CONTROL DATA

1604/1604-A COMPUTER

*

CO-OP MONITOR/PROGRAMMER'S GUIDE

CO-OP MONITOR/PROGRAMMER'S GUIDE

CONTROL DATA CORPORATION
8100 34th Avenue South

Minneapolis 20, Minnesota

ACKNOWLEDGMENT

Specifications and implementation of the CO-OP Monitor was a joint project
between the CO-OP Programming Committee and Control Data Corporation

Applications.

CONTENTS

ACKNOWLEDGMENT

INTRODUCTION

Job Processing

Debugging Aids

Input/Output Control

Interrupt Control

CHAPTER 1

CHAPTER 2

CO-OP MONITOR DESCRIPTION

INPUT/OUTPUT EQUIPMENT ASSIGNMENT
PROGRAM STORAGE ASSIGNMENT

JOB PROCESSING

MONITOR OPERATION
Begin Job Card
MCS Card
Input/Output Assignment
I/0O Field Format
Recovery Dump Keys
SUBSYSTEM CONTROL CARDS
FORTRAN-63 Control Card
COBOL Control Card
CODAP-1 Control Card
EXECUTE Card
EXECUTER Control Card
LOAD Card
DEFINE Card
BINARY Card
REWIND Card

iii

ix

ix

ix

2-1
2-2
2-3
2-4
2-6
2-7
2-8
2-8
2-10
2-11
2-12
2-13
2~-13
2-14
2-14
2-15

CHAPTER 3

LOADER CONTROL CARDS

RELOCOM Card
LIBRARY Card

TERMINATION CARDS

Job Deck

Monitor Run

JOB DECK STRUCTURES

FORTRAN-63
Compile Only
Execution Only
Compilation and Execution (Load-and-Go)
Partial Compilation and Execution
CODAP-1
Compile Only
Execute Only
Compile and Execute (Load-and-Go)
Multiple Compilations
COBOL
Combining FORTRAN-63 and CODAP-1
Using DEFINE Card
Using RELOCOM Card
Using LIBRARY Card

INPUT/OUTPUT SUBROUTINES

READ*/WRITE*

Recording Modes
Logical Unit
Function Codes
Read or Write Only (fc=1)
Check Only (fc=2)
Read or Write with Checking (fc=3)
Sense Equipment Ready (fc=4)

Special Purpose Function Codes (fc=5,6,7,10 or 11)

vi

2-15
2-16
2-16
2-16
2-16
2-16
2-17
2-17
2-17
2-18
2-21
2-23
2-25
2-25
2-26
2-27
2-28
2-29
2-31
2-32
2-33
2-35

CHAPTER IV

CHAPTER V

CHAPTER VI

CHAPTER VI

Interrupt
Error Codes
Operator Messages
GETCH*
CHKSTD*

INTERRUPT PROCESSING

REMOVE*
SELECT*
MODIRET*
REMOVE*

OPERATOR-PROGRAM COMMUNICATION

FLAG SETTING (SENSE SWITCHES)
FLAG TESTING
OPERATOR MESSAGES
Message Format
Interrupt Subroutine Format
Normal Return

Alternate Return
DIAGNOSTICS

LOADER ERRORS
MEMORY MAP
SNAPSHOT DUMPS
Restriction on Snapshot Dump Locations
Snapshot Dump Formats
Snap Control Card
SNAP Cards in Job Decks
COMMON Snapshot Dumps
SNAPS in Overlays

OVERLAYS AND SEGMENTS

CALLING, OVERLAYS AND SEGMENTS

3-7
3-7
3-9
3-10
3-11

4-1

4-1
4-1

5-2
5-2
5-3
5-4

6-1
6-3
6-4
6-4
6-5
6-5
6-9
6-9
6-9

7-1

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

INDEX

Parameter Transmission (FORTRAN)
Rover
Parameter Transmission (CODAP-1)
RULES FOR OVERLAYS AND SEGMENTS
OVERLAY STORAGE ASSIGNMENT
CONTROL CARDS
OVERLAY JOB DECK STRUCTURES
Load-and-Go Job Decks
Generating Overlay Tape for Later Execution

Overlay Error Diagnostics
EQUIPMENT ASSIGNMENT (AET-RHT)
OPERATOR MESSAGES
PART I, BINARY LOADER
PART II, BINARY CARD FORMAT
PATCHING OBJECT PROGRAMS
USER ENTRY POINTS IN RESIDENT MONITOR
CLOCK CONTROL
LIBRARY TAPE LAYOUT
RESERVED ENTRY POINT LIST
BCD CODES

TYPEWRITER CODES

7-4
7-4
7-4
7-5
7-6
7-7
7-7
7-8
7-13
7-13

Index-1

INTRODUCTION

JOB
PROCESSING

DEBUGGING
AIDS

The CO-OP Monitor allows more efficient use of the Control Data®1604/1604-A
computer by providing such features as job processing, input/output control,
interrupt control and debugging aids. In addition, certain routines within the
monitor may be used to accomplish specific programming tasks.

Any programming job to be run under the monitor may consist of a combination
of assemblies, compilations, and executions. At the beginning of each job the
monitor assigns the input/output equipment required by the job, and records
accounting information such as the accounting number and programmer's name
or initials. The monitor controls the compilation, assembly and execution of all
programs, subprograms and subroutines for each job. The loading of object
programs is handled by the monitor loader, which controls storage address

assignments and the loading and linking of required subprograms and subroutines.

As each job is completed, the monitor computes and outputs the elapsed time.
Provision is made for operator intervention if necessary. If the program, in-
cluding required data storage, is too large for memory, the programmer may
subdivide it into overlays and segments.

Debugging aids provided by the monitor include:

Error diagnostics which are printed out on the standard output unit when a
program is compiled or executed.

SNAP control cards that designate the contents of control and index regis-
ters and specified portions of storage which are to be printed at
specified times during execution of a program.

A memory map which can be requested when a program is loaded. This
indicates the storage assignments made for the main program and
associated subprograms, subroutines and data storage (common)
areas.

If an error condition is sensed by the monitor (such as a request for a non-
existent input /output device) the monitor terminates the entire job, and provides
a limited or extensive dump of control registers and memory as requested by
the programmer.

INPUT/OUTPUT
CONTROL

INTERRUPT
CONTROL

Input /output is accomplished by the monitor subroutine READ* /WRITE*. This
routine performs all necessary data conversion, and calls the equipment driver
routines necessary to activate and transfer data to or from an external device
(such as a tape drive) . The programmer may assign any arbitrary number
from 1 to 49 to the input and output units used in the program. The unit is al-
ways referenced by this logical unit number, which has no relation to the physi-
cal unit assigned by the monitor. The assignment of physical units to the pro-
grammer-assigned logical unit numbers is done by the monitor at the beginning
of each job. Magnetic tapes are normally assigned unless the programmer
specifies differently in his program. READ*/WRITE* is used by both the moni-
tor and the programming systems controlled by the monitor such as FORTRAN
and COBOL.

Interrupt processing on the 1604 is simplified by the monitor subroutines
SELECT* and REMOVE*. The machine language programmer uses calling
sequences to these subroutines to select or remove internal and external inter-
rupts. Compilers such as FORTRAN and COBOL also use these routines for
interrupt processing.

CO-OP MONITOR DESCRIPTION 1

The standard CO-OP Monitor consists of a main control system, called a job
sequencer, several subordinate control systems, anda library of various assem-
blers and compilers such as CODAP-1, FORTRAN and COBOL. Also included
in the library is a comprehensive set of function subroutines. All of these
control systems, compilers and subroutines are normally contained on one
‘master tape. More than one system tape, however, can be used. Additional
system tapes called DEFINE tapes could contain additional compilers and sub-
systems. Included on the master system tape are the input/output equipment
driver routinest used for all input/output operations, whether under monitor

or programmer control.

