
RC International

RC9000-10/RC8000

SW8585 Compiler Collection

PASCAL User's Guide

Keywords:

RC9000-10, RC8000, PASCAL, Compiler, Programming Language,

SW8585, Compiler Collection

Abstract:

This manual describes the PASCAL programming language for the

RC9000-10 and RC8000 computers.

Date:

January 1989.

PN: 991 11348

Copyright

Copyright e 1989 RC International (Regnecentralen a/s) A/S Reg.no. 62 420

All rights reserved. No part of this publication may be reproduced, transmitted, transcribe!
system, or translated into any language or computer language in any form or by any means,

d, stored in a retrieval

electronic, mechanical,

magnetic, optical, chemical, manual, or otherwise without the prior written permission of RC International,
Lautrupbjerg 1, DK-2750 Ballerup, Denmark.

Disclaimer

RC International makes no representations or warranties with respect to ihe contents of this publication and

pelically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore,
C International reserves the right to revise this publication and to make changes from time to time in the content

hereof without obligation of RC International to notify any person of such revision or changes.

PASCAL, User's Guide

Table Of Contents

1. Introduction2.senesssssstsessssesseresesrrreserreesessssne ss se sener terne DE r LSE

2. Basic Definition... annen rreree rss er rer nr ss LER gras rrrer
2.1 Vocabulary...

2.2 Program Elements.

2.2.1 Syntax Diagrams....

2.2.2 Comments and Separators..

2.2.3 Identifiers...............

2.2.4 Numbers...

2.2.5 Real Literal.

2.2.6 Strings Of Characters...

2.2.7 Boolean Literal.

3. The PASCAL Language

3.1 The Program Outline.

3.2 The Program Structure

3.3 The Declaration Part.................cssessresrserrrrssesersssessssssreseesenesstserrenenee
3.3.1 Labels..........sesessrsssreere

3,3.2 Constants..

3.3.3 Types......

3.3.3.1 Enumeration Types

3.3.3.2 Subrange Types...

3.3.3.3 Structured Types.

3.3.3.4 Type Compatibility.

3.3.4 Variables.....

3.3.5 Value Part....

3.3.6 Routine Declaration... su.
3.3.7 PASCAL Interface To SLANGscssvrsrrrrrerereereressrrerssrsssereree
3.4 The Statement Part.

3.4,1 Statements............

3.4.2 Assignment Statement.

3.4.2.1 Expressions......

3.4.3 Goto Statement...

3.4.4 Repetitive Statements...

3.4.5 Conditional Statements

3.4.6 Procedure Call...

ren

(MRS KS KS F-SSSESSE SE SES]

59

59

59

Table Of Contents

Table Of Contents

PASCAL, User's Guide

5.1.2 Dynamic Allocation Proceduresscssscsrrrernenenenennenenr

5.1.3 Transfer Procedures........sssccrcererrrreerssreersssrsesserrtrrserrrrsernerernenssannnen

5.1.4 Date And Time...

5,1.5 Program Control Procedure.

5.2 Standard Functions.......... ...

5.2.1 Arithmetic Functions.........ssccccrserrrerssrserresesnereernernrrenennssarnennee

5.2.2 Transfer Functions..........scscssuerserrsererrrersersesessersrereerrnernerrrnernenerennnee

5.2.3 Ordinal Functions.

5.2.4 Predicates........

5.2.5 Processing Time Function.

5.2.6 Monitor Functions.......

5.2.7 Access To File Processor Parameter:

5.3 Complete List Of Predefined Routines

6. Compiler Directives............sscsssesssssssserrrrrsnrnrnsentenennnnnnrnnenenner

7, Call Of The PASCAL Compiler.

7.1 How To Compile A Pascal Program

8. Runtime Environment

8.1 The Pascal Process At Runtime.

8.1.1 Resident Procedures

9. Error Messages. ssssssssrsssserrsrrsrsrreresesssesserenrenensrreerensassenerrennernnnee

10. Some Programming Hints And Warnings

A. References ...sssesessressssssssrrsrrrerrsrerersesessssssensrerernennerer seerne

B. RC9000-10/RC8000 PASCAL Syntax Diagrams screen

C. Utility Programs

C.1 Indent (Text Formatting Program)..

C.2 Cross (Cross Reference Program).

C.3 Use Of Indent And Cross...

C.4 Performance Measurement...

D. Error Messages

D.1 Error Messages From First Pass.

D.2 Error Messages From Second Pass.

D.3 Runtime Error Messages.

D.3.1 Start Up Errors, 12208

D.3.2 Errors During Program Execution.

100

101

101

101

PASCAL, User's Guide Page 1

1. Introduction

The language Pascal was designed by Professor Niklaus Wirth to satisfy

two principal aims.

1 To make available a language suitable for teaching programming

as a systematic discipline.

2. To define a language whose implementations could be both

reliable and efficient on then available computers.

A preliminary version was drafted in 1968, and the first compiler
became operational in 1970. After some revisions, dictated by two years

of experience in the use of the language, a Revised Report was

published in 1973.

1. Introduction

Page 2

2. Basic Definition

PASCAL, User's Guide

2. Basic Definition

Any Pascal program consists of a sequence of Pascal symbols. This

chapter defines this set of symbols. The Pascal symbols can be divided

into the following classes: reserved symbols; identifiers; literals and

Separators.

An algorithm can be written as a Pascal program which is divided into

two main parts: a declaration part and a statement part. The declaration

part defines a number of objects which can be manipulated by the

statement part. The data items used in an algorithm are called variables

and these are introduced by variable declarations. The values that these

data items can assume are defined by type declarations. A number of

variables constituting a single entity may be combined into a structured

data type. A number of declarations and operations which form a closed

entity may be combined into a routine by a procedure or function

declaration. The statement part defines the main flow of the algorithm

and consists of a sequence of statements.

2.1 Vocabulary

The basic vocabulary consists of language symbols and user defined

symbols. The language symbols are reserved words (key words) and

punctuation marks. Throughout this manual reserved symbols will be

written in capital letters (e.g. BEGIN). The reserved symbols are all listed

below:

AND END IN PACKED To

ARRAY EXTERNAL LABEL PASCAL TYPE

BEGIN FILE MOD PROCEDURE UNTIL

CASE FOR MODULE PROGRAM VAR

CONST FORTRAN NIL RANDOM VALUE

DIV FORWARD NOT RECORD HHILE

DO FUNCTION OF REPEAT HITH

DOWNTO GOTO OR SET

ELSE IF OTHERWISE THEN

PASCAL, User's Guide Page 3

+ +

ON ==
>

The user may not use the reserved words in a context other than that

explicitly stated in the definition of Pascal; in particular, these words

may not be used as identifiers.

It should be noted that the following reserved symbols are not used in

the current version: RANDOM, EXTERNAL, FORTRAN, PASCAL and

MODULE.

2.2 Program Elements

2.2.1 Syntax Diagrams

The syntax of the various language constructions is defined by means of

syntax diagrams. A syntax diagram is a graphical representation of a

syntactical rule, every traversal of such a graph corresponds to a

particular application of that rule. Any such traversal must follow the

direction indicated by the arrows, i.e. no legal traversal may encounter

an arrow pointing in the opposite direction.

The following is an example of a syntax diagram.

While statement:

The syntax diagram defines the name (while statement) and syntax of

the language constructions. The name is used when the construction is

referred to elsewhere in the text or in other syntax diagrams. Language

symbols are either names in capital letters (e.g. WHILE) or punctuation

marks (e.g. :=).

Constructions defined by other syntax diagrams are given by their

names in small letters (e.g. expression).

2.2.2 Comments and Separators

Comment:

<-non-printing symbol<-

"(rr Ehe ekte tele kneben kr tek kn kage]ERE Bkeketee >

-< character<----222222-

-< non-printing symbol<-

Comments may be inserted between any two identifiers, numbers or

special symbols. A comment does not affect the execution of the

program.

2. Basic Definition

Page 4

2. Basic Definition

If the first character after the (+ is a $ (dollar), the comment is

interpreted as a list of compiler options. For a complete description of

the available options the reader is referred to chapter 6.

Comments, spaces and ends of lines are considered to be token

separators. An arbitrary number of separators are permitted between

any two consecutive tokens, or before the first token of a program text.

At least one separator is required between any consecutive pair of

tokens made up of identifiers, word-symbols ør numbers. Apart from

the use of the space character in character strings, no separators occur

within tokens.

2.2.3 Identifiers

Names denoting constants, types, variables, programs and routines are

called identifiers. They must begin with a letter which may be followed

by any combination and number of letters, digits and underscores.

Identifiers are permitted to be of any lenth, but only the first twelve are

recognized as significant. Matching upper and lower case letters are

equivalent in identifiers.

letter isA,B,C,...,2,8,b,C,...,2

digitis0,1,2,...,9

Examples of legal identifiers:

step use count Local Message

very special defined Sidentifier

Note: "Local Message" is identical to "local message", "LOCAL

MESSAGE” and any other combination of matching small and big letters.

Whereas none of the following are identifiers.

la

day

The following are some of the predefined identifiers.

integer

real

text

suce

false

PASCAL, User's Guide Page 5

2,2,4 Numbers

Numbers are integer literals (numeric values) and real literals.

numeric value:

-” +]

feer eders rr >digit "77 >---->(decimal integer)

[> 7] [rr e22222 I

"rer Diner y, dne
fees feretesnes

-=...»ifo->->octal digit--->->-

forter tennnen |

-=-»ifh->->hexa digit---->->-

free |

binary digits are 0. .1

octal digits are 0..7

hexa digitsare 0,.9anda..f

Example of legal numbers:

7913 0033 4bl0ol 4h££00 7f07654

Note: Blanks are not allowed between $b, fo and //h, and the following

number.

2.2.5 Real Literal

A real literal is a real number with an optional scale factor.

real literal:

erne perererer>

--->decimal integer->-> . ->- i 53 leder inat integer->;>
Felder Fyen -sbd

Note that if the real literal contains a decimal point, at least one digit

must precede and succeed the point. Alsø, no comma may occur in a

number.

Example of legal real numbers:

3.141592

0.31415El

314E-2

2.2.6 Strings Of Characters

A character string is a sequence of characters enclosed by quote marks,

both single and double quote marks are legal but the end mark must

match the start mark.

2, Basic Definition

Page 6

2. Basic Definition

char literal;

">> ->string character->"->

|-7"->string character->"-

string literal:

72-24 ->->string Foss Erann

iESS ESS

"sering character ">
ennen glasernrree

String characters are the printable subset of the alphabet, excluding

newline (nl) and form feed (ff), i.e. 77,7, ...7—

Examples of legal strings:

"abcd" " '-' is a strange character" ”""

Note: If a string surrounded by single quote marks is to contain a quote

mark or a string surrounded by double quote marks is to contain the

surrounding quote mark, then this quote mark is to be written twice, for

example """" is equivalent to '"', and "'"" is equivalent to ""”",

2.2.7 Boolean Literal

A boolean literal is one of the predefined constants true and false.

boolean literal:

”>true==-

...—

->false--

PASCAL, User's Guide Page 7

3. The PASCAL Language

This chapter consists of descriptions of the different components of a

Pascal program. First an example which shows the structure of a

complete program definition, and after the example is given a more

precise description of the syntactical definition of the different parts of

the program definition.

3.1 The Program Outline

A Pascal program consists of declarations of labels, constants, types,

variables, routines, some initializations (VALUE-part) and some

statements which operate on the declared objects.

This is an outline of a Pascal program:

PROGRAM catalog (output);

CONST

idlength = 10;

catalogsize = 256;

TYPE

identifier = ARRAY 1..idlength OF char;

VAR

name: identifier;

found: boolean;

index: integer;

FUNCTION hash (id: identifier): integer;

VAR

key, next: integer;

ch: char;

VALUE

key = 1;

next = 0;

BEGIN (” body of function hash ")

REPEAT

next:= next + 1;

ch:= id next;

3. The PASCAL Language

Page 8

3. The PASCAL Language

IF ch <> sp THEN

key:= key " ord (ch) MOD catalogsize + 1;

UNTIL Cch = sp) OR (next >= idlength);

hash:= key;

END; (”" of hash ")

BEGIN (” main program +)

index:= hash (name);

REPEAT

UNTIL found

END.

The program contains a declaration of

- two constants: idlength with the value 10 and catalogsize with

the value 256,

- a type: identifier which is an array of characters,

- three variables: name which can hold a value of type identifier,

found which can hold a value of type boolean, and index which

can hold an integer,

- a function hash which maps an identifier to an integer,

The function has a formal parameter id and three local variables: key,

next and ch. The value-part specifies initial values for key and next.

The assignment statement: index:= hash (name) contains a call of

the function; the result of the function is assigned to the variable index.

All declared objects have names: catalog, idlength,

catalogsize, identifier, name, found, index, hash, id,

key, next and ch. These names are defined by declarations before

they are used in statements.

3.2 The Program Structure

The syntax of a Pascal program is

PASCAL, User's Guide Page 9

program:

-=->program heading-->block--> , 77777222-= >

The program heading specifies the interface to the environment in

which the program is executed.

program heading:

Fem unee Page

---->PROGRAM->program identifier->c->B Hi le amet S DDIS 3 3257-2

program identifier;

-......»identifier----------- >

file name:

-——->identifiere"rraro rer rerbarken >
|->=->external name-->

The files denoted by the file names must be declared as file variables in

the block of the program, an exception to this is input and output. The

files listed in the program heading are called external files. The external

name, if present, is an RC9000-10/RC8000 catalog entry name in

quotes. An external file which has a file specification is automatically

opened at the start of the program, as if there had been an explicit

open(file, external name) (see 3,3.3.3), but there is no automatic

call of 'reset” or ”rewrite',

On the RC9000-10/RC8000 input and output are initially connected to

current input and output allocated by FP. If other files are used for

input and/or output by a program there must be an explicit call of close

before the program terminates.

Note: The program heading must contain the file name output.

Example of program heading

PROGRAM catalog (output, input= "pip');

3. The PASCAL Language

Page 10 PASCAL, User's Guide

block: e

---> declararation part --> compound statement --->

declaration part:

---> label declaration part UI

routine declaration part:

ro ne See tarationrirr” Terre >
fttejetylse gru ussusensnnelee

The following sections will define and show examples of the different

elements of a block.

3.3 The Declaration Part

The declarations of a program serve as a description of the data which

are manipulated by the actions performed by the program.

3.3.1 Labels

A label is a non negative number less than 10000. Labels must be

declared prior to their use. A label is defined in the compound
statement of a routine or program. Any such label must be declared in

the label declaration part of the routine or program where it is defined.

3. The PASCAL Language

PASCAL, User's Guide Page II

label:

77—>->digit-> 72777 >

Two labels which denote the same number are considered identical.

Labels follow the same rules of scope as other quantities; i.e, they can be

used in the rest of the program or routine where they are declared.

