DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
{617) 485-9100

halberg Universitetscenter
inetitutfor Elnttronisha Systomer

PROGRAM 2381

ABSOLUTE ASSEMBLER

TAPE

Absolute Binary: 091-000002

ABSTRACT

The Absolute Assembler translates the Nova-family
absolute assembly language into machine language.
The absolute binary output of the assembler is
loaded with the Binary Loader.

Copyright ® Data General Corporation, 1969, 1973 093-000017-03
All Rights Reserved. Printed in U.S. A.

INTRODUCTION

Assembly language allows a programmer to write a source
program in symbolic language. The asseinbler then trans-
lates this symbolic source program into a series of machine
language instructions (an object program). The Data General
Absolute Assembler uses a two-pass assembly process,

upper
case
letters

lower
case
rters

td

IAY

NOTATION CONVENTIONS USED IN THIS MANUAL

Represents a carriage return.

Represents a form feed.

Parts of the format that are typed in upper case letters arce literal
parts of the Absolute Assembly Language, and must appear in context
exactly as shown within the format.

Parts of the format that are written in lower case letters (and under-
scored) are variables indicating that the programmer substitutes an
appropriate item (i.e., user symbol, expression, statement).

Broken square brackets are used to indicate optional parts of a format.

A terminator (break) is one or more tabs, spaces, and/or commas,

TABLE OF CONTENTS

INTRODUCTION
NOTATION CONVENTIONS USED IN THIS MANUAL
CHAPTER 1 -- Introduction to Assembly

The Assembly Process oo v v v v e v v vens St e e s e e e se e e s
Input and Output of the Assembler « . v v v v v v v cs e e
Assembly Listing et i e e ce e et e e

CHAPTER 2 -- Input

Character Set C et Ce e e o hes
Source Lines e e e e e e e et s e e e b e e e e
Data Lines ... 000000 e e e e e
Instruction Lines e e e ce e e e
Pseudo-op Lines........... et e e i e e .
Equivalence Lines Ce e e e e e e
Labels et e e e e et e e che e
Comments <. .. Gt e e et e
Source Line Formatting «.....¢.. .. ¢ oo ceeee
Location Counter e et e e e
Atoms v et e e i c ot e s e .o
Terminators e e e e e e e e
Operators e e e i e st e e e
Breaks ot e e s et e e e et .
Integers et i e i e e e e e e e .
Normal Format of INtegers « v v e v v o v v et e v o v e o v aw .
Special Format of Integers Ce e et e e N
Symbols et e . .
Special Atoms (@ and #) ¢ o v i vt it i i e e e e c v

CHAPTER 3 -- Syntax

Expressions ..o T et e e e o« e
Symbols c s e s e s s e ae e s v e s b s e s € e e 4 e s 0 s e e ae s .
SymbolDefj_nition e v et e e e e 6 s e e s s e s s e e s
Permanent Syrnb()ls e s s s e s s s e s e
Semi-permanent Symbols «. e s e e e caas
User Symbols * 4 s s s e s s 0 e s c s st e e e e o e s s
Instructions e e e e et e e e e e e e e et
Arithmetic and Logical (ALC) Instructions .«4 ..
I/O Instructions without Accumulator ch et e e
I/0 Instructions with an Accumulator et e

Memory Reference (MR) Instructions without Accumulator
Memory Reference (MR) Instructions with Accumulator

iii

ii

[N N)
Ut = W NN NN = -

&

1 1

'
— 0 00 W oW~ OO,

]
o

NN N DN NDNDNNDNDNDDNNNNDDNDDNNNDN
' I '
w

W w ww
] 1

1
= O 00 N Ut UL e e

- QO

w W
]

w
[

W wwww
1

CHAPTER 3 -- Syntax (Continued)

Instructions (Continued)

Formation of an Effective Address C et e e et .o
Instructions Requiring an Accumulator e v v v v v v v oo v .o
Instructions with No Argument Fieldso

CHAPTER 4 -- Permancnt Symbols

Location Counter Pseudo-ops e e e e e e e .
. LOC 65 o s s s s a0 e s aennneas e e e .o
BLK s e e e e ¢ o n e
Location Counter Permanent Symbol (.) ettt
Symbol Table Pscudo-0pS v v v ettt it it ittt i e e e e
.DALC ..., e se e r e e .

.DIAC S es s s s s e uusnn s e e e .
DIO ceee s Gt e et s s e e et s e s e s e .
DIOA ... s o e s aus ‘e e ere e o
B0 5 11 5 2 . .
.DMRA e e e e e .o . e h e s o
DUSR . o« . cees e . .

LXPNG oo oo s hvs e nnnas . ce oo oo
Tape Terminating Pseudo-ops .. . v v v v v v it v c it et e e
CEND e e e i e e s e e ¢ s s e
.EOT e c e h e e s et ettt
Radix Pseudo-op .RDX et e e et e e c e
Text Pseudo-ops oo i e v v oo et e et e c et
.TXT, .TXTE, .TXTF, .TXTO .ttt
T 04 1/ .

APPENDIX A -- Operating Procedures

APPENDIX B -- Absclute Assembler Character Set
APPENDIX C ~- List of Pseudo-ops

APPENDIX D -- List of Error Codes

APPENDIX E -- Object Tape Format

APPENDIX F -- Radix 50 Representation
APPENDIX G -~ Instruction Set

INDEX

iv

3-12
3-13
3-13

1 1

1N [S T S S S SN
1)
bt b b et et e b e O] UT B NN
NONUL R W N - O

LN
1ot

o
[

4-17
4-18
4-19
4-20
4-22

CHAPTER 1

INTRODUCTION TO ASSEMBLY

THE ASSEMBLY PROCESS

The Absolute Assembler facilitates the coding of machine language programs.
Basically, the Absclute Assembler is a program that assigns numeric values to
symbols.

Certain symbols have preassigned values, e.g., the DGC instruction mnemonics,
The instruction mnemonics are listed in Appendix G with their values in octal and
are described in detail in How to Use the Nova Computers. The value assigned to
an instruction mnemonic is the binary bit configuration reccgnized by the hardware
for that instruction. For example, the following instruction mnemonics have the
values given (in octal):

Mnemonic Value

ADD 103000
SUBO 102440
ANDZR# 103630

Other symbols may be defined by the user. These symbols are assigned a numeric
value, such as the current value of the location counter (LC), and can be referred
to by other statements in the program. For example, the programmer might write
the source program line:

LDA 0, TEMP

which means "load accumulator 0 from symbolic address TEMP. " LDA is an instruc-
tion mnemonic that the assembler translates into the 16-bit equivalent of 20000g.
Accumulator 0 has a value O that is ORed into bits 3 and 4. If TEMP is the symbolic
address assigned by the user to absolute address 5, then the value 5 is ORed by the
assembler into bits 13 through 15. The assembled line would be:

0010000000000101

and would be part of the object code output by the assembler. At a later time the
object code could be loaded into core using the binary loader and executed.

1-1

THE ASSEMBLY PROCESS (Continued)

The assembly of a source program is done in two passes, i.c., the assembler goes
through the entir¢-source program character string twice. The first pass locates
the entire progrﬁm and determines definitions of all symbols. The sccond pass
completes the evaluation of lines that could not be completely evaluated until after
the first pass.

INPUT AND OUTPUT OF THE ASSEMBLER

Input to the assembler consists of one or more SOUrcc programs, written in a sub-
set of the ASCII character set. Output includes one or more of the following: a
binary object program, a source program and error listing, and a symbol table
listing.

The elementary scan of input by the assembler is a line-by-line read where each line
includes all characters up to a carriage return or a form feed. Three characters
that may appear in the input are unconditionally ignored. These characters are:

Character ASCII Value
null 000
line feed 012
rubout 177

During translation, characters having incorrect parity arc replaced by the ASCII
character backslash (\). This character is transparent to higher level character
processing, i.e., L\A is processed as LA.

The binary output program is a translation of the lines of the source program into
a special blocked binary code. Most lines of source input translate into a single
16-bit (one-word) binary number for storage in core by the binary loader. Associ-
ated with each number is an absolute address. Every 16-bit word assembled is
punched as two 8-bit characters on the object tape.

The listing provides a copy of the source input as well as the octal location and
contents of every object word produced by the assembly process. The symbol table
listing follows the program listing and is an alphabetic list of every user symbol
and its value.)

Any lines containing source program €rrors are printed on both pass 1 and pass 2
at the console with error codes. If a listing of the program is produced, the error
codes will also appear on the listing. The listing contains information in the
following order:

1-2

INPUT AND OUTPUT OF THE ASSEMBLER (Continued)

Column Contents

1-3 Up to three error code letters indicating input errors in the line.
The first error generates a letter code in column three, the second
in column 2 and the first in column 1. Only 3 codes can be listed
per line. If there are no input errors, these columns are blank.

The current value of the location counter, which is the absolute
location in which the numeric output will be stored, if relevant.
Otherwise, blank.

The column is left blank.

The numeric output line, if relevant. Otherwise, the column is
blank.

16 The column is left blank.
17 . « & The source line as written by the programmer.

An example of listing of source and object codes, error codes, and a symbol table
is shown on the following page.

