COMMERCIAL

SUBROUTINE

PACKAGE

093-000107-00

Ordering No. 093-000107

© Data Genera! Corporation, 1974

All Rights Reserved,

Printed in the United Srates of America

Rev. 00, September 1974

Licensed Material - Property of Data Generzl Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsibie for any damages (ucluding consequential)

caused by reliance on the materials presented, including bur not limited to typographical,
arithmetic, or listing errors.

Original Relecase September 1974

NOVA is a registered tradewmark cof Data CGeneral Corporation.

INTRODUCTION

While the typical FORTKAN program generaily requires iengthy internal processing
time using minimal input and output, the reverse is normally the case in the com-
mercial and business environment. In these applications extensive manipulation of
data is usually necessary and program input utilizes entire files of data rather than
a few items of information. Additionally the output of commerciai and business
programs often results in extensively edited and formally structured output.

The Data General FORTRAN Commercial Subroutine Package is a set of subroutines
and function subprograms expressly written to help the programmer overcome many
of the inherent problems of using FORTRAN for many business and commercial
applications (such as inventory control, payroli calculations, information updating
and retrieval, etc.). For example, one of the features of the package enables the
programmer to read data from an input device without the need of having to know

the format of the data before it is read. This is a distinct advantage in some busi-
ness problems, since it is not always practical to kuiow the format of a record in
advance (e. g., updating of a personnel file where input would consist of two or more
different types of cards).

Several of the subroutines permit the manipulation of characters and character
strings for the editing of output data into meaningful combinations of alphabetic,
numeric, and special characters. Two of the subroutines also allow for comparison
of data against other data for use in sorting of information prior to writing to a disk
file or other output media.

Arithmetic operations (add, subtract, multipiy, and divide) can be performed using
variable-length decimal data fields and double-word integers. Because these sub-

routines operate with whole numbers, thev overcome some of the problems encoun-
tered with extended precision values and exact representation of fractional numbers.

Other subroutines allow for the conversion of data into formats which permit faster
computation and manipulation of information. The capability of packing data for
more efficient use of storage media is also one of the important features of the
package, since in many instances it may be necessary to compact the information
because of the significant volume of data to be stored.

Finally there are special utility subroutines which permit data to be input from
terminal devices and convert numeric data to real numbers. The rransfer speed of
data between memory and input/output devices is also substantially increased by
using the subroutines in the package rather than the standard FORTRAN I/O sub-
routines.

The following Data Generxl publications will assist users of the FORTRAN

Commercial Subroutine Package:

053-0060053
093-000068
093-000085
093-000096
093-000075
093-000087

FORTRAN IV User's Manual
FORTRAN IV Runtime Manual
FORTRAN V User's Manual
FORTRAN V Runtime Manual
RDOS User's Manual

BATCH User's Manual

ii

TABLE OF CONTENTS

CHAPTER 1 - GENERAL

Introduction e @ & & & ° 9 & & 8 2 & & 0 0 o 0 00 a v ° o

Subroutine DeSCTiptiOns « v o s s e o v v e s e s v oo e v
Data FOTMAtS v v o o o oo s s 0o o s soess
Using the Commercial Subroutine Package with Data

General *ORTRAN
Arithmetic . .o e o000 v
Input/Output . e
Multitasking « e« e o0 o .
Program Segmentatlon -

CHAPTER 2 - DATA FORMATS

.

¢ e 9 0 e 0 o o

Al Format - One ASCII Character Per Word ..
A2 Format - Two ASCII Characters Per Word. . .
A3 Format - Three ASCII Characters Per Word
D1 Format - One Decimal Digit Per Word
D4 Format - Four Decimal Digits Per Word . . .

Doubie Word Referencing. « «
Integer Data « « o ¢ o o a0 e 0 00 0o

\
>

RealData.-o..-............

Double Precision Data. « « o o o o« »

CHAPTER 3 - DATA CONVERSION SUBROUTINES

General « ¢ e v v v b et s e e

AlA3 - Convert an ASCII Character String from Al
Format (one character per word) to
A3 Format (three characters per
word) ..o ..

A1DEC - Convert an ASCII Character String from Al
Format (one character per word) to
D1 Format (one decimal digit per word

AlDW - Convert a Numeric ASCII
from Al Format (one digit per word) to
a 32-bit Binary Integer (Double Word
Format) e o o o v e v e v o v noanos

M

iii

Double Word Format - 32-bit Binary Integer. ..

¢ o o o o o o o

Character String

® 8 s o & o o o

1 t 1

) '
N O Ut R WNN N

. » « o e
NN DNDNDNDNDNND
]

. 3-11

CHAPTER 3 -

CHAPTER 4

DATA CONVERSION SUBROUTINES

A3Al - Ccmvert ASCII Characters in /3 Fermat
(three characters per word) to Al
Format (oae character pcr word) + « « « »
DECAl1 - Couvert Nurneric Data irom DI Format
(one digit per word) to Al Format
(one ASCII character pet word) o« e s o
DPACK - Couvert Numeric Data in D1 Format (one
digit per word) to D4 Format (four
digits per word) « e o s e oo
DUNPK - Convert Numeric Data in D4 Format (four
digits per word) to D1 Format (one
digit per word) « s e s s st o0 e e
DWAl - Convert Numeric Data in Double Word Format
(32-bit binary integer) to an ASCII
Character String in Al Format (one
character per word) « s o s o s o s s 0 00 oo
DWFL - Convert a 32-bit Binary Integer (Double Word
Format) to a Double Precision Floating
Point NUmMbDEr « ¢ ¢ v e e o s v s v o s e eoss
FLDW - Convert a Double Precision Floating Point
Number to Double Word Format (32-bit
binary integer) « « v o v ot v v v et oa
GET - Convert a String of Digits in Al Format to a
Double Precision Value « ¢« oo oeas
PACK - Convert an ASCII Character String From Al
Format (one character per word) to A2
Format (two characters per word) « . . »
PUT - Convert a Double Precision Value Into a String
of Digits in Al Format « « « v ¢ e v e s v o
UNPAC - Convert an ASCII Character String From A2
Format (two characters per word) to
Al Format (one character per word) . .

DATA MANIPULATION AND COMPARISON SUBROUTINES

General «.oe oo
EDIT - Produce Edited Data For Outpute « « ¢ ¢ o s ¢ 0 o o
FILL - Fill a Character String With a Specified
Charactei e s+ s oo oo oo soosoesonse
NCOMP- Compare Two Character StIings « « o e o oo oo o
NZONE- Examine the Zone of an ASCII Character String;
Change the Zone if Required « .« ev oo o

iv

L) 3"14

L) 3_18

o e 3"21

e 3-25

.. 3-28

. @ 3"30

o o 3'32

.. 3-H4

.0 3'36

.. 3-39

e o 3'42

P

CHAPTER 4 - DATA MANIPULATION AND COMPARISON SUBROUTINES (Continued)

QMOVE - Move a String of Characters ,......... e
RJUST - Right-justify a Field of Characters.

CHAPTER 5 - ARITHMETIC SUBROUTINES

General,.......... ettt e e e
DWADD - Sum Two 32-bit Signed Integers « « « « « o v v o v o s
DWCMP - Compare Two 32-bit Signed Binary Integers « « .« . .
DWDIV - Divide a 32-bit Signed Binary Integer by Another

32-bit Signed Binary Integer « .«
DWMPY - Multiply a 32-bit signed Binary Integer by

Another 32-bit Signed Binary Integer.
DWSUB - Calculate the Difference Between Two 32-bit

Signed Binary Integers « « e« « e v o v e v 0o s v
ICOMP - Compare Two Variable-length Decimal Data

Fieldse.o vt eeien i,
NSIGN - Examine the Sign of a Digit; Change the Sign of

the Digit if Required «« o vt ee v ..
QADD - Sum Two Variable-length Decimal Data Fields « . .
QDIV - Divide a Variable-length Decimal Data Field by

Another Variable-length Decimal Data

Field « ¢ ettt e e cereen e ann
QMPY - Multiply a Variable-length Decimal Data Field

by Another Variable-length Decimal Data

Field ¢ ¢ceoveveeeenens o ss s e e e
QSUB - Calculate the Difference Between Two Variable -

length Decimal Data Fields s ¢« ¢ ¢ 0« ¢ e 0 v e
WHOLE - Truncate the Fractional Portion of A Double

Precision Floating Point Number «.......

CHAPTER 6 - INPUT/OUTPUT SUBROUTINES

General. e oo oot e eeeteentotssntonocsacosonons
KEYBD - Read a Line From the System Consoles « « ¢ ¢ o o ¢
PRINT - Print a Line on the System Line Printer «« .« ¢« ...
QREAD - Read a Card and Convert to an ASCII

Character String s+ « v e ¢ e s oo v v o v o PP
TYPER - Print a Line on the System Console+ « ¢ oe e

APPENDIX A - Table of ASCII Characters in Al Format and Decimal
Equivalents « + c e e v v et et vt v et o coeeaene ce e

4-16
4-18

5-25

5-28

5-31

APPENDIXB"SampleprogramSauootn-oo-u-‘-.o! ----- ¢ o 6 0 8 0 0 s @

B-1 .
APPENDIX C - Statement Format Reference Table v + « v« ¢t ¢ e e 0 s e eeeses C-1 =

vi

CHAPTER 1

GENERAL

INTRODUCTION

This manual consisis of the documentation for the individual subroutines and function
subprograms contained in the Data General FORTRAN Commercial Subroutine
Package. These subroutines and function subprograms are categorized under four
major groupings, according to their general use:

1, Data conversion subroutines for use in reformatting data for execution
by other subroutines, and for packing and unpacking of both alphabetic
and numeric information for more efficient use of storage media (e.g.,
tape and disk).

2. Data manipulation and comparison subroutines which enable the pro-
grammer to edit data for output, comparison of character strings, data
moving, zone interrogation, and automatic right-justification of a data
field within an array,

3. Add, subtract, multiply, and divide subroutines which offer the ability
of operating on both variable-length decimal data and 32-bit signed
binary integer numeric fields, Additionally, there are two subroutines
in this subset which can be used for variable-length decimal data and
32-bit signed binary integer data comparison.

4. Input/Output subroutines are included which can read from, or write
to, the system console, or print a line on the system printer. The
QREAD subroutine enables the programmer to read a card from the
system card reader without having to know, in advance, the format
of the data to be read.

Of equal importance to the reader is APPENDIX B, which includes a series of five
sample programs which may prove useful to the programmer, since the majority of
subroutines and functions subprograms are utilized within the sample programs
themselves.

SUBROUTINE DESCRIPTIONS

All subroutines are uniformly documented, and appear in alphanumeric sequence
under one of the four major groupings (Chapters 3-6).

1-1

LA

SUBROUTINE DESCRIPTIONS (Continued)

Each subroutine is descriked as follows:

1. SUBROUTINE NAME - The name of the subroutine or function subprogram
as it is called in the statement format,

2. PURPOSE - A brief general description of the use of the subroutine.

(e8]
.

STATEMENT FORMAT - The arguments in the CALL statement must
agree in order, number, and type with the corresponding arguments
in the subroutine. A number may be passed to a subroutine either as
an integer constant, expression or variable,

4. ARGUMENT DESCRIPTIONS - Describe each argument used in the
FORTRAN CALL statement. Special note must be taken that any array
used as an argument in a FORTRAN Commercial Subroutine CALL
statement or function subroutine statement must have been defined in
a prior DIMENSION statement.

5. GENERAL USAGE NOTES - Describe the special considerations to be
taken in using the subroutine.

6. PROGRAM ERROR DESCRIPTIONS - Outline any special error conditions
which may occur during execution of the subroutine.

7. EXAMPLE - Shows the use of the subroutine.
DATA FORMATS

In the majority of cases, the subroutines operate on data in Al format (one ASCII
character per word). There are, however, subroutines which operate on data in
other formats. For this reason, a special chapter (Chapter 2), has been included
which describes all the formats used with the subroutines and function subprograms.
Additionally, this chapter gives a general overview of integer, real, and double
precision data.

USING THE COMMERCIAL SUBROUTINE PACKAGE WITH DATA GENERAL FORTRAN

The following paragraphs briefly describe features of Data General FORTRAN which
may be of special interest to users of the Commercial Subroutine Package. For more
detailed description of Data General FORTRAN, refer to the appropnate FORTRAN
manual.

USING THE COMMERCIAL SUBROUTINE PACKAGE WITH DATA GENERAL
FORTRAN (Continued)

Arithmetic

Standard Data General FORTRAN arithmetic provides for 16-bit integers (+ 32,767),
single precision floating point (32 bits), and double precision floating point numbers
(64 bits)., Full mixed mode is permitted in expressions and assignment statemenis.
A COMPILER DOUBLE PRECISION statement is previded which automatically treats
all real variables as double precision.

Input/Output

Operating under the RDOS Operating System, the FORTRAN programmer has access
to up to 63 files and/or devices simultaneously. Files and devices are opened ex-
plicitly and implicitly by the FORTRAN program, thereby avoiding complicated set-
up procedures.

In addition to standard FORTRAN I/0O, the programmer may create, seek, and
access files randomly and may perform biock I/0. These facilities, in addition to
binary 1/0, are extremely useful in applications having heavy use of disk files.

Data General FORTRAN also provides two statements which facilitate console I/0.
The TYPE and ACCEPT allow the user to output and input data to the system console
in a free formatted mode.

Multitasking

Multitasking provides an advanced method of having many processes or tasks exe-
cuting within the processor asynchronously.

Assume, for example, a user wishes to collect data from a number of terminals,
process the data, and prepare output reports. Using the multitasking facility, the
program can accept data from a terminal (a low-speed device) while processing data
from other terminals. The data processing tasks will be executing while the data
collection process is awaiting input. This multitasking facility results in high
throughput of data. ‘

Program Segmentation

Program segmentation allows the operation of programs that are too lengthy to run
in available core space. These programs, written in executable segments, are
stored in core image format and are brought into the user area at execution time.
Each segment calls the next segment until the complete program has been executed.

1-3

USING THE COMMERCIAL SUBROUTINE PACKAGE WITH DATA GENERAL
FORTRAN (Continued)

Program Segmentation (Continued)

With program segmentation, programs of virtually unlimited size can be run on the
system,

There are threc methods of program segmentation, namely, chaining, swapping, and
user overlays, Chaining will replace the calling program with another program,
cempletely overwriting the calling program, Swapping cccurs when the calling pro-
gram calls another program from disk into core; the calling program is swapped
out to disk to await a call which will bring it back into core. One or more overlays
are stored in an overlay file and are brought into core only when necessary for
execution. Overlays overwrite each other but do not overwrite any portion of the
main program. The overwriting of overlays occurs only when one overlay is fin-
ished executing and another overlay is brought into core; the second overlay will
overwrite the first, and so on.

1-4

o
Ty

CHAPTER 2

DATA FORMATS

In general the subroutines in the FORTRAN Commercial Subroutine Package opcrate
on data in Al format. There are, however, some subroutines that must employ
other data formats for their execution.

The following is a description of the data formats which are used with the FORTRAN
Commercial Subroutine Package. Chapter 3 details the conversion routines which

convert data between Al format and the other formats.

Al FORMAT

One character is stored in each 16-bit word. Bits 0-7 cortain the character; bits
8-15 are set to blank (3210 or 408).

~ WORD —————|

CHARACTER (blank)

gy

Numeric quantities may be represented in Al Format by use of a field of decimal
characters. Conversion routines are provided to convert these characters into Dl
or Double Word Format for arithmetic manipulation. A negative quantity is repre-
sented by use of an l11-zone punch cver the last decimal character in the field. This
has the effect of transforming the low-order decimal character into another ASCII
character, indicated in the table below:

DIGIT CHARACTER

o

OO0~ O W N =
WOYMOZZ R~

2-1

A2 FORMAT

Two characters are stored in each 16-bit word. Bits 0-7 contain the first character;
bits 8-15 contain the second character.

= WORD —————
CHARACTER. CHARACTER
0 78 15

A3 FORMAT

Threc characters are stored in each 16-bit word. The characters are converted
to a special integer code using the formula in the A1 A3 data conversion subroutine.

< WORD

INTEGER CODE

0 15

NOTE: There are restrictions to using this format for packing data. Only 40
characters of the entire ASCII Character Set can be used. A discussion

of these restrictions is contained in A1A3 data conversion subroutine
description in Chapter 3.

D1 FORMAT

One decimal digit is stored in each 16-bit word. Bits 0-11 are set to zero, and
bits 12-15 will contain the digit. If the numeric field is negative, the right-most
digit is set as described in the NOTE on the following page.

j«————— WORD -

:
00060000 0000} DIGIT
0 89 1112 15

2-2

D1 FORMAT (Continued)

NOTE: There is a special consideration for the programmer in setting up negative
constants using the D1 format. The computer cannot represent a negative
zero (-0). Because of this restriction a negative zero (-0) is carried
internally as -1, a negative one (-1) as -2, etc. (See table below).

If the field is The internal representation

negative and the of the right-most digit in D1
right-most digit format will be:
is:

0 -1

1 -2

2 -3

3 -4

4 -5

5 -6

6 -7

7 -8

8 -9

9 -10

EXAMPLES:

1. 412345 is stored as 12345 (one digit per word)
2. -12345 is stored as 1234-6 (one digit per word)

D4 FORMAT
Four decimal digits are stored in each 16-bit word; each digit is represented by
4 bits. The sign of the field is placed separately in the last word in the D4 field.

Any unused portion of a word is filled with 1 bits (Hexadecimal F) to the right of the
digit. ’

2-3

D4 FORMAT (Continued)

EXAMPLES:

+54321=

1st Word —te——- 2nd Word——»]
0101 0100 0011 (00100000 GOOO GOCO 000CI|

(represents)
) 4 3 2 +1

+654321=
<« 1st Word —»te— 2nd Word ———>te—— 3rd Word ——>
0110 0101 0100 0011]/0010 1111 1111 1111 10000 0000 0000 0CO1

(represents)
6) 4 3 2 F F F +1

-7654321=
-1st Word ---——»te— 2nd Word ————»+«— 3rd Word >
0111 0110 0101 0O1i00|00LlY OQ10 111! ZI1lri1til 1111 1111 1111

(represents)
7 6 5 4 3 2 F F -1

DOUBLE WORD FORMAT

The Double Word Format contains a 32-bit binary number (maximurni 2,147,483,647)

- DOUBLE WORD >

32-bit binary number (j 2,147,483,647)

2-4

DOUBLE WORD REFERENCING

A Double Word quantity is contained in two 16-bit words and referenced by the
address of the leftmost word. Threrefore, if a Double Word is contained in
words three aud four of integer array I, it is referenced as I (3).

Additionally, a double word integer may be referenced as a real or double
precision variable or array element. Examples of referencing a double word
integer are:

CALL DWADD(IARY(3), IARY(5))

ADDS the double word contained in array elements 3 and 4 to the
double word contained in words 5 and 6.

CALL DWADD(VAR1,VAR2)
ADDS the double word contained in reul variable VARI1 to the

double word containéd in real variable VAR2,

INTEGER DATA

An integer constant is a signed or unsigned whole number written without a decimal
point.

An integer variable is usually implicitly typed, i.e., if the first character of the
symbolic name is I,],K, L, M, or N, the symbolic name represents and integer
variable unless otherwise specified. Examples of integer constants and variables
are:

Constants Variables
-125 ITEM

0 JOBNO
+4525 LUCKY
377K MASKBYTE

Rles g

INTEGER DATA (Continuad)

As shown, integer constauts can be specified in octal format by writing the number
followed by the letter K. Some additional examples are:

Octal Constant Decimal Value
10K ' 8
777K 511
-1K . -1

An integer datum is stored in one word (16 bits). The range of integer value is -X
-32,767 to 32,767 exclusive.

REAL DATA

A real constant is signed or unsigned and consists of one of the following:
1) One or more decimal digits written with a decimal point.

2) One or more decimal digits written with or without a decimal point,
following by a decimal exponent written as the letter E followed by
a signed or unsigned integer constant. When the decimal point is
omitted, it is always assumed to be immediately to the right of the
right-most digit. The exponent value may be explicitly O; the exponent
field may not be blank.

A real variable is usually implicitly typed. If the first character of the symbolic
name isnot I, J, K, L, M, or N the symbolic name represents a real variable
unless otherwise specified.

Constants Constant Value Variables
0.0 ' 0.0 ALPHA

. 000056789 . 000056789 B25

-15.E-04 +. 0015 EXIT

-005E2 | . =500 C

A real datum is stored in two 16-bit words.

DOUBLE PRECISION DATA

A double precision constant is signed oxr unsigned and consists of the following:

A sequence of decimal digits written with or without a decimal peint, foliowed
by a decimal exponent written as the letter D followed by a signed or unsigned
integer constarnt. When the decimal point of a double precision constant is
omitted, it is always assumed to be immediately to the right of the right-most
digit. The exponent value may be explicitly 0; the exponent field may not be

blank.

A double precision variable must be explicitly specified as such in a DOUBLE

PRECISON type statement. *

Constants

-21987654321D0
5.0D-3
« 203D0

Variable Type Statement

DOUBLE PRECISON D, E,

Constant Value

-21987654321
. 005
« 203

F2

* If the first statement of the FORTRAN program is: "COMPILER DOUBLE
PRECISON" each real variable or constant will be forced to type DOUBLE

PRECISON,

2-7

CHAPTER 3

DATA CONVERSION SUBROUTINES

This Chapter describes the two major types of data conversion subroutines avail-
able in the FORTRAN Commexrcial Subroutine Package:

1. Routines which reformat data for execution by other subroutines. For
example, the decimal arithmetic subroutines (QADD, QDIV, QMUL, and
QSUB) operate on numeric data in D1 (decimal) format only. Since data
can be stored in several types of formats, the programmer can, by using
the data conversion subroutines described in this Chapter, convert
numeric data from one format to another.

2 The second type of conversion routine permits the packing and unpacking
of alphabetic and numeric data for more efficient use of storage media.

The following is a brief description of the function of each subroutine described in
this Chapter, listed in alphanumeric sequence by Subroutine Name.

Subroutine Name

AlA3

A1DEC

AlDW

A3Al

DECAl

DPACK

Purpose

Data in Al format (one character per word, left-justified)
is converted to A3 format (three characters per word).

Numeric data in Al format (one digit per word, left-justi-
fied) is converted to D1 (decimal) format (one digit per
word, right-justified).

Numeric data (maximum of + 2,147,483, 647) in Al format
(one character per word, left-justified) is converted into a
double word binary integer.

Data in A3 format (three characters per word) is converted
to Al format (one character per word, left-justified).

Data in D1 (decimal) format (one digit per word, right-
justified) is converted to Al format (one character per
word, left-justified).

Numeric data in D1 (decimal) format (one digit per word,

right-justified) is converted to D4 format (four digits per
word).

3-1

DATA CONVERSION SUB

ROUTINES (Continued)

Subroutine Name

DUNPK

DWA1

DWFL

FLDW

GET

PACK

PUT

UNPAC

Purpose

Numeric data in D4 format (four digits per word) is con-
verted to D1 format (one digit per word, right-justified),

Nuraeric data represented as a double word binary integer
is converted to Al format (one character per word, left-
justified). '

Converts a signed double word integer into a double pre-
cision floating point number,

Converts the whole portion of a double precision floating
point number into Double Word integer format.

Permits numeric data to be decoded after it has been read,
which allows input records to be entered in an unknown
sequence. Converts data in Al format (one digit per word,
left-justified) to real numbers. '

Data in Al format (one character per word, left-justified)
is converted to A2 format (two characters per word).

