX.

1.3.6 LOGICAL....

1.3.7 SHORT TEXT.

1.3.8 BITPATTERN.......

1.3.9 Examples of Constants..

1.4 Variables and Arrays.

1.4.1 Names...

1.4.2 Variables

1.4.3 Arrays....... io lo le lo Go Ng OVN ON ln ln me
2. Declarations

2.1 Type Statement.

2.1.1 Form. 10

2.1.2 Rules.

2.1.3 Notes ...

2.2 DIMENSION Statementussscssssessersersersesesrersserernnertrererenseresssns een rrnnee 11

2.2.1 Form. 11

2.2.2 Rules... venn: 12
2.3 EQUIVALENCE Statement... 12

2.3.1 Form... 12

2.3.2 Rules.

2.3.3 Notes

3. Expressions...

3.1 Arrays and Subscrip'

3.2 Precedence Rules

3.3 Arithmetical and Masking Expressions. ...

4. Executable Statements...

4.1 Arithmetical and Logica

4.1.1 Arithmetical Assignment

4.1.2 Logical Expressions and Assignments..

4.2 GOTO Statements....

4.2.1 Simple GOTO...

Table of Contents

Table of Contents

RC FORTRAN, User's Manual

4.2.2 Assigned GOTO en sus ...

4.2.3 ASSIGN Statement... Fe erureersrre enn serne raser nrnre 19

4.2.4 Computed GOTO.....G.... scenerne errn narrer 20

4.2.5 Examples... 20

4.3 IF Statement... 21

4,3.1 Logical IF.... 21

4.3.2 Arithmetical IF... 21

4.4 DO Loops... 22

4.4.1 Form... .22

4.4.2 Execution of a DO Loop.
4.4.3 Rules.....sssecsesereesesrerere

4.5 CONTINUE Statement... FN

4.6 STOP StatementM.secsssssesrsrserrsrsesrarsesssssesrarssenene snes en ssnr ener rens errnne

5. Input/Output

5,1 Zones and Logical Units

5,1.1 Introduction

5.1.2 Zone Descriptor.

5.1.3 Share Descriptor....

5.1.4 Buffer....uusccesers

5,1.5 Declarations of Zones.

5,1.5,1 Simple Zones.......

5,1.5.2 Zone Arrays.

5.1.6 The Standard Zones IN and OUT.

5.1.7 Multishare Input /Output................

5.1.8 Algorithms for Multishare Input /Output...

5.2 Documents, Basic Input/Output

5.2.1 Documents.

5.2.1.1 Backing Storage.

5.2.1.2 Typewriter...

5.2.1.3 Paper Tape Reader.

5,2.1.4 Paper Tape Punch.

5.2.1.5 Line Printer...

5.2,1.6 Card Reader...

5.2.1.7 Magnetic Tape.

5.2.1.8 Internal Process

5.2.1.9 Devices without Documents.
5.2.2 Principles of Communication...

5.2.3 Subroutine OPEN...

5,2.4 Subroutine CLOSE.

5.2.5 Logical Function SETPOSITION.

5.2.6 REWIND, BACKSPACE, and ENDFILE

5.2.7 Subroutine ZASSIGN

5,3 Treatment of I/O Errors....

5.3.1 Logical Status Word, Kind of Errors...

5.3.2 Standard Error ACtions.........cssccccssrrsrereee

5.3.3 The Block Procedure and the Giveup M Mask.
5.3.4 Subroutine STDERROR

5,4 READ/WRTITE Statements..

5,4.1 Introduction...

5.4.2 READ/WRITE with Format Control.

5.4.3 The Format Statement...

5.4.4 Details about the Format Elements.

5.4.4.1 E-Conversion...... .52

5.4.4.2 F-Conversion...

5,4.4.3 D-Conversion..

5,4.4.4 A-Conversionssecsereerrerrerrer vu ...54

RC FORTRAN, User's Manual

5.4.4,5 I-Conversion.

5,4.4.6 B-Conversion.....ceceseserssrsereerssessssrrssnsersesersenreneensernrensnnnsrnnerenannnn nrnnen 55

5,4.4.7 L-Conversion....

5.4.4.8 Scaling Factor...

5.4.4.9 Spaces and Text .

5.4.5 Execution of Formatted READ/ RITE.
5.4.5.1 Line Change.

5.4.5.2 READ/WRITE Errors..

5.4.5.3 Treatment of WRITE Errors

5.4.5.4 Treatment of READ Errors, Standard Variabl e READERR.

5.4.6 READ/WRITE without Format Controls 62

5.5 Record Handling.

5.5.1 Zone Record...

5.5.2 Integer Function INREC.

5,5,3 Integer Function OUTREC

5.5.4 Integer function SWOPREC.. .

5,5.5 Subroutine GETPOSITION Mssscessesesesererrereerrersrrrrrnnnnernrerrnnnnnsnnnee 68

5,5.6 Logical Function SETPOSITION.Museccsessrsesrsrrserrerrerennernerernerennernnnnne 68

5,5.7 EQUIVALENCE and ZONES

6. Program Structure.

6.1 Program Unit and Their Mutual Communication

6.1.1 Structure of a Program Unit... DB
6.1.2 Calling Functions and Subroutin 74

6.1.3 Parameter Checking 2000082 75

6.1.4 EXTERNAL Statement...

6.1.5 formal and Adjustable Arrays.

6.1.6 Formal and Adjustable Zones

6.1.7 END Statement...

6.1.8 RETURN Statemen

6.1.9 ENTRY Statement. 717

6.2 COMMON and DATA... 78

6.2.1 COMMON 78

6.2.2 Local Variables versus COMMON Variables. 79

6.2.3 Zones in COMMON.

6.2.4 DATA Statement v...

6.3 Program Units from the Catalog..

6.3.1 Algol Externals.......ssssorssssssssenser 81

6.3.2 Program Units in Machine Language. vares ses

Appendix A. References

Appendix B. RC FORTRAN Syntax Description

B.1 Explanation cesser

B.2 Symbols and Primitives..

B.3 Declarations........

B.4 Expressions.

B.5 Executable Statements...

B.6 Input/Output Statements.....

B.7 Program Structure.

Appendix C. Call of Compilere 92

Appendix D. Messages from the Compiler.

Appendix E. Program Execution

E.1 Execution of an RC FORTRAN Program....

Table of Contents

RC FORTRAN, User's Manual

E.2 Run Time Alarms

E.2.1 Initial Alarm....

E.2.2 Normal Form...

E.2.3 Undetected Errors.... mu

E.2.4 Alphabetical List of Alarm Causes...

E.3 The Object Code.

Appendix F. Survey of Standard Names 6oessssrsssesrssssenesersesreneser sanse 109

F.1 List of Standard Externals.................svssrsserersreerssesssssssnseseserssnnsenssn sense 110

Appendix G, Deviations from ISO FORTRAN.

G.1 Limitations.

G.2 Extensions.

Appendix H. Execution Times

H.1 Operand References...

H.2 Constant Subexpressions....

H.3 Saving Intermediate Results...

H.4 Execution Times for FORTRAN

Appendix I, Inde%.ccrssrsersrssrrerrssrssrssrsesense sense nsten nes 117

RC FORTRAN, User's Manual Page I

1. External And Internal Representations

1.1 Character Set and Compounds

The RC FORTRAN character set is a subset of the ISO 7-bit character

set extended with the Danish letters: æ, Æ, ø, Ø, å, Å (see Ref. 5).
Programs written in an external representation (console typewriter,

punched cards, punched paper tape, etc.) are converted internally to the

ISO representation. The RC FORTRAN character set is an extension of

the ISO FORTRAN character set as small letters are allowed and also

many special characters may appear in texts and comments.

The character set table (Table 1.1.1) shows

(1) the decimal value of the ISO 7-bit representation.

(2) the character, or an abbreviated name for the character.

(3) the program input class.

The treatment of the characters depends on their appearence in the

program text as defined in Section 1.2. The effect is shown in Table

1.1.2.

RC FORTRAN distinguishes between capital and small letters in texts

only. For simplification the syntax using capital letters only is given.

Names of characters are written in the abbreviated form shown in Table

1.1.1. The used syntax description is explained in Appendix B.

The legal characters are divided into syntactical groups:

<symbol> Di (<letter>

(<digit>

(<separator>

(<terminator>

[<graphic>

| <arithmetical operator>

(<blind>

(<in text> en en Me NR Se er
<blind> is NUL

(DEL)

<in text» i:= [SP)

1. External And Internal Representations

Page 2 RC FORTRAN, User's Manual

Table 1.1.1. Character Set and Program Input Class

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

0 NUL blind 32 SP in text 64 83 graphic 9% +! graphic

1 SOH illegal 33 I graphic 65 A basic 97 a basic

2 STX illegal 34 MM. graphic 66 B basic 98 b basic

3 ETX illegal 35 £ graphic 67 C basic 9 cc basic

4 EOT illegal 38 $ basic 68 D basic 100 d basic

5 ENQ illegal 37 % graphic 69 E basic 101 e basic

6 ACK illegal 38 & graphic 70 F basic 102 f basic

7 BEL illegal 39 7 basic 71 G basic 103 g basic

8 8BS illegal 40 4. basic 72 H basic 104 h basic

9 HT basic 41) basic 73 1 basic 105 i basic

10 NL | basic 42 £% basic 7% d basic 106 j basic

11 VT illegal 43 + basic 75 K basic 107 k basic

12 FF. basic 44 ,... basic 76 L basic 108 I basic

13 CR blind 45 -... basic 77 M basic 109 m basic

14 s0 illegal 46 basic 78 NWN basic 110 n basic

15 Så illegal 47 Jf basic 79 0 basic 111 0 basic

16 DLE illegal 48 0 basic 80 P basic 112 p basic

17 DC1 illegal 49 1. basic 81 a basic 113 q basic

18 Dc2 illegal 50 2 basic 82 R basic 114 r basic

19 DC3 illegal 51 3 basic 83 S basic 115 s basic

20 DC4 illegal 52 4 basic 8 T basic 116 t basic

21 NAK illegal 53 5 basic 85 U basic 117 u basic

22 SYN illegal 54 & basic 865 V basic 118 v basic

23 ETB illegal 55 7 basic 87 W basic 119 w basic

24 CAN illegal 56 8 basic 88 X basic 120 x basic

25 EM basic 57 9 basic 89 Y basic 121 y basic

26 SUB illegal 58 : graphic 90 Z basic 122 2 basic

27 ESC illegal 59 ; basic 91 Æ basic 123 = basic

28 FS illegal 60 < graphic 92 ø basic 124 ø basic

29 GS illegal 61 = basic 93 Å basic 125 å basic

30 RS illegal 62 > graphic 94 ” graphic 128 ” graphic

31 us | illegal 63 ?. graphic 95 ... in text 127 DEL blind

1. External And Internal Representations

RC FORTRAN, User's Manual Page 3

Table 1.1.2. Treatment of Program Input Classes

input character in

class comment or text label or statement field

basic meaningful meaningful

graphic meaningful illegal

in text meaningful skipped except after compound

blind no effect, not even counting as symbol of the line

illegal skipped, but causes warning |

RC FORTRAN includes the compounds listed in Table 1.1.3. A

compound is an element made up of several characters, The compounds

of the two rightmost columns in Table 1.1.3 must be followed by an in

text” whenever the compound symbol is followed by a name or a digit.

Accordingly, to avoid misinterpretation a name starting with the same

letter as a compound should never have an <in text> separation at that

place.

Table 1.1.3. Compound Symbols

Logical values Declaratives In statements

. TRUE. PROGRAM ASSIGN

. FALSE. SUBROUTINE TO

FUNCTION

Operators ENTRY GOTO

GO TO

DATA

ar COMMON CONTINUE

EQUIVALENCE CALL

.LT. RETURN

.LE, INTEGER STOP

»EQ. LONG

NE. REAL IF

. GE. DOUBLE PRECISION

.GT. COMPLEX DO

LOGICAL

»NOT. DIMENSION END

.AND. ZONE

»OR. EXTERNAL

.SHIFT.

FORMAT READ

FORMATO WRITE

1. External And Internal Representations

Page 4 RC FORTRAN, User's Manual

1.2 Line Format

A FORTRAN program is a sequence of symbols divided into lines by

either the NL symbol or the FF symbol. When using punched cards a

NL is generated at the end of each card. A program consists of program

text and comments. In a line the symbols are counted starting with

number 1, only blind symbols do not count.

Normally all symbols of a line are considered to be program text. By the

compiler option cardmode.yes symbol 73 and onwards are treated as a

comment. The first 6 symbols of a correct line are either (1) a control

field, or (2) a label field, The examination has the steps:

11. If symbol 1 is a / (slash), the line will be treated as line starting

with M (a message line).

The compiler will not read any further source-text lines.

1.2. If symbol 1 is one of the letters A, B, C,... K, L, M, or an asterisk

(”), the line is normally a comment line.

By choice of parameters for the compiler the letters A, B, C,... K

may be substituted by an <in text> symbol. The line is then a

program line and can hold statements for testing.

The letter L may start a conditional listing, while the letter M leads

messages that may be output during compilation.

1.3. If symbol 6 is neither <in text> nor 0, the line is a continuation

line and symbols 1 through 5 must then be <in text>. The line is

treated as a continuation of the program text of the previous line,

i.e. cancelling the terminating effect of the foregoing NL, FF or

comment.

2. If the 6 symbols are not a control field, symbols 1 through 5 must

either contain a label or all be <in text>, and symbol 6 must be

<in text> or 0. The label consists of digits only, leading spaces and

zeroes are ignored. The line is an initial line.

The Tth and following symbols either including the 72nd symbol or the

rest of the line make up the statement field. The statementfield may

hold several statements seperated by the terminators ; (semicolon) or $

(dollar). If a line holds less than 6 symbols, <in text> filling is supposed

and the statement field is empty.

When the statement field contains END, the line is an end line and the

program unit terminates. Comments are allowed after the END.

The compiler continues reading of source-text lines until:

a. the source-list is exhausted (see appendix B, Call of compiler).

or b. a line is read, with a / (slash) as symbol 1 (see step 1.1. above).

1. External And Internal Representations

RC FORTRAN, User's Manual Page 5

INTEGER

LONG

REAL

DOUBLE

COMPLEX

LOGICAL

Variable in store

Array element

1.3 Constants and the Internal Representation of Values

Integer, real, double precision, complex, and logical constants agree with

the ISO FORTRAN syntax. RC FORTRAN includes long integer

constants, short texts, and bitpatterns as described below, while the

detailed syntax is given in Appendix B.

The internal representation of values, as constants, variables, and array

elements will claim from 1 halfword to 8 halfwords (1 halfword = 12

bits) depending on the type:

s

Ss

s e

e---|e sss 000 000

s e s e

0--OL

0--OL

indicates the sign of integer, long or fixed-point parts.

indicates the sign of exponent.

indicates the determining bit of logical

indicates zeroed bits.opov
For each type details of the representation and the range of values are

described. The representation of arithmetical values is binary using the

2-complement for negative values.

1.3.1 INTEGER

1 word = 24 bits.

Fixed-point representation:

bit 0 : sign

bit 23 1 unit position

Range : -2%%23 =< integer =< 2%x23-1

2xx23 = 8 388 608

Significant digits: 6-7

Integer constants in the program text exceeding the integer range are

treated as long constants.

I. External And Internal Representations

Page 6 RC FORTRAN, User's Manual

1.3.2 LONG e

2 words = 48 bits,

Fixed-point representation:

bit 0 : sign

bit 47 I unit position

Range : -2%x47 —< long —< 2%%47-1

2xx47 = 140 737 488 355 328

Significant digits: 14-15

Long constants in the program text exceeding the long range cause error

messages during compilation.

1.3.3 REAL

2 words = 48 bits.

Floating-point representation:

bit 0 : sign of fixed point part e

bit 0-35 : fixed-point part

bit 36 : sign of exponent

bit 36-47: exponent

Range : 2æk (2kx(-11)) =< abs(real)

< 2xx(2%x%x11-1)

2xx(2xx11) = 2%xx2048 = appr. 10%%x616

Significant digits: 10-11

Real constants in the program text holding møre than 11 significant

digits are treated as double precision constants.

1.3.4 DOUBLE PRECISION

4 words = 96 bits.

Floating-point representation:

bit 0-11 : extended sign of exponent

bit 12 : sign of exponent

bit 12-23 : exponent e

bit 24-26 : sign of fixed-point part

bit 27-47 : fixed-point part 1, 21 bits

bit 48-50 : 000

bit 51-71 : fixed-point part 2, 21 bits

bit 72-74 : 000

bit 75-95 ; fixed-point part 3, 21 bits.

Range : as reals

Significant digits: approx. 19.

Double precision constants exceeding the precision mentioned cause

error messages during compilation.

1.3.5 COMPLEX

4 words = 96 bits,

Floating-point representation of real and imaginary parts:

bit 0-47 t real part, represented as real

1. External And Internal Representations

RC FORTRAN, User's Manual Page 7

bit 48-95 : imaginary part,

represented as real.

Complex constants in the program text holding more than 11 significant

digits in the real or the imaginary part cause error messages during
compilation.

1.3.6 LOGICAL

1 halfword = 12 bits.

.TRUE. 000 000 000 001

«FALSE. 000 000 000 000

For simple variables a word is reserved but only the last halfword, i.e.

bits 12-23 is used. Logical array elements occupy each one halfword

only.

1.3.7 SHORT TEXT

2 words = 48 bits.

Internally short texts are handled as long integers inferring a maximum

of 6 characters each of 8-bits to be stored in a long integer.

Short texts are allowed in expressions and as parameters. Text are

written either (1) as a Hollerith text, ie. nHox where n is integer and

xxx is n non-blind symbols that are left-justified with SPACE filling when

n < 6, or (2) as an apostrophed text i.e. wo, in this case left-justified

with NUL filling.

Texts with more than 6 characters appearing where only short texts are

allowed cause error messages during compilation.

1.3.8 BITPATTERN

short 1 word = 24 bits.

long 2 words = 48 bits.

Bitpatterns are written as gBddd, where g is the number of bits in a

group and may take the values 1, 2, 3, or 4, causing the digits ddd to be

interpreted accordingly.

The binary digits are : 01

The quaternary digits are : 0123

The octal digits are : 01234567

The sedecimal digits are : 0123456789ABCDEF

Bipatterns are right-justified with zero filling for missing digits. If

possible only 1 word is used. Short bitpatterns are treated internally as

INTEGER constants while long bitpatterns are treated as LONG

constants. Bitpatterns violating the syntax cause error messages during

compilation.

1. External And Internal Representations

Page 8 RC FORTRAN, User's Manual

1.3.9 Examples of Constants

In program

0

-1

-8388608

23

8388607

-8388609

8388608

-12345678

12345678

0.0

-123.456

123.4e1

123.4e-1

1234.56789012

123.4d1

123.4d-1

(1.2, 0.0)

Shhello

hello”

4b123456

4b1234567

1. External And Internal Representations

type

integer

integer

integer

integer

integer

long

long

long

long

real

real

real, with value 1234

real, with value 12.34

double precision

double precision, with value 1234

double precision, with value 12.34

complex

short text (as long constant)

short text (as long constant)

bitpattern (as integer constant

with the value 1193046)

bitpattern (as long constant

with the value 19088743)

RC FORTRAN, User's Manual Page 9

1.4 Variables and Arrays

1.4.1 Names

A FORTRAN symbolic name is a string of letters and digits beginning
with a letter. RC FORTRAN allows and distinguishes names of any

length.

Names are used for simple variables, arrays, zones, commons, and

program units. Two different entities must not have identical names

within one program unit.

1,4.2 Variables

A variable is a datum defined by its name and type.

1.4.3 Arrays

An array is an ordered set of data. Arrays may have any number of

dimensions and are stored by columns in ascending storage locations.

An array element is identified by following the array name by a

parenthesized list of subscript expressions. The index check secures that

elements refered to lie within the array.

A subscript expression is an arithmetical expression. There is no

restriction on the complexity and type of the expression; if the type is

not integer the conversions follows the rules of assignment to integer

(see arithmetical assignment, Section 4.1). The number of subscript

expressions must agree with the dimensionality of the array wherever

array elements are referenced, except in EQUIVALENCE statements

(see 2.3.2 step 6).

The element A(i1l, ... in) of an array declared A(c1, ... cn) is identified

by use of the successor function f = il + c1%(i2+ ... + c(n-1)"in)...). By

inserting ij = 1 and ij = ej for j = 1,... n the two limiting numbers f1 =

f(ij = 1) and fc = f(ij = cj) define the first and the last element of the

array. The index check is performed on the value of successor function,

and there is no check that 1 =< ij =< ejforj = 1,... n.

1. External And Internal Representations

Page 10 RC FORTRAN, User's Manual

2. Declarations

2.1 Type Statement

The type and dimensioning associated with a name may be controlled by e
type statements and/or DIMENSION statements.

2.1.1 Form

[) læ

<type> [<name> ((<fixed bounds>)) |]

(101

LOGICAL

INTEGER

REAL

LONG

COMPLEX

DOUBLE PRESICION

<type> i: =

x

<fixed bounds> :: = [<integer>] e
1

Example 2.1.1

real ra (3, 7, 4, 2)

declares an array of type real with 4 dimensions. The first dimension

ranges from 1 to 3, the second from1 to 7, etc.

Example 2.1.2

integer x, ia(2, 3, 4), y

declares two simple integers x,y and an integer array ia.

2. Declarations

RC FORTRAN, User's Manual Page 11

e 2.1.2 Rules

1. The type statement associates the specified type with all names

occuring in the list of names. If fixed bounds are specified the

name is associated with an array with dimensions and range

corresponding to the bound list.

2... The type and dimensions of the name may be specified only once

within a program unit.

3. If a name is not explicitly type declared, type integer is implicitly

assumed if the name starts with i, j, k, I, m, n, otherwise type real is

assumed.

4... Any number of dimensions are allowed (ISO standard: 3).

5. Arrays are stored column by column - in consecutive storage

locations. E.g., the array ia of Example 2.1.2 will occupy 24 storage

e locations as shown:

ia(l, 1, 1)

ia(2, 1, 1)

ia(l, 2, 1)

ia(2, 2, 1)

ia(1l, 3, 1)

ia(2, 3, 1)

ia(l, 1, 2)

ia(2, 1, 2)

etc.