- SAMPLE ASSEMRLY LISTING

ABANA B24AA2 STRT: LDA 15.+2
GAAN ASACAN STA 25.-1
AAAAR 1570440 ADD 2,3
ANAN3 A14%20 DSE on
AAQAL 1TAAANA NEG 3.2
AAAAS Ma2524 «TXT *TE
AAANK A52137% XT

AAAAT AASALS <15><12>

AB1A ACANAN *

AAABAG ACNST= 40
ANNBA2 <RDX 2
NAARAS BCNST = 1041
AAG11 AAA135 CNST:1A11101
ANAG1L N <RDX &
A BARL2 BPAT66 LDA 7,400
A ANAI3 A1AT17 ISZ 431751
URB @AAM14 @24m23 LASL: LDA 1,23
MO A+P:
HHE REG= 3+R
F 2915 143000 ADD 2
I 3 PARITY ERROR I\ THIS COMMENT
L <LOC -1 :
MP ARG16 AAAAA3 A
M GBaA17 090005 A
AMA2B AABAAT C77:

P
LO
:3
:5
77

7A
0O 72nA21 N20016 LDA 4,.-3
R +RDX 12
T 2*%3+.DUSR
U A30A15 LDA 2,B
3+ TXT+2

SEE TARLE 8-1 FOR AN EXPLANATION
OF THE ABOVE ERRORS

o+ END

A AAARY 7
ACNST AR 40
R nNAAA1LS
RCNST AAARAS
c77 AARA2A
CNST 200711
LA BNNA14
LaL nNAAAL 4
REG wAaa1s
STRT ANaNAA

CHAPTER 2

INPUT

Assembly language sourcc programs arc made up of a series of lines. A line is all
characters scanned by the assembler up to a carriage return or form feed. The as-
scmbler recognizes several types of lines; each source line must conform to a given
structure, depending on its type. In addition, each line must contain characters
specified as part of the Absolute Assembler character set,

CHARACTER SET

The Absolute Assembler accepts the following characters within a source program

Alphabetics A through Z

Numerals 0 through 9

Special Characters: " # & * 4, - ., /
Format Control and Line Terminators:

horizontal tab, form feed, carriage return, space

Appendix B contains a table listing the character set with ASCII equivalents. If at
any time, a lower case alphabetic is uszd, the assembler will automatically convert
it to its upper case equivalent, The Absolute Assembler unconditionally ignores the
three characters: null, line feed, and rubout, The assembler will respond to their
input as if they were not present.

Any character not part of the character set will be flagged with an error on the as-
sembly listing with the bad character code (B).

SOURCE LINES

Members of the character set are combined to form source lines. The majority of
source lines cause the generation of a 16 —bit value that is to occupy 2 memory
location at execution time. Any line of this type is said to produce a storage word.
The storage word has a value, usually defined by an expression or instruction, and
an address. At assembly time the address assigned is the current contents of the
location counter (LC). The generation of each 16—bit storage word causes the
location counter to be incremented by one. Thus, in general, storage words are
assigned to consecutive increasing LC values.

Several types of source lines produce storage words. Others are used to define sym -
bols, control the assembly process, and provide instructions to the assembler.

2-1

Assembly source lines must be one of the following types:

Data
Instruction
Pseudo-op
Equivalence

Data Lines

A data line is one of the simplest in the assembly language. It consists of a single
numeric expression that evaluates to an integer that is stored in a 16 -bit storage
word., The special atom @ (explained later in the chapter)can be used anywhere in
the data line to causc the assembler to place a 1 in bit O of the storage word., Thus,
for example, all of the following data lines have the same value.

102644

102644@

2644@

@1322%2 (where * is the multiply sign)

Instruction Lines

-~

An instruction line is an instruction mnemonic followed by any required or op-
tional fields. All instruction lines generate a 16--bit storage word, which
provides an instruction to the assembler, such as to load an accumulator, add
two accumulators, or increment an accumulator. Instructions are described
in Chapter 3.)

Pseudo-op Lines

A pscudo-op line must begin with a permanent symbol (except the symbol .) and may
be followed by one or more required or optional arguments. Some pseudo-op lines
(suchas .LOC and .END) are merely commands to the assembler and do not gene -
rate either a storage word or 1€ -bit value, Others (such as .RDX) generate a 16-
bit value but do not increment the location counter. Pseudo-ops are discussed in
Chapter 4.

Equivalence Lines

One means of assigning a symbolic name to a numeric value is by equivalence. An
equivalence line associatcs a value with a symbol; that symbol can then be used any
time the valuc is required. An equivalence line has the form:

symbol = expression

2-2

Equivalence Lines (Continued)

where symbol is a user symbol conforming to the rules given in the section on
atoms. The expression following the equals sign must be capable of evaiu:tion

to an integer on pass one. It can, for example, be an instruction since this is
evaluable at pass one. The user symbol on the left must be previously undefined
in pass one. Some equivalence lines are:

000037 A=3+5%4-1
000040 ACNST = 40
200010 B=10

020005 S=LDAO0O 5

In an equivalence line, predefined symbols used on the right will assc.uble correctly
whether or not they are used in a syntactically correct instruction, for example:

E = ADDZ - SNC

where the expression on the right contains symbols used in instructions but is not a
true instruction., It will assemble correctly, i.e., the value of SNC (3) would be sub-
tracted from the value of ADDZ (103020) and the resultant value (103013) assigned to
E. If the expression on the right contains an und<fined symbel, zn equivalence (E)

error results,

Labels

Any source program line can contain one or more labels. A label allows the pro-
grammer to name a storage word symbolically. Using the label, the pregrammer
can then reference the storage word without regard for its numeric address.

A label is a user symbol, previously undefined, that must appear at the beginninrg
of a source line and must be followed by a colon (:). Like other symbols, a l1abcl
has a value; its value is that of the location counter, i.e., the address of the next
storage word asscembled. Since some source lines do not generate storage w ords,
this definition i not necessarily associated with the line in which the label
appears. The following source line is given the label LOOP.

LOOP: ADD# 0 1 SKP

Then the storage word line:

Labels (Continued)

JMP LOOP

is assembled to produce a jump to the same location that receives the storage word
ADD# 0 1 SKP.

If a previously defined symbol terminated by a colon is redefined, it will be flagged
with an error code M. A label containing other atoms besides an undefined symbol
is flagged as a colon error, C.

Some examples of labels are:

H

{
00000 063511 PUTC: SKPBZ TTO
00462 063077 ERROR: HALT
00515 024420 INIT: LDA 1, ASTK

where the value of ERROR is 462, the value of INIT is 515, and the value of PUTC
is 0.

~

Comments

An assembly language program can include comments to facilitate program checkout,
maintenance, and documentation. A comment is not interpreted in any way by the
assembler and will not affect the generation of the object program. All comments
must be preceded by a semicolon (;) and terminate with a carriage return.

Upon encountering a semicolon, the assembler will ignore that which follows it until
encountering a carriage return or form feed. However, a listing of the source pro-
gram will generate all comments as input by the uscr. The following source program
lines illustrate the use of comments. '

: THIS PROGRAM CALCULATES THE ABSOLUTE VALUE OF A NUMBER IN ACO.
MOVL# 0, 0, SZC;TEST SIGN
NEG 0,0 ;NEGATE IF NEGATIVE
.END ;END OF ABSOLUTE VALUE PROGRAM

Source Line Formatting

Within broad limits the programmer is free to determine the format of the source
lines of a program. For cxample, all of the following lines are identical in meaning
to the assembler; they differ only in format,

—

INC: ADD# 2, 3, SZR ;SKIP IF SUM = ZERO
INC:ADD, 2, 3,SZR#;SKIP IF SUM = ZERO
INC: APD 2 3 SZR #; SKIPIF SUM = ZERO

(The special atom # can appear anywhere in a source line, See section on atoms.)

A common practice in writing source programs is to divide each line into four col-
umns by means of three tab scttings, using the leftmost column for labels, the
second column for the beginning of the source line, the third for argument ficlds,
and the rightmost for comments, If the listing device is not equipped with auto-
matic tabbing (such as the ASR 33), the Absolute Assembler simulates tabs by
spacing to the nearecst assembler -defined tab position (and always lcaving at least
one space between ficlds). Assembler-defined tab positions are at every eight
columns, that is, at columns 9, 17, 25, ectc.

LOCATION COUNTER

At the start of an assembly, the assembler initializes the location counter (LC) to O.
During assembly, the counter contents can be altered in several ways:

Every time a storage word is generated in the object program, the
counter is incrementced by one, Therefore, unless somecthing else
changes the counter, words are assigned to consccutive memory lo-
cations. (The location following 77777 is 00000.)

The programmer can set the counter to any desired 15-bit address
by means of a location pseudo-op, . LOC, (Sec page 4-2.)

At the appearance of the pseudo-op . BLK, the counter is incremented
by the value of the argument of the pseudo-op. (See page 4-3,)

The symbol . when used alone is a special symbol whose value is equal to the cur-

rent contents of the location counter. For example:

01077 177771 M7: -7
01100 001103 TABAD- .+3

ATOMS

An atom, the basic unit of the assembly language, is a group of characters
having special meaning to the assembler. All characters, except those in
comments or text strings, are interpreted by the assembler as an atom or
a part of an atom. The general classes of atoms are:

terminators
integers
symbols
special atoms

These are described on this and following pages.

TERMINATORS

A terminator separates numbers and symbols from other numbers and symbols.
They can be used either as operators or breaks.

Operators

Operators are a set of characters which are used with integers and symbols to
form expressions that specify arithmetic and logical relations among integers and
numeric symbols. Expressions are described in Chapter 3. The operators are:

+ Addition

- Subtraction

* Multiplication
Division

/
. & Logical AND
Logical { ! Logical OR

Arithmetic

.Breaks

The terminators that are used primarily as separators, to begin and end expressions

and comments, and to specify how parts of the source program are to be interpreted
are:

A represents the class of spaces - a space, a comma, a
tabulation, or any number or combination of spaces,

commas, and tabulations.

A colon (:) is one means used to define the symbhol which
precedes it, for example:

user - symbol:

An equals sign (=) is another means of defining the symbol
which precedes it. For example:

user-symbol=

Parentheses may enclose an expression.

A semicolon indicates the beginning of a comment.

A carriage return terminates a line of source code.

A form feed terminates a line of source code.

INTEGERS

Normal Format of Integers

An integer is a number computed in any radix from two to ten. The Absolute
Assembler converts each integer into a 16-bit unsignzd number. The decimal
integers 0 to 32767 yield the octal numbers 000000 to 077777. The decimal integers
32767 to 65535 convert to 100000 to 177777. Using two's complement notation,

the program may treat the former words as positive numbers, the latter as
negative. (The user can gencrate signed numbers by using integers with operators
+ or - listed on page 2-6.)

An integer is any string of digits that is preceded and followed by an operator
or break character and is neither in a program comment nor in a text string unless
enclosed within angle brackets. The four strings:

3

38

99
123456789

are all integers. But the three character strings:

31. 27
66A
Al123

are not; the first two are illegal and would be flagged as number errors (N), and
the third is actually a symbol.

The assembler assumes that all integers are octal unless the programmer gives

a radix pseudo-op to specify otherwise. (.RDX is described on page 4-18,) An
integer that contains any numeric greater than or equal to the current radix is
flagged as a number error., An integer greater than or equal to 2 % is also flagged
and is evaluated modulo 2% .

Special Format of Integers

There is a special input format that is converted to the single precision 7-bit octal
value for the single ASCII character following. The input format is:

"

X

where: X represents any ASCII character except line feed (012 octal), rubout (177
octal), or null (000).

