
RC International

RC9000-10/RC8000

SW8585 Compiler Collection

XFORTRAN

A Preprocessor To RC FORTRAN

Keywords:

RC9000-10, RC8000, FORTRAN, Preprocessor, ISO FORTRAN,

FORTRAN IV, RC FORTRAN

Abstract:

This manual describes XFORTRAN, a preprocessor used for

converting FORTRAN IV source code to RC FORTRAN source code.

Date:

January 1989

PN: 991 11293

Copyright
Copyright e 1989 RC International (Regnecentralen a/s) A/S Reg.no. 62 420

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval

system, or translated into any language or computer language in any form or by any means, electronic, mechanical,

magnetic, optical, chemical, manual, or otherwise without the prior written permission of RC International,

Lautrupbjerg 1, DK-2750 Ballerup, Denmark.

Disclaimer

RC International makes no representations or warranties with respect tø the contents of this publication and

specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore,
.C Intemational reserves the right to revise this publication and to make changes from time to time in the content

hereof without obligation of RC International to notify any person of such revision or changes.

XFORTRAN - A Preprocessor To RC FORTRAN

Table of Contents

1. Introduction 22222. sennrnrnnnnr 1

2. The Language Constructs screen nerne 2

3. Sequential And Random Access TO Filescecesssssseeessssssssssnnrsersnnee 3

4. Statements

4.1 DEFINE FILE Statement.

4.2 FIND Statement.

4.3 Direct Access READ Statement.

4.4 Direct Access WRITE Statement.

4.5 REWIND Statement

4.6 ENDFILE Statement.

4.7 PAUSE Statement...

5, The Function Of The Preprocessor.

5.1 Error Messages From XFORTRAN.

6. Examples

A. Crossreference esserne dernngnee 16

Table of Contents

XFORTRAN - A Preprocessor To RC FORTRAN

Table of Contents

XFORTRAN - A Preprocessor To RC FORTRAN Page 1

1. Introduction

A preprocessor may be seen as a special kind of compiler, where the

compilation is from one higher level language to another.

The preprocessor described in this paper transforms programs written

in subset of FORTRAN IV to RC FORTRAN (ISO FORTRAN). The

language constructs transformed are mainly concerned with input and

output.

In more detail, the FORTRAN language accepted by the preprocessor

is RC FORTRAN (as described in appendix A of the RC FORTRAN

manual), extended with the language constructs described in the

following sections.

The preprocessor is based on LR-parsing and syntax checks most of the

program being processed, but only the language constructs not included

in RC FORTRAN are transformed.

It should be noted that if too many (and severe) syntax errors are

discovered it may happen that even if a construct should have been

transformed, it will not be.

Furthermore it should be noted that only 72 characters may be used in a

statement.

The preprocessor, in the following called XFORTRAN, should only be

used if some of the language constructs described in the following are

used. This is due to the fact that preprocessing is rather slow,

XFORTRAN is able to process about 800 lines per minute in a process

size of about 30 000 bytes.

1. Introduction

Page 2 XFORTRAN - A Preprocessor To RC FORTRAN

2. The Language Constructs

Transformed By XFORTRAN

The main difference between RC FORTRAN (a dialect of ISO

FORTRAN) and the ANSI FORTRAN is the difference in use of input

and output.

Standard FORTRAN (ANSI) uses a unitnumber as a reference to a file,

whereas RC FORTRAN uses a zone name as a reference to a file (see

chapter 5 in the RC FORTRAN Manual). The possibility to use direct

access files does not exist, and some of the startements working on units

are not allowed in the normal” way.

XFORTRAN tries to remedy part of these missing and/or changed

facilities by accepting the following language constructs and changing

them tø equivalent RC FORTRAN statements:

DEFINE FILE

FIND

READ (')
WRITE ("')

REWIND

ENDFILE

PAUSE

In the following the transformation of each of the above mentioned

language constructs is described.

2. The Language Constructs

XFORTRAN - A Preprocessor To RC FORTRAN Page 3

3. Sequential And Random Access To Files

As RC FORTRAN uses zone names instead of unitnumbers the

preprocessor must change the unitnumbers in DEFINE FILE. It must be

noted that unitnumbers, referring to files other than those used by

DEFINE FILE, are not treated in this version of XFORTRAN.