Converts the whole portion of a Double Precision variable
to an ASCII string in Al format (one character per word,
left-justified). The number is half-adjusted and truncated
as specified by the programmer.

Data in A2 format (two characters per word) is converted
to Al format (one character per word, left-justified).

SUMMARY OF DATA FORMAT CONVERSION PATHS

"PACK >
Al FORMAT
$ A
. UNPAC (Two Characters per Word)
<—
A1A3
>
A3 FORMAT
A3Al {Three Characters per Word)
<
Al A1DEC
FORMAT D1 FORMAT
(One Decimal Digit per Word)
< DECAl
(One \
Character]
per (DPACK (DUNPXK
Word)
4
D4 FORMAT
(Four. Decimal Digits per Word)
ALDW >
DOUBLE WORD FORMAT
32-bit Signed Binary Integer)
DWAL (Y
=
/
(DWFL (FLDW
Y
GET)
DOUBLE PRECISION
PUT ' FLOATING POINT FORMAT

SUBROUTINE NAME:

PURPOSE:

Al1A3

This subroutine converts data in a one-dimensional
integer array from Al format (one character per word,
left-justified), placing the converted data into a second
array in A3 format (three characters per word). The
data in the first array remains unchanged during execution
of the subroutine.

STATEMENT FORMAT: CALL AlA3(ICON,IFRST,ILST,MCVTD, MFRST, NTBL)

ARGUMENT DESCRIPTIONS

ICON -

IFRST -

ILST -

MCVTD -

MFRST -

NTBL -

The name of the one-dimensional integer array that con-
tains the data to be converted. This array must have
been defined in a prior DIMENSION statement. Before
execution of the subroutine, the data to be converted must
be in Al formart (one character per word, left-justified).
During execution of the subroutine the data in this array
remains unchanged.

An integer constant, expression or variable that identifies
the position of the first character (left-most position) in
the ICON array to be converted.

An integer constant, expression, or variable that
identifies the position of the last character (right-most
position) in the ICON array to be converted.

The name of the one-dimensional integer array that will
contain the converted data. This array must have been
defined in a prior DIMENSION statement. After execution
of the subroutine the converted data will be in A3 format
(three characters per word).

An integer constant, expression, or variable that identifies
the position of the first converted three-character element
(left-most position) in the MCVTID array.

Trke name of a cne-dimensional integer array to be used

as a conversion table. This array must have been defined
in prior DIMENSION statement. The contents of this array
are not altered by the subroutine.

3-4

AlA3 (Continued)

GENERAL USAGE RULES:

It is the programmer's responsibility to create the NTBL array. The table must be
composed of 40 characters. Any 40 characters may be used, placed in any desired
sequence within the array; the NTBL array muct contain a blank. It is also advisable
to place those characters most frequently used in the conversion at the beginning of
the array.

Sample of NTBL content:

NTBL = A0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ, . &

(Relative t t t 4 t t t ' 1

Position) 0 4 9 14 19 24 29 34 39
The subroutine uses the following method for conversion:

1. The relative position of each character in a three character group is found
in NTBL. (Relative positions in the NTBL array are from 0-39).

2. The subroutine then uses the following formula to code each three-character
word:

A3 word = (R1-20)*1600+(R2*40+R3
Where:

Rl=relative position of the first character in NTBL,
R2=relative position of the second character in NTBL,
R3=relative position of the third character in NTBL.

The programmer can'create and input NTBL by using one of the following methods
shown below:

DIMENSION NTBL(40)
READ(2, 1)NTBL
FORMAT(40A1)

(or)

DIMENSION NTBL(40)
CALL QREAD(NTBL, 1, 40) ;INPUT FROM CARD READER

(or)

3-5

Al1A3 (Continued)

GENERAL USAGE RULES: (Continued)

DIMENSION NTBL(40)
CALL KEYBD(NTBL, 1, 40) ;INPUT FROM KEYBOARD

The NTBL array can also be data initialized. In order to initialize NTBL, it must
be named in a common block and must be initialized in Al format (one character
per word, left-justified).

Examples:

COMMON/WORKA /NTBL(40)
DATA NTBL/"AA", "1A", "2A", "eevv.. (€tC)evnn . "/

.

(or)'

CON:MON/WORKA /NTBL (40)
DATA NTBL/"AALA2A3A e vev e (€8C) e enennenenas ™/

Conversion speed improvements can be accbmplished by careful layout of NTBL
with the most frequently used characters placed at the beginning of the NTBL array.

PROGRAM ERROR DESCRIPTIONS:

If, during conversion, a character is encountered in the ICON array which has not
been specified in the NTBL array, the subroutine will treat the character in the
ICON array as a blank (&).

3-6

EXAMPLE

DIMENSION ICON(21),MCVTO(7),NTBL (40)

14
[]

CALL A{A3CICON,{,21,MCVTD,t,NTBL)

{, CONTENTS OF ICON, MCVTD, AND NTBL BEFORE EXECUTION OF THE
SUBROUTINES:

ICON = THISAISAAASAMPLEAL1234

t t t t t
(WORD

POSITION) i 5 10 15 20

MCVTD = ABCDEFG

t }
(WORD

POSITION) { 5

NTBL & AD123456789ABCOEFGHIJKLMNOPORSTUVNYYZ, &

t t t ¢ t t t ¢ ¢
(WORD S
POSITICN) 19 15 20 es 34 35 48

2, CONTENTS OF ICON, MCVTD, AND NTBL AFTER EXECUTION OF THE
SUBROUTINES
ICON = UNCHANGED

MCVTD = +16739+414419¢14411{=30829 +5862 =7998-27033
t t t t t t '

(WORD
POSITION) i e 3 4 S 6 ?
REPRESENTS THI S Al SAA ASA MPL EAl 234

NTBL s UNCHANGED

3-7

SUBROUTINE NAME:

PURPOSE:

Al1DEC

This subroutine converts nimeric data in a one-dimen-
sional integer array from Al format (one character per
word, left-justified), to D1 format (one digit per word,

right-justified), placing the convertea data into the or-

iginal array.

STATEMENT FORMAT: CALL AIDEC(ICON,IFRST,ILST, NINV;

ARGUMENT DESCTIPTIONS:

ICON -

IFRST -

ILST -

NINV -

The name of the one-dimensional integer array that
contains the numeric data to be converted. This array
must have been defined in a prior DIMENSION statement.
Before execution of the subroutine the data to be converted
must be in Al format (one character per word, left-
justified). After execution of the subroutine the converted
data will be contained in this array in D1 format (one
digit per word, right-justified).

An integer constant, expression, or variable that
identifies the position of the first digit (left-most position)
in the ICON array to be converted.

An integer constant, expression, or variable that
identifies the position of the last digit (right-most position)
in the ICON array to be converted.

An integer variable that can be tested after conversion to
determine if any invalid characters (non-blanks or non-
numerics) were encountered (except for ILST, which can
contain a sign).

3-8

AIDEC (Continued)

GENERAL USAGE RULES:

The task of initializing, testing, and resetting of the NINV indicator is the respon-
sibility of the programmer.

PROGRAM ERROR DESCRIPTIONS:

The first non-blank (blanks are changed to zero) or non-numeric character
encountered during conversion will force the NINV indicator to be set to the position
of the invalid character and conversion of the field will continue. If additional
invalid characters are encountered the NINV indicator will be set to the position

of that character (NINV will always contain the position of the last invalid charac-
ter even though other invalid characters may exist to the left of the field being
converted).

Note that negative quantities are represented by an 11 zone punch over the last
character in the field.

The NINV indicator will also be set if a negative number appears in any position
except the last.

3-9

- EXAMPLE

DIMENSION ICON(LS5)

NINVED
CALL AYDECCICON,3,1$,NINV)

t, CONTENTS OF ICON AND NINV BEFORE EXECUTION OF THE SUBROUTINEGR

ICON ' XAYARARAIABASALABALALNAABACADA
t t t t
(WCRD :
POSITION) H S {0 15

NINV s 0

2, CONTENTS OF ICON AND NINV AFTER EXECUTION OF THE SUBROUTINEI

ICON = XAYARRQRZ210603M1A204B4ALBACADA

t t $ 4
{YORD
POSITIQM) 1 S io 15

NINV & @ (ND NONeBLANK OR NON«NUMERIC CHARACTERS)

3-10

STIBROUTINE NAME:

FURPOSE:

STATEMENT FORMAT:

A1DW

This subroutine converts a numeric field in a
cne-dimensional integer array from Al format
(one character per word, left-justified), into Double
Word format (32-bit signed binary integer).

CALL A1DW (ICON, IFRST, ILST, DWORD, NCHK)

ARGUMENT DESCRIPTIONS:

ICON

IFRST

ILST

DWORD

NCHK

The name of the one-dimensional integer array that
contains the numeric field to be converted. This array
must have been defined in a prior DIMENSION statement.
Before execution of this subroutine the data in this array
remains unchanged.

An integer constant, expression, or variable that
identifies the position of the first digit (left-most
position) in the ICON array to be converted.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the ICON array to be converted.

The double word that will contain the converted numeric
field. After execution of the subroutine the converted
field will be in Double Word format (32-bit signed binary
integer).

An integer variable that can be tested after conversion to
determine in any invalid characters were encountered
during the conversion process.

GENERAL USAGE RULES:

1. The task of initializing, testing, and resetting of the NCHK indicator
is the responsibility of the programmer.

2, A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word [left-most

position]).

3-11

A1DW (Continued)

PROGRAM ERROR DESCPIPTIONS.

If the field being converted contains any non-numeric character other than blank,
the conversion will be terminated and the NCHK indicator will be set to the
position of the invalid character, Note that negative quantities are represented
by an 11 zone punch over the last character in the fieid.

3-12

ZXAMPLE

DIMENSION ICON(9),IWORD(10)

]
CALL AYDW(ICON,1,6,IWORD(3),NCHK]

., CONTENTS OF ICON, MCVTD, AND NCHK BEFORE EXECUTION OF THE
SUBROUTINE?

ICON = 123456789

t t
(wORD

POSITION) 1 5

IWORD = QQQQ000R0Q2Y

(WORD ot

POSITION) i 5 10
NCHK = 0

2, CONTENTS OF 1CON, IWORD, AND NCHK AFTER EXECUTION OF THE
SUBROUTINEL
ICON = 123456789 (UNCHANGED)
INORD & 2@(3 AND 4 CONTAIN BINARY INTEGER 123456)0002089
(WORD ! ! '
POSITION) 1 5 10

NCHK = @ (UNCHANGED)

3-13

SUBROUTINE NAME: A3Al

PURPOSE: This subroutine converts data in a one-dimensional
integer array from A3 format (three characters per
word), placing the converted data into a second array in
Al format (one character pzr word, left-justified). The
data in the first array remains unchanged during execution
of the subroutine.

NOTE: The Data General FORTRAN Commercial

Subroutine Package A3 format is not the same as
the standard FORTRAN format, Data in FORTRAN
Commerical Subroutine Package A3 format has
been converted from Al format using the CSP
AlA3 subroutine.

STATEMENT FORMAT:
CALL A3AI1(ICON,IFRST,ILST,MCVTD,MFRST,NTBL)

ARGUMENT DESCRIPTIONS:

The name of the one-dimensional integer array that
contains the data to be converted. This array must have
been defined in a prior DIMENSION statement. Before
execution of the subroutine the data to be converted must
be in A3 format (three characters per word). During
execution of the subroutine the data in this array
remains unchanged.

ICON

IFRST

An integer constant, expression, or variable that
identifies the position of the first three-character element
(left-most position) in the ICON array to be converted.

ILST An integer constant, expression, or variable that
identifies the position of the last three-character element

(right-most position) in the ICON array to be converted.

The name of the one-dimensional integer array that will
contain the converted data. This array must have been
defined in a prior DIMENSION statement. After execu-
tion of the subroutine the converted data will be in Al

format (one character per word, left-justified). /

MCVTD

3-14

A3Al1 (Continued)

ARGUMENT DESCRIPTIONS: (Continued)

MFRST - An integer constant, expression, or variable that
identifies the position of the first converted character
(left-most position) in the MCVTD array.

NTBL - The name of a one dimensional integer array to be used
as a conversion table. This array must have been
defined in a prior DIMENSION statement. The contents
of this array are not altered by the subroutine.

NOTE: This array must be identical to the array used

in converting the data in ICON from the original
Al format to A3 format.

3-15

A3Al (Continued)

GENERAIL USAGE RULES:

It is the programmer's responsibility to create the NTBL array. The table must
be identical to the NTBL array used in converting the data in ICUN from its
original Al format (see the explanation of the CSP Al A3 subrontine for further
information). '

Sample of NTBL content:

NTBL = A0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ, . &
t t t t t 4 t 4 t

Relati
(Relative -, g 1y 19 24 29 34 39

Position)

The subroutine uses the following method for converting a cne-word three-charac-
ter element from ICON into three words in MCVTD:

CHAR1 = A3 ELEMENT /1600 + 20
IR A3 ELEMENT IS POSITIVE
(A3 ELEMENT 32000)/1600

IR A3 ELEMENT IS NEGATIVE

CHAR2 = (A3 ELEMENT - (CHAR1-20)*1600)/40
CHAR3 = A3 ELEMENT - (CHAR1-20)*1600

- CHAR2 *40

The result of each computation is used to find the character value in the NTBL
array.

PROGRAM ERROR DESCRIPTION

If the ILST argument is less than the IFRST argument the subroutine will convert
only the first character of the three-character element, placing that character in
three separate words.

3-16

EXAMPLE

EE22LEE

DIMENSION ICON(7),MCVTID(21),NTBL(423)

CALL A3AY(CICON,S$,7,MCVTD,§,NTBL)

{, CONTENTS OF ICON, MCVTD, AND NYBL BEFORE EXECUTION OF THE
SUBROUTINE!

ICON ® ¢16730414410+14411=303829 +5862 «7998+27035
} t } } t t t

(WORD
POSITION) H e .3 4 5 6 7
REPRESENTS THI 8 1 S A SA MPL E ¢ 234

MCyTD = ABCOEFGHIJKLMNOPGRSTU

t t t t t
(WORD

POSITION) i) i0 15 2e

NTBL ® AB123456789ABCNEFGHIJKLMNOPGRSTUVWYYZ, .8

} t t t t t } t t
(WORD

POSITION) i 5 10 15 29 25 3 35 40

2. CONTENTS DF ICON, MCVTD, AND NTBL AFTER EXECUTION OF THE
SUBROUTINE?

ICON = UNCHANGED

MCVTD = THISAISAAASAMPLEA1234

t t ' t t
(WORD

PDSITION) i 5 i 15 e

NTBL = UNCHANGED

3-17

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

DECAL

This subroutine converts rumeric data in a one-dimen-
sional integer array from Dl formart (one digit per woxd,
right-justified), to Al format (one character per word,
left-justified), placing the converted data into the or-
iginal array,

DECA1(ICON,IFRST,ILST, NINV)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -

ILST -

NINV -

The name of the one-dimensional integer array that
contains the numeric data to be converted. This array
must have been defined in a prior DIMENSION statement.
Before execution of the subhroutine the data to be con-
verted must be in D1 format (one digit per word, right-
justified). After execution of the subroutine the con-
verted data will be contained in this array in Al format
(one character per word, left-justified).

An integer constant, expression, or variable that
identifies the position of the last digit (right-most
position) in the ICON array to be converted).

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the ICON array to be converted.

An integer variable that can be tested after conversion

to determine if any invalid characters were found during
conversion.

3-18

DECA1l (Continued)

GENERAL USAGE RULES:

The task of initializing, testing, and resetting of the NINV indicator is the respon-
sibility of the programmer.

PROGRAM ERROR DESCRIPTIONS:

The first non-numeric character or negative number encountered during conversion
(except for the content of the position designated by ILST, whichcan be a negative
number), will force the NINV indicator to be set to the position of the invalid char-
acter, and conversion will continue. If any additional invalid characters are found,
the NINV indicator will be set to that position (NINV will always contain the position
of the last invalid character even though other invalid characters might have been
found during the conversion process).

3-19

EXAMPLE

DIMENSION ICON(18)

NINVED
CALL DECAS(ICON,3,11,NINV)

1., CONTENTS OF ICON AND NINvV BEFORE EXECUTION OF THE SUBROUTINE®

ICON s XAYAQQR22{0603010004A4AABACADA
} t 1 t
(WORD '
POSITION) 1 5 10 15

NINV =& @

‘2, CONTENTS OF ICON AND NINV AFTER EXECUTION OF THE SUBROUTINE?

ICON = XAYARARAIASAIAIARLANAAAABACADA

' t t t
(WORD

POSITION) { S 10 18

NINV 8 @ (ND INVALID CHARACTERS)

3-20

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

DPACK

Thic subroutine converts numeric data in a one~-dimen-
sional integer array from DI format (one digit per woxd,
right-justified), packing the converted numeric data into
a second array in D4 format (four digits per word). The
daia in the first array remains unchanged during exe-
cution of the subroutine,

DPACK(ICON,IFRST,ILST,MCVTD, MFRST)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -

ILST . -

MCVTD -

MFRST -

The name of the one-dimensional integer array that
contains the field of digits to be packed. This array must
have been defined in a prior DIMENSION statement. Before
execution of the subroutine the digits to be converted

must be in D1 format (one digit per word, right-justified).
During execution of the subroutine the data in this array
remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position) in
the ICON array to be packed.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the ICON array to be packed.

The name of the one-dimensional integer array that
will contain the packed digits. This array must have
been defined in a prior DIMENSION statement. After
execution of the subroutine the packed digits will be in
D4 format (four digits per word).

An integer constant, expression, or variable that iden-

tifies the position of the first packed four-digit element
(left-most position) in the MCVTD array.

3-21

GENERAL USAGE RULLS:

DPACK (Continued)

1. The subroutine assuines that the contents of the word designated by the
ILST argument (in the ICONV array) contains the sign of the field to
be packed, and will place this digit unpacked into the last word in the

-MCVTID array.

2, If the ILST argument is less than or equal to IFRST only one digit will
be packed (and will be treated as a sign).

The following table is supplied as an aid in determining the length of
the receiving array:

g::::::::zz::::i::

LENRBTH
wuR)8 THITON
Qe FQRE AFTFR
PaCnln' PACKIMG

2 2
3 2
4 2
o} 2
A 3
7 3
] 3
a 3
17 4
11 4
1° 4
13 4
14 5
i% 5
B 5
17 5

CEX2ISEEZCIETTETETSEER

LFHGTH
WORNS WORDS
REFAKE AFTER
PACKIMG PACKING

18
19
20
21
22
23
24
25
2h
27
28
24
An
31
32
33

DO D0 0D PW/RNNNINEDIRNRNIN

E=2EZTEITZCZVTRSRIE=SZET

3-22

F=u===s:==:====a=:==fl=:z:::l:lllltzs::ll

LENRTH
wlORDS wORLCS
BEFOQORF AFTER
PACKING PACKING

34 in
35 in
36 12
37 12
38 11
39 14
47 11
41 11
42 12
43 12
a4 12
45 12
a6 13
a5 13
48 13
49 13

DPACK (Continued)

3, The length of the MCVTD array is determined by the subroutine using
the following formula:

MCVTID length = ILST-IFRST+7
4

{Answer rounded down)
EXAMPLE:

CALL DPACK(ICON,1,6,MCVTD, 1)

BEFORE: AFTER:
ICON = 123456 MCVTD = 12345FFF0006
(Word ! ! (Word ! f '

position) 1 5 position) 1 2 3

3-23

EXAMPLE

SZCREET

DIMENSION ICON(13),MCVTD(8)

CaLL DPACK(CICON,1,12,MCVTD, 1)

$, CONTENTS OF ICON AND MCVTD BEFCRE EXECUTION CF THE SUBROUTINES

ICON 3 2183174400321

t t t
(WORD

POSITION) i 5 10

MCVTD = ABCDEF
t t
(WORD
POSITION) i 5

2, CONTENTS OF ICON AND MCVTD AFTER EXECUTION OF THE SUBROUTINEY

ICON = UNCHANGED

MEVYD = 2163104400320001EAFA

t 4 t t t ¢
(WORD
POSITION) 1 2 3 4 56

3-24

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

DUNPK

This subroutine converts riumeric data in a one-dimen-
sional integer array from D4 format (four digits per word),
unpacking the converted numeric data into a second array
in D1 format (one digit per word, right-justified). The
data in the first array remains unchanged during exe-
cution of the subroutine. :

DUNPK(ICON,IFRST,ILST,MCVTD, MFRST)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -
ILST -

MCVTD -

MFRST -

The name of the one-dimensional integer array that
contains the field of digits to be unpacked. This array
must have been defined in a prior DIMENSION statement.
Before execution of the subroutine the digits to be unpacked
must be in D4 format (four digits per word). During
execution of the subroutine the data remains unchanged.

An integer constant, expression, or variable that
identifies the position of the first four-digit element (left-
most position) in the ICON array to be unpacked.

An integer constant, expression, or variable that ident-
ifies the position of the last four-digit element (right-most
position) in the ICON array to be unpacked.

the name of the one-dimensional integer array that will
contain the unpacked digits. This array must have been
defined in a prior DIMENSION statement. After execu-
tion of the subroutine the unpacked digits will be in D1
format (one digit per word, right-justified).

An integer constant, expression, or variable that identi-

fies the position of the first unpacked digit (left-most
position) in the MCVTD array.

3-25

DUNFK (Continued)

GENERAL UJSAGE RULES:

1. The length of the MCVTD array is determined by the subroutine using
the following formula:

MCVTD length= 4 x (ILST-IFRST) +1

NOTE: Since the DPACK subroutine fills in some of the four-bit
fields with one bits (designated by "F"), the exact length of
MCVTD may be up to a maximum of three words shorter than
the answer to the calculation (see the CSP DPACK subroutine
for a further explanation).

2, The contents of the word designated by the ILST argument is treated
as the sign of the field and is moved into the MCVTD array without
change.

3-26

EYAMPLLE
sEssssa

DIMENSION ICON(13),MCVTD(L6)

CALL DUNPK(ICON,{,4,MCVTD, 1)

f. CONTENTS OF ICON AND MCVTD BEFORE EXECUTION OF THE SUBROUTINE?D

ICON B 2163104400320 ABCDEFGHMY
§ 4 ¥ t t }
(WORD
POSITION) { 2 3 4 8 1

MCVTD ® ABCDEFGHIJKLMNOP
t 4 t t
(WORD
POSITION) | 5 10 185

2, CONTENTS OF ICON AND MCVTD AFTER EXECUTION OF THE SUBROUTINED
" ICON = UNCHANGED

MCVTD ® 2163104400321N0P

t t t U
(WORD

PDSITION) i) 10 15

3-27

SUBROUTINE NAME:

PURPNSE .

STATEMENT FORMA':

DWA1

' This subroutine converts a 32-bit signed binary integer
in Double Word format to Al format (one charactexr per
word, left-justified),

CALL DWAIL (DWORD, MCVTD, MFRST, MLST)

ARGUMENT DESCRIPTIONS:

The 32-bit signed binary integer in Double Word format
that is to be converted to Al format. During execution
of the subroutine this data remains unchanged.

The name of the one-dimensional integer array that will
contain the converted 32-bit signed binary integer, This
array must have been defined in a prior dimension state-
ment, After execution of the subroutine the data in this
array will be in Al format,

An integer constant, expression, or variable that identifies
the position of the first converted digit (left-most position)
in the MCVTD array.