9.3

Special Format of Integers (Continued)

Only the single ASCILI character immediately following the quotation mark is
interpreted. The ASCII characters null, rubout, and line feced, which are invis-
ible to the Absolute Assembler, cannot be input using this format. However,

the other ASCII characters can be represented as single precision integers in this
manner,

000101 "A

000065 "5

The format can be used as an operand within an expression as shown below,

000103 "A+2
000026 "B/3

177751 "*-"A

Note that ") assembles as octal 15 and also terminates a line.

-

SYMBOLS

A primary function of the Absolute Assembler is the recognition and interpretation
of symbols. Symbols are used both to direct the action of the assembler and to
represent numeric values, The various types of symbols will be discussed in
Chapter 3, Their source representation is given below.

afb... bqbreak N}

‘where: ais. or a letter (A-Z).
bis ., a letter (A-Z), or a decimal digit (0-9).
break is any character that is not an alphanumeric or a period.
If more than five characters precede break, only the first five are
regarded as significant. T

Some examples of symbols are:

.ABS
ABS
Al2

SPECIAL ATOMS

There are two atoms that are transparent during the assembly scan. The effect of
thesc atoms upon a line occurs after the entire line has been scanned.

@) An at sign (@), or any number of at signs,appearing anywhere in
a source program line of a memory reference (MR) instruction
or before an expression has the following effect.

1. When the rest of the MR has been evaluated, presence
of the @ sign or a series of @ signs anywhere in the
instruction causes a 1 to be stored in bit 5. In the format
of a memory reference instruction, bit 5 is the indirect
addressing bit.

024020 LDA 1,20

026020 LDA 1,@20

2. In the format of a data word, bit 0 is the indirect addressing
bit. When the expression has been evaluated, presence of
the @ sign or a series of @ signs causes bit zero of the word
to be set to a 1.

-

000025 25

100025 @25

A pound sign (#) or any number of pound signs appearing anywhere
in a source program line of an arithmetic and logical (ALC) instruc-
tion has the following effect.

When fhe rest of the ALC has been evaluated, a 1 is stored
in bit 12. (Bit 12 in the format of the ALC is the no load bit,)

133102 ADDL 1,2,SZC

133112 ADDL# 1,2,SZC

2-10

CHAPTER 3

SYNTAX

EXPRESSIONS

An expression, expression, has the format:

t operand;i operator operand,
where: operator is an Absolute Assembler operator.

operand, and ogerand2 are operands which may be integers or symbols
or expressions evaluating to integers. An operand preceding the oper-
ator is necessary for each operator, except for unary operators signi-
fying plus and minus. Either unary operator may follow an operator
or precede an expression,

An expression is any series of integers and numeric symbols, separated by opera-
tors, as specified in the format above. The term "expression' always includes the
case of an integer or symbol standing alone. As with all integers and numeric
symbols, an expression has a 16-bit value, which the assembler computes by per=
forming the indicated logical and arithmetic operations from left to right. Both
arithmetic and logical operators may appear in an expression,

An operator specifies an operation to be performed on the operands at either

side of it. Logical operators work bitwise on pairs of operands; arithmetic oper-
ators treat operands as numbers. Note that operands are intrinsically neither
arithmetic nor logical, they are simply 16-bit numbers that are treated in dif-
ferent ways. ‘

The assembler interprets the following six characters as operators to specifv
two logical and four arithmetic operations with NO check for overflow.

Operator Operation Interpretation of Operands

+ Addition Unsigned 16-bit integers

- Subtraction Unsigned 16-bit integers

* Multiplication | Signed two's complement integers,
result is the low order word

/ Division Signed two's complement integers,
result is one word, unrounded

& Logical AND 16-bit logical words

I Logical OR 16-bit logical words

3-1

EXPRESSIONS (Continued)

Expressions are evaluated left to right with no implied precedence, i.e., A+B/C
is evaluated as (A+B)/C. The unary operator - is permitted. Multiplication is
signed, singlc precision. Division is signed integer, unrounded. Overflow is

not checked for, and it is therefore the user's responsibility to keep his results
in the range of numbers which can be handled by DGC's Nova-family computers.
Note that an integer that is used to produce a negative number must have a magni-
tude less than or equal to 215, e.g., the expression;

-100001

is not evaluated correctly but will not be flagged as an error since there is no

overflow check. The expression -x where X is greater than 215 s evaluated as
216.x, resulting in a positive number less than 215, In the example given the

evaluation is 077777.

The use of "@'" and "#" within expressions will change the resulting value. Thesc
characters are initially screened from the expression, This screened expression
is evaluated, and finally the bits corresponding to "@" and "#" are logically ORed
into the value. For example:

@0+@0 is 100000 (not 000000)
ANDZ#-SZC is 103416 (not 103426)
After the following statements have becn assembled:
01000 000003 ILABEL: 3
000101 ANUM = "A
01001 177000 LOOP: ADD 3,3

some typical expressions and their values are :

EXPRESSIONS (Continued)

Expression Value

LABEL+7 001007
ANUM-077 000002
"B+ANUM™*4 /LABEL 000001
LOOP+ADD 104001
LABEL/4 000200

LABEL*LLABEL 000000 (overflow not checked)
"OH+ANDZ-5ZC 103476
LABEL&LOOP » 001000
LABEL!LOOP 001001

When an expression begins with an operator or when two operators appear in
succession in an expression, the Absolute Assembler assumes an operand of
zero, €.g.,

is equivalent to OHA

is equivalent to A+0 -BorA-B

is equivalent to 0*Aor0

is equivalent to A*¥ 0-Bor -B

To multiply or divide by some negative integer or symbol, the integer or
symbol must be equated to a symbol first, e.g.,

SYMBOLS

Symbols recognized by the Absolute Assembler are classified as:
1, Permanent
2. Semi-permanent

3. User

Symbol Definition

A symbol is defined if the assembler has a value for it. The value of a symbol may
be either numeric or operational, The value of a numeric symbol is the 16-bit
number it represents; the value of an operational symbol is its meaning. Some
symbols have both numeric and operational properties. For such a symbol to be
defined, the assembler must know both the numeric value for it and also know its
meaning. All symbols which appear within a program must be defined.

Permanent Symbols

Permanent symbols are defined by the assembler and cannot be altered in any way.
These symbols are used for two purposes: 1) they are used to direct the assembly
process; and 2) they are used to represent numeric values of internal assembler
variables,

Symbols used to direct the assembly process are called pseudo-ops. Pseudoc-ops
are used for such purposes as setting the input radix for numeric conversions,
setting the location counter, assembling ASCII text, etc. They are discussed in
detail in Chapter 4, and alphabetically listed in Appendix C,

There is one permanent symbol which represents a numeric value of an internal
assembler variable. This permanent symbol is . (period). The symbol period,
when used alone, is a special symbol whose value is equal to the current contents
of the location counter. (See page 2-5.)

Permanent symbols will not be printed as part of the user symbol table.

Semi-Permanent Symbols

Semi-permanent symbols form an important class of symbols, containing the
instruction mnemonics. An instruction mnemonic signals the start of an instruc-
tion. Using appropriate pseudo-ops, symbols may be defined as semi-permanent,
and as such their future use will imply further syntax analysis. For example, a
symbol may be defined as requiring an accumulator. Use of this symbol causes
the assembler to scan for an expression following the symbol. If not found, a
format (F) error results. If found, the value of the expression determines the
value of the accumulator field bit positions within the 16-bit instruction value.
Instructions are discussed in the next section.

3 -4

Semi-Permanent Symbols (Continued)

Semi-permanent symbols can be saved and used, without redefinition, for all subse-
quent assemblies. The assembler supplied by DGC contains predefined semi -
permanent symbols that conform to the Nova family instruction mnemonics. A list
of these is given in Appendix G. The user may climinate these symbols and define
his own symbols or he can add to the given set. (See Appendix A.)

In addition to instruction mnemonics, several other types of semi-permanent
symbols are provided by DGC. These include skip mnemonics, device codes, and
floating-point instruction mnemonics,

Semi-permanent symbols will, by default, not be printed as part of the user symbol
table.

User Symbols

The user can define any symbol that does not conflict with the permanent or semi-
permanent symbols. Symbolic definitions are used to name a location, to assign
a numeric parameter to a symbol, etc. These symbols are maintained for the du-
ration of any assembly in a symbol table that is printed after the assembly scurce
listing as shown in Chapter 1.

INSTRUCTIONS

Instructions consist of one or more fields. The first field is an instruction
mnemonic that is a semi-permanent symbol, defined by one of the pseudo-ops
.DALC, .DIAC, .DIO, .DIOA, .DMR, or .DMRA as described in Chapter 4.
Other fields may follow the mnemonic. Fields in an instruction can be separated

by a space, comma, or tab and must conform to the field requirements for the class
of semi-permanent symbol in number and type of fields.

The Nova family of computers recognizes six basic classesof instructions. Each
class has a corresponding pseudo-op enabling definition of semi-permanent sv.nbols
within the class. Instructions fall into one of the six classes:

1. Arithmetic and logical instructions. Mnemonic defined by . DALC
. 2. Input /output without accumulator. Mnemonic defined by ,DIO
3. Input /output with accumulator, Mnemonic defined by . DIOA
4. Memory reference without accumulator. Mnemonic defined by . DMR
S. Memory reference with accumulator. Mnemonic defined by . DMRA
6. Instructions requiring an accumulator. Mnemonic defined by . DIAC

INSTRUCTIONS (Continued)

An instruction is assembled in the following order:

1. The mnemonic instruction field is assembled as a 16 -bit word.

For example, DGC-defined mnemonic ANDZL would be evaluated as
103520g8. If extra characters were appended to a mnemonic, e.g.,
ANDZL+1, the mnemonic would be evaluated correctly but the state-
ment would be flagged with a format error (F).

2. Each subsequent field is evaluated and ORed into the appropriate bits
of the 16-bit instruction word.

Each field is evaluated as a 16-bit word but all bits except the low-
order bits required for the field are masked. For example, an
accumulator field is masked except for the low-order two bits.
Although the assembler masks out unnecessary bits in fields, a field
overflow error (O) will be given for such a field, e.g., accumulater
field greater than 3, skip field greater than 7, etc.