The i/o system of RC FORTRAN does not support direct access files as

allowed with DEFINE FILE, therefore all direct access to files must be

simulated by some i/o routine capable to find the position of a random

record in a file.

This version of XFORTRAN supports two different ways of using

DEFINE FILE:

1. sequential

2. random access

The sequential mode is chosen if either rand.no or nothing is stated in

the call of XFORTRAN (see section 5). The sequential use is cheap in

both space and time in comparison to the random access.

The random access mode is chosen by setting rand.yes in the call of

XFORTRAN, then the use of DEFINE FILE and the special READ and

WRITE will work as though there is real random access to files. But it

must be noted that it is very backing storage consuming because each

record consists of a multiplum of segments (default value one segment).

In both cases the reading and writing must be performed unformatted,

this is due to the fact that reading and writing cannot be executed with

the same format because the first character of a line is used as a control

character for vertical spacing (see section 5.4.5 in the RC FORTRAN

Manual).

3. Sequential And Random Access To Files

Page 4

4. Statements

XFORTRAN - A Preprocessor To RC FORTRAN

4. Statements

4,1 DEFINE FILE Statement

A file definition must obey the following syntax:

<direct access files> ::=

DEFINE FILE <direct access file list>

<direct access file list> ::=

<direct access file list><direct access file>

| <direct access file>

<direct access file> ::=

<unit> (<noofrec>, <maxsize>, U, <ass.var>)

<unit> ii=... unsigned integer between 1 and

99

<noofrec> 1:=... unsigned integer

<maxsize> ti=... unsigned integer

<ass.var> t:= variable with as most 6

characters, if it is longer

the exceeding characters are

cut off in subsequent use.

The define file statement is a declaration and must therefore obey

the same order in a program unit as other declarations (see chapter 6.1

in the RC FORTRAN Manual).

Processing this statement XFORTRAN will define a zone with the

name FIL concatenated with the unitnumber, the associated variable

will be declared as an integer. Furthermøre the loøgical function name

setposition is declared.

XFORTRAN - A Preprocessor Te RC FORTRAN Page 5

The recordsize <maxsize> should be used with care in case of

rand.yes. <maxsize> is the maximum number of integers which can

be contained in one record. As already mentioned the record size in

XFORTRAN will be a multiplum of segments which is calculated as

follows:

record size = <maxsize> & 2 / 512 + 1

Example

Assume that XFORTRAN meets:

DEFINE FILE 5 (100, 7, U, COUNT)

This will be transformed to:

DEFINE FILE 5 (100, 7, U, COUNT)

ZONE FILS (128, 1, STDERROR)

INTEGER COUNT

LOGICAL SETPOSITION

And as the first executable statements of the program:

CALL OPEN (FIL5, "FILS", 0)

COUNT = 1

For the explanation of setposition and open the reader is referred to
chapter 5 in the RC FORTRAN Manual.

It should be noted that only backing storage files (i.e. disk files) can be

defined this way. If the file refers to a magnetic tape a runtime error will

appear, this is due to the second parameter in the open call.

Furthermore is should be noted that files used in a program apart from

in and out must be declared in the directives to the operating system

(see the examples in section 6).

4.2 FIND Statement

The find statement øbeys the following syntax:

<find statement> ::=

FIND (<unit>'<integer expression>)

The statement should cause the next input record to be found while the

present record is being processed, thereby increasing the speed of the

program. This statement has no effect in RC FORTRAN and will be

transformed to a comment.

4. Statements

Page 6 XFORTRAN - A Preprocessor To RC FORTRAN

43 Direct Access READ Statement

The direct access read statement obeys the following syntax:

<direct access read> ::=

READ (<unit>'<integer expression>) <i/o-list>

The next record is read into the <i/o-list> from the file FIL<unit>

and the associated variable is assigned the value 1+<integer

expression>. In the sequential case the <integer expression> has

no effect on the record chosen før input. A label should not prefix such a

statement.