The job sequencer initiates and terminates each job, providing automatic
sequencing from one job to the next. Once a job is initiated, control is turned
over to a subordinate control system. When the job is terminated control returns
to the job sequencer. The programmer specifies the subordinate control system
on a control card; the choice of system is dependent on the task to be performed.
The CO-OP subordinate control system is used for compiling and executing
FORTRAN, COBOL and CODAP-1 source programs. A sort-merge operation
would use SORT as a subordinate control system, and execution of overlay
programs would require the LOADMAIN system. Another subsystem, LIBEDIT,
is used to generate and edit CO-OP Monitor system tapes. Additional subor-
dinate control systems may be added to the CO-OP Monitor system. The
reference manual for a given programming language or system will specify the
required subordinate control system and associated control cards. A hierarchy
of two of the control systems is shown in figure 1.

INPUT/OUTPUT

EQUIPMENT

ASSIGNMENT Input/output equipments are referenced by logical unit numbers 0 through 63.
Units 1 through 49 are reserved for programmer use; the remainder are re-
served for monitor use. Equipments reserved for the monitor are called
standard units and provide the following functions:

Logical Unit

Name Number Functions
Systems Unit 0 Contains the monitor library (master)
tape.

TA driver routine (or driver) is a monitor subroutine that controls a specific type of peripheral
equipment. A separate driver is included for each type of equipment at an installation.

Logical Unit
Name Number Functions

Standard Input 50 All control cards and all source and
object programs are read from this
unit unless otherwise indicated on a
control card. Data may also be read
from this unit.

Standard Output 51 All output under monitor control, such
as printouts, listings, dumps and diag-
nostics, is to the standard output unit.

Standard Punch 52 All punched card output from the monitor
is to this unit.

Comment from Operator 53 Used by the operator for communicating
with the monitor.

Comment to Operator 54 Used for messages from monitor to
operator.

Accounting Log 55 Accounting information for each job is
output on this unit.

Standard Scratch Units 56,57 Used by the compilers and assemblers

(2) for intermediate results, and for load-

and-go operations. 57 is used for addi-
tional temporary storage during assembly
or compilation; 56 is normally used for
load-and-go tapes. These tapes may be
used by the programmer when not re-
quired by a compiler or assembler.

Programmer assigned units are assumed to be low density magnetic tape units |
unless otherwise specified on the MCS control card (Chapter 2). The MCS

control card is used for assigning all programmer logical units. The standard

unit assignments made by each installation are entered in an Available Equip-

ment Table (AET) (Appendix A).

If an installation has at least six magnetic tape units and facilities for off-line
card-to-tape and tape-to-printer operations, the standard input, output and
punch units could be assigned to magnetic tape units for more efficient use of
the system. Otherwise, these three units would be assigned as a card reader,

a line printer and a card punch. The accounting log is normally output to the
paper tape punch in the 1604 console, and the comments to and from the operator
units are usually assigned to the console typewriter. The standard scratch

units are always magnetic tape units, but are not assigned unless specified on
the MCS control card. All other standard units are assigned automatically,

and do not require entries on the MCS card.

1-2

Monitor
Job Sequencer

l

JLoADMAIN,. ..

LOADMAIN
Subordinate
Control System

7
2COOP, ..

co-opP)
Subordinate
Control System

MCS CONTROL CARDS

7 7 7 7 7
oMAIN, ... GEXECUTE,... 4 CODAPI SFTN, .. 4COBOL, ..
P?;:::’:‘ Program CODAPI FORTRAN coBoL
. Execution Assembler Compiler Compiler
Execution
Figure 1. Levels of Control with CO-OP Monitor

PROGRAM STORAGE

SUBORDINATE
CONTROL CARD

ASSIGNMENT When object programs are loaded, the monitor loader routine insures that they
are assigned free areas of storage. The memory map for an initial (bootstrap)
monitor load is shown below. Addresses when shown are approximate and only
indicate the relative magnitudes of the various assigned areas.

7T

Running Hardware

Table

Standard I/O Drivers

14000

Unassigned

Monitor

Resident

and

Job Sequencer

00000

When the control cards of a job deck are read and interpreted, internal storage
assignment looks like this:

777
Running Hardware Table

I/O Drivers

Subordinate
Control System

Unassigned

Loader and
Library Directory
3000

Resident

00000

The amount of space assigned to the I/O drivers depends on the number and
types of drivers required for each job. The subordinate control system is
loaded in the upper part of storage immediately below the I/O drivers. The
resident portion of monitor is that part of the job sequence that is required
for job processing. The remainder of the area originally assigned the job
sequencer is released for program storage.

When an object program is loaded by the monitor loader routine, it is assigned
the storage area immediately below the subordinate control system. An object
program usually consists of either one single program, or a set of subprograms
and subroutines, depending on the requirements of the programmer.

Large programs may be divided into subprograms. These subprograms and
required library subroutines are loaded into consecutive storage blocks from
top to bottom. Any required data storage is also reserved at this time.

The monitor provides two kinds of data storage, numbered common and
labeled common. Labeled common may be pre-set with data when a program
is loaded; numbered common cannot. Numbered common storage area is
assigned to the lower portion of available memory (next to resident) working
up. Labeled common is included in the storage area assigned to the sub-
program defining the labeled common area. Labeled and numbered common
storage areas are defined by statements in FORTRAN, COBOL, CODAP-1

or other source program languages.

1-4

The following memory layout is the result of loading a program that consists of
two subprograms controlled by and calling the CO-OP subordinate control system.

77777

Control System

Subprogram 1

Labeled Common

Library Subroutines |
For Subprogram 1
|
|
|

Subprogram 2

Labeled Common That Is Not
Also In Subprogram 1

Library Subroutines For Subprogram 2
That Are Not Called by Subprogram 1

Uﬁassigﬁéé ’Storage »

Numbered Common In Subprogram 2
That Is Not Also In Subprogram 1

Numbered Common
Subprogram 1

Loader and
Library Directory
3000

0000

If, however, all required number and labeled common areas were defined in
subprogram 1, and the library subroutines were called from subprogram 1, the
memory layout would appear as follows:

I/iél'D'rivers and Tables)

CO-0OP
Control System

Subprogram 1

Labeled Common

Library Subroutines

Subprogram 2

Unassig‘ned

SERRHREHR

Numbered Common

Loader and
Library Directory

4000

. Resident

0000

A brief description of the loader routine is given in Appendix C.

The amount of memory available for program storage may be increased by
using the subsystem control card EXECUTER or the loader control card
RELOCOM which are described in Chapter 2.

JOB PROCESSING 2

MONITOR
OPERATION

To compile and execute programs under the monitor, a source program is
punched on cards; and with the addition of the proper control cards, it is sub-
mitted as a job for compilation and execution under monitor control. This
chapter describes the sequence of events during job processing, as well as the

- control cards and job deck structure for performing various tasks under

monitor control.

After mounting the master library tape on the systems unit (0), the operator
presses the auto-load button on the 1604 console (or simulates this action);
this causes a bootstrap routine from the library tape to be loaded and executed.
The bootstrap routine loads the job sequencer and resident portion of the
monitor and the monitor enters an idling loop; a series of tones indicates it is
idling.

The operator then types a job sequencing message which initiates job processing.
These messages are listed in appendix B.

The monitor job sequencer reads the first two cards of the job deck from the
standard input unit. The first two cards in a job deck are control cards which
provide accounting information, identification of input/output units, time limits,
recovery information, and name the subordinate control system to be used.
After the control cards have been interpreted, the subordinate control system
and required input/output drivers are loaded, and control is given to the sub-
ordinate control system.

The subordinate control system reads one or more control cards from the job
deck on the standard input unit, and, if required, calls in an assembler,
compiler, or special routine (specified on the subordinate system control card)
and passes control to this routine. The subordinate control system maintains
over-all control of the job until it is terminated.

The job runs to completion or terminates if certain major errors are encountered.
A description of the control cards for the COOP and LOADMAIN subordinate
control systems are contained in this chapter and in Chapter 7. A manual
supplement+ describes the LIBEDIT system for generating and editing systems
tapes.