3. Special atoms # and @ when present in the instruction are ORed into
their appropriate bit position.

The special atoms are not assembled until all fields have been
assembled. The assembler flags as a format error (F) any instruc-
tion containing a special atom when none is allowed.

If a field requires the assembler to place a non-zero number in any bit field

of the instruction that is already non-zero, the assembler will flag the statement
with an overflow error (O). For example, except for the incorrect formatting of
the second instruction, the following two instructions are equivalent.

AND 0,2,SKP
AND+1 0,2 ; INSTRUCTION WOULD BE FLAGGED F

Therefore, the following instruction would result in both a format (F) and over-
flow (O) error:

ANDH+1 0, 2, SKP

The DGC-defined instructions corresponding to the different classes of instructions
are described fully in How to Use the Nova Computers. The syntax required for
each instruction class is given on the pages following. The semi-permanent symbols
(instruction mnemonics) listed for each instruction are those defined by DGC,

3-6

Arithmetic and Logical (ALC) Instructions

An arithmetic and logical (ALC) instruction is implied when the mnemonic field is
one of the following:

ADC AND INC NEG
ADD COM MOV SUB

The format of the source program instruction js:

alc-mnemonictcarryt fshiftypsource -acpdestination -ac tAskipt

where:

alc-mnemonic is one of the cight semi-permanent symbols listed above.

carry is an optional Carry bit mnemonic: Z sets Carry to 0.
O sets Carry to 1.
C complements the current
state of Carry.

shift is an optional rotate/shift mnemonic; L shifts left one bit,
R shifts right one bit.
S swaps bytes.

source-ac is any legal cxpression evaluating to an accumulator (0, 1, 2, 3) to
be used as the source accumulator,

destination-ac is any legal expression evaluating to an accumulator (0, 1, 2, 3) to
be used as the destination accumulator.

skip is an optional skip mnemonic:

SBN skip on zero Carry and result, SNR skip on nonzero result,
SEZ skip on zero Carry or result. SZC skip on zero Carry.
SKP skip unconditionally. SZR skip on zero result,
SNC skip on nonzero Carry.

The atom # can be specified anywhere as a break character. If used, a 1 is assem-
bled at bit 12 (no load bit).

An ALC instruction is represented in memory as:

source | dest. } alc no
ac ac mnemonic load
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Some examples of ALC instructions are:

1

l shift l carry skip

MOVL 1,1,SNC
NEGZL 1,0, SBN
ADC# 0,1

3-7

1/0 Instructions without Accumulator

An input/output instruction without an accumulator is implied when the mnemonic
field is one of the following: '

NIO SKPBN SKPDN
SKPBZ SKpPDZ

The format of the source program instruction is:

! io-mncmonicpdevice -code

|
i
where: ; i

io~mnemonic is one of the four semi=-permanent symbols SKPBN, SKPBZ, SKPDN,
SKPDZ, or is N1Ofpulse} where: ‘

pulse is an optional pulse spccification:

C Clear Busy and Done bits, idling device. ;
S Clear Donc and set Busy, starting device, ' :
P Pulse the special in-out bus control line (set Busy and Done),
When device -code is the CPU (77), the meanings of S, C, and P arc:

C Clear the Interrupt On flag.
S Set the Interrupt On flag.
p Has no effect.

device -code is any legal cxpression evaluating to an integer that specifies a
device. i :

An I/0 instruction without an accumulator is represented in memory as:

o 1 1 0 O ' io~mnemonic, device-code

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Some examples of I/0 instructions without an accumulator are:

NIOC CPU
SKPBZ 36
SKPDN TTR

1/O Instructions with an Accumulator

An input/output instruction with accumulator is implied when the mnemonic ficld
is one of the following:

DIA DIB DIC
DOA DOB DOC

The format of the source program instruction is:

ioa~mnemonicfpulse}d accumulator 2 device -code

where:

ioa -mnemonic is one of the six semi-permanent symbols listed above.

pulse is an optional pulse specification:

C . Clear Busy and Done bits idling device.
S Clear Done and set Busy, starting device.
P Pulse special in-out bus control line {set Busy and Done).

When the device~code is the CPU (7/7), C, S, and P have special
meanings:

C Clear the Interrupt On flag
S Set the Interrupt.On flag
P Has no effect

accumulator is any legal expression evaluating to an accumulator (0, 1, 2, or 3).

device-code is any legal expression evaluating to an integer that specifies a device.

An 1/0 instruction with an accumulator is represented in memory as:

!0 1 1 { ac device -code

i ioa -mnemonic and \
! fpuwiset] '
(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Some examples of I/0 instructions with an accumulator are:

. DOAS 0,PTP
! DA 2,CPU

Memory Reference (MR) Instructions without Accumulator

A memory reference instruction without an accumulator is implied when the mne -
monic field is one of the following:

DSZ ' JMP
ISZ JSR

The format of the source program instruction is:

mr-mnemonic displacementy mode

or

mr-mnemonicfaddress

where:

mr-mncmonic is one of the four semi-permanent symbols listed above,

displacement is any legal expression evaluating to an 8-bit integer within the range
set for the particular ‘mode as showi below.

mode is any legal expression cvaluaiing to an integer in the range 0-3,
which determines an explicit mode of forming an effective address
as follows:

Mode Formation of Effective Address

0 Page zero or direct addressing. (0 <displacement <377g)
and (cffective address = displacement).

Addressing relative tc the contents of the location counter
(LC). (-200g < displacement < + 1778) and

[(LC)-200] < effective address < [(LC)+ 177]

Addressing based on contents of accumulator AC2 or accu-
mulator ACB.(-ZOOSE displacement <+177g) and

[{‘A:g‘;} - 200] < effective address < L(ﬁg§+ 177]

address is any legal expression evaluating to an address within the range of
either mode 0 or mode 1.

Normally, modes 0 and 1 are not explicitly given to determine the mode. Instecad,
if only address is given, the assembler determines if this address is in page
zero {modc 0) or within 236, words of the location counter (mode 1). When
using explicit modes 1, 2, or 3, displacement is considered a signed integer.

3-10

Memory Reference (MR) Instructions without Accumulator (Continued)

(Explicit mode 1 can be used occasionally to force LC-relative addressiug; explicit
mode 0 is never used.)

If address or the evaluation of displacement to an address does not produce an effec-
tive address within the appropriate range, an address (A) error is set, If moce
does not evaluate to 0-3, a field overflow (O) error is given.

An MR instruction is represented in memory as:
indirect bit

mr-mne- #

monic

mode displacement

2 3 4 5 6 7 8 9 10 11 12z 13 14 15

Use of the special atom @ anywhere in an MR instruction causes bit 5 of MR instruc-
tion to be set. If set to 1, indirect addressing is specified, and the effective address
contained in the instruction is only a pointer to another memory cell, which may con-
tain an effective address. The memoxry cell pointed to by the instruction may, in
turn, also be indirect, etc.

Page 3-12 contains a flow chart showing how effective addresses are formed.

Some examples of MR instructions without accumulators are:

i DSZ COUNT
JMP LOOP+3
JSR @SAVE

| JMP .45

Memory Reference (MR) Instructions with Accumulator

A memory reference instruction with an accumulator is implied wher. the mnemonic
"is one of the following:

LDA STA

The format of the source program instruction is:

mra -mnemonicpaccumulatorjdisplacementy, mode

or

mra-mnemonicgaccumulatorjpaddress

3-11

Meraory Reference (MR) Instructions with Accumulator (Continued)

where:

mra-mnemonic is one of the semi-permanent symbols LDA or STA.

accumulator is any legal cxpression evaluating to 0, 1, 2, or 3.

displa cement, mode , and address are the same as for MR instructions without an
accumulator.

The special atom @ is used as it is for MR instructions without an accumulator,

An MR instruction with accumulator is represented in memory as:

, indirect bit

mr-mne- v
0 . ac
monic

0 1 2 3 4 5 7 8 9 10 11 12 13 14

mode displacement

Some examples of MR iistructions with an accumulator are:

STA 3, SAVE
LDA 1,0,3
1.LDA 3, COUNT@

Formation of an Effective Address

“address ! Yes
0 to 377 ' displacement)‘

-200 tol77

Yes

_4ddres
=1.C-200 to
LC—';-177

] Y .
{address - LC=bits 8-15 displacement * => bits 815
01 = bits 6 -7 mode ->bits 6-7

/
address = bhits 8-15
00 = bits 6-7

Instructions Requiring an Accumulator

Certain commonly used I/0 instructions have been defined with the device-code
field, CPU. The accumulator field is filled by the programmer. The mnemonic
fields and their equivalent I/O instruction counterparts are:

Mnemonic Equivalent

READS DIA accumulator, CPU
INTA DIB accumulator, CPU
MSKO DOB accumulator, CPU

-

The format of the source program instruction is:

iac-mnemonic A accumulator

where:

iac-mnemonic is one of the three semi-permanent symbols listed above,

accumulator is any legal expression evaluating to an accumulator 0, 1,2, or 3.

Some examples of instructions requiring an accumulator are:

f
.READS 0
IMSKO 3

L

Instructions with No Argument Fields

Certain. commonly used I/0 instructions have been defined as semi-permanent
symbols using the pseudo-op . DUSR. .DUSR defines a simple symbol that does
not take any argument fields. The mnemonics and their equivalent I/O instructions

are:

Mnemonic Equivalent

IORST DICC 0, CPU
HALT DOC 0, CPU
INTEN NIOS CPU
INTDS NIOCC CPU

3-13

CHAPTER 4

PERMANENT SYMBOLS

Pseudo.-ops are permanent symbols which direct the assembly process. The
Absolute Assembler pseudo-ops can be grouped into five logical categories,
according to the functions they perform. The categories are:

. Location counter pseudo-ops
Symbol table pseudo-ops
Terminating pseudo-ops
Number radix pseudo-op
Text pseudo-ops

N b W N

Each pseudo-op is explained within this chapter according to the above categories,
in the order specified. Appendix C gives a list of all pseudo-ops in alphabetical
order, aiong with their function and basic syntax, In general, pseudo-op lines
may appear anywhere within a source program.

In addition to the pseudo-ops, the permanent symbol . ,which has as its value the
current contents of the location counter, is described.