Example

PROGRAM J0B1 e

DEFINE FILE 5 (100, 7, U, COUNT)

READ (5 ” COUNT +2) A, B

In the sequential case this will be transformed to:

PROGRAM JOBT

C+ DEFINE FILE 5100, 7, U, COUNT)

ZONE FIL5(128, 1, STDERROR)

INTEGER COUNT

LOGICAL SETPOSITION

CALL OPEN (FILS, 4, FILS”, 0)

COUNT = 1

READ (FILS) A, B

COUNT = 1 + COUNT +2

Cx READ (5' COUNT +2) A, 8

In the random access case:

PROGRAM JOB1

cz DEFINE FILE 5(100, 7, U, COUNT)

ZONE F1L5(128, 1, STDERROR)

INTEGER COUNT e

4. Statements

XFORTRAN - A Preprocessor To RC FORTRAN Page 7

LOGICAL SETPOSITION

CALL OPEN (FILS, 4, FILS", 0)

COUNT = 1

CALL SETPOSITION FILS, 0, (COUNT +2 -1)%1)

READ (FILS) A, B

COUNT = 1 + COUNT +2

c= READ (5” COUNT +2) A, B

4.4 Direct Access WRITE Statement

The direct access write statement obeys the following syntax:

<direct access write> ::=

WRITE (<unit> ' <integer expression>) <i/o-list>

The <i/o-list> is written as the next record in the fie FIL<unit> and
the associated variable is assigned the value 14<integer

expression>.

As with read the <integer expression> has no effect on the record

chosen for output in case of sequential use. A label should not prefix

such a statement.

4.5 REWIND Statement

The syntax is:

<simple statement> ;:= REWIND <unit>

A unit (file) declared by a DEFINE FILE statement is rewound, so that

a subsequent read or write will refer to the first record of the file.

Example

REWIND 5

This will be transformed to:

cz REWIND 5

CALL SETPOSITION (FILS, 0, 0)

4. Statements

Page 8

4. Statements

XFORTRAN - ÅA Preprocessor To RC FORTRAN

4.6 ENDFILE Statement

The syntax is:

<endfile statement> ::= ENDFILE <unit>

/... END FILE <unit>

A unit (file) declared by a DEFINE FILE statement is closed and

released from the running program. It should be noted that if a file is

going to be used in subsequent programs an endfile statement should

be used as the last action on the file before termination.

Example

ENDFILE 5 e

This will be transformed to:

ct ENDFILE 5

CALL CLOSE (FIL5, .TRUE.)

4.7 PAUSE Statement

The syntax is:

<pause statement> ::= PAUSE [<integer> |] e

The statement should display an integer on the operator console and the

program should stop until the operator causes the program to resume

execution. In the actual version, the statement is legal, but blind (i.e.,

transformed to a comment).

XFORTRAN - A Preprocessor To RC FORTRAN Page 9

5, The Function Of The Preprocessor

The preprocessor will be a backing storage file (disk) called XFORTRAN.

e The of XFORTRAN is exactly as the call of the FORTRAN compiler,
with the following exceptions:

1 The source file, if any, must be the first parameter of the call,

2. only one source file is allowed.

To summarize, the call of XFORTRAN follows the following syntax:

[<bs file>=] xfortran [<source file>] (<modifier>)0-+

For further explanation see Appendix B in the RC FORTRAN Manual.

The modifier list has been extended with two new modifiers which only
can be used in the call of XFORTRAN - these are:

1. rand. (yes/no), which already has been explained. The default

value is rand. no.

e 2. xref. (yes/no). which makes it possible to get a cross reference
of a program. This is explained further in Appendix A. The default

value is xref.no.

XFORTRAN outputs the transformed program on a workfile. This
workfile will replace the original source file in the call of the compiler.

The workfile is created at each call of XFORTRAN and the name of the

fie will be unique within the user base (the name will be wrk

concatenated with six digits). After preprocessing the FORTRAN

compiler is called with the workfile as source file and all other

parameters unchanged (except for the two modifiers just mentioned).