2.1.3 Notes

1... Variable bounds may be used, when an array appears as a formal

parameter. See Section 6.1.5.

2... A few names of intrinsic functions and basic external functions are

e implicitly of type complex or double precision (see Appendix E).

2.2 DIMENSION Statement

2.2.1 Form

x

DIMENSION [<name> (<fixed bounds>)]

1

x

<fixed bounds> :: = (<integer>)

1

2. Declarations

Page 12

2. Declarations

RC FORTRAN, User's Manual

2.2.2 Rules

The DIMENSION statement may be used for stating separately the

dimensionality of one ør more names. See Section 2.1.2 above for

further rules.

2.3 EQUIVALENCE Statement

The order in which names occur in type statements and/or

DIMENSION statement does not control the mutual placement of the

variables in core, i.e. names declaring after each other in a type

statement are not necessarily placed in the same order in core.

The storage allocation may be controlled by the EQUIVALENCE

statement or by the COMMON statement (see Section 6.2).

2.3.1 Form

x

(| (<variable name> Jx)

EQUIVALENCE ((| 1)!

(| (<array name>(<constant subscripts>))2)

1

x

<constant subsecripts> :; =(<integer>)

1

Example 2.3.1

real a(5), b(3, 4), x

integer q(6)

equivalence (a(2), b(2, 3) x, q(2))

The variables a(2), b(2, 3) and x now refer to the same four halfwords.

The integer variable q(2) corresponds to the two first of these. Note that

q(3) will correspond to the two last halfwords, a(3) and b(3, 3) are

equivalent, etc.

Example 2.3.2

long p

integer ia(2), il, i2

equivalence (p, ia(1), il), (ia(2), i2)

il and ia(1) now correspond to the first half of the long integer p while

i2 and ia(2) correspond to the last half.

RC FORTRAN, User's Manual Page 13

e 2.3.2 Rules

The EQUIVALENCE statement permits the use of different names in

connection with the same element(s). The variables referenced within
an equivalence group describe the same data element with the following

clarifications and restrictions:

1. The variables referenced may be of different type and kind.

2. If the variables are of different size the shorter one correspond to

the first halfword(s) of the longer one.

3. Within a group of equivalenced variables at most one variable may

directly or through equivalence be a common variable (Section

6.2).

4... The equivalences must not be contradictory, e.g., by making

elements of the same array equivalent.

e 5. Only local or COMMON variables may occur in EQUIVALENCE
statements.

6... The number of subscripts in a subscripted variable must

a. be exactly one

ør b. agree with the declaration of the array.

An instance of form a, like: a(7) is the same as a(7,1,...1) of form

b.

2.3.3 Notes

1. A special form of equivalence connected with zones is described in

Section 5.5.7.

2. Declarations

Page 14

3. Expressions

RC FORTRAN, User's Manual

3. Expressions

3.1 Arrays and Subscripts

A subscript expression is an arithmetical expression with no restriction

on the complexity and type of the expression; if the type is not integer

the conversion follows the rules of assignment to integer (see

Arithmetical assignment, Section 4.1).

The number of subscript expressions must agree with the dimensionality

of the array wherever arrays elements are referenced, except in

EQUIVALENCE statements (see 2.3.2 step 6).

3.2 Precedence Rules

The syntax (Appendix A) defines 3 different sorts of expressions,

namely arithmetical, masking, and logical. The precedence of operators

is not included in the syntax. The following rules hold for the sequence

of operations in any expression:

a, In an expression the precedence of the operators is

lst: &% .SHIFT.

2nd: %& 7

3rd: + -

&th: .LT. .LE. .EQ. .NE. .GE. .GT.

5th: .NOT.

éth: .AND.

7th: .OR.

b.. Operators of the same precedence level are executed from left to

right.

c, ... Expressions enclosed in parantheses and function calls are

evaluated by themselves and the value is used in subsequent

calculations.

Monadic operators operate on one operand, e.g. -A. Dyadic operators

combine two operands, e.g. A/B.

RC FORTRAN, User's Manual Page 15

Operands combined through dyadic operators may be of different types

except in shift and logical operations. This often implies that one

operand has to be converted before the operation.

Operations that are not mathematically defined or violate value range

may cause alarm.

If the execution of procedure calls refer to variables in the same

statement, side effects may be triggered. This is prohibited in the ISO

standard, but no check is performed.

3.3 Arithmetical and Masking Expressions

The monadic operators + - may be considered to operate as if a zero

precedes the same dyadic operator; the result is of the same type as the

original operand.

The dyadic operators + - ” / +” combine operands of arithmetical type

integer, long, real, double precision, and complex.

The types may be mixed, the type of the result is given in the table

below.

Only the power operator "" is restricted:

- the exponent must not be of type long, double precision or
complex.

- the radicand must not be of type double precision or complex.

Table 3.3.1. Resulting types of arithmetical operations + - % / ++

a <op> b b integer long real double complex

(notxx) (notxx) (nott+)

a

integer integer long real double complex

long long long real double complex

real real real real double complex

double (notx+) double double double double complex

complex (not++) complex complex complex complex complex

Real overflow and underflow. The reaction on real overflow is

controlled by the external integer variable OVERFLOWS in the
FORTRAN system as follows:

OVERFLOWS < 0 The run is terminated at overflow.

OVERFLOWS >= The value of OVERFLOWS is increased by

0 one. The result of the actual arithmetical
operation is 0.

When the program execution starts, the value of OVERFLOWS is -1.

3. Expressions

RC FORTRAN, User's Manual

Real underflow is controlled analogously by the UNDERFLOWS.

When using the mask operators .NOT., .AND., .OR., and .SHIFT. the

already shown precedence of operators holds. Mixing of types integer,

real, and long is permitted as shown in the syntax and further explained

below and in table 3.3.2, other types are prohibited.

NOT.

OR.

.SHIFT.

The operator is monadic, all bits of the operand are

complemented. The result is either short or long depending

on the operand.

The operatørs are dyadic and work as the same logical

operators on all bits of the operands. If short and long

operands are mixed the short operand is combined with the

last 24 bits of the long operand, i.e. the result is short. The

type is long when a real operand is masked.

The operator is dyadic. The result of A .SHIFT. B is either

short or long agreeing with A, and the operation is to shift

the A-operand B bits to the left (i.e. to the right when B<0)

with zeroes entering from either side, A may be of type

integer, real or long, while B must be an integer operand.

Arithmetical expressions resulting in type integer, real, or long (table

3.3.1) may appear as operands of .NOT., AND., and .OR.

Table 3.3.2. Resulting types of masking operations.

NOT. A .ÅAND. B A .SHIFT, B

OR. B

ÅA B integer B long B real B integer

integer integer integer integer integer integer

long long integer long long long

real real integer long real real

3. Expressions

RC FORTRAN, User's Manual Page 17

4. Executable Statements

4.1 Arithmetical and Logical Assignment

e 4.1.1 Arithmetical Assignment

In arithmetical assignments v=e the value of the arithmetical expression
e is evaluated first resulting in a value of arithmetical type. The element

v must also be of arithmetical type, and if it corresponds to the type of e
the assignment is made, if not an implied conversion precedes the

assignment as shown in table 4.1.1. Some of these will be two-stage

conversions.

Table 4.1.1. Arithmetical Assignment.

væeæ |e |integer long real double complex

v

integer L.CONV.I R.TRUNC.I D.TRUNC.R C.CONV.R

=2= =2= =2= R.,TRUNC.I | R.TRUNC.I

e x xy =2= XY =2= XY

long I1.CONV.L R.TRUNC.L | D.TRUNC.L | C.CONV.R

=4= =4= mm mm R.TRUNC.L

xy xy =4= XY

real I.FLOAT.R |L.FLOAT.R D.TRUNC.R | C.CONV.R

=4= =4= == =4= ==

y y

double I.FLOAT.R C.CONV.R

R.CONV.D L.FLOAT.D R.CONV.D R.CONV.D

=8= =8= =8= =8= -=8=

complex |1,FLOAT.R |L,FLOAT.R D.TRUNC.R

R.CONV.C R.CONV.C R.CONV.C R.CONV.C

=8= -—8= =8= =8= y -8=

4. Executable Statements

Page 18

4. Executable Statements

RC FORTRAN, User's Manual

Explanation:

Integer overflow may occur.

Precision may be lost.

n= Assign means transmit the resulting value, without change,

to entity. n 12-bit halfwords are transmitted.

e.CONV.v Convert the resulting value of e-type to representation of

the v-type.

e TRUNCv. Truncate means preserve as much precision of the

resulting value of e-type as can be contained in datum of

receiving v-type. See below.

e.FLOAT.v Float means change fixed-point value of e-type to

floating-point representation of v-type

hr =

Truncation of Real Values:

The truncations R.TRUNC.I and R.TRUNC.L are controlled by the

compiler-option: trunc.yes or trunc.no (see Appendix B).

trunc.yes: if |R| < 1, the result is 0;
if |R| >= 1, the result is the integer (respectively long)
whose magnitude does not exceed the magnitude of R

and whose sign is the same as the sign of R.

trunc.no: The result is the nearest integer (respectively long).

The Conversions:

L.CONVI The first word of L is excluded, overflow when the bits

0-23 of L are not equal to bit 24 of L.

LCONV.L The sign of I is extended 24 bits.

Multiple arithmetical assignments are allowed when all elements

assigned to are of the same arithmetical type.

4.1.2 Logical Expressions and Assignments

A relation operator compares the values of two arithmetical expressions.

When these values are of different type an implied conversion takes

place. Logical expressions agree with the ISO standard. A part of an

expression need only be evaluated when necessary to establish the value

of the total expression. This will be used to optimise the calculation of

logical expressions without rearranging the terms in the expression.

Logical assignment v=e demands both v and e to be of type logical.

Multiple logical assignments are allowed when all elements assigned to

are of type logical.

RC FORTRAN, User's Manual Page 19

4.2 GOTO statements

4.2.1 Simple GOTO

Form: GO TO <statement label>

The statement causes unconditional transfer of control to the statement

identified by the statement label. Both GO TO and GOTO are

permitted.

4.2.2 Assigned GOTO

x

Form: GO TO <label name>, (<statement label>)

1

Rules:

1. The statement acts as a many branch GOTO statement. Before

executing an assigned GOTO the referenced label variable must be

assigned (see below). By the assigned GOTO statement control is

transferred to the statement identified by the assigned label value.

If the label variable is unassigned the execution will cause a run

time alarm.

A label name must explicitly or implicitly be of type integer and it

must not be COMMON.

When an integer name is referenced in an ASSIGN statement or

an assigned GOTO statement it is considered a label name. It

must not be used as an arithmetical operand within the same

program unit. Violating this rule will cause a type error at

compilation time.

The comma and the label list is optional. No check is performed

based on the label list.

4.2.3 ASSIGN Statement

Form: ASSIGN <statement label> TO <label name>

The statement assigns the specified statement label to the label variable.

See 4.2.2, rule 2 and 3.

Example 4.2.1

assign 1017 to lab

GOTO lab, (1010, 1012, 1017)

4. Executable Statements

Page 20

4. Executable Statements

RC FORTRAN, User's Manual

After the execution of the shown ASSIGN statement, the assigned

GOTO statement will transfer control to the statement with label 1017.

4.2.4 Computed GOTO

x

Form: GO TO ([<statement label>]), <integer expression>

1

The statement works as follows: the value of the integer expression is

evaluated giving the result, r. Control transferred to the statement

identified by the r'th statement label in the label list. If r is less than 1

the first label is selected, if r is greater than the number of labels in the

list the last label is selected.

4.2.5 Examples

Example 4.2.2

The following GOTO statements all effect a transfer to the statement

with label 100:

assign 100 to lab

GOTO lab

GOTO 100

inx = 3

GOTO (300, 200, 100, 50), inx

Example 4.2,3 Administration of Actions

Processing of records may be implemented as a set of actions, numbered

from 1 to k, and an action table, integer actab(n), where actab(i)

specifies the actions to be executed for records of type i.

If action numbers range from 1 to 15, the action numbers may be

packed in 4 bit groups, so that up to 6 actions may be specified for each

record. The administration of the action execution may then look like:

iac=actab(record type)

c extract action number

50 action=iac .and. 1b1111

ec prepare extraction of next action number

iac=iac .shift,. (-4)

c select action, goto 9999 if no more

c actions for this record

goto(9999, 100, 200 ..., 1500),action + 1

c action 1 ...

100 num=record(numbinx)

goto 50

c action 2 ...

RC FORTRAN, User's Manual Page 21

e 200 if (type .gt. max)

goto 50
etc.

4.3 IF Statement

4,3.1 Logical IF

Form: IF (<logical expression>) <statement>

Rules

1. The statement works as follows: the logical expression is evaluated.

e If the value is true, the conditional statement is executed,
otherwise the statement is bypassed.

2... The statement must not be a DO statement.

4.3.2 Arithmetical IF

3

Form: IF (<arith expression>) [<statement label>]

3

Rules

1. The statement works as follows: the value of the arithmetical

expression is evaluated. If the resulting value is negative the first

label second label is chosen, else the third label is is chosen, if the

e value is equal to zero the chosen. Control is then transferred to the

statement identified by the chosen label.

2... The expression must not be of type complex.

Example 4.3.1

The algol statement

goto if x<0 then L100 else

if x<y then L10 else

if x=y then L20 else L30

may be written in fortran as

if (x .lt. 0) goto 100

if (x-y) 10,20,30

4, Executable Statements

Page 22

4. Executable Statements

RC FORTRAN, User's Manual

4.4 DO Loops

4.4.1 Form

3

DO<statement label><integer name> =[<expression>]

2

4.4.2 Execution of a DO Loop

The statement causes a sequence of statements starting with the DO

statement, up to and including a terminal statement to be executed

repeatedly. The terminal statement is determined by the specified label.

The number of repetitions is controlled by the three expressions. The

variable specified by the integer name is called the control variable, the

first expression determines the starting value, the second expression

determines the limit and the third expression determines the step. If the

third expression is omitted, the step 1 is used. The execution of a DO

loop may be described as follows:

1. Evaluate values of step and limit: The second and third

expressions are evaluated and if necessary truncated to integers.

2... Compute value of control variable: At first entry the control

variable is assigned the starting value, the following times the

current value of step is added to the control variable.

3. Conditional execution of DO range. The statements within the

range of the DO loop are executed if

(limit-control variable)rstep .ge. 0

After execution of the DO range the procedure is repeated from 1.

above. If the condition is not fulfilled the DO loop is exhausted and

execution proceeds with the statement after the terminal statement of

the DO loop.

4.4.3 Rules

1. The control variable must be of type integer.

2. The expressions must be of arithmetical type. After each

evaluation the value is truncated to an integer before it is used in

the DO control, i.e. addition to the control variable and test is

performed in integer mode,

3. The terminal statement must be found after its corresponding DO

statement within the program text.

4... A DO loop may contain other DO loops but the inner loop must

be completely contained within the surrounding DO loop.

RC FORTRAN, User's Manual Page 23

5. A nest of DO loops may have the same terminal statement, the

terminal statement is then considered as part of the innermost DO

loop (see Example 4.4.1).

6... When a DO loop is exhausted the control variable retains its last

assigned value (see 4.4.2 step 2).

Example 4.4.1

N=0

DO 100 I = 1,10

J=I

DO 100 K = 1,5

L=K

100 N=N+1

101 CONTINUE

e After execution of these statements and at the execution of the
CONTINUE statement, I = 11, J = 10, K = 6, L = 5, and N = 50.

Example 4.4.2

N =0

DO 100 I = 1,10

J=I

DO 100 K = 5,1

L=-=K

200 N=N+1

201 CONTINUE

After execution of these statements and at the execution of the

CONTINUE statement I = 11, J = 10, K = 5, and N = 0. L is not
defined by these statements.

4.5 CONTINUE Statement

The CONTINUE statement consists solely of the word CONTINUE
and serves as a dummy statement to which a label may be attached. The

statement has no effect.

4.6 STOP Statement

1

Form: STOP (<integer>)

0

The execution of a STOP statement terminates program execution in a

way similar to passing the END statement of the main program. All
zones are released, the word ”end” is written on current output.

4. Executable Statements

Page 24

5. Input/Output

RC FORTRAN, User's Manual

5, Input/Output

5,1 Zones And Logical Units

5,1,1 Introduction

The input/output system of RC FORTRAN utilizes a concept called a

zone.

A zone is a compound entity consisting of three distinct parts:

1) zone descriptor

2) ... one or more share descriptions (hereafter just called shares)

3) buffer area

A zone may be assigned a unitnumber whereby the zone is accessible as

a traditional logical unit.

The READ/WRITE statements may specify either the zone name or

the unitnumber when indicating the logical unit to be worked upon.

The extended input/output system of RC FORTRAN, like

INREC/OUTREC etc, providing tools for record handling, may only

specify the zone name.

5,1.2 Zone Descriptor

A zone descriptor consists of the following set of quantities which

specify a process or a document connected to the zone and the state of

this process:

Process name:

A text string specifying the name of a process or a document.

Mode and kind:

An integer specifying mode and kind for a document (see 5.2.3 open).

Logical position:

A set of integers specifying the current position of a document.

RC FORTRAN, User's Manual Page 25

Give up:

An integer specifying the conditions under which <block proc> is to be
ed.

State:

An integer specifying the latest operation on the zone.

Line change mode:

An integer specifying the proper line change action for WRITE (in

ALGOL this field is called: Free parameter).

Record:

Two integers specifying the part of the buffer area nominated as the

zone record.

Used share:

An integer specifying a share descriptor within the zone.

e Last byte:
An integer specifying the end of a physical block on a document.

Block procedure:

The procedure <block proc> (see 5.1.5).

The normal use of these quantities is explained in details in chapter 5.2.

Further details may be found in ref. 2, GETZONE.

5.1.3 Share Descriptor

Each zone contains the number of share descriptors given by <shares>

in the parenthesis following the zone identifier (see 5.1.5). The share

descriptors are numbered 1, 2,..., <shares>.

A share descriptor consists of a set of quantities which describes an

e external activity sharing a part of the buffer area with the running

program. An activity may be a parallel process transferring data

between a document and the buffer area under supervisory control of

the FORTRAN program. Further details may be found in ref. 2.

The set of quantities forming one share descriptor is:

Share state:

An integer describing the kind of activity going on in the shared area.

Shared area;

Two integers specifying the part of the buffer area shared with another

process by means of the share descriptor.

Operation:

Specifies the latest operation performed by means of the share

descriptor.

5. Input/Output

Page 26

5. Input/Output

RC FORTRAN, User's Manual

5.1.4 Buffer

Area The buffer area is used for containing the data for input/output.

When using the record procedures, like INREC/OUTREC etc., a part

of this zone buffer is made available for the program as the socalled

zone record.

The zone record is a real array of one dimension with the same name as

the zone itself.

The zone elements are numbered 1, 2,.... <record length >.

5.1.5 Declaration of Zones

5.1.5.1 Simple Zones

A simple zone may be declared as follows:

ZONE <zone name>(<bufsize>,<shares>,<blproc name>)

bufsize (integer)

The size of the buffer area expressed in double words.

shares (integer)

The number of shares.

blproc name (procedure)

The name of the attached block procedure.

The buffer area.

This parameter defines the size of the total buffer area attached to the

zone. The area is measured in double words.

The parameter must be a literal integer, not an integer.

The number of shares.

A general multibuffer administration is used by the input/output

system. The number of shares defines the number of buffers into which

the total buffer area is divided. Normally the user will choose the values

1 or 2 for single or double buffered input/output. The size of a share

should normally match the block size of the connected external device. If

the share does not match the block size, part of the block may be lost

when transferred. This is considered a hard error (see Section 5.3). A

longer share is just waste of core.

The block procedure.

The block procedure is called by the input/output system when hard

errors occur during the input/output operations. Normally the use of a

standard block procedure is recommended (see Section 5.3.4 and Ref.

3), but the user may design individual block procedures according to the

detailed conventions found in Section 5.3.3 and Ref. 2. The use of a

block procedure in a zone declaration works as an EXTERNAL

declaration of the name.

RC FORTRAN, User's Manual Page 27

5,1.5.2 Zone Arrays

An array af zones is declared by combining the zone declaration with a

DIMENSION statement. Only one dimension is allowed.

The parameters specified in the zone declaration are common to all

zones in the zone array, but each zone has its own description and its

own buffer area of the specified size.

A single zone from a zone array is referred by writing the name of the

zone array followed by one subscript.

5,1.6 The Standard Zones IN and OUT

The standard zones IN and OUT are preopened zones which may be

used on character level (i.e. by formatted READ/WRITE).

e The zone IN is preassigned the unitnumber 5, while OUT has been
preassigned the unitnumber 6.

If the names of these standard zones are to be used in a program unit

they must be declared as external zones as follows:

External in, out; zone in, out

If these standard zones are used solely by the unitnumbers they need

not be declared as external zones.

Example 5.1.1

The declaration

zone z0(256, 2, stderror)

e declares a zone named zo, with a buffer of 256 double words. The buffer
is divided in two shares and the standard block procedure, stderror, is
used.The name stderror is automatically declared external.

Example 5.1.2

The declarations

zone (10, 1, stderror); dimension za (3)

declares a zone array consisting of three zones, each with a buffer of 10

double words in a single share.

5.1.7 Multishare Input/Output

The amount of information transferred to or from a share in one

operation is called a block. On a magnetic tape a block is a physical

e block or a tape mark. On a backing storage area a block is one or more

5. Input/Output

Page 28

5. Input/Output

RC FORTRAN, User's Manual

segments. On a paper tape reader a block is usually one share of

characters.

Input

During input from a document via a zone with sh shares the system uses

one of the shares for unpacking of information and the remaining sh-1

shares for uncompleted input of later blocks. The following picture

shows the state of the blocks of the document.

Input, sh = 3

Jfosicat position AR physical

begin of | [I INS. 2] position

document completed transfers uncompleted transfers if close

Was

called

Note that when the document is closed the physical position of the

document is far ahead of the logical position. This is particular

important at the end of magnetic tapes where the ”stippled” blocks may

be absent and the tape then comes off the reel.