T Control Data pub. #PSB AE04

2-]

MONITOR

CONTROL CARDS A programmer sets up a deck for compilation or execution with a Master

BEGIN JOB CARD

Control card, a subsystem control card, and various combinations of END,
FINIS, EXECUTE and BINARY control cards. The control card arrange-
ment for compilation and execution of a FORTRAN-63 program is shown
below. The Master Control (MCS) card is followed by a subsystem control
card, (in this case FORTRAN-63). Next is the source program deck with
two FORTRAN END cards. The FINIS and EXECUTE card follow. A data
deck may follow the EXECUTE card.

In addition, a BEGIN JOB card precedes the MCS card in a job deck and an
End-of-File (EOF) card terminates the job. These cards are normally
supplied by the computer operator.

r; EXECUTE, 3,56.

(FINIS
(END
(END

PROGRAM F63X

(; FTN,L,A,E.

5 COOP, 376-00, HAB, $/15/25,3,1000,5,TEST |

3 BEGIN JOB 012 11 2 63

Typical Deck Structure, Compile and Execute

Whenever digits are stacked one above the other in a control card description
or example, such as g, they are to be overpunched in the specified card
column (usually column 1).

"BEGIN JOB xx mm dd yy

The BEGIN JOB card contains the number that is used to identify jobs in a
series of job decks, and the date the job was assigned (optional).

Field 1 7,9 in column 1, BEGIN JOB starts in column 2, and the field
ends in column 10.

Field 2 XxX, is a three-character alphanumeric number provided by
the operator for job identification, starting in column 12.

MCS CARD

Field 3

mm dd yy, which is optional, consistsofa six-digit code indicating
the date the job number was assigned. A two-digit code for the
month, mm, is punched in columns 17 and 18; a two-digit code for
the date, dd, in columns 20 and 21, and a two-digit code for the
year in columns 23 and 24.

gCOOP,A,I,IO,TL,LL,R,C.

The MCS card provides accounting information, establishes time and output

" line limits for the job, provides I/O equipment assignment information and

specifies recovery procedures in case of abnormal (error) termination.

Field 1
(required)

Field 2
(required)

Field 3
(required)

Field 4
(optional)

Field 5
(optional)

Field 6
(optional)

Field 7
(optional)

Field 8
(optional)

7,9 punch in column 1, followed by name of the required subor-
dinate control system starting in column 2. (COOP indicates
COOP subordinate control system.) The name is a maximum of
eight characters. '

Accounting number used by monitor accounting log.

Programmer's name or initials.

Input/output (I/0) assignment field. (Format is described below.)

Time limit (TL) estimate in minutes. If time allotted is not
sufficient, the job is terminated at the end of the specified time,
and a recovery dump indicated in field 7 is printed on the standard
output unit. If this field is omitted, a standard time limit deter-
mined at each installation is set by the monitor.

Line limit (LL) estimate indicates the number of lines of output
to be written on the standard output unit during the job. This
number includes the amount required for assembly or compi-
lation, as well as programmed output. If this field is omitted, a
standard line limit determined at each installation is set by the
monitor.

Recovery key (R) indicates one of the six recovery dump procedures
listed under Recovery Dump Keys. A zero key is implied when this
field is omitted.

Comments (C) or identification. Printed on standard output unit
but not interpreted by the monitor.

INPUT/OUTPUT
ASSIGNMENT

A comma terminates each field except the last, which is terminated by a period.
The card is free field after column 2. Up to seven continuation cards may be
used if necessary; each card must have a 7,9 punch in column 1, and a

Hollerith character in column 2. Fields may be broken at any point and
continued on the next card. The period indicates the end of the last field used.
Imbedded blanks are allowed after column 2 on any card.

In the MCS card example
BCOOP,54321—00,ABC,I/1/O/HD02/S/lS/ZS,10,1000,1,TEST.

COOP is the subordinate control system, 54321-00 is the accounting number
and ABC are the programmer's initials.

The I/0O assignment field indicates that logical unit 1 is a low density input
tape unit, logical unit 2 is a high density output tape unit, and the job is to be
assigned two scratch tape units. The time limit for the job is 10 minutes, the
line limit is 1000 lines, and the recovery option is 1.

If optional fields are omitted, the terminating comma for each omitted field
must be included. The last field used is terminated by a period.

An example of an MCS card with omitted fields is
1COOP,54321-00,ABC, , , , ,TEST.

In this example the I/0 field, time limit, line limit and recovery key fields are
omitted. If the comments field had also been omitted, the card would be punched

gcoop,5432 1-00,ABC.

This field assigns programmer logical units 1-49 and the standard scratch
units 66 and 57 to each job. This field must indicate all programmer units
required for the job, including scratch units required for compilations and
load-and-go operations.

Standard units, other than 56 and 57, need not be defined, as they are always
assigned to every job.

Four subfields within the I/O assignment field are as follows:

Subfield

Input (I) Unit numbers immediately following I in the I/O list are
assigned as input-only magnetic tape units. Any attempt
to use them for output (unless they also appear in the O

Subfield

Input (I) (cont) subfield) will result in immediate job termination, using the
specified recovery dump. After the job is terminated, all
assigned input-only tape units are rewound with interlock.

Output (O) Unit numbers immediately following O in the I/O list are
assigned as output-only magnetic tape units. Any attempt
to use them for input (unless they also appear in the I
subfield) will result in immediate job termination. After
the job is terminated, all assigned output-only units are
rewound with interlock.

Scratch (8) Unit numbers immediately following S in the /O list are
assigned as scratch units. A scratch tape unit is defined
as one that can be used for either input or output. After
job termination, all assigned scratch units are rewound
to the load point.

Equivalence (E) The equivalence subfield allows units to be equated to
other units in the I/0 list, or to standard units. The unit
numbers are separated by an = sign; the number on the
right must be a standard unit or have been defined in
another subfield; the number on the left cannot appear
elsewhere in the I/0O list.

All programmer units are assigned as low density magnetic tape units unless
the unit number is preceded by one of the prefixes listed below. These prefixes
can be used in the I, O or S subfield unless otherwise restricted.

Prefix Definition
T Typewriter (O field only)
PT Paper Tape Reader or Punch (I or O field)
CD Card Reader (I field only)
PR Printer (O field only)
MT Low density magnetic tape unit
HD High density magnetic tape unit
BY Bypass (input/output statements using a unit prefixed by
BY on the MCS card will be bypassed).

The programmer can assign a programmer unit (1-49) to a particular channel
by prefixing a unit number with the channel number in the I, O and S subfields.
Either the even or odd channel of a channel pair may be designated for any
subfield. Unit numbers less than 10 must be written as 01, 02, etc, if a channel
prefix is used. The leading zero is not necessary, however, if an equipment
prefix immediately precedes the unit number. A unit number can be prefixed by
both channel and equipment designators. For example, the 1/0 list entry 3HD3
indicates that programmer unit 3 is to be assigned as a high density magnetic
tape unit on channel pair 3 and 4.

I/O FIELD
FORMAT

The format of the 1/0 field list requires that each element in the list, except
the last, be followed by a slash (/). The last element is followed by the
terminating comma (or period) for the I/0O field. The I subfield is first,
followed by the O, S and E subfields. For example in the I/O field

,1/1/2/0/3/4/S/5/56/517.

units 1 and 2 are defined as input/output units, 3 and 4 are output-only units,
5, 56 and 57 are scratch units. In the I/O list

,I/CD2/3HD3/0/PR4/S/10/56/57/E/47=50/48=51,

unit 2 is assigned as a card reader, unit 3 as a high density magnetic tape
unit on channel 3, unit 4 as the printer, units 10, 56 and 57 as scratch units,t
unit 47 is equated to the standard input unit, and unit 48 is equated to the
standard output unit. A tape can be used for both input and output, and be
rewound with interlock (saved) at the end of the job, by using the same number
in both the I and O subfields.

Precedence of I/O Equipment Assignment

The order in which input/output equipment is assigned to each job by the
monitor is as follows:

All scratch units

All unit numbers in both I and O subfields

1.
2
3. All unit numbers in I subfield only
4. All unit numbers in O subfield only
5

All equivalences
Within each subfield, precedence is as follows:

1. All units having both channel and equipment prefixes

2. All units having only a channel prefix

3. All units having only an equipment prefix

4. All remaining units
If an illegal condition is detected in the I/O list, or if not enough equipment
is available for assignment, the entire job is terminated immediately.
Possible errors include defining a unit as both an input-only, or output-only,

unit and a scratch unit, and using the unit number on the left of an equivalence
pair more than once, or in another subfield.

tWithin the S subfield only, units 56 and 57 can be indicated as 1S and 28, respectively.
These alternate codes cannot be used in other subfields or in the program.

