DANMARKS INGENIGRAKADEMI
ST CSEN
BAD UL ,"._v i A
PO0O KALECHE ¢~

DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

PROGRAM

STAND-ALONE DISK EDITOR

TAPE

Absolute Binary: 091-000083-00

ABSTRACT

The stand-alone disk editor permits every word in every
block of disk space to be examined and/or modified. This
editor requires a system with a minimum of 4K of core
memory, a Teletype or video display console, and a disk.
Optionally, program output can be directed to a line printer.

Copyright ® Data General Corporation, 1973 093-000092-00
All Rights Reserved. Printed in U.S. A.

Original Release - September, 1973

INTRODUCTION

The stand-alone disk editor permits users to examine and/or modify words and
blocks of words on both fixed and moving head disks. This editor references
disk words by logical addresses (a composite of block and word numbers) or by
physical addresses (consisting of sector, head, and cylinder numbers). Thus
this editor is contrasted with the disk file editor, OEDIT, which is file-oriented
and does not permit the accessing of all disk space.

The stand-alone disk editor permits every word of disk space to be accessed, and
thus is useful in resolving links in sequential files which have been altered by a
system malfunction. This editor might also be used to patch or restore file
information found in a system directory which might have been altered inadvertently.
Use of the disk file editor on disk space managed by a disk operating system
presupposes that the user is intimately familiar with the structure of disk files,
directories, and initial disk block assignments of his system.

The following publications will assist users of the disk editor:

93-000056 Real Time Operating System User's Manual
93-000075 Real Time Disk Operating System User's Manual

93-000083 Introduction to the Real Time Disk Operating System
93-000084 Octal Editor Manual

TABLE OF CONTENTS

Chapter 1 - Disk Editor Initialization

Loading the Disk Editor
Default Settings

Chapter 2 - Disk Editor Operation

Keyboard Calculations. . . .
Disk Editing . .
Word and Block Pointers . .
Deleting Input Characters and Command Lines
Using Command Operators
Opening and Examining Disk Words in Loglcal Blocks.
Opening and Examining Words in Physical Blocks. . . .
Examining Successive Words
Examining a Group of Words
Modifying a Disk Word .
Transferring a Disk Block
Error Messages

Appendix A - Using the Disk Editor to Examine Directories

Directory Structures. .
SYS.DR Structure. . .
Map Directory Structure (MAP.DR).
Initial Disk Block Assignments
Secondary Partition Structure. .
Subdirectory Structure

Tracing Through the System Directories

Appendix B - RDOS Hashing Algorithm

CHAPTER 1
DISK EDITOR INITIALIZATION

The stand-alone disk editor (091-000083) permits users to examine and /o~
modify words found in any portion of disk space on any disk device used with

Nova family computers. The editor operates by accepting keyboard commands
from the user and by displaying or modifying disk words on a disk block hasis. That
is , the editor reads a block of 256 words into a core-resident buffer and writes
this buffer back to disk when a new block is specified to be operated upon.

Users of the disk editor on moving head units must know the number of heads found
on the disk unit whose storage is being examined, and they must know into how many
sectors per track the disk space is divided. The following list summarizes this in-
formation on four current disk types.

DGC Part No. Disk Name Number of Heads Number of Sectors

4047A Diablo 31 2 12

40478 Diablo 33 2 (for each unit) 12

4048A Century 111 (similar 10 6
to IBM 2311)

4057A Century 114 (similar 20 12

to IBM 2314)

All disk sector/tracks contain 400, words each, and all moving head disks contain
203 cylinders per disk surface. Aﬁ 203 cylinders are used by DGC disk operating
systems.

One final concept of disk space addressing must be clarified before using the disk
editor: mapped sector addressing. Mapped addressing refers to the practice of
numbering sectors alternately in moving head systems. That is, in mapped addressing
a logical sector address is used which does not correspond to the physical sector
address. Instead of being numbered consecutively (and counter clockwise), logical

sector addresses are assigned so that an intervening block (or blocks) is found

between consecutive sector addresses.
I 4 I

Six Sector Unmapped Addressing Six Sector Mapped Addressing

The following lists addressing schemes employed by various revisions of DGC
disk operating systems:

Operating System Name and Revision Sector Addressing
DOS, all revisions Unmapped

RDOS, revision 0 Mapped

RDOS, revision 1 Mapped

RDOS, revisions 2 and higher Unmapped

RTOS, all revisions Unmapped

Loading the Disk Editor

The stand-alone disk editor is supplied on a length of paper tape in absolute binary
form. Conventional binary load procedures are followed to load the editor.

When the program is loaded it will self-start. Location 2 contains the starting address,
and location 3 is used to restart the program. After being loaded, the program
will output the message
DISK UNIT?
The user responds with one of the following disk mnemonics:

Disk Type Mnemonic

Fixed Head DKn (n is the controller number)
Moving Head DPn (n is the unit number)

The disk unit name may be changed at any point in the editing process by typing the
command

U ddd

where ddd represents a valid disk device mnemonic.

If the unit selected is a moving head disk, the program outputs the message
MAPPED (Y or N)?

The user types Y if mapped sector addressing is used, and N if sector addressing is

unmapped. Consult the list given earlier of addressing conventions used by DGC

operating systems. Having stated to the editor whether or not mapped addressing
is employed, the user need not concern himself further with the concept. Mapped

~

1-2

Loading the Disk Editor (Continued)

addressing does not affect logical block addresses, and the editor calculates the
effective physical block addresses from given block addresses automatically. Knowing
whether or not mapped addressing is used merely enables the editor to perform the
effective, physical address calculation when a logical address is given to it.

