
The Q1 Emulator Project

• Brief intro to Q1
• Company
• About Q1

• The emulator project
• How to (possibly) write an emulator
• Emulator architecture

• Emulator Demo

Acknowledgements & Data sources

Peter Andersen – rom images, documentation
Achim Baqué – original floppy disks
Alex Burke – hw investigations, curation
Poul-Henning Kamp – reading the floppies
Ivan Kosarev – z80/8080 emulator
Mattis Lind – floppy images, chargen ROMs
Karl-Wilhelm Wacker – Q1 knowledge

"Being conscious is the central fact of human
experience. Yet, it is not presently known what
consciousness is and what it does. For example,
Physicalism, the currently dominant theory of
knowledge takes the position that the non-conscious
brain can do anything that the conscious brain can do"
-Daniel Alroy

About Q1

• Q1 Corporation
• Founded by Daniel Alroy
• 1972 to ~1990
• Self promoted as world's first

• Used as business machine
• Computer terminal
• Data entry
• Word processing
• Payroll/accouting

• Known customers
• NASA – work order management
• Aroskraft – swedish powerplant

• No operating system
• line editor
• entered text interpreted as program name

to execute
• Very limited error handling

• Programs mainly written in PL/I
• Compiled into pseudo-machine code
• assembler programs also supported

Q1/LMC (1972) 8008
1 x 80 characters
integrated printer

Q1/Lite (1974) 8080
12 x 80 characters
integrated printer +
floppies

integrated printer

Q1/Lite (1974) Z80
12 x 80 characters
integrated floppies

Q1/MicroLite (197x)
Z80
24 x 80 characters
integrated floppies +
harddrives

Q1/Basic Office Machine
12 x 40 characters
integrated floppies

... I have also seen
display widths of
47 chars ...

... and Q1/T and Q1/C
product names ...

... presumably a fourth
generation existed
using the 68000
processor ...

from sales brochure 1980electronics today 1980

datamation 1979

Emulator Challenge
How to write an emulator
The Q1 emulator architecture

Basic skeleton of an emulator

while (running) {
disassembly(pc)

in = cpu.getInstruction(pc)

pc = cpu.handleInstruction(in)
keyboardInput()

}

Utilities

• loader
• initialises RAM, loads ROM

images, and code snippets, sets
the initial program counter

• runner
• steps through instructions one at a

time
• prints relevant information (pc,

regs, disassembly, annotations)

Memory locations for the ROM
files were identified from the
Q1/Lite mainboard schematics

Adding io

void handleOut(addr, data) {

// printf("%d (%c)", addr, data);

return;
}

void handleIn(addr, data) {

if (addr == disk_status)

return 0x42;
...

}

Idea

Initially we ignore any output the
program writes, or possibly just print
the address and the value (both integer
and ascii)

However on input we stop the emulator,
inspect the disassembly and the returns
what seems to lead us closer to the end
goal

At this stage I found myself
alternating between

• inspecting the ROMs
• inspecting the output
• inspecting the disassembly
• adding annotations
• reading available manuals
• modifying IO handling

Using this approach relatively quickly took
me to the point where the Q1 had
initialised its RAM structures such as jump
vectors, keyboard buffer and file
descriptors.

And had sent the following text to the
display

Q1-Lite klar til brug

Here it was obvious that keyboard input
was needed.

Sparse documentation obtained from

'Q1 ROS Users Manual'

Not all keycodes are documented (for example
the GO key)

Function keys were eventually identified by trial
and error

Keyboard

def int38(self, key):

io.keyin = key

oldpc = pc
sp -= 2

mem.writeu16(sp, oldpc)
pc = 0x38 # int vector

...
if ch == kc.ikey("TAB"):

int38(kc.okey("TAB"))

Idea

occasionally check for keyboard
input. And when a key is pressed
fake an interrupt.

Luckily Q1 uses ASCII

Next up is the display

This is the entire documentation for the display!

from "Q1 ASM IO addresses usage"
Bit 7 = 1 display 'busy'
Bit 4 = 1 40 character
Bit 3 = 1 80 character

Display
def handle_display_out(val):

display.data(chr(val))

display.update()

def update(self):
msg = cursor_pos

for l in buffer:

msg += ''.join(l)
udp.send(msg)

Idea

Display is a buffer of x *y bytes +
current cursor position.

Upon transmit to display:

1) update the buffer
2) send buffer to display emulator

Once keyboard and display was 'working' it became clear that anything
the user typed was interpreted as a program to be loaded from disk.

This required a floppy emulator. By far the most challenging aspect so
far.

Luckily two-three disk images existed (DDF, Datormuseum)

Unfortunately the documentation was sparse – and inaccurate

Entire documentation for the disk format (incorrect) and the program loader.