3.3.2 Constants

The constant definition part consists of a number of definitions of
constants. Each of these definitions introduces an identifier as a
synonym for the value of a literal or as a synonym for an enumeration

constant from a scalar type.

constant definition part:

> KENST s ons tant identifier->= >constant- "
allene keveenuvenunennnssn nen

constant identifier;

-——>identifier---------- >

constant:

””»"->constant identifier-

->enumeration constan
”>»integer literal---
->real literal-
->char literal-
-”>string literal--
->boolean literal----------

The use of constant identifiers generally makes a program more
readable and acts as a convenient documentation aid. It also allows the
programmer to group machine or example dependent quantities at the

beginning of the program where they can be easily no ted and/or
changed. (Thereby aiding the portability and modularity of the
program).

Example of constant definition part:

CONST

idlength= 10;

catalogsize= 256;

version date = '81.07.17';

There are some predefined constants:

3. The PASCAL Language

Page 12

3. The PASCAL Language

alfalength = 12;

maxint = 8388607;

firstch = " "';

lastch = ' ";

setmax = 143;

3.3.3 Types

PASCAL, User's Guide

(& number of characters in a

variable of type alfa (see

3.3.3.3) +)

(+ 2Q23-1, the largest possible

integer value +)

(& first character of the

standard type char (see

3,3.3.1) x)

(& last character of the standard

type char (see 3.3.3.1) +)

(& largest index allowed in a set

(see 3.3.3.3) =)

A data type defines the set of values which may be assumed by variables

and expressions (in the following called instances) of that type. New

data types may be defined in a type definition part.

type definition part:

> BED ge identifier=
enter Prttkese

type identifier:

-—...»identifier""-------- >

type:

"...—>-->simple type

->structured type
->pointer type"-"">

->type fdeneifier--

simple type:

---->-->enumeration type7"r777777- >

[-oreal-777777777277 ||

3.3.3.1 Enumeration Types

An enumeration type consists of a finite, totally ordered set of values.

PASCAL, User's Guide Page 13

enumeration type:

"...>-->char""=

->boolean
-»integer

->scalar
->subrange type-

scalar type:

enumeration constant:

-—-»identifier---------- >

A scalar type is defined by listing all the possible values in increasing

order as a list of identifiers.

Standard simple types

A standard type is denoted by a predefined type-identifier. The values

belonging to a standard type are manipulated by means of predefined

primitive operations. The following types are standard in Pascal:

integer

The values are a subset of the whole numbers, denoted as described in

2.2.4. The predefined integer constant maxint defines the subset of the

integers available in an implementation over which the integer

operations are defined.

The range is the set of values:

-maxint-1, -maxint,...., 71,0,1,...., maxint-1,maxint.

real

The values are a subset of the real numbers denoted as defined in 2.2.5.

The real values are in the range

2047 "2048 -2048 2047
[-270.5"2 10,0.572]

or approximately in

7616 616
[10 10 1

or the corresponding negative range. For more details see ref. 3 chapter

5.

boolean

The values are truth values denoted by the identifiers false and true,

such that false is less than true.

char

The values are a set of characters. The denotation of character values is

3. The PASCAL Language

Page 14

3. The PASCAL Language

described in 2.2.6. The ordering properties of the character values are

defined by the ordering of the ordinal values of the characters, i.e. the

relationship between the character variables cl and c2 is the same as

the relationship between ord(c1l) and ord(c2). In all Pascal

implementations the following relations hold:

(1) The subset of character values representing the digits 0 to 9 is
ordered and contiguous.

(2) The subset of character values representing the upper-case letters

A to Z is ordered but not necessarily contiguous.

(3) The subset of character values representing the lower-case letters

a to z, if available, is ordered but not necessarily contiguous.

Integer, boolean and char are enumeration-types. Real is a realtype.

Operators applicable to standard types are defined in the following.

3.3.3.2 Subrange Types

An enumeration type can also be defined as a subrange of another

enumeration type by specifying its min and max values (separated by

(double period)). A subrange of the type real is not allowed.

subrange type:

-—->min value-->..-->max value""—777---- >

min value:

”—>constant-""7-7----= >

max value:

"...">constant----------- >

The min value must not exceed the max value and they must be of

compatible enumeration types.

A subrange type is in fact a synonym for an enumeration type with a

range check included.

Often in this manual, the phrase ”or subrange thereof” is assumed to be

implied but is not always mentioned explicitly.

The predefined function ord can also be applied to an instance of a

subrange type.

As a consequence of the ordering the following dyadic operators are

defined on operands of any enumeration type. They all take two

operands of compatible types and yield a boolean result.

PASCAL, User's Guide Page 15

< less than

<= less than or equal

= equal

& not equal

> greater than

>= greater than or equal

The following predefined functions apply to instances of all enumeration
types. They take one argument and for suce and pred the type of their

result is compatible with the type of their argument, if the result is

defined.

suce

The result is the successor of the argument. If the argument is the last

(greatest) value of the type the result is undefined.

pred

The result is the predecessor of the argument. If the argument is the

first (smallest) value of the type the result is undefined.

ord

The result is of type integer and is the ordinal number of the argument

in the set of values defined by the type of the argument.

The types iso and char

The type iso is a predefined enumeration type. Its values are the
(Danish) ISO characters.

(=] 2 g stx etx eot enq ack bel bs ht

10 er so si dle dc1 dc2 dc32 <å es x

20 dc& nak syn etb can em sub esc fs gs

30 rs us sp 1 WJ £ $ x & U

40 <) hal + ' ” . FA 0 1

50 2 3 4 5 6 7 8 9 : H

60 < = > ? a A B c D E

70 F G H 1 d K L M N o

80 P q R s T u LÅ UJ x Y

9% 2 k U Å n 2 ' 8 b c

100 d e f g h i j k (i m

110 n (] p gq r s t u v WH

120 x y z C] ø å - del

char is defined as

char = firstch.. lastch; (& ' ',.'—' x)

Note: The Danish characters £, Ø, Å, 2, ø and å are special symbols,
they are not part of the set of characters used for identifiers, but they
are used as [, VW.], (, | and). And 7 is used instead of ”£',

3. The PASCAL Language

Page 16

- 3. The PASCAL Language

PASCAL, User's Guide

Examples of enumeration and subrange types and their use:

Given the declarations

TYPE

suits=(club, diamond, heart, spade);

days=(monday, tuesday, wednesday, thursday, friday,

saturday, sunday);

week end=friday..sunday; (” subrange type ")

months=(january, february, march, april, may, june, july,

august, september, october, november, december);

seasons=(winter, spring, summer, autumn);

colours=(black, red);

Then the following relations are all true.

diamond<=heart

monday<sunday

december>=april

wednesday=succ(tuesday)

november=pred(december)

Whereas the following relations are all false.

club>=diamond

january=february

succe(november)=october

The Type Boolean

The type boolean is a predefined enumeration type. Boolean is
predefined as TYPE boolean=(false, true);

The following operators can be applied to instances of type boolean.

They all yield a boolean result,

AND dyadic logical conjunction of the two operands.

OR Sdyadic logical disjunction of the two operands.

NOT monadic logical negation of the operand.

When the predefined function ord is applied to a boolean value the

result is the following.

ord(false)=0

ord(true)=-1

Each of the relational operators (=, 2, <=, <, %, >=) yields a

boolean value. Furthermore, the type boolean is defined so that false

< true. Hence, it is possible to define each of the 16 boolean

operations using the above logical and relational operators. For

example, if p and q are boolean values, one can express

implication as p<=q

equivalence as p=-q

exclusive or as p%o%9q

PASCAL, User's Guide Page 17

The following table shows the value of some boolean expressions.

expression

true AND true

true AND false

false AND true

false AND false

true OR true

true OR false

false OR true

false OR false

NOT true

NOT false

true<true

true<false

false<true

false<false

true=true

true=false

false=true

false=false

trueCtrue

truefalse

falseOtrue

false—false

true<=true

true<=false

false<=true

false<=false

true>=true

true>=false

false>=true

false>=-false

The Type Integer

value

true

false

false

false

true

true

true

false

false

true

false

false

true

false

true

false

false

true

false

true

true

false

true

false

true

true

true

true

false

true

The following operators can be applied to instances of type integer.

They all yield an integer result.

+ dyadic

+ monadic

- dyadic

integer addition of the values of the

two operands.

monadic plus (redundant).

integer subtraction of the value of

the right operand from the value of

the left operand.

3. The PASCAL Language

Page 18

- mo

xx dy

DIV dy

MOD dy

PASCAL, User's Guide

nadic monadic minus.

adic integer multiplication of the values

of the two operands.

adic the value of the left operand is

divided by the value of the right

operand. The result is the quotient

truncated (i.e. the quotient is not

rounded) to integer.

adic a MOD b is defined as a-((a DIV b)xb)

The following predefined functions all take a single integer argument.

abs

sqr

odd

chr

ord

The integer result is the absolute value of the

argument.

The integer result is the square of the

argument.

The boolean result is true if the argument is

odd; otherwise it is false.

The result (of type char) is the character which

has the ordinal value of the argument. As a

consequence chr is only defined in the subrange

0..127.

The result (of type integer) is equal to the

value of the argument.

The following relations are all true,

2+2m4

-2-2=-4

5x3=15

15 DIV

15 DIV

11 DIV

15 MOD

15 MOD

11 MOD

-15 DIV

-11 DIV

-11 MOD

-15 DIV

-15 MOD

abs(-3)

sqr(4)=

sqr(-4)

odd(3)=

odd(-3)

odd(4)=

odd(-4)

odd(0)=

chr(65)

3. The PASCAL Language

3=5

7=2

4=2

3=0

7=l

4=3

3=-5

4=-2

4=-3

(-7)=2

(-7)=-1

=3

16

=16

true

=true

false

=false

false
"AA!

PASCAL, User's Guide

The Type Real

Page 19

The predefined type real consists of a finite subset of the real numbers.

A value of type real is represented in the RC9000-10/RC8000 floating
point format [3] the mantissa has 36 bits including a sign and the

exponent 12 bits; thus there are at least 11 significant decimal digits.

The following operators can be applied to instances of type real.

+ dyadie Floating point addition of the values of

the two operands.

+ monadic Monadic plus (redundant).

- dyadic Floating point subtraction of the value of

the right operand from the value of the

left operand.

- monadic sMonadic minus.

x dyadic Floating point multiplication of the

values of the two operands.

Få dyadic Floating point division of the value of

the left operand by the value of the right

operand.

<=

>=

>

< dyadic

> dyadic

-= dyadic

dyadic = The boolean result is true if the

dyadic specified relation holds between the two

dyadic operands, otherwise it is false.

The following predefined functions can be applied to a real argument:

sin,cos,arctan,

1n, exp, sart,

abs,sqr,sinh,

arcsin

round

trunc

The result (of type real) is the

result of applying the specified

mathematical function to the

argument.

The result (of type integer) is the

argument rounded (not truncated)

according to the standard

mathematical conventions.

The result is the integer, with the

same sign as the argument, whose

absolute value is the greatest among

the integers less than or equal to

the absolute value of the argument.

The difference between trune and round is illustrated by the following

examples

3. The PASCAL Language

BE

Page 20 PASCAL, User's Guide

trunc(1.6)=1, trunc(-1.6)=-1, trunc(2.4)=2,

round(1.6)=2, round(-1.6)=-2, round(2.4)=2.

The operators = and <> should be used with great care on real

arguments. This is due to the round-off error which often results from

the representation of real values.

The relative precision of a real number lies between 3x10xx-11 and

6x10%x-11.

3.3.3.3 Structured Types

A structured type is a composition of other types. The specification of a

structured type specifies the structuring method and the component

types.

structured type: e

"7->->PACKED-=- 7->array type-x---rr77= >
>[->j"">record type->

frrrreeenenerer >set type---->

forene eneeee >»file type----

Array Types

An array consists of a fixed number of components all of which have the

same type. The number of components is specified by an enumeration

type (index type). The index type must not be integer, but a subrange

of type integer is allowed.

Note: The index type is static and cannot be varied dynamically. This

implies that the index type must be known at the compilation time.

array type: e

"TTPARRAYOD 2 Tr index typer”; "71770F-7component type-->

index type:

--->enumeration typer7-7-7---- >

component type:

Arrays can either be used as a whole or component-wise. A whole array

is denoted by its array variable. A component of an array is denoted by

the array variable followed by one or more indices separated by commas
and encløsed in brackets. An index consists of a number of index e

3. The PASCAL Language

PASCAL, User's Guide Page 21

expressions. The total number of index expressions must not exceed the
dimension of the array. Furthermore the value of each index expression
must be of a type compatible with the declaration of the corresponding
index.

indexed variable:

ression
gg

array variable:

---»variablev "7-7" >

Examples of array declarations and denotations:

Assume the declarations

TYPE

hours=8. .16;

matrix=ARRAY [1..1,1..n] OF real; ("n is an integer constant "—)

counter=ARRAY ['a'..'2'] OF integer;

name of day=ARRAY [days] OF alfa;

occupied type=ARRAY [days, hours] OF boolean;

VAR

8,b,c: matrix;

occupied: occupied type;

Then the following lines give examples of correct array-denotations.

8 := b;(” the entire matrix b is copied into 8 ")

clil:ssali]; (" one row of a is copied into the corresponding row

ine ")

cli,j]isalk,l]; (” one component of a is copied into one

component of c 7)

occupied[wednesday,9] :=true;

occupied[friday, 151:=false;

Record Types

A record consists of a fixed number of components called fields, which

may be of different types. For each field its field identifier and its type

must be specified. A record can be divided into a fixed part and a

variant part, either or both of these parts may be empty.

record type:

-"">RECORD->field list->END-"-7777---- >

3. The PASCAL Language

Page 22

3. The PASCAL Language

PASCAL, User's Guide

field list: e

goderne >FAREN Herrer part-

fixed part:

A field list may have a number of variants, in which case a certain field
may be designated as the tag field, whose value indicates which variant
is assumed by the field list at a given time. The tag field may be empty.

variant part: e

riant->------ >"--->CASE->tag field->tag field typer70F> >

tag field:

riDfeld jdentifierz5rzi frrrunerer >
oreruee golden nrreniee

tag field type:

7""">enumeration type---------- >

Note:

1. All field names must be distinct - even if they occur in different
variants.

e

2. If the field list for a label L is empty, the form is: L : ().

3. A field list can have only one variant part and it must
succeed the fixed part(s). (However, a variant part may
itself contain variants. Hence, it is possible to have nested
variants).

4. The tag field type must be an enumeration type. Each
variant must be labelled with one or more constants of a type
compatible with the tag field type. All such labels must be
distinct.

variant:

7""->case label list->:->(->field list-7)----7----- >

PASCAL, User's Guide Page 23

case label list:

vore ->constant-> ere re 22 - >

The value of the tag field determines which variant can be
manipulated.