4-1

LOCATION COUNTER PSEUDO-OPS

Pseﬁdo-op:

Syntax:

Purpose:

Errors:

Examples:

. LOC

. LOC Aexpression

The . LOC psecudo-op sets the location counter equal to the value
of expression. If this pseudo-op does not appear in the symbolic

program, the program will be assembled starting at location 0.

If the expression cannot be evaluated in pass 1 or its value exceeds
32,767 (decimal), the assembler will flag it for a location
error (L) and will ignore the statement,

. LOC 400

The next line in the source program will be assembled at location 40Q
TAB: .LOC .+24

A location statement can be used to reserve a block of storage.
In the example, . LOC allocates a block of twenty locations for
a table wherein the first location in the table is labeled TAB.

LOCATION COUNTER PSEUDO-OPS (Continued)

Pseudo-op:

Syntax:

Purpose:

Errors:

Examples:

. BLK
. BLK A expression

The . BLK pseudo-op is used explicitly to allocate a block of
storage. The assembler will increment the location countex
by an amount equal to the value of expression. It is important
to note that the block of storage rescrved is not initialized to
Zero.

A location error (L) results if the expression cannot be evaluated
in pass 1 or if its value when added to the current value of the
location counter exceeds 2'° -1,

BLK6: .BLK 2*3.

The source coding above will reserve a block of six words
starting at location BLK6. ‘

TABL1: .BLK 12
orx
TABLL: .BLK 2%*5

will each reserve a block qf ten locations where the first location
is TABLI.

LOCATION COUNTER PERMANENT SYMBOL

Symbol:
Purpose: The symbol . has the value of the current contents of the location
counter and may be used as an operand of an expression,
Examf)le: : :
00126 003000 C3000: 3000
000130 .LOC .+l
00140 000137 MP . -1

SYMBOL TABLE PSEUDO-OPS

Symbol table pseudo-ops: .DALC, .DIAC, .DIO, .DIOA, .DMRA, .DMR, and
.DUSR have the format:

pseudo-op/symbol = expression

where:

pseudo-op is one of the pseudo-ops listed above.

symbol is a programmer-chosen symbol.

expression is any legal expression which will be assigned as the value

of symbol.

Besides having a value, a symbol defined with one of the symbol table pseudo-ops,
other than .DUSR, also implies a certain type of instruction mnemonic. Thus,
once defined, the symbol must be used with fields appropriate to the defined type
of instruction mnemonic. For example, the pseudo-op .DALC defines a symbol
that is an implied arithmetic and logical instruction mnemonic and which requires
either two or three fields following the symbol, giving the source accumulatcer,
the destination accumulator, and an optional skip field in that oxrder.

For example:

103120 .DALC MULT4 = 103120 MULT4 is defined as:

|]1000011001010000|

127120 MULT4 1,1 MULT4 must be used with at
least two fields that evaluate
within the limits of the AI1.C
instruction accumulator fields
(2 bits each).

[tfo1]o1]11001010[000]|

o —
1 t skip
destination-ac
source-ac

SYMBOL TABLE PSEUDO-OPS (Continued)

If the field to be ORed into the instruction cannot be accommodated in the bit
positions, an overflow (Q) error will occur. The field, though will be unaltered.

193120 .DALC MULT4 = 103120
000000 107120 MULT4 4,1

If the field is to be ORed into non-zero bit positions, the field must evaluate to
zero. Otherwise, an overflow (O) error will result.

123120 .DALC MULT4 = 123120 ;BIT FIELD 1-2 NOT ZEROED
000001 127120 MULT4 1,1 ;OVERFLOW ON FIELD 1
00002 127120 MULT4 0,1 ;O0.K, SINCE FIEID 1= 0

If the field following a semi-permanent symbol does not fit the implied format,
a formatting (F) error will result.

103120 .DALC MULT4 = 103120 ;TWO, OPTIONALLY THREE
;FIELDS REQUIRED FOR
;MULT4
F00000 123120 MULT4 1 ;TOO FEW EXPRESSIONS
00001 127121 MULT4 1,1,1 ;O.K.
F00002 127121 MULT4 1,1,1,1 ; TOO MANY EXPRESSIONS

The symbol table pseudo-op . DUSR defines a symbol as having a value. No
fields are implied. The symbol table pseudo-op . XPNG is used to clear pre-
defined semi-permanent symbols so that the programmer can define his own
semi-permanent symbols.)

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op:

Syntax:

Purpose:

Exrrors:

Example:

Notes:

.DALC

.DALC 4 symbol = expression

The .DALC pseudo-op defines symbol as a semi-permanent
symbol having the value of expression. Use of a .DALC-
defined symbol implies formatting of an ALC instruction,
requiring at least two fields, and optionally, three. The
format in which the semi-permanent symbol is used is:

symbol A source-ac.'destination-actAskip}

These fields are assembled as shown below.

0123456789101112131415
[lsac | dac| | skip |

If less than two or more than three fields are included within the
instruction, the instruction will be flagged for a format (F) exrror.
Field overflow is flagged with an O error.

103400 .DALC AND = 103400
00020 107400 AND 0,1
00021 107402 AND 0,1,SZC

The special atom # may be specified anywhere within the line
to specify the setting of the no load bit (bit 12) within the ALC
instruction.

Shift bits 8 and 9 and Carry bits 10 and 11 can be set by
appending the following letters to a three-character user symbol
during the . DALC definition:

Z L
.DALC p symbol ¢ O R} = expression
| —— \cf s T

SYMBOL TABLE PSEUDO-OPS (Continued)

Notes: (Continued)

These letters will cause bits 8 and 9 and bits 10 and 11

to be set as follows:

Letter

Bits 8 and 9

Bits 10 and 11

01
10
11

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudq-ogz .DIAC

Syntax: .DIAC A symbol = expression

Purpose: The . DIAC pseudo-op defines symbol as a semi-permanent symbol
having the value of expression. Use of a . DIAC-defined symbol
implies the formatting of an instruction which requires an
accumulator., The format in which the semi-permanent symbol
is used is:

symbol A accumulator

One field is required, the field being assembledas:

0123456789 1011 12 13 14 15

| [ac | |

If one field is not included in the instruction, the instruction will
be flagged for a format (F) error. If the field requires more than
2 bits, it will be flagged with a field overflow (O) error.

Example:

Y

000430 .DIAC RPT = 000430

00150 010430 RPT 2

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op:.
Syntax:

Purpose:

Errors:

Example:

Notes:

.DIO

.DIO A symbol = expression

The .DIO pseudo-op defines symbol as a semi-permanent
symbol having the value of expression. Use of the ,DIO-defined
symbol implies the formattfﬁg;_()t"gﬁTnput/output instruction

not requiring an accumulator. The format in which the semi-
permanent symbol is used is:

symbol & device-code

One field is required for the instruction, being assembled as
follows: '

0123456 789 1011 12 13 14 15
l | device-code |

If no fields are included, or if more than one are included
within the instruction, the instruction will be flagged for a
format (F) error. If device-code requires more than 6 bits
the instruction is flagged with a field overflow (O) error.

063400 .DIO SKPDN = 063400

00017 063413 SKPDN PTP

The Busy and Done bits 8 and 9 can be set by appending one
of the following letters to a three-character symbol (e.g., NIO)
during the . DIO definition:

S
.DIO Aszmbol C)= exEression
P

These letters appended to the three-character user symbol cause
bits 8 and 9 to be set as follows:

S 01 Busy set, done not set See page 3 - 9
C 10 Busy not set, done not set. for values
P 11 Busy set, done set.

4 -10 .

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: . DIOA

Syntax: .DIDA A symbol = expression

Purpose: The . DIOA pseudo-op defines symbel as a semi-permanent
' ' symbol having the value of expression. Use of a .DIOA -
defined symbol implies the formatting of an I /O instruction
with two required fields. The format in which the semi-
permanent symbol is used is:

symbol A accumulator £ device-code

The fields are assembled as follows:

0123456789 1011 12 13 14 15
[lac | | device-code |

060500 .DIOA DIA = 060500

00110 060545 DIA 0,45

The Busy and Done bits, bits 8 and 9, can be set by appending
one of the following letters to a three-character user symbol
during the . DIOA definition.

S

.DIOA A symbol C = expression
P.

These letters appended to the three-character symbol cause
bits 8 and 9 to be set as follows:

S 01 Busy set, done not set.
C 10 Busy not set, done not set.
P 11 Busy set, done set.

See page 3 - 9
for values

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op:
Syntax:

Purpose:

Errors:

.DMR

.DMR A symbol = expression

The . DMR pseudo-op defines symbol to be a semi-permanent
symbol having the value of expression. Use of the . DMR-defined
symbol implies formatting of a memory reference instruction
with either one or two ficlds. The format in which the semi-
permanent symbol is used is:

symbol A displacement | . mode 3

The fields are assembled as shown below:

0123456789 1011 12 13 14 15
] | mode| displacement]

If less than one or more than two fields are included within the
instruction, the instruction will be flagged for a format error (F).
Field overflow is flagged with an O error.

000000 ,DMR JMP = 000000

00205 001400 JMP 0,3

The special atom @ may be used within the instruction line. If
present within the instruction line, the assembler will place a 1
in bit position 5 signifying indirect addressing.

SYMBOL TABLE PSEUDO-OPS (Continued)

Pscudo-op:

Syntax:

Purpose:

Errors:

Examgle :

Notes:

.DMRA

.DMRA A symbol = expression

The .DMRA pseudo-op defines symbol to be a semi-permanent
symbol having the value of expression, Use of the .DMRA-defined
symbol implies the formatting of a Fn_e'mory reference instruction
with either two or three fields. The format in which the semi-
permanent symbol is used is:

symbol Aaccumulator A displacement f A mode {

The fields are assembled as shewn below:

01234567 89 1011 12 13¢l4 15
| [ac | Tmode] displacement |

If less than two or more than three fields are included within the
instruction, the instruction will be flagged for a format (F) error.
Field overflow is flagged with an O error.

020000 .DMRA LDA = 20000

00011 023400 LDA 0,@0,3

The special atom @ may be specified within the instruction line.
If it is present, the assembler will assemble a 1 in bit position
S, indicating indirect addressing.

4 - 13

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo -op:

Syntax:
Purgo se:

Example:

.DUSR

. DUSR A symbol = expression

The . DUSR pseudo-op defines symbol to be a semi-permanent
symbol having the value of expression. Unlike other semi -
permanent symbols, a symbol defined by ., DUSR is merely given
a value and has no implied formatting. It may be used within
any expression.