.... the long and windind road

Debug disk (felsökningsdiskett) decoded
by Mattis Lind was very useful for bringup

SCR was the first program succesfully
loaded and executed.

z80 assembler (luckily not PL/I pseudo-
machine code)

Project now stalled due to lack of
disks/programs

Then on the same day (30 November) we increased the number of
available floppy disks by about a factor 100!

Emulator Architecure

Using a z80 emulator by Ivan Kosarev
 found a few bugs
 helped improve python bindings

instead of

getinstruction()
handleinstruction()

I now use

step(1)

CPU abstraction

reset(), halt(), exit()
z80 emulator - step()
instruction decode
backtrace

Memory abstraction

clear()
load()
hexdump()
read8(), read16()
write8(), write16()

write to ROM (0x0a62), pc 6298 warning, no effect ...
...
write to ROM (0x098e), pc 2376 warning, no effect ...

0xfdfdfdfd at 2926, exiting ...

########### HEXDUMP 0x2000 - 0x10000 ####################################
4090 fd fd fd fd fd fd fd fd fd fd fd fd 00 fd fd fd
....
fe50 20 4c 45 4e 47 54 48 20 28 6b 65 79 20 69 73 20 LENGTH (key is
fe60 70 61 72 74 20 6f 66 20 20 64 61 74 61 20 72 65 part of data re
fe70 63 6f 72 64 29 3a 20 45 4e 54 45 52 20 4b 45 59 cord): ENTER KEY
....
########### HEXDUMP END ###

093e 21 9c 40 ; ld hl, 0x409c | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0937 34 ; inc (hl) | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0941 35 ; dec (hl) | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0939 20 03 ; jr nz, 0x93e | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0936 dd 34 00 ; inc (ix + 0x0) | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
093e 21 9c 40 ; ld hl, 0x409c | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0937 34 ; inc (hl) | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0941 35 ; dec (hl) | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
0939 20 03 ; jr nz, 0x93e | sp=0990, a=fb bc=00e5, de=3642, hl=409c,
exiting...

warnings from memory module

exit caused by (invalid) memory pattern

hexdump of all modified memory

backtrace of the last 9 instructions
(if step size is 1, else garbage)

Program abstraction

Used by loader to initialise memory
with programs and data

and by emulator and disassembler
for annotations and debugging

> python3 disassemble.py -a

loading program: Combined Q1 image from IC25-IC32
loaded 1024 bytes from roms/JDC/IC25.BIN at address 0000h
loaded 1024 bytes from roms/JDC/IC26.BIN at address 0400h
...
loaded 1024 bytes from roms/JDC/IC32.BIN at address 1c00h

;jump tables
0000 c3 e5 01 ; jp 0x1e5 | reset START
0003 c3 77 00 ; jp 0x77 | TOSTR
...
003b 00 ; nop |
003c c3 67 07 ; jp 0x767 | SHIFTY

;Return Address (copied to 4080)
003f c3 3f 00 ; jp 0x3f |

;JP to interrupt routine (copied to 4083)
0042 c3 b1 02 ; jp 0x2b1 |

;JP to wait-for-keyboard-or-printer
0045 c3 15 08 ; jp 0x815 |

;UNEXPLORED
0048 c9 ; ret |
0049 c9 ; ret |
004a c9 ; ret |
004b c9 ; ret |
004c c3 62 03 ; jp 0x362 |
004f c3 34 07 ; jp 0x734 |

Program abstraction

disassambly example

uses known_ranges, pois

Helps identify poorly understood
or unexplored regions

Disk image generation – from floppy tools

Disk image generation – hand crafted

Shortcomings

display prints only ascii (not Q1 ROMS)
keyboard ascii, Fn keys working
serial comms unexplored
printer rudimentary support
floppy disk only simple write operations
hard drive unexplored
timer some support, tested by RTC program
interrupts mostly untested, keyboard uses fake interrupts

References
datamuseum.dk/wiki/Q1_Microlite

Emulator
q1-lite-emulator.readthedocs.io/en/latest/
github.com/Datamuseum-DK/Q1-Emulator

ROMs and documentation
www.peel.dk/Q1/
www.thebyteattic.com/p/q1.html

www.1000bit.it/database2.asp?id=698

github.com/MattisLind/q1decode
technikum29.de/de/geraete/Q1_lite/Q1_lite_Details.php

https://datamuseum.dk/wiki/Q1_Microlite
https://q1-lite-emulator.readthedocs.io/en/latest/
https://github.com/Datamuseum-DK/Q1-Emulator
https://www.peel.dk/Q1/
https://www.thebyteattic.com/p/q1.html
https://www.1000bit.it/database2.asp?id=698
http://github.com/MattisLind/q1decode
technikum29.de/de/geraete/Q1_lite/Q1_lite_Details.php

Demo