Records can either be used as a whole or component-wise. A component
of a record is denoted by the record variable followed by the field

identifier of the component separated by a period.

field designator;

-......->record variable->.->field identifier----------- >

record variable:

"7-">variable---------- >

field identifier:

"> identifierr"--2---- >

Note; It is not checked that the tag field has the correct value when a
component of a variant part is referred to.

Examples of record definitions:

TYPE

date=RECORD

year: integer;

month: 1..12;

day:1..31

END;

person=RECORD

name, firstname: alfa;

age: 0..99;

CASE married: boolean OF

true: (spousesname: alfa);

false: ()

END;

figure=RECORD

Xy: real;

area: real;

CASE s: shape OF

triangle: (side:real;

inclination, anglel, angle2: angle);

rectangle: (side1, side2g: real;

skew, angle3: angle);

3. The PASCAL Language

Page 24

3. The PASCAL Language

PASCAL, User's Guide

circle:(diameter: real);

END;

Packed Representation

In order to reduce storage requirements a definition of an array or

record type can be prefixed by the symbol PACKED.

Note: The packed representation may result in an increase in execution

time and of the size of the compiled code. This is due to the packing and

unpacking operations which must be performed every time a component

is accessed.

Two predefined procedures are provided for the packing and unpacking

of an array of type char.

Assume that a and p are variables of the following types:

a:ARRAY [m..n]OF char; p:PACKED ARRAY [u. .v]OF char;

where

(ord(n)-ord(m))>=(ord(v)-ord(u));

ord(m)<=ord(i)<=tord(n)-ord(v)rord(u));

and the index types of the arrays a and p and the type of i are

compatible.

Then pack(a,i,p) is equivalent to

k:sig

FOR jisu TO v DO

BEGIN

plj]:=alkl;

k:=sucelk)

END

and unpack(p,a,i) is equivalent to

k:si;

FOR j:=u TO v DO

BEGIN

alkl:=pljl;

:=succlk)

END

where j denotes an auxiliary variable not occurring elsewhere in the

program.

Use of the predefined procedures should be preferred because of their

more efficient implementation.

Note: No component of a packed structure may be used as a variable

parameter to a routine.

PASCAL, User's Guide Page 25

Strings

In 2.2.6 string literals were defined as sequences of characters

enclosed by quotes. Strings consisting of a single character are constants

of the predefined type char, those of n characters (n>1) are constants

of the type defined as: PACKED ARRAY[1..n] OF char; furthermore

the type alfa is predefined as: PACKED ARRAY[1..alfalength] OF

char; (on RC9000-10/RC8000 alfalength is 12).

The relational operators <, >, <= and >= are applicable to strings of

the same length. The ordering is the lexicographic ordering based on the

ordering of the characters.

Set Types

Å set type consists of the set of all subsets of some enumeration

type. Å set type definition is written as follows.

set type:

7"-->SET OF->base typer"77-2---= >

base type:

77"->enumeration type---------- >

The ordinal number of the largest element must not exceed 143, and the

ordinal number of the smallest must not be negative. It follows that a

set type can contain at most 144 elements.

set:

element:

">expression- "roerne rer >
rr rv >

”rexpression, ”. "expression, ->

Å set denotes a set consisting of the expression values. The form m..n

denotes the set of all elements i of the base type so that m<=i<-n. If

m>n then m. .n denotes the empty set. The set expressions must all be of

compatible enumeration types. The empty set is denoted and is

compatible with any set type.

The following three operators take two operands of compatible set types

and their result is of a set type compatible with the operand type.

3. The PASCAL Language

Page 26

3. The PASCAL Language

PASCAL, User's Guide

The result is the union of the two operand sets.

The result is the intersection of the two operand sets.

The result is the set difference of the two operand sets (i.e. the

elements which belong to the left operand but not to the right

operand).

The following two operators take two operands of compatible set types

and give a boolean result.

<<] The result is true if the left operand is included in the right

operand; otherwise it is false.

The result is true if the right operand is included in the left

operand; otherwise it is false.

The following operator takes two operands.

IN The result is true if the left operand is a member of the set

specified as the right operand. The left operand must be an

instance of an enumeration type compatible with the base type of

the right operand.

Assume a and b are of type t and assume t is a set type. Then the
following expression is true,

(a-b)+(b-a)=a+b-axb

Assume the declarations

TYPE

workingdays=SET OF days;

characters=SET OF "IN, V-m7

VAR

workingday:workingdays;

letters, digits, first, following: characters;

lazy: boolean;

Then the following lines are examples of applications of set and set

operators.

workingday:=monday..friday;

lazy:=NOT(saturday in workingday);

letters:=vAr, 70,190, ,H7N

digits:=vu, 190;

first:=letters;

following:=first+digits;

The following relations are all true.

PASCAL, User's Guide Page 27

first"digits=

followingtfirst=letters

File Types

A file-type is a structured-type consisting of a sequence of
components which are all of one type. The number of components,
called the length of the file, is not fixed by the file-type definition. A
file with zero components is empty.

At any time only one component of the file is accessible. The other
components can be reached by sequencing through the file.

A file type can be defined as follows.

file type:

7777>FILE OF" >»typer""------- >

The declaration of a file variable introduces a file buffer of the
component type. The file buffer is denoted by the file variable
followed by an up arrow, in this document represented by ” (the caret or
circumflex).

file buffer:

""-->file variable->"---2---2-- >

file variable:

7—-->variable-----2772-= >

The file buffer can be considered as a window through which
existing components of the file can be inspected (read) or new
components appended (written). A file position is implicitly
associated with this window (the file buffer). The window is
automatically moved by certain file operations. It is, however, not
possible to alternate between reading and writing a file. In a single pass
the file can be either read or written.

The sequential processing and the existence of a file buffer suggest
that files are associated with secondary storage and peripherals. Exactly
how the components are allocated varies, but usually only a few
components are present in primary storage at any given time, and only

the component denoted by the file buffer is directly accessible.

A special mark is placed after the last component of the file. This mark
is called the end-of-file mark (eof).

The predefined routines for file handling are given below. It is assumed
that £ is a file variable and x is of a type compatible with the type of the
components in the file £.

3. The PASCAL Language

Page 28

3. The PASCAL Language

PASCAL, User's Guide

eof(f)

This boolean function is true if the file is positioned at the end-of-file

mark, otherwise it is false.

reset(f)

The file is repositioned at the start, i.e. the file buffer £” contains the

first component of the file. The file can now be read. If the file is empty

the value of £” is undefined, and eof(f£) is true.

rewrite(f)

The file is positioned at the start for rewriting. The value of £ becomes

the empty file, £" becomes undefined, and eof(£) becomes true.

open(f,<file name>)

Opens the file f specified by the <filename> of type PACKED ARRAY

[1..n] of char (1<=n<=11). Only external files (see 3.2) may be

opened, and only if they are not already opened.

close(f)

Closes the file £. Only external files may be closed and only if they have

been opened.

get(f)
The position of the file is advanced to the next component. The value of

the file buffer becomes the contents of this component. If no next

component exists eof(f) becomes true, and the value of £" is

undefined. If eof(£) is true prior to the execution of get(f£f) the call

will result in the runtime error message try to read past eof”. The

call get(£) presupposes that the immediately preceding operation on £

was either get(£) or reset(f) or equivalent forms.

put (f)
The value of the buffer variable £” is appended to the file £. The value

of £” becomes undefined. If the value of eof(f) is false prior to the

execution the call will result in the runtime error message ”illegal

zonestate'. Otherwise the value of eof remains true. The call put(f£)

presupposes that the immediately preceding operation on £ was either

put(f) or rewrite(f£) or equivalent forms.

read(f,x)

A call of read is exactly equivalent to executing: x:=£"; get(f); x

must be of a type compatible with the type of the components in the file

f. If £ is a textfile the reader is referred to the following part about

textfiles.

write(f,x)

A call of write is exactly equivalent to executing: £":=x; put(f); x

must be of a type compatible with the type of the components in the file

£

Note: An open file needs one area process, hence the maximum number

of simultaneous open files are limited by the number of area processes

of the job.

Note: Routines which have local files should not be called recursively.

PASCAL, User's Guide
Page 29

Textfiles

A file of characters is called a textfile. Accordingly, the predefined type
text is defined as: FILE OF char.

Texts can be subdivided into lines. The following predefined routines
are provided for manipulating the end-of-line mark (n1). It is
assumed that t is a variable of type text.

writeln(t)

Terminate the current line of t i.e. write an nl character.

readln(t)

Skip to the beginning of the next line of t. Subsequently t” becomes the
first character of the next line if any. Thus readln(t) has the same
effect as the following statements: WHILE NOT eoln(t) DO get(t);

get(t);

eoln(t)

The result of this boolean function is true if + is positioned at an
end-of-line mark, and false otherwise. If true, t” contains a blank.

page(t)

The parameter must be a textfile. page(t) is equivalent to the
statement:

write(t, ff); (£& form feed +)

(This will usually force a lineprinter to start on a new page).

To facilitate the manipulation of textfiles, the predefined procedures
read and write have some built-in transformation procedures. These
translate numbers from the internal binary representation into a
character sequence of decimal digits and vice versa. These procedures
are called in a non-standard way, since they can be called with a variable
number of parameters of various types.

Let t denote a textfile and v,vl,v2,...... »vn variables of type char,
integer or real:

read(t,v)

A sequence of characters are read from the file t through the file buffer
t” by means of get(t). The first significant character is the character in
tt".

If v is of type char, then read(t,v) is exactly equivalent to executing
viste; get(t);
If v is of type integer a sequence of digits is transformed into a
(decimal) value which is assigned to v. Preceding non-digits are skipped.
The character sequence which follows must be consistent with the syntax
for decimal integers given in chapter 2. If not, the execution is
terminated and a runtime error message is given.
If v is of type real, a sequence of characters is transformed into a real
value which is assigned to v. Preceding characters are skipped. The
character sequence which follows must be consistent with the syntax for
real literals given in chapter 2; with the extension: both " (quote) and E
are accepted as exponent part indicator. If not, execution is terminated

3. The PASCAL Language

Page 30

3. The PASCAL Language

PASCAL, User's Guide

and a runtime error message is given.

If v is of type char, then all preceding non-char characters are skipped,

except if t”=nl then eoln(t) becomes true, v becomes ”” (space), and

the next character is moved into the file buffer.

read(t,vl,v2,..,vn)

Is a shorthand notation for BEGIN read(t,vl);

read(t,v2);..... read(t,vn) END

readln(t,v)

Is a shorthand notation for BEGIN read(t,v);

readln(t) END

readln(t,vl,..,vn)

Is a shøorthand notation for BEGIN

read(t,vl,v2,..,vn); readln(t) END

The predefined procedure write is extended in a similar way. Let

p.pl,p2,.....pn be parameters of the form defined below, and let t

be a textfile:

write(t,p)

The parameter p is transformed into a sequence of characters

(according to the rules given below). This sequence is written on t.

write(t,pl,p2,...... »pn)

This is just a shorthand notation for BEGIN

write(t,pl); write(t,p2); ; write(t,pn)

END

writeln(t,pl,...... »Pr)

This is just a shorthand notation for BEGIN

write(t,pl,..... »pn); writeln(t) END

The parameters to the predefined procedures write and writeln must

have the following form.

parameter:

FEE ESSS SSD ESS
A

-...-->expression->-->:->field width->->1->fraction length->-->

field width:

-=--zexpressionemm777---- >

fraction length:

---->expressionrr7-r= >

PASCAL, User's Guide Page 31

The first expression (which is the value to be written) must be of one of
the following types: integer, boolean, char, real or string. The
field width indicates the minimum number of characters to be
written. If the field width is longer than needed, the value is written
right justified. The field width must be an integer expression with
value greater than or equal to 0. If omitted a default value is chosen.

TYPE DEFAULT

FIELD

WIDTH

integer 8

boolean 6

char 1

real 14

string length

of

string

alfa 12

REMARKS

The string "true" or "false" is

written.

If fraction length is not

specified, the value will be

written with 1 digit before the

decimal point; 7 digits after the

decimal point; and a scaling

exponent written as '+-ddd

(floating point notation). If

fraction length is specified, the

fraction length must be at least

two less than the field width.

The fraction length specifies the

number of digits to follow the

decimal point. If the fraction

length is specified, no exponent

is written (fixed point

notation). If the field width is

too short, the necessary number

of additional character positions

are used.

If a non-zero field width less

than the length of the string is

specified, the right part of the

string is truncated.

A textfile t subdivided into lines can be scanned by the following piece
of program.

WHILE NOT eof(t) DO

BEGIN

WHILE NOT eoln(t) DO

BEGIN

read(t,ch);

gich)(” process single character ")

END

readin(t);

3. The PASCAL Language

Page 32

3. The PASCAL Language

PASCAL, User's Guide

ri process line ")

END;

A textfile t subdivided into lines with maximum n significant characters

in each line can be scanned by the following piece of program.

WHILE NOT eofit) DO

BEGIN

i:=0;

WHILE (i<n)>eoln(t) DO

BEGIN

i:si+1;

read(t,line[i]);

END

readinit);

ri" process line ")

END;

The Predefined Textfiles Input And Output

Two textfiles named input and output are predefined as

VAR input, output: text;

The first parameter to read, readln, write or writeln can be

omitted, in which case input or output respectively is used.

Let v denote a variable of type char, integer or real. Let e denote

an expression of type char, integer, real, boolean or string.

write(e) is equivalent to write(output,e)

writeln(e) is equivalent to writeln(output,e)

read(v) is equivalent to read(input,v)

readln(v) is equivalent to readln(input,v)

On the RC9000-10/RC8000, input and output are initially connected

to current input and output allocated by FP. If disk files are used for

input and/or output by a program, there must be an explicit call of

close before the program terminates, and if input and/or output have

not been connected to disk files, they must not be closed.

Pointer Types

A static variable (statically allocated) is one that is declared in a program

and subsequently denoted by its identifier. It is called static, for it exists

(i.e. memory is allocated for it) during the entire execution of the block

to which it is local. A variable may, on the other hand, be generated

dynamically (without any correlation to the static structure of the

program) by the procedure new. Such a variable is consequently called a

dynamic variable.

Dynamic variables do not occur in an explicit variable declaration and

cannot be referred directly by identifiers. Instead, generation of a

dynamic variable introduces a pointer value (which is nothing other than

the storage address of the newly allocated variable). Hence, a pointer

PASCAL, User's Guide Page 33

type consists of an unbounded set of values pointing to variables of a
type. No operators are defined on pointers except the tests for equality
and inequality.

Pointer values are created by the standard procedure new. The pointer
value NIL belongs to every pointer type; it does not point to a variable.

pointer type:

""77>%-ridentifier--7722--- >

The identifier must denote a type which must not be a file type.