Output

During output to a document via a zone with sh shares one share is used

for packing of information, and 0 to sh-1 of the remaining shares are

used for uncompleted output of previous blocks. The following picture

shows the state of the blocks in the output stream.

Output, sh = 3

logical position ysical

sitionbeginof| |] (ses HK RRSESE HK KEE AES,
document completed transfers uncompleted transfers Kvlif close

GES

called

for packing

Note that when the document is closed the physical position is just after

the block corresponding to the logical position.

Swoprec

The procedure swoprec utilizes the shares as follows: One share is used

for packing and unpacking of information. If sh > 1 another share is

used for uncompleted output. Remaining shares are used for

uncompleted input of future blocks.

RC FORTRAN, User's Manual Page 29

e Choice of sh

The advantage of the multishare input/output is that differences in

speed between the program and the device may be smoothed to any
degree. The most frequent choise is between single or double buffer

input/output. The following rule of thumb may help you to choose in
cases where you scan a document sequentially:

th = time spent by the program with handling of the information in

a block.

td = time spent by the device with transfer of a block. td + th is the

total time in single buffer mode (sh = 1).

max. (td, th) is the total time in double buffer mode (sh = 2).

If th varies from block to block the situation is møre complicated and sh
> 2 may pay.

The following rule of thumb concerns the sequential use of swoprec:

e th + 2%td is the total time per block with sh = 1.
max (th, td) + td is the total time per block with sh = 2.

max (th, 2"td) is the total time per block with sh = 3.

You should always use single buffering on printer, plotter, and punch,

except when you know for sure that your job is not stopped and started

by the operating system. The reason is that an output operation is

terminated halfway when the job is stopped, but with sh > 1 the next

output operation is started before the first is checked and output again.

You should always use single buffering for typewriter output because

the operator at any moment may stop the output operation to send a

console message to send a console message.

Message Buffers Occupied

e Input/output by means of sh shares occupies permanently sh-1 of the

message buffers available for the job (see ref. 10). From the moment

SETPOSITION has been called for a magnetic tape and until the first

input/output operation is performed one message buffer is occupied

(even when sh = 1).

5,1.8 Algorithms for Multishare Input/Output

You must know about these algorithms if you want to interfere with the

system in the block procedure of the zone. More details about the

variables in a zone may be found in Ref. 2. Ref. 8 while Ref. 10 explain

the rules behind the communication with devices.

The algorithms below are written in algol, and sh denotes the number of

shares in the zone.

5. Input/Output

Page 30

5. Input/Output

RC FORTRAN, User's Manual

Snapshots of Shares in Typical Situations (sh = 3)

Just after setposition on a magnetic tape:

move operation free free

(always share 1)

After inrec:

record

ll I — I. l
input free input

(used share)

After several outrecs:

record

LI] Ilm 20 [I]
output free output

(used share)

Change of Block at Input

rep: if share state (used share) = free then

begin start transfer (input);

used share:= used share mod sh + 1;

goto rep

end;

comment now all shares are busy with transfers

except after a positioning;

wait transfer (used share); comment share state

becomes free, The operation checked might

be a positioning operation;

last byte := top transferred (used share) -1;

comment now the share contains data from record

base to last byte;

Change of Blocks at Output

if share state (used share) <> free then

begin wait transfer (used share);

comment a positioning operation might be

uncompleted;

end;

start transfer (output);

used share ;= used share mod sh + 1;

comment one or more shares behind used share are

busy with transfers;

wait transfer (used share);

comment share state becomes free and the share may

be filled from record base to last byte;

RC FORTRAN, User's Manual Page 31

Start Transfer (Operation)

This procedure works only on used share. It sets a part of the message

and sends it:

first absolute address of block := abs address of

first shared;

segment number of message := segment count;

update segment count for next transfer;

operation in message :;= operation;

comment the mode is left unchanged;

send message;

share state := uncompleted transfer;

Wait Transfer

This procedure waits for the answer from a transfer or tape positioning,
checks it, and performs the standard error actions (error recovery).

Finally, it may call the block procedure of the zone. In details this works
as follows:

record base:= abs address of first shared(used share) -1;

last byte:= abs address of last shared(used shared) +1;

record length:= last byte - record base;

st:= share state(used share);

if st <> running child process then

share state(used share);= free;

if st <> uncompleted transfer then goto return:

wait answer(st);

if kind = magnetic tape then

begin if some words were transferred then

block count:= block count + 1;

if tape mark sensed and operation is input or

output mark then

begin file count:= file count +1; block count:= 0

end

end;

compute logical status word; comment the logical

status word is 24 bits describing the error

conditions of the transfers (see 5.3);

top transferred(used share):= if operation = io

then I + address of last byte transferred

else first shared(used share);

users bits := common ones in logical status and

give up mask;

remaining bits := logical status - users bits;

perform standard error actions for all ones in

remaining bits (see 5.3).

if a hard error is detected then

logical status :- logical status + 1;

if hard error is detected or usersbits <> 0 then

begin

b:= toptransferred(usedshare) - 1 - record base;

let record describe the entire shared area from

first shared to last shared;

5. Input/Output

Page 32

5. Input/Output

RC FORTRAN, User's Manual

save;= zone state;

if operation = input and tapemark and b = 0 then

b:= 2

blockproc (z, logical status, b);

zone state:= save;

if b < 0 or b + record base > lastbyte then

index alarm;

top transferred(used share);= b + 1 + record base;

end;

return:

5.2 Documents, Basic Input/Output

5,2.1 Documents

The various external media which may be used in RC FORTRAN are

called documents. A document may be a deck of cards, a roll of paper

tape, a reel of magnetic tape, etc. Documents are identified by a

document name, which is a string of up to 11 small ISOletters or digits

starting with a letter and terminated by the NUL-character.

A document may be thought of as a string of information, either a string

of 8-bit characters or a string of binary words. The string is on some

documents broken into physical blocks (e.g., on magnetic tapes and

backing storage areas). The procedures for input/output on character

level and record level keep track of the current logical position of the

document. The logical position points to the boundary between two

characters or two elements of the document. During normal sequential

use of the document, the logical position moves along the document

correspon ding to the calls of the input/output procedures.

For documents consisting of physical blocks, the logical position is given

by a position within the physical block, plus a block number, plus (for

magnetic tapes) a file number. Note that the block number is ambiguous

in the case where the logical position points to the boundary between

two physical blocks. This ambiguity is resolved explicitly in the

description on the individual procedures: The term ”the logical position

is just before a certain item” implies that the block number is the block

number of that item.

The following sections give a survey of some documents and the way

they transfer information to and from the zone buffer. The rules for

protection of døcuments and further details are found in Ref. 1.

5.,2.1.1 Backing Storage

The backing storage may consist of drums and/or discs. You have no

direct access to the entire backing storage, but only to documents which

are backing storage areas consisting of a number of segments. Each

segment contains 512 halfwords, equivalent to 128 real variables. The

segments are numbered 0, 1, 2, ... within the area, and the block

numbers mentioned above are exactly these segment numbers. File

numbers are irrelevant.

RC FORTRAN, User's Manual Page 33

One or more segments may be transferred directly as bit patterns to or
from the core støre in one operation. The number of segments

transferred is the maximum number that fits into the share used.

Details about the various types of backing storage devices may be found

in Ref. 8.

5,2.1,2 Typewriter

A typewriter may be used both for input and output. The sequence of

characters input forms one document (infinitely long), and the sequence

of characters output forms another document. File number and block

number are irrelevant on a typewriter.

One input operation transfers one line of characters (including the

terminating New Line character) to the share. If the share is too short,

less than a line is transferred, but that is an abnormal situation. The

characters are packed in ISO 7-bit form with 3 characters to one word,
and the last word is filled up with NULs. One output operation transfers

characters packed in the same form to the typewriter. Several lines may

be output by one operation.

5.2.1.3 Paper Tape Reader

A document consists of one roll of paper tape. It may be read in various

modes: with even parity, with odd parity, without parity, or with

transformation from flexowriter code to ISO code. File number and

block number are irrelevant for a paper tape.

One input operation will usually fill the share with characters packed 3

per word, but fewer characters may also be transferred, for instance at

the tape end. In such cases, the last word is filled up with NUL

characters. The characters are not necessarily ISO characters, that

depends on the meaning you assign to them.

5.2.1.4 Paper Tape Punch

A document is infinitely long, even when the operator divides the output

into more paper tapes. A paper tape may be punched in various modes:

with even parity, with odd parity, without parity, or with transformation

from ISO code to flexowriter code. File number and block number are

irrelevant for tape punch.

One output operation may punch any number of characters packed 3

per word. In all modes, except the mode without parity, only the last 7

bits of the characters are output and extended with a parity bit.

5,2.1.5 Line Printer

A document is infinitely long. File number and block number are

irrelevant on a printer.

5. Input/Output

Page 34

5. Input/Output

One output operation may print any number of characters packed 3 per

word, Several lines may be output by one operation. The characters

must be in ISO 7-bit code.

5.2.1.6 Card Reader

A document is one deck of cards. It may be read in various modes: in

binary, in decimal, and with conversion from Hollerith to ISO. File

number and block number are irrelevant on a card reader.

One input operation will usually fill the share, but fewer cards may also

be read, for instance at the end of the deck. One column contains always

one character, The characters are packed 2 per word in binary mode,

and 3 per word in the other modes. In the latter case, a card is stored as

81 characters, where the 81st is a New Line character generated by the

monitor.

5,2.1.7 Magnetic Tape

A document is one reel of tape. It consists of a sequence of files

seperated by a single file mark. Each file consists of physical blocks with

possibly variable lengths. The blocks may be input or output in even or

odd parity. The files and blocks are numbered 0, 1, 2, ... as shown in the

figure.

One operation transfers one physical block to or from a share. If an

input block is longer than the share, only the first part of the block is

transferred,

A magnetic tape document:

logical position

load point <— file 0 —> tape mark <-- file 1 tape mark end of

> | | Lol |
block 0 block 1block 0 block 1 ...

Two kinds of tape stations exist: 7-track stations where a block consists

of a sequence of 6-bit bytes; one word of the share is here transferred as

four 6-bit bytes. 9-track stations where a block consists of a sequence of

8-bit bytes; one word of the share is here transferred as three 8-bit bytes.

The difference causes no trouble as long as the tapes are written and

read on RC4000, RC6000, or RC8000. But if you try to move a 7-track

tape to another computer (or to an off-line converter), you should

remember that READ and WRITE work with 8-bit characters.

The share length used for output to a magnetic tape determines the

physical block length. Because the blocks are seperated by a block gap of

3/4 inch, the share length has influence on the amount of information

the tape can hold and also on the maximum transfer speed. With density

of 556 bpi (bytes per inch), a share length of 60 elements will generate

blocks of about 3/4 inch (more or less depending on the kind of the

station). In this case half of the tape is used for blocks and half for block

gaps. The data are transferred with 0.38 times the maximum tape speed,

because block gaps take 1.6 the time of blocks of the same length. If you

RC FORTRAN, User's Manual Page 35

use a share length of 600 elements, 10/11 of the tape is used for data

and the transfer rate is 0.86 of the maximum.

5.2.1.8 Internal Process

An internal process (another program executed at the same time as your

job) may read or write a document. The process may be designed to
react according to the rules given for the document. After calling OPEN

with the name of the internal process and the kind corresponding to the

document the process may then be used exactly as the document.

The internal process may also handle the information in its own way,

and then no general rules can be given, but usually, the end of the

document is signalled as explained in Section 5.3.

5.2.1.9 Devices without Documents

Some peripheral devices, for instance the clock dø not scan documents,

and they cannot be handled by the high level zone procedures. However,

the primitive input/output level may handle such devices too.

5.2.2 Principles of Communication

The following principles generally apply for the use of a document:

a.. The document must be loaded on a specific device and connected

to a zone. This is done by calling the standard procedure OPEN.

b.. Input/output operations and maneuvering is thereafter performed

by calling i/o-procedures referring exclusively to the zone.

c.... The document may finally be released from the zone andpossibly

unloaded by use of the procedure CLOSE.

NOTE: if the document is a magnetic tape the call of OPEN must be

followed by a call of the procedure SETPOSITION before input/output

operations are legal.

The main features of the input/output system may be illustrated by the

example below and the comments following it. In the example file 1

from a magnetic tape is read by unformatted READ and printed on a

line printer by formatted WRITE.

Example 5.2.1. Printing of a Magnetic Tape File

line

no.

1 program taprint

2 common/eofcom/ eof, prnam

3 data eof, prnam/ 0, "'printer'/

4 logical setposition; long prnam(2); integer eof

5. Input/Output

Page 36

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

20

1000

100

10

20

30

40

RC FORTRAN, User's Manual

zone tapzon(256,2,blp) e
zone przon(40,2,stderror)

call open (tapzon,18, 't5011l', 1 .shift, 16)

call open (przon,14,prnam(1), 0)

call setposition (tapzon,1,0)

read(tapzon) x,Y,Z,Vv

if(eof) 100,20,100

write(przon, 1000) x,y,z,v

goto 10

format(4h x= ,f£8.2, e.t.c.

call close(tapzon, .true.)

call close(przon, .true.)

end

function blp(z,s,b)

zone Z; integer s,b,eof; long prnam(2)

common/eofcom/eof, prnam

if(s .and, 1) 10,20,10

call stderror(z,s,b) e
if (b) 40, 40, 30

eof = 1; b =16

end

Comments to example 5.2.1:

line 3

line 5

line 6

line 7

5. Input/Output

eof is initiated to zero, the array prnam is initiated to

the document name, printer, with trailing NUL

characters (see Section 6.2.4 about DATA and long

texts).

The zone for tape reading is declared. The zone buffer

is 256 reals in two shares corresponding to a block

length of 128 reals. The function blp is to be called,

when hard errors occur on the magnetic tape at the end

of file.—

Details about the block procedure are given in Section e
5,3.3.

The zone for the line printer is declared. The share size

here is 20 double words corresponding to 120 8-bit

characters. With this zone the standard block

procedure STDERROR is to be used. This means that

in case of a hard error the run is terminated with a

standard message on the current output unit. See

section 5,3.4 about STDERROR.

The tape zone is opened. The second parameter, 18,

means that the document to be connected is a magnetic

tape in odd parity. The possible codes for kind and

møde of document are given in Section 5.2,3. The third

parameter is the name of the relevant document to be

mounted on a tape unit.

The fourth parameter says, that when end of file is read e

RC FORTRAN, User's Manual

line 8

line 9

lin

e 10-14

lines

15-16

lines

18-19

lines

21-22

line 23

line 24

Page 37

(indicated by status bit, see Section 5.3.1), the normal

reaction (described in Section 5.3.2) is to be replaced
by a call of the block procedure.

The line printer zone is opened. Note, that a special

document name, printer, is used. Usually each

installation has certain document names connected

with devices as tape reader, tape punch, and printer,

where the documents are anonymous.

The giveup mask is zero, which means that errors are

treated as described in the subsection of 5.3.2 headed

Paper tape punch, line printer.

The document connected to the zone tapzon is now

positioned to file 1, block 0, as specified by the two last

parameters.

These lines should be considered together with lines

18-25 declaring the special block procedure. This is the

central loop, which reads from the input tape, writes on

the line printer until end of file is met on the magnetic

tape.

When this happens the block procedure is called and

indicates the end of file by setting the variable eof to

1l.m

The zones are closed, i.e. transfers are terminated and

the documents are disconnected from the zones. The

parameters .true. specifies that the documents are

made available to other users.

The block procedure is called after a block transfer if

end of file is sensed or if an i/o-error occurs (parity

error, etc.). The giveup mask of 1 .shift. 16 in line 7

signals, that the block procedure must be called at end

of file instead of executing the standard action.

The parameters are:

z the zone, s the status word with information about the

reason of the call, b the length of the block transferred.

If the call reason is an i/o-error the standard block

procedure is called.

The block procedure may be called when positioning

the tape to file 1, but the value of b determines if the

tapemark was sensed during a read or during a

positioning. (See section 5.3.2, subsection for magnetic

tape).

End of file is signalled to the main program by setting

eof to 1. The block length b is set to 16 corresponding

to 4 reals (see Section 5.3.3).

5. Input /Output

Page 38

5. Input/Output

The following pages contain the procedure descriptions for OPEN and

CLOSE together with some notes on SETPOSITION, which are

necessary for use with simple input/output.

5.2.3 Subroutine OPEN

Connects a document to a given zone in such a way that the zone may be

used før input/output with the high level zone procedures.

CALL OPEN(z, modekind, doc, giveup)

z (call and return value, zone). After return, z

describes the document.-—

modekind (call value, integer). Mode.shift.12 + kind,

See below.

doc (call value, text). A text specifying the name

of the document as required by the monitor,

i.e. a small letter followed by a maximum of

10 small letters or digits ended by a

NUL-character. Short texts of up to 5

characters + NUL may be given as a LONG

variable or a text constant, Longer document

names must be given in two consecutive element

of a LONG array. The first element of the

array is given as parameter to OPEN (see

Example p5.2.1).

giveup (call value, integer). Used in connection with

the checking of a transfer. See below.

Modekind

Specifies the kind of the document (typewriter, backing storage,

magnetic tape, etc.) and the møde in which it should be operated (even

parity, odd parity, etc.).

The kind of the document tells the input/output procedures how error

conditions are to be handled, how the device should be positioned, etc.

Ås a rule, the procedures dø not care for the actual physical kind of the

document, but disagreements will usually give rise to bad answers from

the document and an error condition arises. If you, for example, open a

backing storage area with a kind specifying printer, and later attempt to

output via the zone, the backing storage area will reject the message

because the document was initialised as required by a printer.

On the other hand, if new kinds of devices are introduced, these may be

used directly in fortran if you can find a kind which corresponds to the

way these devices should be handled. Mode and kind must be coded as

shown in the table below. If you attempt a mode or kind which does not

fit into the table, the run is terminated.

RC FORTRAN, User's Manual Page 39

Kind

0 Internal process, mode = 0.

4. Backing storage area, mode = 0.

8 Typewriter, mode = 0.

10 Paper tape reader, mode = 0 for odd parity, 2 for even parity (the

normal ISO form), 4 for no parity, and 6 for conversion from

flexowriter code to ISO.

12. Paper tape punch, mode = 0 for odd parity, 2 for even parity (the

normal ISO form), 4 for no parity, and 6 for conversions from ISO
to flexowriter code.

14. Line printer, mode = 0 for all printers, except centronics 101A via

medium speed tmx where mode = 64.

16 Card reader, see Ref. 8 for full details.

18 Magnetic tape (tapes of 6 or 8 bit physical characters). For RC 747

and RC 749:

Mode = 0 or 4 means odd parity.

Mode = 2 or 6 means even parity.

For RC 4739 and RC 4775 modekind is defined to be:

T.shift. 16 + Mode .shift. 12 + 18, where

Mode = 0 means 1600 bpi, PE, odd parity.

Mode = 2 means 1600 bpi, PE, even parity.

Mode = 4 means 800 bpi, NRZ, odd parity.

Mode = 6 means 800 bpi, NRZ, even parity.

For output 0 <= T < 6 specifies that the last T physical characters in a

block should not be output to the tape.

For input T should be 0.

If you use T <> 0 during output, you should set the word defect bit (1

shift 7) and the stopped bit (1 shift 8) in your giveup mask and after a

check of bytes transferred simply ignore the bits in your block

procedure.

Initialisation of a Document

Open prepares the later use of the document according to kind:

Internal process, backing storage area, typewriter:

Nothing is done. When a transfer is checked later, the necessary

initialisation is performed.

Paper tape reader, card reader:

First, open checks to see whether the reader is reserved by another

process. If it is, the parent receives the message "wait for <name of

document>" and open waits until the reader is free. Second, open

initialises the reader and empties it. Third, open initialises the reader

again (in order to start reading in lower case), sends a parent message

asking for the reader to be loaded, and waits until the first character is

available.

Paper tape punch, line printer:

Open attemps to reserve the document for the job, but the result of the

reservation is neglected.

5. Input/Output

Page 40

5, Input/Output

Magnetic tape:

If the tape is not mounted, a parent message is sent asking for mounting

of tape. The message is sent without wait indication (see Ref. 7).

Some of these rules have been introduced to remedy a possible lack of

an advanced operating system.

Giveup

The parameter giveup is a mask of 24 bits which will be compared to the

logical status word each time a transfer is checked. If the logical status

word contains a one in a bit where giveup has a one, the standard action

for that error condition is skipped and the block procedure is called

instead (the block procedure is also called if a hard error is detected

during the checking).

Zone State

The zone must be in state 4, after declaration. The state becomes

positioned after open (ready for input/output) except for magnetic

tapes, where setposition must be called prior to a call of an input/output

procedure.

The entire buffer area of z is divided evenly among the shares and if the

document is a backing storage area, the share length is made a multiple

of 512 halfwords. If this cannot be done without using a share length of

0, the run is terminated.

The logical position becomes just before the first element of block 0, file

5.2.4 Subroutine CLOSE

Terminates the current use of a zone and makes the zone ready for a

new call of open. Close may also release a device so that it becomes

available for other processes in the computer.

CALL CLOSE(z, rel)

z (call and return value, zone). Specifies the

document, the position of the document, and the

latest operation on z.

rel (call value, logical). True if you want the

document to be released, false otherwise.

CLOSE terminates the current use of the zone as described for

SETPOSITION. If the document is a magnetic tape which latest has

been used for output, a tape mark is written.

Finally, CLOSE releases the document if rel is true. Releasing means

for a backing storage area that the area process description inside the

monitor is released for use by other zones of yours. The area itself is not

RC FORTRAN, User's Manual Page 41

removed and you may later open it again, provided that it has not been

removed meanwhile by some other process (this may be prevented as

described in Ref, 1).

Releasing means før other documents that the corresponding peripheral

device is made available for other processes.

Zone State

The zone may be in any state when CLOSE is called. After the call the

zone is in state 4, after declaration, meaning that it must be opened

before it can be used for input/output again.

5.2.5 Logical Function SETPOSIION

CALL SETPOSITION(z, file, block)

setposition (return value, logical). True if a

magnetic tape positioning = has been

started, false otherwise.

z (call and return value, zone) Specifies

the document, the position of the

document, and the latest operation on z.

file (call value, integer). Irrelevant for

documents Sother than magnetic tape.