5. The Function Of The Preprocessor

Page 10 XFORTRAN - A Preprocessor To RC FORTRAN

fortran program --> XFORTRAN

| e

transformed

program on

wrk <integer> --> FORTRAN --> object code

listing of

transformed

program results

etc.

If the user wants to preserve the work file with the transformed program

after the preprocessing this is possible by running the job with the job

options preserve yes (see the BOSS User Manual). The name of the

work file can be found by inserting a search temp in the job. This

utility call will list the temporary file which are visible for the user,

among these will be the workfile (for further explanation of utility e
programs, see the Utility Program Manuals, part 1 and 2).

Files used in FORTRAN programs must either be fdeclared” by a utility

program or by using the monitor procedures which are available (see

the Monitor and Algol 8 manuals).

If the file does not exist as a catalog entry visible from the user base a

runtime error will appear whjen the file is opened for communication

with the program.

Example

Assume that a FORTRAN program uses the files identified by unit 3

and 5, then the following commands can be used:

job xyz size 30000

(fil = set 21 dise2

fils = set 21 disc2

binprg = xfortran list.yes

finis)

PROGRAM TEST

DEFINE FILE 3 (200, 3, U, C1)

DEFINE FILE 5 (100, 3, U, C2)

5. The Function Of The Preprocessor

XFORTRAN - A Preprocessor To RC FORTRAN Page 11

5.1 Error Messages From XFORTRAN

The errors reported from XFORTRAN in the current version concern
limitations in table sizes only (with one exception). The errors will be

reported as a written text on current output and XFORTRAN will stop

processing, hence the program will not be compiled by the FORTRAN

compiler.

The following messages may appear:

parse stack overflow (stackmax)

The stack used in the syntax checking is too small, the limit stackmax

must be changed.

end of file encountered

The program being preprocessed is exhausted, probably because the

program contains too many syntax errors.

too many file definitions (filemax)

The program contains too many DEFINE FILE statements, filemax

must be changed.

parameter to the preprocessor too small (fpmax)

The list used to contain the call of the compiler cannot contain the
whole parameterlist, fpmax must be changed.

5.. The Function Of The Preprocessor

Page 12

6. Examples

XFORTRAN - A Preprocessor To RC FORTRAN

6. Examples

The following shows an example of the use of XFORTRAN in two
versions. The program is listed in the original version and in the

preprocessed version.

The example show the reading and writing of a file defined by a DEFINE

FILE statement. Both a sequential and a rabndom access run is shown.

Source file

JOB XYZ 3 1 SIZE 30000 TIME 35

(MODE LIST.YES

FILS=SET 42

HEAD CPU

BINPRG=XFORTRAN LIST.YES RAND.YES

HEAD CPU

BINPRG

HEAD CPU

FINIS)

PROGRAM TESTJOBS

DEFINE FILE 5(20,5,U,COUNT)

DIMENSION A(5), B(10), C(15)

ZONE OUT; EXTERNAL OUT

INTEGER J, K, L

COMMON /AB/ A,B

DATA A/7,7,7,7,71

DATA B/6,6,6,6,6,6,6,6,6,6/

C TEST OF DEFINE FILE

DO 1 1=1,5

WRITE45'1) ACT)

1 CONTINUE

DO 2 J=1,10

WRITE(5'J) BJ)

2 CONT INUE

REWIND 5 DO 3 K=1,15

READ(5'K) CCK)

3 CONTINUE

XFORTRAN - A Preprocessor To RC FORTRAN

DO 4 K=1,15

WRITECOUT,5) CCK)

5 FORMAT (F5.0)

CONTINUE

END

Page 13

The result of the sequential run (the parameter rand.yes has been

omitted):

”FILS=SET 42

YHEAD CPU

XYz3 1988.07.20 12.12.13 CPU: 0.10 SEC.