Default Settings

Upon responding to the sector addressing question, the user may select a disk block
and then proceed to issue any of the disk editor commands given in the following
chapter.

The editor presumes that the disk unit is either a DGC 4047A or 4047B, i.e., that it
is a Diablo type and has 12 sectors/track, 2 heads/unit, and 203 cylinders. If the
device being examined has a different configuration, the user must issue the command

Cshic

where s is the octal number of sectors/track, E is the octal number of heads, and
c is the octal number of cylinders.

To display the current disk configuration, the command

c/
is issued. This command causes the current configuration to be displayed with
parameters given in the same order as was specified earlier for changing the
configuration.
Also by default, values output during the editing process are in octal. To change

them to ASCII, the user types A. To change back to octal, the user types O. When
words are printed in ASCII mode, they are printed as pairs of ASCII characters:

RE AL SV
FO RT

The octal values of non-printable characters are displayed within angle brackets,
e. go »

CoBie><iu>» <uNY»<no3>» |LF E<2d@>»

Default Settings (Continued)

By default, the teletype printer or video display is the output device. To change to
the line printer, the user types

L
To change back to the teletype printer, the user types
T
When the line printer is the output device, all program output--even the results of

keyboard calculations--is directed to the line printer. The editor will reject the
"L" command in a system lacking a line printer by issuing a "?" response.

CHAPTER 2
DISK EDITOR OPERATION

This chapter summarizes and describes the commands and command operators
available in the stand-alone disk editor program. The disk editor does not permit
command input to be in free format; users are cautioned to be precise in specifying
input commands, especially with regard to the use of spaces and carriage returns.
Depressing the RUBOUT key deletes the most recent alphanumeric input character
but cannot be used to delete single command operators or command characters.
The editor will output a question mark upon receipt of an invalid command.

The triangle symbol (A) will be used to denote a single ASCII space (040), and the
left arrow ()) will be used to denote a single ASCII carriage return (015).

A summary of operators and commands is found at the end of this chapter.

KEYBOARD CALCULATIONS

The disk editor has several commands which allow it to be used as an octal
calculator to perform addition, subtraction, and exclusive ORing of octal
values. These operations are useful throughout the editing process, especially
in determining link words of sequentially organized files. All output goes to the
current listing device, either the teletype printer or the line printer.
To add two octal integer values a and b, the user types

aths
and the cditor will output the result to the current listing device immediately after
the equals sign, followed by a carriage return. Note that no spaces separate the
+ and = signs. '
To subtract two octal values a and b, the user types

a-bs
and the editor outputs the result immediately after the equals sign.
Similarly, to obtain the exclusive OR of two values, the user types

atb=

and the editor outputs the result immediately after the equals sign.

2-1

KEYBOARD CALCULATIONS (Continued)

Values preceding the equals sign may occur in combination with several operators,
like a-b+ct+dle+f= . If the exclusive OR operator is used in such a combination it
may be used only once per calculation; the algebraic sum of all operands following
the ! sign become the second operand in the exclusive OR operation.

Single operands can be deleted by depressing the RUBOUT key for each character.
Attempting to delete an operator causes the entire command line to be deleted.

DISK EDITING

Word and Block Pointers

The disk editor maintains two pointers, a current block pointer and a current word
pointer. The block pointer is the number of the current disk block which is being
examined and/or modified by the user. Only one block may be operated on at a time.
The word pointer contains the address of the current word being accessed within

the current block. If the current word pointer is incremented beyond 377_, the
current block is written back to disk and the next block is read in, with the block
pointer incremented. The word pointer is incremented modulo 3778.

The symbol for the current word pointer is a period (.) .

The current word pointer (.) may be used as an argument with either the addition,
subtraction, or exclusive OR calculator commands. Keyboard calculation operations
do not affect the word or block pointers.

To display the current block number the user types B:. To display the current
block physical address, the user types B, .

The current word pointer is changed only by explicitly entering a new word value or
by modifying a current value by means of the +, -, or ! operators or /,t, or line
feed command characters. Changing word pointers is described more fully in a
following section.

Deleting Input Characters and Command Lines

To delete characters input as part of an editor command, the operator types one or
more RUBOUTSs. Each time the RUBOUT key is typed, a left slash (\) will be printed
on the teletype console and the most recent remaining character is deleted. Deletion
of an operator or command character causes the entire command to be deleted.

Using Command Operators

Each of the operators described previously for use in performing keyboard calcu’
tions can be used in combination with any disk editor command characters. Thus
the command

3/

would cause the contents of the third word from the present location to be displayed.
(/ is the editing command used to display disk words).

Opening and Examining Disk Words in Logical Blocks

Any location on any disk surface may be opened and examined by typing its address
and following this by a right slash. Addresses may be expressed as either a word
offset within a logical block or as an offset within a physical block.

When the disk editor is first entered, its block pointer is set to -1 and its word pointer
is set to 0. Thus to examine a word, both the word and the block pointers must be
set to the desired values.

To set the word and block pointers for the referencing of a word within a logical block,
the logical block number and word offset within the logical block must be separated by
a colon. Thus, 10:377 sets the block pointer to 104 and the word pointer to 377g.

The command
10:377/

causes the contents of the last word in logical block 10 to be printed on the current
listing device. To display the contents of any other word in this block, all that must
be typed is the address of the word within the block, followed by a right slash. Thus
to display the contents of word 300 in this block, all that must be typed is

300/

since a missing logical block number causes the current block number to be used. If
a different logical block number is specified, the current block will be written out to
disk and the new block will be read into the editor buffer so that any word within the
new block may be accessed.