Specifies the file number of the wanted

position. Files are counted from 0.

block (call value, integer). Irrelevant Sfor

documents other than magnetic tape or

backing = storage. Specifies the block

number of the wanted position. Blocks are

counted from 0.

SETPOSTITION performs the following actions:

1. If the zone is used for output remaining data blocks in the buffer

area are transferred to the document. A tape mark is then output

if the document is a magnetic tape. If the zone is used for input

possible running transfers are waited for.

2. If the document is a magnetic tape, this is now moved to a position

immediately in front of the block determined by the specified file

number and block number. If the document is a backing storage

area no movement takes place, block to be transferred is

determined by the specified block number. A detailed description

of SETPOSITION is found in Section 5.5.6.

5. Input/Output

Page 42

5. Input/Output

5.2.6 REWIND, BACKSPACE, and ENDFILE

ISO FORTRAN (see Ref. 6) specifies some auxiliary procedures for

magnetic tape operation. The functions of these procedures are

included in the procedures SETPOSITION and CLOSE as follows:

REWIND Rewind magnetic tape to load point. Replace by:

CALL SETPOSITION(z,0,0)

BACKSPACE Backspace one block. A subroutine performing this

operation within the current file may look like:

SUBROUTINE BACKSPACE(z)

zone zZ; integer file , block

call GETPOSITION(z, file, block)

if (block .gt. 0)

call SETPOSITION(z, file, block-1)

end

ENDFILE Write file mark. This is døne automatically when

SETPOSITION or CLOSE is called with a zone,

which has latest been used for output.

5.2.7 Subroutine ZASSIGN

CALL ZASSIGN (z, unitnumber)

z (call value, zone)

unitnumber (call value, integer)

Assigns a unitnumber to the specified zone so that future READ/

WRITE statements may access the zone by specifying the unitnumber.

If the zone already has been assigned a unitnumber the zone will only be

accessible via the new unitnumber.

If the unitnumber already has been assigned to a zone only the new zone

will be accessible via the unitnumber.

If the unitnumber is negative the zone is not accessible via a

unitnumber.

The assignment is only defined as long as the zone is defined.

The zone is (of course) always accessible by means of the zone name

itself.

The standard zones IN and OUT have been preassigned the

unitnumbers 5 and 6 respectively.

RC FORTRAN, User's Manual Page 43

5.3 Treatment of I/O Errors

5.3.1 Logical Status Word, Kind of Errors

Errors occurring during i/o-operations are indicated in the logical status
word, which is generated by the basic i/o system at the end of each

operation of a document. The following sections give a survey of the

conventions for the logical status word and the standard actions taken

for each kind of error and each kind of document. The bits of the logical
status word:

1 .shift. 23: Intervention. The device was set in local mode

during the operation, presumably because the

operator changed the paper or the like.

1 .shift. 22: Parity error. A parity error was detected during

the block transfer.

1 .shift. 21: Timer. The operation was not completed within a

certain time defined in the hardware.

1 .shift. 20: Data overrun. The high speed channel was

overloaded and could not transfer the data.

1 .shift. 19: Block length. A block input from magnetic tape

was longer than the buffer area allowed for it.

1 .shift. 18: End of document. Means various things, for

instance: Reading or writing outside the backing

storage area was attempted; the paper tape reader

was empty; the end of tape was sensed on magnetic

tape; the paper supply was low on the printer; end of

deck on card reader. See Ref. 1 for further details.

1 .shift, 17: Load point. The load point was sensed after an

operation on the magnetic tape or output tray was

full on card reader.

1 .shift. 16: Tape mark. A tape mark was sensed or written on

the magnetic tape, ør the attention button was

pushed during typewriter i/0o.

1 .shift. 15: Write-enable. A write-enable ring is mounted on

the magnetic tape.

1 .shift. 14: High density. The magnetic tape is in high density

mode.

1 .shift. 13: Reading error on card reader.

1 .shift. 12: Card rejected on card reader.

5. Input /Output

Page 44

5. Input/Output

1 .shift. 8: Stopped. Generated by the check routine when less

than wanted was output to a document of any kind

ør less than wanted was input from a backing storage

area.

1 .shift. 7: Word defect. Generated by the check routine when

the number of characters transferred to or from a

magnetic tape is not divisible by the number of

words transferred, i.e. when only a part of the last

word was transferred,

1 .shift. 6: Position error. Generated by the check routine

after magnetic tape operations, when the monitors

count of file and block number differs from the

expected value in the zone descriptor.

1 .shift. 5: Process does not exist. The document is
unknown to the monitor.

1 .shift. 4: Disconnected. The power is switched off on the

device.

1 .shift. 3: Unintelligible. The operation attempted is illegal

on that device, e.g., input from a printer.

1 .shift. 2: Rejected. The program may not use the document,

or it should be reserved first

1 .shift. 1: Normal answer. The device has attempted to

execute the operation, i.e. 1 shift 5 to 1 shift 2 are

not set. (Other bits may be set).

1 .shift. 0: Hard error. The standard error action has

classified the transfer as a hard error, i.e. the error

recovery could not succeed.

5,3.2 Standard Error Actions

The bit ”normal answer” is always ignored; the remaining standard error

actions depend on the document kind given in OPEN as shown below.

This kind has not necessarily any relation to the actual physical kind.

Situations not covered by the description are hard errors, which mean

that the block procedure is called (see below).

Backing Storage

End of document after an input operation:

The empty block read is replaced by a block of two halfwords containing

3 End of Medium characters.

Stopped:

If the original status w not show ”end of document”, the operation is
repeated (see below).

RC FORTRAN, User's Manual Page 45

Process does not exist:

The corresponding area process is created. If the creation fails, it is a

hard error. Otherwise, the operation is repeated.

Rejected:

The area process is reserved for exclusive access. If the reservation fails,

it is a hard error. Otherwise the operation is repeated (see below).

Typewriter

Intervention:

Ignored.

Timer after input operation:

Ignored.

Stopped:

The remaining part of the block is output (see below).

Paper Tape Reader, Card Reader

Parity error:

Ignored.

End of document:

If some characters were input, the bit is ignored. Otherwise the empty

block is replaced by a block of two halfwords containing 3 End of

Medium characters.

Paper Tape Punch, Line Printer

Intervention:

Ignored.

End of document:

A message is sent to the parent asking for stop of the job until the paper

has been changed (see parent message below).

Stopped:

The remaining part of the block is output (see below).

Magnetic Tape

Note that the handling of ”døes not exist” and ”rejected' makes a

magnetic tape very robust against operator errors. In fact, the operator

may unload a magnetic tape at any moment and later mount it on

another station without harming the job which used the tape.

Intervention, load point, write-enable, and high density:

Ignored

Parity error and word defect:

The stopped bit is ignored in this case. An input operation is repeated

5, Input/Output

Page 46

5. Input/Output

up to 5 times (see below), but if the parity error persists, the error is a

hard one. An output operation is repeated up to 5 times with erasure of

6 inches of tape the first time, 12 the second, and so on. If the parity

error persists, the error is a hard one. During erasure and positioning

only parity error, timer, and technically impossible bits cause a hard

error.

Tape mark:

(Ignored after a sense or move operation.) The position error bit, word

defect bit, and parity error bit are ignored when the tape mark bit is set.

If the tapemark occurs after an input operation the block is replaced by
a block of two halfwords containing 3 End of Medium characters.

Stopped:

If the write-enable bit is 1, the output is repeated (see below).
Otherwise, a parent message is sent asking for stop of the job until the

ring has been mounted. The error action continues as if the operation

had been rejected.

Does not exist:

This bit is ignøored after a sense operation or a move operation. In other
cases, a message is sent to the parent asking for stop of the jøb until the

tape has been mounted (see parent message below). Next, the tape is

reserved for exclusive access and if this fails, the parent message is sent
again. Thirdly the tape is positioned according to file and block count,
and the operation is repeated as explained below.

Rejected:

Handled as ”does not exist”, except that the parent message is not sent

initially.

Internal Process

End of døcument after an input operation:

If a non-empty block was input, the bit is ignored. Otherwise, the empty

block is replaced by a block of two halfwords containing three End of

Medium characters.

Stopped:

If the original logical status word does not show ”End of document” the

remaining part of the block is output (see below).

Output Remaining

The remaining part of a block is output as described under repeat

operation.

Repeat Operation

An operation is repeated in 4 steps: 1) If the document is a magnetic

tape, it is positioned in front of the latest block which was succesfully

transferred and then the tape is upspaced one block (this is a safe

method when rewriting a block). 2) The operation (or the remaining

part of an output transfer) is started again. 3) All other operations in the

RC FORTRAN, User's Manual Page 47

zone are waited for (but not checked), and then started again. 4) The

first operation is waited for and checked again. Only the last check

involved in a series of repetitions may cause a call of the block

procedure.

Parent Message

The parent (the operating system for your job) may either handle a

message according to its own rules, or it may pass the request on to the
operator. The job may ask the parent to stop the job temporarily until

the operation has been performed. The exact rules depend on the

operating system in question.

5.3.3 The Block Procedure and the Giveup Mask

If the standard error actions described in Section 5.3.2 are sufficient, the

giveup mask 0 should be used in the call of OPEN and STDERROR

should be used as block procedure. This will usually be sufficient with

formatted READ/WRITE. Formatted READ will stop on end of

medium and signal this through the external variable READERR (see

Section 5.4.5).

The standard error action for a given kind of error may be suppressed

by calling OPEN with a giveup mask containing a 1 in the bitposition

connected to the relevant error situation.

The procedure for each completed block transfer proceeds in the

following steps:

1. Perform standard error actions for all bits in the logical status

word, which are not suppressed by the giveup mask. This may

include repetition of the operation, in which case the procedure
starts with 1. again.

2. Call the block procedure if either (a) one of the standard error

actions has terminated with a hard error, or (b) if an error

corresponding to one of the bits in the giveup mask has occured.

The block procedure is called as follows:

CALL BLOCKPROC(z,s,b)

z (call value, zone). The record of z is the

entire share available for the transfer.

s (call value, integer). The logical status word

after the transfer.

b (call and return value, integer). The number

of halfwords transferred.

If the block procedure is called because of a hard error, the last bit of

the status word is 1. If the call is caused by a bit in the giveup mask, the

bit is 0.

5. Input/Output

Page 48

5. Input/Output

Purpose and Return

In the block procedure, you can do anything to the zone by means of the

primitive zone procedures (see Ref, 2) and the high level i/o-zone

procedures (in the latter case you must be prepared for a recursive call

of the block procedure).

You signal the result of the checking back to the high level zone

procedure by means of the final block length, b. The value of b has no

effect when an output operation is checked, but after an input operation

you may signal a larger or a shorter block or even an empty block (b =

0). However, the value of b at return must correspond to a block which

is inside the shared area specified by the value of used share at return.

Otherwise, the run is terminated with an index alarm. Further details

may be found in Ref. 2.

5.3.4 Subroutine STDERROR

Terminates the run with an error message specifying an error condition

on a peripheral device.

CALL STDERROR(Zz, s, b)

z (call value, zone). Specifies the name of the

document.

s (call value, integer), The logical status word

after a device transfer.

b (call value, integer), The number of halfwords

transferred.

The run is terminated with the alarm message:

giveup<value of b> ...

called from ...

The file processor prints the logical status word 's' after the alarm

message from the fortran program.

RC FORTRAN, User's Manual Page 49

5.4 READ/WRITE Statements

5,4.1 Introduction

The READ/WRITE statements are used for transmission of data

between the core støre and the external media. The transmission may be

on character level with format controlled READ/WRITE or it may be a

transmission of binary values without format control.

5,4.2 READ/WRITE with Format Control

The formatted READ/WRITE statement has the form

(READ) | an

(i) (<logical unit>,<format label>) (<data list>)

(WRITE) i 10

[<zone name>)

<logical unit>::= (<zone array name> (<expression>))

[<unit number>)

<unit number>::= <expression>

[<implied do list>]+

<data list>::= []

[<simple data list>] 1

<implied do list>::=

(i 13
(<data list>,<integer name>= (<expression>))

(12

x[
<simple data list>::= [<simple data elements>

[1

[<expression> |]

<simple data elements>::= [<array name> |]

[<zone name> |

The READ/WRITE statement specifies

a.. The operation to take place (read or write).

b.. The zone (maybe specified by means of a unit number)(to which a

document must be connected) to be involved in the input/output

operation.

c.. A controlling format, which contains a list of format elements each

describing the picture of an external field and a possible

conversion to take place between the external and the internal

representation (or vice versa) of a data element.

d. A list of data elements to be transferred to or from the document.

5. Input/Output

Page 50

5. Input/Output

RC FORTRAN, User's Manual

Depending on their kind the data elements are treated according to the

following basic rules:

simple variables;

A value is transmitted to or from the variable.

subscripted variable:

The subscript value(s) are evaluated and a value is from the determined

array element.

array:

Values are transmitted to or from all array elements column by column.

Values are transmitted to or from the whole zone record.

expression or constant:

With WRITE the value of the expression or the constant is transmitted

as a simple variable. With READ the operation is meaningless. A value

is read but lost internally.

Implied DO

A list of i/o elements may be controlled by an implied DO loop. The

interpretation of the control parameters in the implied DO loop is quite

analogous with that of the normal DO loop (see Section 4.4). For each

value of the control variable the controlled i/o list is processed

according to the rules described in the remaining part of the paragraph.

An implied DO list is considered a basic element in an i/o list and may

again be controlled by another implied do construction.

Example 5.4.1

(x(2,j), (a(i,j), b(i), i = 1,7), e(j), j = 1,3)

is analogous to the following DO loop:

do 20 j= 1,3

transfer to x(2, j)

do 10 i = 1, 7

transfer to a(i, j)

10 transfer to b(i)

20 transfer to c(j)

Note that all the parameters in a <simple data list> are evaluated

beføre any data are transferred to or from the data elements, sø that the

call:

read (unit,10) n, A(n)

will mean:

Æ3 mr
n

number

)(i) = number

while the call:

RC FORTRAN, User's Manual Page 51

read (unit, 10) n, (A (nm), i = 1,1)

will mean:

n = number

A (n) = number

5,4,3 The FORMAT Statement

Form:

[FORMAT)

() (<format list>)

[| FORMATO)

(| 11]x
[(<integer>] <repeatable format element> |]

e <format list>::= [(10]
[<non-repeatable format element>]1

(<simple format element>)

<repeatable format element>::= ()

(<format group> i

<format group>::= (<format list>)

<simple format element>: : <integer>.<integer> |)

<integer> .<integer>)

<integer>.<integer>)

<integer>.<integer> |)

<integer>.<integer> |)

)

)

)

<integer>

= |

(|

(

i

([

([

(<integer>

[be pt pr OD ed fe 4
<non-repeatable format element>:;= (<integer> H <symbols>)

e ["<symbols>')
[<integer> P)

)(/

The G-conversion is not implemented.

Rules

1. The comma between format elements may be replaced by a /

(slash), which will work as a change of line (see Section 5.4.5).

2... A format statement must be labelled. The label is called a format

label.

3. The <integer> in front of <repeatable format element> is called

the repeat-factor.

If the <integer> is omitted it is the same as the repeat-factor = 1.

5. Input /Output

Page 52

5. Input/Output

4... A comma after a P-format-element is not needed.

Open Formats

Formats declared by the word FORMATO are called open formats.

They differ from the usual (closed) formats in two situations: (1) When

a READ/WRITE statement is terminated, a line change will take place

if the format is closed, but not with an open format. (2) When the

terminal right parenthesis is passed during the format interpretation, a

closed format will effect a line change, but an open format will not. See

Section 5.4.5 for further description of the execution of READ/WRITE

statements. See Ex. 5.4.10 about open format.

5.4.4 Details about the Format Elements

5,4.4.1 E-Conversion

Form: E <field length>.<fraction length>

The E conversion may be used with real values.

Input

An external field of the specified length is read and converted to a real

value. The external field must have the form:

() UD)) 1

(<integer>) () <integer>)

(CE)]

(<real>))

(p...... <signed integer>) 0

The fraction length defines the number of digits behind an implicit

decimal point. If an explicit decimal point is found this overrules the

implicit pøint defined by the format.

In the following examples b denotes a blank position.

Example 5.4.2

external field format internal value

b1234E02 E8.4 12.34

bb1234+5 E8.0 123400000.0

b1.23E04 E8.3 12300.0

1.23D+4b E8.3 1.23 £ 10 xx 40

12345678 E8.3 12345.678

Output

The external field produced will be of the form:

RC FORTRAN, User's Manual Page 53

1

<digit>.<fraction part><exponent>

(9

' er me mer
(E <sign<digit+<digit>)

(CE) <digit»<digit»<digit>)

(f-) HH

<exponent> ::=

The number of digits in the fraction part is determined by the fraction

length of the specified format. The specified field length includes the

positions occupied by the exponent. If the value cannot be accomodated

by the format specified this is indicated by printing an asterisk in the

first position followed by as many digits as possible discarding the

leftmost digits.

Example 5.4.3

internal value format external field

1234.567 E10,3 b0.123E+04

-1234.567 E10,3 -0.123E+04

1.234%x10%x107 E10.,3 b0.123+108

1.234x10%x(-107) E10.3 b0.123-106

5,4.4.2 F-Conversion

Form: F <field length>.<fraction length>

The F-conversion may be used with real values.

Input

An external field of the specified length is read and converted to a real

value. The external field must be as described under the E-conversion.

Example 5.4.4

external field format internal value

1234567 F7.3 1234.567

bbbbb67 F7.,4 0.0067

12.3456 F7.3 12.3456

123bbbb F7.2 12300.00

Output

The internal value is converted to an external value and rounded

according to the specified fraction length and total field length. If the

value requires more positions than provided by the format an alarm

takes place as follows: the number is printed with with E-format thus

supplying the approximate size. The fractional part of the alarm print

contains an asterisk followed by some irrelevant digits.

5. Input/Output

Page 54

5. Input/Output

RC FORTRAN, User's Manual

Example 5,4.5

internal value format external field

123.45432 £8.3 b123.454

123.45432 £8.2 bb123.45

123.45432 f8.1 bbb123.5

123.45432 £7.5 x54E+03

5,4,4.3 D-Conversion

Form: D <field length>.<fraction length>

The D conversion may be used with double precision values.

Input

An external field of the specified length is read and converted to a

double precision value. The external field must have a form as described

for E-conversion.

Output

The external field corresponds to that of an E-field except that the

maximum number of digits in the basic constant is 19.

5,4.4.4 A-Conversion

Form: A <integer>

The A-conversion may be used with type integer, long, real and complex.

On input external characters are converted to internal 8-bit ISO codes.

The codes are packed left-adjusted, 3 per word filling with SPACE. On

output each 8-bit group is considered an ISO character code and

converted to an external character.

If the number of characters specified exceeds the capacity of the

variable, the last characters are lost at input and replaced by SPACE at

output.

Note that NUL-characters do not count, that is: NUL-characters are

ignored at input and are never output by write.

5.4.4.5 I-Conversion

==([

Form: I <field length>(.<point position>

(mv mø me o

The I-conversion may be used with integer or long values.

RC FORTRAN, User's Manual Page 55

Input

An external field of the specified length is read and converted to an

integer value. A point position specified with input has no effect. The

external input field may not contain a decimal point.

Output

The integral internal value is converted to an external integer field

adding leading spaces if necessary. If the value is negative a minus sign

is printed in front of the first digit. If the point position is specified a

decimal point is printed in front of the ”point position” rightmost digits.

If the value cannot be accomodated by the specified format this is

indicated by an asterisk followed by the last digits of the number.

5.4.4.6 B-Conversion

Form: B <field length>.<radix power>

The B-conversion may be used with type integer, long, real and complex.

Input

An external field of the specified length is read and interpreted as an

integer with the radix 2"” <radix power>. The radix power may take

the values 1, 2, 3, or 4 only.

Output

The internal value is converted to an external integer each digit

occupying <radix power> bits internally.

Example 5.4.6

internal bit pattern format external field

000 001 010 011 100 101 110 111 B12.2 bb1103211313

B8.3 b1234567

B6.4 b53977

5.4.4.7 L-Conversion

Form: L <field length>

The L-conversion may be used with logical values.

Input

An external field of the specified length is read and converted to a

logical value. The external field must have the form

5. Input/Output

Page 56 RC FORTRAN, User's Manual

(1 (OF) LA Jz

(<spaces>) Å() (<character>)

(OT) 4 0

T will result in the value .true. and F in the value false.

Output

If the logical value is .true. a T will be output, F otherwise.

5.4.4.8 Scaling Factor

A scaling factor may be imposed on reals converted with E, F and D

conversions. The prefix

<10-exponent> P e

will cause that external values are equal to their corresponding internal

values multiplied by 10 raised to the integer given. With E- and

D-conversions and WRITE, the fraction part of the external number is

multiplied by the scaling factor and the exponent part is reduced

correspondingly. The scaling factor is deleted at the termination of the

actual READ/WRITE statement. If an exponent part is explicitly

present in an input field the scaling factor is ignored during the

conversion of that field.

5.4.4.9 Spaces and Text

The element

X

has no corresponding internal value. At input a single external character

is skipped. At output a single SPACE is printed. e

Text elements, which may be used for output only may be specified in

two ways:

<length of textstring> H <textstring>

or

'<text string not containing "'>'

5,4.5 Execution of Formatted READ/WRITE

The execution of a formatted READ/WRITE is controlled by the i/o

list and the format as follows:

1. The format is scanned, and each format element is inspected.

5. Input/Output

RC FORTRAN, User's Manual Page 57

2... Whenever a repeatfactor occurs, the succeeding repeatable format

element is repeated the specified number of times.

In case of a format group, the whole group is repeated the

specified number of times.

3.... Whenever the current format element requires a value to be

converted, an element from the i/o list is processed. If the i/o list

already was exhausted, the execution of the formatted

READ/WRITE is terminated.

4... In case the i/o list is not exhausted when the terminating

parenthesis is met, the interpretation of the format is restarted.

The restart of a format takes place from:

a.. The beginning of the format, in case the format contains no format

groups,

b.. From the last non-nested format group (i.e. the last format group

at the outermost level), including a possible repeat factor, in case

the format contains format groups.