The value of a pointer variable is either undefined, NIL or a reference to
a variable of specified type, The variable referred by a pointer is
denoted by the pointer variable followed by an up arrow ().

referred variable:

"pointer variable->"-7222---- >

pointer variable:

"variable >

The declaration of a pointer variable will only cause the computer to
allocate space for the pointer, hence no space is allocated for any
referred variable before this is explicitly denoted by calling the
predefined procedure new.

The type of a referred variable is the type specified in the declaration of
the pointer type.

The predefined procedures on RC9000-10/RC8000 provided for
manipulating pointer variables are new and dispose.

new(p)
A næw variable of the type associated with p is allocated on the top of
the core area for dynamic variables and a reference to this variable is
assigned to p.

new(p,c1,c2,..,cn)

In case the type associated with p is a record type with variants, the form
new(p,c1,..,cn) can be used. cl,c2,..,cn

is a list of constant selectors used to determine the size of the allocated
variable. The size is as if the variable was declared of a record type with
the field list formed by the following rule of selection: First, the variant
corresponding to the selector c1 is selected. Then, the field list of this
variant is formed by using the selectors c2,..,cn (by a recursive
application of this rule). Finally the so far formed field list is prefixed by
the tag field (if non-empty) and is then substituted for the variant part.

The above description does not imply any assignment to the tag fields.

3. The PASCAL Language

Page 34

3. The PASCAL Language

PASCAL, User's Guide

Note; The variant of the allocated variable must not be changed, and

assignment to the entire variable is not allowed. However, the value of

single components can be altered.

dispose(p)

dispose(p,c1,c2,..,cn)

In the RC9000-10/RC8000 implementation the area used for dynamic

variables is handled as a stack, i.e. a call of new(p) is a stacking of a new

element of type p”. The unstacking is performed by means of the

procedure dispose. The call dispose(p) implies that the core reserved
for p” and later allocated variables will be released and reused on later

calls of new.

Examples of use of pointer variables.

A list structure can be declared as follows.

TYPE

list= RECORD

inf: 2.7;

next: "list

END;

VAR

head: alist;

A list structure with two elements can be created as follows.

newlhead);

head”. inf:= ...7

newlhead”.next);

head”.next”.infi= ...;

head”.next”.next:=NIL;

Assume the declarations:

CONST

maxval=50;

TYPE

atom=RECORD

name: alfa;

number: integer;

weight: real;

occupied: SET OF 1..maxval;

bindings: ARRAY[1. .maxval] OF "atom;

charge: (plus, minus, neutral);

saturated: boolean

END;

VAR

a; atom;

Then the following statements give all names of atoms to which a is

bound.

PASCAL, User's Guide Page 35

WITH a DO

FOR i:=1 TO maxval DO

IF å IN occupied THEN writelnti,bindings[i]”.name);

3,3.3.4 Type Compatibility

Compatibility of types is defined by so-called "name equivalence" as
follows:

Any type is compatible with itself.

Any two types are compatible if a type exists that is compatible with
both of them.

Any two set types are compatible if their base types are compatible. The
type of the empty set is compatible with any set type.

Any subrange type is compatible with the type of which it is a subrange.

Any two file types are compatible if their component types are
compatible,

Any two pointer types are compatible if the variables referred by the
pointers are of compatible types. The type of the pointer value NIL is
compatible with any pointer type.

3.3.4 Variables

A variable is a named data structure that contains a value. Each variable
must be declared in a variable declaration part prior to its use. The
name and data type of each variable must be specified.

variable declaration part:

fees enes een eeee

7727->VAR- "2-5 ->identifier->-->:->type-zjo7e 5742 rrr >

Several variables of the same type may be declared in a single list of
identifiers followed by the type.

An entire variable is denoted by its identifier.

If a variable is of array type or record type, a single component is
denoted by the identifier, followed by 'a selector specifying that
component (see subsection 3.3.3.3).

3. The PASCAL Language

Page 36

3. The PASCAL Language

PASCAL, User's Guide

variable:

7—">-->identifier---7--27--- Pere rererrr >

->indexed variable----- >

-»field designator----- >

->referenced variable-->

-»file buffer=----227

3.3.5 Value Part

value part:

"TTT TVALUES rave luer
sunrgr—=...

value:

----entire variable->=->const specification----------- >

const specification:

"rr >constant rr ere r rer pen nneeer >

-»>(->structured const->)->

->[->set const list->]--"-

str const element:

----7-->const specification---

-> < -»index range-> > " ->const specification->

->constant->:(->structured const->)---

set const list:

TTT "TTT |
pp pCOnStant ar error renere er grp see senenen >

->...->constant->|

The value-part is used to give local variables initial values on entry to a

block, each variable in the value part is initialized according to the const

specification on the right hand side of the equal sign.

PASCAL, User's Guide Page 37

For structured variables all parts must be specified, and the tag field in a
RECORD with a CASE must be specified even if the tag field is empty in
the definition of the RECORD. The initialization of a tag field and the
associated variant are specified by

value of the tag field : (value of variant)

Examples of value specifications:

Let x be declared as

x: RECORD

al: char;

CASE integer OF

1: (a2 : boolean;

221 : SET OF 0..10);

2: (a3: 0..25; a4, a5: char);

3: (a6: real);

END;

If the value part contains

x0CA' ,1:(true, [0,3..5)))

then

x.al is initialized to 'A'

x.a2 is initialized to true

x.a21 is initialized to [(0,3,4,5]

or if the value part contains

x=07B,21(5,707,7D7))

then

x.al is initialized to 'B'

x.33 is initialized to 5

x.a4 is initialized to 'C”

x.a5 is initialized to "D'

Ås a compact notation for giving the same value to a number of
consecutive array elements it is possible to specify the index range
followed by the specification of one value.

e.g. If b is declared as

b: ARRAY [2..25] OF integer

and if the valuepart contains

b=(5,<3..10> % 0,3,4,<13..25> + 10)

then

3. The PASCAL Language

Page 38

3. The PASCAL Language

b2 is initialized to 5

b3 is initialized to 0

b10 is initialized to 0

b11 is initialized to 3

b12 is initialized to 4

b13 is initialized to 10

b25 is initialized to 10

Note: Pointer variables may only be initialized to NIL. Each variable

may only occur once in the valuepart.

3.3.6 Routine Declaration

A routine declaration serves to associate an identifier with a set of

definitions, declarations and a statement. The execution of this

statement can be invoked by a routine call. Routine is a generic term for

procedures and functions.

routine declaration:

->procedure heading-

> -->blocke"777-77-- >

->function heading -

procedure heading:

---->PROCEDURE->procedure identifier->formal parameters->;->

function heading:

---->FUNCTION->function identifier->formal parameters->:---

procedure identifier:

----identifier"7777--- >

function identifier:

-"-->identifier----------- >

PASCAL, User's Guide Page 39

type identifier:

A list of formal parameters may be specified in the routine heading. For
each formal parameter is specified its name (formal name) and its kind.
There are the following four parameter kinds: value, variable,
procedure and function. The kind value is assumed if nothing else is
specified. The kinds variable, procedure and function are
specified by the symbols VAR, PROCEDURE and FUNCTION respectively.
In addition the types of all value, variable or function parameters must
be specified. The parameter kind defines the binding between actual
parameters and formal parameters in a routine (see 3.4.6).

parameter description;

Torre rer ere >-->-->formal name->-->:->type identifier->-->

->var-| ggeeee22
”>FUNCTION==

">PROCEDURE--->-->formal name porerne nen>

formal name:

---»identifier----------- >

In the block of the routine formal parameters are denoted by their
formal names.

A formal parameter of kind value may be used as a local variable of the
specified name and type, the value of which is initialized to the value of
the actual parameter at the routine call.

A formal parameter of kind variable denotes a variable of the specified
name and type. The denoted variable is the actual parameter.

A formal parameter of kind procedure or function may be used as if it
was locally declared with all formal parameters of kind value.

The difference between the various kinds of parameters is explained in
subsection 3.4.6.

The following are all examples of routine headings.

FUNCTION my own sgrt(x:real):real;

FUNCTION zero(lower, upper:real;FUNCT ION fireal):real;

3. The PASCAL Language

Page 40 PASCAL, User's Guide

PROCEDURE insert(element:component type); e

PROCEDURE update(VAR element: component type);

The block of a routine consists of a number of definitions and

declarations and a compound statement.

Within the block of the routine the routine name itself may be used to

denote a recursive call of the routine. However the occurrence of a

function identifier as a left hand side of an assignment statement

denotes changes in the current value of the function. Such occurrences

are only allowed within the compound statement of the block of the

function.

The type of the values which can be returned by a function must be

specified in the function head. The value of a function is determined by

the dynamically last value assigned to the function identifier within the

block of the function. The type of a function is restricted to be a simple

type or a pointer type.

The following are all examples of function declarations. e

FUNCTION zerof FUNCTION test: boolean; lower, upper: real; FUNCTION fz

real):real;

VAR centre, y:real;s:boolean;

BEGINC" compute solution to f(x)=0 by bisection ")

s:=f(lower)<0;

REPEAT

centre:=(lower+upper)/27

y:=f(centre);

IFCy<0)=s THEN loweri=centre

ELSE upper:=centre;

UNTIL test(lower,upper);

zero:=centre

ENDC" zero %);

test(lower,upper) is true if and only if the difference between lower

and upper is small enough.

The following machine-independent function can be used unless the e
solution is 0.0.

FUNCTION test(i,u: real): boolean;

BEGIN

test:=((u+i)/2=u) OR ((u+i)/2=i)

END

FUNCTION sign(x: real): integer;

BEGIN

if x<O THEN sign:=-1 ELSE sign:=ord(x>0)

END;

FUNCTION bincoef(p,q:integer):integer;

(" Calculates binomial coefficient p!/(q!"(p-q)!). The function

is computationally inefficient but may be useful when ønly single

values are desired %)

BEGIN

IE p-q<q THEN q:=p-q;
8

3. The PASCAL Language

PASCAL, User's Guide Page 41

IF q<O THEN bincoef:=0

ELSE

IF q=0 THEN bincoef:=1

ELSE

bincoef:=bincoef(p-1,q-1)+bincoef (p-1,q)

END;

The names introduced by a definition or by a declaration in a routine, (a
local definition or declaration) are only valid in the rest of the block of
the routine. On the other hand local definitions and declarations take
precedence over definitions and declarations in the surroundings (global
definitions and declarations). As routine declarations can be nested, the
same routine name can be introduced at several levels. In this case a use
of the name will always refer to the innermost declaration.

Routine Pseudo-declaration

The scope rules of Pascal (see chapter 4) require that the declaration of
a routine must appear in text before use,

A routine may be pseudo-declared by substituting the block of the
routine declaration with the identifier FORWARD.

routine pseudo-declaration:

"==...>routine heading->FORWARD- 2 >

A routine declaration where the block is substituted by the identifier
FORWARD serves as an announcement of the full block which is given in

text later, The block itself is then just headed by a routine head the
formal parameters are not needed, but it is allowed to specify them
again.

Example:

The scope rules of Pascal lead to a conflict in the situation where two
routines call each other. (Which one should be declared first ?). The
conflict can be avoided by substituting the reserved word FORWARD for
the body of the first routine and postponing the specification of the
routine body. The following is an example of this.

FUNCTION g(x:real):real;FORWARD;

FUNCTION f(x): real;

BEGIN... g(x). 22...... END;

FUNCTION g(x:real):real;

BEGIN. (6.9 FEER END;

3. The PASCAL Language

Page 42

3. The PASCAL Language

PASCAL, User's Guide

3.3.7 PASCAL Interface To SLANG

The RC9000-10/RC8000 Pascal syntax for "declaration part" have been

extended with a module part as shown in the diagrams in section 3.2. An

external module is a library consisting of one or more routines as

produced by the SLANG assembler. Declaration of an external module

in a Pascal program will, if successfully compiled, give access to routines

with headings as specified in the module part. The routines may be

called as if they had been ordinary declared routines.

When an external module declaration is met during compilation of a

program, the compiler will open a file with the name specified as

module name. This restricts module names to be of at most 11

characters, without underscores, i.e. FP syntax for names. If the file is

not found the compilation is terminated with the error message: file

cannot be connected for i/o: <module name>, otherwise routines, with

the names specified in the module declaration part, are searched for in

the library file. The order of declaration is independent of the order of

the routines in the library. Only the routines specified in the module

part are incorporated in the object program file.

Unsuccesful searches result in an error message: error no 325 in

line no 11, which means: external routine not found.

Succesful search is defined as mach of the the first alfalength (12)

characters of the name of the declaration with a name in the library.

Names shorter than alfalength characters are extended with trailing

blanks. The user must be responsible for matching declarations

identically as the compiler does not have the ability to type check. The

resulting code for an unmatched declaration is equivalent with an

ordinary declared routine whose body is BEGIN END. If it is a function

its result is the arbitrary value of a (double) word of the memory. If the

routine is found, its code will be placed between ordinary routine entry

and return code. That is, after code to maintain the display and before

code to activate the run time system for routine exit/return.

Lay-out Of A SLANG Routine

A library consists of one or more SLANG segments, each containing a

header and a body of code to be incorporated in the Pascal object code

module. The rules to be observed for the two parts are:

header

+0: length of segment (hw), including the header itself

+2: stack appetite

+4: name of routine, 12 characters with trailing blanks

PASCAL, User's Guide Page 43

code

+12: first instruction of the routine

last instruction of the routine

+length:

Run-Time Organization

At routine entry the working register w2 is current stack frame pointer.
At routine exit the value of w2 must be the same as it was at routine
entry! The lay-out of current stack frame is shown below.

Addressing Information Contents of runtime stack for block

level k routines

remaining parameters and local

variables

max addr w2+2046 temporary storage

max addr w2 + 1998 parameters occupying more than 2
words and local variables

display

k words (main program is level 1)

parameter n

parameter n-1

parameter 2

w2-2036 parameter 1
w2-2038 dynamic link = old w2
w2-2040 code limit
w2-2042 return routine table offset
w2-2044 return address offset
w2-2046 function
w2-2048 result

Room for temporary results is allocated above local variables if the
block does not exceed 2048 halfwords, otherwise 48 halfwords are
allocated and the rest of local variables are allocated above this block.

Value parameters occupying 1 or 2 words are allocated space in the
parameter section of the data area. If a parameter requires more than 2
words then only the address of the actual parameter is in the parameter
part, while the required amount of storage is allocated among the local
variables, the entry code copies the parameter to this area.

VAR parameters always occupy one word which holds the address of
the actual parameter.

The two words for function result are always reserved, even if the block
is a PROCEDURE block.

3. The PASCAL Language

Page 44

3. The PASCAL Language

Use of the area above the allocated stack frame (stack overflow) may

destrøoy the code of a routine, possibly the module routine itself,

depending on the actual core layout.

The following annotated example shows how a library may be produced.

pasintlib = slang

parameter

rs w0 x2-2048 store the function result

b.

s. 810 uw.