The same word can be examined in either the ASCII or the octal modes, regardless
which mode the editor is in, by typing one of two command characters. Typing an
equal sign (=) causes the current word to be displayed as six octal digits. Typing a
single quote (") causes a current word to be displayed as two ASCII characters. The
octal equivalents of non-printable characters are displayed within angle brackets.

Opening and Examining Words in Physical Blocks

To examine a word which is specified as an offset within a physical block,the physical
block address must first be specified by sector address, head number, and cylinder
number in that order. These values must be separated from the word offset by a colon.
To display the contents of word 377 in a block found in the Oth sector, lst head, and
cylinder number 2, the command

0,1,2:377/
must be issued.
Just as with logical blocks, when the physical block address has been specifiedsother
words within that block can be examined by simply specifying the address of the word

within the physical block. Thus to examine the Oth word in the physical block addressed
earlier, the command

0/

is issued. After the right slash is typed, the contents of location O are displayed either
as six octal digits or as two ASCII characters.

Examining Successive Words

Successive words, in forward or preceding locations, may be examined by typing one
of two commands: line feed or up arrow (t). Typing a line feed causes the next word
to be displayed; typing an up arrow causes the preceding word to be displayed.

If by using either of these commands the current block pointer becomes changed,
the current block becomes written to disk and the new block is read by the editor
automatically. The current block pointer is changed by the editor if the word before
0 or the word after 377 is requested.

Examining a Group of Words

A group of disk words can be displayed by typing the beginning and ending addresses,
separated by a left angle bracket (<). Thus the command

0< 377/

causes the contents of the current disk block to be printed on the current listing de-
vice. If block boundaries are crossed, block pointers are updated automatically.

If words at only a certain repeated offset within a given range are desired, the user

may specify this increment by typing an at-sign (@) and the desired increment
immediately before the right slash. Thus the command

2-4

Examining a Group of Words (Continued)

0<377@11/

causes every 9th word in the current disk block, starting with the first word in the
block, to be printed on the current listing device.

The operator can prematurely terminate output being printed by typing the escape
key, ESC (a $ is echoed). This feature is especially useful when the teletype
printer has been selected as the output device.

Modifying a Disk Word

After a disk location has been opened by means of the right slash command described
earlier, the word contained in that location can be modified if desired. To change the
contents of the current location, a user simply types the new word contents and a
carriage return.

If the new contents are to be numeric, the user types six or less octal digits followed
by a carriage return. Numeric values are right justified in the location.

To enter ASCII character pairs, these character pairs must be preceded by a double
quote character (a trailing quote character is optional) and must be followed by a
carriage return. To input a single left-justified ASCII character, the character must
be both preceded and followed by a double quote character, followed by a carriage re-
turn. The right byte of the word receiving the ASCII character will be set to zeroes,
i.e., it will be an ASCII null character.

The following table illustrates the contents of words after selected octal and ASCII
input commands.

Command New Contents

012345) 012345

0123) 000123

"AB) 040502 (ASCII A and B)
"AB") 040502

"A") 040400 (ASCII A and null)

The carriage return terminator closes the location after the new contents are de-

posited there. In order to access the location again, it must be explicitly opened and
re-examined by means of the right slash command. The line feed and up arrow characters
may also be used to open or close locations. If these terminators are used they will

cause the first location to be closed, the next (or previous) location to be opened, and

its contents to be displayed.

Modifying a Disk Word (Continued)

Failure to follow the new contents by a terminator will cause new values -- intended
as input to the opened location--to be interpreted as part of a new edit command.

This feature prevents the inadvertent entering of spurious data into locations, and also
allows several commands to be entered on the same line.

Thus the following three commands could be entered on the same line:

1/123456 7/000000 117000432)

Each of the three locations would be closed and their contents would remain unaltered.

Transferring a Disk Block

It is possible to copy the contents of a disk block into a new block of disk space. This
is done by issuing the command

X nn)
where nn is the new logical block number. Thus the current block which has been mod-

ified and/or examined by the user will be written out to disk block nn. The current
block pointer becomes set to nn.

Command Summary

Me ning Page Where
Described

A Change the output mode to ASCII.
B: Display the current block number.
B, Display the current block physical address.

CAargument Change the disk configuration to that specified
by the argument, The argument must be in the
following format: number of sectors/track,
number of heads, and number of cylinders (separated

by commas).

Display the current disk configuration, The
configuration will be displayed in the following
format: number of sectors/track, number of
heads, and number of cylinders.

Make the line printer (§ LPT) the output device.
Change the output mode to octal.

Make the console ($TTO) the output device.

Ulargument Change the unit number (but not the unit
type) to the value specified by the argument.

XAargument Write the current block specified by argument.
argument may be a physical or a logical
block address.

argument/ Display the contents of the location or locations
specified by the argument.

argument, /bargumenty
Display the contents of the location specified by
argument;, and change these contents to those

specified by arguments.

Close the current location and display the
contents of the previous one.

(line feed) Close the current location and display the
contents of the next one,

Command

Operator

Page Where
Described

is the conventional symbol for a carriage 2-1, 2-5
return. Close the current location.

Display the contents of the current location 2-3
in the numeric mode,

Determine the result of the previous operator
combination.

Display the contents of the current location in
ASCII mode.

Delete an input editor command character.

Terminate printed output,

Operator Summary

Meaning Page Where

Described

add iand_lz 2-1

subtract P_ from a 2-1

locations a through b inclusive 2-4

ASCII characters will be input via the 2-5
teletype keyboard.

current location
interpret this input as block a : word b

interpret this input as physical address sector
a, head b, and cylinder c in that order.

exclusive OR a and b

step output by increments of i (used with <).
The default increment is 1.

ERROR MESSAGES

If a disk hardware error is detected during the operation of the editor, a brief
diagnostic message will be output on the console, followed by the message:

— STATUS n

where n is the disk status word (see How to Use the Nova Computers, "Disks™).