An integer constant, expression, or variable that identifies
the position of the last converted digit (right-most position)
in the MCVTD array.

GENERAL USAGE RULES:

A double word integer occupies two contiguous words of storage and may be
referenced as a real variable, real array element, or two words of an integer
array (addressed by the first word [left-most position]).

3-28

EXAMPLE

DIMENSION IWORD(12),MCVTID(12)

CALL DWAS (INORD,MCVTD,1,10)

{1, CONTENTS OF IWORD AND MCVTD BEFORE EXECUTION OF THE SUBROUTINES

IWNORD = (4 AND 2 CONTAIN BINARY INTEGER 123456)p0000029
1 t t

(WORD
POSITION) 1 5 19

MCVTD = ABCDEFGHIJ
t t 1

(WORD
POSITION) i 5 10

2, CONTENTS OF IWORD AND MCVTD AFTER EXECUTION OF THE SUBROUTINES

IWORD = UNCHANGED

MCVTD = 200C123456
t ' t
(WORD
POSITION) 1 5 10

NOTE THAT THE CONVERTED FIELD IS RIGHT=JUSTIFIED AND FILLED
YO THE LEFY OF THE MOST SIGNIFICANT DIGIT WITH ZEROS,

3-29

SUBROUTINE NAME: DWFL

PURPOSE : This susrourine converts a 32-bit signed binary integer
into a double precision floating point number.

STATEMENT FORMAT:

CALL DWFL (DWORD, DPVAR)

ARGUMENT DESCRIPTIONS:

DWORD - The 32-bit signed binary integer that is to be converted
to a double precision floating point number., Before
execution of the subroutine this data must be in Double
Word format, During execution of the subroutine this
data remains unchanged,

DPVAR - The double precision floating point number after con-
version of DWORD.,

GENERAL USAGE RULES:

The double precision variable name must appear in a double precision
specification statement,

3-30

EXAMPLE

DIMENSION IA(2)
DOUBLE PRECISION DI ’
CALL OWFL (IA,D1)

i1, BEFURE EXECUTION OF THE SUBROUTINE:

IA = 32=~BIT SIGNED BINARY INTEGER $09873

2, AFTER EXECUTION OF THE SUBROUTINE:
DL = {@9873,00

3-31

SUBROUTINE NAME: FLDW

PURPOSE : This subroutine converts the whoie portion of a double
precision floating point number into a 32-bit signed

binary integer.

STATEMENT FORMAT:

CALL FLDW (DPVAR, DWORD)

ARGUMFENT DESCRIPTIONS:

DPVAR - A double precison constant variable or expression whose
whole portion is to be converted to a 32-bit signed
binary integer.

DWORD - After conversion this will contain the whole portion of
DPVAR as a 32-bit signed binary integer.

GENERAL USAGE RULES:

1. The double precision variable name inust appear in a double precision
specification statement,

2, A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word[left-most
position]).

3-32

EXAMPLE

szzsEss®
DIMENSION IA(2)

DOUBLE PRECISION Dt
CALL FLOW (Di,IA)

1, BEFORE EXECUTION OF YHE SUBROUTINE:
Dt = 129673,00

IA = p@

2, AFTER EXECUTION OF THE SUBROUTINE:

IA = 32=-BIT SIGNED BINARY INTEGER §09873

3-33

SUBROUTINE NANE:

PURPOSE:

STATEMENT FORMAT:

GET
This subroutine is a function subprogram that extracis

a floating point deuhle pre-ision number from an array
containing data in Al format.

GET (ICON,IFRST,ILST, DECP)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -

DECP -

The name of the one-dimensional integer array that con-
tains the character string to be converted. This array
must have been defined in a prior DIMENSION statement.
Before execution of the subroutine the data to be converted
must be in Al format (one character per word, left-
justified). During execution of the subroutine the data in
this array remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
pesition) in the ICON array to be converted.

An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the ICON array to be converted.

A real constant, expression or variable used in one of
two ways. If decimal places are required in the number,
DECP is equal to 10**(-P) where P is the number of dec-
imal places. If a scale factor is required, DECP is equal
to 10**(P) where P is the number of zeros.

GENERAL USAGE RULES

Wher this function is used the name GET must appear
in a Double Precision Specification statement.

EXAMPLE

asFEEESS

DIMENSION IA(10)
DOUBLE PRECISION A,B,GET

BEFQRE EXECUTION OF THE SUBROUTINED

IA = Q3123458788
A » GET(IA,1,5,1,0)
B & GET(IA,5,7,.01)

AFTER EXECUTION OF THE SUBROUTINED

IA = UNCHANGED
A ® 1234,0 00
B = 4,56 00

3-35

SUBKOUTINE NAME: PACK

PURPOSE: This subroutine converts data in a one-dimensional
integer array from Al format (one-character per
word, left-justified). Packing the data into a second
array in A2 format (two characters per word). The
data in the first array remains unchanged during exe-
cution of the subroutine.

STATEMENT FORMAT:

CALL PACK(ICON,IFRST,ILST,MCVTD,MFRST)

ARGUMENT DESCRIPTIONS:

ICON - The name of the one-dimensional integer array that con-
tains the data to be packed. This array must have been
defined in a prior DIMENSION statement. Before
execution of the subroutine the data to be packed must
be in Al format (one character per word, left-justified).
During execution of the subroutine the data in this array
remains unchanged.

IFRST - An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
position) in the ICON array to be packed.

ILST - An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the ICON array to be packed.

MCVTD - The name of the one-dimensional integer array that will
contain the packed data. This array must have been
defined in a pricr DIMENSION statement. After execu-
tion of the subroutine the packed data will be in A2 format
(two characters per word).

MFRST - An integer constant, expression, or variable that iden-

tifies the position of the first packed two-character
element (left-most position) in the MCV'ID array.

3-36

PACK (Continued)

GENERAL USAGE RULES:

1. The length of the MCVTD array is determined by the subroutine using
the following formula:

length of MCVTD = ILST -IFRST +2
2 (Rounded down)

ILST must always be a multiple of two since packing of characters

is done in pairs. If an odd number is used in the ILST argument the
character at ILST +1 will be converted as the second character in the
pair.

2. If the ILST argument is less than or equal to IFRST the subroutine will

pack the first two characters starting with the contents of field desig-
nated in the IFRST argument.

3-37

ZXAMFLE
Enseses

DIMEMSION TCON(26),MCVTD(1Y)

CALL PACK(ICON,1,26,M4CVTD,1)

{, CONTENTS OF ICON AND MCVTD BEFORE EXECUYION OF THE SUBROUTINEQ

ICON = THISAISAAASAMPLEASENTENCEA
t t t t t t

(WORD
POSITION) 1 5 10 15 29 25

MCVTD = ABCDEFGHIJKLM

4 t t
(WORD

POSITION) i 5 19

2, CONTENTS OF ICON AND MCVTD AFTER EXECUTION OF THE SUBROUTINEL
ICON = UNCHANGED

MCVTD = THI&QISA§ASAMPLEASENTENCE

t 4 t
{(WNRD

POSITION) H S 10

3-38

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

PUT

This subroutine converts the "vhole portion of a deuble
precision variable to an ASCII character string in Al
format (one character per word, left-justified). The
number is half-adjusted and truncated as specified. If
the quantity to be converted is a negative number, an
11-zone punch is placed over the low order position
(right-most position) in the array.

PUT(ICON,IFRST,ILST,DPVAL,HAD], TRUNC)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -
ILST -

DPVAL -

HAD]J -

TRUNC -

The name of the one-dimensional integer array that will
contain the result of the conversion. This array must
have been defined in a prior DIMENSION statement. After
execution of the subroutine the whole portion of the real
number will be in Al format (one character per word,
left-justified).

An integer constant, expression, or variable that iden-
tifies the first position (left-most position) in the ICON
array to be filled with the result of the conversion.

An integer constant, expression, or variable that iden-
tifies the last position (right-most position) in the ICON
array to be filled with the result of the conversion.

A double precision constant, expression, or variable, This
is the actual number whose whole portion is to be convert-
ed to Al format. This name must appear in a Double pre-
cision statement,

A real constant, expression, or variable that is added

to DPVAL to be used as a factor for half-adjustment
of DPVAL.

An integer constant, expression, or variable that indicates

the number of digits to be truncated from the right-hand
portion of DPVAL,

3-39

PUT (Continued)

GENERAL USAGE RULES:

1. If ILAST is equal to or less than IFRST, ouly one digit will be placed in
the ICON array.

2, If ICON is not large enough to hold the whole portion of DPVAL, oaly
the low-order digits are placed in the ICON array.

3. The HADJ argument must be used for every PUT subroutin used, and
should never be less than .5(since this will preven fraction inaccuracies).
The following illustrates the use of HAD]J.

If the number to be put is 567. 00, the binary representation of this
number in storage could be 566. 999.

a. If HAD]J is 0, then the number PUT will be 566.

b. If HADJ is .5, then the number PUT will be 567, since the
binary representation will be adjusted to 567.499.

The value of the HAD]J argument should be 5 in the decimal positior
one to the right of the low-order digit of the number in VAR to be PUT.

4. The HADJ and TRUNC arguments are used as a pair, and should be used
as shown below:

HADJ TRUNC
) and 0
S. and 1
50. and 2
500. and 3
5000. and 4
50000. and 5

3-40

EXAMPLE

DIMENSION TAa(253
DOUBLE PRECISION A
CALL PUT (TA,1,12,A,5,1,1)
BEFORE EXECUTION 0OF THE SUBROUTINES
IA = ABCDEFGHIJKLMNOPQRST

A 3 9876543,
AFTER EXECUTION OF THE SUBROUTINE:

1A 2 0Q0BARQB7654MNOPQRST
A 8 9876543,

NOTE THAT IN THIS EXAMPLE 5,7 WAS ADDED TO A FOR ROUNDING, AND THEN
THE LAST POSITION WAS TRUNCATED,

EXAMPLE 2

ERZTEZIRZIES
DIMENSION IA(25)
DOUBLE PRECISION A
CALL PQT (I14,1,12,.5,9)
BEFORE EXECUTION OF THE SHUBROUTINE
1A = ABCDEFGHIJKLMNOPQRST
A s 9B7654,6
AFTER EXECUTION OF THE SUBROUTINE:
1A = QP2AAPIB7655MNOPQRST
A T 0B7654,6

NOTE THAT IN THIS EXAMPLE ,5 WAS ADGED TN THE NUMBER, WHICH ROUNDED
THE UNITS POSITIAON TO 5, NO TRUNCATION WAS PERFORMED,

3-41

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

UNPAC

'This subroutine converts cata in a one-dimensional
integer array frem A2 format (two characters per word),
unpacking the data into a second array in Al format (one
character per word, left-justified). The data in the
first array remains unchanged during execution of the
subroutine.

UNPAC(ICON,IFRST,ILST,MCVTD, MFRST)

ARGUMENT DESCRIPTIONS:

ICON -

IFRST -

ILST -

MCVTD -

MFRST -

The name of the one-dimensional integer array that
contains the data to be unpacked. This array must have
been defined in a prior DIMENSION statement. Before
execution of the subroutine the data to be unpacked must
be in A2 format (two characters per word). During
execution of the subroutine the data in this array remains
unchanged.

An integer constant, expression, or variable that
identifies the position of the first character (left-most
position) in the ICON array to be unpacked.

An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the ICON array to be unpacked.

The name of the one-dimensional integer array that
will contain the unpacked data. This array must have
been defined in a prior DIMENSION statement. After
execution of the subroutine the unpacked data will be in
Al format (one character per word, left-justified).

An integer constant, expression, or variable that iden-

tifies the position of the first unpacked character (left--
most position) in the MCVTD array.

3-42

UNPAC (Continued)

GENERAL USAGE RULES:

1. The length of the MCVTD array is determined by the subroutine
using the foilowing formula:

MCVTD length = 2(ILST-IFRST +1)

2, If the ILST argument is less than cr equal to IFRST only the first
two-character element will be unpacked, placing the characters
into two separate words

EXAMPLE: CALL UNPAC(ICON,1,1,MCVTD, 1)

Before: After:
ICON = THISAIS MCVID =TAHA
3 { t t
(Word
Position) 1 5 1 2

3-43

EXAMOLE

DIMENSION ICON(13),MCVvTD(26)

[
CALL UNPAC(CICON,!1,13,MCVTD,!)

§, CONTENTS OF ICON AND MCVTD BEFORE EXECUTION OF THE SUBROUTINED

ICON s THISAISAAASAMPLEASENTENCEA

$ t t
(WORD

POSITION) i S 10

MCVTD = ABCOEFGHIJKLMNOPQRSTUVWXYZ

t t t t t t
(wORD
POSITION) { 5 ie 15 20 25

2. CONTENTS OF ICON AND MCVTD AFTER EXECUTION OF THE SUBROUTINEW

ICON = UNCHANGED

MCVTD s THISAISAAASAMPLEASENTENCEA

t ! t t t t
(WARD

POSITION) H 5 10 15 eae 25

3-44

CHAPTER 4

DATA MANIPUTLATION AND COMPARISON SUBROUTINES

This Chapter examines the subroutines which provide means for the logical testing
and manipulation of data. Among these special subroutines axe:

EDIT

FILL

NCOMP

NZONE

QMOVE

RJUST

This subroutine is used in the preparaticn of printed
reports to give them a high degree of legibility, The
operation consists of merging a field of variable data
with a field of constants to produce a meaningful com-
bination (e.g., the digits 24515 could be edited to form
$245.15, ***245.15, $ 245.15CR, etc.).

This subroutine fills a character string with a pro-
gram-specified character. ‘

This is a function subprogram that can compare two
variable-length character data fields and, depending on
the result of the comparison, sets an indicator. The
indicator will show whether the result of the comparison
was greater, less, or equal.

This subroutine examines the zone portion of a charac-
ter and returns a code that identifies the zone. If a
zone change is required, it will also modify the zone.

This subroutine moves a character or a string of charac-
ters from one array into another,

This subroutine will right justify a string of characters in a
field.

4-1

SUBROUTINE NAME: EDI'Y

PURPOSE: This subroutine edits data from a one-dimensional integer
“array €alled the source field), placing the edited data into
another one -dimensional integer array (mask field). The
data in the source field remains unchanged after execu-
tion of the subroutine.

STATEMENT FORMAT:

CALL EDIT(ICON,IFRST,ILST,MASK, MFRST,MLST)

ARGUMENT DESCRIPTIONS

ICON - The name of the one~-dimensional integer array that
contains the data to be edited. This array must have
been defined in a prior DIMENSION statement. Before
execution of the subroutine the data must be in Al format
(one character per word, left-justified). During execution
of the subroutine, the data in this array remains un-
changed.

IFRST - An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most position)
in the ICON array to be edited.

ILST - An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most position)
in the ICON array to be edited.

MASK - The name of the one-dimensional integer array that con-
tains the edit mask (mask field). This array must have
been defined in a prior DIMENSION statement. After
execution of the subroutine this array will contain the
edited data, in Al format (one character per word, left-
justified).

MFRST - An integer constant, expression, or variable that iden-
) tifies the position of the first character of the edit mask
(left-most position) in the mask array.

MLST - An integer constant, expression, or variable that iden-
tifies the position of the last character of the edit mask
(right-most position) in the mask array.

4-2

EDIT (Continued)

GENERAL USAGE RULES:

The programmer can create and input the mask array by using one of the following
methods shown below:

DIMENSION MASK (NN) : NN=LENGTH OF MASK ARRAY
READ(2, 1)MASK ‘
FORMAT(80AL)

(or)

DIMENSION MASK(NN)
CALL QREAD(MASK, 1, NN)

(or)

DIMENSION MASK(NN)
CALL KEYBD(MASK, 1, NN)

The mask array can also be data initialized. In order to initialize mask it must
be named in a common block and must be initialized in Al format (one character
per word, left-justified).

EXAMPLES:

COMMON/WORK A /MASK (10)
DATA MASK/"AL", "$A", "CA'R . v evn. (€tC)evnn. "/

(or)

COMMON/WORKA/MASK(10)
DATA MASK/" 2. $LCARA e v ee(BtC)inennennesss"/

4-3

EDIT (Continued)

GENERAL USAGE RULES: (Continued)

Since the mask field is destroyed after each use, the mask field is usually moved
into an output array prior to each CALL EDIT statement. The editing operation
then takes place in the output array prior to output,

EXAMPLE:

DATA NTBL/"AA $4 CA RA..."/ DATA MASK/'S$--,-—%* ,——CR'

(OR) y X

CALL QMOVE (NTBL,1,10,IOUTAREA) CALL UNPAC (MASK,1l,N,IOUT,12)

The table on the following pages identifies the codes which can be used in the mask
array and their functions:

CODE

A
(Blank)

(Zero)

*

(Asterisk)

PURPOSE

A blank character in the mask field is replaced by a
character from the source field.

Mask Source Afrer Execution:
JAVAYAVAVAVAYAY 1234567 1234567
JAVAYAVAVAVAVAN 0000001 0000001
JAVAYAVAVAVAVAN JAYAYAVAYAVAN § JAVAVAVAVAYAN |

This is the zero suppress function. Leading zeros will
be suppressed to the left of the leading digit. Zeros will
be replaced by blanks. This indicator can only be used
once in a mask.

Mask Source *After Execution:

AAAAALLO 0003333 ALAL 3333

Leading zeros will be suppressed and replaced by
asterisks. This indicator can only be used once in a mask.

Mask Source After Execution:

AANLLLLT 0000123 *Axkx123

EDIT (Continued)

GENERAL USAGE RULES: (Continued)

CODE PURPOSE

$ Leading zeros will be suppressed and replaced by a
(Dollar) dollar sign to the left of the first significant digit. Can
only be used once in a mask.

Mask Source After Execution:
JAVAVAVAVAYAN:) 000123 ALN$123
, Will remain in the mask field where placed. If zero
(Comma) suppress is requested commas will also be suppressed
to the left of the zero suppression character and replaced

with blanks.

Mask Source After Execution:

RVAVAVASWAVAVAY 123456 123,456
JAVAYAVWAYAYAXY) 000001 JAVAVAVAVAVAVANS |
JAVaVAWAVAYaNy 000001 Rk |
. Will remain in the mask field where placed. If zero
(Decimal suppress is requested the decimal point will also be
Point) suppressed to the left of the zero suppression character

and replaced with blanks.

Mask Source After Execution:

FAYAVAVAVVAVAN 123456 1234.56
YAVAVAVARAVAY b 000001 AAAAAAA 1

AYAVAYAWY VoS 000001 EERAEX]

EDIT (Continued)

GENFRAL USAGE RULES: (Continued)

CODE PURPOSE

CR Used tc indicate a credit or negative field. If CR appears
in the right-most position of the mask the CR characters
will be blanked out if the last character in the source
field does not contain an 11 punch or a negative sign.

The characters in the source field will appear if an 11
punch or a negative sign is found in the last position.

Mask Source After Execution:

ALNL, AAS.ANCR 0012345 LAND123.4500
AANLNALS.AACR S 001234N ALNAS123.45CR

A minus sign in the right-most position of the mask will
have the same effect as the CR code except that a minus
sign will be placed in the mask field.

Mask Source After Execution:

ADLA, AAS.AN- 01234N ALANS123, 21-

NOTES:

1. The EDIT mask must contain as many blanks (A) as there are characters in
the source field. If it does not, the field will be filled with * , as shown below.

MASK = 1AAAL
SOURCE = ROBERT
AFTER EDIT = *****

If a zero suppress character is used in the mask field ($, 0 or *), the first
character in the mask must be a blank (A) . Only one zero suppress charac-
ter may be used in a mask.

EDIT (Continued)

GENERAL USAGE RULES: (Cortinucd)

NOTES: (Continued)

3. All other characters placed in a mask field will not be replaced by characters
from the source field. The incoming characters will be moved around these
characters.

EXAMPLE: (1) MASK = AAA -AA- ANAA
SOURCE = 003221108
AFTER EDIT = 003-22-1108

EXAMPLE: (2) MASK = ALA, AAS. AACR
SOURCE = 123456
AFTER EDIT = A$1,234.56 AA
EXAMPLE: (3) MASK = AAA, AA*, AL

SOURCE = 0123456
AFTER EDIT = **1,234, 56

4-7

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

_FIL.L

This subroutine fills a specified field with a programmer-
designated character.

FILL{ICON,IFRST,ILST, NFILL)

ARGUMENT DESCRIPTIONS:

ICON

The name of the one-dimensional integer array that
contains the field to be filled. This array must have been
defined in a prior DIMENSION statement.

An integer constant, expression, or variable that identifies
the first position (left-most position) in the ICON array
to be filled.

An integer constant. expression or variable that identifies
the last position (right-most position) in the ICON array

to be filled.

An integer constant, expression or variable that repre-
sents one of the following:

1. An ASCII character or its decimal equivalent to be used
as a fill character (See Appendix A)

2. Any integer value.

EXAMPLE

DIMENSION ICON(15)

CallL FILLCICON,3,11,8224)
(OR)
CALL FILLCICUN,3,11,"AA")

1« CONTENTS OF ICON BEFORE EXECUTION OF THE SUBROUTINE:

ICON s ABCDEFGHIJKLMNO
L] 4 t t
{(WORD
POSITION) i 5 1@ 15

2., CONTENTS OF ICUN AFTER EXECUTION OF YHE SUBROUTINE:

ICON ABAAANAANAANALMNO

' 4 t] t
(wORD

POSITION) 1 5 10 15

4-9

SUBROUTINE NAIIE:

PURPOSE:

STATEMENT FORMAT:

NCOMP

This subroutine is an integer function subprogram that
compares two variable-length data fields and the result of
the comparison sets NCOMP to minus (-), plus (+), or
zero (0). The contents of both fields being compared are
not changed by the subroutine.

NCOMP (IONE,IFRST,ILST,MTWO,MFRST)

ARGUMENT DESCRIPTIONS:

IONE -

IFRST -

ILST -

MTWO -

MFRST -

The name of the one-dimensional integer array that con-
tains the first variable-length field to be compared.

This array must have been defined in a prior DIMENSION
statement. During execution of the subroutine the data

in this array remains unchanged.

N

An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
position) in the IONE array to be compared.

An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the IONE array to be compared.

The name of the one-dimensional integer array that con-
tains the second variable-length field to be compared.
This array must have been defined in a prior DIMEXNSION
statement. During execution of the subroutine the data in
this array remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
position) in the MTWO array to be compared.

4-10

NCOMP (Continued)

GENERAL USAGE RULES:

1. The comparison will be based upon the ASCII collating sequence
contained in APPENDIX A. '

The following table shows the value of NCOMP depending upon the -Ielafionship of
the IONE and MTWO fields.

NCOMP
if IONE > MTWO
0 if IONE = MTWO
- if IONE < MTWO

4-11

EXAMPLE

DIMENSION IONE(8),MTWO(8)

IF (NCOMP(IONE,1,8,MTW0D,1))1,2,3

{, CONTENTS OF IONE AND MTWO BEFORE EXECUTION OF THE SUBROUTVINE!

IONE = ABCD1044

MTWO ® ABCD1P44

2. CONTENTS OF IONE AND MTWO AFTER EXECUTION OF THE SUBROUTINEY

TIONE = UNCHANGED
MTWO = UNCHANGED

NCOMP s 2

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

NZONE
This subroutine serves two purposes:

1. Examines the zone of a character and returns a code
that identifies the zone.

2. Allows the modification of the zone, if required.

NZONE(IONE,IFRST, NZN, NRES)

ARGUMENT DESCRIPTIONS:

IONE

The name of the one-dimensional integer array that con-
tains the character to be examined. This array must
have been defined in a prior DIMENSION statement.
Before execution of the subrcutine the character to be
examined must be in Al format (one character per word,
left-justified).