; header

210 ; length of code

0 ; appetite for local variables

<:xor > ; name of routine, must be 12

; characters long

; code:

rl wo x2-2036 ; load first parameter

Ix wO x2-2034 ; logical xor with 2.

5

210: ; let a10 be the length

e.

s. 810 W. prepare the next routine

header

k=0 start of new block

210 length of 2. routine

0 local variable appetite

name of second routine

code of 2. routine

load 1. parameter

logical and with 2.

parameter

store the function result

<tinteger and:;>

ri w0 x2-2036

la wO x2-2034

rs w0 x2-2048

210: define the length

e.

e.

p=pascal

PROGRAM slang routineexample(output);

VAR

int var1, int var2: integer;

EXTERNAL MODULE

FUNCTION integer andfi, j: integer): integer;

FUNCTION xorti, j: integer): integer;

END (" of external module ")

BEGIN

int varl:= 4711;

int var2:= 12347

int varl:= xor(int var1, int var2);

int var2:= inteer and(int var1, int var2);

END.

The last word of the entry tail of the library as set by the SLANG

assembler is the length in halfwords of the library. This means that the

file may be accepted as a binary file (FILE OF integer) by a Pascal

PASCAL, User's Guide
Page 45

program. A simple routine for looking up the routine names of a library
may be:

PROCEDURE Look up libflib name: alfa);

VAR

lib file: FILE OF integer;

appetite, length of routine, relative offset: integer;

integers to alfa: RECORD

CASE boolean OF

true: (int1, int2,

int3, int&; integer);

false: (Name: alfa)

END;

BEGIN

open(lib file, lib name);

reset(lib file);

uriteln(output, "PASCAL MODULE LOOKUP, module name: Fi

lib name);

WHILE not eof(lib file) DO

BEGIN

read(lib file, length of routine);

read(lib file, appetite);

MITH integers to alfa DO

BEGIN

read(lib file, int1, int2, int3, int4)

uritelntoutput, name, ” appetite = ", appetite);

END;

FOR routine offset:= 1+1+4+1

TO lenght of routine DIV 2 DO

get(lib file); (” skip the body (word mode)

END;

close(lib file);

END; (" look up lib +)

A useful example of a SLANG routine in a Pascal program is the
procedure "halt", The file "pascalhalt", which is delivered as part of the
RC9000-10/RC8000 Pascal system package, is an external module with
a routine named halt. The procedure is included in a Pascal program
by the module specification:

EXTERNAL MODULE pascalhalt

PROCEDURE halt(trace: boolean)

END

A call of halt will force program termination with the FP mode bit not
ok set, i.e. ok.no. If halt is called with the parameter value true the
program stops after indication of the run time error break and printing
of a trace of active routines. Otherwise the program terminates in the
usual way with the "end" and "blocksread" information.

3. The PASCAL Language

Page 46

3. The PASCAL Language

PASCAL, User's Guide

3.4 The Statement Part

This section contains subsections describing the syntax and the use of

the different statements which are included in the language.

3.4.1 Statements

The statements of a program describe the manipulations performed on

data when the program is executed. These statements are collected in a

compound statement.

compound statement:

The statements are executed one at a time in the specified order,

Below, all statement forms are given together with references to their

precise description:

statement: subsection:

messe esse eee ennen ere =>

->compound statement-------- > 3.4.1

->procedure call-""77777--- > 3.4.6

-»assignment statement------ > 3.4.2

->case statement 3.4.5

->for statement-- 3.4.4

-»if statement---27777777--= > 3.4.5

->repeat statement---------- > 3.4.4

-»while statement--"27777--- > 3.4.4

-»With statement- 3.4.7

->goto statement--"7777-7- 3.4.3

-»labelled statement-=------ >| 3.4.3

3.4.2 Assignment Statement

assignment statement:

"> "-->variable------77---- 2--7;57-->expression- "rr" >
|[-->function identifier->|

The type of the variable must be compatible with the type of the

expression.

Within the statement part of a function, assignment may be performed
to the function identifier of that function.

PASCAL, User's Guide Page 47

Assignment can be made to variables of any type except file variables
(but assignment to the file buffer of a file is, of course, legal).

The assignment statement replaces the current value of the variable by
the value of the expression.

3,4.2.1 Expressions

An expression defines a rule of computation for obtaining a value by
application of operators to operands. An expression is evaluated using
the following precedence rules.

NOT has the highest precedence followed by

x, /, DIV, MOD, AND followed by

+, —, OR followed by
==, O, <, <=, >, >=, IN

Expressions are written in infix notation.

Note: All factors in an expression may be evaluated and hence should all
be defined.

expression:

7"">simple expression”>r ormene nens ennen »=->

"> = ->-->simple expression-->

"> <> >

<< ->

ss <€3 -”>

”» > bd

"PP 25 ->

"=> IN ->

simple expression:

frk dont druk dne ole dekanen ke hehe ke ke eee ere herr kt te tetele >

> & => << 4 <-

sp ...— => re == <-

<= OR <-

3. The PASCAL Language

Page 48

3. The PASCAL Language

term

"—=->-->factor"-"x----r7777- >
PEDE EP

gere f r<---

<-- DIV-<---

<-= MOD-<---

<-- AND-<---

factor:

"777>-->constant"""7777777-7-- Zee nereeenr >

->variable-777777----= >

->function call-------- >

->(->expression->)------ >

->NOT->factor- "777-777 >

"Set rer rr anne nere

Examples of expressions:

The following relations are all true.

2%3-445=(2%3)- (445)

15 DIV 4%4=(15 DIV 4)%4

80/5/3=(80/5)/3

4+2x3=—4+(2%3)

For any b1,, b2, b3 of type boolean the following relation is true.

b1 OR NOT b2 AND b3 = b1 OR ((NOT b2) AND b3)

The following is not a legal expression.

O<x AND x<10

The expression should be written as

(O<x) AND (x<10)

The following two statements are different.

IF (1<=n) AND (table[1]=key) THEN s;

IF l<-n THEN IF table[1]=key THEN s;

The following table gives all valid combinations of dyadic operators and

operand types:

PASCAL, User's Guide Page 49

operator(s) left operand right operand result

ha he tel integer integer integer

integer real real

real integer real

real real real

any set type T T T

DIV,MOD integer integer integer

FA integer integer real

integer real real

real integer real

real real real

OR, AND boolean boolean boolean

=> any type T (see Note) T boolean

<=,>=,<,>,<> any string type T T boolean

any enum. type T T boolean

IN any enum. type T SET OFT boolean

Note: Files cannot be compared.

The corresponding table for monadic operators is as follows:

operator(s) operand result

+7 integer integer

real real

NOT boolean boolean

Note: During evaluation of an expression, intermediate results are kept

in registers and in some reserved locations. If the number of

intermediate results exceeds the capacity of reserved space, the

expression cannot be translated and the compiler is sues the error

message 311: Not enough room for temporaries. To remedy this,

the expression must either be rewritten with a less complicated

paranthesis structure or split into two or more expressions.

3.4.3 Goto Statement

goto statement:

---->6070---->label-—277777- >

Execution continues at the statement labelled by the label (labelled

statement).

The statement defining the label must be within the same or a

surrounding block of the block where the goto is given, i.e. it is not

possible to jump into an inner routine by a goto statement. Furthermore

the result of jumping into an inner statement of an if, while,

repeat, with, for or case statement is undefined.

3. The PASCAL Language

Page 50

3. The PASCAL Language

PASCAL, User's Guide

labelled statement:

"--->label->:->statement- 7-77 >

3.4.4 Repetitive Statements

Repeat Statement

The repeat statement specifies that a sequence of statements is to be

executed repeatedly.

repeat statement:

7"7">REPEAT->-->statement->-->UNTIL->expression-7-7-7---- >

|" perrerr I

The result of the expression must be of type boolean.

The statement sequence is executed one or more times. Every time the

sequence has been executed, the expression is evaluated, when the result

is true the repeat statement is completed.

While Statement

The while statement specifies that a statement is to be executed a

number of times.

while statement:

""->WHILE->expression->D0->statement----------- >

The expression must yield a result of type boolean. The statement

following DO will be executed a number of times (possibly 0) and the

expression will be evaluated before each execution. This will be repeated

until the evaluation of the expression yields a result which is false. Thus,

for example if the value of the expression is false prior to the execution

of the while statement, the statement following DO will not be executed

at all.

For Statement

for statement:

7777>FOR->variable->:=->for list->D0->statement”-7----- >

PASCAL, User's Guide Page 51

for list:

"Trrsexpression -> ”>expression 2 >

->DOWNTO->

The two expressions must be of the same enumeration type and the type
of the variable must be compatible with this.

The repeated statement must not change the value of the control
variable,

The control variable must be simple (i.e. not of array type, not of record
type, not of pointer type and not function identifier).

The statement is executed with consecutive values of the variable. The
ordinal value of the variable can either be incremented (in steps by 1
(succ)) from expressioni TO expression2 , or decremented (in
steps by 1 (pred)) from expression1 DOWNTO expression2.

The two expressions are evaluated once, before the repetition. If the
value of expression1 is greater than the value of expression2 and TO
is specified, the statement is not executed.

Similarly, if the value of expressiont is less than the value of
expression2 and DOWNTO is specified, the statement is not executed.

The value of the variable after the for statement is dependent of the
expressions.

The value of i=j in the following example depends on the value of n. If
n is less than 1 i is unchanged, else i is equal to n.

FOR i:=1 TO n D0...;

IF i=j THEN.

The assignment statement i:=n+1 in the following example is not
allowed.

FOR i:=1 TO n DO

BEGIN

is=mm1;

END;

3.4.5 Conditional Statements

A conditional statement, an if or case statement, selects a single
statement of its component statements for execution.

3. The PASCAL Language

Page 52

3. The PASCAL Language

PASCAL, User's Guide

If Statement

if statement:

"77771 F-expression->THEN->statement= 1-7 "> false part”
Mets pr2rr-

false part:

---->ELSE->statement 2----------- >

The expression must yield a result of type boolean. statement 1 will

only be executed if the value of the expression is true. If it is false, the

statement (if any) following ELSE (statement 2) will be executed.

The ambiguity arising from the construction:

IF el THEN IF e2 THEN s1 ELSE s2

is resolved by interpreting the construction as equivalent to:

IF e1 THEN

BEGIN

IF €2 THEN s1 ELSE s2

END

The following are examples of if statements.

IF day=sunday THEN next :;=monday

ELSE next:=succ(day)

IF x>y THEN

BEGIN

min:=y; max:=x

END

ELSE

BEGIN

min:sx; max:=y

END;

Note: The following two statements are different.

IF (l<=n) AND (table[l]=key) THEN s;

IF lx«=n THEN IF tablell]=key THEN s;

In the case where 1>n the former may evaluate table[1]=key and

probably cause an index error.

If the expression is constant no testing code is generated, and code is

only produced for the chosen part of the if statement.

PASCAL, User's Guide Page 53

Example.

The constant ”test” may be true in the debugging phase, and set to false
in the resulting program, i.e. code for test output is only generated while
the program is tested.

CONST test=false;

if test then writeln ('Kilroy was here”);

Case Statement

A value of an enumeration type can be used to select one of several
statements for execution.

case statement:

---->CASE->expression->0F->-->case list element->-->end part->
semester enes

end part:

"2-2 END?- "orme s sanne nen nen Fer eneemenen >

|-""->OTHERWISE->statement-->

A case list element is a statement labelled by one or more constants.
These constants must all be of a type compatible with that of the
expression. All labels (constants) in a case statement must be unique.
The statement labelled by the current value of the expression is selected
for execution. Upon completion of the selected statement the case
statement is also completed.

case list element:

tørrere ->constanto 77722 =-- >-->;->statement->-->

Notes: The case statement is translated into a jump table. The size of
this table is limited. Hence no two labels 1 and m of one case statement
may be chosen so that

abs(ord(1)-ord(m)) > 4000.

3. The PASCAL Language

Page 54

3. The PASCAL Language

PASCAL, User's Guide

"Case labels" are not ordinary labels and cannot be referred by a goto

statement. Their ordering is arbitrary; however, labels must be unique

within a given case statement.

The value (-maxint-1) is not allowed as case label.

Assume the declarations

VAR

suit: suits;

colour: colours;

Then the following is an example of a case statement.

CASE suit OF

club, spade: colour:=black

END

OTHERWISE colour:=red;

3.4.6 Procedure Call

A routine call serves to establish a binding between actual and formal

parameters and to allocate locally declared variables and invoke

execution of the compound statement of the routine block in its proper
surroundings. A routine call consists of the routine identifier followed by
a list of actual parameters.

When the compound statement is completed, locally declared variables
are deallocated, and execution is resumed at the point immediately after
the routine call.

routine call:

---->routine identifier->-->actual parameters->---2--77-- >

| suuuesenner gere eren ennen |

"77>(->7->-->expression-7------ the hb >

->routine identifier->

-»variable""777777---

If the routine is declared without formal parameters, the routine call
consists of the routine identifier only.

If the routine is declared with a list of formal parameters, this list will be

replaced by the list of actual parameters prior to the execution of the

routine. The number of actual parameters must be identical to the

number of formal parameters. An actual and its corresponding formal

parameter have the same position in their respective lists.

PASCAL, User's Guide Page 55

There exists the following four kinds of bindings between an actual and
its corresponding formal parameter:

value

The actual parameter must be an expression or a variable of a type
compatible with that of the formal parameter. The value of the
expression or variable will be evaluated and substituted in place of the
formal parameter. Changes within the block of the routine to the formal
parameter will not affect the actual parameter. (The usual term for this
parameter binding is call by value).

variable

The actual parameter must be a variable of a type compatible with that
of the formal parameter. All changes within the block of the routine to
the formal parameter will affect the actual parameter directly. The
formal parameter denotes throughout the routine body a specific
variable of the specified type. The actual parameter specifies which
actual variable. the formal parameter must denote, if the actual
parameter denotes a component of a structured type or a referenced
variable the computation of which variable is to be denoted is only
performed once at the routine call. (The usual term for this parameter
binding is call by reference).

A component of a packed structure cannot be given as an actual variable
parameter.

All the actual variable parameters of a given call should denote distinct
variables, or else the effect of the routine call will be difficult to
comprehend.

procedure

The actual parameter must be the name of a procedure, This procedure
must either be declared with all formal parameters specified as kind
value or it must itself denote a formal parameter of kind procedure.

function

The actual parameter must be the name of a function. This function
must either be declared with all formal parameters specified as kind
value or it must itself denote a formal parameter of kind function.

The type of the actual parameter function must be compatible with the
type of the formal parameter.

Note: If the routine call is a call of a formal parameter of kind
procedure or function the correspondence between the lists of actual
and formal parameters cannot be checked by the compiler.

Note: A predefined routine must not be used as an actual parameter of
kind procedure of function.

Note: A parameter of file type must be passed as a variable parameter.