RECOVERY
DUMP KEYS

The following 1/0 fields are illegal, because of the first error described.

.. I/1/0/2/8/1, ...
.. .,1/3/0/4/5/4, . ..
... /2/0/2/8/2, ...

The second error described occurs in this subfield.

..., l/J1/E/1=50, . ..

All dumps are on the standard output unit (51) with the console conditions
printed first. Dumps occur when the job is terminated because of an error
detected by the monitor, by a program transfer to the monitor subroutine
ERROR* (Appendix E), or by operator termination of the job.

Key

0 (or omitted) Octal dump of console conditions

1
2

5

Octal dump of console conditions and numbered common |

Octal dump of program, labeled common, and console
conditions

Octal dump of numbered and labeled common, console
conditions, and program area

Octal dump of console conditions and all of memory
except the monitor

Octal dump of entire memory and console conditions

The octal dump for console condition consists of:

A Register
Q Register

Program Address Register

Upper address of interrupt control word (or words)

Index registers 1 through 6
Buffer words 1 through 6

The format for data dumps in keys 1, 2 and 3 is four octal data words per line,
preceded by a heading as follows:

-ABS-

DATA CONTENTS
R YYYY

SUBSYSTEM
CONTROL CARDS

FORTRAN-63
CONTROL CARD

X represents a 5-digit absolute octal address of the leftmost data word Y;
R represents the relative decimal location of the leftmost data word with
respect to the beginning of the data block being dumped; and each Y is a
16-digit octal data word. The program format for keys 3, 4, and 5 is eight
instructions (four words) per line, preceded by a heading, as follows:

-ABS- PROG.
X R SYMppb A SYMppb A...SYMppb A SYMppb A

X is a 5-digit absolute octal address of the leftmost instruction pair; R is a
decimal location relative to the start of the program region being dumped; SYM
represents a 3-character mnemonic operation code; pp represents the octal

M or Y term of the instruction.

For option code 3, the program is listed before numbered common. The data
heading for options 4 and 5 has the word MEM in place of the word DATA.

The format and number of subsystem control cards depends on the subordinate
control system being used. This section describes the control (CSS) cards for
the CO-OP subordinate control system. The control cards for LOADMAIN
(overlays) are described in Chapter 7; the control cards for SORT are described
in the SORT reference manual. Representative CO-OP job deck structures for
FORTRAN-63, COBOL and CODAP-1 are illustrated later in this chapter. As
additional programming languages are added to the monitor, the required
control cards and deck structures will be described in the reference manual

for each language.

The monitor allows compilation and execution (load-and-go) within a job. Load-
and-go tape units are specified on the subsystem control cards. All load-and-go
units must be defined either as scratch units or as both I and O in the I/O list
on the MCS card. Unit 57 must also appear in the S subfield for compile and
execute operations.

The FORTRAN control card causes the FORTRAN-63 compiler to be loaded, and
the source deck in the specified input unit to be compiled into CODAP-1 language.
This, in turn, is automatically assembled into a binary object program. The
programmer may select from a variety of output formats, as well as indicate

to the compiler the number of CODAP-1 symbols to be generated during
compilation. (This is important only if the CODAP-1 assembler indicates

that symbol table overflow has occurred while producing the object program.)

2-8

The FORTRAN-63 control card has the following format:

Field 1

Field 2

gFTN, option keys.
Z,FTN is punched in columns 1 through 4, followed by a comma.

Option keys may appear in any order separated by commas; they are
free field and start in column 6. Illegal option keys and extraneous
characters are ignored. The option field is terminated by a period at
the end of the control card. If no option keys are present, only error
messages and the basic assembler headings are printed. Any key can

be abbreviated to its first character,

7

9FTN,L,P,E.

Any option may be followed by = n, where n is a decimal integer. If
n is 0, the option is interpreted as if it were not present.

7

oFTN,LIST=1, E=10.

The description of each option key assumes that =n does not follow the
option key. The n code for some options is not recognized unless it

is zero.

Option Key n (* 0)

LIST List source language program. N/A

PUNCH Punch binary object program Punch binary deck
deck on logical unit 52 (standard on unit n.
punch) or n.

EXECUTE Write load-and-go tape on unit Write load-and-go tape
56 or unit n. on unit n.

ASSEMBLY List assembled program in N/A
CODAP-1 language.

INPUT Input source program from Input source program
standard input or unit n. from unit n.

TAPE Assign unit n as assembler Assembler scratch tape
scratch tape. No scratch unit n.
assigned if n=0 or option is
omitted.

BCD Punch generated symbolic Punch generated cards
CODAP-1 cards on standard on n.
punch unit or unit n.

SYMBOLS Allot 2048 or n words to Allot n words to assem-

assembler symbol table; if
option is omitted, or n =1024

words, 1024 words are assigned.

2-9

bler Symbol table
(n > 1024).

REFERENCES* Suppress assembler symbol N/At
reference table; if option is
omitted, print table.

NULLS* Suppress null listing; if option N/A
is omitted, print null listing.

* Applies only if ASSEMBLY option is present.

coBoL

CONTROL CARD This card causes the COBOL compiler to be loaded, and control to be turned
over to COBOL. The source program is read and compiled from the standard
input unit. The programmer specifies the outputs required. The format of
this card is as follows:

';COBOL, option keys.

Field 1 The first column contains a 7,9 punch; columns 2 through 6 contain
the word COBOL.

Field 2 contains the option keys listed below:

Option Key

Z Suppress source program listing.

X or 56 Load-and-go tape is written on scratch unit 56.

M Print data map on the standard output unit.

P Punch object program in relocatable binary form on

standard punch unit.
Compile DATA division only.
Do not suppress diagnostics for trivial errors.

Print symbolic object program listing on standard
output unit.

Each key is an alphabetic character (or 56), and is separated from
the next by a comma. The last key is followed by a period or a
blank. The keys may be specified in any order. If any of these
functions is not required, the corresponding key and comma may be
omitted.

gCOBOL,L,x,P.

.',

N‘A = not applicable

2-10

CODAP-1
CONTROL CARD

This card causes the CODAP-1 assembler to be loaded. Control is given to
the assembler; and the source program, on the specified input unit, is assembled
into a binary object program. The format of a CODAP-1 control card is:

Z,CODAPL option keys.
Field 1 Z)CODAPI is punched in columns 1 through 4, followed by a comma.

Field 2 The option keys are free field, start in column 9, and may appear in
any order separated by commas. Illegal option keys and extraneous
characters are ignored. The option field is terminated by a period at
the end of the control card. If no option keys are present, only error
messages and the basic assembler headings are printed. Any key can
be abbreviated to its first character.

{CODAP1, L,P,E.

Any option may be followed by =n, where n is a decimal number. If
n=0, the option is interpreted as being omitted.

1CODAP1,L,P,E=10.

Option Key n_(# 0)

LIST List assembly output, N/A

PUNCH Punch binary object program Punch binary deck on
deck on standard punch unit or unit n.
unit n.

EXECUTE Write'load-and—go tape on unit Load-and-go unit is
56 or unit n. unit n.

INPUT Input source program from Source input on unit n.

standard input or unit n. (If
option is omitted, unit 50 is

implied.)

SYMBOL Allot 2048 or n words to Allot n words to assem-
assembler symbol table, if bler symbol table
option is omitted, or n =1024, (n>1024).

1024 words are assigned.

REF Suppress symbol cross reference N/A
table on assembly listing.

NULL Suppress listing of nulls in N/A
assembled listing.

2.1

EXECUTE CARD

This card is used to load and execute an object program from the specified
input unit. The object program may be one that was previously compiled, or
it may be the output of a load-and-go operation. For load-and-go units, the
unit number on the EXECUTE card must be the same as the unit specified on
the compiler or assembler control card, and must be defined as a scratch
unit on the MCS card. The EXECUTE card has the format:

{EXECUTE,t,n,m.