The execution of a formatted READ/WRITE is terminated when:

a. the current format element requires an element from the i/o list,

and the i/o list is exhausted, or

b. the terminating right parenthesis is met and the i/o list is

exhausted, or

c. the terminating right parenthesis is met, and no values have been

converted since the last restart of the format (or since the initial

start),

whichever occurs first.

The following examples may clarify the restart-point of a format:

10 format (<anything><repeatfactor> (<anything>)

b-4 <anything not

<containing ()>)

20 format (<anything not containing ()>)

Xx

The x's show where the format scan will be restarted. See also example

5,4.7.

5.,4.,5.1 Line Change

Record change (in RC FORTRAN: line change) is controlled by the

format.

The line change action is envoked when:

5. Input/Output

Page 58

5. Input/Output

a. A / (slash) is encountered in the format

b..... A closed format is restarted

c. Interpretation of a closed format is terminated

Line Change in READ

By READ the line change action means that all characters up to and

including the first occurring NL-character are skipped.

Line Change in WRITE

By WRITE there are two different line change modes, depending on the

zone:

1. If the zone is connected to a printer-like device (e.g. a terminal or

a printer etc.) the line change action is actually delayed until the

first character after the line change.

This character is used as control character for vertical spacing, i.e.

it is replaced as follows:

Vertical spacing Converted

Character before printing character(s)

0 two lines NL, NL

1 to first line FF

of next page

+ no advance CR

Anything

else one line NL

Notice: The ”no advance” facility will not work on all output

devices.

2. If the zone is connected to a non-printer-like device (e.g. a disc file

etc.) the line change action is carried out immediately.

The line change action consists of output of a NL character.

The discrimination between the two line change modes is controlled by

means of the ”line change mode” in the zone descriptor:

The first bit (i.e. 1 .shift. 23) means:

0: ... printer-like device

1: ... non-printer-like device

RC FORTRAN, User's Manual Page 59

The last bit (i.e. 1 .shift. 0) means:

0: line change action is pending (i.e. after FORMAT)

1: no pending line change action (i.e. after FORMATO)

When a zone has been declared, the ”line change mode” is zero, i.e.
printer-like device with pending line change action.

The standard zones IN and OUT both have the ”line change mode” set

to zero, when the program is started,

The following subroutine will set the "line change mode to

nonprinter-like:

SUBROUTINE NONPRINT (Z)

ZONE Z

INTEGER ZONEDESCR (20)

CALL GETZONE6(Z, ZONEDESCR)

ZONEDESCR(11) = ZONEDESCR(11) .O0R. 1 .SHIFT. 23

CALL SETZONE6(Z, ZONEDESCR)

END

The following subroutine will set the "line change mode" to printer-like:

SUBROUTINE SETPRINT(Z)

ZONE Z

INTEGER ZONEDESCR (20)

CALL GETZONE6(Z, ZONEDESCR)

ZONEDESCR(11) == ZONEDESCR (11) .SHIFT., 1 .SHIFT. (-1)

CALL SETZONE6 (Z, ZONEDESCR)

END

(details about the procedures GET/SETZONE6 may be found in the

ALGOL manual, see ref. 2).

5,4,5,2 READ/WRITE Errors

Logical READ/WRITE errors occur if the type of a data element

conflicts with the conversion specified by the format, e.g. a logical

variable to be converted by an E-version. At READ operations an error

also occurs if the length of an input line is shorter than specified by the

controlling format. The following table shows the result of combining

the conversion codes from the format with data elements of different

types.

5. Input/Output

Page 60 RC FORTRAN, User's Manual

elem

type integer long real double pr. logical

conv

code

I X p.d (X) F F

E, F F (X) x F F

D F F F x F

L F F F F x

A X x x F F

B X X X F F

F: illegal

X: legal

5. Input/Output

(X): legal but result is strange

5,4.5,3 Treatment of WRITE Errors

With WRITE the illegal combinations are indicated by filling the

external field with asterisks.

5.4.5.4 Treatment of READ Errors, Standard Variable READERR

After the execution of a formatted READ statement information about

the result is available from the standard integer variable READERR.

The variable contains the ISO-values of the last processed character and

of a possible erroneous character. READERR has the following values:

(1) if an error occured: error char .shift. 8 + last char

(2) if no error: last char

If møre than one error occurs within a READ statement, the first is

indicated in READERR. After a line change, error synchronisation is

performed as follows:

The format is scanned without reading any input text until a line change

is required by the format. Elements from the i/o list are taken according

to the scanned format but are left unchanged. Reading then proceeds

from the current position within the format, the i/o list and the input

text.

If an i/o list element is involved in a conversion error the element is left

unchanged.

Note, however, that elements read with A-conversion will be filled with

spaces.

Example 5.4.7, Integer Standard Variable READERR,

The program will read a collection of v inserted values to the array

elements a(1), a(2) ... a(v). These values are sorted in ascending order

RC FORTRAN, User's Manual Page 61

and finally the p'th through g'th lowest af the v values are written on
current out. This process is repeated until the input file is exhausted.

In case of error during input the erroneous character and the last
character read is written on current out.

10

20

30

40

50

1000

1010

2000

100

2000

program simplesort

real a(500)

integer p, q, vv

read(5,1000) p, q, v

if (inerror(0)) 20,100,99

read(5,1010) (ali), i=1,v)

if (inerror(2) .ge. 0) goto 100

do 50 i=1,v

j=i

index = j ; small = afindex)

do 40 j=j+1,Vv

if (small .gt. alj)) goto 30

a(index) = a(i)

a(i) = small

write(6,2000) (ali), i=p,9)

goto 10

format(3i5)

format(7f10.1)

format(//,4(3x, f10.1))

call inerror(1)

end

function inerror(number)

external readerr

integer readerr, errorchar

errorchar = readerr .shift. (-8)

inerror = -1

if (errorchar .eq. 0) return

inerror = errorchar

if (errorchar .eq. 25) inerror = 0

if (number .eq. 0) return

write(6,2000) number, errorchar, readerr .and 4bff

format(/,' ””"readerror in situation ”, 13,

1

2

1," errorchar value: ”, 13,

4,7 last char value: ”, 1i3)

end

5, Input/Output

Page 62

5. Input/Output

RC FORTRAN, User's Manual

5,4.6 READ/WRITE without Format Control

An unformatted READ/WRITE statement has the form

(READ) i 11

i) (<logical unit>) (<data list>)

(WRITE) i 10

Data are transferred between external media and data elements in core

store without conversion.

Example 5.4.8. Unformatted READ

zone zo(256, 2, stderror)

integer il, ia(10)

real a, b(4)

read(zo) il, (ia(j), i = 3, 6), a,b

The following words are transferred:

word 1 il

words 2-5 ia(3), ... ia(6)

words 6, 7 a

words 8-15 b(1), ... b(4)

Example 5.4.9. Record Input with Unformatted READ

A file consists of records with the following layout:

word

1 item no

2 number of transactions, N

3 price of item

4 no of items on store

5 - One subrecord per transaction

(1) Salesman no

(2) no of items sold

(3) customer no

(4) total

This file may be read like

READ(stfile) itemno, notrans, price,

lonstore, (salem(j), soldtj), cost(j), tot(j), j = 1, notrans)

do 100 j = 1, notrans

if (sold(j) .gt. 50) write(out,20) salem(j), costij), totcj)

altot = altot + tot(j)

etc.

RC FORTRAN, User's Manual Page 63

Example 5.4.10. Reading a Paper Tape from the Tape Reader.

Usually the paper tape reader of an RC4000/6000/8000 installation is

named ”reader”, and a typical piece of program may look like

long rname(2)

zone z(50, 2, stderror)

rname(1) = 'reader'

rname(2) = 0

call open(z, 2.shift.12 + 10, rname(1), 0)

read (Z, ...)

call close (z, .true.)

Note that (1) document names must be terminated by a NUL-character,

(2) names exceeding 5 characters are stored in a long array, and the first

element of this array is given as parameter to OPEN.

Example 5.4.11. Syntax Checking with Open Format.

READ may be used for partly checking of input records of various

layouts. Suppose that three types of input records are defined. The

format corresponding to the types are:

type format

1 (i2, 2x, i6, lx, 19, 1x, i4)

2 (i2, 2x, i6, 2x, 10a6)

3 (i2, 2x, i6, 4x, i6, 1x, 19)

The input program may then look like:

100 formato (i2, 2x, i6)

111 format(lx, i9, 1x, 14)

112 format(2x, 10a6)

113 format(4x, i6, 1x, i9)

integer readerr; external readerr

read(zon, 100) rectype, partnumber

c go to write error message etc.

if(readerr .gt. 255) goto 9991

c check value of record type and branch

c to read remaining record

goto (9992, 10, 20, 30, 9992), rectype

10 read(zon, 111) amount, supplier

c go to error procedure if read error

if(readerr .gt. 255) goto 9993

etc.

5. Input/Output

Page 64

5. Input/Output

RC FORTRAN, User's Manual

5.5 Record Handling

5,5,1 Zone Record

The input/output system of RC FORTRAN contains a set of
procedures for reading and writing on record level. For this purpose a

ZONE RECORD is introduced as the part of a zone buffer currently
available to the user. The definition of the current record may be

changed by the record input/output procedures. Thus data may be
transferred blockwise between the document and the core store but

communicated to the user as a sequence of zone records. The zone

name may be used in two different ways: (1) as the name of a zone and
(2) as the name of the zone record, considered as a real array with one
dimension. E.g., a new record may be input from a zone by a statement
like

call inrec(z, recordlength)

and the elements of the zone record may be used as operands like this:

x = y + z(2)

The rules for use of a zone record and elements hereof in executeable
statements are exactly as those for a one-dimensional real array.

A record element of a subscripted zone is referred with two subscripts,

e.g.

za (2,7)

where the first subscripts selects the zone from the zone array, while the
second subscript selects the element from the current zone record of

that zone. The example above thus refers to the 7th element of the 2nd
zone of the zone array.

The following sections contain detailed descriptions of the record
input/output procedures INREC, OUTREC and SWOPREC, and of
the procedures SETPOSITION and GETPOSITION used for
positioning of documents.

RC FORTRAN handles other record procedures, like
INVAR/OUTVAR. For further details, see the ALGOL manual (ref.
2).

The index-sequential system may also be used from RC FORTRAN, see
ref. 9.

5.5.2 Integer Function INREC

Gets a sequence of doublewords (elements) from a document and

makes them available as a zone record. The document may be scanned
sequentially by means of INREC.

RC FORTRAN, User's Manual Page 65

CALL INREC(z, length)

inrec (return = value, integer). The number of

elements left in the present block for further

calls of inrec.

z (call and return value, zone). The name of the

record.

Determines further the document, the

buffering, and the position of the document.

length (call value, integer or real). The number of

elements in the new record. Length must be >=

0.

Zone State

The zone state must be open and ready for INREC, i.e. the previous call

of record handling procedure must be either OPEN, SETPOSITION, or

INREC. When using magnetic tape SETPOSITION must follow OPEN.

To make sense, the document should be an internal process, a backing

storage area, a typewriter, a paper tape reader, a card reader, or a

magnetic tape.

Blocking

INREC may be thought of as transferring the elements just after the

current logical position of the document and changing the logical

position to after the last element of the record. However, all elements of

the record are taken from the same block, so if the length exceeds the

remains of the current block, the block is changed. Then the record

becomes the first elements of the new block, but if this still cannot hold

the record the run is terminated (empty blocks are completely

disregarded).

Records of length 0 need a special explanation. If not even a single

element is left in the block, the block is changed and the logical position

points to just before the first element of the new block. Note that inrec

changes the blocks in such a way that a portion at the end of a block may

be skipped. So be careful to read a backing storage area with the same

share length as that with which it was written, otherwise wrong portions

might be skipped at reading.

Note furthermore the special considerations about variable length

records on backing storage mentioned in Section 5.5.3 on OUTREC.

5,5.3 Integer Function OUTREC

Creates a zone record which later will be transferred to a document as a
sequence of doublewords (elements). The content of the record is

initially undefined but the user is supposed to assign values to the record

variables. The document may be filled sequentially by means of

OUTREC.

5. Input/Output

Page 66

5. Input/Output

RC FORTRAN, User's Manual

CALL OUTREC(z,length)

outrec (return — value, integer). The number of

elements available for further calls of OUTREC

before change of block takes place.

z (call and return value, zone). The name of the

record.

Determines further the document, the

buffering, and the position of the document.

length (call value, integer or real). The number of

elements in the new record. Length must be >=

0.

Zone State

The zone z must be open and ready for OUTREC, i.e. the previous call

of a record handling procedure must be either OPEN, SETPOSITION,

or OUTREC. When using magnetic tape SETPOSITION must follow

OPEN. To make sense, the document should be an internal process, a

backing storage area, a typewriter, a line printer, a punch, a plotter, or a

magnetic tape.

Blocking

OUTREC may be thought of as transferring the record to the elements

just after the current logical position of the document and moving the

logical pointer to just after the last element of the record. The user is

supposed to store information in the record before OUTREC is called

again. As the output is blocked, the actual transfer of the elements to

the document is delayed until the block is changed or until CLOSE or

SETPOSITION is called. All elements of the record are put into the

same block, so if the block cannot hold a record of the length demanded,

the block is changed in this way:

1... Documents with fixed block length (backing storage): The

remaining elements of the share are filled with binary zeroes, and

the total share is output as one block.

2... Documents with variable block length (all others): Only the part of

the share actually used for records is output as a block.

The transfer is checked and the record becomes the first elements of the

next share, but if the record still is too long, the run is terminated. A

record length of 0 is handled as for INREC, The first rule above

requires special attention when variable length records are stored on

backing storage. The input administration must be prepared to skip

possible binary zeroes.

The following piece of program shows one way of doing this. The record

length is supposed to be støred in the fir record.

RC FORTRAN, User's Manual Page 67

Example 5.5.1

integer remaining, length, ring

zone Z (...)

equivalence (length, z(1))

50 remaining = inrec (z, 1)

ring= length

c save record length before next call of inrec if

(r1lng) 100, 100, 200

100 call inrec (z, remaining)

goto 50

200 call inrec(z, length - 1)

5,5,4 Integer Function SWOPREC

This procedure gives you direct access to a sequence of elements of a

document. The elements become available as a zone record, and you

may modify them directly without changing the surrounding elements of

the document. This makes sense for a backing storage area, only. The

procedure works as a combination of INREC and OUTREC in the

sense that a sequence of elements is taken from a document and later

transferred back to the same place on the document. The document may

be scanned and modified sequentially by means of swoprec.

CALL SWOPREC(z, length)

swoprec (return value, integer). The Snumber of

elements left in the present block for further

calls of swoprec.

z (call and return value, zone). The name of the

record, Specifies further the document, the

buffering, and the position of the document.

length (call value, integer or real). The number of

elements in the record. Length must be > 0.

Zone State

The zone z must be open and ready for SWOPREC, i.e. the previous

call of record handling procedure must be either OPEN,

SETPOSITION, or SWOPREC. The document must be a backing
storage area.

Blocking

SWOPREC may be thought of as transferring the elements just after the

current logical pointer of the document and moving the logical pointer
to the last element of the record. As the records are blocked, the actual

transfer back to the device is delayed until the block is full or until

CLOSE or SETPOSITION is called. All elements of the record are

taken from the same block and when the block cannot supply the record

requested, the block is transferred back to the document and the next

5. Input/Output

Page 68

5. Input/Output

RC FORTRAN, User's Manual

block is read. The checking of all transfers is performed. If the block still

cannot supply the record, the run is terminated. A record length of 0 is

handled as for INREC. If the zone contains 3 shares, one is used for

input, another is used for output, and the last holds the current record.

This ensures maximal overlapping of computation and input-output.

5.5.5 Subroutine GETPOSITION

Gets the block and file number corresponding to the current logical

position of a document,

CALL GETPOSITION(z,File,Block)

z (call value, zone). Specifies the document,

the position of the document, and the latest

operation on z.

File (return value, integer). Irrelevant for

documents other than magnetic tape. Specifies

the file number of the current logical

position. Files are counted 0, 1, 2,...

Block (return value, integer). Irrelevant for

documents other than magnetic tape and backing

storage. Specifies the block number of the

current logical position. Blocks are counted

0, 1, 2,...

GETPOSITION does not change the zone state and it may be called in

all states of the zone. If the zone is not opened, the position will be

undefined. The position is also undefined after a call of CLOSE.

5.5.6 Logical Function SETPOSITION

Terminates the current use of a zone and positions the document to a

given file and block on devices where this makes sense. The positioning

will only involve time-consuming operations on the document if this is a

magnetic tape.

CALL SETPOSITION(z,File,Block)

setposi- (return value, logical). True if a magnetic

tion tape spositioning has been started, false

otherwise.

z (call and return value, zone). Specifies the

document, the position of the document, and

the latest operation on z.

File (call value, integer). Irrelevant for

documents other than magnetic tape. Specifies

the file number of the wanted position. Files

are counted 0, 1, 2,... File 0 will normally

contain the tape volume label, file 1 is then

the first file available for data. File = -1

RC FORTRAN, User's Manual Page 69

specifies that the tape is to be unwound,

Block (call value, integer). Irrelevant for

documents other than magnetic tape and backing

storage. Specifies the block number of the

wanted position, Blocks are counted 0, 1,

2...

SETPOSITION proceeds in 3 steps: Terminate the current use, write

tape mark, and start positioning.

Terminate Current Use

If the zone latest has been used for output, the used part of the last

block is sent to the document. A block sent to a backing storage area is

not filled with zeroes, contrary to OUTREC. If the zone latest has been

used for character output, the termination may involve output of one or

two NUL-characters in order to fill the last word of the buffer. Next, all

the transfers involving z are completed, the input transfers are just

waited for, and the output transfers and other operations are checked.

The physical position of a magnetic tape used for input is sh-1 blocks

ahead of the logical position where sh is the number of shares. If some

of these sh-1 blocks are tape marks, the positioning strategy is affected,

as explained below.

Write Tape Mark

If the document is a magnetic tape used latest for output, a tape mark is

written. The document is then in a position after this tape mark, which

influences the positioning strategy (see below).

Start Positioning

SETPOSITION assigns the value of Block to the zone descriptor

variable "segment count" and returns then for all devices other than

magnetic tape. If the document does not exist or if the job is not a user

of the device, SETPOSITION sends a parent message asking for stop of

the job until the tape is ready.

SETPOSITION starts the first operation involved in the tape

positioning. The remaining operations are executed the first time the

zone is used for input or output, or the first time SETPOSITION is

called again. That may be used for simultaneous positioning of more

tapes,

The positioning is accomplished by means of the operations rewind,

backspace file, upspace file, backspace block, upspace block, and unwind

tape. The positioning is complete as soon as File and Block match the

monitors count of the tape position for that device. Checking against

tape labels is not performed.

5. Input/Output

Page 70

5, Input/Output

Positioning Strategy

If the actual physical file number differs from File, the tape is first

positioned to block 0 of that file. SETPOSITION chooses between

rewind and backspace file in this way:

if actual file number / 2 >= File then rewind

else backspace file

This tends to minimise the number of tape operations. During

positioning within a file, SETPOSITION chooses between backspace file

(rewind for File = 0) and backspace block in this way:

if actual blocknumber / 2 >= Block then backspace file

else backspace block

If the tape is not mounted when SETPOSITION is called, the normal

mounttape action is performed before the positioning starts.

Zone State

The zone must be open when SETPOSITION is called. SETPOSITION

changes the zone state sø that the zone is ready for input/output.

The logical position of a magnetic tape or a backing storage area

becomes just before the first element of the block specified by File and

Block. The logical position is unchanged for other devices.

5.5.7 EQUIVALENCE and ZONES

In RC FORTRAN equivalences involving zone record elements are

allowed, i.e.:

[l1x
[[<variable name>] æ]

EQUIVALENCE [([<array element>])]

[[<zone record element>] 2]

[11

The zone equivalence allows the user to connect different names and/or

types to the zone record or elements hereof,

Rules

1. At run time it is controlled that zone equivalenced variables are in

accordance with the length of the currently defined zone record

when used, If the variable is a subscripted variable the usual

optional index check is also performed.

2... Normal index checking is performed on arrays equivalenced to

zones independent of rule 1.

3... Zone records may not directly or indirectly be equivalenced to

other zone records or to variables in COMMON.

RC FORTRAN, User's Manual Page 71

4... All subscripts in an EQUIVALENCE statement must be integer

constants.

Example 5.5.2

A file contains records consisting of three parts.

a 3 variables of type real.

b an integer array with 6 elements.

c a long array with 8 elements containing text.

The declarations etc. may look like

real price, sum, total

integer count(6)

long text(8)

e zone z(500,2,stderror)

equivalence (z(1),price),(z(2), sum)

equivalence (z(3),total),(z(4),count(1)),(2z(7),text(1))

Now, after having called INREC the user may refer

to the different parts of the zone record by the

names, €.8g.,

if (price .gt. lim) write(out, 100) price,text(2)

Example 5.5.3

Merging of two tape files into a third file, The

records qare 10 doublewords long and the first

element is the merging key.

function endf(z, s, b)

zone zZ

e c simulate record with a large key

if (s .and. 1) 10, 20, 10

e error

10 call stderror (z,s,b)

20 b=4x10; z(1) = 1.E100

end

c start of main program

program merge

zone in1(512,2,endf); dimension inl(2)

common innames (2)

long innames

data innames/'docl', "doc2'/

zone result (512,2,stderror)

logical setposition; integer inrec,outrec

call open (result, 18, 'docu', 0)

call setposition (result, 1, 0)

do 10 i = 1,2

call open (inl(i), 18, innames(i), 1 .shift. 16)

e call setposition (inl(i), 1,0)

5. Input/Output

Page 72

5. Input/Output

10

20

30

40

50

60

70

80

call inrec (inl(i), 10) e
i=1

if (in1l(2,1) - inl(1,1)) 30,40,50

i=2

check for end of file

if (inl(2,1) .ge. 1.E100) goto 70

call outrec (result,10)

do 60 j=1,10

result (j)= inl (i,j)

call inrec (inl(i),10)

goto 20

call close (result, .true,)

do 80 i=1,2

call close (inl(i), .true.)

end

RC FORTRAN, User's Manual Page 73

6. Program Structure

A FORTRAN source text may contain any number of program units. A

program unit may be a main program, a subroutine or a function. The

e source text may contain one subroutine or function, or it may contain
one main program together with any number of subroutines or

functions. The mutual order of the program units is free.