XBINPRG=XFORTRAN LIST.YES RAND.NO

£BINPRG=FORTRAN WRKO00035 LIST.YES

cz

SO 00 mg ON Mn MA PU ma
- (1

PROGRAM TEST J0B5

DEFINE FILE 5(20,5,U,COUNT)

ZONE FILSG 128, 1, STDERROR)

INTEGER COUNT

LOGICAL SETPOSITION

DIMENSION A(5), B€10), C(15)

ZONE OUT; EXTERNAL OUT

INTEGER J, K, L

COMMON /AB/, A,B

DATA A/7,7,7,7, 71

11 C TEST OF DEFINE FILE

12

13

13

14

15

16

17

18 c+

19 1

20

20

21

22

23 CY

24 2

25

25 c=

26

27

28

30 c+

31 3

32

32

33

3% 5

35 4

FIN. END

DATA B/6,6,6,6,6,6,6,6,6,6/

CALL OPEN(FIL5S , 4, 'FILS?, 0)

COUNT =1

DO 1 1=1,5

WRITECFILS) ACT)

COUNT =1+1I

WRITE(5/1) ACI)

CONT INUE

DO 2 J=1,10

WRITECFILS) BCJ)

COUNT =1+3J

HWRITE(5'J) BCJ)

CONT INUE

REWIND 5

CALL SETPOSITIONCFILS, 0, 0)

DO 3 K=1,15

READCFIL5) CCK)

COUNT =1+K

READ(5'K) CCK)

CONT INUE

DO 4 K=1,15

HRITECOUT,5) CIK)

FORMAT (F5.0)

CONTINUE

END

6. Examples

Page 14

6. Examples

XFORTRAN - A Preprocessor To RC FORTRAN

The result of the sequential run (notice that all date items are valid): e
"HEAD CPU

xyz3

FBINPRG

END

os os av om om ove ON ON ES 4 NMN ON
1988.07.20 12.12.25 CPU: 3.73 SEC.

FHEAD CPU

XY2:3 1988.07.20 12.12.26 CPU: 3.93 SEC.

&FINIS

END 13 SEC JOB XY2Z3 LOG XYZ DATE 1988.07.20 12.12.17

The second run shows the random access (the parameter rand, yes has

been used):

tFILS=SET 42

HEAD CPU

XYZ.3 1988.07.21 12.10.10 CPU: 0.10 SEC.

=BINPRG=XFORTRAN LIST.YES RAND.YES

FBINPRG=FORTRAN WRKO00015 LIST.YES

1

oe dame UN
oa

11

12

13

13

14

15

16

17

18

[4

PROGRAM TEST JOBS e
DEFINE FILE 5(20,5,U,C0UNT)

ZONE FILS (128, 1, STDERROR)

INTEGER COUNT

LOGICAL SETPOSITION

DIMENSION A(5), B€10), C(15)7

ZONE OUT; EXTERNAL OUT

INTEGER J,K,L

COMMON /AB/ A,B

DATA A/7,7,7,7,7/

C TEST OF DEFINE FILE

DATA /76,6,6,6,6,6,6,6,6,67

CALL OPENCFILS , 4, ”FILS”, 0)

COUNT = 1

DO 1 1=1,5

CALL SETPOSITIONCFILS , 0, (I - 1)" 1)

WRITECFIL5) ACT)

COUNT =1+1I e

XFORTRAN - A Preprocessor To RC FORTRAN Page 15

e 19 c% WRITE(5'I) ACI)
201 CONTINUE

21

21 DO 2 J=1,10

22 CALL SETPOSITIONCFILS , 0, (J - 19% 1)

23 WRITE(FILS) BØJ)

24 COUNT =1+ 4

25 CZ WRITE(57J) B(J)

26 2 CONT INUE

27

27 Cc" REWIND 5

28 CALL SETPOSITIONCFILS, 0, 0)

29 DO 3 K=1,15

30 CALL SETPOSITIONCFILS, 0, 0)

31 READCFILS) CCK)

32 COUNT =1+K

33 C" READ(5'K) CCK)

34 3 CONT INUE

35

e 35 DO 4 K=1,15
36 WRITE (OUT,5) CCK)

37 5 FORMAT (F5.0)

38 4 CONTINUE

39 END

FIN. END

The result of the run (notice that the five last date items are undefined):

EHEAD CPU

XY23 1988.07.21 12.12.21 CPU: 3.97 SEC.