Ås a guide to the choice between value and variable specification the
following should be noted:

3. The PASCAL Language

Page 56

3. The PASCAL Language

If a parameter is not used to transfer a result of the procedure a value

parameter is generally preferred.

The referencing is then quicker and one is protected against mistakenly

altering the data. However in the case where a parameter is of a

structured type one should be cautious because the value specification

may lead to inacceptable inefficiency compared to a variable

specification. The explanation is as follows: A procedure allocates a new

storage area for each value parameter which the formal parameters

denoted.

The value of the actual parameter is assigned to this storage area. The

assignment operation may be time consuming and the amount of

storage allocated to the formal parameter may be large.

The set of local variables of a routine can be regarded as associated with

a specific call of the routine; they exist from the moment the execution

of the routine starts and until it is completed. Thus, in case of recursive

calls of a routine, several incarnations of the local variables and formal

parameters may exist simultaneously, namely one incarnation for each

uncompleted call. By execution of a routine is meant the execution of

the compound statement of its body. The execution is completed, either

when the compound statement is completed, or when a jump tø a label

in a surrounding routine is performed. The only difference between a

procedure and a function call is that a procedure call is a statement, and

a function call is a factor which may be used in an expression.

Example:

TYPE

List=ARRAY [1..100] OF integer;

FUNCTION maximum (VAR I: list): integer;

(” | is of kind variable to save time and space %)

VAR

i, max: integer;

BEGIN

max:=1 (1);

FOR i:s2 TO 100 DO

IF max<l[i] THEN max:=l (i);

maximum: =max

END;

3.4.7 With Statement

A with statement can be used to facilitate the manipulation of record

components.

with statement:

PASCAL, User's Guide
Page 57

Within the statement the fields of the record variable(s) can be denoted
by giving their field identifiers only (without preceding them with the
denotation of the entire record variable).

For a nested with statement in the form

HITH vi DO

WITH v2 DO

HITH vn DO s;

You may use the following shorthand notation

HITH vi,v2,......... syn DO s;

If a set of variables (of enumeration type) is used for selecting the
record variable (e.g. the variable i in the statement WITH a[i] DO
.....,) then the values of these variables must not be changed in the
statement. However, a violation of this rule cannot be checked. The only
effect of such a violation will be the change of the values of these
variables.

Examples:

WITH hand[1] DO

BEGIN

t:=normal;

suit:=club;

rank:=8

END;

HITH date DO

IF month = 12 THEN

BEGIN

month:= 1; year:=year+1

END

ELSE month:=month+1

is equivalent to

IF date.month=12 THEN

BEGIN

date.month:=1; date.year:=date.year+1

END

ELSE date.month:=date.month+1

3. The PASCAL Language

Page 58

4. Detailed Scope Rules

PASCAL, User's Guide

4. Detailed Scope Rules

This chapter contains the detailed scope rules.

The scope of a name is the declarations and statements in which the

declaration of the name is valid, All names must be declared textually

before they are used.

The scope depends on the kind of the object denoted by the name.

Label-, Constant-, Type-, Variable- or Routine-names.

The scope of the name is the rest of the program or routine in which it
is declared.

Parameter-names.

The scope of a formal parameter is the body of the routine.

Field-names.

The scope of a field name in a record is only that record.

Enumeration-values.

The scope of an identifier introduced as a value of an enumeration type

is the rest of the program or routine in which it is declared.

Program-name.

The program name has no significance within the program.

The same identifier must be introduced at most once in each body or

record. If the scopes of an identifier overlap, it is always the innermost

scope which is valid.

PASCAL, User's Guide Page 59

5. Predefined Routines

Standard routines are predeclared in the implementation of Pascal.
Since they are, as all standard quantities, assumed as declared in a scope
surrounding the program, no conflict arises from a declaration
redefining the same identifier within the program. The standard
procedures are listed and explained below.

5.1 Standard Procedures

Standard procedures are not allowed as actual procedural parameters.

5.1.1 File Handling Procedures

put(f) see under FILE types in

get(f) subsection 3.3.3.3

read -

readln -

write -

writeln -

page(f) -

reset(f) -

rewrite(f) -

open(f, file name) -

close(f) -

5.1.2 Dynamic Allocation Procedures

new(p) see under Pointer Types in

subsection 3.3.3.3

dispose -

5. Predefined Routines

Page 60

5. Predefined Routines

5,1.3 Transfer Procedures

pack

unpack

5.1.4 Date And Time

date(a):

time(a):

PASCAL, User's Guide

see under Packed Representation

in subsection 3.3.3.3

assigns the current date to the

alfa variable a, in the form:

'yy.mm. dd. !

assigns the current time to the

alfa variable a, in the form:

'hh.mm. '.

5,1.5 Program Control Procedure

replace (program name)

5,2 Standard Functions

The procedure replace terminates

the current program and invokes

the program denoted by program

name. Program name must be the

name of a Pascal object file,

i.e. a compiled Pascal program.

The program which calls replace

must prior to the call close all

files, (except input and output,

if they are not connected to

external files).

The procedure is restricted only

to be called from the main

program.

The procedure returns to the

invoked program. If an error

occurs during the replacement the

execution is terminated and an

error message is given.

Standard functions are not allowed as actual functional parameters.

5,2.1 Arithmetic Functions

For the following arithmetic functions, the type of the expression x is

either real or integer. For the functions abs and sqr, the type of the

result is the same as the type of the parameter, x. For the remaining

arithmetic functions, the type of the result is always real.

PASCAL, User's Guide

abs(x)

sqr(x)

sin(x)

cos(x)

exp(x)

1n(x)

arcsin(x)

sinh(x)

sgrt(x)

arctan(x)

5.2.2 Transfer Functions

trunc (x)

round(x)

Page 61

computes the absolute value of x.

computes the square of x.

computes the sine of x, where x

is in radians.

computes the cøsine of x, where x

is in radians.

computes the value of the base of

natural logarithms raised to the

power X.

computes the natural logarithm of

x, if x is greater than zero. If

x is not greater than zero an

error occurs.

computes the principal value, in

radians, of the arcsine of x.

computes the hyperbolic sine of

x.

computes the positive square root

of x, if x is not negative. If x

is negative an error occurs.

computes the principal value, in

radians, of the arctangent of x.

From the real parameter x, this

function returns an integer

result which is the integral part

of x. The absolute value of the

result is not greater than the

absolute value of the parameter,

For example:

trunc(3.7) ylelds 3

trunc(-3.7) yilelds -3

From the real parameter x, this

function returns an integer

result which is the value of x

rounded to the nearest integer.

If x is positive or zero then

round(x) is equivalent to

trunc(x+0.5), otherwise round(x)

is equivalent to trunc(x-0.5).

For example:

5. Predefined Routines

Page 62

5,2.3 Ordinal Functions

ord(x)

chr(x)

succ(x)

pred(x)

5. Predefined Routines

round(3.7) yields 4

round(-3.7) yields -4

The parameter x is an expression

of ordinal-type. The result is of

type integer. If the parameter is

of type integer then the value of

the parameter is yielded as the

result, If the parameter is of

any other ordinaltype, the result

is the ordinal number determined

by mapping the values of the type

on to consecutive non-negative

integers starting at zero.

For example: e

ord(false) yields 0

ord(true) yields 1

Yields the character value whose

ordinal number is equal to the

value of the integer expression

x, if such a character value

exists,.

For any character value, ch, the

following is true:

chr(ord(ch))=ch

The parameter x is an expression

of ordinal-type. The result is of

a type identical to that of the

expression. The function yields a (|
value whose ordinal that of the

expression, if such a number is

one greater than value exists, If

such a value does not exist, the

result is undefined.

The parameter x is an expression

of ordinal-type. The result is of

a type identical to that of the

expression. The function yields a

value whose ordinal number is one

less than that of the expression

x, if such a value exists. If

such a value does not exist, the

result is undefined.

PASCAL, User's Guide Page 63

5.2.4 Predicates

odd(x) Yields true if the integer

expression x is odd, otherwise it

yields false.

eof(f) Indicates whether the associated

buffer variable f" is positioned

at the end of the file f.

eoln(f) Indicates whether the associated

buffer variable f"” is positioned

at the end of a line in the

textfile f.

5.2.5 Processing Time Function

clock Clock is a parameterless real

function, the result of which is

the current processing time in

seconds with an accuracy given by

the length of a time slice

(usually 25.6 milliseconds).

52,6 Monitor Functions

The integer function ”monitor' is the Pascal equivalent of the
RC9000-10/RC8000 monitor procedures. For the time being only the
following calls are implemented:

'ereate entry" (40)

"lookup entry" (42)

”change entry' (44)

"remove entry' (48)

The call is:

result:= monitor(wanted function, <file>,tail);

where

wanted function is one of the allowed numbers (40,42,44),

<file> is a file identifier,

tail is declared as tail: ARRAY [1..10] oF integer, and
corresponds to the tail of the file catalog entry.

For further information see ref. 4 and ref. 5.

Example:

If the result of "lookup pascal” is

3. Predefined Routines

Page 64 PASCAL, User's Guide

pascal =set 224 dise d.810113.1045 0 0 2.0 68 ; system e
; 159 139 3 -8388607 8388605

then the Pascal statements

file name := 'pascal';

result := monitor(42, file name, tail);

will return with

result = 0

and the following contents in tail:

index word char half words text

1 224 0 0 224 0 224 ”.

2 6580595 100 105 115 1606 -1677 ”dis'

3 6488064 9 0 0. 1584 0 "ec!

4 0 0 0 0 0 0 ,

5 0000 0 0 es e
6 7846624 119 186 224 1915 -1312 Hu

7 0 0 0 0 0 (,

8 0 0 0 0 0 (i '"
9 8192 0 32 0 2 0 LE:

10 68 0 0 68 0 68 p'

where:

tail [1] = length of file

tail [2..5] = document name

tail [6] = date and time

tail [9] = contents key " 4096

The function call is sucessful if and only if the result is zero. For further

information about the unsuccessful results see chapter 2 of ref. 5.

5.2.7 Access To File Processor Parameters

The function system” of type integer gives access to the parameters

from the FP-command stack, i.e. the call of the program.

With the declarations

VAR

result, paramno, int: integer;

alf: alfa;

The result of a call:

result := system (paramno, int,alf);

is:

IF (paramno >= 0) AND (paramno <= number of parameters in FP-

stack) THEN

5. Predefined Routines

PASCAL, User's Guide

result := separator length

ELSE result ;= 0;

Page 65

where separator length is built as: seperator x4096 + length,

int and alf are set according to the following scheme:

IF length = 4 THEN

BEGIN (" the stack parameter is a number +)

int := the parameter;

alf := undefined

END

ELSE

IF length = 10 THEN

BEGIN (” the stack parameter is a word +)

int := undefined;

alf := the parameter;

END;

The seperator values are

0: end of parameter list

2: new line (start of list)

4: space

6: equality sign

8: point

Example of the numbering of the parameter stack items:

pl = pascal p heap.1000

0 1 2 3 4

Result of calls of system:

paramno result int alf

(9 2x4096+10 - "pl '
1 6%4096+10 - 'pascal '

2 4x4096+10 - 'p '

3 4x4096+10 - 'heap '

4 8x4096+4 1000 -

otherwise 0 - -

For further information about separator see ref. 6.

5.3 Complete List Of Predefined Routines

Name: Subsection:

abs 3.3.3.2 5.2.1

arcsin 3.3.3.2 5.2.1

arctan 3.3.3.2 5.2.1

chr 3.3.3.2 5.2.3

clock 5.2.5

5. Predefined Routines

Page 66

5. Predefined Routines

close

cos

date

dispose

eof

eoln

exp

get

In

monitor

new

odd

open

ord

pack

page

pred

put

read

readln

replace

reset

rewrite

round

sin

sinh

sqr

sart

suce

system

time

trunc

unpack

write

writeln HAD HAD KØD KAD AUD UD (UD AUD AUD OD KAD ad HD KAD UD LD KJ ÅUD (0) (UD AD AD AUD UD KJ UT ÅD OD UD AD AUD AD OD 0 42 UD HUD UD KAD fl IND LAD LAD MAD HAJ KAD MUD AUD AD fed MAD AD KAD AUS UD LD ÅD AUD ÅD AD IND AD AD AND IND 100 fed AD UD ad HAD HUD MØD FS AI HUD (UD 100 ÅD HD AUD LD UD AUT AUD AD AD 400 MAD KAD LAD LAD ÅG AD ON 0 AD 403 ER ER 0 ER 40 40 NDRNRDNDDN NIKNS 10 (ar

w Ra had
Ra

Mød bad ØD IND KØ ÅND AND båd

ild Ø ND

an an aa 0 Mn NNNDN DN Na FOSTERET ES]

PASCAL, User's Guide

PASCAL, User's Guide Page 67

6. Compiler Directives

The compiler has some optional features. In particular, it may be
requested to insert ør omit run-time test instructions. Compiler
directives are written as comments and are designated by an $-character
as the first character of the comment:

("$<option sequence> <any comments> +)

The option sequence is a sequence of instructions separated by commas.
Each instruction consists of a letter, designating the option, followed
either by a plus (+) if the option is to be activated or by a minus (-) if
the option is to be deactivated,

The following options are available on RC9000-10/RC8000:

1 Lists the program text between (+$1+x) and (x$1-x). Default is

(5-2).

This option may be used for partial listing of a program in the
contrary to the list directive of the call (see chapter 7).

The code of the procedures between (x$r+x) and (x$r-x) will
during initialization be transferred to core and remain resident
during the run (see chapter 8).

Lists the generated code for the procedures/functions between
(+$c+x) and (+$c-4), default is c-. The listing may be used for
calculations of execution times for the different parts of a
program.

Includes run-time tests that check

-...... all (non constant) array indexing operations, to ensure that the
index is within the specified array bounds,

-... all (non constant) assignments to variables of subrange types,
to make certain that the assigned value is within the specified
range,

-... all case statements, to ensure that the case selector

corresponds to one of the specified case labels, if no otherwise
part is present an empty otherwise part is assumed.

6. Compiler Directives

Page 68

6. Compiler Directives

PASCAL, User's Guide

The standard mode is:

include tests for:

- array indexing operations unless the test ought to be superfluous

according to the type of the index expression and the index type.

Example:

assume the declarations

TYPE

index range = 1..6;

super range = 0..7;

VAR

index : index range;

super index: super range

table : ARRAY [index range] OF 1..2;

then no code for index check is generated in the following statement

table index:= 1;

Indexing with a constant expression is tested at compile time.

- Assignments to variables of subrange types unless the test ought to

be superfluous according to the type of the expression and the type

of the variable.

Example:

Assume the above declarations, then no code for range test is generated

in the statement:

super index:= index;

- Case statements. If no explicit OTHERWISE part is specified, an

empty one is assumed.

The super check mode (t+) is mainly introduced as a debugging tool.

The difference between standard mode and t+ mode is the tests for

legal values of subrange variables, i.e. uninitialized variables are easily

found in t+ møde. The following example may emphasize the usefulness

of t+.