An integer constant, expression, or variable that iden-
tifies the position of the character in the IONE array to
be examined.

An integer constant, expression, or variable that iden-
tifies the code to be used in modifying the zone of the
character, if required.

NZN Zone will be changed to:

1 12 zone

2 11 zone
3 0 zone
4 no zone

greater
than 4 no zone change

NZONE (Continued)

ARGUMENT DESCRIPTIONS: (Continued)

NRES After execution of the subroutine this indicator will
contain the code indicating the zone of the character
before the zone was altered (if a change in zone was
requested).

Zone of the Character Indicated:

was a character from A-I
was a character from J-R
was acharacter from S-Z
was a digit from 0-9

was another character

GENERAL USAGE RULES:

In card input (Hollerith Code), the zone portion of a character is used to

indicate that a digit or numeric field is either positive or negative. The presence
or absence of a specific zone may also be used to indicate a special code,

(e.g., transaction type).

Hollerith Card Code Conventions are:

no zero punch a positive numeric value
12" punch a positive value or a letter
"11" punch a negative value or a letter
For example, a negative 5 would be indicated by an 11" overpunch in the source

card column (i.e. an "N'), a positive 5 by a ""12" overpunch in the same column,
(i.e. an "E™).

NZONE (Continued)

GENERAL USAGE RULES: (Cortinued)

Customarily only the low order digit of a numeric value may contain an overpunch,
however many commerical users use overpunches in other positions in lieu of
setting aside separate card columns for transaction codes. NZONE permits these
overpunches to be tested, altered, or tested and altered.

Example:

Dimension IA(10)
Call NZONE (IA, 5, NZN, NRES)

BEFORE " AFTER
IA(5) NZN= IAGS) = NRES=
A 4 1 1
K S v/
S 2 X 3
1 1 A 4
X 5 X 3
EXAMPLE
SE2IEERS

DIMENSION IONE(1®)

CALL NZONE(IONE,d,2,NRES)

BEFORE EXECUTIONI AFTER EXECUTION?

NRES = @ NRES = |

4-15

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

QMOVE

This subroutine moves data from a one-dimensional
integer array into another one -dimensional integer
array. The data in the first array remains unchanged
by the execution of the subroutine.

CALL QMOVE(IONE, IFRST,ILST,MTWO,MFRST)

ARGUMENT DESCRIPTIONS:

IONE -

IFRST -

ILST -

MTWO -

MFRST -

The name of the one-dimensional integer array that con-
tains the data to be moved. This array must have been
defined in a prior DIMENSION statement. Before execu-
tion of the subroutine the data in this array may be

in any format. During execution of the subroutine the
data in this array remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
position) in the IONE array to be moved.

An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the IONE array to be moved.

The name of the one-dimensional integer array that

will contain the data moved from IONE. This array

must have been defined in a prior DIMENSION state -
ment.

An integer constant, expression, or variable that iden-

tifies the position of the first character (left-most
position) moved from the IONE array.

4-16

EXAMPLE

sEszEss
DIMENSION IONE(44),MTWO(55)
TILSTEA44

MFRST®S&
CALL QMOVECIONE,1,ILST,MTWO,MFRST)

1, CONTENTS OF IONE AND MTWO BEFORE EXECUTION OF THE SUBROUTINES

ICNE 3 THISAISAAASAMPLEASENTENCEAL234ABEFOREAMOVING
¥ t t t ot t t t ¢
(WwORD
POSITIONY % 5 10 18 20 25 3o 35 40

MTWO = ABCDEFGHIJKLMNOPORSTUVNXYZABCDEFGHIJKLMNOPORSTUVNXYZABC

¢ ! t t t t t t t t ! t
(WORD '
POSITION) 1 10 15 20 235 39 33 42 45 Se S8

2. CONTENTS OF IONE AND MTWO AFTER EXECUTION OF THE SUBROUTINE:

IONE = UNCHANGED

MTWO & ABCDETHISAISAAASAMPLEASENTENCEA1234/BEFOREAMOVINGWXYZABE
4 t } 4 4 t t t t t t t
(WORD
POSITION) 5 10 15 20 23 3n 35 40 435 L] 55

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

RJUST

This subroutine right-justifies a field in an array, placing
blanks to the left of the field.

NOTE: This subroutine is normally used in conjunction
with the KEYBD subroutine (See example).

CALL RJUST (ICON, IFRST, ILST)

ARGUMENT DESCRIPTIONS:

ICON

The name of the one-dimensional integer array that contains
the field to be right-justified. This array must have been
defined in a prior DIMENSION statement. Before execu-
tion of this subroutine the data to be right justified must be
in Al format. After execution of the subroutine this array
will contain the justified field with leading blanks. Any
imbedded blanks are also removed.

An integer constant, expression,or variable that identifies
the first position of the field in the ICON array to be
right-justified.

An integer constant, expression, or variable that iden-
tifies the last position of the field in the ICON array to
be right-justified.

FxarPLE
gzEIESS

DIMENSIUON ICON(21)
CALL KEYBD(ICUN,1,21)

.
CalLl RJUST(ICON,1,21)

INPUT MESSAGE FROM KEYROARD = 12345 (CARRIAGE RETURN)

1. LUNTENTS OF ICON BEFORE eXECUTION OF THE RJUST SUBKQUTINE:

ICON = 12345 AAALLALDLALLALALLLAN
U | t t t

(WORD
POSITION) 1 5 10 15 20

2. CHNTENTS OF JCON AFTER EXECUTIUN OF THE RJUST SUBROUTINE:

ICON = AALMALAAADAAAANNL 12345

t t t t t
(WORD
POSITION) 1 S 10 15 20

4-19

CHAPTER 5

ARITHMETIC SUBROUTINES

The FORTRAN Commez:ical Subroutine Package cffers the programmer two types
of arithmetic subroutines: Decimal and 32-bit Signed Binary Integer.

The decimal arithmetic subset operates on whole numbers using variable -length
fields, thereby overcoming some of the problems encountered with extended
precision values and exact representation of fractional numbers. The 32-bit
signed binary integer arithmetic subroutines give the user the computational
ability to operate on numeric fields to a maximum of + 2, 147, 483, 647.

The following is a brief description of each subroutine in the this subset:

DWADD

DWCMP

Sums two 32-bit signed binary integers.

This is a function subprogram that compares two 32-bit signed
binary integers.

Divides a 32-bit signed binary integer by another 32-bit signed
binary integer.

Multiplies a 32-bit signed binary integer by another 32-bit
signed binary integer.

Calculates the difference between two 32-bit signed binary
integers.

This is a function subprogram that compares two variable-
length decimai data fields.

This subroutine examines the sign of a digit and returns a code
identifying the sign; it will also change the sign, if required.

Sums two variable-length decimal data fields.

Divides a variable-length decimal data field by another
variable-length decimal data field.

Multiplies a variable-length decimal data field by another
variable-length decimal data field.

Calculates the difference between two variable-length decimal
data fields.

5-1

WHOLE Truncates the fractional portion of a double precision fioating
point variable or expression.

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

DWADD

This subroutire adds two 32-bit signed binary integers,
placing the sum in the second 32-bit signed binary
integer.

CALL DWADD {DWORDI1, DWORD2, MNCHK)

ARGUMENT DESCRIPTIONS:

DWORDI

DWORD?2

NCHK

The 32-bit signed binary integer that is to be added to
the second 32-bit signed binary integer. Before exe-
cution of the subroutine this data must be in Double Word
format. During execution of the subroutine this data
remains unchanged.

The 32-bit signed binary integer that is to be added
with DWORDI1. Before execution of the subroutine

of the subroutine this data must also be in Double Word
format, After exectuion of the subroutine this 32-bit
signed binary integer will be the sum.,

An integer variable that can be tested after execution of
the subroutine to determine if overflow has occurred.

GENERAL USAGE RULES:

1, The task of initializing, testing, and resetting of the NCHK jundicator
is the responsibility of the programmer,

A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word [left-most

position]).

EXAMPLE

| R R-2"8 & § |

DIMENSION IA(4)

]
NCHK =@
CALL OWADD(CIA,IA(3),NCHK)

o CONTENTS OF IA AND NCHK BEFORE EXECUTION OF THE SUBROUTINE!?

IA = WORDS | AND 2 CONTAIN THE 32=BIT SIGNED BINARY
. INTEGER NUMBER 109413,
WORDS 3 AND 4 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMBER 215744,

NCHK =

2, CGNTENTS OF 1A AND NCHK AFTER EXECUTION OF THE SUBROUTINE?S

IA &= WORDS { AND 2 CONTAIN THE 32=BIT SIGNED BINARY

INTEGER NUMBER 109433 (UNCHANGED), :

"WORDS 3 AND 4 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER 325154 (SUM),

NCHK = 8 (UNCHANGED = NO OVERFLONW)

SUBROUTINE NAME: DWCMP

PURPOSE: This subroutine is a function subprogram that compares
two 32-bit signed binary integers. The result of the
comparison sets DWCMP to negative, positive, or zero,

STATEMENT FORMAT:

DWCMP (DWCRD1, DWORD?2Z)

ARGUMENT DESCRIPTIONS:

DWORD1 - The first 32-bit signed binary integer to be compared,
Before execution of the subroutine this data must be in
Double Word format. During execution of the of the
subroutine this data remains unchanged,

DWORD2 - The second 32-bit signed binary integer to be compared,
Before execution of the subroutine this data must also
be in Double Word format, During execution of the sub-
routine this data remains unchanged.

GENERAL USAGE RULES:

1. The result of the comparison sets DWCMP to one of the following:

+ If DWORDI is greater than DWORD2
0 If DWORDI is equal to DWORD2
- If DWORDL1 is less than DWORD2

2, A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word[left-most
position]).

5-5

50
20

EXAMPLE

- EBEEIZRI

DIMENSION TA(10)

READ BINARY(5)IA

IF (DWCMP(IA(4),1A(6)))10,20,30
TYPE "GREATER"

STOP

TYPE M"EQUALM

STOP

TYPE "LESS"

STOP

END

5-6

PSS

SUBROUTINE NAME: DWDIV

PURPOSE : ' This subroutine divides a 32-bi. signed binary integer
- (dividend) by another 32-bit signed binary integer
(divisor), placing the quotient into the dividend and the
remainder will be a separate 32-bit signed binary integer.

STATEMENT FORMAT:

CALL DWDIV (DWORD1, DWORD2, DWORD3, NCHK)

ARGUMENT DESCRIPTIONS:

DWORDI The 32-bit signed binary that is to be used as the

divisor, Before execution of the subroutine this data
must be in Double Word format. During execution of the
subroutine this data remains unchanged.

The 32-bit signed binary integer that is to be used as the
dividend. Before execution of the subroutine this data
must be in Double Word format., After the execution of
the subroutine this 32-bit signed binary integer will be
the quotient, in Double Word format,

DWORD?2

After execution of the subroutine this 32-bit signed
binary integer will be the remainder, in Double Word
format,

DWORD3

NCHK

An integer variable that can be tested after execution
of the subroutine to determine if division by zero was
attempted.

GENERAL USAGE RULES:

1, The task of initializing, testing, and resetting of the NCHK indicator
is the responsibility of the programmer.

2, A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word [left-most
position]). :

5-7

EXAMPLE

ERTEZET

DIMENSION IA(6)

NCHK =@
CALL DHDIVCIA,IA(3),IA(5),NCHK)

{, CONTENTS OF IA AND NCHK BEFORE EXECUTION OF THE SUBROUTINE!

IA = WORDS { AND 2 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMBER 256,
NORDS 3 AND 4 CONTAIN THE 32«BIT SIGNED BINARY
INTEGER NUMBER 131079,

NCHK =

2, CONTENTS OF IA AND NCHK AFTER EXECUTION OF THE SUBROUTINE!

IA = ®WORDS | AND 2 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMBER 256 (UNCHANGED),
WORDS 3 AND 4 CONTAIN THE 32«BIT SIGNED BINARY
INTEGER 512 (QUOTIENT),
WORDS 5 AND 6 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER 7 (REMAINDER),

NCHK s @ (UNCHANGED = NO DIVISION BY ZERO)

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

DWMPY

This subroutine multiplies a 32-bit signed bin~ry integer
(multipticand) by another 32-bit signed binary integer
(multiplier). After execution of the subroutine the product
replaces the multiplicand.

CALL DWMPY (DWCRD1, DWORD2, NCHK)

ARGUMENT DESCRIPTIONS:

DWORD1

The 32-bit signed binary integer that is to be used as the
multiplier. Before execution of the subroutine this data

must be in Double Word format. During execution of the

subroutine this data remains unchanged.

The 32-bit signed binary integer that is to be used as the
multiplicand. Before execution of the subroutine this data
must also be in Double Word format. After execution of the
subroutine this 32-bit signed binary integer will be the
product,

An integer variable that can be tested after execution
of the subroutine to determine if DWORD2 is not long
enough to hold the product.

GENERAL USAGE RULES:

1. The task of initializing, testing, and resetting the NCHK indicator is the
responsibility of the programmer.

A double word integer occupies two contiguous words of storage and may
be referenced as a real variable, real array element, or two words of
an integer array (addressed by the first word [left-most position]).

SXAMPLE

DIMENSION TIA(4)

s
NCHK=Q
CALL DWMPY(IA,IA(3),NCHK)

i1, CONTENTS OF IA AND NCHK BEFORE EXECUTION OF THE SUBROUTINE?

IA = WORDS | AND 2 CONTAIN THE 32«BIT SIGNED BINARY
INTEGER NUMBER 256,
WORDS 3 AND 4 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMEBER =312,

NCHK =

2, CONTENTS OF IA AND NCHK AFTER EXECUTION OF THE SUBROUTINES

IA = WORDS § AND 2 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMBER 256 (UNCKHANGED),
WORDS 3 AND & CONTAIN THE 32«BIT SIGNED BINARY
INTEGER =131@872 (PRODUCT).,

NCHK s @ (UNCHANGED)= IA(3) IS LONG ENOUGH TO HOLD
THE PRODUCT,

SUBROUTINE NAME: DWSUB

PURPOSE:

This subroutine calculates the difference between
two 32-bit signed binary integers.

STATEMENT FORMAT:

CALL DWSUB {EWORDI1, DWORD2, NCHK)

ARGUMENT DESCRIPTIONS:

DWGRD1 - The 32-bit signed binary integer that is to be subtracted

from the second 32-bit signed binary integer. Before
execution of the subroutine this data must be in Double
Word format. During execution of the subroutine this data
remains unchanged.

DWORD2 - The 32-bit signed binary integer that DWORDI is to be

NCHK

subtracted from. Before execution of the subroutine this
data must also be in Double Word fromat. After execution
of the subroutine this 32-bit signed binary integer will be
the difference.

- An integer variable that can be tested after execution of
the subroutine to determine if overflow has occurred.

GENERAL USAGE RULES:

1.

The task of initializing, testing, and resetting of the NCHK indicator
is the responsibility of the programmer.

A double word integer occupies two contiguous words of storage and
may be referenced as a real variable, real array element, or two
words of an integer array (addressed by the first word [left-most
position]).

5-11

EXAMPLE

DIMENSION 1IA(4)

NCHK @
CALL DWSUB(IA,IAC3),NCHK)

{1, CONTENTS OF IA AND NCHK BEFORE EXECUTION OF THE SUBROUTINE?

IA 8 WORDS { AND 2 CONTAIN THE 32=BIT SIGNED BINARY
INTEGER NUMBER 123456,
WORDS 3 AND 4 CONTAIN THE 32«BJT SIGNED BINARY
INTEGER NUMBER 999999,

NCHK = @

2, CONTENTS OF IA AND NCHK AFTER EXECUTION OF THE SUBROUTINE!
IA = WwWORDS | AND 2 CONTAIN THE 32=~BIT SIGNED BINARY
INTEGER NUMBER 123456 (UNCHANGED),

WORDS 3 AND 4 CONTAIN THE J32=BIT SIGNED BINARY
INTEGER 876543 (DIFFERENCE),

NCHK = @ (UNCHANGED =« NO OVERFLOW)

5-12

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

- ICOMP

This subroutine is a function subnrogram that compares
two variable-length numeric data fields and the result of
the comparison sets ICOMP to minus (-), plus (+), or
zero (0). The contents of both fields being compared are
not changed by the function subprogram.

ICOMP (IONE,IFRST,ILST,MTWO,MFRST,MLST)

ARGUMENT DESCRIPTIONS:

IONE

The name of the one-dimensional integer array that
contains the first variable-length numeric field to be
compared. This array must have been defined in a

prior DIMENSION statement. The data in this array
must be in D1 format (one digit per word, right-justified).
During execution of the function subprogram the data in
this array remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position) in
the IONE array to be compared.

An integer constant, expression, or variable that iden-
tifies the position of the last digit éright-most position) in
the IONE array to be compared.

The name of the one-dimensional integer array that con-
tains the second variable-length numeric field to be com-
pared. This array must have been defined in a prior
DIMENSION statement. The data in this array must also
be in D1 format. During execution of this function sub-
program data in this array remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the MTWO array to be compared.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the MTWO array to be compared.

5-13

GENERAIL USAGE RULES:

The subroutine assumes that ine fields to be compared are right-justified.

The following table shows the vaiue of ICONP depending upon the relationship of the
IONE and MTWO fields.

ICOMP
+ if IONE > MTWO
0 if IONE = MTWO

if IONE < MTWO

PROGRAM ERROR DESCRIPTION:

1. The result of the comparison cannot be predicted if either ILST is less
than IFRST, or MLST is less than MFRST.

2. The IONE ficld length must not be greater than the MTWO field length.

EYAMPLE

DIMENSION IONE(8),MTWO(8)

IF (ICOMP(IONE,1,8,MTW0,1,8))1,2,1

1., CONTENTS OF IONE AND MTWO BEFORE EXECUTION OF THE SUBROUTINEQ

IONE = 21631p44
MIWD = 21631722

2, CONTENTS 0F IONE AND MTWO AFTER EXECUTION OF THE SUBROUTINE}

IONE = UNCHANGED
MTWO = UNCHANGED

ICoOMP = +

5-15

SUBROUTINE NAME: NSIGN

PURPOSE: This subroutine serves two purposes:

1. Examines the sign of a digit and returns a code that
identifies the sign of the digit.

2. Allows the modification of the sign.

STATEMENT FORMAT:

CALL NSIGN(IONE,IFRST, NCODE, NRES)

ARGUMENT DESCRIPTIONS:

IONE - The name of the one-dimensional integer array that con-
tains the digit to be examined. This array must have
been defined in a prior DIMENSION statement. Before
execution of the subroutine the digit to be examined must
be in D1 format (onc digit per word, right-justified).

IFRST - An integer constant, expression, or variable that iden-
tifies the position of the digit in the IONE array to be
examined.

NCODE - An integer constant, expression, or variable that iden-

tifies the code to be used in modifying the sign of the
digit, if required.

NCODE Sign will be:

+1 positive

0 sign is changed to the opposite of the
old sign

-1 negative

NRES no change in sign will be made

After execution of the subroutine this indicator will con-
tain a code that will identify the sign of the digit before
it was changed (if a change was specified).

- NRES

5-16

NSIGN (Continued)

ARGUMENT DESCRIPTICNS: (Continued)

NRES (Continued)

Sigm of digit was:

positive

negative

EXAMPLE

DIMENSION IONE(S)

CALL NSIGN(IONE,S,@,NRES)

BEFORE EXECUTIONS AFTER EXECUTIONI

JIONE(5) = 5 ' IONE(S) & =5
NRES LR NRES = +t

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

QADD

This subroutine adds the contents of two variable-

length decimal data fields, placing the sum in the second
array. The contents of the first array remains unchanged
during execution of the subroutine.

QADD(IADD, IFRST,ILST,MSUM,MFRST,MLST, NOF L)

ARGUMENT DESCRIPTIONS:

IADD

The name of the one-dimensional integer array that con-
tains the variable -length decimal data field that will be
added to the contents of the second array. This array
must have been defined in a prior DIMENSION statement.
Before execution of the subroutine the data must be in

D1 format (one digit per word, right-justified). During
execution of the sulkroutine, the data in this array remains
unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the IADD array to be added.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the IADD array to be added.

The name of the one-dimensional integer array that con-
tains the variable-length decimal data field that will be
added with the contents of the numeric data in IADD.
After execution of the subroutine this array will

contain the sum, in D1 format (one digit per word,
right-justified).

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the MSUM array to be added.

GQADD (Continued)

ARGUMENT DESCRIPTIONS: (Continued)

MLST - An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the MSUM array to be added.

NOFL - An integer variable that can be tested after execution of
the subroutine to determine if arithmetic overflow oc-
curred,

GENERAL USAGE RULES:

1. Both arrays must be in D1 format prior to execution of the subroutine.
Numeric data in Al format can be converted to DI format using the
A1DEC subroutine; conversion from D4 to D1 format is accomplished
using the DUNPK subroutine.

2. The task of initializing, testing, and resetting of the NOFL indicator
is the responsibility of the programmer.

PROGRAM ERROR DESCRIPTIONS:

1. If the length of the IADD field is longer than the length of the MSUM
field the NOFL indicator is set to MLST. The ADD operation is not
performed and the contents of IADD and MSUM remain unchanged.

2. If the length of MSUM is not long enough to hold the SUM the NOFL
indicator is set to MLST. The MSUM field is then filled with nines (9).

5-19

EXAMPLE

EELEBEU

DIMENSION IADD(6),MSUM(10)

NUFL;@
CALL GADD(IADD,1.6.MSUH.1.150N0FL)

{, CONTENTS OF IADD, MSUM AND NOFL BEFORE EXECUTION OF THE
SUBROUTINE?

IADD = 818537

t ¢
(WORD
POSITICON) { 5

MSUM = @p37598323
t 1 t

(WORD
POSITION) | 5 10
NOFL s @

2, CONTENTS OF IADD, MSUM AND NOFL AFTER EXECUTION OF THE SUBROUTINES
1ADD = UNCHANGED

MSUM = Q@376816840
t t t
(WORD
PDSITION) i S 10

NOFL ® @ (NO OVERFLOW)

5-20

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

CALL

QDIV

This subroutine divides the contents of a variable-length
decimal data field (dividend) by the contents of a second
variable-length decimal data field (divisor). After
execution of the subroutine the quotient and remainder
replaces the dividend; the field used as the divisor
remains unchanged.

QDIV(IDIVR,IFRST,ILST,MDIVD,MFRST,MLST, NZER)

ARGUMENT DESCR'PTIONS:

IDIVR -

IFRST -

MDIVD -

MFRST -

The name of the one-dimensional integer array that con-
tains the divisor (the variable-length data field that will
be divided inte the second array). This array must
have been defined in a prior DIMENSION statement.
Before execution of the subroutine the data must be in
D1 format (one digit per word, right-justified). During
execution of the subroutine the data in this array will
remains unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position) in
the IDIVR array to be used as the divisor.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the IDIVR array to be used as the divisor.

The name of the one-dimensional integer array that con-
tains the dividend (the variable-length data field that will
be divided by the contents of the numeric data in IDIVR).
After execution of the subroutine this array will also
contain the quotient and remainder, in D1 format {one
digit per word, right-justified).

An integer constant, expression, or variable that iden-

tifies the position of the first digit (left-most position)
in the MDIVD array to be divided into.