The following error messages are output:

DATA LATE

WRITE ERROR

NO SUCH DISK

DATA ERROR

CHECKWORD

ERROR

UNSAFE ADDRESS

SEEK ERROR

END OF
CYLINDER

The data channel has failed to respond in time to a
request for access.

The program has specified "Write' and the selected
track-sector is write-protected.

The fixed head disk selected by the program is not
connected to the bus.

The cyclic check word read from the fixed head disk
differs from that computed by the control for the data
in the block.

The cyclic check word read from the moving head disk
differs from that computed by the control for the data in
the block.

There is a malfunction in the moving head disk drive.

The selected drive failed to position its head as requested.
The moving head disk controller has reached the end of

a cylinder but the sector counter is not zero, but the data
operation has ended anyway.

If desired, disk editor commands can be input via the console to determine which
areas of the disk storage are faulty.

APPENDIX A

USING THE DISK EDITOR TO EXAMINE DIRECTORIES

DIRECTORY STRUCTURES

Since one of the most common uses of the disk editor will be to examine and possibly
modify portions of RDOS directories, this appendix illustrates the use of the editor
to trace through a collection of SYS.DR’'s. To prepare for this illustration, the
following review of directory structures in RDOS, revision 02, is presented.

SYS. DR Structure

As described in the RDOS User's Manual, information required about files in a given
partition or subdirectory is kept within a system file directory called SYS.DR . The
information within every SYS.DR includes file names, the length in bytes of the files,
and the files' attributes and characteristics.

System directories employ a hashingalgorithm*to speed up access of directory entries.
Moreover, an initial system directory area is allocated (at the time the system is
fully initialized) for entries in the primary partition on a moving head disk. This

area (called a frame) is a contiguous set of disk blocks; the set is contiguous to
minimize moving head travel time. Subdirectories and secondary partitions allocate
system directory storage as required.

The primary partition frame size is dependent upon the type of disk unit on which
it is located. The following list gives frame sizes for different DGC moving head

disk types:

Unit Type Frame Size (in decimal)

4047 97
40438 193
4057 773

The structure of SYS. DR for both system file directories and subdirectories is
identical. That is, SYS.DR is a randomly organized file, and the first word in
each block of the file is the number of files that are listed in this block of SYS.DR .
Following this word is a series of 22_ word entries, called user file descriptions
or UFDs, which describe each file. 8I‘he following page gives an illustration of

any block of SYS. DR.

*See Appendix B.

Contents

Number of files in this block of the directory (168 maximum)

User file description

User file description

SYS. DR BLOCK

Each 22_ word UFD for regular files has the fixed structure shown below. The UFD
contains information about the file describing its name, its two-character name extension,
the file attributes and characteristics, the file size, address of the first block, and a
logical device code describing the device associated with this file.

Word
Displacement Contents

0-4 File name

) Extension

6 Attributes

7 Link access attributes
10 Block count -1
11 Byte count in last block
12 First address (i.e., logical address of first block in the file.)
13 Year/day last accessed
14 Year/day created

15 Hour/min created

16 UFD variable info
17 UFD variable info
20 User count
21 DCT link

User File Descriptions for link files are also 22_ words in length, but their struct:.re
necessarily differs somewhat from that for regular files:

Word
Displacement Contents

0-4 File name
5 Extension
6 Attributes
7-13 Directory specifier (or 0)
14-20 Alias name (or 0)
21 Alias extension

All file names within each file directory must be unique. An attempt to add a file name
to a directory when the same file name already exists in that directory causes an
error indication to occur. Deleted files are indicated by file names whose first two
characters have been replaced by nulls. A non-zero file use count indicates that one
or more users have opened the file. If a hardware malfunction should occur, this
count will often be erroneous and must be cleared (via CLI command CLEAR) to zero
before its associated file can be renamed or deleted.

Map Directory Structure (MAP. DR)

Associated with each partition or subdirectory is a file which keeps track of the
availability of disk blocks within each file space. This file is called a map

directory, MAP.DR . Each bit of each word in MAP. DR indicates whether a specific
block is in use or not. Block assignments are from left to right, in ascending block
order starting with the first block of the contiguous disk space to be managed. MAP. DR
is a contiguous file whose size, in the primary partition, is determined by the size

of the disk where MAP, DR resides.

Word Contents
0 Block allocation map, 1 bit/block, from left to right

. in ascending block order starting with block number 6.
0 =< block is available, 1 < block is in use.

377

Since MAP. DR has a UFD in its system directory, the size of any MAP. DR can be
found by examining word 10 of its UFD.

Initial Disk Block Assignments

The first 20 octal blocks of disk storage on every disk device have fixed assignments,
with the remaining blocks free for either system use or user file storage. Blocks 0
through 5 are reserved for the bootstrap. Block 6 is the first index block of the
random file SYS.DR . Blocks 7 through 16 are reserved for random file indexes

for program swaps occurring within the primary partition; block 17 is reserved for
the first block of the contiguous file MAP. DR .

Disk Block Number

Bootstrap

First Index Block of SYS. DR (random file)
7
10 Background Program Swap File-index storage
11
12
13
14 Foreground Program Swap File-index storage
15
16
17 First Block of MAP, DR

As mentioned earlier, the map directory, MAP. DR, is a file indicating which blocks
of disk storage are currently in use and which are free for assignment.

Secondary Partition Structure

Secondary partitions are mutually exclusive subsets of total (primary partition)

file space. Secondary partitions are created via the CLI command CPART, which
requires that the partition be given a name and a specified size in disk blocks. The
partition name is then inserted into the SYS. DR of the primary partition. A second-
ary partition's size becomes fixed when it is created, since secondary partitions
are contiguous files.