6.1 Program Units and Their Mutual Communication

6.1.1 Structure of a Program Unit

All program units must contain the following parts in the shown order.

Heading

Declarations except equivalences

Equivalences

Executable statements

END statement.uBønm
e Any of the parts may be omitted, except the END statement. If the

heading is omitted, a PROGRAM heading is assumed.

A program unit may be a main program, a subroutine or a function. The

headings for each of the three kinds of program unit have the following

forms:

PROGRAM <program name>

(11

SUBROUTINE <subroutine name> ((<formal list>))

[70

| 11

(<type>) FUNCTION <function name> (<formal list>)

i 10

6. Program Structure

Page 74

6. Program Structure

where

[1x
<formal list> ::= [<parameter name> |]

[1

The names listed in the formal list are called the formal parameters.

Parameters must either be explicitly or implicitly specified with both

type and dimensionality. Formal parameters may not be equivalenced
and they may not be in COMMON.

6.1.2 Calling Functions and Subroutines

A subroutine or function may be activated by a CALL statement of the
following form:

i 11

CALL <program unit name> ((<actual parameter list>))

(Jo

<actual parameter list> ::= (<expression>)%

(<array>]

[<zone>)

(<external>)

(<zone array>)l

A function may further be called in an expression by using an operand

of form:

<function name> (<actual parameter list>)

The number and types of the actual arguments must correspond to the

number and types of parameters in the declaration of the called

program unit. The name of a subroutine or function may be used as an

actual parameter. If the name does not occur in a call situation it must

be declared in an EXTERNAL statement (see Section 6.1.4).

The legality of the possible actual/formal correspondances are shown in

the table below.

Formal | Legal actual parameters

simple variable constant, variable, expression

array array, zone, array element,

zone record element

zone zone

external external

zone array zone array

If the actual parameter is an expression or a constant, the actual value is

stored in an anonymous working variable, and this working variable is

transferred to the program unit called.

RC FORTRAN, User's Manual Page 75

6.1.3 Parameter Checking

When a program unit is compiled, the compiler searches a description
of the referenced externals. The description may be found in the

compiler's catalog of program units processed in the current

compilation, ør it may secondly be looked up in the catalog maintained

by the operating system. The description contains information about the

kind and type of the external and its possible parameters, and this

information is used by the compiler to check the calls of each external.

When a single subroutine or function is compiled separately the

descriptions of all its externals may not be available at compile time. An

assumed description is then deducted from the actual use of the external

but only consistency of the use can be checked. When the separately

compiled program unit is included in an executable program the

unknown external must be available. If the description of the external is

still missing or if the description does not match the assumption an

alarm occurs.

Notice: The compiler checks at most the first seven parameters of a

procedure call.

6.1.4 EXTERNAL Statement

To be recognized as the name of an external a name must be called

within the program or it must be declared in an EXTERNAL statement

of the form.

[1=
EXTERNAL [<name> |]

[1

An external may be

1... A subroutine or function described in the catalog or found in the

source text of current compilation.

2. A variable in the permanent core area of the FORTRAN running

system, named and described in the catalog.

3. A standard zone, supplied by the operating system and described

in the catalog.

6.1.5 Formal and Adjustable Arrays

For formal arrays the forms of the DIMENSION statement and of type

declarations are slightly modified to

(<type>) [<parameter name> |%

[)<array name> ([])

(DIMENSION) [<integer constant>]l

Only integer parameter names may occur in the list of bounds. If the

parameters occur in the list, the array is called an adjustable array. A

formal array is defined at entry in the program unit as follows: The

dimensions of the array are determined by the bounds given in the

6. Program Structure

Page 76

- 6. Program Structure

RC FORTRAN, User's Manual

declaration of the formal array. The first element of the array will

depend on the actual parameter as shown below:

actual parameter first element

array first element of array

zone first element of zone record

array element given array element

zone record element given zone record element

The resulting adjustable array must not exceed the array given as actual

parameter. If this happens an index alarm will occur at run time when

the called program unit is entered (unless the program unit is translated

with the compiler-option "index.no”", see appendix B).

Example 6.1.1. Adjustable Arrays

Assume the following declarations:

subroutine pip(ar,dim)

real ar(dim,3); integer dim

end

program pop

real tab(10,20)

10 call pip(tab,7)

20 call pip(tab(3,4), 3)

20 call pip(tab(5,20),8)

end

The resulting adjustable array will be:

statement 10:

first element: ar(1,1) same as tab(1,1)

last element: ar(7,3) - - tab(1,3)

statement 20:

first element: ar(1,1) same as tab(3,4)

last element: ar(3,3) - - tab(1,5)

statement 30:

first element: ar(1,1) same as tab(5,20)

but as only 6 elements remain from tab(5,20) until the end of the array

tab, an index alarm will occur at entry into subroutine pip, when called

from statement 30.

6.1.6 Formal and Adjustable Zones

A formal zone is declared by writing the name of the zone in a ZONE

statement without specifying buffer size, number of shares and block

procedure (see Section 5.1.5).

RC FORTRAN, User's Manual Page 77

An adjustable zone array is declared as a formal zone with an additional

(<parameter name> |)

DIMENSION <zone array name> ((Dj

[<integer constant>)

for which the rules given in section 6.1.5 apply.

The resulting adjustable zone array is established at entry into the

program unit according to the rules for other adjustable arrays (see

section 6.1.5).

The first element of the formal zone array will match the first element

of the actual zone array.

6.1.7 END Statement

Program units are terminated by the statement

END

6.1.8 RETURN Statement

Return of control from a subroutine or a function is performed by

passing a statement of the form:

RETURN

When control passes the END statement an implicit RETURN is

executed.

6,1,9 ENTRY Statement

A program unit may have several different entries with separate names.

An entry is located in the program unit by a statement of the form:

ENTRY <entry name>

All entries must have the same type and are assumed tø have the same
set of formal parameters as the main entry declared in the

SUBROUTINE or FUNCTION statement.

6. Program Structure

Page 78 RC FORTRAN, User's Manual

6.2 COMMON and DATA

6.2,1 COMMON

Program units may share data areas by means of the COMMON facility.

The COMMON statement has the form

(1 1=
COMMON (/ (<common name>) / <common list>)

(0 nm

<common list> ::=

[<variable name> ikg

[(&x 11] e
[<array name> (([<constant bound>]))]1

i 1 10

The COMMON statement declares one or more COMMON blocks

identified by a common name and containing the variables listed in the

common list. Within a program the COMMON block is accessible to all

program units which contain a declaration of that specific COMMON

block. The declaration of a COMMON block within different program

units must agree with respect to the length of the COMMON block but

the name and type of the variables in the common list may vary from

one program unit to another. If the name of the COMMON block is

omitted the variables are stored in a COMMON block called BLANK

COMMON. The treatment of this COMMON block is exactly as for

other COMMON blocks.

Note that in RC FORTRAN an integer occupies one word but a real

occupies two words. This may affect the COMMON correspondance as

shown in the following example.

Example 6.2.1

A COMMON block, c1, is declared in two different ways in the program

units A and B as follows:

Program unit A

common/c1/p,q,r(2)

integer p,r; real q

Program unit B

common/cl/dummy(3),r(2)

integer dummy, r

The two different declarations will result in storage allocations as shown

below:

6. Program Structure

RC FORTRAN, User's Manual Page 79

word boundaries |1 | 2 | 3 | 4 | 5]|

unit A Pl a | r |
unit B | dummy | r |

The array r corresponds to the same storage locations in program unit A

and B. However, if dummy is not declared as integer this will not

happen.

6.2.2 Local Variables versus COMMON Variables

The variables not declared in COMMON are called local variables.

There are some important differences in the treatment of these two

classes of variables.

COMMON areas are static and thus all COMMON variables

permanently occupy core støre during the run. COMMON variables

may be initiated by DATA statements in any program unit. The storage

allocation for COMMON variables reflect the order of declaration, i.e.

variables are allocated contiguously in the order in which they occur in

the COMMON declarations.

Local variables are dynamic. Core area is reserved and allocated to local

variables and arrays at entry into a proram unit, and the variables are

deleted by releasing the core at exit from the program unit. Thus local

variables occupy core only as long as they are active, that is during

execution of the program unit in which they are declared. As a

consequence local variables may not be initiated by DATA statement,

and the values of local variables are always undefined at entry into the

program unit in which they are declared.

6.2.3 Zones in COMMON

A zone may be declared in COMMON, but a COMMON block may

only contain one zone ør one zone array. Zones and other kinds may not

be in the same COMMON block. Only the name of the zone may be

written in the common list while the remaining declaration should be

given in the normal ZONE statement. The zone declaration for a zone

in COMMON must be identical in all program units having declared the

zone.

6.2.4 DATA Statement

Form

[ks
DATA [<variable list>/<value list>/]

[11

6. Program Structure

Page 80

6. Program Structure

RC FORTRAN, User's Manual

<variable list> ::-=

[<variable name> 1%

[<array name>]

[[1 1]
[<array name>([<integer> |]) 11

[11

<value list> ::=

[<constant>] x

[<extended text>]

[<repeating integer>x<constant> |] 1

Rules

1. Single variables or whole arrays may be initiated by DATA

statements.

2... A sequence of identical values may be specified by writing a

repeating integer and a % before the value to be repeated. The

repetition integer must be a positive constant.

3... The number of values in the value list (including repetitions) must
match the number of variables in the variable list.

4. If the type of a variable and its corresponding value differ the

constant is converted according to the rules for assignments (see

Section 4.1).

5. Only variables in COMMON may be initiated.

BLOCK DATA

As DATA initiation may be specified within any program unit, the

special program unit BLOCK DATA is not implemented in RC

FORTRAN. Existing programs may be modified for RC FORTRAN by

(1) replacing the BLOCK DATA statement by a subroutine heading,

and (2) declaring the subroutine name as EXTERNAL in the main

program.

Extended Text Constants in DATA Statements

In DATA statements it is allowed to write text constants of more than

six characters. The extended text string is broken down into short text

constants by the compiler, and the last shørt constant is filled up with

NULSs if necessary.

Example 6.2.2

long errtxt(4)

common/c/errtxt

data errtxt/'key missing in record'/

RC FORTRAN, User's Manual Page 81

The text is stored six characters per word in the array errtxt, as the

number of characters is not a multiple of six, NUL characters are added

to fill the last element.

6.3 Program Units from the Catalog

A catalog is maintained by the RC operating system. Compilers and

assemblers may insert catalog entries describing program units, which

are compiled seperately for later use within a main program. An RC

FORTRAN program may include catalog externals programmed in

FORTRAN, Algol, or in assembly language. Non-FORTRAN program

units must obey certain rules as described below.

6.3.1 Algol Externals

An Algol program unit must be programmed according to Ref. 2, and it

must be compiled separately by the Algol compiler to be established as

an external described in the catalog. It may then be included in a

FORTRAN program nearly as a FORTRAN program unit. The

following special rules apply:

1... Parameters of Algol types string, long and label must not be used.

2... In FORTRAN arrays are stored column after column, according

to ISO. In Algol arrays are stored row after row.

3... FORTRAN routines will not treat name parameters correctly.

This may cause unpredictable reactions, if a FORTRAN routine is

given as actual parameter for an Algol external.

4... The Algol procedure may not use field-variables or løngs, nor may

it use any features from ALGOL 7.

The library procedures of the Algol library may also be used within the

FORTRAN system. However, the Algol procedures read and write may

not be referenced from a FORTRAN program as these names are

reserved for FORTRAN READ/WRITE. Descriptions of the Algol

library procedures are found in Ref. 2.

6.3.2 Program Units in Machine Language

Program units prøgrammed in machine language may be included in a

FORTRAN program. The program units must be assembled by the

Slang assembler for RC4000, RC6000 or RC8000, and described as

catalog externals. Detailed conventions for a machine coded procedure

are given in Ref. 4. However, the use of this possibility should be limited

as far as possible to maintain the high reliability given by the Algol and

FORTRAN systems.

6. Program Structure

Page 82

A. References

Appendix A. References

Part numbers in references are subject to change as new editions are

issued and are listed as an identification aid only. To order, use package

number.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

System Utility,

User's Guide, Part One

User's Guide, Part Two

Included in SW8010i-D, System Utility

Manual Set

System 3 Utility Programs

Part of Assembler Manual Set, in SW8585-D

ALGOL8

Reference Manual

User's Guide, Part I

User's Guide, Part 2

Part of ALGOL Manual Set, in SW8585-D

Magnetic Tape System, (obsolete)

Code Procedures and Run Time Organization

of ALGOL 5 Programs

ISO: R646-1967(E), 6 and 7 bit coded character

for information processing interchange

ISO: DR 1539, Programming Language FORTRAN

BOSS, User's Guide

Part of SW8101i-D, BOSS Manual Set

Definition of External Processes, (obsolete)

ISQ File System

Part of Backing Storage,

in SW8585i-D Compiler Collection Manual Set

RC9000-10 System Software

Delivered with SW9910i-D

PN:

PN:

PN:

PN:

PN:

PN:

PN:

PN:

PN:

PN:

PN:

PN:

991 11263

991 11264

991 11294

991 11278

991 11279

991 11280

991 03278

991 11296

991 11274

991 03392

991 11286

991 11255

RC FORTRAN, User's Manual Page 83

Appendix B

RC FORTRAN Syntax Description

B.1 Explanation

RC FORTRAN is described using the Backus-Naur Form expanded

with a choice bracket and a list bracket. Both brackets can be supplied

with repetition numbers. The definition is:

€ <construction 1>)

Tse.) ::= <construction 1> /.../ <construction N>

T <construction N>)

La db c) b-1

€ <construction>) 1:= <construction> € <construction>)

AN Ja kd) 8-1

[1b <) b-1

[<construction>] := <construction> € ,<construction>)

[la c) a-1

where a is the minimum number of repetitions and b is the maximum

number of repetitions. a = 0 means empty, b = ” means any number of

repetitions, and if a and b are not given a = b = 1 is understood,

The following abbreviations are used:

arith for arithmetic

decl for declaration

expr for expression

mask for masking

Limitations in the use of names are given by supplying the kind.
Limitations in expressions are given by adding the type, and here
arith(metic) includes integer, long, real, double precision, and complex;

type long includes integer, and type mask is an auxiliary type used in

connection with masking operations but the internal treatment is as

integer, long, or real (further explained in Section 3.3 Arithmetical and

Masking Expressions).

B. RC FORTRAN Syntax Description

Page 84

B.2 Symbols and Primitives

<symbol>

<blind>

<in text>

<letter>

<digit>

<separator>

<terminator>

<graphic>

<arithmetical

operator>

<relational

operator>

<logical operator>

<masking operator>

<typer

<name>

<sign>

<digits>

<integer>

<long>

<basic real>

B. RC FORTRAN Syntax Description

RC FORTRAN, User's Manual

<letter>

<digit>

<separator>

<terminator>

<graphic>

<blind>

<in text>eN eN EN EN eN EN EN
NUL | DEL

sp |.

(az N CJ

sås [ne | FE

ULYLELX| 8]

lle ler

<arithmetical operator> NE ON NØ NØ NØ Hø
|&|

LT. | JLE. | -EqQ. | -NE. |

NOT. | -AND. | .OR.

<logical operator> | .SHIFT

€ INTEGER)

< LONG)

€ REAL)

€ DOUBLE PRECISION)

€ COMPLEX >

€ LOGICAL >

<letter> € <letter>) %

€ <digit> >) 0

(+)1

C-)0

E3

€ <digit>)

1

<digits>

<digits>

€ <digits>.<digits>

AF. Å

>L2la [71

.»GE. | .GT.

RC FORTRAN, User's Manual

sreal>

<double>

"<complex>

<number>

<logical> ns

<text>

<bitpattern>

<constant>

<label>

<formal>

<parameter>

Page 85

€ <digits>.)

[€ .<digits>)

T <basic real>)

€ € <basic real>) E<sign><integer>)

€ € <integer> >)

€ <basic real>) D<sign><integer>

<integer>)(al

(<sign><real>,<sign><real>)

<integer> | <real> | <double> | <complex>

«TRUE.)

«FALSE.)mM

n

<integer n> H (<symbol>) >)

n)

= BP;

: < <symbol>) ”)

0

en en eN
48

180117

1

24

22801112 |[37

1

16

38(0|111/213]14]5]6]77

1

12

4B (<digit>A |B8B|C| DJ EJ FF)
1

En eN EN EN EN EN EN ØEN EN EM
<sign><number>)

<logical>)

<text> >

<bitpattern>)oe em eN
75

€ <digit>)

ø

La]

la

<variable name>)

<array name>)

<zone name> 2

<zone array name>)

<procedure name>)Mm EN EN eN
<expr> 2

<array name> >

<zone parameter>)

<zone array name>)

<procedure name>)eN ØEN
B. RC FORTRAN Syntax Description

Se Sø NJ ON SØ NØ NØ KJ MS Mr

Page 86

<zone parameter>

<array element>

<zone element>

B. RC FORTRAN Syntax Description

RC FORTRAN, User's Manual

< <zone name» >

< <zone array name>(<arith expr>))

[1"

<array name> ([<arith expr>])

[I 11

< <zone name>(<arith expr>) >

€ <zone array name>(<arith expr>,<arith expr>))

RC FORTRAN, User's Manual

B.3 Declarations

<program decl>

<procedure decl>

<common decl>

COMMON [C/<name>/)

IC)

(CERN FÆRRE;

[

[

[C/<name>/)

[c)

K 4 I

<type decl>

<dimension decl>

DIMENSION

[

Page 87

z:= ... PROGRAM <name>

c [1” 1)

ss= ... (SUBROUTINE <name> € ([<formal>])))

Å« [11 0 >)

[d 1 [3")

€ € <type>) FUNCTION <name>([<formal>]))

0 [11

<variable name> 1" 1%

(4 1" 11 1

<array name> < ([<integer>])) 111

[711 0]

]

<zone name> 3

11

<zone array name> ((<integer>)) 11

(I

z:z= <type> [€ <name> > 1"

[€ <array name>([<integer> 17%)21

[Cc [<integer name>] 1

[<array name>([<integer> 1”) 1”

[[<integer name>]1 J

[]

[<zone array name»((<integer> > 21

(f

<zone decl>

[

ZONE

(1

<external decl>

€ <integer name>) 11

11"

[<name> € (<integer>,<integer>,<procedure name>)) 1

011

z:= EXTERNAL [<procedure name>]%

[<variable name>)

[<zone name> 11

<equivalence decl> ::=

EQUIVALENCE [« [<variable name» 1") 17

[I [1" 1 1

[| [<array name> ([<integer>)1) 1 1

[I 1 1

[[I <zone name> (<integer>) 1 1

[| [<zone array name>(<integer>,<integer>)]2 11

<initiation> .=

[17

[[<variable name» 1= I bx! 2" 1

DATA [[<array name> ([7"]/ [C<integer>") <constant>] / 1

[[<array name>([<integer>]1)]1 IC 0 11 1

[11

B. RC FORTRAN Syntax Description

> 11

B.4 Expressions e

<arith operand> z3= € <number>)

€ <arith variable name> >

< <arith array element>)

€ <zone element> >

c [1")

€ <arith function name>([<parameter>]))

< <mask operand> [11)

< (<arith expr>))

<arith expr> 1:=

”

<sign><arith operand> € <arith operator><arith operand>)

(y

<mask operand> 1:=

€ € <integer operand>) .SHIFT.<integer operand>)

<< <long operand> >) e
<< <real operand>) >)

€ € <mask operand> > hj

t >)

T (<mask expr>) >

<mask expr> 1:=

c bål ct WM

C.NOT.)0 €<integer expr>) (C.AND.) (.NOT.J0 (<integer expr>))

€ <long expr>) ((.0R. >) C<long expr> 4

€ <real expr> 34 €<real expr> 3)

€ <mask operand>) (€<mask operand>3)

<logical operand> s:= € <logical> >

T <logical variable name> bj

€ <logical array element>)

Cc)

Ad [1 >

€ <logical function name> ([<parameter>]1)

€ <arith expr><relational operator><arith Er |
€ (<logical expr>) 2

<logical expr> ::=

c 71 ct (>1 >"

€ NOT.) <logical operand>€ (.AND.)(.NOT.) 0 <logical operand>)

c 30 € (.0R.) 20

B. RC FORTRAN Syntax Description

RC FORTRAN, User's Manual Page 89

B.5 Executable Statements

<simple statement> ::= (<variable assignment>)

€ <label assignment> J

€ <Jjump statement> >

€ <conditional statement>)

< <empty statement> 2

€ <procedure statement>)

€ <transfer statement>)

€ <inout statement>

<statement> ::= (<simple statement>)

€ <loop statement>)

<variable assignment> := < <variable name>) =) " <expr>

£ <array element>))

€ <zone element>))

€ <function name>))1

<label assignment> := ASSIGN <statement label> TO <label name>

<jump statement> ::=

GOTO < <statement label> 2

AN [2" 1)

€ <label name> € ,([<statement label>) >)))

c [11 0)

€C Li 1% Fi

€ ([<statement label>]),<arith expr> >

(4 11

(pa!