000025 .DUSR B =25
Y00250 .DUSR C = B*10

000223 C -B

4 - 14

"SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: . XPNG

Syntax: . XPNG

Purpose: The , XPNG pseudo-op will delete from the assembler symbol
table all symbol definitions except those for permanent symbols.

After expunging the semi-permanent symbols, the programmeris
free to define any instruction mnemonics that he desires.

Example:

. XPNG

020000 .DMRA LDA = 20000
040000 .DMRA STA = 40000

.END

TAPE TERMINATING PSEUDO-OPS

Pseudo-op:

Syntax:

Purpose:

.END

.END f A expressioni)

The . END pseudo-op must be the final source line in a source
program written in one of the following forms:

.END)
or
.END A expression)/

The line in which the . END pseudo-op appears must be
terminated with a carriage return. If the . END pseudo-op is
followed by an expression, its value is taken as the starting
address of the program just assembled. After reading in the
object tape, the loader will automatically start the execution
of the program at the location specified. If there is no
expression, the loader will halt after loading the

object program.

TAPE TERMINATING PSEUDO-OPS (Continued)

Pseudo-og:

Syntax:

Purpose:

.EOT
.EOT

The . EOT pseudo-op is used when it is necessary to continue a
program onto another source tape. When the assembler encounters
the . EOT pseudo-op within the source input, the assembler will
stop the source input device and halt with 000006 in the address
lights, The assembly can then be continued by loading a new tape
and pressing the console CONTINUE switch,

4 =17

NUMBER RADIX PSEUDO-OP

Pseudo-op:

Syntax:

Purpose:

Errors:

.RDX
.RDX A expression

The . RDX pseudo-op will change the current input radix. At the
beginning of each pass the assembler will start by interpreting
integers as octal, The source program can change this radix
by giving a pseudo-op line of the form:

.RDX A expression

where integers in the expression are always interpreted as
decimal. The value of the expression becomes the new radix for
integer evaluation,

If the expression cannot be evaluated in pass 1, or its value is
less than two or greater than 10, the assembier flags the

line with a radix (D) error and continues to use the previous
radix,

Location Value Statement

000002 .RDX 2

000037 101111011 ;5 ORed with 33 270
000003 .RDX 3

000013 21+ 11 ;7 +4

000006 12*12 /11 ;5%5/4

000012 .RDX 10

000115 77

000077 63

000037 9%*8/3+7

Note that the output is

always given in octal.

TEXT PSEUDO-0OPS

The text pscudo-ops are used to store ASCII octal codes for a character string.
The text pscudo-ops have the form:

pscudo-op A /text-string/

where: pscudo-op is one of the following: .TXT, TXTE, TXTF, or .TXTO.

/ stands for any character that is used to delimit the string. / may be any
character other than carriage return, space, tab, comma, null, line feed,
form feed, rubout, or any character that the programmer uses within the
text string, / delimits the string but is not part of the string.

Upon encountering a text pseudo-op, the assembler takes the next significant char-
acter (other than carriage return) as the text delimiter and assigns succecding
pairs of characters to consecutive memory locations until encountering the next
delimiter. Every two characters in the text string generate a single storage word,
If the string contains an odd number of characters, the final one is paired with a
null character. If the string contains an even number of characters, a null word is
assigned the location immediately following the string., This provides a coenvenient
method for an output routine to detect the end of a text string.

Storage of ASCII octal codes requires seven bits of an eight-bit byte, The leftmost
bit is used to indicate parity, depending upon the pseudo -op used:

. TXT sets the leftmost bit of the byte to 0 unconditionally.

. TXTE sets the leftmost bit of the byte for even parity on the byte,
. TXTF sets the leftmost bit of the byte to 1 unconditionally.

. TXTO sets the leftmost bit of the byte for odd parity on the byte.

Carriage return and form feed can be used to continue the text string from line to
line or page to page. These characters are not storced as part of the text string.

If the programmer wishes to introduce a carriage return, space, tab, comma, null,
line feed, form feed, rubout, or delimiting character as part of the text string, he
may enclose the ASCII octal equivalent of the character (or the special integer form
of the character) within angle brackets. Angle brackets may also be used to enclose
an angle bracket. For example:

<177><"<> < 012> <"/>

By default, the assembler will pack text bytes from right to left; the programmer
can change the packing mode using the pseudo-op . TXTM.

4-19

TEXT PSEUDO-OPS (Continued)

Pseudo-o_y_)si:

gmtax :

Purpose:

Examples:

LJIXT VTXTE TXTE L TXTO

.TXT A /text string/
. TXTE A /text string/
. TXTF A/text string/
. TXTO A/text string/

The text pseudo-ops will store the ASCII codes for text string,
packed two per word with parity set in accordance with the text
pseudo-op used.

. TXT /INCLUDE <177> AND <"<>/

text string
This source line would be represented as:

047111
046103
042125
020105
020177
047101
020104
000074

+TXTE /INCLUDE <177> AND <n"<>/

This source line will be represented as:

047311
146303
042125
120305
120377
047101
120104
000074

TEXT PSEUDO-O0PS (Continued)

Examples:

JIXTF /INCLUDE <177> AND <"<>/

This source line will be represented as:

147311
146303
142325
120305
120377
147301
120304
000274

.TXTO /INCLUDE <177> AND <"<3>/

This source line will be represented as:

147111
046103
142325

1020105
140577
142316
136040
000000

TEXT PSEUDO-OPS (Continued)

Pscudo-op:

Syntax:

Purpose:

Examples:

. TXTM
L TXTM A gpressi.on

The . TXTM pscudo-op is used to specify whether packing of
text strings will be right to left or left to right. If expression
evaluates to zero, packing will be right justified, and if
expression evaluates to non-zero, packing will be left justified.
By default, packing is from right to left.

LTIXTM O
.TXT /A/ ; gencrates storage word 000101
.TXTM 1
.TXT /A/ ; generates storage word 040400

APPENDIX A

OPERATING PROCEDURES

The assembler (091 -000002) is loaded with the binary loader (091 -000004). Once
loaded, the assembler requests information on I/O devices and assembly mode., If
the programmer wishes at any time to restart the assembler, it can be restarted at
location 000002 and new 1/0 device assignments made. Restarting at location 000003
will initiate only a new MODE request, with I/O assignments remaining the same,
The assembler queries and appropriate programmer responses are given below:

IN:
The user responds with a single digit indicating the input device as follows:

Teletypewriter -reader without parity checking.
Teletypewriter reader with parity checking.
Paper tape reader without parity checking,

Paper tape reader with parity checking,
Teletypewriter keyboard without parity checking.

gl oW N

LIST:
The user responds with a single digit indicating the listing device as follows:

Teletypewriter Model 33
Teletypewriter Model 35
Line printer ,

Paper tape punch (for ASR 33)
Paper tape punch (for ASR 35)

Db W N —

BIN:
The user responds with a single digit indicating the output device as follows:

1 Teletypewriter punch
Paper tape punch

&)

MODE:

The user responds with a single digit indicating the assembly mode as follows:

1 Pass 1

2 Pass 2 - Output an object tape,

3 Pass 2 - Output a listing,

4 Pass 2 - Output an object tape and listing.
5 _ Output a symbol table.

A response of 4 to MODE is illegal if the programmer selected the same
device for both the object tape (BIN) and listing (LIST).

A-1

Restarting the Assembler

To restart the assembler, follow the steps below:

Press RESET
Set 000002 in the data switches
Press START

The assembler will start at the IN query, allowing the programmer to reassign
devices.

Reassigning the Mode

To reassign assembly mode but keep device assignment the same, follow the steps
below:

Press RESET
Set 000003 in the data switches
Press START

The assembler will reissue the MODE query.

Saving the Symbol Table

If the programmer defines new instruction mnemonics using the symbol table pseudo-
ops, he may wish to save the symbol table. To do so, the programmer must punch
a new object tape of the assembler after pass 1 as follows:

1. Complete pass 1 of assembly.

2. When the assembler finishes pass 1, it types MODE. Respond by typing
a 1, This will cause the assembler to eliminate non-initial entries
from the symbol table. It will then stop since there is no source tape
in the reader.

Using the Binary Punch Program, punch the tape from location 000002 to
the location specified by the contents of location 000004, which addresses
the last location in the symbol table,

Specify a starting address of 000002 to the Binary Punch Program as the
the location to be punched in the start block

APPENDIX B

CHARACTER SET

Character .ZxSBCiItII Character 17\sb(ijt11 Character 17\51‘3(1;11
Null 000 4 064 1 11
Horizontal Tab 011 5 065] 112
Line Feed 012 6 066 K 113
Form Feed 014 7 067 L 114
Carriage Return 015 8 070 M 115
Space 040 9 071 . N 116
! 041 : 072 @) 117
" 042 ; 073 P 120
043 < 074 Q 121
& 046 = 075 R 122
* 052 > 076 S 123
+ 053 @ 100 T 124
, 054 A 101 U 125
- 055 B 102 \Y% 126
. 056 C 103 w 127
/ 057 D 104 X 130
0 060 E 105 Y 131
1 061 F 106 Y/ 132
2 062 G 107 Rubout 177
3 063 H 110

APPENDIX C

PSEUDO-0OPS

Mnemonic

Effect

Syntax

.BLK Assign a block of storage. .BLK’*expression

.DALC Define an arithmetic and logical instruction. . DALC.symbol =exp

.DIAC Define an instruction requiring an accumulator, .DIACAsymbol=exp:

. DIO Define an input/output instruction. . DIOA symbel =exp

. DIOA Define an input/output instruction requiring an . DIOA2 symbol =exp
accumulator. .

. DMR Define a niemory reference instruction. . DMR#symbol = exp

. DMRA Define a memory reference instruction re- . DMRAzsymbol = exp
quiring an accumulator.

. DUSR Define a user symbol. - DUSR&symbol = exp

.END End of source input. . END{2expressiont

.EOT End of tape. .EOT

. LOC Assign a location counter value. . LOC2expression

.RDX Change the number radix. . RDXAexpression

.TXT Define packed text string in octal --force . TXTs /text string/
parity to O.

. TXTE Define packed text string in octal--compute . TXTEA /text string/
even parity.

. TXTF Define packed text string in octal--force parity .TXTFi/text string/
to 1.