In addition to having a SYS. DR, each secondary partition also contains a MAP. DR
and program swap file index space. The minimum size of any secondary partition

is 32 0 disk blocks; this leaves 14 blocks for file storage within the partition. The
systerlh requires a minimum initial assignment of at least 8 blocks of SYS. DR storage
for subdirectories and secondary partitions. This is required for the hashing of
peripheral entries (§TTR, etc.) into the system directory at initialization time.

A-4

Subdirectory Structure

Subdirectories are mutually exclusive subsets of a parent partition's file space. :/nlike
secondary partitions, subdirectories have no defined amount of file space. Instead,
subdirectories take file space from the parent partition as required and release the
space when it is no longer needed.

Newly created subdirectories consist of three blocks: SYS.DR's initial index block

and data blocks for the SYS. DR and MAP. DR entries . After a subdirectory is initialized,
peripheral entries are inserted into it's SYS.DR. Since subdirectories have no file
space of their own but borrow from the parent, the map directory -entry in each
subdirectory's SYS. DR points to the parent partition's MAP. DR entry.

TRACING THROUGH THE SYSTEM DIRECTORIES

The disk space to be examined in this appendix consists of a primary partition, DP0,
a secondary partition, R]JB, and a subdirectory, R]JB1, within the secondary partition.
For illustration purposes, R]JB was created with the minimum size of 32 disk blocks.
DPO, the primary partition, is a 4047a moving head disk; thus the initial file space
extends from block 6 through block 4871. (HIPBOOT, the disk bootstrap, occupies
blocks 0-5.) A block diagram of this disk space is shown below.

6

Primary Partition
DPO

Secondary Partition R]JB

Subdirectory RJB1

RJB/R]B1 File Space

Primary Partition
DPO

DISK SPACE ILLUSTRATION

A-5

The secondary partition and subdirectory were created by means of CLI commands
CPART and CDIR. Issuing the CLI command DISK in each of these directories gives
an interesting clue as to the structures of these directories. The following illustrates
the commands used to create the directories, and the results of the CLI DISK

commands:
CPART RJB 32

R

INIT RJB

R

DIR RJB

R

DISK

LEFT: 14, USED: 18
R

CDIR RJBI

R

(INIT,DIR) RJBI

R

DISK

LEFT: 4, USED: 28
R

Evidently 18 of the original 32 blocks in R]JB are used for SYS. DR, MAP. DR, and
push space file indexes. The creation of subdirectory R]Bl reduces to 4 blocks the
amount of file space available to both directories.

To further aid us in our examination of these directories, we must use the CLI

in yet another way before beginning our use of the disk editor proper. In order

to determine the relative positions of entries within the SYS. DR file indexes of

DP0, R]B, and RJB1,wemust*request unsorted lists of entries within each of these
three system directories. This we do by means of the CLI command LIST/A/E/L.
By examining the relative position of an entry in the SYS.DR LIST, we can approx-
imate the position of that entry's UFD within its SYS. DR random file index. A portion
of the DPO list, and the entire R]JB and RJB1 lists are given below and on the next page.

MAC , 8V 14792
RTSYSLTST, Qg
TIMECL RE 214

RJB DK
THONT, SV
MAC ,PS

163R4
1530
16832

sn

D

7723773
6/2m/73
6/20/73

7/23/73
6/19/73
7723773

9235
915
915

924}
123159
9235

7/23/73
6/2M/73
6724773

7/23/73
6/19/73
7/23/73

[pen524)
(nr1462)
(pn1464)

(22932
(A2 14686)
[(A2n562)

Portion of DPO List

*Unless we apply the hashing
algorithm. See Appendix B. A-6

RIBL NR
STTY.,
SYS, DR
MAP DR
SPYP,
SPTR,
$TTO,
§TTP,
STTw,
$LPT,

Dy
APwW

APwDYT

APWC]
RAP
AP W
KAP
RAP
AP W
RAP

7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73

RJB LIST

APw

APwWNYT

APWC T
RAP
AP W
kAP
RAP
APW
RAP

7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73%
7/23/73
7/23/73

RJB1 LIST

9143
9243
CR N
9tad
9343
gsay
Q343
9243
G343

7/23/73
7/23/73
7723773
7723773
7/23/73
7/23/773
7/23/73
7/23/73
7/23/73
7/23/773

7/23/73
7723773
7/23/73
7/23/73
7/23/73
7/23/73
7/23/73
7/23%/7%
7723773

(- a529
[0, 2 APQ)
[PPA203)
[(pa2ma
(AeAnEAnN)
[(APA0RA)
(PAGRARN)
[(APAARD)
[AAAARAY
(P2ARA)

(20PN
[(PR2p%52Y
[(AA2¢r41)
[AAAANPY
[AUOnHAY
[APARA R
(PRGN
[(ARAARRAY
(2a0¢7m)

Having gotten the CLI LIST information, we are now ready to proceed with our use

of the disk editor proper.

Upon being loaded, the standard editor prologue is output:

DISK UNIT? DP@
MAPPED(CY OR N)? N

Unmapped addressing (N) was selected, since addressing in RDOS 02 is unmapped.

The first step in this illustration is to examine the SYS. DR of DPO to determine
where the initial contiguous area of SYS. DR for the primary partition resides. To
do this, we specify output to the line printer (and output is in octal by default):

L

A carriage return is echoed to acknowledge receipt and execution of the command.