FBINPRG

ao OG O Os om os os os OM ON ON OM
E+10

END

HEAD CPU

XYZ3 1988.07.21 12.12.23 CPU: 4.22 SEC.

"FINIS

END 13 SEC JOB XYZ3 LOG XYZ DATE 1988.07.21 12.12.25

6. Examples

Page 16

A. Crossreference

XFORTRAN - A Preprocessor To RC FORTRAN

Appendix A. Crossreference

The possibility to get a program crossreferenced exists in XFORTRAN.

The crossreference is activated by the parameter xref .yes in the call of

the preprocessor. The default value in xref.no.

The crossreference sorts one programunit (subroutine, function and

mainprogram) at a time and the identifiers are listed in alphabetical

order along with the linenumbers where the identifiers appear.

Identifiers created by XFORTRAN (such as zonenames) are not listed.

The maximum of significant characters in an identifier is determined by

XFORTRAN (in the current version 12).

The following messages appear from the crossreference program:

identifier appears too many times

The constant noofappear is too small.

binary tree too small

The sorttree is too small, bintreelimit msut be changed.

The following shows an example of the use of xref.yes.

The source program:

JOB XYZ % 1 TIME 35 SIZE 30000

(MODE LIST.YES

HEAD CPU

PRG=XFORTRAN LIST.YES XREF.YES

HEAD CPU

PRG

HEAD CPU

FINIS)

SUBROUTINE SUM(P1,P2)

INTEGER P1,P2,SUM1

COMMON /ALL/ SUMT

SUM1=P1+P2

END

XFORTRAN - A Preprocessor To RC FORTRAN

SUBROUTINE DIFF(D1,D2)

INTEGER D1,D2, SUM1

COMMON /ALL/ SUMT

SUM1=D1-D2

END

50 CONTINUE

WRITE(COUT,60) SUMI

60 FORMAT(///,' SUM = ' ,15)

END

The result of the run:

EHEAD CPU

XYZz 1988.07.22

PROGRAM EXAMPLE

INTEGER SUM

ZONE OUT; EXTERNAL OUT

COMMON /ALL/ SUM

DO 50 1=1,20

CALL SUMCI,1+1)

CALL DIFF(1,1)

12.12.30 CPU: 0.08 SEC.

XPRG=XFORTRAN LIST.YES XREF.YES

PRG=FORTRAN WRK000054 LIST.YES

oo ya ME Mi N ma

W ON ca må må må må md må må 0 2 SOVONESEUMUBRSNWN DO
FIN. END

50

SUBROUTINE SUM(P1,P2)

INTEGER P1,P2,SUM1

COMMON /ALL/ SUMI

SUM1=P1+P2

END

SUBROUTINE DIFF(D1,D2)

INTEGER D1,D2,SUM1

COMMON /ALL/ SUM1

SUM1=01-D2

END

PROGRAM EXAMPLE

INTEGER SUM1

ZONE QUT; EXTERNAL OUT

COMMON /ALL/ SUMT

DO 50 1=1,20

CALL SUM(I,1+1)

CALL DIFF(1,1)

CONTINUE

WRITE(OUT,60) SUMT

FORMAT (///,7 SUM = ",15)

END

&CROSSREF WRK000055

CROSSREFERENCE SUM

Page 17

A. Crossreference

Page 18

A. Crossreference

XFORTRAN - A Preprocessor To RC FORTRAN

ALL 3

P1 124

P2 124

SUM 1

SUMT 2 34

CROSSREFERENCE DIFF

ALL 8

D1679

D2679

DIFF 6

SM1789

CROSSREFERENCE MAIN

ALL 14

DIFF 17

EXAMPLE 11

I 15 16 16 17

OUT 13 13 19

SUM 16

SUMT 12 14 19

END 28

THEAD CPU

XYz4 1988.07.22 12.12.46 CPU: 4.53 SEC.

XPRG

SUM = 19

END

FHEAD CPU

XYZ4 1988.22.07 12.12.47 CPU: 4.61 SEC.

&FINIS

END 16 SEC JOB XYZ4 LOG XY2 DATE 1988.07.22