Field 1 In column 1, a 7,9 punch, followed by the word EXECUTE and a
comma or period in column 9.

Field 2 If an execution time limit is wanted, the number of minutes is entered

(t) starting in column 10. The monitor considers this limit to be a sub-
set of the time limit specified (or implied) on the MCS card. If load-
and-go or other operations have preceded the exccution phase, the
monitor deducts the time taken for these operations from the time
limit obtained from the MCS card. The remaining time is compared
to the EXECUTE time limit, and the execution time limit is set to
the lesser of the two values. If this field is omitted, the time re-
maining for the job becomes the time limit.

Field 3 This field specifies the input or load-and-go unit containing the

(n) object program to be loaded and executed. If it is omitted, input
will be from standard scratch unit 56 if the previous operation
prepared a load-and-go tape. If not, standard input unit 50 is
assumed to contain the object program.

Field 4 The m is a memory map key, 1 or 0. A memory map of the loaded
(m) program is normally output on the standard output unit. (See Chapter
6 for format.) This map may be suppressecd by setting m to 1. If
m is 0 or omitted, a memory map is produced.

Each field is followed by a comma, except the last which is followed by a
period. A comma must be included for imbedded omitted fields. For example
to omit the time limit field, the card would appear:

7
9

EXECUTE, ,n,m.
To omit the time limit and memory map fields, the card would appear:

7

9EXECUTE, .

All three ficlds may be omitted as follows:
TEXECUTE.

In this case, the time limit is the time remaining for the job, the input unit
is 56 or 50, and a memory map is produced.

2-12

EXECUTER
CONTROL CARD

LOAD CARD

When this card follows a source program deck in a compile and execute
operation, the object subprograms on the load-and-go tape are loaded. The
loading operation terminates whenever two consecutive transfer (TRA) t cards
or an end-of-file is encountered, whichever occurs first. If an end-of-file
mark is encountered first, the loader loads additional subprograms from the
standard input unit. When two consecutive transfer cards are encountered,
either on the standard input unit or the load-and-go unit, the loading process
terminates and control is given to the object program.

The placement of the EXECUTE card in a job deck is shown in the deck
structure examples later in this chapter. If one or more errors have occurred
during compilation or assembly process, the EXECUTE card is skipped over.
Errors which occur during the loading of the object program result in loader
diagnostic messages on the standard output unit. These messages are described
in Chapter 6.

The EXECUTER control card has the same format as the EXECUTE card; it is
used when exira memory is required for program storage. The EXECUTER

card releases approximately ninety per cent of the CO-OP control system storage
area for program use. Only the upper ten per cent of CO-OP remains in

storage. No other CO-OP control cards may follow the EXECUTER card in a

job deck.

This card loads object programs into memory when execution is not wanted.
The format is:

Z)LOAD,n,m‘

Field 1 Z’LOAD is entered in columns 1through 5, followed by a comma or a
period.

Field 2 The number (n) of the input or load-and-go unit appears here.
If this field is omitted, the input unit is standard scratch unit 56 or

standard input 50 as described for the EXECUTE card.

Ficld 3 When the memory map (m) is to be suppressed, the m key is 1; if
the key is 0 or omitted, the map is produced.

In the example gLOAD, ,1. the input unit is 56 or 50, and the map is suppressed.

In the example ’;LOAD. the input is 56 or 50 and the map is produced.

tTRA cards are described in Appendix C.

2.3

DEFINE CARD

BINARY CARD

If the LOAD card follows a compilation, it will be skipped over if compilation
errors have occurred. Loader error diagnostics are listed in Chapter 6.

An EXECUTE card following a LOAD card will execute the object program
loaded by the LOAD card.

The DEFINE card changes the unit assigned to the monitor library tape. This
allows programming languages to be on separate (DETFINE) tapes; each tape
must be self-contained in that it includes all required library subroutines and
a complete directory. The library tape remains defined throughout the job
until another DEFINE card is encountered; therefore, at least two DEFINE
cards are required if the master library tape (unit 0) is to be used again
during the job. The definition is cancelled when the job is terminated. In the
format of the DEFINE card shown below, n is the number of the new library
tape unit.

SDE FINE,n.

gDE FINE is punched in columns 1through 7, followed by a comma or a period.
If n is not zero, it must appear as an input-only or scratch unit in the I/0
list on the MCS card.

The BINARY card is used to perform card-to-tape or tape-to-tape operations
from the standard input unit to another tape unit, such as a load-and-go tape.
The cards in the job deck following the BINARY card are written on the
specified logical unit in column binary format (two tape frames per column).
The transfer operation continues until another subsystem control card (7,9 in
column 1, Hollerith character in column 2) is encountered. This card stops
the operation, and an end-of-file mark is written on the tape. The tape is then
backspaced over the end-otf-file mark. Loader control cards (11,0 and 7,9 in
column 1) will be written in column binary format as they are encountered.

The format of the BINARY card is:
TBINARY,n.

7BINARY is entered in columns 1 through 7, followed by 2 comma or period.
The n field which indicates the logical unit to be used is terminated by a

- period. If n is 0 or omitted, standard scratch unit 56 is used.

If the BINARY card follows a source language compilation, the card-to-tape
operation is performed only if there were no compilation or assembly ervors.
If errors occurred, the BINARY card is skipped over.

2-14

REWIND CARD

LOADER
CONTROL CARDS

This card allows the programmer to generate a tape consisting of a mixture

of previously compiled object program decks, and the object program output

of load-and-go operations in the current job. This card is also used in creating
overlay tapes as described in Chapter 7.

This card rewinds to load point the tape units specified in the second field.
Care must be taken not to rewind a unit that cannot become ready (such as
rewound with interlock). If this is attempted, the job will hang up, but it will

“not be terminated until the time specified for the job has elapsed. The standard

units (except 56 and 57) cannot be rewound by this card. This card cannot be
used to rewind the currently defined library tape, even if it has been defined on
other than 0.

The three formats on the REWIND card are:

TREWIND, n_, n_, 0, . .. ,n

1’72 '3 m’
(mis 1 to 49, 56 or 57)

REWIND, ALL.

O =1 ©=

REWIND.

In each format, the gREWIND begins in columns 1 through 7. The first format
rewinds all listed units. The second format rewinds all programmer assigned
tape units, including the scratch units 56 and 57, if assigned. The third format
rewinds only unit 56. Unassigned logical unit numbers appearing in the second
field are ignored.

This card can be used to initialize programmer assigned tape units. It may
also be used to rewind a load-and-go unit, so that a program may be repeatedly
executed and then rewound using different sets of data.

The four loader control cards, RELOCOM, LIBRARY, SNAP, and PATCH can

be used in a job deck to increase available memory, load library subroutines,

provide periodic (snapshot) dumps during program execution, and patch object
programs. RELOCOM and LIBRARY are described below, and the placement

of these cards in a job deck is shown later in this chapter. SNAP is described
in Chapter 6, and PATCH is described in Appendix D.

2-15

RELOCOM CARD This card releases additional memory for program storage. In cffcct,
numbered common replaces a part of the upper portion of resident (Chapter 1).
The following information appears in columns 1 through 9:

11
gRELOCOM.
9

LIBRARY CARD This card loads all required subroutines before the object program is loaded.
The LIBRARY card is used when the loader error FM (full memory) occurs.
This error indicates the loader is attempting to load program instructions into
the area reserved for the loader tables used for address linkage. When the
LIBRARY card is used, the loader does not require the library directory. This
reduces the storage space occupied by the loader and associated tables, there-
by decreasing the storage space occupied by resident. This card also acts as
a RELOCOM card in increasing the length of numbered common.

For this card, 11,0 and 7,9 appear in column 1, LIBRARY in columns 2 through 8.
followed by a comma and a list of the names of the library subroutines to be
loaded. Each name, except the last, is followed by a comma. The last field is
terminated by a period. No spaces are allowed in the list.