B3NS

ST SS9 T =

We now request that the contents of DPO's SYS. DR random file index be printed:

6: 0<377/

This command causes the following output to be printed on the line printer (only

locations 0-157 are reproduced here, since the last non-zero entry is found in
word 140):

MARY, APPBT2 OAART3 Apmp74 OQAPRTS AANATO ANRNAT7 AR AXR10|
AP/ ARRINAD ARAIR3 AAMINd MEMIRS MQRA1A6 AariA7 Afpiin ARALL]
220/ APKL12 Pop113 AGR1id4 MAPR11S ANAgl6 ARR117 fAeal2r AAA12}
n3e, Pe@A122 CAn123 Aemi24 AaAmi125 pun126 Aer127 Annide APp13dy
Adn, Aaar?| 2am132 Ane133 Ann134 Arng1dS @136 Apr137 200149
AN/ Aup1dl Aan142 OE?A143 Ar2144 AnW1d4d AN0146 APR147 A@ALBR
AR/ Bap1S1 Aen152 Poan153 aap1S4e Ann1S55 aan1S56 AuniS7 A 164
A7R/ ApALR] NnA162 QARA1RA3I apmiBd eNR16d ARNI66 AAMIRT7 AKMYITY
140/ 2¢pq71 @AP(72 AaM173 apmi74 ann175 AARALTE AeRLT77 AAR207
110/ 2aazul 0aAA202 ARA2G3 MNA2P4 NRA2AD PaRPa6 Ap@a2r7 Ann217
120/ 220211 0An212 200213 0ne2id Apr215 Aan216 A024{7 A0R22)
130/ 0n0A221 UAM222 Qne223 QAum224 ApA225 Aau226 Anp227 ARAR3W
1427 200231 NANPRA ARCACRR ARAPRLR QARANAR ARAAAR ARCARR AAAARA

15/ PPARRG PRARAA ACALAR DRANRRR PAAAARDR ARBAAP AGRARE ANAARA

The printout indicates that the DPO SYS. DR is found in blocks 71 through 231. If
this SYS.DR ever became full of UFD entries, new disk blocks would be linked
as needed to SYS.DR as blocks are linked in a sequential file. By printing the
contents of block 6, we can now construct a partial disk block map of our illus-
tration, shown on the following page.

HIPBOOT

DPO0 Random File Index

contiguous DPO SYS. DR storage

231

Having located the contiguous area of SYS. DR entries, we must now find the entry
for secondary partition RJB. The algorithm used to place entries in SYS. DR

places these entries over the entire SYS. DR storage area, and each block of
SYS.DR will contain approximately the same number of entries as each other block.
Since our initial list of DPO was unsorted, the order in which entries were listed

corresponds to their relative positions within SYS.DR. Thus, since R]JB.DR
appeared approximately two thirds through the list, we might expect that RJB. DR

would be found near block 171. Issuing the print command 171:0<377/, we receive
the following output (only the pertinent portion is reproduced):

ARP/ PP >€PA2> RY SY S|

Andy IS T<npo> <pag>cnpm» <CANR>CAPP>

ALy SRPUPCHNA>

A14y € N7><31 6>
CPA2PCH AR
ME Cenpp»
RE «<apnd»cpp
<AM2><¢I26>

<?2{i{>><?8>»

<AAA>CAr]>
<CAN7><316>
CHAARBLCHGM >
CAAT>CAPAD
4>

<AN3A»4

CANP>PCAPASY

€A77 23> CARLDCAPAS

CARC>CAPR>

<P27>»<316>

<AMI>C2007>
<A11>»<ANE>
CHEAP>ECNIA>

SAAA>ECARA>

SUAP>»CARAD>

<EOAR>CAPA>

<CPA3>»2
<PAA>CAPA>

TI

SLANPCARRD
<7207>»<316>

CQAR>CARR>

Upon examining this printout, we can see that block 171 contains two entries:
RTSYSLIST and TIMEC. Since these entries immediately precede R]JB.DR on

the DPO list, RJB.DR must be found on block 172. Although it does not occur
here,any UFD entry in any SYS. DR which has 2 leading nulls in the filename (word
0) indicates that the file has been deleted from the directory. Printing the first few
words of block 172, we find the R]JB. DR entry:

AAR/ <202><NA{> RJ] Be<papo> <<ppRr><ApPA>

LY W) CTANPLCPAR> <LARRPCAPA> DR <Pp14><PA1P>

1A/ <2AN><AOP> <AAR>CKAIT> <PAZ><ANA> <ANL>AIA>

A4/ €p27>3<¢IN7> <KART><IBT> <PI1P¢ <CQANPCABD>

A2n/ CANP><P N> <PPP>CPNR> <CAPP><NII> <<PAD><NNA>

A4/ <RSP ANY XA CONNAD CNPPA>CAPN> <SARNPCANA>

Having found the UFD for secondary partition R]JB, let us examine this UFD more
closely. Word 0 of this block contains the value 1, indicating that there is only

one UFD in this block of the DPO SYS.DR. The UFD for RJB therefore extends
from word 1 through word 22. Words 1 through 5 contain the name of the direc-

tory, R]B, with trailing null bytes. The extension, DR, is found in word 6 and
indicates that R]B is a directory. Word 7's contents, expressed octally, equal
006010. This word contains the file (directory's) attributes. The attributes of RJB
are that it is a directory, a partition, and is contiguously organized. A complete
list of file attributes is given in the RDOS User's Manual in the discussion of the
system call . CHATR, and these attributes are also listed in the RDOS User
Parameters, PARU. SR

Word 10 contains the link access attribute's word; there are no link access
attributes. The next word contains the number of blocks in the directory, less
one; the directory is a randomly organized file consisting of 40g blocks.
The next word indicates the number of bytes of free storage assigned to the
last block of R]B; there are 1000, such bytes (256 words). Word 13 contains
the address of the first block in éirectory RJB; thisis 2030, as we indicated
earlier.

hie next two words,14 and 15, contain information describing the date the directory
was last accessed and the day that it was created. Since the last access date is
maintained by the system only for SYS. DR entries within directories, the informa-
tion in word 14 is not meaningful in this case. The creation date in woxrd 15 is .
meaningful, however. This value represents the number of days since January 1,1968,
thatthe file was created. In this case, 44388 is equivalentto July 23, 1973. Woxrd16 contains

A-10

information describing the hour and minute that the directory was created. R]JB.DR
was created at the 9th hour (left byte) and the 43rd minute ("+'" equals 053 octal).