<empty statement> zzz= € CONTINUE)

q 0

€ I 7" 4

<procedure statement> HH CALL <procedure name> < ([<parameter>]))

c (1 11 20

<transfer statement> z= << RETURN >

c 17

€ STOP (<integer>))

0

<conditional statement> ::=

t [13)

€ IF (<arith expr>) [<statement (abel> 13)

€ IF « <logical expr>) <simple statement>)

<loop statement> ::=

[13

DO <statement label> <integer name> = [<arith expr>)

5 [12

(=

<end statement> 3:= END € <symbol>)

c 0

B. RC FORTRAN Syntax Description

Page 90 RC FORTRAN, User's Manual

B.6 Input/Output Statements e

<inout statement> ::=

CO READ) Ad 21 I 1”

q) (<logical unit> € ,<format label>)) [<put>]

€ WRITE) € >70 I 30

<logical unit> z:= (<zone parameter>)

€ | sarith expr>)

<put> 15=

€ <expr> but in READ limited to (<variable name>))

q T <array element>))

q T <zone element>))

€ <array name> >

T <zone parameter> >

ct [1% >

Cd [<put>]1) >

(7

€ [1= [13 > e
€([<put>]1 , <integer name» = [<arith expr>]2) >

kd 21

<format decl> sss (FORMAT) (€ <format field>) 0)

€ FORMATO)

<format field» ::=

CC WM 714 >1)

4 - 70 <integer>P) 0 (<integer>) 0 (F<integer>.<integer>))

c (E<integer>.<integer>))

€ (D<integer>.<integer>))

Cc nm >

€ (<integer> 70 < I <integer> bi)

Ka € I <integer>.<integer>))

€ € L <integer> > >

c € A <integer> > >

Kd < B <integer>.<integer>))

c Cx > i;

k 3 e
€ <text> 2

TC / 7

CO oil I" 10021" >

CO [IC /) 0 [<format field>] 1 € / 70 11 >

ct 1 >

€ € <integer>) (<format field>) >

ct (u >

. B. RC FORTRAN Syntax Description

RC FORTRAN, User's Manual

B.7 Program Structure

<program unit>

Ad

q

(

(

(

em eN EN EN EN EM EM
en

1

€ <program decl>)

0

<procedure decl>

<common decl>

<type decl>

<dimension decl>

«zone decl>

<external decl>

<format decl>

<initiation>

<equivalence decl>

<statement>

<format decl>

ENTRY <name>

<end statement>

mø hø MM NØ

Page 91

B. RC FORTRAN Syntax Description

Page 92

C. Call Of Compiler

Appendix C. Call of Compiler

The compiler is activated by an fp-command of the following form:

<bs file» = fortran (<text file>) %

€ <modifier>) 0

<modifier> 1:=

€ € index) . € yes))

CC spill > (mo)] >

€ € trunc) >

CC list >) Bj

€ € names >) b;

€ € message) >

(Csurvey))

CC testin) >

€ € cond]) >

€ € cardmode) >

AN >

< stop .(yes) >

t T no)])

c € <last pass>) >

t 2

< details .(yes >)

t (no >)

t K« 1.)

C € <first pass>.<last pass> (.<first line>.<last line»)))

KS 0 >

€ c 11 >

€ | test € <letter>) . € yes) 2

(C 70) Cno))

<bs file>

A file descriptor describing a backing storage area. The area is used as

working area for the compilation, and for the object code. The file

descriptor is then changed to describe a program unit.

The RC FORTRAN compiler will work in two different modes:

1... A source text containing a single subroutine or function may be
compiled into a binary program unit. The object is changed to

RC FORTRAN, User's Manual Page 93

describe an algol/fortran subroutine. For each entry point in the

compiled subroutine/ function a shared entry is created describing

the entry point and referring to the name of the object file. The

name given in the subroutine/function statement is lost and thus

irrelevant.

2... A source text containing a number of subroutines and/or functions

and one main program may be compiled into an executable

program. The object file is changed to describe an executable

program. The name of the program is løst and thus irrelevant.

<text file>

A text file is an fp text file or a text ending with the EM or

HT-character. The list of text files specifies the wanted order of input

files to the compiler. If no source is specified, the compiler reads the

source from current input.

Notice: Input of sourcetext is terminated when a line, starting with a

slash in position 1, is encountered. The line is listed as a message line,

<modifier >

The list of modifiers is scanned from left to right. Each modifier changes

the variables controlling the compilation. When the scan starts, the

variables are initialized to the value explained below.

index.no

Code for dynamic check of subscripts against bounds is omitted. Initial

setting: index.yes.

trunc.no

Conversion from real (and double precision) to integer (and long) yields

a rounded result. Otherwise a truncation will be performed (see section

4.1). Initial setting: trunc.yes.

spill.yes

Dynamic check of integer overflow is performed. Even if the external

procedures referenced were translated with spill.no, a partial check of

integer overflow is performed when they are executed. Initial setting:

spil.no.

list.yes

The entire source text is listed on current output with line numbers in

front of each line. Initial setting: list.no.

names.yes

A primitive crossreference listing is printed giving for each program

unit:

list of entry point names

list of external names

list of common names and the size (in halfwords) of each common
list of zone common names and the size (in halfwords) of each common

the number of halfwords used for local variables.

Initial setting: names.no.

.C. Call Of Compiler

Page 94

C. Call Of Compiler

message.no

Normally all message lines in the source text (i.e. lines starting with an
M as first symbol, see section 1.2) are listed with line numbers. With

”message.no'” this listing is omitted. Initial setting: message.yes.

survey.yes

A summary is printed on current output after the completion of each
pass of the translation. The meaning of the summary is explained in ref.

4. Initial setting: survey.no.

stop.<last pass >

The translation is terminated after the pass specified. stop.yes
terminates the translation after the last pass. The translation is regarded

as unsuccessful. Initial setting: stop.no

details.yes

Intermediate output from all passes of the compiler is printed on

current output. The output may be restricted to an interval of pass
numbers and to an interval of line numbers. Initial setting: details.no.

testin.yes

Works as details.yes, but prints the intermediate compiler data as it is
input by the passes. The option is blind in case of details.no. Initial

setting: testin.no.

cond.yes

A listing is performed, starting with a line with the letter L in the first

position and continuing to the first end statement. Initital setting:

cond.no.

cardmode.yes

Only the first 72 characters of a source line are treated as fortran text.
Exceeding characters are skipped. Initial setting: cardmode.no.

test.yes

Lines with one of the possible <letter>-values in the first position are

procecssed as program lines instead of being comment lines. Initial

setting: test.no.

test<letter>.yes

Lines with <letter> in the first position are processed as program lines

instead of being comment lines. Initial setting: test<letter>.no.

Requirements of the compiler

The compiler occupies about 80 segments on the backing store. A

process size of 11000 halfwords is necessary to run a compilation. The

compilation of large programs usually requires a process size, which is

one or a few thousand halfwords larger. If the available core area is too

small the compilation will terminate with an error message.

RC FORTRAN, User's Manual Page 95

Appendix D. Messages from the Compiler

The messages from the compiler may concern the call of the compiler or

it may be diagnostics produced during processing of the source text. The

first kind of messages have the form

222 fortran <text >

and are followed by termination of the compilation.

Other messages may have one of three forms:

Form 1: <pass no> line <line no>. <operand

no> <text> <auxl> <aux2 >

Form 2: <pass no> line <line no> <text>

Form 3: <pass no> <name> <text>

pass no

is the number of the current compiler pass.

line no

is the number of the relevant line of the source text. The first line has

number 1; only lines containing visible symbols are counted.

operand no

indicates the position within the line, where the error is found. An

operand is a name or a constant. Operands are counted from the left

starting with 1.

text

is a short description of the error.

auxl, aux2

are auxiliary values helping to describe the error as specified in the list

below.

name

with form 3: the name given is the name of a program unit or common

block connected with the error.

D. Messages From The Compiler

Page 96

The pass no is only given with the first error line, The operand number

may be irrelevant with some of the messages which are marked by (NB)
in the list. Aux1 and aux2 are often omitted.

In the following list the messages are sorted according to <text> and
they are classified as:

(alarm)

The translation is terminated as an unsuccessful execution. The program

cannot be executed.

(warning)

The message has no effect.

Otherwise the translation continues and the program may be executed

until the erroneous construction is met.

ftn. end <i>

This is not an error message. The fortran program has been translated.

The ok-bit is set to yes. The warning-bit is set to no if no error messages

have occured, otherwise it is set to yes. The object code occupies <i>

segments.

fortran sorry <i>

An alarm has occured. The ok-bit is set to no. The integer <i> shows

the number of segments the compiler has attempted to make.

2%2 fortran <text >

The compilation is stopped and the ok-bit is set to no.

adjustable bound

Declarator subscript should be integer constant.

bitpattern

Three types of error may occur. The type is given in aux1 and further

information in aux2 as follows:

aux 1 description aux2

1 illegal bit group bit group size

size

2 illegal digit illegal digit

3. overflow digit in process

call

A procedure call has a wrong number of parameters.

<name> catalog

<result>

Trouble with catalog lookup, for instance because a standard identifier

is missing in the catalog. The name of the identifier and the lookup

result is printed (alarm).

<name> commo

Inconsistent common declaration, for instance a common declared with

different length in different program units. The name of the common is

printed (alarm).

D. Messages From The Compiler

RC FORTRAN, User's Manual Page 97

common error

(NB) Mixing of zones and other variables in common, two zones in the

same common, or a variable is two times in common.

constant index

During compilation a subscript is outside the declared range.

constant outside allowed range

The value of a real constant, a double precision constant or the real or

imaginary part of a complex constant is outside the allowed range, i.e.,

1.547174x10xx(-617) <= abs (value)

<= 1,615850x10xx (616)

continuation mark on a labelled line <char in position 6>

A label and a continuation mark is not allowed on the same line.

+ declaration

e Identifier declared twice or more times.

dimension equivalenced common variable

Start of dimension outside lower bound of common area, equivalence

illegal.

dimension equivalenced zone

Start of dimension outside zone record, equivalence illegal.

do after if

A conditional statement must not be a dø statement.

dø construction

Illegal number of control parameters in do or implied do.

entry name

Entry name should be simple local.

equivalence impossible

e Two variables cannot be equivalenced because they are placed in
common areas, maybe by previous equivalence statements.

equivalence index

Subscription missing for array or zone trouble identifier, or subscription

on a simple variable in an equivalence statement.

equivalence

Index error for array or zone in an equivalence subscript statement.

erroneous terminated do range

The terminating statement is not situated after the do statement and

before the end statement or before the terminating statement of an

outer do statement.

exponent too big <converted value>

A preliminary conversion has shown that the exponent value is outside

the range:

D. Messages From The Compiler

Page 98

-1000 <exponent < 1000

external zone not in catalog

(NB) One of the zone identifiers, declared as external, is not present in

the catalog. It can be any of the external zones if møre than one is

declared.

formal in common

A parameter is declared as a common variable.

format error before comma no, <comma no.>

(NB) Illegal structure or illegal field specification values has been

detected in a format statement.

graphic <char value>

The character with decimal value <char value> is illegal in this context.

<name> kind

This alarm may occur for two different reasons:

1. If the use of a name from the catalog does not match the catalog

description of the name. Such error may occur when a subroutine

or function is compiled without its externals being present in the

catalog (see Section 6.3), or if the catalog description is changed

after being used in the compilation.

2... If a common declaration from a catalog external differs from the

common declaration in the program unit under compilation

(alarm).

illegal <char value> <line no. >

The character is of class illegal, see Table 1 in the manual. It is marked

with a question mark in a listing and does not count on the line.

illegal number of main programs

A complete source text must be either one single program unit or a

number of program units with one main program (alarm).

label

A label is not declared or multiple declared.

labelling error

Missing or misplaced label.

label not referred

A declared but not referred label (warning).

label syntax <errør char value >

The character pointed out is not allowed in a label field.

list structure

Illegal element type or illegal separator in a list.

missing)

One or more right parenthesis are missing.

D. Messages From The Compiler

RC FORTRAN, User's Manual Page 99

missing end

An EM-char is read within a program unit. An end statement is

generated and the compiler goes on.

more actions

More actions in action stack at statement end (compiler error).

<name> name trouble

The object area is not renamed because the program name already

exists in the catalog.

non-common element, rightmost group no, <group no.>

(NB) A simple variable or an array of the data group in the data

statement is not in common.

no. of subscripts illegal

Number of subscripts in an array declaration must be < 32.

no. of zones illegal

Number of zones in a zone array must be < 32.

not implemented

Action not implemented (compiler error).

operand stack

Operands in stack at statement end (compiler error, may occur after a

fault in a state- ment).

overflow

During compilation an expression holding constants causes arithmetical

overflow.

param

Illegal parameter in the FP-command, calling the compiler. The

parameter is ignored (Warning).

pass trouble

The job area is too small to load the next pass of the compiler or the

next pass has been destroyed. (Alarm).

program too big

The backing storage area specified cannot hold the object code.

(Alarm).

run stack full

A program unit has too many variables and/or uses too many working

variables.

short text <no. of chars processed >

For hollerith constants the following condition is not satisfied:

l <= no. of characters <= 6

statement sequence

The statement sequence is wrong within a program unit, e.g., declarative

statement after executable statement.

Note: equivalences must be placed after all other declarations.

D. Messages From The Compiler

Page 100 RC FORTRAN, User's Manual

statement structure e
The main structure of a statement is wrong.

subscripts

A subscripted variable has a wrong number of subscripts.

syntax error

Syntactical error within a subconstruction of a statement.

too many significant digits <no. of digits converted >

Leading zeroes do not count, and one of the conditions below is not

satisfied:

long constant: abs (value)<2%%47

double precision constant: no, digits<20

Note that a floating point number with no. digits > 11 is always a double
precision constant.

top not in wl

The operand stack pointer is wrong (compiler error, but the program

will run anyway).

type
The declaration or type of an operand is not in accordance with its use.

unassigned elements, rightmost group no. <group no.>

(NB) The number of constants does not equal the number of elements

in the data group of the data statement.

<name> unkn.

The external with the specified name did not exist in the main catalog.

(Alarm).

wrong standard action

Error in the action tables of pass 7 compiler error).

zone oe
Wrong number of subscripts after zone or zone array.

zone specification

The zone declaration must specify buffersize, number of shares and

block procedure except for formal zones.

D. Messages From The Compiler

RC FORTRAN, User's Manual Page 101

Appendix E. Program Execution

E.1 Execution of an RC FORTRAN Program

A compiled RC FORTRAN program may be executed by a file

processor command of the form

<bs file> (<empty>)

[<source><anything>)

[<integer>]

(i <param><Xanything> |)

<param> ;;= (<integer>).(<integer>)

(<name>) (<name>)

<bs file>

A file descriptor describing a backing storage area which contains the

compiled FORTRAN program.

<empty>

The program is called with the current input file of the file processor

connected to IN.

<source>

A file descriptor. The program is called with the described file

connected to IN. The current input file of the file processor is

untouched.

<integer>

The program cannot use IN and OUT and it cannot print error

messages. When the program terminates, it sends a parent message

corresponding to a ,break, and specifying the cause of the termination.

On the other hand, 3000 - 4000 halfwords more are available in this way.

The possibility is mainly intended for operating systems, which "never"

are terminated, never use IN and OUT, and work satisfactorily in a very

short core area.

<param >

Works as <empty>. The commmand parameters <param> may be

E. Program Execution

Page 102

E. Program Execution

accessed from the running program by means of the procedure ”system” e

(see Ref. 2).

<anything>

Ås <param>.

Example:

progxx = set 50

progxx = fortran progtxt list.yes message.no

progxx dataxx

The program text found in the file ”progtxt” is compiled into the object

file ”progæ'. The program is then executed with the file ”datax”

connected to the zone IN,

Example

(corresponding to ref. 7, introduction): e

progyy = fortran ; read from current input

program test

zone in, out

external in, out

read (in, 1) a, b

1 format (f1.0, x, f£2.0)

write (out, 2) axxb

2 format (x, £6.0)

end

/this is the last line

progyy ; call program

2 10 ; with this line as data

The output from these call will look like:

9/this is the last line

ftn. end 22

1024 e

end 15

E.2 Run Time Alarms

E.,2,1 Initial Alarm

Before the program is entered, the alarm

xke <program name> call

may appear. It is due to either: the program is not on backing store, the

source is not a text, or the job process is too short.

RC FORTRAN, User's Manual Page 103

E.2.2 Normal Form

When the program is called with <program> <integer>, a run time

alarm appears as a parent message (see Ref. 2).

In normal case, a run time alarm terminates the program with a

message of the form:

<cause> <alarm address>

called from <alarm address>

called from ...

A list of the possible alarm causes is given in E.2.4. The program is

terminated unsuccessfully, except after the message ”end”. An alarm

address shows where the error occurred, If this is a procedure or a name

parameter, a line specifying the call address or the point where the

name parameter was referenced is also printed. The process is repeated

if several calls or references were active at the time of the alarm. If

more than 10 calls or references are active, the process stops after

having printed the last ”called from” but before the last alarm address is

printed.

An alarm address may take 3 forms:

1... name of a standard procedure or a set of standard procedures

2. line <first line> - <last line>

3. ext <first line> - <last line>

Form 2 specifies a line interval in the source text of the main program.

Form 3 specifies a line interval in an external procedure. The accuracy

of a line interval corresponds to about 16 instructions of generated code.

The first line number may sometimes be 1 too large. The line number of

a procedure call points to the end of the parenthesis.

The following alarm addresses from library procedures are used:

char input

(read, readall, readchar, readstring, repeatchar, intable), (see Ref. 2)

check

(all high level zone procedures use the procedure check)

complex op

(complex or long arithmetic)

fortranfet.

(iabs, abs, amod, mod, min0, max0, amin0, amax0, min1, max1, aminl,

amaxl1)

ftn io

(fortran read/write)

open

(open)

E. Program Execution

Page 104

E. Program Execution

position

(getposition, setposition, close)

readon

(fortran read)

recprocs

(inrec, outrec, swoprec)

rl convert

(conversion between real and long, DATA initiation)

stand.fct, 1

(exp, alog, sinh)

stand.fct. 2

(atan, arg, sin, cos)

stand.fct. 3

(arcsin, sgrt)

writeon

(fortran write)

zone declar

(the code that declares zones and zone arrays)

zone share

(getzone, getshare, setzone, setshare), (see Ref. 2)

E.2.3 Undetected Errors

If all parts of a program have been translated with both index.yes and

spillyes, the following errors may still pass undetected:

1... Parameters in the call of a procedure which is a formal parameter

do not match the declaration of the corresponding actual

procedure. Any reaction may result.

2... A subscript may exceed the bounds in an array declaration with

more dimensions as long as the lexicographical index is inside its

bounds. The control of the program remains intact.

3.... The program may write into the backing storage area occupied by

the program itself. Any reaction may result.

4. Undebugged standard procedures in machine language may cause

any reaction.

5. Parameters, beyond the seventh parameter, in the call of a

procedure do not match the declaration of the procedure. Any

reaction may result.

RC FORTRAN, User's Manual Page 105

The monitor and the operating system will usually limit the

consequences of errors in such a way that no other job ør process in the

computer can be harmed.

E.2.4 Alphabetic List of Alarm Causes

The errør messages below cover only the standard procedures described

in this manual. The set of messages is expected to grow with the

standard procedure library.

arcsin 0

Illegal argument to arcsin.

block <i>

Too long record or record with a negative length in call of inrec, outrec,

or swoprec, The block length is shown.

break <i>

An internal interrupt is detected. <i> is the cause of interrupt, usually

meaning:

0 illegal long text string as parameter,

6 too many message buffers used (see Ref. 1),

8 program broken by the parent, often because it is looping

endlessly. In this case, the alarm address should be taken with

some reservation. The break alarm will often be called as a result

of the undetected errors described in E.2.3.

end <i>

The program has passed the final end. The integer printed after end

shows the value of the standard integer BLOCKSREAD as the program

terminated (see appendix E,3). This is not an error message.

entry <i>

Illegal function code ør entry conditions in a call of monitor, system, or

systime (see Ref. 2). The function code attempted is shown.

exp 0

Illegal argument to exp.

giveup <i>

Printed by stderror. The number of halfwords transferred is shown. The

file processor prints the name of the document and the logical status

word,

index <i>

Subscript outside bounds. The lexicographical index is shown. This

message occurs also for subscripted zones or record variables.

The index alarm is called if a block procedure specifies a too long block.

In this case, the value of the block length is shown.

integer

Integer overflow.

label

Attempt to goto an unassigned label variable.

E. Program Execution

Page 106

E. Program Execution

length <i>

Illegal record length in call of inrec, outrec, or swoprec. The attempted

length is shown.

In 0

Argument to alog <= 0.

not unit <i>

An unassigned unitnumber is used. The attempted unitnumber is shown.

modekind <i>

Illegal mødekind in call of open. The kind is shown.

param

Wrong type or kind of a parameter.

real

Floating point overflow or underflow.

share <i>

An illegal share number is specified. The number attempted is shown.

sh.state <i>

A share in an illegal state is specified. The share state is shown.

sinh 0

Illegal argument to sinh.

sart 0

Argument tø sgrt is < 0.

stack <i>

The number of variables exceeds the capacity of the job area, or an

array or a zone is declared with a nonpositive number of elements. The

number of halfwords attempted in the reservation of storage is shown.

syntax

The program is terminated at a point where an error was detected e
during the translation.

uncoded <i>

Format in array is not implemented. (The number shown is irrelevant).

value <i>

The contents of ia(i) in setzone(z,ia) or setshare(z,ia,sh) is illegal. The

value of i is shown (see Ref, 2).

z.kind

Swoprec is not used on a backing storage area,

zlength <i>

The buffer length is too short. The actual buffer length is shown.

z.state <i>

A high level zone procedure is called in an illegal zone state. The actual

state is shown. e

RC FORTRAN, User's Manual Page 107

The value of the zone state is determined by the latest call of the

standard procedures using the zone. The most important values are
given below. Other values may be defined together with other zone

based procedures and are then given in the procedure descriptions.

zone

state situation

0 For magnetic tapes: after setposition; for other documents:

after open or setposition.

After reading on character level.

After repeat char (algol, see Ref. 2

After writing on character level.

Just after declaration of the zone.

After inrec, unformatted read.

After outrec, unformatted write.

After swoprec.

e After open on magnetic tape.od an lue WN mm
zZunits

Too many zones are assigned units numbers at one time. The maximum

number is shown.

E.3 The Object Code

The object code is partitioned in segments of 128 double words each. If

a single subroutine or function is compiled, the object code consists of a

number of segments corresponding to the source text. If a main program

is compiled, the compiler will add a few segments called the running

system. The running syste routines for segment transfer, core

reservation, alarm administration, basic input/output, etc.

Further the compiler will add to the program all segments

corresponding to external subroutines or functions referenced by the

e program.