11
0
7LIBRARY, al, a, a3, R
9
As many LIBRARY cards as necessary may be used. The list must contain
the names of all library subroutines needed by the object program, and the
card must be loaded before the object program is loaded.

TERMINATION
CARDS

JOB DECK The last card in a job deck is an end-of-file card which has 7,8 punches in
columns 1 and 2 and 12,1,4,7 punches in columns 3 and 4.

MONITOR RUN To terminate a monitor run, an END MONITOR INPUT card follows the
end-of-file card of the last job deck. This card is punched as follows in
columns 1 through 18; it terminates automatic job sequencing, and returns
the monitor to the idling tone loop.

TEND MONITOR INPUT

2-16

JOB DECK

STRUCTURES The deck structures in this section illustrate representative job decks for
FORTRAN, COBOL and CODAP-1. BEGIN JOB cards and end-of-file cards
shown are normally supplied by the operator. The various types of binary
cards identified in object program decks are described in Part2 of Appendix C.
Deck structures for other programming systems are described in the pro-
gramming manuals for these systems.

The data decks shown in the examples are entered into storage by READ state-
ments within the program. The decks shown in this section require that the
data be on the standard input unit.

FORTRAN-63

COMPILE ONLY Following is the deck structure for batch compilations in FORTRAN-63. Each
of the object program decks output by the compiler will have one transfer (TRA)
card at the end. Since the last subprogram in a program deck must be termi-
nated by two consecutive TRA cards, the second TRA card must be added to the
object program deck before execution time. '

r end of file

(FINIS
(END

/

{

/
(

(PROGRAM THREE -

(END

,
4

— — — Source Progrom 3

A
4
r PROGRAM TWO @ @ —HAH~—————~— Source Progrom 2

(END

i
Ve
ya
yd
r PROGRAMONE ~ —HHPH——""""—"——~— Source Progrom |
7
(g FTN, ...
(g COOP,... 8/57 —4% ffffffffffff MCS card
7
¢ BEGIN JOB. ..

Batch Compilation

2.7

EXECUTION ONLY

The following decks illustrate single, batch, and repeated execution from the
standard input unit. In single execution, a program is executed once during the
job in repeated execution, one program is executed more than once during the
job. In the second (batch) example two previously compiled programs are
executed within one job. Each is executed independently of the other.

Each relocatable binary (RBD) deck in the single execution example contains one
transfer (TRA) card; the last deck contains a second TRA card. One of the TRA
cards must contain the symbolic transfer address to the entry point at the start
of the program. This named transfer card may be any of the TRA cards. See
Appendix C for RBD deck description.

Any error that causes an error return to the monitor (such as a loader error or
an error in logical unit reference) terminates the entire job. Cards remaining
in the deck for the terminated job are skipped over until the end-of-file is
encountered. If automatic job sequencing is in progress, the next job will be

exectued.
(end-of- file
/ data deck — — — (optional)
f TRA
(TRA
/ RBD deck —_—f - — Subprogrom 3
(TRa
/ RBD deck - — = Subprogram 2
(TRA
RBD deck --f-t+----—-——-—— Subprogram |
yan
((EXECUTE.
7
‘CQCOOP,H. --r=r - ——--- MCS card
3 BEGIN JOB. ..

Single Execution

2-18

In the preceding example, no load-and-go operations occurred earlier in the
job, therefore the EXECUTE card shown implies the standard input unit 50
rather than standard scratch unit 56.

Each RBD deck indicated in the batch execution deck may consist of any number
of subprograms, each terminated by a TRA card. The last contains an additional
TRA card. One of these TRA cards must contain the transfer address, punched
in Hollerith code, starting in column 9.

data deck that precedes an EXECUTE card.

f end-of-file

/ data deck — (optional)

(;
r TRA 1
(TRA

/ RBD deck ——/4|4————— Program 2

ﬂ EXECUTE.

/ data deck = —f4+t+-———————— (optional)

r
(TRA
r TRA

/ RBD deck @ - (AA-—-——""">"—"—————— Program |

[

ﬁ EXECUTE.

|
|
If data is being read in a buffered read operation, a blank card must follow each
\
|
|

ﬁCOOP, Cee --tr=--------—- MCS card

§ BEGIN JOB. ..

Batch Execution

219

The repeated execution job deck shown executes one program from scratch
unit 56 with two sets of data decks on the standard input unit. The RBD deck
terminated by two TRA cards is transferred to scratch unit 56 by a BINARY
card. The scratch unit is rewound before each execution by the EXECUTE
card inserted before each data deck.

The major difference in deck structure between this operation and the previous
executions is the addition of the BINARY card. Data decks are separated by a
blank card and an EXECUTE card.

If data is being read in a buffered read operation, a blank card must follow each
data deck preceding an EXECUTE card.

(end-of - file

/ dota deck 2 -

[

(; EXECUTE,, 56.

/ doto deck | -

(

fg EXECUTE,, 56.

r TRA
(TRA

/ RBD deck = A4 t—-———"+-"—"—"—"—— Prograom Deck

(

(; BINARY, 56.

(optional)

— — — — (optional)

(g COOP, ...S/56. .. A MCS card

J BEGIN JOB

Repeated Execution

2-20

COMPILATION AND EXECUTION (LOAD-AND-GOJ)
To compile and execute a FORTRAN-63 program with two data decks, the
following deck structure is used.

The program is compiled on unit 56, using 57 as an intermediate scratch unit.
The data decks are on the standard input unit. The load-and-go unit is rewound
each time the EXECUTE card is read, and the program re-cxecuted with the
new data deck. If loader or other errors occur causing the monitor to take
control, the entire job is terminated and any remaining cards in the job deck
are skipped over. If automatic job sequencing is in progress, the next job is
executed. The data decks may be omitted. The end-of-file card would then
follow the first EXECUTE card.

{ end-of-file

dota deck — — Data Deck 2
rz, EXECUTE.
data deck — 4+ T ——— —— — Dato Deck |
rzsxscurﬂ
r FINIS
(END
(END
(PROGRAM SOURCE i it I - - - i - Source Progrom
(g FTN,L,E.
ﬁCOOP, ...5/56/57. .. i i s 2t e MCS cord
S BEGIN JOB

Compile and Execute One Program with two Data Decks

2.21

The following job deck is used to process multiple load-and-go operations
within one job. The REWIND card is needed to rewind scratch unit 56 before
the second compilation.

If the REWIND card were not used, the program COSINE would be compiled
as the second program on scratch tape 56. Then, when the second EXECUTE
card was read, unit 56 would be rewound before execution, and the first
program on the SINE tape would be loaded and executed.

f end-of-file

/ data deck - (optional)

[

(; EXECUTE,, 56.

(PROGRAM COSINE -’» ———————— — Source Progrom 2
TFIN, L,E. |y
5 1
Jg REWINU, 56 |
/I {
/ data Asck — -t -—_—— - ——— (optionol)
rL
r’ EXECUTE,, 56 v/
9 13 .

(" FiNiS

[e T
{END

/

I PROGRAM SINE

7
[9 FIN, L, E.

ﬂ COOP, ... $/56/5T7...

J BEGIN JOB...

Compile and Execute (Two Programs)

2-22

PARTIAL COMPILATION AND EXECUTION

These procedures could be used to recompile or add a subroutine to an existing
RBD deck and execute immediately, with or without data.

Procedure I loads the subprogram to be compiled before the existing binary
deck; execution then takes place. Procedure I loads the existing binary deck
first, followed by the newly compiled subprogram or subroutine.

If a special subroutine is to be used instead of an existing FORTRAN-63 library
function with the same name, that subroutine must be the first subprogram in
the job deck. For example, the program LOGF might be the programmer's own
function subroutine. To make certain his routine, and not the library routine
LOGF is used, the programmer's LOGF subroutine is the first subprogram in
the job deck. If this subroutine is to be within this job, procedure I is followed.
If this subroutine exists as a binary deck previously compiled, procedure 1II is
followed. The BINARY card in II performs a card-to-tape or tape-to-tape
operation to the load-and-go unit, so that the load routine will find the sub~
programs in proper order on the load-and-go unit.