Word 16 is used by the operating system to store attribute words temporarily when
links are accessed, and when files are opened either exclusively or for reading
only so that the original attributes can be restored when the file is closed. Word 17
is never used by RDOS revision 02, and thus it too contains zeroes.

The last word in the UFD, word 22, contains the device code of the primary partition
where the file (directory) is found. The device code of DPO is 338 .

Having examined R]JB's UFD, we can now determine where that directory is and can
proceed to analyze its structure. Word 13 of the UFD indicated that the starting
block address of that contiguous file was block number 2030. Since the file is
contiguous, it extends from 2030 through 2067.

As with any user directory, the first block contains the random file index for the
system directory, SYS.DR. Issuing the print command 2030:0 < 377/, we receive
the following on the line printer (only the useful area is reproduced here):

M/ onanae ARRRAR REATOD ARRPNE NERANE NRAROE APARAR PAAAAQ
A20/ APRGRR Br2053 APMANA DRAAAE AGAKAA ARAARA ARARAR AURNAK
AP/ AACARA AEOARAN PUARRN AURRRAR ARARAR PARAMG ACAAPE ANDR4D
A4R/ AP2042 PARRAA AP2ASH PANNRA AP2AAT MP2¢44 Au2nd6 ARPARY
A0/ Ma2045 A%annE ROAANAR PARPAR apppAp PARAAD ANDARE AVUAND
A_P Y/ 20207 GAAAD Y PHARAR RANPD M APAP AR AAMAAR ARpap RARGRY
ATA/ L ANAEAT AARRRA ARACDE ARARAR ARARAR AARMRR ANCAAP ARAAPAP
\AR/ - pefeee panaan PAACAR ARARAR ARAGAR AAARAD APERAR AAAAAN
110/ 240000 anp20r ArACOR AANAGE ARAAAR ARIR5] ARRARR arnane
An examination of this index indicates that the R]JB SYS. DR is found on blocks 2042

through 2051 and block 2053. Note that SYS. DR blocks in secondary partitions and
subdirectories are assigned as needed; there is no necessary initial contiguous

A-11

SYS.DR allocation. The intervening disk storage blocks 2031 through 2041 are
therefore allocated for program swap file index storage and for the map directory.
Thus a preliminary map of R]B looks as follows; we will fill in more details as we
proceed to examine R]JB and then subdirectory R]B1:

2030 RJB SYS.DR file index

2031

push level index space
and
RJB MAP.DR

RJB
SYS.DR

2051

2053 RJB SYS.DR

Going through a process similar to that we performed earlier with DPO SYS.DR, we
find the UFD for subdirectory R]B1 in block 2053. Looking at the starting logical
address of the subdirectory, we find that its random file index is located in block
2052. We now print that random file index, and find that RJB1's SYS. DR is found

in blocks 2054 through 2063:

AARY) ApRADA ARGAAN PRAARPR ARAQNE APANAN ARAARA ARCRRE PAAAAPAD
PN/ AARARS R2APAR ARROAR ARARPR ARRADBE APARAR NPRARR PARARD
2R/ ApMPoAs RARRPZA APAGHKE ARMPRAC ANARADN ARAAAD APPRAR ARRARS
A3y NAAZAN PARAP R GeMpAR AN0QRRR PARAAR NPARAR Anoran AM2485
FAA/ AP2KD4 PARRAA AP2R62 RPAPAN ARPNA6Y) AR2P56 AP2N6p AADARH
ASPy A220KT AAANAN AVARRR ANRARE ADAPAR GAARDA ARARRR OAPAPA
ABAY/ AR AAARRA ARARAP POPPAR ANAUAD ARRQAAR ARAARR AWRRQQ
ATC/ RUOCar ANRPAN APANON ARAAAP PUARRR PAAARARA AARARE AARAADAR
122/ Peavea ANARAT REAP2Y AOARAR ARAROK APAARA AANPAR AAAARR

V107 Avavze 2aapea AUNACa AANRAR AAZANG AP2P63 ANRACE ANAANA

A-12

We can now sketch the disk block map of subdirectory R]B1:

2052 RJB1 SYS.DR file index

2053 RJB SYS. DR with RJB1 UFD

2054

RJB1
SYS. DR storage

2063 ‘/

2064 .
2067 RJB/R]JB1 file space

Qld of RJB/RJB1

Since the range of file index entries is from 2054 through 2063, RJBl SYS.DR
storage is found in these blocks. Furthermore, since a subdirectory shares file
space with its parent directory (and the parent, R]JB, was created 32 blocks in
length), the remaining blocks, 2064 through 2067, are the file space which is to be
used by both directories RJB and RJBI.