5-21

QDIV (Continued)

ARGUMENT DESCRIPTIONS: (Continued)

MLST

NZER

- An integer constant, expressicn, or variable that identifies
the position of the last digit (right-most position) in the
MDIVD array to be divided into.

- An integer variable that is iestec after execution of the
subroutine to determine if division by zero was attempted,
or it the length of MDIVD was not long enough to hold the
quotient and remainder.

GENERALUSAGE RULES:

1.

NOTE:

Both arrays must be in DI format prior to execution of the subroutine.
Numeric data in Al format can be converted to D1 format using the
A1DEC subroutine; conversion from D4 to D1 format is accomplished
using the DUNPK subroutine. '

The task of initializing, testing, and resetting of the NZER indicator
is the responsibility of the programmer.

The quotient and remainder are found in the MDIVD array:

Locaticn of first digit or quotient = MFRST - (ILST - IFRST + 1)
Location of last digit or quotient = MLST - (ILST - IFRST +1)
Location of first digit or remainder = MLST - (ILST - IFRST)
Location of last digit or remainder = MLST

MFRST (the first position of MDIVD array) must allow for expansion,
and must be at least ILST - IFRST +1 positions from the start of the
IDIVR array (e.g, in the example IDIVR is 8 positions in length

[8 -1+ 1 =8]. Therefore MFRST must be equal to at least 9).

The subroutine operates with whole numbers only.

5-22

QDIV (Continued)

PROGRAM ERROR DESCRIPTIONS:

1. If the length of MDIVR is not long enough to hold the quotient and
remainder the NCHK indicator is set to MLST and the execution of
the subroutine is terminated. The contents of IDIVR and MDIVD
remain unchanged.

2. The contents of MDIVD will be filled with zeros and NZER set tc last '
if division by zero is attempted.

5-23

EXAMPLE

ZCSm*EES

DIMENSION IDIVR(B),MDIVD(21)

NZER =D
CALL ODIV(IDIVR,1,8,MDIVD,9,21,NZER)

1, CONTENTS OF IDIVR, MDIVD AND NZER BEFORE EXECUTION OF THE
SUBROUTINE?S

IDIVR s BnHi37687¢
(WORD ! '
POSITION) 5

MDIVD = ABCDEFGHORRARM21631044

(WORD ? 1 t t t

POSITION) ie 15 2a

NZER =

2, CONTENTS OF IDIVR, MDIVD AND NZER AFTER EXECUTION OF THE
SUBROUTINE

IDIVR = UNCHANGED

MDIVD = @aA¢urare2rnS7 Q@278749

$ t ¢ t t
(WORD
POSITION)) 5 i@ 15 29

QUOTIENT REMAINDER

NZER = 2 (NDIVD LONG ENOUGH TO HOLD QUOTIENT
AND REMAINNER)

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

QMPY

This subroutine multiplics the contents ot a variable-
length decimal data field (multiplicand) by the contents
of a second variable-lengtli decimal data rield {multipli-
er). After gxecution of the subroutine the prcduct
replaces the multiplicand; the ficld used as the multi-
plier remains unchanged.

CALL QMPT(IMPYR,IFRST,ILST,MPRDT,MFRST,MLST, NCHK)

ARGUMENT DESCRIPTIONS:

IMPYR -

IFRST -

ILST -

MPRDT -

MFRST -

The name of the one-dimensional integer array that
contains the multiplier (variable-length numeric

field that will be used to multiply the variable-length
decimal data field in the second array). This array
must have been defined in a prior DIMEXNSION statement.
Before execution of the subroutine the data must be in

D1 format (one digit per word, right-justified). During
execution of the subroutine the data in this array remains
unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the IMPYR array to be used as the multiplier.

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most positicn)
in the IMPYR array to be used as the multiplier.

The name of the one-dimensional integer array that con-
tains the multiplicand (variable-length data ficld that
will be multiplied by the numeric data in IMPYR). After
execution of the subroutine this array will contain

the product, in D1 format (one digit per word, right-
justified).

An integer constant, expression, or variable that iden-

tifies the position of the first digit (left-most position)
in the MPRDT array to be multiplied.

5-25

QMPY (Continued)

ARGUMENT DESCRIPTIONS. (Continued)

MLST - An integer constant, expression, or variable that iden-
tifies the posirion of the last digit (right-most position,
in the MPRDT array o be multiplicd.

NCHK - An integer variable that can be tested after execution of

the subroutine to determine ii the length of MPRDT is
long enough to hold the product.

GENERAL USAGE RULES:

1. Both arrays must be in DI format prior to execution of the subroutine.
Numeric data in Al format can be converted to D1 format using the
A1DEC subroutine; conversion from D4 to D1 format is accomplished
using the DUNPK subroutine.

2. The task of initializing, testing, and resetting of the NOFL indicator
is the responsibility of the programmer.

3. The subroutine operates with whole numbers only.
4. The length of MPRDT must be long enough to hold the product of the
multiplication. The MPRDT array must be long enough to hold the

product; MFRST must be at least ILST-IFRST +1.

S. The product will be found in the MPRDT array beginning at MFRST
-(ILST-1FRST +1) and will end at MLAST.

PROGRAM ERROR DESCRIPTIONS:

If the length of MPRDT is not long enough to hold the product the NCHK indicator
is set to MLST and the execution of the subroutine is terminated. The contents
of IMPYR and MPRDT remain unchanged.

5-26

EXAMPLE

$EBEEES

DIMENSION IMPYR(S),MPRDY (17)

NCHK;G
CALL OMPY(IMPYR,!1,6,MPRDT,7,17,NCHK)

1. CONTENTS OF IMPYR, MPRDT AND NCHK BEFORE EXECUTION OF THE
SUBROUTINES

IMPYR = 00322}

t t
(WORD

POSITION) { 5

MPRDT = WXYZ2ABPQQ21631044

t t '

(WORD

POSITION) {1 5 1m 15
NCHK s @

2. CONTENTS OF IMPYR, MPRDT AND NCHK AFTER EXECUTION OF THE
SUUBROUTINE?S

IMPYR = UNCHANGED

MPRDT = PRAQR2R65373592724

t t t t
(WORD

POSITION) {] 10 15

NCHK = @ (MPRDT LONG ENOUGH YO HOLD PRODUCT)

5-27

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

QSUB

This subroutine calculates the difference between two
variable -length decimal data fields. The difference is
placed in the second array. The contents of the first
array vemains unchanged during the execution of the sub-
routine.

CALL QSUB(ISUB,IFRST,ILST,MDIF,MFRST,MLST, NCHK)

ARGUMENT DESCRIPTIONS:

ISUB

The name of the one-dimensional integer array that
contains the variable-length decimal data field that

will be subtracted from the field in the second array.
This array must have been defined in a prior DIMENSION
statement. Before execution of the subroutine the data
must be in D1 format (one digit per word right-justified).
After execution of the subroutine the data in this array
will remain unchanged.

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the ISUB array to be subtracted

An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most position)
in the ISUB array to be subtracted. '

The name of the one-dimensional integer array that con-
tains the variable-length decimal data field that ISUB

will be subtracted from. After execution of the subroutine
this array will also contain the difference, in D1 format
(one digit per word, right-justified).

An integer constant, expression, or variable that iden-
tifies the position of the first digit (left-most position)
in the MDIF array to be subtracted from.

QSUB (Continued)

ARGUMENT DESCRIPTIONS: (Continued)

MLST - An integer constant, expression, or variable that iden-
tifies the position of the last digit (right-most
position) in the MDIF array to be subtracted from.

NCHK - An integer variable that is tested after execution of the

subroutine to determine if arithmetic overflow has
occurred. '

GENERAL USAGE RULES:

1. Both arrays must be in D1 format prior to execution of the subroutine.
Numeric data in Al format can be converted to D1 format using the
A1DEC subroutine; conversion from D4 to D1 format is accomplished
using the DUNPK subroutine.

2. The task of initializing, testing, and resetting of the NCHK indicator
is the responsibility of the programmer.

PROGRAM ERROR DESCRIPTIONS:

1. If the length of the ISUB field is longer than the length of the MDIF
field the NCHK indicator is set to MLST. The operation is not per-
formed and the contents of ISUB and MDIF remain unchanged.

2. If the length of MDIF is not long enough to hold the difference the
NOFL indicator is set to MLST.

EXAKPLE

DIMENSION ISUB(S),MSUM(10)

(4

[]
NOFLsn

CALL QSUBC(CISUB,1,6,MDIF,1,10,NCHK)

1. CONTENTS OF ISuB,

MDIF AND NCHK BEFORE EXECUTION OF THE SUBROUTINE

Isus = n48537

(WNRD
POSITION)

MDIF =
(WORD

POSITION)

NCHK =

2, CONTENTS OF 1ISuB,

t

t

1 5
2037598373
t t t
i) i0

MDIF AND NCKWK AFTER EXECUTION OF THE SUBROUTINE!

ISUB = UNCHANGED

MSUM = 8837579766

(WORD
POSITION)

NCHK =

t
i

e

t t

5 10

(NO CVERFLOW)

5-30

SUBROUTINE NAME: WHOLE

PURPOSE: This subroutine truncates the fractional portion of a
double precision floating point variable or expression.

STATEMENT FORMAT:

WHOLE(DOUBLE)

ARGUMENT DESCRIPTIONS:

DOUBLE A double precision floating point variable or expression.

EXAMPLE

DOUBLE PRECISION A, B, WHOLE
B=7.51DO
A=WHOLE(B)

RESULT A=7.00DO

GENERAL USAGE RULES:

1. If the argument uses a variable, then the function name must be declared
in a double precision specification statement.

If the argument is a constant it should be expressed as a double precision
quantity by using a D exponent.

CHAPI'ER 6
INPUT /OUTPUT SUBROUTINES
This chapter describes four special 1/0 subroutines:

KEYBD This subroutine reads up to a maximum of 80 characters
from the system console device.

PRINT This subroutine prints one line of data from an integer
array onto the system line printer.

QREAD This subroutine reads characters from a card reader and
places the input into an array in Al format., This feature
enables the programmer to read data from an input device
without the need of having to know the format of the data
before it is read.

TYPER This subroutine prints one line on the system console device.

Thesc subroutines access the indicated peripherals through pre-assigned channel
numbers, as indicated below:

Channel By Default Opened To:

6 Plotter

9 Card Reader
10 Console Output
11 Console Input
12 Line Printer

These assignments are made upon the first reference to the channel without
explicitly opening of the channel (i.e., CALL OPEN). The user may, however,
explicitly open these channels to other devices. For example, the user may create
an input file on disk and access the data by a call to QREAD by explicitly opening
Channel 9 to the file name (which is faster than Formatted I/0).

SURBROUTINE NAME: KEYBD

PURPCSE: This sukroutine reads up to a maximum of 80 choracters
from the system console device.

STATEMENT FORMAT:

CALL KEYBD (ICON, IFRST, ILST)

ARGUMENT DESCRIPTIONS:

ICON The name of the one-dimensional integer array that will
contain the input information. This array must have becn
defined in a prior DIMENSION statement. The input char-
acters will be stored in Al format.

An integer constant, expression, or variable that identifies
the position of the first character (left-most position) that
will centain the input information,

An integer constant, expression, or variable that identifizs

the position of the last character (right-most position) that
will contain the input information.

GENERAL USAGE RULLS:

Only valid ASCII characters may appear in the input fielc.

Output is to FORTRAN channel 10 which is by default opened to the
system console ($STTI in background or $TTI1 in foreground), how-
ever the uscer may explicitly open to any device or file.

When a call to KEYBD is made, an asterisk is printed on the keyboard
as a prompt.

Input will be placed in the ICON array left-justified and filled to the
right with blanks (see example).

EXYAMPLE

DIMENSION ICON(383)

CaLL KEYBD(ICON,1,38)
{. CONTENTS OF ICON BEFORE EXECUTICN OF THE SUBROUTINE!

ICON = ABCDEFGHIJKLMNOPRRSTUVWXYABCDE

1 t t L] L) ¢ 1
(wORD

POSITICON) i S ie 15 2e 25 3¢

2, CONTENTS OF ICON AFTER EXECUTION OF THE SUBROUTINE2

ICON = THISAISATHEAINPUTAMESSAGE AAAAA

t t t t 1 t t
(woRrD

POSITION) i 5 1@ {5 20 25 30

6-3

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

PRINT

Prints one line of data contained in one-cimensional
integer array onto the line printcr,

CALL PRINT (ICON, IFRST, ILST, NCHK}

ARGUMENT DESCRIPTIONS:

ICON -

IFRST

ILST

NCHK

The name of the one dimensional integer array that con-
tains the characters to be printed, This array must have
been defined in a prior DIMENSION statement, Before
execution of the subroutine the data to be printed must

be in Al format (one character per word, left-justified.

An integer constant, expression, or variable that iden-
tifies the position of the first character (left-most
position) in the ICON array to be printed.

An integer constant, expression, or variable that iden-
tifies the position of the last character (right-most
position) in the ICON array to be printed,

An integer variable that can be tested after execution of
the subroutine to determine if printing was successful.
The following codes are returned to the user:

Intermediate Error
Successful Print

System Action in Progress
RDOS System Error +3

W=
0o

For a comprehensive discussion of these error codes, see¢
"FORTRAN IV User's Manual. " 093-000033,

PRINT (Continued)

GENERAL USAGE RULES:

1.

Only ASCII characters may appear in the field.

The data is written in line mode with a carriage return appended to the end of
the line {not more than 132 characters may be written at one time).

Output is to FOPRTRAN channel 12, which is by default associated with the
system line printer ($LPT). However, the user may explicitely open channel
12 to any other device or file.

EXAMPLE

DIMENSION ICON(23)

NCHK;@
CALL PRINT(ICON,{,23,NCHY)

1o CUNTENTS OF ICON AND NCHK BEFORE EXECUTION OF THE SUBROUTINE1

ICON =3 THISAMESSAGEAISAPRINTED

t t t t t
(WNRD

POSITION) S 12 15 2

NCHK]

2, CONTENTS OF ICON AND NCHK AFTER EXECUTION OF THE SUBROUTINE}

ICON = UNCHANGED

NCHK ® § (SUCCESSFUL WRITE)

SUBROUTINE NAME:

PURPOSE:

STATEMENT FORMAT:

QREAD

This subroutine reads characters from a card reader and
places them into an array in Al format.

CALL QREAD (ICON, IFRST, ILST, NCHK)

ARGUMENT DESCRIPTIONS:

ICON

IFRST

ILST

NCHK

The name of the one-dimensional integer array that will
contain the input characters. This array must have
been defined in a prior DIMENSION statement.

An integer constant, expression, or variable that identifies
the position of the first input character (left-most position).

An integer constant, expression, or variable that iden-
tifies the position of the last input character (right-most
position).

An integer variable that can be tested after execution of
the subroutine to determine if reading was successful.
The following codes are returned to the user:

Intermediate Error
Successful Read

System Action in Progress
RDOS System Error + 3

W ~O
I

For a comprehensive discussion of these error codes. See
"FORTRAN IV User's Manual. " 093-000053.

6-7

GENERAL USAGE RULES:

1.

Only ASCII characters may appear in the field.

Reading will tex1minate normally after transmitting one line (terminated by
form feed, or null). Reading will terminate abnormally after transmission
of 132 (decimal) chdqracters without detecting a carriage return, form feed,
or null as the 1337~ character and NCHK will be set appropriately.

Input is to FORTRAN channel 9, which is by default associated with the

system card reader ($CDR). However, the user may explicitly open channel
9 to any other device or file.

6-8

EXAMPLE

DIMENSION ICON(25)

®
CALL QREAD(CICON,1,25,NCHK)
1, CONTENTS OF ICON AND NCHK BEFORE EXECUTION OF THE SUBROUTINES

ICON s ABCDEFGHIJKLMNOPQRSTUVWXY

L] L] 4 4 4 t
{WORD
POSITION) i] 109 15 20 25
NCHK a @

2, CONTENTS OF ICON AND NCHK AFTER EXECUTION OF THE SUBROUTINES

ICON =® THISAISAAASAMPLEASENTENCE

t t t t t t
(WORD
POSITION) 1 5 10 15 20 25

NCHK = § (SUCCESSFUL READ)

6-9

SUBROUTINE NAME: TYPER

PURPOSE: This subroutine prints one line or the system console
device.

STATEMENT FORMAT:

CALL TYPER (ICON, IFRST, ILST)

ARGUMENT DESCRIPTIONS:

ICON - The name of the one~-dimensional integer array that con-
tains the characters to be printed. This array must have
been defined in a prior dimension statement. Before
execution of the subroutine the characters to be printed
must be in Al format (one character per word, left-
justified), During execution of this subroutine the data in
this array remains unchanged.

IFRST - An integer constant, expression, or variable that
identifies the position of the first character (left-most
position) in the ICON array to be printed.

ILST - An integer constant, expression, or variable that identifics
the position of the last character (right-most position) in

the ICON array to be printed,

GENERAL USAGE RULES:

1. Only valid ASCII characters may appear in the field,

2, The data is written in line mode with a carriage return appended to
the end of the line,

3. Output is to FORTRAN channel 10 which is by default opened to the

system console ($TTO in background or $TTOL! in foreground),
however the user may explicitly open to any device or file.

6-10

EXAMPLE

DIMENSION ICON(21)

s
CALL TYPER(ICON,1,2%)

1« CONTENTS OF ICON BEFQRE EXECUTION OF THE BUBROUTINES
|

ICON = THISAMESSAGEAISATYPED

t t t t
(WORD
POSITION) § 5 ie 18 20

2. CONTENTS OF ICON AFTER EXECUTION OF THE SUBROUTINES

ICON = UNCHANGED

APPENDIX A

TABLE OF ASCII CHARACTERS IN Al FORMAT™ AND DECIMAL EQUIVALENTS

::::::::::::::::===:======================8===I===3=I=====B=I==§=l$3=3
AalClY DeCImaL ASCT] LECImAL ASCII DECIMAL

=:::==:=::::::===:=:=========================SSS=IE88!5:8!8!.88!!88!!!
"AAY = 0224 A" s 16164 "A* = 23584
" " H 5448¢ e " 2 16416) " s 23840
un 1} = ,373() na " 3 15072 "y u T 24@95
AR B 39¢2 weg |0 s 16928 We I" B 24382
wy | M = 9248 . " " s 17184 N AN g 246y8
we | v o= ¥yog4 Wy | " o= 17440 (LOWER CASE)
Wy | = ¥y76@ ne | = 17698 "AA" = 24864
oy |0 =z tuBlb ng | v = 17652 ng | v = 251202
we lm o3 (w272 ne | " = 182¢8 wec | v = 25376
") " = 1u528 i n] 184684 p v 3 25632
ne | M 2 11784 np " s 1872v¢ mg |v & 25888
ne |M 3 11049 nJ|"m = 18976 WF | " s 26144
w, | v = (12§06 wg | v = 13232 "G | v s 26400
v [z 11552 w, | v = 19488 "R | 3 266856
" " =z 112u8 wy N = 18744 wp f® 3z 26912
ny | v =2 tzpb4 np | M = 2080 nJ v s 27168
Pt 3 12328 ng | m s 22256 " (" = 27424
wg |1 3 32576 np | = 20512 nofvw = 276s@
" " = 12832 "y n s 22788 M "] 27836
"o | " = 19vit 8 "R n g 2124 "y n = 28192
g | =z 13344 ng | n = 2128¢ g | " =8 28448
uy [v = 186uY nT{" = 21536 "p " = 28704
o | »] 156256 wy " T 21792 "y " s 28960
w7 " s 14112 "y " s 2248 "R " g 29216
wi | n 3 14368 e | M ' 22304 wg |" = 29472
"y 3] 3 14624 le n = 225{3% IIT " s 29728
ng | v = 14583 vty | v g 228Blo : "y v = 29984
"3 " 2 19148 "z " = 23v72 "ty "] 30242
we | w2 1b3g2 npAn = 23328 mw | " = 344656
a4z | 0w 3 15648 "x | " = 3n7s52
"> At = {8504 ny | " a3 3i1Av8

IIZA" = 31264
2:::::::_::::::::::::35'-"—'.’.:2:‘-'===========838838ll8=ﬂ!:l:.‘-:::ﬂllfl‘ﬂ:!

APPENDIX B

The following sample programs are included to demonstrate how the Commercial
Subroutine Package can be used with FORTRAN to handle the requirements of
commercial data processing,

Programs 1 and 2 collect and edit data from card input, and this data in turn is
used to update a master file from which reports are written.

Programs 3-5 illustrate how data can be collected from terminals interactively.
Note in these examples how files are created and subsequently updated.

B-1

*&ﬁti*ttfﬁ*tt*tﬁfi*t*t*t*itt*tt*iﬁi******tii***t**i*tti#**i*ttﬁ

FORTRAN COMMERCIAL SUBROUTINE PACKAGE EXaMPLE PROGRAM w1

lI.ISIBF'II.II'BB!SB:SIIIlx":ISSIREEZ:‘Ezgzz -------- T==

THE PURPUSE OF THIS EXAMPLE IS TC SHO: THE EASE CF
MANIPULATING DATA USING THE COMMERCIAL SURKOUTINE
FACKAGE (CSP) IN CONJUNCTION WITH THE STANDARD DATA
GENERAL SUPPLIED REAL TIME DISK CPERATING SYSTEM (RDOS)

THE PROGRAM WILL ILLUSTRATE THE INITIAL BUILDING
0F & DATA BASE AND/OR THE [ATER ADDITICM CF
DATA RFECORDS TO THE DATA BASE,

TFE INPUT TO THE PROGRAM 15 ASSUMED TC EE A DECK OF
CARDS THAT REPRESENTS THE INVENTCRY CARDS TP 2f ANRDED

TO THE DATA BASE, THIS PROGRAM WwILL APPFND THESE RECORDS
T0 THE END OF THE CURRENT INVENTCRY FILE,

THE PROGRAM SEQUENTIALLY READS IN THE CARDS, LISTS

THE CARDS TO THE LINE PRINTER, RE~ARRANGES &ND CCMPACTS
THE CATE INTO THE INVENTCRY FILF RECORD FOF4AT, AMD
FINALLY OUTPUTS THE RECORD TO THE FILE,

THE FORMAT OF THE DATA CARDS ARE AS FCLIC»S:=

CARD CoLUMNS ITEM DESCRIPTION

CCEBEBUEERELS EXTRENIEZRBISEESE

(o]
*
*
»*

14 STOCK NUMRER
7=30 DESCRIPTION
33-39 STOCK LOCATION
4243 UNIT GUANTITY CODF
46=5¢0 UNIT GQUANTITY PRICE
53-54 GUANTITY ON HAND

THE INVENTQRY FILE HAS ThE FOLLOWING CRGANIZATION:-

RECQRC ITEM DESCRIPTICN WORDS

STOCK NUMBER (XXXX) {=2
DESCRIPYION (24 CrARACTERS) J-10
STUCK LOCATION (XXXXeXXX) 11=12
UNIT GQUANTITY CODE (t4,0DZ,CT) 13
UNIT QUANTITY PRICE (SXXXXX¢XX) 14+15
QUANTITY ON HAND (XXXX) 16

OO0 OO0 0

o
®
%
3

c TOTAL RECGRD SIZE IS 16 e {6 BIT WCRDS
Ceaw
Ci***ii#**i*tﬁiﬁi*itt**‘ial-i**ﬁw##ﬁ*iiiiﬁi*#i***i****i*it**#**iﬁi#*

B-2

Cuww

Caewwn
T I I I s I I sy I I

Cenwn i
C DATA STORAGE ALLOCATION AREA
Cuawwn
2222223322 222232 2 XX R R 2 X PR R R R R X R X N R R ER R PR R S N R N RN
Cuww
INTEGER RAREA,PRICE,CSPER
Cohwmw
DIMENSION IDESC(24),L0CAT(7),FPRICE(S),ITIME(3),IDATE(I)

Cuwwn

COMMON /RECRD/ RAREA(168),NTEL(42)
COMMON /CKHLS/ INPUT,LIST,IVEN
Cowx
o INITIALIZE THE INPUT/OUTPUT CHANNEL NUMBRERS
Cwve
DATA INPUT,LIST,IVEN /8,8,2/
Cutn
c INITIALIZE THE 406 CHARACTER TABLE FOR 1A1A3% AND '1A3ALY
Coew
DATA NTYBL /" 1234567 8902ABCDEFGHTIJ M,
" LMNOPGBORSTUV K XY Z, .,/ "
Ceww
INITIALIZE THE CSP ERROR FLAG 'CSPER! TO ZEROD,
IF IT CHANGES FROM THIS VALUE DURING PROGRAM EXCUTION
AN ERROR 1S INDICATED,

}
}
}
)
!
)
)
)
}
)
!
)
}
}
)
}
}
)
)
)
!
)
}
}
!
}
)
)
)

CSPER=gQ

!
)
}
)
)
}
)
!
)
!
}
}
)
)
!
)
i
)
)
)
}
)
}
)
!
)
)
}
}
}
)
i
}
)
}
}
}
}
)
}
)
}
)
)
}
}
}
}
}
}
}
i
}
}
!