The running program will require a minimum process size of about 4500

halfwords to be executed. The available core area will be shared

dynamically among the variables and the program. The necessary core

area for local zones, arrays and variables are reserved at entry into a

program unit and released at exit from the program unit. Further the

program segments are transferred to the core gradually as required by

the execution. If no unused core area is available, the segment transfer

will overwrite one of the segments already in core,

The transfer of a segment to core store requires 8-100 milliseconds

(depending on kind of backing storage, position of read/ write heads

etc.), while the transfer of control to a segment already present in the

core store takes about 0.01 millisecond. Therefore the program

execution time may be highly dependent on whether the most frequently

used loops of the program may be held entirely in the core støre or not.

The number of segment transfers is available as the value of an external

integer variable BLOCKSREAD, which is initiated to zero at the

E. Program Execution

beginning of program execution and increased by one at every transfer e

of a program segment.

E. Program Execution

RC FORTRAN, User's Manual Page 109

Appendix F. Survey of Standard Names

This appendix contains a survey of names which are reserved for special

use in the RC FORTRAN., The first group of names consists of names

of standard externals available to the user. The second group contains

e names of routines belonging to the running system of RC FORTRAN.

F. Survey of Standard Names

Page 110 RC FORTRAN, User's Manual

Table F,1 List of Standard Externals

Definition No. of | Name of Type of Type of

para- function! parameter function

meters

Absolute value of pl 1 abs real real

iabs integer integer

cabs complex real

dabs double double

pl modulo p2 2 amod real real

mod integer integer

max (pl,p2,...) >2 amax0 integer real

amaxl real real

max0 integer integer

maxl real integer

min(pl,p2,...) >2 amin0 integer real

aminl real real

min0 integer integer

minl real integer

real part of complex

number 1 real complex real

imaginary part of com-

plex number 1 alimag complex real

pl + p2 + M-1 2 cmplx real complex
exponential, e%xpl 1 exp real/integer real

cexp complex complex

natural logarithm, 1n pl 1 alog real/integer real

clog complex complex

sine pl 1 sin real real

csin complex complex

cosine pl 1 cos real real

ccos complex complex

the square root of pl 1 sgqrt real/integer real

csgqrt complex complex

arctangent of pl radians 1 atan real/integer real

conjugate of pl 1 conjg complex complex

argument of pl 1 cang complex real

sign of pl 2 dsign double double

truncated value of pl 1 ifix real integer

floated value of pl 1 float integer real

F. Survey of Standard Names

RC FORTRAN, User's Manual Page 111

The names listed below are reserved for special purpose FORTRAN

and should not be used for other purposes by the programmer.

Name Connected to

inwrercrere WRITE

wrirecrerere WRITE

inrrererere READ

rearcrerere READ

lmlrercerere long multiplication

ldlrercerere long divison

cacrerererc complex addition

cscrcercerere complex subtraction

cmerererere complex multiplication

ecdererererc complex division

dadrererere double precision addition

dsdrererere double precision subtraction

dmdrcererere double precision multiplication

dddrererere double precision division

icdrererere convert integer to double precision

ledrererere convert long to double precision

redrercerere convert real to double precision

dcirererere convert double precision to integer

delrererere convert double precision to long

derrercrere convert double precision to real

F. Survey of Standard Names

Page 112 RC FORTRAN, User's Manual

Appendix G.

Deviations from ISO FORTRAN

G.1 Limitations

- Local variables cannot be initiated by DATA statements.

- Logical variables may not appear in EQUIVALENCE statements.

- PAUSE, REWIND, BACKSPACE and ENDFILE are not

implemented.

- G-format not implemented, H-code for output only.

- Format in array not implemented.

- Statement function not implemented.

- Exponentiation of entities declared double precision is not

included.

- Integers, logicals, and reals dø no occupy the same amount of

storage.

-...... Texts cannot easily be handled in integer or real variables, and not

at all in logical variables.

- DATA statements may only occur among declarations.

- BLOCK DATA is not implemented.

- Recognition of compound symbols is defined as terminated by an

<in text> symbol and not from the context. It is thus not possible

to have a variable with the name WRITE etc.

- DO loops (and implied DO loops) are not always executed at least

one time.

G.2 Extensions

- Extended character set.

- Names of møre than 6 characters.

- 48-bit integers.

- Bit pattern constants, apostrophed text constants.

- B-format allowing binary, ternary, octal and hexadecimal

input/output.

- Masking operations and shifting operation.

- Mixing of types in arithmetical expressions.

- General expressions allowed as subscripts, in DO statements, and

in computed GOTO statements.

- Multiple entries in procedures.

- DATA initiation in any program unit.

- Open formats.

G. Deviations From ISO FORTRAN

RC FORTRAN, User's Manual Page 113

e - Zones and record handling procedures.
- The parameters in a DO statement (and in implied DO) may be

negative and the loop may be totally skipped.

G. Deviations From ISO FORTRAN

Page 114 RC FORTRAN, User's Manual

Appendix H

Execution Times in Micro Seconds

The times given are based on a RC8000/45.

The times given below represent the total physical times for execution of

algorithmic constituents. The total time to execute a program part is the

sum of the times for the constituents. The times are only valid under the

following assumptions:

1) The time for transfer of program segments from the backing
storage negligible (see appendix E.3).

2) ... The program is not waiting for peripheral devices (see 5.2).

3) ... The time slice interval is 25.6 milliseconds or more (see ref, 10).

4) The program is the only internal process running in the computer.

When the computer is time shared, assumption 4 is not fulfilled, but

then the times represent the CPU time used by the program.

H.1 Operand References

Reference to local identifiers and constants (9)

Reference to common variable 0-4

H.2 Constant Subexpressions

Operations are performed during the translation and thus do not

contribute to the execution time in the following cases:

+-x/.shift. working on constant operands

conversion of an integer constant to a real constant,

or vice versa

The result of an operation performed during translation is again treated

as a constant.

H. Execution Times In Micro Seconds

RC FORTRAN, User's Manual Page 115

Examples:

A(-2+6/5) is reduced to A(-1)

1+0.5-0.25 is reduced to 1.25

p+342-4/4 is only reduced to p+6-1l because p+6

must be evaluated first.

H.3 Saving Intermediate Results

By the term "composite expression" we mean any expression involving

operations to be executed at run time.

Examples:

A(i) B+1 a .shift,. 8 pr(i,i, >ab>) are composite

A(2) >ab> 5 .shift. 20 11.5 are not composite

(see G.2)

During evaluation of expressions one intermediate result is saved in the

following cases:

+, %, .and., .0r.,all relations,.shift. when working on 2

composite expressions.

-,/ when the right hand expression is composite.

Saving of an intermediate result takes the same time as an assignment.

H.4 List of Execution Times for a Selection of
FORTRAN Constructs (in microseconds)

GOTO == 2.6

Assigned GOTO -= 23.3

Computed GOTO = 16.3

Logical if (true) == 5.7

Logical if (false) = 2.9

Arith. if = 6.4

Continue =... 0,0

DO (1 cycle) = 22.7

Call subroutine = 91.7

For each param. add =... 6.3

Integer = integer =... 5,0

Real = real =... 7.9

Long = long =... 7.9

Double = double = 39.7

compl. = compl. = 39.7

Integer = real = 14,4

Real = integer = 18.3

Logical = logical = 7.0

1 subscript, index,yes = 15.0

H. Execution Times In Micro Seconds

Page 116

l subscript, index.no

Integer + integer

Real + real

Long + long

Double + double

Compl. + compl.

Real - real

Integer + integer

Real % real

Long + long

Compl. + compl.

Double % double

Integer/integer

Real/real

Long/long

Compl./compl.

Double/double

Real x% Integer

Real %% Real

And , or

Integer.rel.integer.

Real.rel.real

I-Ix I

R-R&R

Ref. to real param.

H. Execution Times In Micro Seconds

= 11.

=... 2.

=— 13.

== 4.

= 279.

= 125.

= 13.

=... &.

= 34.

= 144,

= 286.

= 377.

= 14.

= 25.

= 145.

= 411.

= 530.

= 236.

= 625.

= 5

= 6

= 17

= 16 OD oo Mn 00 ND Un CO RR 0 DOORS OWN FR NUERNR BI OD

RC FORTRAN, User's Manual

Appendix I. Index

ALOG seernes re en renees see

AMAXO seernes nens ee

and. ssrssesserses0e beses ssssseee

arithmetical assignment22000rreseenre

arithmetical evaluation rules22242...

arithmetical expression22.... FPP

arithmetical, mixing of types ...00s0se0e...

ATTAYS 2.1... BEER ERE LERET

assembly of programs0000rsueeseeereee

ASSIGN sees sen rr

assigned GOTO ss. nevsee

ATAN sees esereeee

backing storagese0esssessrensesrrnrenee

BACKSPACE ..000rereereereeseseenssseesnsenee

bit pattern20000eeeseeessennensneneee

block sees

BLOCK DATA suser sesee

block gap serene vererrersee

block length2000rereeres essens enesnen

block number0000004... beses nessrsen

block procedure EEN ELIE

buffer 00000 snsnenennenneee

byte ses eee ses sseere

CABS saettes nnss

CACTCICICYTC seernes nssnes

CALL seernes

calling functions/subroutines

calling parameter check and transfer ,......

GANG sas essens esee

der ha 0 RD Fe 10
Rn
Fa FF

Br RS RD NS NO NIONS 00 OND OND FSSSESEEE BESES SER
ye Nono w

Gir

Page 117

så AJ MJ
5.3.3

GV WA

6.1.3

I. Index

Page 118

I. Index

card reader seernes nenenkenes 5.2.1.6

catalog s.ssesereeeeressssense ses ensrknnee 6.3

CCOS sees serene see rsernne F

cderecrerere serene, F

CEXP sees rnnnes F

character handling, masking000r000040 3.3

character READ/WRITE ..0000urureeeesresesee 5.4.2

character set ..sssseessesenesenenseesessnnen 1.1

CLOG ses seernes F

CLOSE esserne, 5,2,4

CMCYTCITCYICYIC seernes ener rvrrere F

CMPLE sssseeereseseeseeresnsssrnnenessesssss F

code procedures0r0rskesensnrsessrensses 6.3

comments ...ssssseeeeseeseses ses essensen ensee 1.2

COMMON senere sesssssrenee 6.2.1

compiler call ..ssseresrersesssersnssrerenen (9

compiler messages from000rersserreness D

compiler requirements200rrrererersnees Cc

COMPLEX ssseeeeerereseesssssesssenssssessene 2.1

complex, representation and range 1.3

compound symbols ...ssueeeeeseererennenenee 1.1

computed GOTO "ss enses 4.2.4

CONJG eee ss sskee F

constants sees rrnenes 1.3

continuation of statement ,......22200r0re4... 1.2

CONTINUE sssuseereesessensensssssseeerenenee 4.5

control characters220rsseeeerersrrrenee 5.4.5.1

controlled variable (DO) ...ss0reersseeseee 4.4

conversion codes ..s0reseeerneeseneserssnen 5.4.4

COS anses esse essere rss rnee F

CSCYICICYCIC sees sne nsreee F

CSIN serveres sene ssenseses F

CSORT seeren esserne F

DABS sees seernes, F

dadrererere 800 errsrvere F

DATA ses eneee 6.2.4

DATA, BLOCK DATA seeren, 6.2.4

DATA, long texts ..sssseeserrerserererssenee 6.2.4

dcirercerere ...s0sueeeseesrvesesrenessenens F

delrererere sssssseeesesseesesreseesrekseree F

ÅdCYTCYITCICIC seernes skeerne F

dddrererere sees F

diagnostics during compilation224... D

diagnostics during program execution E.2.1

DIMENSION seeren nenee 2.2

DIMENSION, variable (adjustable array) 6.1.5

DIMENSION, variable (adjustable zone) 6.1.6

disc file00rreeeeeseesesssrssennnngsnes 5,2.1.1

disconnected000sensresesrerenereeneeee 5,3,1

dmdrererere sees sssnrenee F

document ss. enes essenn es 5.2.1

DOUBLE PRECISION see rseeeesenesseenee 2.1

double precision, representation and range . 1.3

DO-loop sssssssueeeeeses essensen 4.4

dpdrererere ...s00eeesesereeessssessessenee F

drum 200 rereee 5.,2.1.1

RC FORTRAN, User's Manual

dsdrerererec ..

DSIGN:....

D-conversion .

END ..2222020...

ENTRY

errors during compilation200rssses0.

errors during program execution

errors, treatment of input/output

error, READ/WRITE seernes,

EQUIVALENCE ,.

EQUIVALENCE with zone record

evaluation, mixing of types0000rereree

evaluation of expressions 8000,

execution of object program1020707

execution time

exponentiation

expressions ..

EXTERNAL

external algol

alarms ..000sreeereeeserenee

procedure ..000sreerreerree,

external code procedure ,....00000ur0reeeeee

external fortran subroutine/function

external library procedure0000rrrere.

external variables ...000reererereeeeeenere

E-conversion .

.false.

file name

FORMAT

format controlled READ/WRITE220000004...

FORMAT conversion codes0000r0rsessees0e

format errors

format, rules for execution2222...-

FUNCTION

function, intrinsic0000rererrerveree

function, library200ussessnseessensenene

FUNCTION, parameter check and transfer

F-conversion .

GETPOSITION ..

giveup bits of

giveup mask ..

GOTO2....

GOTO, assigned

GOTO, computed

logical status word

5,2,6

6.1.9

m

in DEN WM UWE WN hu

Page 119

I. Index

Page 120

I. Index

RC FORTRAN, User's Manual

hard error during input/output 00000004 5.3.2, 5.3.3

heading of program unit ...20serereessreres 6.1.1

H-conversion ...00esseesssseneeerensssnnee 5.4.4.9

IABS sees essens sseree F

icdrererere ...sss0reeeeesseenenenenenenenee F

identifiers ,....000suesesereeseerneerrsnee 1.4.1

IF, arithmetical220000ueeeeeesssssnekns 4.3.2

IF, logical ss. reerssreseeseerenrnrene 4.3.1

implied DO ss. enrnee 5.4.2

IN senere eres re ens snnse 5.1.6

index check ses sese 1.4.3, 5.5.7,

initial values ..sseuseeseeenesessesnennnen 6.2.2

initiation of variables (DATA) s..ssssrrsr08. 6.2.4

input/output 2000 seresesenssssness 5

input/output documents, basic principles ... 5.2

INREC sense eres renee 5,5,2

ÅINTTCTCICTC sees eres sesenes F

INTEGER ..,000eeeseeseeneensesssenessssreee 2.1

integer, long integers (LONG) seere. 1.3

integer, representation and range 1.3

intervention82000msseersrerereneesnrenee 5.3.1

inwrererere s.ssssesesssseererereersernsrnse F

I-conversion0s0sueeeeesessnensekrsnene 5.4.4.5

label ssssssssesesseseseresreressrsseseerere 1.2

label, format00000ueseeeeeeeneneseenee 5,4.3

ledrererere .sssseseeeeeerereresersreenenere F

Idlrererere 2000 senersnes F

library functions00r0rurseseuneenenens 6.3, F

line change ...2800eeesesesereeeeenernerenen 5,4,5

line format of program0000rusressesee 1.2

line printer00erereseekssseeskernnnee 5.2.1.5

listing, conditional000rreeseesreree 1.2,c

listing of program0000usessensskenennns 1.2,C

Ilmlrererere sees, F

load point0000eseeeseeesssnsrrsnnnnee 5.2.1.7

LOGICAL sees ever srsesnnss 2.1

logical expression and assignment 4.1

logical position00rrereereeennnennes 5.2.1

logical record2000eseeeresssneensennene 5.5

logical, representation20rrrsererrere, 1.3

løogical status word ..ssssrereerrererreree 5,3

LONG suser verset eres 2.1

long, representation and range 1.3

L-conversions00ssessseseeseressensnnnne 5,4,4,7

machine coded program units ,....2000r0re00e 6.3.2

magnetic tape0seseseesrsssenreerernner 5,2.1.7

main program sees ssssrsrserenereree 6,1,1

masking operations ...20rsrsesserrerereree 3.3

MAXO sees nnseeee F

MAXI sueseseeeseeeseeevevessrsssessnnrennsns F

MINO seeren renee F

MINI seeren, F

mixed mode arithmetic200rrerureerreree 3.3

MOD suser eee ere sees ss sseses F

Cc

RC FORTRAN, User's Manual Page 121

e mode and kind of documents2000r0s0000... 5.2.3
multiple assignment200r0ssersnsetets 4.1

Names serene essensen se 1.4.1

nesting of DO loopssr0sseeseereerrere 4.4.3

new line, change of line000rerseeeeee 5,4,5

new line, character ...s0200erereresereeneee 1.1

NUL character serene eenennnnee 1.1, 5.4,4.4

object program, alarms from2222084424... E.2

object program, execution of00rrr000, E.l1

object program, structure of0000000re E.3

octal constants ...000eeseseeeserenrsnnnen see bitpattern

OPEN sees senenne 5,2.3

SEE E EEEEEEILE 3.3

OUT sssssssesseseseeesseseneee ses seneees 5.1.6

output seeren rrseres see input/output

OUTREC seeren ssnnee 5.5.3

overflow suser nenene 3.3

e OVERFLOWS, external variable2202000004... 3.3
overrun, data s.s0eereresesesererenerseenne 5.3.1

paper tape "00000 ereessnsessnr sene esrseee 5.2.1.3, 5.2.1.4

paper tape reader000ruseserseserersese 5.2.1.3

parameter, check and transfer2244242 6.1.3

PAUSE seeren eneeseserses G,1

position error00eereresssnees nn nnntese 5.3.1

position, logical00r0erererreenerernse 5.2.1

positioning of magnetic tapes800004440. 5.2.5, 5.5,6

precision ER EREERER 1.3

PROGRAM FEDERER ENES NEEDED 6.1.1

program execution ss... ersseserneee E

program, function200s00seesresesereres 6.1.1

program, subroutine 20000 6.1.1

program unit ..0000reseserreereneneevrnene 6.1.1

program, arrangement of total program 6

program, main program0000rueesesssseee 6.1.1

program, structure of program unit 6.1.1

e P, scaling factor ...00sureessrerernrnnne 5,4.4,8

range of DO loop ...s000resseererssrsnesene 4.4

range of values0000resesereressevernrs 1.3

YCÅTCYCICIC suser rnenee F

READ errors, treatment of0200rererere00e 5,3, 5.4.5

READ, formatted0000rsesesesesenrnnses 5.4.2

READERR .ssseseeeeeeeseeseneneesenenssesssese 5.4.5

READ, unformatted .,....2200000rresesesesseee 5.4.6

REAL REESE EEN DEDE NEDE REEEEEES 2.1

REAL, library function22200rereereere, F

real, range and representation4.+ 1.3

TeaTCTCICTC s..sssreeresesesn renerne nnenes F

record input/output ...000seeeeenrerennnes 5.5

record, INREC ...00r0reesersnrerneneesenee 5.5.2

record, OUTREC ..ss0sesreeesserenenssnnsses 5.5.3

record, SWOPREC 000 eeereesssessenses 5.5.4

record, zone record00s00rserssersnene 5.5.1

e relational operations220rerrerersrenne 3.2, 4.1

I. Index

Page 122

I. Index

RC FORTRAN, User's Manual

release sees nnenes

requirements of compiler200urrrsenss

requirements of running program

RETURN seere resenee

REWIND sas essensen es

run time alarm00seeeseessssnrnnrnerene

scaling factor0suseeseeseserererernses

segmentation of object program214444

SETPOSITION 000 ensresnses

shares sees eskrnnee

.Shift. seernes rss rerneee

side effects00ereeeesereesessernrenee

SIN sees senere

source text line format2000rrereeesse

space in program text 20000 erserrrnnee

space in READ/WRITE ,..sssessessessnrnevenes

spill sssseseueseeeseseneeeerevereserssgseee

SORT sees ssssss rust sens rrnnree

standard error actions for input/output

standard variables, external variables

statement continuation0000rersrereees

statement function ,.....22000sssesnersrnnene

statement label ,.....0000ruserssssnennrennee

statement separation020rerrerrernses

status word ...ssssssseseesenrsnensrensessnss

STDERROR seere esserne

STOP sees ses sst

stopped ...ss2sssessseseseerereeeesrrenneee

storage considerations0000ressesreeee

storage requirement of compiler

storage requirements of running program

SUBROUTINE ..00eereeeeeseseesesesressernnes

SUBROUTINE call seeren nsesenerenee

SUBROUTINE, parameter check and transfer ...

subscript seernes renes

subscript check ,...00eeresresesrensersnnne

subscripted variable00r0russersnene

SWOPREC ..ssseeseeseressesesnseesseesenennee

SYNTAX ssssssesseesensenenserse rn rr renee

syntax error s.sssssseeeseesesenenvnrensnnne

Syntax STOP sees eres eres sens

tape mark ...000reereveereeesssss as esensnene

tape reader .,..000eseseeeenesesssnssrnenene

tape, magneticssssssesseeeesereererneee

tape, paper ss. enesnnne

text constant suser seere

text constant extended in DATA00004....

timer serene snnesne

true, seveeeeseeesssssnsse nens ns sner sssee

truncation2s00sssreeeeeesesesseerneenes

type declaration00rrereeerererereneee

types of variables 00020 esesssennnee

typewriter 0000 nesnses

Na

PRS IND ged 1

[5] OS aL HERE Sal
=-

BD Fe lø

Ra kd ØV IØ NI NI

mæ keen lø Je HD 0 0 100 ND fra
==: '=

IND få FR AD AND AND NS RO OND

Na

mes

Fa fed fe fe

e

8

5.5.6

5.5.1.5

e

e

7

3

7

3

1

2

RC FORTRAN, User's Manual

underflow |.

UNDERFLOWS, external variable22020000+

unit, logical seernes reruversves

variable dimension2.22224 versseesee

variables, names ofs200rrereressesneeee

variables, subscripted00r0rseserrrenee

variables, types of ...s0reersresrersrneneen

word

wrircrerere

write enable 00 rerreree

WRITE execution ofss0srsessessenesnnene

WRITE statement ...2200reeeessneeseseneneee

ZONE, equivalence ...200ereesererersesreree

zones, preopened ,...000rerssseesserrrrnee

zone array

Page 123

I Index

RC FORTRAN, User's Manual

PN: 991 11 292