(end-of-file

/ data deck - ,4! = r2ptiopal)
/

[

— — — Existing binary deck

RBD deck with two TRA cards

[

(; EXECUTE.

(FINIS

Source program to L-
compiled (one END co:.

———————— only)
r PROGRAM LOGF
f} FTN,L,E.
rz,coop. .. .8/56/57 N A MCS card

JBEGIN JOB. . .

Partial Compilation and Execution

Procedure I

2-23

i end-of-file

data deck - (optional)

[

(g EXECUTE.

(PROGRAM NEW @ —4+—p—— —— — — — Source progrom to

be compiied
ﬁ FTN,L,E.

RBD deck (LOGF) ——#1+t+—"————-————— Existing binary deck
(one TRA card only)

[

ﬂ, BINARY, 56.

ﬂ COOP,...5/56/57,.. -1T1y--- - = MCS cord

5 BEGIN JOB...

Partial Compilation and Execution

Procedure II

2-24

CODAP-1 The deck structures for CODAP-1 are the same as those for FORTRAN-63,
with the CODAP1 card replacing the FTN card. END cards, however, are

punched starting in column 10. Execution only decks are identical; only basic
operations are shown.

COMPILE ONLY This deck results in two object subprograms being punched on the standard
punch unit, each having one TRA card.

(end-of—file

r IDENT BRAVO

r END

Source Subprogram 2

/

(IDENT ALPHA
(gcooApl,L,P.
(;coop,...5/57.., -
3 BEGIN JOB. ..

Source Subprogram |

Compile Only

2.25

EXECUTE ONLY The decks used for execute only operations must be standard RBD decks as
described in Part 2 of Appendix C.

The two binary subprograms, Alpha and Bravo, will be loaded from the standard
input unit and executed. A memory map will be printed. The TRA cards shown
are required for each RBD deck. One TRA card must contain the symbolic
transfer address in Hollerith code, starting in column 9.

r end-of - file

/ dato deck

{
(TRA
L TRA

/ subprogram bravo FE S (S L subprogram 2 (RBD)

[
(TRA

subprogrom glpha

(optionatl)

————————— subprogram | (RBD)

(; EXECUTE.

f; cooP, ... -ty - - - MCS card

& BEGIN JOB .

Execute Only

2-26

COMPILE AND EXECUTE (LOAD-AND-GO)

The two subprograms are compiled and executed as one program from standard
scratch unit 56. Each source program deck is followed by an END card. The
second deck includes an additional END card with the transfer address. The
job deck is read from the standard input unit, and an assembled listing and a
memory map are produced.

r end-of-file

data deck — — — (optional)

[

[EXECUTE.
r FINIS
{ END START

(END

[IDENTTWO = @A — - — — Subprogrom 2

| END

—
; IDENT ONE — - e i — — — — Subprogrom |

{7 CODAPI,L,E.
|
[ﬁcoop, S .S/56/5T... P~ MCS cord

5 BEGIN JOB. . .

Compile and Execute (Single Program)

2-27

MULTIPLE COMPILATIONS
Multiple compilations and executions can be done within one job deck by placing
the second and succeeding programs, preceded by a CODAP1 card, after the
previous EXECUTE card or data deck, if one is used. Any loader or other
error that returns control to the monitor terminates the entire job.

F end-of-file

dato deck — — — —(optional)

FEXECUTEA

[FINIS

2nd program

-

f;cooApl, L,E.

dotoc deck = — = —— — - — —— — — — —{optional)
(_Z, EXECUTE.
(FINIS
Ist progrom
(;CODAPI, L,E.
@00& ...5/56/5T7. .. -4yl MCS card

1BEGIN JOB...

Multiple Compile and Execute

2.28

coBoOL The basic operations for COBOL, compile only, execute only and load-and-go
are similar in format to those of FORTRAN-63 and CODAP-1. For execution,
however, the second TRA card must be supplied by the programmer, as the
compiler can generate only one TRA card.

Using COBOL,P. a binary object deck will be punched on the standard punch
unit, and a source language listing will be written on the standard output unit.

r end-of-file

(END PROGRAM

source deck — COBOL Source Program

[

(; COBOL, P.
fg COOP,...S/57... — ——— MCS card

7 BEGIN JOB. ..

Compile Only

The following object program is loaded from the standard unit and executed,
and a memory map is produced.

1/ end-of -file

/ data deck
/ object program

(optional)

— — — —COBOL Object Program

(RBD deck)
(;’ EXECUTE,
ﬁ COOP, ... -1 MCS card

J BEGIN JOB. ..

Execute Only

2-29

The load-and-go operations below compile, load, and execute the program from
standard unit 56, producing a source listing, an assembled listing, and a
memory map.

end-of — file |

[|
f TRA

J EXECUTE.
r END PROGRAM

/

/ source program

(

(; COBOL, L, X.
(; COOP, ... S/56/57. .. JEN S S MCS card
§ BEGIN J0B . ..

— — — COBOL source program

Compile and Execute

2-30

COMBINING

FORTRAN-63

AND CODAP-1 Compilation and execution can be combinations of FORTRAN-63 and CODAP-1
subprograms. Job construction is similar to that for multiple compilations in
each language. The double END or TRA card sequence may occur only once at the
end of the program consisting of both FORTRAN-63 and CODAP-1 subprograms.
The order of the subprograms depends only on the requirements of the program.
A subprogram deck that has the same entry point names as a library function
must be placed first in the program deck as this subprogram replaces the
library subroutine.

This job deck results in source and assembled listings for the subprograms,
together with RBD decks punched on the standard punch unit. The resulting
program is loaded and executed from unit 56, producing a memory map.

L end -of -file

/ dato deck — — /-|—(optional)

{

ﬁ EXECUTE.

f FINIS

L END START

(END

/

r IDENT SEVEN

[END

CODAP~1 Subprogram

FORTRAN-63 Subprogram

PROGRAM LUCKY — T

GrniapE ,
(3 coor,...s/56/57. -

MCS cord

J BEGIN JOB. ..

Compile and Execute (One Program)

231

USING
DEFINE CARD The following deck structure assumes that the auxiliary system tape is on

logical unit 49. (49 must be defined either as an input-only or scratch unit on
the MCS card.)

f end-of-file

dota deck

— (optional)
ﬂ EXECUTE
(FINIS
f PROGRAM DIFFEQRS @ @ ——po——————— FORTRAN-63 Source Program

ﬂ FTN,L,PE.

(;oemwe,ae.
(gcoop, . .s/a9/56/57. . —t+tb-———-————— MCS card

J BEGIN JOB .

Compile and Execute using DEFINE

(end-of- file

doto deck

——————— (optional)

Object progrom with librory
subroutines on ouxiliary
——————————— system tope. (2 TRA cards)

RBD deck

{

r; EXECUTE

(;DEFINE, 49

(gcoop,. . .S/49. .

1 BEGIN JOB. .

Execute Only using DEFINE

2-32

USING
RELOCOM CARD The RELOCOM card is used to increase available program and data storage
area by replacing part of the resident portion of monitor with numbered common.

In an execution only operation, RELOCOM is the first card of the first sub-
program to be loaded. In a compile and execute operation, RELOCOM is
preceded by a BINARY card, and the two cards are placed immediately before
the FTN, COBOL or CODAP1 card. If both RELOCOM and EXECUTER are
used, the maximum amount of program and data storage is made available to
the programmer. Since RELOCOM destroys part of the loader, the program
using RELOCOM should either be the only program or the last program
executed in a job deck.

(end-of-file
data deck — — —(optional)
(3 Execute.
f FINIS
f END
(END
f PROGRAM LARGE ~ ——|—/ ——— FORTRAN - 63 Source Program
J FTN,L,E.
4 RELOCOM
$
[g BINARY, 56
r; COOP, .. .S/56/5T. . . R MCS cord

J BEGIN JOB. . .

Compile and Execute with RELOCOM

2-33

(end-of-file

dato deck — ——(optional)

7777777 Subprogram 3

7777777777 Subprogram 2

Y T o o e Subprogram |

'l RELOCOM.
7
9

r;execuTE.

(gcoop, o

J BEGIN JOB. ..