PROGRAM index check (output);

TYPE

index range = 1..6;

VAR

table: ARRAY [index range] OF 1..2;

index l: index range;

index 2: 2..5;

PASCAL, User's Guide Page 69

VALUE

table=(1,2,1,2,1,2);

BEGIN

index 1:= index 2;

CASE table [index 1) OF

l: write(” odd ");

2: write("' even ");

end; (£ of case statement +)

write (' index ”);

END.

In standard mode the result may be " index ", because index 2 is
uninitialized. In t+ mode this would have resulted in an error message,
detected at the line index 1:= index 2; unless the contents of the
memory location allocated for index 2 accidentally are a value inside
the bounds of index range.

6. Compiler Directives

PASCAL, User's Guide

7. Call Of The PASCAL Compiler

7.1 How To Compile A Pascal Program

The compiler works in the job process and the compilation is started by

means of an FP-command specifying the source text, the compiler

options and the file where the resulting object program should end. The
result of the compilation is, in case no error is detected, a binary file
with code for the procedures/functions and the main program, value

segments for value initialization, and procedure table and an
information segment; with each of these items occupying an integral

number of bs-segments. The object code may be loaded and executed by

means of the Pascal Runtime system -see below.

Syntax of the FP-call:

1 1 x

(<object> =) pascal(<source>) (<option>)

0 0 0

<object> Die <bs-file name for the generated

object code>

<source> Die <text file>, if not specified then

primary input is assumed.

<option> Dim list.<yes or no>

| heap.<integer>

| codesize.<integer>

| survey.<yes or no>

| ioresident.<yes or no>

| preserve.<yes or no>

| lib.<libname>

<yes or no> i: yes | no

Semantics of the options:

7. Call Of The PASCAL Compiler

PASCAL, User's Guide Page 71

list.yes

produce a program listing on current output, with line numbers added.

Default is list.no

survey .yes

Produce a table of the compiled routines and some information about

them, for example start line number, size of code, required stack size

and some other information necessary for the Pascal system.

Default is survey .no

heap.<int>

<int> is the size of a core area initially assigned to the use of the heap

(default is heap.0). If a program uses the heap it may be convenient to

set the heapsize because it may save some execution time.

codesize.<int>

<int> is the maximum number of instructions which may be generated

for the statement part of a "main program", procedure or function.

(Default is codesize.1500). <int> is rounded up to the nearest

multiplum of 256; the maximum size is 1048576.

ioresident.yes

let read and write be core resident at runtime. Default is

ioresident.no.

preserve .yes

do not remove the intermediate code entry (pascalpif) after

compilation. Default is preserve. no.

lib.<libname>

use a private version of library and running system when the object

program is executed.

Storage Requirements

The compiler requires a job with a core area of at least 50000 halfwords.

A too small size may cause the compilation to terminate with the alarm

”pascal runtime error: process too small'. A greater core area

may remedy the problem.

The compiler uses the following files: ”pascalpif” and ”pascalenv, in

addition to current input and output.

How to Run a Compiled Pascal Program

The object code produced by the Pascal compiler may be loaded and

executed by the FP-command:

1 n

(<param>=) <object> (<parameters>)

(9 0

During execution two area processes are used, one for the Pascal library

placed in the file ”pascallib” and one for the object file.

7. Call Of The PASCAL Compiler

Page 72

8. Runtime Environment

8. Runtime Environment

PASCAL, User's Guide

Unsophisticated users should not read all the details of this chapter.

8.1 The Pascal Process At Runtime

A Pascal object code file contains instructions for initialization of the

core area, i.e. loading of the run time system (PASCRUN) and the main

program, after loading control is given to the main program.

After the initialization the core image looks like:

start of process

FP

global variables

resident

runtime

procedures

start of procedure table

start of library procedures

top of procedure table

w2 (stacktop)

code top

main program (if not in the resident part)

top of heap

heap

top of resident procedures

resident procedures

top of user area

FP stack, data buffers for input and output

top of process

PASCAL, User's Guide Page 73

A call of a procedure which is not already in core implies a transfer of

code from backing storage to core, and the code will be placed inside the

area between the code top and the stack top.

The code area is managed by means of a logical segmentation algorithm,

handling each routine as one segment.

If enough space is available, the procedure is allocated space from the

code top towards the stack top. Else the runtime system will decide

which routine(s) to declare not in core”. The code area is managed

according to a modified round robin strategy.

8.1.1 Resident Procedures

During initialization the procedures declared to be resident are read

into core and reside there during the whole run. The resident

procedures are placed outside the normal used area for code, therefore

these procedures dø not influence the former mentioned algorithms.

8. Runtime Environment

Page 74 PASCAL, User's Guide

9. Error Messages

Errors in a program are indicated depending of the categori of the

error. Compile time error messages are separated into two categories.

Errors discovered during the first pass are indicated by an extra line in

the program listing, with an uparrow pointing at/after the erroneous

item, and a number between 0 and 300 according to the messages given

as appendix C.

Errors discovered during the second pass are indicated by:

error no <int> in line no <int>'.

Examples:

Pass1 error: mis-spelling, i.e. identifier not declared:

88.07.07 15.51 pascal version 1981.01.08

1 PROGRAM show error(output);

2 VAR

3 result : integer;

4 int : integer;

5 alf H alfaa;

kodbokekeksksksd 401

6

7 (i BEGIN
8 1 resutl := systemt 1, int, alf);

Medede dede dede 401

9 END.

number of errors: 2

rumber of warnings: 0

error description

101: identifier not declared

end

blocksread = 88

9. Error Messages

PASCAL, User's Guide

88.07.07 15.51 pascal

1 PROGRAM pass2 error (output);

2 VAR

3 int : integer

4 0 BEGIN

5 1 int := 9000000;

6 END.

error no 301 in line no 5

Code: oK+ 20 Hal fwords

Error(s) found in pass2

number of errors: 2

error description

301: decimal integer constant too large

end

blocksread = 61

version

Page 75

1981.01.08

In case of a run time error a message indicating the error is written on
current output, and the program is terminated. The line number where
the error occurred is written followed by a trace of the active routines.

Example of a procedure for program exit with a trace of the active
routines, This may be used as a debugging tool.

88.07.07 15.52 pascal version 1981.01.08

1 PROGRAM runtime error(output);

2 PROCEDURE stop;

3 0 BEGIN

4 1 writeln(output, ” intentional stop ”);

5 2 readin(output);

(3 END;

7

8 0 BEGIN

9 1 stop;

10 END.

Code: 0OK+ 74 Halfwords.

end

blocksread = 67

intentional stop ...

illegal zonestate

occured in 5 = line 2 of stop

called from 10 = line 2 of runtime error

blocksread = 8

9. Error Messages

Page 76

10. Some Programming Hints And

Warnings

There is no check for overflow on integers.

It is not checked if the tag field of a record with variant part has

the correct value when a component of the variant part is

referenced.

- Unrestrained use of packed records and arrays may slow down the

program execution, because of the many slow shift operations

which are required, i.e. the saved space for the variables is paid for

in execution time.

If the variable requirement is so extensive that it is desirable to use

packed data types it may be helpful to observe the following

advices:

1. For sequential referencing of the items of a packed array of

char (e.g. in a for-statement): operate on an unpacked array

and use the standard procedures ”unpack' and ”pack”, before

and after the referencing.

2. It is cheaper to use data types occupying an integral number of

halfwords, even if it is not necessary, instead of data types of

different sizes with only one or two items in each word.

3. For packed records with items with different storage

requirements, the number of shifts may be minimized if the

items are declared with descending size.

Example:

a) t1 : PACKED RECORD b) t2 : PACKED RECORD

bool : boolean; pos int : 0..maxint;

pos int : 0..maxint; bool : boolean

END; END;

in case a) an assignment to bool will require between 14.2 and

18.6 microseconds just for the shift operations, in case b) the

interval is 5.4 to 9.8 microseconds.

10. Some Programming Hints And Warnings

PASCAL, User's Guide Page 77

An assignment ”boolean variable := tl.bool” (with

boolean variable and t1 declared on the current level) requires

3 instructions, if tl was unpacked the same assignment would

require 2 instructions.

The value-statement may be a very convenient construction, but it

has some disadvantages:

Initialization of a structure with the same value to almost all the

items may be fast but it will require about three words of code per

item, and if the number of elements exceed 255 words it will

involve a transfer of data from backing storage, which takes about

30 milliseconds, plus 1 msec, for each segment to transfer to core,

in that case it will be much faster and less space consuming to use

a for-statement,

Sets are convenient to use for many purposes, but it is a rather

expensive construction. The expression ”ch IN "a"”, "b", fg”

will cause 18 words of code. This is due to the fact that a set is

always constructed as a 6-word bit map, with each bit indicating if

the set element with the corresponding number is in the set

(elements are counted from 0).

In the case of "colour IN red,blue” three words of code is saved

(the range check) if ”colour” is declared as a subrange of

elements, the ordinal values of which lies between 0 and 143. E.g.

variables of type ISO or char fulfil this condition.

If the cardinality of ”colour” in the example above is less than 24,

then the test for IN only requires 7 words of code.

The heap is implemented as a stack. This means that each time the

standard procedure ”new' is called, a piece of core is allocated on

top of the heap. This piece of core is able to contain a variable

referenced by the pointer variable used as argument to new.

Dispose(p) work as unstacking. The core inclusive the part

referenced by p is released and may now be reused.

Compile time if-statement (conditional code).

In the statement:

IF <const bool expr> THEN stl ELSE st2

code will only be produced for either stl (if the value of <const

bool expr> is true) or st2 (if the value is false).

In the case of:

IF <const bool expr> THEN st

no code at all will be produced if <const bool expr> is false.

It is not allowed to ”close” input and output, if they are not

connected to external files.

10. Some Programming Hints And Warnings

Page 78 PASCAL, User's Guide

A. References

Part numbers in references are subject to change as new editions are

issued and are listed as an identification aid only. To order, use package

number.

1 The Programming Language PASCAL,

Acta Informatica, 1, 35-63, 1971

2 ISO Draft International Standard ISO/DIS 7185: Specification for

Computer Programming Language Pascal

4 PN: 991 11255

RC9000-10 System Software

delivered as part of SW9890I-D, Monitor Manual Set

5 PN: 991 11259

Monitor, Reference Manual

delivered as part of SW9890I-D, Monitor Manual Set

6 PN: 991 11263

System Utility, User's Guide, Part One

delivered as part of SW8010I-D, System Utility Manual Set

.A. References

PASCAL, User's Guide Page 79

B. RC9000-10/RC8000 PASCAL Syntax
Diagrams

The shaded areas denote differences/extensions in proportion to the
report [1].

B. PASCAL Syntax Diagrams

Page 80 PASCAL, User's Guide

program

3 PROGRAM ——> identiflier > (— filelist 2) > ; > block > 2. —>

identifiler

r— letter <=

letter

F— digit —m

file list

—>——> file identfier — = —> RC8000 file name ——r—— e
2

block

—r————> LABEL DT unsigned integer

>

Å Å i

3

t—> CONST > identifier —> = —> constant

åd EF.

;

TYPE > identifler 7 = —> type

hd

3

VAR identifiler ——> : —> type e

od ?
s
H

SK > VALUE value specification

hø dl
se dt
H

dd

5; < block H

> PROCEDURE ——> identifier —> pårameter list

1.5 FUNCTION —> identifier —> parameter list > : —> type Identifier —7

BEGIN statement END Ad

Få
3

B. PASCAL Syntax Diagrams

PASCAL, User's Guide Page 81

Sk

—... EXTERNAL MODULE ————— identifiere... ————————

PROCEDURE ———": identifier parameter list

FUNCTION —— identifier —— parameter list — 1 —» typeidentifier

END —

B. PASCAL Syntax Diagrams

Page 82

parameter list

PASCAL, User's Guide

3

(SE identifler ——> : > type identifier]) 7

FUNCTION »

VAR ——7

ramme rdPROCEDURE

expression

imple expression

<> <= >= IN[il
HRENENENENEN

ITTTT UDE
>

|

simple expression

— term

simple expression

kd

EN

term

ki
term dl

OR

— factor i I T TI

& /... DIV

factor | I |

B. PASCAL Syntax Diagrams

PASCAL, User's Guide Page 83

unsigned integer

digit ————>

constant

md + 7 r— constant identifier ——

bG-7 unsigned number

——> " —5 character] ”

—- om fi — 5 character] m >

"JE
LTTE,

unsigned integer —>

] øh J

unsigned number

. ["]—> unsigned integer IR . digit > E R unsigned me

type

simple type

DT T — type identifier

ME PACKED

| y ARRAY —> I 3 "simple type J->] —> OP —> type

(> FILE —> OF type

SET oF simple type

(oo —— RECORD —> field list END

B. PASCAL Syntax Diagrams

Page 84 PASCAL, User's Guide

simple type

type identifler

li me (> identifier gi)

,

ly constant > .. 2 constant md

field list

5

” my identifier 1 mp type 7 SEER

CASE «——> identifier —> : >> type identifier — OF — e

| —
>

L » constant —A—> : 3 (> field list —)

value specification

<y varlable identifier —> = —> const specification >

const specificatlon

—br—> constant >

(—> (—> structured const)

—> NIL

re 11 e
constant

TT, ... — constant —=

structured const

> const specification
vw

> < 3 constant —> 2». —> constant > > -—> € —> const specification -—

L—5 constant —> : > (— struetured const —2)

.

B. PASCAL Syntax Diagrams

PASCAL, User's Guide

statement

c——> unsigned integer > : i

variable 5 ;=

L function identifier]

Page 85

expression w

Fa

(> procedure identifier

[EL
expréssion >l>)

procedure identifier mm

(—> BEGIN —r—j statement END

3

IF —> expression —> THEN —> statemen

[I CASE —> expression > OF DæD cons

.

t MEN ELSE — statement —l

tant 1 æ statement

L, END

WHILE — expression —> DO ——> state

[I

——> FOR —> identifier > := —> expressio

REPEAT >TT statement UNTIL —> expression

ment Tr?

L OTHERWISE —> statement —$
ment

DOWNTO —

n TO

L expressio

[I] GOTO —> unsigned integer

, TO
WITH OS våriable DO — statement

n > DO — statement ——————J

B. PASCAL Syntax Diagrams

Page 86

factor

unsigned constant

variable

PASCAL, User's Guide

(> function identifier —r—> (> exPresston
,

) md

(expression

NOT factor

> 1

Tx expression — —> expression —-

>

unsigned constant

> constant identifier

NIL

vb

(mg unsigned number ———————

variable

Doom 3 aracter —l7 17

É variable identifier

field identifier > | experssion 1 —
> earerseton 7?