TR A I A A A I A S Y R R 2 R RIS RS R R R 2
Coews ’
C
Coww _
C*««t*aaaoq*attoetitﬁttatit**t*t.i**ttat****gﬁttt**t«*****ﬁ***t***”
Cuwe

TYPE ' 1

YYPE ' wwe INVENTORY UPDATE PROGRAM www!

TYPE 1 !
Cownw
e s R X 2 R R R R R X R R X2 2 R R R N R R TR RS R A R 2
Cwww
c OPEN AND INITIALIZE ALL FILES AND DEVICES
Coww
N XX 22 R R R R X2 X X A X R R I R R R R AR X2 R X X0
Coeww
c OPEN THE CARD REACER FOR READING IN THE CARD DECK,
Cenwn

CALL OPEN (INPUT,"SCDR",2,IER)

Cunw

IF (IER,EQ,!) GOTC (¢ 3 CHECK IF OPEN SUCCESSFUL
TYPE 'oPEN S$CDR ERROR =!',IER } NO=eTERMIHNATE PROCESSING
STOP CBHR ERROR
CONTINUE
OPEN THE LISTING FILE 'SLPT!
CALL OPEN (LIST,"SLPT",@,IER)

- IF (IER.,EQ.1) GOTO 15 3 CHECK JIF QPEN SUCCESSFLULL
TYPE ' OPEN ERROR =!',IER } NO==TERMINATF PRCCESSIANG
STOP $LPT ERROR

OPEN THE INVENTORY FILE FOR APPENDING ONLY BY THIS PROGRAM
THIS IS INDICATED BY MODE 3 IN THE FOLLOwWING OPEN CaLL,

CALL APPEND C(IVEN,"INVENTORY",3,IER,32)
IF (IER.,EQ.13) GOTO 20 } CHECK IF FILE EXISTS
IF (IER.EQ@.1) GOTO 25 } CHECK IF OPEN SUCCESSFUL

TYPE ' OPEN ERRQOR =!,IER } NO==-TERMINATE PRCCESSIMNG
STOP INVENTORY ERROQOR

ATTEMPTED TO OPEN A NON=EXISTENT FILE
CREATE A RANDOM FILE 'INVENTORY'! AND GO CPEw IT

CALL CFILW (M"INVENTORY",2,IER)
IF (IEr.EQ.1) GOTC 5 $ TRY T0O QOPEN IT MQW
TYPE ' FILE CREATE ERROR =1,JER 3 ERROR wHILE CREATING FILE

STOP CREATE 'INVENTORY' ERROR
CONTINUE

B-4 -

W WS WE W W W VG VR WS WS WO WD WO VO WO VG W VO WO WS W WS U Ve VG WD NI VE W WO WS WS US W WS Wh e W WW Ne Ve W e W W e

Coww

Cuuw

Ctiiitttﬁttii*tt*ﬁ*ﬁ**t***t*tt*tﬁiQ*tt&**kta*.ti** CF TR TR E R R RE R
Cwww

C FUT OUT KEADING INFORMATION INCLUDING TIME AND DATE

Ceww

R R A i 2 A R s I I A X R R R T R R R R R R Ry
Chwuw

CALL TIME (ITIME,IER) 3 GET TIMF OF DAY
CalLL DATE (IDATE,IER) J GET DATE VALUF
Cwww
WRITE (LIST,28) ITIME,IDATE
Coww
28 FORMAT (/7" INVENTORY FILE UPDATE"
* T34,12Vsv121s012,18V/V12V/112/
* " l::::::::::::::::::::",//
" " NEW RECORDS ADDED TC INVENTORY FILEM//)
Coww
Cexwn
o R e 2 2 X 2 2 2224222222223 2 22 R R AR R R R R R R X R R X
Chow
C READ IN A CARD FROM THE CARD REACER
Couwn
(2222332022222 3 2 R R R R R R R R R R R RS RS R SRR AR 2
Cevw

32 CONTINUE
READ (INPUT,35,END=300,FRRx402) RAREA(1),RAREA(2),IDESC,

. LOCAT,RAREA(L13),PRICE,RAREA(16)
Cowe
35 FORMAT (2A2,2%X,24A8,2X,7A1,2X%X,A2,2X,541,14)
Coewnw
c WRITE THE NEW RECORD TO THE LISTING FILE
Cuwe

WRITE (LIsT,36) RAR:A(l) RAREA(C2),IDESC,LOCAT,

* RAREA(13),PRICE,RAREA(16)
Coww

36 FORMAT (1X,2A2,2X,24A8,2X,7A1,2X,A2,2X,5A8,14)

Cuww
C***tﬁttti*tftﬁiit&tt***tiiﬁi*ttt*iitti*tti*ii*t*ti**iitt**iﬁ***i*
Crww

c PACK THE DESCRIPTION READ INTO 'IDESC' IN A{ FORMAT
o INTO THE 'RAREA!' IN A3 FORMAT,
Cowwn

c**tfﬁttit**ttttt*iii’tii**t***iﬁt***i*it*iiii*&i*ttiit**ii*i*tﬁ*ii

Cewnn
CALL A§A3 (IDESC,1,24,RAREA,3,NTBL)

B-5

R

}
!
!
}
)
}
}
}
)
)
}
}
i
}
}
)
}
)
}
)
i
}
}
}
)
!
)
H
}
)
)
)
}
}
}
)
)
}
}
}
I
}
}
}
H
)
}
)

c

Cuee
IR R R 2 I I I R R R A R R R R R R R R

Cruw

C CONVERY THE STOCK LOCATION INFORMATION REAU INTO 'LOCAT!
c IN A{ FORMAT TO A DOUBLE WORD VALUE IN 'RAREA',
Cewn

[Y . 2 2 2 X 2 2 2222 X X2 22 A X SR E R R R R R R R R RN R
Cenw

CALL 240w (LCCAY,1,7,RAREA(11),CSPER)

Coww

X IF (CSrER,EQ.2) GCTO 480 } CHECK IF QVERF[.CWw ERRCR
X TYPE V AYDW CONVERSICN ERRQOR el (CSPER t YES==TERMINATE

X STOP LOCATION ERRCR

X 42 CONTINUE

Cewwn

Y2222 2222222222332 2323233 22 22 32 22 3 222222 2T
Cenw

C CONVERT THE UNIT GUANTITY PRICE INFGRMATINN READ

o INTO 'YPRICE!' IN Al FORMAY TO THE 'RAREA' AREA

c IN DOUBLE WORD FORMAT,

Coenwn

R R e P R R R R R Ry R R R R N R R R R R R R A R R A AR
Couw
CALL A{DW (PRICE,1,5,RAREA(14),CSPER)

Ceww

X IF (CSpER.,EQ.Q) GCTO 5@ } CHECK IF OVERFLOW ERRDR

X TYPE ' A{DW CONVERSION FRRQOR =%',CSPER

X STOP PRICE ERRGCR

X 52 CONTINUE

Cwwx

o R R e T I Ny L N e R X LR AR R
Cowvw

c APPEND THE NEW RECORD OUY TO THE END OF THE INVEATCRY FILE
Coews

oy S R R R Y 2 2222202222222 22 2 2 a2 I
Cewnw
WRITE BRINARY (IVEN) RAREA
Ceww
Caew
R R R e Y 222 R 2 22 A R R R A T eI T
Coeww
C INCREMENT RECORD COUNT AND CONTINUE PROCESSING CaAw®DS
Cews
(R Y 2222 R R R I A R I s I I I I I
Cewwn
IRCRD=IRCRD¢1{
GO0TO0 3¢

B-6

L

s Cwwe

J Cwrew)

I B S 2233222223222 2 R R R R R A X e R A R AR R R R A AR
J Cwie

} C END OF CARD DECK FOUND

) C TYPE OUT NUMBER OF CARDS PROCESSED THIS UPCATE

J Ceww

Ay T2 22 R R R R R A R R e R F e R R S S R R
J Ceww

} 300 CONTINUE

) Cewnw

] TYPE ' RECQRCS PROCESSED THIS UPDATE 3t,IRCRD,1<i5>!

J] Corw

} WRITE (LIST,312) IRCRD

] Cows

) 3ie FORMAT (//" RECORDS PROCESSED DURING THIS UPDATE =2",18)
J Coww

! CALL RESET } CLOSE ALL OPEN FILES/DEVICES
} Cewnn

H STOP END OF INVENTORY UPDATE PROGRAM

§ Cuwwyw

} Cwww

} Cerve

Y LA AR AR R R R A I 2 2 R R N R R A R R 22T
J Cwew

J] C AN ERROR WAS ENCOUNTERED IN READING AN INPUT CARC

J Cowne .

A T Y R R Y R R Y R R R R R R R R A R 22 222222)
} Couwnwn

J] Cownn

} 400 CONTINUE

) TYPE ' ERROR FOUND WHILE READING CARDS !

’ IRCRD=IRCRD={

’ TYPE ' PROCESSING STYOPPED AFTER !',IRCRD,' RECORDS!

J Cownw

) CALL RESET } CLOSE ALL OPEM FILES

J Cewn

} 8TOP CARD READ ERROR

J Cann

] END

B-7

ritaavy cgm s =

PROGRAM 4 1 - INPUT CARDS

y 8 1" 15 20 925 3@ 35 4n 45 5@ 55 6B
§ ¢ 8 & ¢ ¢ ¢ * ¢ ¥ ¢ 4 £ -F t v ¢ ¢ ¢ ¢t ¢ ¢ v ¢:t ¢ ¥

3
....II..Q..IIO._..‘...C.lo......l...l..........I..l‘.l.........

B2KA4 NOVA 842 W/16X, W/ MMPU 2715237 EA 165328 a4
B265 NOQVA 84@ W/16K, W/0 MMPU 2715247 EA 132328 a2
8200 NOVA 840 W/24K, W/ MMPU 27!85420 EA 19738 @3
820¢ NOVA B40 W/32K, W/ MMPy 2715267 EA 22938 04
8292 NQVA B4R wW/4PK, W/ MMPU 271569t EA 26430 02
R293 NGVA B840 W/48K, W/ MMPU 2716234 EA 28330 06
254 WNOVA 842 wW/G0K, W/ MMPU 2718328 EA 35732 o7
B295 NOVA B4@ W/BAK, W/ MMPU 2717°R88 EA 45130 08
8296 NOVA 84Q W/SBK, W/ MMPU 2717742 EA 51538 @29
8297 NOVA B42 W/128K, W/ MMPL 2717748 EA 64332 10
B298 NOVA 840 W/24K, W/0 MMPU 2719382 EA 16430 {1
8299 NOVA 84@ W/32K, W/D MMPU 27204346 EA §9638 12

PROGRAM # 1 - CONSOLE LOG

R
CsPi

ees INVENTORY UPDATE PROGRAM was

RECORDS PROCESSED THIS UFDATE =

STOP END OF INVENTORY UPDATE PROGRAM
R

PROGRAM # 1 - PRINTER QUTPUT

«Verification of Input)

INVENTORY FILE UPDATE

SESEECSEECZBEEZZzrEEEES

16114146

NEW RECORDS ADDED TO INVENTORY FILE

82€4
8265
ga29@e
8291
8292
8293
8294
8295
8296
8297
8298
8299

NOVA
NCVA
NOVA
NOVA
NOVA
NOVA
NOVA
NOVA
NOVA
NOVA
NOVA
NOVA

84g
840
849
849
840
849
842
840
848
840
840
840

W/16K,
W/16K,
W/24K,
W/32K,
W/740K,
W/4B8K,
W/65K,
W/8QK,
W/Q6K,
W/128K,
W/24K,
W/32K,

4/
W/0
W/
W/
W/
W/
W/
W/
W/
W/
W/0
W/0

MMPU
MMPU
MMPU
MMPU
MMPU
MMPU
MMP LU
MMPU
MMPU
MMPU
MMPU
MMPU

2715237
2715247
271542¢
2715267
27156214
2716234
2716320
2717286
2717742
2717748
2719382
2720416

RECORDS PROCESSED DURING THIS UPDATE =

EA
EA
EA
EA
EA
EA
EA
EA
Ea
EA
EA
EA

6716774

16832
13232
19732
22938
26132
26332
35732
45132
51832
64232
16430
19€32

12

-
NOXNDADL WN —

—
) =

}
)
}
}
)
)
}
)
}
!
!
}
)
)
H
}
!
)
}
)
}
}
’
)
)
)
)
}
Y
!
}
)
}
}
}

Cavw

Coeww

(o 23 3322222232222 21 2 2 X R R R PR R S R L R X R 2

Cewe

C FCRTRAN COMMERCIAL SUBRCUTINE PACKAGE EXAMPLE PROGRAM #%?

C BESBSESZREZIISEERTIZIEEEESZIESZIERZEE L SXSsESEC s xS ESSER

Cewns

C THE PURPOSE OF THIS EXAMPLE IS TC SHCk THE EASE CF

C USING THE COMMERCIAL SUBROUTINE PACKAGE (CSP) I™ COMJIUNCTION

C WiTH THE STANDARD DATA GENERAL SUFPLIED REAL TI™ME DISK

C OPERATING SYSTEM (RDOS) IN BUSINESS AND COMMERCIAL

c APPLICATIONS,

Cawn

c THE PROGRAM WILL PRINT AN INVENTCRY SUMMARY OF ALL NOVA 647
COMPUTERS FCOUND IN STOCK, IT ILLUSTRATES SCME OF THE MANY

C WAYS OF HANDLING DATA WITH RCOS AND THE FORTRAM CSP PACKAGE,

Cuww

(3222223222222 2332223 12 2 23 12 R I 121221222
Cawwn

c THE FILE TO BE ACCESSEC IS AN INVENTORY FILE «“ITH THE
c v FCLLOWING ORGANIZATION: =

Coww

o RECORD ITEM DESCRIPTICON WORDS FORMAT
C CERgIIsTa3ZERRI=STC3=ER scess gss====x
Caws

c STOCK NUMBER (XXXX) {=2 242

c DESCRIPTION (24 CHARACTERS) J=-10 8A3

o STOCK LOCATION (XXXXeXXX) 11=-42 Dw

c UNIT QUANTITY COCE (EA,DZ,CT) 13 A2

c UNIT QUANTITY PRICE (SXXXXX XX) §4=15 Lw

c QUANTITY ON HAND (XxXX) 16 Sp
Conw

c TOTAL RECQORD SIZE IS $16 « §6 BIT WORDS

Cree

R Y Y R 222 33X 2 e R A R I

B-10

W WS WS W W e NG e e W W W ~‘~‘.““w‘\"“"ﬂ‘\t“‘%'\-““‘\.\.“ﬁ-“‘%“

Caww

Cuwnw

(X 1223 R A i I I A R a a I IIIIIIIIIT
Cone)

o DATA STORAGE ALLOCATION AREA

Cownw

R e L Y R R I R R R R R R S N N R R 22222222 2R2Y
Coww

INTEGER RAREA,PRICE,CSPER,WORK,TVAL

Cwenw
DIMENSION IDESC(24),LO0CAT(7),NUMBR(2),ITITL(43)
DIMENSION ITIME(3),IDATE(I)
DIMENSION PRICE(2),IPRIC(5),INUM(4),IVAL(6),WORK(B),TVAL(S)
Cown
COMMON /CHL S/ LIST,IVEN
COMMCN /RECRD/ RAREA(16),NTBL(42),TOTAL
COMMON /MASK/ MASK1(8),MASK2(12)
Cewe
DATA LIST,IVEN /8,17 TOTAL/Q,.,2/
DATA NYBL /%" {1 2 3 4567892 ABCCEFGHIUJH™M,
»* "W LMNOPGRSTLULVYWYXYZ, ,7 "
DATA MaASKi/! ’ B '/MASK2/! ’ ’ s vy
Ceww
CSPER=9 } INITIALIZE CSPER ERROR FLAG
Cwww .
Cuew
Cwww

(R L I I I e T I I amIm I
Covw

C INITIALIZE FILES AND GET STARTING/ENDING RECORD NUMRERS

Chwwn .

YT 2382222222222 2223 2L s I I T mMm I ITI I
Coww

TYPE ¢+ 1
TYPE ' #«s INVENTORY ANALYSIS PRCGRAM wast!
TYPE V1
TYPE ' ENTER A 42 CHARACTER TITLE FOR TKHIS RUN!
TYYPE ' !
Cane
c READ IN 42 CHARACTERS FROM THE CONSOLE KEYBOARD
Cows
CALL KEYBD (ITITL,1,40)
TYPE ' !}
Conw
5 ACCEPT t STARTING RECORD NUMBER = ' ,ISTRT
ACCEPT ' ENDING RECORD NUMBER s 1, TENC
Cuene
" IF CIEND,LT.ISTRT) GOTO 5
TYPE ! !
Cowwn

CALL OPEN (LIST,"SLPT",0,I1ER)
CALL OPEN (IVEN,"INVENTORY",8,I1ER,32)

B-11

WO WD WE WD) WO WD WO UD WI YP WO U W NG VO Ve WE WS WS WS WH WS WD WH WD NS WD WS VR T WG WD N W W N W W W W W W W W W

Conw

Ceun

(PP e ST XSS XTSRRI R AR AS S R A S AR A AL AL A0 A A SA A LA AR A A
Cove

c PUT OUT REPORT HEADING

Cuawne

R R s a2 S P SRS R AR A2 AR 22 A AR A AR S A0S AR Al AR
Cevw

CALL TIME (ITIME,YER) 3 GEYT CULRENT TIME OF DAY
cAlL DATE C(ICATE,IER) } GET TODAY'S DATE

Ceunw
WRITE (LIST,1@4) ITITL,ITIME(L),ITIME(2),IDATE

Cowne

10 FORMAY (///,T10,42A1,754,1218112,14/%124/'T12/
T10,48('at)//

*«
* " STOCK STOCK ITEM CESCRIPTION",
* T43,"UNIT GTY UNITY VALUE"/
L % LOCATION NUMBER",T43,"CODE ON FAND b g v
* ! epureowne sasvee -—--------------“’
L) T‘s'"'--. ecenSee ome roamel
« /)
Cowww
I S 3 2 220 22 2 a2 2 22 2 2 R R R R A R X R R R 2 222 22 2 AR AL R LRl d
Ceve
c SEQUENTIALLY PROCESS THE IMVENTORY FILE FRCM THE STARTING
c RECORD 'ISTRT!' TO THE ENCING RECCRD 'IEMD!' BY REACING
C THE RECORD FROM THE DISK FILE 'INVENTCRY'! , EXPAMLDIMNG THE
C RECORD DATA , FORMATTING IT FOR CUTPUT , AND OUTPUTTING
c IT T0 THE LINE PRINTER « VSLFT!',
Cownw

C*tiiti*'ttitﬁitti*ti*tt*i***ii***ti*i**i*it**itii**t****i*&**t***

Ceexn
DO ieee IsISTRT,IEND

Cans
c READ IN THE 'ITH' RECORD FROM THE DISK FILE
Cwew
CALL RORW (IVEN,I,RAREA,1,IER)
(of X X
c IF (IER.,EQ.9) GOTC 2000 } END OF FILE ENCCOUNTEREC
*hw
X IF (IEr,EQ,.,1) GOTC 2@ } INSURE RECORD READ OkAY
X YYPE ' RECORD READ ERROR =t,IER
X GOTO Sece
X 2¢ CONTINUE
Coww

B-12

Cuve
Coww
TR R A I 2 i R XX R a2 X2 22 2 XY R R R X2 222222 XXX22
Cewwne :
c EXPAND THE STOCK LCCATICON VALLE
C RECORDED IN WORDS ¢{ AND 12 IN DOUBLE WORL FORMAT
Conw
(22 3 3 A X R X R 2 2 X 222 X X X 2 23222223 22222222
Caww
CALL DwAf{ (RAREA(11),LO0CAT,i,7)
Ceww
(2123232222222 2332223323322 X 2322222222222 X2
Coenw
c EXPAND YHE DESCRIPTIION '
c RECORUED IN WORDS 3 TC 1€ IN A3 FORMAT
Ceww
222322223 23 XX i A s X 2 X 22 22 X XXX
(of'2 X

CALL A3A1 (RAREA,3,12,IDESC,1,NTBL)

Coawe
Cownwn
e R R R R R R R R R R R R A2 322222 2R 2 TR T
Cowwn
c MOVE THE UNIT QUANTITY CODE
c RECORNDED IN wORD 13 IN A2 FORMaAT
Chww
(22323 I i R R A I T T T I LY
Cown
ICODEaRAREA(13)
Canw
T I I L I I I s I I
Cowww
c GET THE GUANTITY ON HAND
c RECORDED IN WORD 16 IN SINGLE WCRP FORMAT
Cenw
Y2 2 A 22 2 2 X R N R R R 2R X R R 3R R 2 2R T D
Coww
NUMBR (1) =2 $ SET HIGH ORDEF POSITIOM ZERO
NUMBR(2)=RAREA(16) 3 PUT QUANTITY IN LOW ORDER POSITIONM
Caeww
CALL DwAY (NUMBR,INUM,1,4)
Cawwn
Can kb ek AR R A Rk P AR N PR A AN kbR kR d bWk e ok o okeove it ot o
Coenw
c GET THE UNIT QUANTITY PRICE AND CONVERT FOR OUTPUT
c RECORDED IN WORDS (4 AND {5 IN DCUBLE wWORD FORMAT
Ceww
Ry e S R R R R R R R 2R R R 2232222222233 2 s I 2T Y
Caww
PRICE({3=RAREA(14)
PRICE(2)SRAREA(LS)
Cawe

CALL DwAy (PRICE,IPRIC/,1,5)

B-13

)
/
}
)
)
?
)
!
}
)
}
)
}
i
)
/
)
)
!
}
)
}
}
}
i
)
/
}
)
)
}
)
)
)
}
)
!
}
}
)
}
)
!
)
)
!