. TXTM Define text packing mode. . TXTMAexpression

.TXTO Define packed text string in octal--compute . TXTO: /text string/
odd parity.

. XPNG Expunge all but the permanent symbols from « XPNG
the symbol table.)

C-1

APPENDIX D

ERRORS

Extensive examination of statement syntax takes place during both passes of assem=-
bly to detect input errors, A statecment in error will be flagged with from onc to
three letters indicating the class into which the error or errors fall. Statements in
error on pass | will be printed with their error flag(s) to the teletypewriter. The
user can then decide whether to continue to pass 2 or correct existing errors.
Statements in error on pass two will be printed with their error flag(s) to the
teletypewriter. If a listing of the program was requested to a device, the listing of
the program will contain error flags at the appropriate statements.

Examples of the syntax errors are given in the listing on page 1-3. The meaning of
the error codes is described below. '

Flag Type of Error

A Address error: An address is outside the addressing range in an
MR instruction,

B Bad character: An illegal character occurs in some symbol.,

C Colon error: An illegal characier (not legal in a label) occurs
before a colon.,

D Radix error: An attempt is made to define a radix outside the
range 2-10 or to use a digit that is not in the range
of the current radix.

E Equivalence error: An undefined symbol appears on the righthand side
of an equivalence line,

F Format error: An instruction format is in error, such as too
many or too few arguments.

I Input error: Parity was checked on input and a character in er-
ror was found (shown as \).

L Location error: The expression in a , LOC or . BLK is outside the
range of the LC, such as an attempt to move the
LC to a location less than O.

M Multiply defined: A previously defined symbol is redefined, such as
an attempt to use the same label symbol twice.

wn

U

Nurnber error:

Field overflow:

_P_hase error:

Q_ue stionable line:

Symbol table overflow:

Symbol table pseudo-op:

Undefined symbol:

Text error:

Type of Exror

A number contains a non-digit or is outside the
integer range.

An argument field is outside the range, such as
an accumulator greater than 3 or a skip field
greater than 7.

An unexpected difference is detected between pass
one and pass two in the source program scan, for
example a symbol having a different value on pass
two.

An unexpected format occurs in some line.
Memory capacity is exceeded.

The format of a symbol table pseudo-op line
is illegal.

The scan encounters an nndefined symbol on the
righthand side of an equivalence line on pass one
or encounters a symbol on pass two that was not
defined on pass one,

There is an error in a text string or in the
format of one of the text pseudo-ops.

APPENDIX E

OBJECT TAPE IFORMAT

The output of the assembler is an object tape. Its format is acceptable as input to
the binary loader. The tape is punched in blocks separated by null (all 0) char-
acters. There are three block types: data, start, and error. The loader reads
two tape characters to form a 16-bit word. The format is as follows:

tape channel

8 7 6 5 4 3 2 1 direction of motion
O
(o] 012345678 91011 12 13 !4 15
#1 o -
L #2 #1 |
(@]
o 'Y

In other words, the first tape character forms bits 8 through 15 of the data word
(Channel 8 to bit 8, etc.) and the second tape character forms bits 0-7 of the data
word (Channel 8 to bit 0, etc.). The first non-null tape character signifies the start
of a block. The block type is determined by the first word read. A description of
each block type follows.

Start Block - First Word is 000001.

address

checksum

The first word contains 1. The second word uses the sign bit as a flag. If S is equal
to 0, the loader will transfer to the address in bits 1 through 15 of the word. If Sis
equal to 1, the loader will halt. The third word checksum is the same as that for a
data block.

Data Block - Bit 0 of first word is a 1.

word

1 -wc
-2 address

3 checksum 3
4 data word 1

) data word 2

6 data word 3

. L]
> we=n

34n ata word n

/

The twos complement (see page 2-1, How to Use the Nova Computers) of the
number of data words in the block is given in the first word (therefore bit O is a 1).
Normally, 16 data words will be punched per data block. However, the . END and
. LOC pseudo-ops may cause short blocks to be punched. The second word con-
tains the address at which the first data word is to be loaded. Subsequent data
words are loaded in seq:.entially ascending locations. The third word contains a
checksum. This number is such that the binary sum of all words in the block
should give a zero result. The remaining words are the data to be loaded.

Error Block - First Word is greater than 1.

greater than 1

garbage

The first word is greater than positive 1. An error block is ignored in its entirety
by the loader. All error blocks are terminated by a rubout.

APPENDIX F
RADIX 50 REPRESENTATION
Radix 50 representation is used to condense symbols of five characters into two words
of storage using only 27 bits. Each symbol consists of from 1 to 5 characters and a

symbol having five characters may be represented as:

3,338,

where: each a, may be one of the following characters:

A - Z (26 characters)
0 - 9 (10 characters)
. (1 character)

All symbols are padded, if necessary, with nulls. Each character can he translated
into octal representation as follows:

Character ai Translation bi

null 0
0Oto9 1 to 128
AtoZ 13 to 44

8
. 458

If a, is translated to bi’ the bits required to represent the symbol can be compared
as follows:

= * 5 *
Ny ((b4 :>0)+b3) 50+b2

. = (50)3 -1 =174777, which can be represented in 16 bits
1 maximum

(one word)

—_ *
N,= (b, *50)+b,

) B (50)2 -1 = 3077, which can be represented in 11 bits.
2 maximum

Thus the symbol can be represented in 27 bits of storage.

APPENDIX G

INSTRUCTION SET

ADC 102000 ADDZ 103020 COMOR 100240
ADCC 102060 ADDZL 103120 COMOS 100340
ADCCL 102160 ADDZR 103220 COMR 100200
ADCCR 102260 ADDZS 103320 COMS 100300
ADCCS 102360 AND 103400 COMZ 100020
ANDC 103460 COMZL 100120
ADEL 102100 ANDCL 103560 f COMZR 100220
ADCO 102040 ANDCR 103060 . comzs 100320
ADCOL 102140 ANDCS 103760 DIA 060400
ADCOR 102240 ANDL 103500 DIAC 060600
ADCOS 102340 ANDO 103440 DIAP 060700
ADCR 102200 ANDOL 103540 DIAS 060500
ADCS 102300 ANDOR 103640 DIB 061400
ADCZ 102020 ANDOS 103740 DIBC 061600
ADCZL 102120 ANDR 103600 DIBP 061700
ADCZR 102220 ANDS 103700 DIBS 061500
ADCZS 102320 ANDZ 103420 DIC 062400
DZ 5
ADD 03000 ok 1000 wer e
ADDC 103060 ANDZS 103720 DICS 062500
ADDCL 103160
ADDCR 103260 COM 100000 DIV 073101
ADDCS 103360 COMC 100060 DOA 061000
ADDL 103100 COMCL 100160 DOAC 061200
ADDO 103040 COMCR 100260 DOAP 061300
ADDOL 103140 COMCS 100360 DOAS 061100
ADDOR 103240 COML 100100 DOB 062000
ADDOS 103340 COMO 100040 DOBC 062200
ADDR 103200 COMOL 100140 DOBP 062300

ADDS 103300
G-1

DOBS
DOC
DOCC
DOCP
DOCS
DSz
HALT -
INC
INCC
INCCL
INCCR
INCCS
INCL
INCO
INCOL
INCOR
INCOS
INCR
INCS
INCZ
INCZL
INCZR
INCZS
INTA
INTDS
INTEN
IORST
ISZ
JMP
JSR
LDA
MOV
MOVC
MOVCL
MOVCR
MOVCS

MOVL

062100
063000
063200
063300
063100
014000

063077

101400

101460

101560

101660

101760
101500
101440
101540
101640
101740
101600
101700
101420
101520
101620
101720
061477
060277
060177
062677
010000
000000
004000
020000
101000
101060
101160
101260
101360
101100

MOVO
MOVOL
MOVOR
MOVOS
MOVR
MOVS
MOVZ
MOVZL
MOVZR
MOVZS
MSKO
MUL

NEGC
NEGCL

NEGCR
NEGCS

NEGL
NEGO
NEGOL
NEGOR
NEGOS
NEGR
NEGS
NEGZ
NEGZL
NEGZR
NEGZS
NIO
NIOC
NIOP
NIOS
READS
SBN
SEZ
SKP

101040
101140
101240
101340
101200
101300
101020
101120
101220
101320
062077
073301
100400
100460
100560

100660

100760
100500
100440
100540
100640

100740
100600
100700

100420
100520
100620
100720
060000
060200
060300
060100
060477
000007

000006

000001

SKPBN
SKPBZ
SKPDN
SKPDZ

SNC

SNR
STA
SUB
SUBC
SUBCL
SUBCR
SUBCS
SUBL
SUBO
SUBOL
SUBOR
SUBOS

SUBR
SUBS
SUBZ
SUBZL
SUBZR
SUBZS
SzC

SZR

063400
063500
063600
063700
000003

000005

040000
102400
102460

102560

102660
102760
102500
102440
102540
102640
102740

102600
102700
102420
102520
102620
102720
000002

000004

002000

100000

000010

Where there are a large number of page references for a given
topic, the primary page reference will be indicated by an asterisk
(*) following the reference.