[5 . ——> field identifier a

U

B. PASCAL Syntax Diagrams

PASCAL, User's Guide
Page 87

C. Utility Programs

C.1 Indent (Text Formatting Program)

The program performs indention of source programs depending on the
options specified in the call and on the keywords (reserved words) of
Pascal/Real-Time Pascal.

call:

1 x

(<outputfile>=) indent <input file> (<option>)

(4 (9)

<option>::=

lines line numbers are added

mark the blockstructure is made clear by means of !
between matching begin-ends

list the same as: lines mark

noind the output will be left justified

myind the output indention is the same as the input

indention

le lists keywords in capital letters and

identifiers in small (lower case) letters

uc both key words and identifiers are listed in

upper case letters

pascal RC9000-10/RC8000 pascal indention mode

rtp RTP3502 indention mode

help produces a list of legal options

C. Utility Programs

Page 88

C. Utility Programs

PASCAL, User's Guide

Storage requirements:

The core støre required for indent is 16000 hw (size 16000).

Error messages:

illegal input-filename

input file must be specified

2% warning, end(s) missing

an error in the begin-end structure has been detected

%£ premature end of file

comment or string not terminated

C.2 Cross (Cross Reference Program)

The program produces a cross reference listing of the identifiers and

numbers and a use count of the Pascal/Real-Time Pascal words used in

the input text.

The cross reference list is made with no regard to the block structure of

the program. The list is sorted according to the ISO-alphabet, i.e.

numbers before letters, but with no difference between matching upper

and lower case letters.

The occurence list for an identifier consists of a sequence of

Pascal/Real-Time Pascal line numbers. The occurrence kind is specified

by means of the character following the line number:

x meaning the identifier or number is found in a

declaration part.

= meaning the identifier is assigned to in the

line specified.

meaning the identifier or number occured as a

label.

blank all other uses

<<<<<< <<< <<<< in the list is a warning denoting that the name consists

of more than 12 characters, which is the number of significant characters

for Pascal-identifiers.

Call:

x

<output file> = cross <input file> (<options>)

(4

PASCAL, User's Guide Page 89

Storage Requirements:

The core store required for cross is at least 40000 hw (size 40000), but
the requirement depends on the size of the input text.

Error Messages:

??? illegal page length defined

the page length definition of the catalog entry tail for cross must be
greater than 4

2??? illegal number of columns

the reference list column count specified in the catalog entry tail must
be at least 1.

??? output file must be specified
left hand side of the call must be a name

2??? input file must be specified

input file must be specified

2?? yes or no expected

option value” must be yes” or ”no”

??? name expected

the title option must be followed by a name

??? error in bracket structure, detected at line: xx
missing ")" ('s)

??? error in blockstructure, detected at line: xx
unmatched END

2?? unknown option

298% warning: hash table overflow at line: xx
the name table ran full at line xx, the cross referencing continues for the
names met until line xx, new names and numbers in the following lines
are ignored.

C3 Use Of Indent And Cross

Indent and cross are two idependent programs but a sequence of calls
similar to the following will produce a nice listing of a Pascal program
with line numbers according to those of the compiler listing, i.e. the
numbers used in case of errors.

Example of program calls:

C. Utility Programs

Page 90

C. Utility Programs .

udlist= set 0

sourcelist= indent source mark lc

udlist= cross sourcelist title.source

convert udlist

The contents of source and output from the job are shown on the

following pages.

PASCAL, User's Guide

Contents of source

program test listing(output);

label

7913

const

first = 1; last = 25;

type

structure = record

field1, field2 : real;

random field : integer;

name field : alfa;

case cheat : boolean of

true : (name conv : alfa);

false : (int1, int2, int3 : integer);

end;

var

random help, help : integer;

very long identifier name : alfa;

table : array [first .. last] of structure;

value

table = (<first .. last> " (0.0, 1.0, 13, ”abcdef",

træ 2 0 12933

function random number : integer;

(” generate a pseudo random number sequence +)

begin

random number ;= (random help ” 1023) mod last+1i;

end;

begin

random help := 13;

«ce.

”)

for help := first to last do

with table[help] do

begin

random field := random number;

end;

«e.

”)

7913:

end.

ud=indent ttttt mark le

end

Page 91

C. Utility Programs |

Page 92

source

oe dame W Nn

ARSSS8e8IKURVE ER td el BO IND AN IND DN IND TND IN IV RU må må md md må må må må må mk nm Fin mm 0 NØAØMBRWANSOVIENASMBS UN =DlOVÆØNSMUM SUN ao so co WM ON un Sl PU ma
i ma cd ca cd må må OM BRWN == 0

PASCAL,

88.11.14 10.49 page 1

PROGRAM test listing(output);

LABEL

7913;

CONST

first = 1; last = 25;

TYPE

structure = RECORD

! field1, field : real;

! random field : integer;

! name field : alfa;

1! CASE cheat : boolean OF

! true : (name conv ; alfa);

! false : € int1, int2, int3 : integer);

1 END;

VAR

random help, help : integer;

very, long identifier name : alfa;

table : ARRAY [first .. last] OF structure;

VALUE

table = (<first .. last> + (0.0, 1.0, 13, "abedef',

true : (! 12;

FUNCTION random number : integer;

(" generate a pseudo random number sequence ")

BEGIN

I random number ;= (random help % 1023) MOD last + 1;

END;

BEGIN

random help := 13;

! &.

! x)

! FOR help := first TO last DO

1. WITH tablel help] DO

! BEGIN

! ! random field := random number;

END;

(=.

=)

7913

END.

C. Utility Programs

User's Guide

PASCAL, User's Guide Page 93

source 88.07.23 10.49 page 2

0 2o= 20= 2o=

5% 2o= 26

13 20r 30

25 5"

1023 26

7913 3= 42

alfa 10= 12% 17x

boolean 11x

cheat 11%

false 13=

fieldi1 Bx

field2 8=

first 5= 18= 20% 35

help 16% 35= 36

inti 13%

int2 13%

int3 13%

integer iel 13 16m 23

last 5% 18% 20= 26 35

name conv 12=

name field 10=

output 1x

random field ge 38=

random help 16x 26 30=

random number 23% 26= 38 CSSSSSSSSSSSS

real 8=

structure 7% 18=

table 18% 2or 36

test listing 1=

true 12= 21m

very long identifier name LSSSESSSTSESS

17%

C. Utility Programs

Page 94 PASCAL, User's Guide

source 88.07.23 10.49 page 3 e

ARRAY

BEGIN

CASE

CONST

Da

END

FOR

FUNCTION

LABEL

MOD

OF

PROGRAM

RECORD

To

TYPE

VALUE

VAR

HITH Så Må Ca 3 SR MR SR NS md me 0 ER RV må 0 MA må

C. Utility Programs

PASCAL, User's Guide Page 95

C.4 Performance Measurement

Because of the software managed program segmentation on routine
level it is possible to gather statistical information for a Pascal program
during execution, without extra statements in the program and without
special compilation. The running system is provided with two sets of
code for call and exit management. The standard action is without
gathering information for statistics. The statistical version is chosen if
the FP mode bit "listing is set (mode listing.yes). At program end the
measurement is tabulated as shown below.

Each table entry contains information as:

routine name (first entry is for the main program), begin-line, number
of times the routine has been called and some time consumption
informations. It should be noted that the time information is real time
(not CPU-time). This means that swap out and backing storage transfer
time is accounted and hence may disturb the result. The reason why real
time is measured instead of CPU-time is based upon experience
showing that input and output operations very often constitute the
greater part of the program execution time, and this would not be seen
from CPU-time measurements.

C. Utility Programs

pascal cross 1077

read line 149

halt 153

insert id 664

init 280

error 250

newpage 410

checkbracket 423

nextsymbol 448

skip 580

remove non k 613

sort table 833

print table 955

writealfa 946

Totals:

C. Utility Programs

Called % of

calls

1. 0.204

45 9.202

0 0.000

135 27.607

1. 0.204

0 0.000

3 0.613

29 5.930

233 47.648

5 1.022

1. 0.204

1. 0.204

1. 0.204

34 6.952

1709

Average

(sec)

otal

(sec)

0.5459

0.0000

0.1107

0.2377

0.2377

0.0683

0.0592

0.0769

0.1611

0.0674

PASCAL, User's Guide

PASCAL, User's Guide

D. Error Messages

D.1 Error Messages From First Pass

number meaning

001 illegal character

002 !program' or 'module' expected

003 identifier expected

004 error in parameter list

005 73! or ',' expected

006 1)! or ';' expected

007 137 expected

008 digit expected

009 '=' expected

010 digit expected

011 constant expected

012 constant expected

013 unsigned constant expected

014 error in declaration

015 "file! expected

016 17k! expected

017 <type> expected

018 1,...! expected

019 19! or ",' expected

020 7! expected

021 'of! expected

022 1," or 'Å' expected

023 unpacked structured type expected

024 "4! expected

025 1)! expected

0286 ”end' expected

027 <const specification> expected

028 <set const element> expected

029 'å' or ',' expected

030 <str const element> expected

031 '>' expected

032 ;&% expected

033 "module expected

034 pascal' or 'fortran' expected

035 'end' or ';' expected

Page 97

D. Error Messages

Page 98 PASCAL, User's Guide

036 "begin! expected

037 1:=! expected

038 <simple expression> expected

039 expression expected

040 expression expected

041 expression expected

042 "to! or "downto! expected

043 'do' or ',!' expected

044 'do' expected

045 ”then' expected

046 127 expected

047 'else' expected

048 'until' or ';' expected

049 1.7 expected

050 string expected

051 end of file expected

100 error in real constant: digit expected

101 identifier not declared

102 identifier declared twice

103 illegal integer constant

104 incompatible subrange types

105 subrange bound must be scalar

106 index type must be scalar or subrange

107 not a type

108 illegal type

109 only tests on equality allowed

110 illegal pointer type

111 type of variable is not record

112 no such field in this record

113 previous declaration was not " forward”

114 too many digits in label

115 multideclared label

116 illegal value name

117 not a variable

118 type of variable must be file or pointer

119 type of variable is not array

120 index type is not compatible with declaration

121 type of variable must be boolean

122 incompatible set element types

123 illegal set element type

124 type conflict of operands

125 illegal type of operand(s)

126 file comparison not allowed

127 strict inclusion not allowed

128 not a function

129 undeclared label

130 illegal type of expression

131 number of parameters does not agree with declaration

132 illegal parameter substitution

133 actual parameter must be a variable

134 not a procedure

135 incompatible with tagfield type

136 label type incompatible with selevting expression

137 type of expression must be boolean

138 unsatisfied forward pointer reference

139 function type doe not correspond to the forward declaration

D. Error Messages

PASCAL, User's Guide

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

Page 99

parameter list does not correspond to the forward declaration

undeclared external file

already forward declared

error in option

missing file "output? in program heading

unsatisfied forward function/procedure declaration

undefined label(s)

multideclared label(s)

array elements out of sequence

no variant part in this record

erroneous number of fields in this record

valuespecification incompatible with recorddeclaration

number of array elements does not agree with declaration

multiple occurence of variable in value part

illegal formatting

module name(s) must be unique

assigment to function not allowed at this level

illegal procedure call

only value” parameter(s) allowed in formal function/procedure

control variable must be a variable or & parameter

multidefined external file

"input? not in program heading

'input” has illegal type

readin and writeln only allowed on text files

not a constant

not an external declared file

8ssignment to function identifier must occur in function itself

textstring not terminated within the same line

file parameter must be VAR-parameter

comment did not terminate

« D. Error Messages

Page 100

D. Error Messages

D.2 Error Messages From Second Pass

number

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

7 320

321

322

323

324

325

401

402

403

404

405

406

407

408

PASCAL, User's Guide

meaning

decimal integer constant too large

nobn-decimal integer constant too large

exponent in real constant too large

index type too large

basetype of set too large

too many nested function/procedure declarations and/or too

many parameters/labels in this procedure

first element in subrange specification less than second

multideclared label

the lowest integer is not allowed as case- label

the range of case-labels is too large

not enough room for temporaries

constant out of subrange bounds

comparison and assignment of strings with different length

not fully impimented yet e
not enough room for parameters, structure too complicated

range of set-elements only with constant bounds

tag field values must be scalar

no such tag field in this record

too many tag fields specified

standard routine argument too complicated in this context

erroneous arguments ta pack or unpack

tækkkuarning: label may lead to erroneous code

standard procedure ”replace' may only be called from

main program

packed fields not allowed as var-parameters

division by zero not allowed

external routine not found

compiler constant "maxident' too small

compiler constant 'stringmax' too small

compiler error (should be reported to maintenance staff)

compiler constant 'maxnest' too small

too much code: use option 'codesize'

random files not implemented e
read and write of user defined scalars not implemented

pack and unpack only implemented on array of char

PASCAL, User's Guide Page 101

D.3 Runtime Error Messages

D.3.1 Start Up Errors

During the start up (initialization) of the running program some error

messages may appear.

The error message consists of two lines:

æk pascal init trouble

WO = <status> <message>

< <status> is the result delivered by some monitor calls causing the

error,

<message> may be one of the following:

"cannot create area process'

the job is run with too few area processes.

error in program call'

the call to get a compiled program executed is wrong.

"wrong answer"

the object file is not ok. It cannot be loaded or it is not possible to read

from it.

z

"process too small'

D.3.2 Errors During Program Execution

During the execution of a Pascal program the program may be

terminated by a runtime error, Runtime error messages consist of a

message and a trace of the active routines (see the example in chapter

9).

The messages are:

”b, o or h expected"

during the reading of a number with base 2, 8 or 16 a wrong base has

been encountered.

giveup, blocklength = <integer>

possibly because of too few bs-resources.

"digit expected'

during the reading of a number an erroneous character has been

encountered.

'dispose outside used area'

the reference used as argument to dispose is outside the used area of

the heap.

D. Error Messages

Page 102

D. Error Messages

"file cannot be connected for 1/0: <file name>"' e

an external file cannot be used, maybe because the job is run with too

few area processes.

"file does not exist: <name>'

"illegal argument to arcsin'

the argument to arcsin has an absolute value greater than or equal to

1.0.

"illegal argument to exp or sinh'

exp Or sinh has been called with a too big argument.

”index or subrange out of bounds, value is: <value>'

”integer overflow"'

during input an integer greater than maxint (8388607) has been read.

'negative argument to In or sart" '

'negative field width'

it is tried to write a number with a negative number of significant digits.

"process too small'

the program cannot be executed in a process with the size used.

"illegal zonestate'

illegal use ofa file:

read before reset or write before rewrite.

'illegal pointer value'

"try to read past eof"

during input EM has been encountered.

'wrong answer on input request'

a procedure cannot be transferred from backing storage to core (if no

hardware problems it should be reported to the maintenance staff). e

'wcrong no of halfwords transferred'

a procedure cannot be transferred from backing storage to core (if no

hardware problems it should be reported to the maintenance staff).

Uncontrolled runtime error,

Use of an undefined pointer variable (uninitalized) may cause a

xx break 0 <address>