Chexw
Ceer
Cuvs
Ctttt**t*tﬁdti*tb)itt&tiitéii*ittﬁ*&tt****ii**t*****ti#*tﬁ&&i*ti*t
Covuw
c CALCULATE THE PRODUCT VALUE
Counw
c VALUE = (QUANTITY ON HAND) # (UNIT COST)
Caew
AT A s R S 2 SRR R R AR A A A2 R 2 A0 A AL AR AL R AR AR Al
Cuwn
CALL DWMPY (NUMBR,PRICE,CSPER)
Cwww
X IF (C3PER,CG.2) GOTO 6€
X TYPE ' OWMPY ERROR =f,CSPER
X GOTO 9202
CONTINUE

CALL DwAt (PRICE,IVAL,1.€) 3} CONVEFT TO At FORMAT
ADD THE VALUE ON HAND TO THE TOTAL INVEMTORY VALUE
CALL DWADD (PRICE,TOTAL,CSPER)) ADD ThC VALUES

X IF (CSPER,EG.®) GOTO 78 } INSURE ACDITINN DKAY
X TYPE ' DWADD ERROKR =',CSPER
X GOTO Sg09Q
X 7¢ CONTINUE
(R XX
T e 2 e a2 2 SR 2 X2 S SRR SRR R R A RS A AR A S AR AL AL AL R A
Cenn
c FCRMAT AND PRINT THE LINE ITEM ON THE LIST FILE '¢LPT!
Ceows
Ctt\‘!ti&ttt*ittttii*ﬁiitiii*it*ittitti#t*tti*ttt**t*it***t**t***tt*
Cenw
CALL QMOVE (MASK!;I'SyNORK,l) 3 GET VALULE MASK
Crew
CALL EDIYT (IVAL,1,6,%0RK,1,8) } EDIT VALUF
Coavww
WRITE (LIST,200) LOCAT,RAREA(!) RAREA(2),IDESC,
Ceew
200 FORMAT (v 1,4A1'e%3A1,2X,2A2,2X,24A1,2X,A2,4X,44AY,
* ' 12A31,v3A1,8A14)
Ceww

1eee CONTINUE

T W VD UG WO NS WS ND NG VW NG W W) WP NP WO WD WP NN U W e % e s W UG WG VWG W WO W W W W N W

Conw

Couwn
X 2 22 2 Ry R R R R R R R R R R R A R R R AR
Cawn .
c FORMAY AND PRINTY THE SUMMARY INFORMATIGN
Cenw
Y R Y I A I I X A Y T PSR R AR R R AR
Cowex
2002 CONTINUE

CALL DwAl (TOTAL,TVAL,!,8) } CONVERT VALUE TO ALl FORMAT
Caww

CALL EDIY (TVAL,$,8,MASK2,1,10) 3 EDIT TOTAL FOR QUTPUTTING
Cuww

WRITE (LIST,21008) MASKZ } OUTPUT SUMMARY INFORMATIGN
Cuwnw

2122 FORMAT (///T25'TOYAL VALUE OF INVENTORY CN HAND = ',10A1)
Cuuw
Coww
2222223322222 22 2222 2 R 22 R X R R R R AR T TR TR LT R R AR
Cwew
c CLOSE ALL OPEN FILES AND DEVICES
Cwww
X X R R A a2 R AR RN I A N R R 2 R R 2 R R R I RS R R RS R R 2 2R R
Cowen
X902 CONTYINUE
CALL CLOSE (IVEN,IER)
CALL CLOSE (ILPT,IER)

Cwwe

T A A I I I I I I I 2 i X 22 222X XY}
Cwew

c PROGRAM IS FINISHED, RETURN TO RDOS

Cowew

C*tiittt“tt*ttttﬁiittitt*i*t*ttttﬁttﬁtt&ﬁtit*it*i*t*ttti*tt*t#**ﬁt
Ceew

TYPE v
STOP INVENTORY ANALYSIS COMPLETED
END

B-15

PROGRAM #2 - CONSOLE LOG

R
cspP2

wea INVENTORY ANALYSIS PROGRAM wews

ENTER A 40 CHARACTER TITLE FOR THIS RUN
« NOVA 842 INVENTORY POSITION

STARTING RFCORD NUMBER & @

ENDING RECORD NUMBER s 11

S§TOP INVENTORY ANALYSIS CCMPLETED
R

PROGRAM #2 - PRINTER OUTPUT

NOVA 840 INVENTORY POSITION 16215 5/16/74

STOCK STOCK ITEM DESCRIPTION UNTT GTY UNTTY VALUE
LOCATION NUMBER CODE CN HAND $ &

P 4D UO EB e @ o - ot eeea T T YT X Y L R 2 ¥ ¥ X J - . e e - m oS owm - en & - e W o>

2715237 8264 8402 W/16K, W/ MMPU EA 2L {6,532 16,532
2715-247 8265 B4? w/16K, W/0 MMPU EA ee¢e2 13,237 26,467
2715«42¢0 8262 840 w/24K, K/ MMPU E3 pae3 19,737 56,197
2715=~2€67 8261 8402 w/32K, W/ MMPU EA geeda 22,937 61,727
2715=-86p1 B26G2 B4 w/d4@K, W/ MMPU EA eres 26,130 130,850
2716«-234 €263 B4B W/48BK, Wy MMPU EA A6 29,332 175,987
2716=«3202 8264 B42 wW/65K, W/ MMPU EA @327 35,737 252,114
2747«0P86 8295 8B40 w/B@2K, W/ MMPL EA pags 45,132 361,747
2717=742 8266 R4D W/G6K, W/ MMPU E& B9 851,537 463,777
2717«748 82957 B4Q w/128K, W/ MMPU EA Ppr1e 64,337 €43,327
2716=382 8298 840 w/24K, wW/0 MMPU EA ealy 16,432 182,732
272¢=-416 8299 843 wW/32K, w/0 MMPU EA ea12 19,6372 235,561

TOTAL VALUE OF INVENTORY CN HAND = $2,635,247

H
}
)
)
!
)
)
!
)
}
!
!
)
H
)
)
)
!
)
)
)
)
)
}
)
!
}
)
}
}
)
)
)
!
!
}
}
)
}
}

Cewnw
Cewn

c&it**ii*ttﬁt**iiiﬁ*&iiiiﬁi&*itiii&iiiﬁi**iiti&*‘*i*t****ii**t*t#

Coen
o
c

Caww

Cuwww

FORTRAN COMMERCIAL SUBROUTINE PACKAGE EXAMPLE PRGGRAM #3

E'.llﬂl.llﬂiﬂllllllllHflaltiltﬁliS.SIIICSI===3=3:8:83388

THE PURPOSE OF THIS PROGRAM IS TO SHOW THE USE OF THE
FORTRAN CSP SUBROUTINES IN AN INTERACTIVE APPLICATION
WHERE A USER BUILDS UP A FILE OF DATA ABOUYT A GROUP
OF CUSTOMERS.,

ADDRESS INCLUDING THE STREET,CITY,STATE,AND ZIP COCE AND
A CURRENT BALANCE, THE OPERATOR SIGNALLS THE PROGRAM
THAT THE OPERATION MAS BEEN COMPLETED BY ENTERING THE
FOLLOWING MESSAGE 'END OF FILE ' FOR A CUSTOMER NAME,

DATA IS FACKED INTO THE FILE IN A2 FORMAT AND I8 #RITTEN
TO THE FILE IN SEGUENTIAL FASKION IN 35 wCRD RECORDS,

C*tt**t*it**t*ﬁiﬁii*iiii*tbifiiti*ii*&tiittiiit**i***iit*****ti*t

Ceww
o
c
Cowwn
C
o

Ceww

Coww

THE MASTER FILE 'MASTERFILE' HAS THE FOLLGWING
RECORD FORMAT 3=

POSITICN ITEM DESCRIPTION

f=20 CUSTOMER NAME
21=40 STREET ADDRESS
41-60 CITY, STATE, ZIP CODE
61=-70 BALANCE

THE LAST RECORD IN THE MASTER FILE CONTAINS THE FOLLOAING
MESSAGE ,'END OF FILE !, IN POSITIONS 1=312 TO INDICATE
THE END OF THE FILE .

C'tﬁttii‘*tttittit*tii*tit*iiiii*iiﬁi*&*itti**iﬁ*t**iﬁ***iii*ittt

Cownw
Caww
Cawn
Cuwe
I I I I I I I I I TSI
Cewew
C DATA STORAGE AREA ALLCCATION AND INITIALIZATION
Cowwe
(Y A I I 2 Y 2 X X TR SR R R RN 2 S Ry
Caww
DIMENSION INC72),INS(35)
COMMOCN /LBL/IEF(12)
DATA IEF/'E N D 0 F F ILE 1/

TYPE 1+
TYPF ' «we MASTERFILE BUILD/ANALYSIS PROGRAM +ww!
TYPE 1

TYPE 'V .
ACCEPT ' OPTION (1=NEW,2=L1IST,3=END) !',I0PT

IF (10PT,LT.1,0R,I0PT,GT,3) GOTO 1020

}
}
!
Y
)
)
'
}
)
}
}
}
)
)
}
)
}
)
}
)
!
Y
}
!

GOTO (2@ge,30r¢,4702),10PT

Ve NG WO WE WP N W e WE wa WS WS Ve N Ve W WO NE W W e WE WP ME WG e NP W We Ve We N Ve WE W WS e W Y We We we

Cwws
Citii*****i***t*i*it****i*i**it******i**t*i*i*&****ﬁ*t*****i**rw**

Cownw

Cuww

C COMMUNTCATE #ITH ThE OPERATOR FCR INPLT T 1) > %

C THE MASTERFILE, Tkt FILF IS COMPLETFD RY Tri Ap-. 1702

C ENTERING YEND CF FILE ' IN RESFCACE TO TeF AR ok dy,

Crww

R AR AR R AR R R R R R T T T T T I T I
Cwwy

200¢ CAELL CPEN (1,'MASTERFILF',?2,IER)

Crxe

275¢ TYFE V0
TYFE ' NAME fpragn
CALL KFYEDR (IN,1,728)

Cwev

It (?\f(""P(I“,’r‘?rlFf’rl’) 15142’1‘:
15 CONTINUF
Cowns

TYFE ¥

TYFF ' ADDRESS t¢a2!

CALL KEYRN (Iv,21,47)
Cwsw

TYFE 1+

TYPE Y CITY,STATE,ZIP 172L21

CALL KEYKD (IN,48,67)
Cownw

TYFE '

TYPE ' BALANCFE (CENTS)!

cabl KEYBD (IN,61,77)
Cwry

CaLl RJUST (IN,F1,77)
Coxw

CALL PACK (IN,Y,7¢,TNS,Y)

wR1ITE HINARY (1) INS

GNTI0 2252
Crew
av Call FILL (IN,$3,7¢,0 v)

tALl pACK (11\0157?']‘?‘8'1)
pRITE RHINARY (1) TANS

CALL CIOSF (1,1IFR)

GOTC teeg

B-19

}
}
i
i
}
H
}
}
}
’
H
;
H
!
i
/
;
}
}
H
}
i
}
i
}
;
;
}
}
H
}
i
H
b
}
;
;
;
;
H
;

Ceww
Cohws
IR R R R R R s 2 R R R R R R R R A A R R R R S AR R R R AR
Cownw

C LIST THF CONTEMNTS QF TrF IMASTERFTLFY IO THE PRT-TEr,

Crww

[A 2 222 2 A 2 R R R R R R N R P R R R AL R R
Cwwnw

3eez CCONTINCE
CALL CPEN (P.'ELPT!,0,IFR)
CALL CPEN (1,'MASTERFILE!',?,IFFK)
WRITE (7,3221)
3P21 FCOKMAT (//TIRY"MASTERFILFY FILE CONTEPTE'V/

* Tid'szsszz2ss=zs=s=sss=s==s=2z==z=5=s=31/)
32¢5 READ BIMARY (1) INS
Cownw
CALL UNPAC (INS,1,6,1IM,1)
Cons
IF (NCOMPCIN,1,11,1FF,1)) 3712 ,3¢27,3747
Caww

Jr10o COCNTIMUE
wRITE (2,3211) IANS
3t FCRMAT (T1Q,12A2/7T12,10682/T14,1282//T1223LALCKE = ¢+ ,342//)
GCTO 3725
Corww
372p CONTINUE !
wFITE (7,32321)
ezt FCRMATY (//T1¢twwe EMC OF FILE we4t)
CALL CLOSE (¢,IFR)
calL CIASE (1,IER)
GCT0 (prQg
Cuse
I A I a2 I 2 N N R RN R R
Cenx

c ENC CF ANALYSTS PRQOGKAM

Cawsn

2 R A 2 A Y R R R R R R R A R TSR AR E N T R
Cexs

4oz TYPE v
STCGP MASTERFILE BRUTLD/ANALYSTS COMPLFTET

EMD

B-20

'PROGRAM #3 -~ CONSOLE LOG AND OPERATOR INPUT

R
csr3

ees MASTERFILE BUILD/ANALYSIS PROGRAM wwe

OPTION (YBNEW,2sLI8T,3=END) !

NAME 1042
o ELIZABETH KAKWN

ADDRESS 1042
¢ 293 HOWLAND RD,

CITY,STATE,SIp 1@4A2
¢« MARLBORD, MASS @17%2

BALANCE (CENTS)
e 2323

¢ RALP
::::::::;___ﬂﬂ_,////f’/———___
NAME $08A2
¢ DAVES MARKET

ADDRESS 1BA2
¢ 31997 WASHINGYTON 8T,

CITY,STATE,SIP 1042
¢ NEWTOWN, MASS 02158

BALANCE (CENTS)
¢ 7819

NAME 1242

¢ RUNNING MOTORS

ADDRESS 1242
+ 10 WATER STREEY

CITY,STATE,SIP 1242
¢ PLYMDUTHs ROCK 22296

BALANCE (CENTS)
. 26268

NAME A2
¢ END OF FILE

OPTION (1®NEW,2sLIST,3sEND) 2
OPTION ($SNEW,20LIST,3IsEND) 3

8TOP MASTERFILE BUILD/ANALYSIS COMPLETED
R

PROGRAM #3 -~ LISTING OF INPUT PRODUCED BY PROGRAM~

"MASTERFILE"™ FILE CONTENTS

ELIZABETH KAKN
293 HOWLAND RN,
MARLBORO, MASS 21752
BALANCE = 2323
RALPH Fo. MATHEWSON
103 RIVERBANK DR,
FMAYNARD, MASS Q1754
BALANCE = 1616
VIOLET A, SAWYER
93 EAST MAIN 8T,
KUDSON, MASS 1749

BALANCE = 4824
DAVES MARKET
1697 WASHINGTON ST,
NEWTOWN, MASS 2158
BALANCE = 7819
RUNNING MOTOKS
10 WATER STREET
PLYMOUTH, ROCK 22296

BALANCE = 26068

#4¢ END OF FILE ewe

Covs

Cowre

(3232222222322 2 2 A I X X R R R X A A X X A R R I XX XTI
Ceve

c FORTRAN COMMERCIAL SUBROUTINE PACKAGE EYAMPLE PROGRAN n4

c EEEESEESESEEEREEESEEESCESEESCEDRELHEEEESEESERSECERERERERDEREN
Ceve

C THe PURPOSE OF THIS PROGRAM I3 SIMILAR TO PROGRAM #3

C EXCEPT THAT 7 ILLUSTRATES THE USE OF SOME ADDITICHAL

€ CONVERSION CAPABILITIES, IT ALLOWS

c THE CPEATOR YO ENTER INTEGER OR FLOATING POINT DATA FOR

c THE AMOUNT aMD QUANTITY VALUES,

Cove

o} THE QPERATOR SIGNALS THE END OF THE FILE BUILDeUP PROCESS

o BY ENTERING 'END OF FILE ! FOR THE CUSTOMER NAME,

« IF THE DPERATOR ENTERS A LEGAL CUSTOMER NAME, A HEADER OR

c CUSTOMER RECORD I8 PUT OUYT TO THE I'DAILY! TRANSACTION FILE,
c THE PROGRAM THEN ASKS THE OPERATOR FOR AN ITEM DESCRIPTION,
c IF 'END OF DATA ' I8 ENTERED INSTEAD OF AN ITEM DESCRIPYION,
C THE PROGRAM REQUE3TS THE MNEXT CUSTOMER NAME, AFTER A

c LEGAL ITEM DESCRIPTION HAS BEEN ENTTERED, THE PROGRAM A8KS
c FOR THME QUANTITY, AND INDIVIDUAL ITEM PRICE, CALCULATZS TKE
¢ TOTAL AMOUNT (QUANTITY®ITEM RRICE) , AND OUTPUTS THE VALUE
c TO0 THE FILE,

Cony

Canw

c&iit*tﬁttti*t*tttti&itititottitt#*t'ttt'tt*tttitt*t*i&ttttit#tttt
Cewn

c THE TRANSACTION FILE 'DAILY! WAS ONE OF THE
c FOLLOWING RECORD FCRMATS 1=
Cewy

] A) CUSTOMER NAME RECORD
C L L X A X X X 0 X X 2 0 KX X %]
Cuwe

c {20 CUSTCMER NAME

c 21=30 BLANK

c : J1a32 ZERD

Cene

c BY CUSTOMER ITEM RECORD
C L E AL X2 B X 3 L X & LA XY X X X |
Ceww

c {»20 ITEM DESCRIPTION
c 21=28 TOTAL AMOUNT

c 29-32 QUANTITY

Cens

c) END OF DATA RECORD

c L F I X XA XYY X ¥ ¥)
Ceee .

c ' {=42 MEND OF FILE "
c 13=30 BLANK

c J({w32 2EROQ

Cevy

A Y R R R R S R R R R R A R R R R I I I YL

B-23 -

Cees
Coev
Cose
33 A R R R N A 2 X 22 222 2 X X2 s 22 222X RS2 R 2 2R 2 1)
Covr
C DATA STORAGE AREA ALLOCATION AND INITIALIZATICON
Cace
(L2233 23233 2332233 3 X 2 R s X 23 XX 22 22 22 X2 22 2R R AR R AR AL D
Cevwe
DOUBLE PRECISION AMTY,QTY
Ceove
DIMENSION IN(C32),INS(18)

Ceew

COMMON /LBL/IEF(12),IED(12)
Cewvw

DATA IED/'E N D
OATA IEF/'E N D

TYPE ' !
TYPE evv DAILY FILE BUILD/ANALYSIS PROGRAM wwel
TYPE ' ! '

TYPE ' !
ACCEPT ' OPTION (isNEW,2s8_IS8T,3END) ',I0PY

IF (IOPT.LY,1,0R,X10PT,6T7,3) GOTO 10080
- GOYO (2000,30200,4000),I0PT

Ceve
GOSN P RN I E R A AT O NN R TGP PP RO R RE N EV IRV ECETTIREEIPERI GO R ENOONENES

Cuew : . ,
c COMMUNICATE WITH THE OPERATOR TO SUILD AN INITIAL TDAILY!
€ FILE OF TRANSACTICONS FOR TODAY

Ceed .
Ct'tttt#itt*titttttttttv*ttiit!tdtitﬂtﬁit'ttittttttittttitit*tttit
Cexe

2000 CALL OPEN (i, iVAILY!,2,IER)
208350 TYPE 1t I
TYPE | NAME tgAz!?
CALL KEYBD (IN,%,20)
Cene
IF (NCOMP(IN,1,12,TEF,1)) 2i00,2380,2100
Cttt
2106 CONTINUE
CALL FILL (IN,28,38,' 1)
CALL PACKX (IN,$,32,INS,1)
INS(16)nD
WRITE BINARY (4§) INS

Core
2200 CONTINUE
TYPE 1V !
TYPE ! ITEM DESCRIRPTION 1@A2!
CALL KEYBD (IN,%{,2@)
Ceey
IF (NCOMP(IN,t,18,1ED,1)) 2320,2250,2380C
Cewn
23082 CONTINUE

TYPE ' !
2350 ACCEPT ' QUANTITY #8999 w>» 9999 ,QTY
IF (QTY,LT.»5699,09,0R,0TY.GT,9899,08) GOTO 23&0
CALL PUT (IN,29,32,Q7Y,0.5,8)
Ceve
TYPE ' !
2400 ACCEPT ' ITEM PRICE !',AMT
IF (AMT,LT,.0,DB) GOTO 2420

Ceue
I A A I X s 2 s 2222 223 2 22 2 X2 SR R R 2 A)
Cens
c CALCULATE THE TOTAL AMOUNT
Cesw &
c AMOUNT®RITEM PRICECAMT) o QUANTITY(QTY)
Cevy
Cttittttttitttt*t*tti*tttﬁttitﬁt*ttt**tttttttttﬁtttt*ﬁ!itti.ittﬁ!ﬁ
Censn

AMTsAMT*QTYVYi22,0D0
Cone

CALL PUT (IN,21,28,AMT,0.5,02)
Cuwe

CALL PACK (IN,$,32,INS,!)

WKRITE BINARY (i) INS

GOYO 22020
Cevy

2500 CALL PILL (IN,12,32,' ")
CALL PACK CIN,1,38,INS,t)
INS(16)e0
WRITE BINARY (1) INS
CALL CLOSE (3,lER)

GOTO (@20
B-25

Cene
Cewe
Covw

IR R R R e R R Y R Y Y R X A T R R R Y SR R R R X R X XY

Cove

¢ LIST THE CONTENTS 0OF THE

Ceve

'CAILY!

FILE YO THE PRINTER

ot X2 2 R s R X R R N T R T R N X Y S X T E X R AR R N

Cenve
Jope CONTINIIE

CALL OPEN (2,'3LPT!,

Cawy
WRITE (0,3001)
329 FORMAY {//TL2'MDAILYY FYILE COMTENTS!Y/
* Ti¢'ecussaaszaczsssnasssy!/)
Cewve

3808 READ BINARY (1) INS
Cene

B,1ER)
CALL OPEN (4,'DAILY',8,IER)

CALL UNPAC (INS,1,8,IN,1)

Coee
IF (INS(16)) 38i0,302202,3010
Cene
Jeqo CONYINUE
WRITE {(@,;30848) INS(!
324§ FORMAY ’TSQ'ZAZ'
GOT” 3005
Ceew

Joze0 CONTINUE

3)
110

s INS(18); (IN

AR!