or 2-1,2-6,3-1*%* absolute address 3-10

and 2-1,2-6,3-1%* accuinuiator
in ALC instruction 3-7%*,4-8
addition 2-1,2-6,3-1%* 3-2 in I/O instruction 3-8%*,3-9,4-11
in MRI instruction 3-11%4-13
subtraction 2-1,2-6,3-1* in instruction having 3-13%,4-10
ADC 3-7
ADD 3-7

addition 3-1

multiplication 2-1,2-6,3-1%*
division 2-1,2-6,3-1*

equivalence 2-1,2-7 addressing 3-10 to 3-12
direct 3-10

_ _10% evaluation 3-10 to 3-12
angle bracket 2-1,4-19 indirect 3-11

page zero 3-10
angle bracket 4-19%,2-1 relative 3-10

special atom 2-1,2-10%,3-6,3-7,4-8 ALC instruction (see arithmetic and logical)
. alphabetic
special atom 2-1,2-10%,3-6,3-11 in symbol 2-9
lower case translation to upper
carriage return ii,2-1%,2-4,2-7,2-9,4-20 . case 2-1

form feed ii,2-1%2-7,4-19 AND 3-6,3-7
label indicator 2-1,2-7,2-3* ANDing 3-1
integer format delimiter 2-1,2-8* argument fields 3-5 to 3-13

comment indicator 2-1,2-4%,2-7 arithmetic ang logical instruction (ALC)
sign used for no load in 2-10,4-8
break atom 2-7 defining semi-permanent
notation convention ii symbol for 4-5,4-8%
format 3-7%*,4-8
break atoms 2-7
ASCII
character in symbol 2-9 codes for character set B-1
permanent symbol 2-5,4-1,4-4*
assembler
break atom 2-1,2-7 definition 1-1
error codes App.D
incorrect parity character 1-3,1-2 loading App.A
operation App.A
optional convention ii restart A-2

error code D-1%*,3-11,3-12

assembly character
definition on 1-1 input as a string of 2-1
language 1-1 set 2-1, App. B*
operation of App. A
mode A-1 checksum of block App. E
output of 1-1 {f
binary tape 1-2 colon 2-3
error listing 1-2
program listing 1-2.1-3 columns of assembly listing 1-2
processing input 2-1
COM 3-7
asterisk 2-1,2-6,3-1%*
comma 2-1,2-7
at sign 2-1,2-10,*3-6,3-11 '
comment 2-4
atoms
break atoms 2-7 D error code D-1%, 4-18
definition of 2-6 :
integers 2-8 .DALC 3-5,4-5,4-8*,C-1
operators 2-6
special 2-10 data
symbols 2-9 block E-2
terminators 2-6 source line 2-2
transparent 1-2
device code field of I/O 3-8,3-9
error code 2-1,D-1
DIA 3-9

bad character error 2-1,D-1 .DIAC 3-5,4-5,C-1,4-9*
binary loader 1-1,A-1 DIB 3-9
binary punch program A-2 ~ DIC 3-9

.BLK C-1,4-3%,2-5 .DIO 3-5,4-5,4-10%,C-1

block _DICA 3-5,4-5,C-1,4-11*
data E-2
error E-2 direct address 3-10

start E-1 displacement field of MR 3-10 to 3-12

break atom 2-7 division 3-1

byte .DMR 3-5,4-5,C-1,4-12*%
packing 4-19,4-22
termination of string 4-19 .DMRA 3-5,4-5,C-1,4-13"
to store character 4-19
DOA 3-9

carry field of ALC 3-7 DOB 3-9

error code D-1,2-4

pulse field of /O 3-8,3-9 DOC 3-9
carriage return ii,2-1,2-4,2-7¥2-9 DSZ - 3-10

carry field of ALC 3-7 .DUSR 3-13,4-5,C-1,4-14*

error code D-1%2-3 form feed ii,2-1,2-7

format error 3-6,D-1,3-4
effective address 3-10

end
of input file (, EOT) 4-17%,C-1 HALT 3-13
of program (.END) 4-16%,C-1
I error code D-1
.END C-1,4-16*

.EOT 4-17%,C-1 IN: A-1

equal sign 2-1,2-7,2-2* INC 3-7
index field of MR 3-10 to 3-12
equivalence line 2-2
indirect addressing 3-11
error input/output instructions 3-8,3-9
block E-2 i
listing output
output codes
D-1%,3-11, 3-12

instruction
1-2,1-3 definition 3-5
format
ALC 3-7
I/O with AC 3-9
1/0 without AC 3-8
MR with AC 3-11
MR without AC 3-10
with accumulator 3-13
line 2-2
list of App. G
mnemonic 3-5,4-5to 4-14
types of 3-5

V oo
BB N B N N et e pd ot pmd s

1

INTA 3-13

INTDS 3-13

A
B
C
D
E
F
I
L
M
N
0
P
Q
U
X

UUUUUU?UUUUU

integer
evaluation of expression 3-1to 3-3 core representation 2-8
source representation 2-8
expression special format 2-8
evaluation 3-1to 3-3
format 3-1 INTEN 3-13
operators of 3-1
IORST 3-13
error code 3-4%,3-6,D-1
1ISZ 3-10

field of instruction JMP 3-10
ALC 3-7,4-8 :
assembly of 3-6 JSR 3-10
implied by semi-perm. symbol 3-5
instruction having accumulator 3-13, 4-10 L "
1/0 with accumulator 3-9 error code D-1,4-2,4-3
1/0 without accumulator 3-8 shift field of ALC 3-7
MR with accumulator 3-11
MR without accumulator 3-10 label 2-3
overflow error in 3-6

LC 2-1,2-5*3-10to 3-12
LDA 3-11
line feed character 1-2

line of source input 2-1to 2-5

LIST: A-1
listing
error 1-2to1-4
program 1-2to 1-4
symbol table 1-2 to 1-4
loading App. A
.LOC 4-2%2-5,C-1
location counter 2-1,2-5%,4-2 to 4-4
M error code D-lt2-4
machine language 1-1
memory reference instruction (MR)
fields of 3-10, 3-11

format 3-10,3-11
illegal address D-1

indirect address setting 2-10,3-11*

MODE: A-1

mode field 3-10ff

MOV 3-7

MR (see memory reference instruction)
MSKO 3-13

multiplication 3-1ff

multiply defined symbol error D-1,2-4

N error code 2-8,D-1

NEG 3-7

NIO 3-8

no load of ALC 3-7,2-1074-8
notation conventions of manual ii

null character 1-2,2-8

number
character in symbol 2-9
class of atom 2-6
error D-2, 2-8
range 2-8
source representation 2-8
special format integers 2-8

carry field of ALC 3-7
error code 3-6,D-2%*

object program Chapt. 1
operand 3-1
operator
as class of terminals 2-6
list of 2-6
use in expression 3-1ff
ORing 2-1,2-6,3-1*
OuUT: A-1
output of assembly - 1-2
overflow error 3-6,D-2
P
error code D-2
pulse field of 1/0 3-8,3-9
page zero 3-10
parentheses

as break character 2-7
in expression evaluation 3-2

parity
error code for incorrect D-2
in text string 4-20
listing character ()) for incorrect

pass, assembly 1-1
permanent symbols
. 2-5,4-1,4-4
list of App. C
pseudo-ops (see pseudo-op list)
types of 3-4,4-1
phase error D-2
pound sign 2-1,2-10,%3-6,3-7,4-8

precedence of evaluation 3-2

1-2

pseudo-op
file terminating 4-16,4-17
line 2-2
location counter 4-2to 4-4
radix 4-18
symbol table 4-5 to 4-15
text 4-19 to 4-22

pseudo-op list
.ELK 4-3
.DALC 3-5,4-5,4-7*
.DIAC 3-5,4-5
.DIO 3-5,4-10%,4-5
.DIOA 3-5,4-11%,4-5
.DMR 3-5,4-12%,4-5
.DMRA 3-5,4-13%,4-5
.DUSR 4-14*,4-5
.END 4-16
.EOT 4-17
.LOC 4-2
.RDX 4-18
LIXT 4-19,4-20
.TXTE 4-19,4-20
.TXTF 4-19,4-21
TIXTM 4-19,4-22*%
. TXTO 4-19,4-21
XPNG 4-15

Q error code D-2

questionable line exrror D-2

quotation mark 2-8

R shift field of ALC 3-7

radix
50 format for symbols
changing input (. RDX)
range 2-8

.RDX 4-18

READS 3-13

relative address 3-10

restart of assembler A-2

rubout character 1-2, 2-8

S
carry field of ALC 3-7
pulse field of /O 3-8,3-9

SBN 3-7

of expression after semi-permanent

symbol 3-6
of input 2-1

semicolon 2-1,2-4

semi-permanent symbol
A1C instructions

3-7

defining a new 3-3

definition of 3-4

incorporating in assembler 4-15,A-2
3-8,3-9

1/0 instructions
list of App. C
MR instructions

3-10,3-11

not used as instruction

removing 4-15
SEZ 3-7

shift field of ALC 3-7

sign of number 2-8,3-1,

skip field of ALC 3-7
SKr 3-7
SKPBN 3-8
SKPBZ 3-8
SKPDN 3-8
SKPDZ 3-8
SNC 3-7
SNR 3-7
source program
definition 1-1
lines of 2-1 to 2-5
scan 2-1
space (&) 2-7
special atom
@ 2-10
2-10
as class of atom
STA 3-11

start block E-1

stdrage word line 2-2

3-2

2-6

4-6,4-14*

string value
packing 4-22,4-19 location 4-4
termination 4-19 storage word 2-5
text pseudo-ops 4-19f
X error code D-2
SUB 3-7
.XPNG 4-6,4-15*
subtraction 2-1,2-6,3-1%,3-2
Z carry field of ALC 3-7
symbol
class of atom 2-6
definition 2-9
equivalencing 2-2
label 2-3
multiply defined error D-1
permanent 3-4, Chapt. 4
removing 4-135
representation in Radix 50 App.F
semi-permanent 3-4
table
listing 1-4,3-5
pseudo-ops 4-5ff
types of 3-4
undefined error D-2

3-7

3-7
T
tabulation 2-1,2-7
terminal atom 2-6,2-7
text

error D-2

string 4-19ff
translation to machine language
.TXT 4-19,4-20*
.TXTE 4-19,4-20*
.TXTF 4-19,4-20*
.TXTM 4-19,4-22*
.TXTO 4-20,%, 4-19

U error code D-2

undefined symbol error code D-2

ABSOLUTE ASSEMBLER ERROR CODES

Up to three error codes may be output per source line. The error codes are
output in the first three character positions of the listing line. The first

error encountered causes a code to be placed in column 3, the second in column
2, and the third in column 1.

Error

Addressing error

Bad Character

Colon error

Radix error
Equivalence error
Formatting error
Parity error on input
Location counter error
Multiply defined symbol error
Number error
Overflow field

Phase error
Questionable line error
Undefined symbol error

Text input error

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments. Reference page numbers when
applicable, Label each comment as an addition, deletion, change or error
if applicable.

. ... cut along dotted line

General Comments and Suggestions for Improvement of the Publication.

FROM: Name: Date:
Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

ot . - - . . - e T - S v v D B¢ e M 0 S e e e G mG Be Gh e m Sm G e G Gm e N e R Sm e Gv S AR M em G2 G 56 N b Sm D G A0 B8R B0 0m Mo M Gw MR ET MR S8 SR AR m A ev b s sm A ER R AR S | | S S O

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Maited In The Urited States
Postage will be paid by:
Mpa ,;ﬂmmfmq @erm oo 2 5 P
Beta Cenoral Corperaiion
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