To conclude this exercise, let us examine RJB1's SYS. DR to determine where its
map directory is located, and let us examine the UFD for RJBl's SYS. DR to
verify the conclusions about disk block assignments which we have made. Issuing
the open and print command 2054:0<47/, we receive the following:

AN Y K<AR PP RD> Sy S<cpnriry L343 N X JLUAN/ B

M4y €AY CARP>EN LA NFR Ne277>

MIN/ <CANEDCAARD> AP PY <PNOPLKNCR> <P AA>w
A1d/ «AnT><c3AI> <ART>CIRT> <p{1>®+ N<2ii7>
A2/ CPOI AR CATADPCAGIY > CAAP>P»CRII> Ma
A2AY QA n> CPAADLCARAD> CARPPCAPD> CUAPDLEALAD
A3Ry Nk t<c?213> CAPADCAHDD CAAPDCAPAD>

A34/ <€A 2CP A4> A4 > | CANT>CIEL> <pA73<3H7>
M/ <hii>s €<213> <UAUDCANR> CEAERDCAAA>

244/ CFAr>CHII> CAA7 >€MAD CARGPCALRD> SPAP>CAAR>

A-13

We see from this printout that the start of RJB1's SYS. DR is block 2052 (see word 13,
and convert its contents to octal). Similarly, RJBl's map directory is said to have a
starting address of 2041 (see word 35, and convert its contents to octal). Since
subdirectories do not have their own map directories but rather they use the
parent's map directory, this confirms our earlier conclusion that R]JB's map directory
was located in block 2041.

Finally, printing block 2041, the RJB/RJBI map directory, we see the following:

AAR Yy 1272777 V77767 Q20pann AAPRBE AQNAQAR QAPRARKRG RAARAAR AAMARR

210/ RAQAAY CARIAN Gorppan Apagoe ARARAR Aanpo2 AAPAL AUrAAN

PN/ NOBRROA OPOAGRADA PALACAR AAARAR DFAAAD ARMOKALY ARARRAR QAUMAAC A

As discussed earlier, map directories are contiguously organized files, and each

bit in each word corresponds to the usage of each block in the file it describes. Thus
the first 29 blocks of R]B are in use, since the first 29 bits are set; 60" in the second
word indicates that the last four blocks are free, and this confirms our conclusion that
blocks 2064 through 2067 comprise the unused file space in this partition.

This concludes our examination of directories and partitions. The following disk
block map summarizes our observations about the sample disk space which has
been the object of this illustration.

HIPBOOT

DP0 SYS.DR Random File Index

L]
3
.

Contiguous DPO
SYS. DR Storage

Secondary Partition RJB User File Description

-

RJB SYS.DR Random File Index

Program Swap File Index Space
RJB Map Directory

R]B
SYS.DR Storage

RJB1 SYS.DR Random File Index
Subdirectory RJB1 User File Description ‘jD

RJB1
SYS.DR Storage

RJB/R]B1
File Storage

DPO

File Storage

DISK BLOCK MAP ILLUSTRATION

A-15

APPENDIX B
RDOS HASHING ALGORITHM

The most convenient method for determining a file's UFD position within a SYS. DR
is to obtain an unsorted list of all entries within the SYS.DR. However, if the
system has crashed and no recentlist is available, the hashing algorithm must be
applied to a file name to determine the relative position within SYS. DR's random
file index of the disk block address containing the file. Although this method is
foolproof, it is quite tedious and can be avoided in most instances by adhering to
the practice of generating frequent unsorted lists of SYS. DRs.

The first stepin the RDOS revision 02 and higher hashing algorithm is to consider
the file name and its two-character extension as a series of 16 bit integers. The
first two characters, packed left to right, become the first integer, etc. If there
is an extension, it is calculated as an integer separate from the file name (e.g.,
A.DR is calculated as two integers, "A" and "DR'). Having created this series
of up to 6 integers, add up the series (discarding any overflow digits) to obtain a
16-bit sum S. Divide S by the frame size of the master device. The following
disk units and their frame sizes were given in Appendix A:

Unit Type Frame Size (in octal)

4047 141
4048 301
4057 1405

The quotient Q obtained by dividing S by the frame size (F) will include a remainder
R where R is in the range O to F-1 inclusive. This remainder R indicates the
relative position within a SYS. DR random file index where the address of the disk
block containing the UFD is found. Merely examine this disk block to find the file's
UFD.

It is conceivable that a block indicated by the hashing algorithm has overflowed,
i.e., that it was already filled with file UFDs when an attempt was made to insert

a given file's UFD into the block. If hash overflow has occurred, merely add one
frame size to R to determine the relative position of the block address within
SYS.DR's random file index. If this block overflowed too, add two frame sizes.
Continue the process until the relative position of the block address within SYS. DR
is found. In the normal course of events, SYS.DR will not need to be extended more
than one frame.

To illustrate the hashing algorithm, let us derive the hash position for file name
RJB.DR. This file name is illustrated in Appendix A, pages A-6, A-9, and A-10.

The first step in the algorithm is to convert RJB. DR into a series of integers:

R] 051112
B null 041000
D R 042122

Adding up the three integers, we obtain the sum 154234:

051112

041000

042122
S=154234

Division of S by the frame size (F), 1418, yields a quotient with a remainder of
101, :

o
10721 RI101
141,)154234
8141 8
1323
1247
544
302
242
141
101

The remainder, 101, is the relative position within SYS. DR's random file index which
contains the address of the disk block containing RJB. DR's UFD. Examining such
an index on page A-8, we find disk block address 172 in displacement 10l. Page

A-10 confirms that our answer is correct, since block 172 does indeed contain the
UFD for file R]JB. DR.

Sk 3k SR ok

B-2

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments., List specific comments. Reference page numbers when
applicable, Label each comment as an addition, deletion, change or error
if applicable,

cut along dotted line

General Comments and Suggestions for Improvement of the Publication.

Name:
Title:
Company:
Address:

FOLD DOWN FOLD DOWN

CLASS
PERMIT
No. 26
Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary It Mailed [n The United States

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

FOLD UP

STAPLE