14A2)

s (2

!S!clﬂﬁ (INS (D)

IF (NCOMP(IN,$.1¢,IEF,1)) 3924,3232,302!¢
3224 WRITE (@,3@22) (INS(I1),Is1,18)

3822 FORMATY (//75,50A2/)
GOTO 3885

Ceve

38386 WRITE (0,3031)

38314 FORMAY (//T71@Vexe END OF FILE wwe!)

CALL CLOSE (@,IER)
CALL CLOSE (4,IER)

RPLER Y

o R R Y R R R A R R R AR R R R R R I ITI I

GOYO 12e0
Corw
Cesv
¢ END OF BUILD/ANAYSIS PROGRAM
Cwee

cttgiét****tﬁ'ttt'htiti"3'tt'.*ﬁ.*ﬁﬁ.tti.ttﬁi'tttttittt*ttt'iﬁ'titti

Coee
4ged TYPE '

STOP DAILY BUILOD/ANALYSIS COMPLETED

END

14

R
CSP4

¢ve DAILY FILE BUILD/ANALYSIS PROGRAM sew
OPTION (i{aNEW,2sLIST,3sEND) 1

NAME 1042
¢ RUNNING MOTORS

ITEM DESCRIPTION 10BA2
¢ AIR CLEANERS w CASES

QUANTITY =9999 =» 9999
v 20

ITEM PRICE
¢ 2,0

ITEM DESCRIPTION {0A2
¢ GREASE = BARRELS

QUANTITY »9900 «> 9999
¢« 6

ITEM PRICE
v 27,214

ITEM DESCRIPTION (0QA2
¢ TIRES = 858 X {5

QUANTITY #5999 «> 9699
v 50

ITEM PRICE
v 20,24

ITEM DESCRIPTION {0A2
¢ END OF DATA

NAME 1242
¢ VIOLET A, SAWYER

ITEM DESCRIPTION 10A2
¢ TOMAYTO SOUP = CANS

QUANTITY =9999 «> 9999
. 4

ITEM PRICE

ITEM DESCRIPTION {@A2
¢ END OF DATA

B-27

NAME {QA2
¢ DAVES MARKET

ITEM DESCRIPTION 10A2
* POTATOES « BAGS

QUANTITY =G99989 «> 5999
v 25

ITEM PRICE
v 1,10

ITEM DESCRIPYION {0A2
v MAM (RETURNED)

QUANTITY =9999 =>» 9999
v »{2

ITEM PRICE
¢ 3,06

ITEM DESCRIPTION 1042

* END OF DATA

NAME (@8A2

¢ END OF FILE

OPTION (1«NEW,2s_IST,3sEND) 2
OPTION (1sNEw,2s_IST,3=2END) 3

STOP DAILY BUILD/ANALYSIS COMPLETED
R.

B-28

WDAILYY FILE CONTENTS

RUNNING MOTORS

20 AIR CLEANERS = CASES EGB8d
6 GREASE =» BARRELS 16524
50 TIRES = 858 X i3 101200
e TIRES = SPARE §2343
{2 GASOLINE CAPS 1212
{ SCRAPPERS 22

VIOLET A, SAWYER

4 TOMATO SOUP = CANS
12 CORNED BEEF e CANS
4 ROAST BEEF « POUND
2 GINGER ALE = CASES

DAVES MARKET

23 POTATOES = BAGS
100 TOMATOES = LOOSE
S50 CARROTS = BUNCHES
1092 BREAD = LOAF

i@ MILK « QUARTS

49 MILK = HALF GALS
12 HAM (RETURNED)

¢vs END OF FILE wwe

Corew

Coes

o Y L R AR i il T T T D Y O O o e ur
Coee

c FORTRAN COMMERCIAL SUBROUTINE PACKAGE EXAMPLE PROGRAM #5

BEBEE R EENEP IS CEEISESEEEE NS ERESEIEE SIS SIS ETRESSES

(@

o
[3
-3
»

THE PURPOSE OF THIS PROGRAM IS TO CREATE INVOICES FROM

A DAILY TRANSACTICN FILE THAT WAS BUILT CURING THE DAY,
EACH CUSTOMER MUST HAVE A MASTER RECORD IN A FILE CALLED
'MASTERFILE', TRANSACTIONS ARE FOUND IN A FILE

CALLED 'DAILY!' CREATED BY EXAMPLE PROGRAM # 4,

*
L 4
-+

THE PROGRAM READS THE FIRST RECORD FRCM 'DAILY!, COMPARES
IT WITH ENTRIES IN THE MASTER FILF UNTIL IT EITHER

FINDS A MATCK OR THE END OF THE FILE IS REACHED WHICH
INDICATED BY THE NAME FIELD CONTAINING 'END OF FILE !,

+
»
|

IF A MATCHK IS FOUND, THE CUSTOMER NAME,£DDRESS,AND
PREVIOUS BALANCE ARE PRINTED, THE IDAILY' FILE IS

THEN ACCESSED FOR INDIVICUAL TRANSACTIOM ENTRIFS wHICH
ARE PRINTED WITH THEIR DOLLAR AMOUNT AN[QUANTITY T0
THE LIST FILE, THIS CONTINUES UNTIL FITHFER THF NEXT
CUSTOMER NAME RECORD OR 'END OF [AT2 ! FECORD IS
ENCOUNTERED, WHEN THIS OCCLRS THE TOTAL FOR ThFf
INVOICE IS PRINTED AND THE NEXT CUSTOMER IS PROCESSED
OR THE PRCGRAM 18 TERMINATED,

*
. g

IF A MATCH IS NOY FOUND, THE CUSTOMER NAMF IS LCGGED
OUY 70 THE CONSOLE PRINTER AND THE PRCGFAM MOVFES
YHROUGKH THE TRANSACTION FILE 'DAILY' TC THE NREXT
CUSTOMER NAME RECORD OR THE 'END OF D2T# ' RECORD,

OO0 CO00

Chew
R A I T I T I T T T T T T e

}
)
)
}
}
}
}
!
!
)
!
)
)
}
}
}
!
)
)
)
)
)
!
)
)
)
!
)
)
!
}
)
)
!

W WE NS W WO WS NG W N WS WE UL NS W WG WD VO VO NE WD W WO UG Uy WO WD W UE WO U WD WY WS WS WU We W Wp WwH W W W W W

Coaw
Coee

c&ﬁ*t*&ﬁ'*tﬁtitii*iﬁﬁt*&t*vhii&ii*t&ttﬁ*ﬁi**it*éi*tt*iti**tt*titﬁ#t

Conw

c
¢

Cowwn
C

o
Cewe

Cawne

(Y A R F T RS PR R P PR ST R R AT R RN R TR TSR SR R X

THE MASTER FILE *'MASTERFILE' NAS THE FCLLOWING
RECORD FORMAT e

POSITION ITEM DESCRIPTION
BSSEEZ=ES SE323E8EERLiETIRERE
1=20 CUSTOMER NAME
2140 STREET ADDRESS
41-6€C CITY, STATE, ZIP CODNE
6170 BALANCE

TKE LAST RECORD IN THE MASTER FILE CCNTAINS THE
FOLLOWING 'END OF FILE ' IN POSITIONS 1~i2 TO IMDICATE
THE ENp OF THE FILE .

THE TRANSACTION FILE 'DAILY!' RAS ONE OF THE
FOLLOWING RECORD FORMATS te

A) CUSTOMER NAME RECORD

L X L N ¥ X B F K N & N & N K X L X ¥ 3

=22 CUSTOMER NAME
21«30 BLANK
Ji{=32 ZERO

B) CUSTOMER ITEM RECORD

{=20 ITEM DESCRIPTION
21+28 TOTAL AMOUNT
29+32 GUANTITY

C) END OF DATA RECORD

{12 "END OF FILE *®
{3=38 BL ANK
Jie32 ZERO

B-31

} Coea

}] Cuwe

] Craammaa v d bk v bbb e ke kNN Gt d W ARk DB P SRk d ke Rk Wk dkd b
$ Ceve

$1 C DATA SYORAGE AL' OCAYION AREA

} Ceew

A Y R i i I I I mmmImmMmMT I MM T M I I I
} Ceee

) INTEGER CSPER,FILER

} Ceen

! DIMENSION ITOT(5),ISUM(BY,IPRNT(ER)

) CIMENSION INRCD(16),IKEAD(35),IDATA(3E)

§ Conw

) COMMON /TFRM/ IEQOF{6)IECD(H),MASK{14),TPRVB(B), NWBAL(E)
} COMMON /CHLS/ MASTR,ITRAN,INVCE

’ COMMON /RECRD/ IRCRD

J] Cone

) DATA ITEOF/1END OF FILE '/IEOD/'YEND OF DATA 1t/

I} DATA MASK/! ’ s . cC F 1ty

) DATA MASTR,ITRAN,INVCE/®,1,2/1RCRD/00/

} Cwae

! DATA IpRVB/'PREVIOUS BALANCE!/

} DATA NWBAL/INEW BALANCE 1/

} Cwew

§ C INITIALIZE THE CSP ERROR FLAG 'CSPER' TC Z2ERO,

] C iF I7 CHANGES FROM YKIS VALUE DURING PRCGRAM EXCUTION

} C AN ERROR IS INDICATED,

§ Cewnvw

) CSPER®=g

B-32

VS WO WD WD WD NS WS VO W WD WD WD WO N U U U WS WS UR W WP WO NP VE NS WE WS WD WD W WP W WH WS VW U W WP WO W W W W W W

Caww

Coevw

[P Y X . 2 22 A R a2 TR R R R R R R AR A A R RS S AL S A A L)
Cowe :

o LOG OPERATION CESCRIFTION ON THE CONSOLE LISTING DEVICE

Cove

R I R s N R R T R R A A R R AR R R AL RS L AR LRl R
Cuewnw

TYPE 1
TYPE ' aea INVOICE PROGRAM www!
TYPE V¥
Coww
R A s s R R R R R R R R SRR R R
Cewwn
c OPEN AND INITIALIZE ALL FILES AND DEVICES
Coww

ctt*ttﬁtﬁtﬁbi*itﬁtit*iﬁ*tétt*titt**ttb***i**t&i**t**tw****i**t****
Coww

c OPEN THE LINE PRINTER AS THE INVOICE FILE
Cawew
CALL OPEN (INVCE,"SLPT",B,FILER)
Cowe
IF (FILER,EQ.1) GOTYO § } CHECK IF OPFN SUCCESSFUL
YYPE 'OPEN ERROR =!',FILER } NO==TERMINATE PROCESSING
STOP INVOICE ERROR
5 CONTINUE
Cowe
c OPEN THE MASTER FILE 'MASTERFILE! wITK 72 CHAR, RECORDS
Cone
CALL OPEN (MASTR,"MASTERFILE",@,FILER,77)
Coaew
IF (FILER,EQ.,1) GOTO 18 7 CHECK IF OPEN SUCCESSFUL
YYPE ' OPEN ERROR =!,FILER] NO~=TERMINATE PROCESSING
STOP 'MASTERFILE' ERROR
Coww
c OPEN THE TRANSACTION FILE 'DAILY! WITKH 32 CHAR, RECORDS
Cewnw
10 CALL OPEN (ITRAN,'DAILY!',B,FILER,32)
Coww
IF (FILER,EQ,1) GCTO 15 } CHECK IF OPEN SUCCESSFLL
Cowew
TYPE ' OPEN ERROR =!',FILER } NO==TERMINATE PROCESSING
STOP TRANSACTION FILE ERROR
Coeun
15 CONTINUE
CALL TIME (ITIME,TIMER) } GET THE TIME OF DAY
cALL DATE (IDATE,TIMER) 7 GET TODAY'S DATE

B-33

)
)
)
’
)
}
)
)
}
)
H
!
!
}
)
!
}
)
}
)
)
)
)
)
!
)
}
)
)
)
H
)
}
}
!
)
!
)
)
}
,.
}
’
’
)
}
}
)

Cuse
Cown

(Y2333 122223 22222222 3 2 2 222 XS SR 22 S22 SRS R R R XA RZ R SR 2R 22 X 2

Cowe

¢

Caww

GET CUSTOMER NAME RECORD FROM TRANSACTICN FILF

Cooodwedtdddpadd btk d b r bbbk N d bW kR kb ke bk kb kbR ek e

Coww

Cownw
25

Coewe
Coew
Cuvw
Coeow
30

Cownw
Cwne
Cowe

3t

Cawe
c

Coww
Cuewe
Cewe
Cowe
Cewnw

Cewe

33

Ceww
Conw

Cewe

NRCRDs=sg
NTRANED

CALL RDRW (ITRAN,NRCRC,INRCD,{,LFLER)
IF (LFLER,EQ.,1) GOCYO 38 } RECORLD READ OKAY ?
IF (LFLER.EQ.9) GOTO 100¢ } NO=-=EMD OF FILE 1!!

TYPE ' TRANSACTION FILE ERROR =!',LFLEF 3 EKRQR=-«PRCCESS IT
GOTO0 ¢ggee

IF (INRCD(16),NE,2) GOTO g0 } MUST EE CUSTOMER ITEM RECHRD

IF (NCoMPCINRCD,1,6,1EQ0F,1),NE,@) GOTC 31 # END OF DATA RECCFPD

NTRANE=Y 3 INDICATE END OF DATA
IF (NTRAN,EG.@) GOTO 34

PUT QUY NEW BALANCE ON INVOICE AND UPCATE FILE

CALL FILL (IPRNT,Y,82,')

CALL UNPAC (NWBAL,1,6,IPRNT,23)

CALL GMOVE (MASK,1,14,IPRNT,47)

CALL DECAY (ISUM,$,12,CSPER)

CALL EDIT (ISuUM,1,18,IPRANT,47,62)

WRITE (INVCE,33) IPRNT
FORMAT (/1X,8241/7)

CALL PACK (ISUM,1,18,IHEAD,31)
CALL WRTRW (MASTR,INAME,IHEAD,{,FILER)

IF (NTR‘N.EG.“I) GOTO 228

B-34

Coww .
o T Y R T R R R R R Y Y 222 A2 RE)

Caen
c LOOK UP CUSTOMER NAME IN MASTER FILE 'MASTERFILE!
Cewe
N R A A R R R R R I R T R R R R R R R R AR R 22322222322)
Cewe
34 INAME=p
35 CALL RDRW (MASTR,INAME,IHEAD,§,FILER)
Cowwe
I¥ (FILER,EQ,1) GOTO 40 } CRECK RECORD READ 0OKAY
YYPE ' MASTER FILE READ ERROR =!,FILEFR
GoTo Seeg

IF (MCOMP(IHEAD,1,1@,INRCD,1),EQ,@) GOTO 5@ JLEGAL CUSTOMER ?
IF (NCOMP(¢IHEAD,1,6,IEQF,1),NE,Q) GOTC 45 3 MNO=END OF FILE?

TYPE 'NO CUSTOMER NAME MATCH !
GOTO Sp2@

NO MATCH FOUND YET « SO KEEP LOOKING THFOUGH THE FILE

INAHE®INAME®]
GOTO 35

!
}
}
)
}
}
)
)
)
}
)
}
!
}
!
)
!
)
)
H
)
)
)
)
}

Couw
o O g e 2 2 2 2 2 2R R R A X X X R TR A2 R R 2SR A X2 2 8 2 2
Cowww
c LEGAL CUSTOMER NAME FOUND IN TRANSACTYOMN FILE
Crwe
(e 2322222222222 222222 2 2 2 R 2 X X X Ry R R A R R X I X R XS S R
Cowwnw
52 CONTINUE
wRITE (INVCE,S55) (IMEADC(I),1s1,30)
55 FCRMAT (//2X%,1@0A2/3X,10A2/4X,18A2//)
Coee
WRITE (INVCE,56)
L) FORMAY CT17,'GTY',T38, 'NAME!,TS51AMT!/)
Cown
c UNPACK THE PREVIOUS BALANCE FROM A2 FORMAT TO DECTMAL
Cewnw
CALL UNPAC (INEAD,31,35,1SuUM,!)
Cawew
o FILL THE PRINT AREA WITH SPACES
Coww
CALL FILL CIPRNT,1,8g,' ')
Ceaww
c MOVE 'pREVIOUS BALANCE ' PACKED IN AZ FORMAT
c 76 THE PRINT AREA BUFFER TIPRNT!
Cewnw
CALL UNPAC (IPRVB,1,8,IPRNT,23)
Coww
C MOVE EDIT MASK TO PRINT AREA
Cowne
CALL GMOVE (MASK,1,14,IPRNTY,47)
Cueve
C EDIT INn THE PREVIOUS BALANCE VALUE
Cowe
CALL EDIT (ISUM,1,12,IPRNT,47,60)
Cuww
C PRINY THE BUFFER FULL TO INVCICE OUTPUTY DEVICE
Coww .
WRITE (INVCE,72) IPRNT
7@ FORMAT (iX,88A1)
Coww
cALL A{DEC (ISUM,1,12,CSPER)
Coene
NRCRCaNRCRD 4!
60TO 25

}
!
!
)
)
)
)
)
}
/
)
}
)
!
)
)
)
)
)
}
}
)
}
/
}
!
)
i
!
}
!
)
}
}
}
}
}
!
)
!
!
}
}
)

S UG VNG UE U WP Ve WP VP WO D VG WO VD NP WD VO WS WO VWO WH WH W WO WD WO WO WO WD WO VO W WO W W U W WH W W WH We W W WE WH WnWE W W W W e Ty ww e

Cohww
Cowe
c;*gtiitﬁﬁggggﬁgQ*é&é#ttt*tiﬁ#titttititttftitt**t*t*ti*iti*i**é*éé
Cene

c CUSTOMER ITEM RECORD

Cwae

AT e e T S A SRR R SR AR 2 RS2 A2 A2 A AR AR AR SRR A AR N
Cowwn

ieo CONTINUE
catL FILL (IPRNT,1,8@,' *)

Cowe

CALL UNPAC (INRCD,1,16,1DATA,Y)
Cenn

CALL GMOVE (IDATA,§,20+IPRNT,23)
Cawne

CALL GMOVE (MASK,1,14,IPRNT,47)
Cwww

CALL EDIT (IDATA,21,28,IPRNT,47,63)
Cowe

CALL A{DEC (IDATA,21,28,CSPER)
Cude

CALL GADD (IDATA,21,28,1ISUM,$,12,CSPEF)
Coww

CALL GMOVE (MASK,1,4,IPRNT,13)

CALL OMOVE (MASK,!{,3,IPRNT,17)
Cwew

CaLL EDIT (IDATA,29,32,IPRNT,13,18)
Cone

WRITE C(INVCE,728) IPRNT
Coenw

NRCRD=NRCRD &1

NTRANSNTRANS

G0TO 25
Crwuvw
Coww

o grarepapaparprararararare et FX I R R T I TR RS FR R R AR A S AR A S22 2 AS AR S S R R A AR LA AL A
Ceww

c END OF THE DAILY FILE UPDAYE PROGRAM

Cowe

AT s sy 2 2 2 2 RS 2 RS A R A2 R 2 A2 2 A A A S AR R0
Coaww

200 CONTINUE
TYYPE ' END OF DAILY FILE!

TYPE ! !
GOTO Sg@e
Cuwe
I A a2 s 2 R S R X2 A R R R AR XS S AR 22 A0 A 000 B
Cowe
c ERROR WHILE PROCESSING THE DAILY OR MASTERFILE
Cown

cttttiﬁii*iQtit*tttttti*i*ttﬂt*itiittti*iﬁi*iti&*i**tt*ii*tt**i*wi
Cone
{1262 TYPE + END OF FILEY
YYPE ' !
90060 STOP INVOICE PROGRAM EXECUTICN COMPLETED
END

B-37

PROGRAM #5 - CONSOLE LOG

R
CePs

«¢¢ INVOICE PROCRAM we
END OF DAILY FILE

$§TOP INVOICE PROGRAM
R

PROGRAM #5 - OUTPUT REPORT

RUNNING MOTCRS
1@ WATER STYREET
PLYMOUTH, RCCK 22296

oTY NAME AMT

PREVIOUS BALANCE $262,68
pd2e ATR CLEANERS = CASES $24p,00
0ees GREASE =~ BARRELS $155,26
pese TIRES =~ 852 X 15 si,e12,09
eaeg2 TIRES = SPARE $123,46
eo12 GASCLINE CAPS $12.12
pegt SCRAPPERS $,22

NEW BALANCE 81,773,774

VIOLETY A, SANYER
93 EAST MAIN 3T,
HUDSON, MASS 21749

GTY NAME

PREVIOUS BALANCE
geod TOMATO S0UP e CANS
ea12 CORNED BEEF « CANS
eeed ROAST BEEF « POUND
eeege2 GINGER ALE = CASES

NEW BALANCE

DAVES MARKET
1997 WASHINGYON ST,
NEWTOWN, MASS 22158

oTY NAME AMT

PREVIOUS BALANCE $78,19
eeas POTATCES = BAGS $27,.%0
eleg TOMATOES =« LOCSE $24,.00
cese CARROTS = BUNCHES $11,00
e199 BREAD e LOAF $45,02
ecie MILK » GUARTS $4,50
gedc MILK = HALF GALS s$32,.00
eo12 HAM (RETURNED) $36,72CR

NEW BALANCE 1185,47

APPENLIX C

STATEMENT FURMAT REFERENCE TABLE

CALL A1A3(ICON.IFRST,ILST, CVTD,MFRST,NTBL)
Catl ALDEC(ICION,IFRST,ILST,NINV)

CALL A1DA(1COM, IFRST,ILST,DNORD,)NCHK)

CALL A3A1(ICON,IFRSTHILST,MCVTD,MFRST,NTEL)
CALL JECALLICUN,IFRST,ILST,NINV)

CALL OPACS ({CUN,XFRST,ILST,MCVTD,MFRST)
CALL DUNPS(ICUN,IFRST,ILST,mCVYTD,MFRST)
CALL D#A00(DHORDY,Dw0R02, NCHK)

Cail WAl (nadspL MCVTD)MFKST,MLST)

DHCHP (OwIm 1, OW0ORD2)

canL 0a0IV{IvURDY,DWORD2,UWORD3,NCHK)

Cabt U~FL(DHURDIDPVAL)

CALL 04MP Y (u~0ORD1,0A0RDE,NCHK)

Cabl DwsUr(D4sURDL,Ow0RD2,NCHK)

CaLue EDIT(ICUN,IFRST,ILST,MASK)NFRST,MLST)
Call. FILL(ICUN,IFRST,ILST,NFILL)

CALL FLUA(DAPVAR,DWORD)
BET{ICON,) LFRST, ILST,DECP)

JOYAP (IO, JIFAST pILST yMTWU, MFRST,MLST)

CALL KEY3O(ICUN,IFRST,ILST)

NCOGP (I0NE,, IFRST,, ILSTyMTWU,MFRST)

Cabi NSIGW(IUNE,IFRST,NCOLE,NRES)

CALL MZUNe (IU~E,IFRST,NZN,NRES)

CabLi. PACKX(ICO VY, IFKST,ILST,MCVTD,FRST)

CALL PRIWNT(ICuUN,IFRST,ILST,NCHK)

CaLl PUT(ICON,IFRST,ILST,uPVAL,HADJ,TRUNC)
caLl QAUD(laDY,IFRST,IL3T,MSUM,MFRST,MLST,NGFL)

DATA FOR®AT
STATEMENT FIRMAT BEFORE

Al
Al
Al
AJ
01
Dt
D4
DwD
DwD
DWD
DwD
DWD
DwD
DwD
Al
ANY
DFL
Al
Dt
ANY
Al
D1
Al
Al
Al
DFL
Di

CCALL UDIV(IDIVR,IFRST,ILST,MDIVD,MFRSTMLST,NZER)

CaLL WMAVE (LIONE,IFRST,ILST,MTw0,MFRST)

D1
ANY

cALL UHPY(INPYR,IFRST'ILST;MPRDT,MFRST,MLST’NCHK)

CALL WREADCLCUN,IFRST,ILST,NCHK)

CALL GWSURB(IYUm,IFRST,ILST,MOIF,MFRST,MLST,NCHK])
CALL RJUST(LCUN, IFR3T,ILST)

CALL, TYPER(CICIN,IFRST,ILST)

CALL UNPAC(ICUN, IFRST,ILST,MCVTD,MFRST)

WHOUE (nHMOLE, DuUBLE)

DFL s DuUBLz PRECISION FLOATING POINT
UND 3 DUJBLE ~0ORD SIGNEDL INTEGER

C-1

D1
ANY
D1
Al
Al
A2
DFL

AFTER

A3
ni
DwO
Al
Al
04
Di
OWD
Al
OwD
DwD
DFL
DwWD
DwD
Al
ANY
DwWD
- DFL
01
Al
Al
D1
Aj
A2
Al
Al
D1