Execution Only with RELOCOM

2-34

USING

LIBRARY CARD The LIBRARY card can be used to load all required library routines for a
program. It also acts as a RELOCOM card by releasing a portion of resident
for program and data storage. LIBRARY cards contain the names of all
required library subroutines. Any number of LIBRARY cards may be used,
but they must be grouped together at the beginning of the program deck. A
BINARY card is required for load-and-go operations. A program that uses
LIBRARY cards must be either the only or last program in a job deck.

(end -of-~ file

/ data deck —

(

(3 execuTe.
FINIS

|- — (optional)

sourcedeck ——fFt+H-—————— CODAP-1| Source Deck

[

GCODAPI,L,E.

{'0' LIBRARY,SINF,COSF.
7
9

r' uéRARv,LOGF.

©w~NO

(ZBINARY,SG.

F, COOP, . . .5/56/57. . . D MCS card

J BEGIN JOB. . .

Compile and Execute, Two LIBRARY Cards

235

INPUT/OUTPUT SUBROUTINES 3

The subroutine READ*/WRITE* is used for data input and output under monitor
control. The subroutine GETCH#* tells the programmer the odd number of the
channel pair to which a logical unit has been assigned. The subroutine CHKSTD*
deter:rmines if a particular logical unit has been assigned as the standard input
unit.

READ*/WRITE* READ*/WRITE* is used for all programmed input/output. The calling sequence
contains the logical unit number, the format of the information to be transmitted,
and the type of operation to be performed. In addition, the calling sequence con-
tains the location of the data storage area in the computer, and an interrupt key
that indicates whether or not to sense for an interrupt condition on the input or
output device.

Within READ* /WRITE* there are six channel busy flags (CBF) which indicate
the status of a channel. All zeros (+0) in a CBF cell indicate a busy channel,

all sevens (-0) indicate a free channel.

The calling sequence written in CODAP-1 assembly language is shown below:

Table 3-1. READ*/WRITE* Calling Sequence

EXT READ* or WRITE*

ENQ Y (address of interrupt subroutine)
L RTJ 0 READ* or WRITE*

rm 0 n (logical unit number)
L+1 fc 0 A (FWA)

i 0 B (LWA+1)
L+2 alternate return

E (error flag)

L+3 normal return

+Progmms using these subroutines need not save and restore index registers as this is done
within these subroutines.

3-1

The parameter codes are defined below:

rm An octal digit designating the recording mode (binary, coded,
BCD, Hollerith) described in table 3-2.

fc An octal number designating the function to be performed by
the peripheral device as specified in table 3-3.

i A single digit, 1 or 0 indicating whether or not to select an
interrupt on equipment. If it is 0, the interrupt condition is
not selected. If it is 1, the interrupt is selected. When the
interrupt is recognized, an exit is made to the starting ad-
dress of the interrupt subroutine supplied by the programmer.
This address (Y) is stored in the Q register.

Y Symbolic address of the interrupt subroutine supplied by the
programmer (must be placed in the Q register) .

n Logical unit number of peripheral device to be used by READ*
or WRITE*.

A Symbolic first word address of input or output area.

B Symbolic last word address + 1 of input or output area.

E Error flag set in the lower half of L+2 by the READ* or WRITE*

subroutine to indicate an error or abnormal condition (such as
parity error or end-of-file) occurred during the operation.
These flags are listed in table 3-4. The upper half of L+2 should
be a jump instruction to avoid execution of the lower half of L+2.

If any of the parameter values in a calling sequence are illegal, the
alternate return is taken and error code 0 is set in E.

In the calling sequence, the EXT pseudo instruction identifies the symbol READ*
or WRITE* as being external to the program containing the calling sequence.
EXT may be placed anywhere within the subprogram. The ENQ instruction
enters in the Q register the entry point address of the programmer interrupt
subroutine. If no interrupt is requested (i=0) , ENQ may be omitted. The RTJ
instruction which gives control to READ* or WRITE* must be an upper instruc-
tion. Parameters rm, fc, and i are placed in the OP-code portion of the lower
half of L and the upper and lower halves of L+1. The n, A and B go in the
corresponding M-terms of L and L+1.

An SLJ 0 instruction is usually placed in the upper portion of L+2 to provide an
alternate exit (C) should an error occur during the execution of either READ* or
WRITE*. The lower half of L+2 (E) is normally zero in the source code, to allow
for insertion of an error code by READ* or WRITE*,

3-2

RECORDING
MODES

LOGICAL UNIT

FUNCTION
CODES

READ

The recording mode (rm) key (1, 2, or 3) indicates how the data is to be inter-
preted and converted.

For example, a card can be read in Hollerith, column binary, or row binary for-
mat and the information can be stored in either BCD or binary format. The re-
cording mode key indicates both input and storage formats. Similar conversion
options are provided for all the peripheral equipment normally connected to a
1604/1604-A computer.

The logical unit number (n) must be assigned as an input, output or scratch unit
on the MCS control card, unless a standard unit is used. Programmer units 1
through 49 are assigned to input or output on the MCS control card. Standard
input and output units 50, 51, and 52, may be used by both monitor and program-
mer. These units, however, should not be rewound, or backspaced past an end-
of-file or skipped to end-of-file. Because all standard units (except 56 and 57)
are always assigned by the monitor, they do not require entries on the MCS con-
trol card. Other logical units, may be equated to the standard units. See
Chapter 2 for explanation of logical units and assignments.

Since more than one type of operation can be performed on a given input or out-
put device, the function code indicates the operation to be performed: read or
write (punch, print) only, check only, read or write with checking, and sense
equipment ready. Additional functions perform specific tasks such as rewind,
page eject, punch 18-inch trailer, and so forth. The function codes listed in
table 3-3 are described below.

A READ/WRITE calling sequence using a particular logical unit may be immedi-
ately followed by a READ/WRITE calling sequence using another logical unit
number.

OR WRITE ONLY (fe=1)

is used when a buffered read or write operation is to be performed. During
program execution the buffered operation is initiated, the CBF is set to +0
(busy) and control is returned to the main program.

To sense for the end of the buffer operation, interrupts may be selected in the
calling sequence. The main program will be interrupted at the end of the opera-
tion and control transferred to interrupt location Y in the calling sequence. If
interrupt has not been selected, the end of operation is sensed by the Check
Only or Sense Equipment Ready function code.

Mode

Magnetic Tape

Card Reader

Card Punch

Line Printer

Typewriter

Paper Tape Read

Table 3-2. RECORDING MODE KEYS

Read/Write tape coded (even parity)
Read/Write tape binary (odd parity)

Convert Hollerith card to BCD
Convert row binary card to binary
(40 low order hits of word)

Convert column binary eard to binary
(48-bit word)

Convert internal BCD to Hollerith card
(1 word - 8 columns)

Convert internal binary to row binary
card

Convert internal binary to column
binary card

Internal format is BCD
Internal format is binary

Convert typewriier character code to
internal BCD, 8 characters per word.
Blanks are inserted for illegal BCD
characters

Convert typewriter character code to
octal equivalent. 8 characters per word

Convert typewriter character code to
octal equivalent, 1 character per word

Convert Flexowriter character code to
internal BCD, 8 characters per word.
Blanks are inserted for illegal BCD
characters

Read Flexowriter code and store, 8
characters per word (assembly mode)

Read Flexowriter code and store, 1
character per word (character mode)

Key (rm

2o0r3

2or3

Table 3-2. RECORDING MODE KEYS (cont.)

Mode Key (rm

Paper Tape Punch Convert internal BCD to Flexowriter 1
codes, 8 frames per word

Punch Flexowriter tape in assembly 2
mode without conversion, 8 frames
per word. (automatic 7th level

punches)

Punch Flexowriter tape in character 3
mode without conversion, 1 frame

per word

A Read Only or Write Only calling sequence should be followed by a Check Only
calling sequence either in the programmer's interrupt subroutine, if interrupt
is selected, or in the main program before the next READ or WRITE operation
on that unit.

If the CBF is already set to +0 when the calling sequence is executed, no opera-
tion is performed. The alternate return is taken and error code 64 is set in E.

CHECK ONLY (fc=2)

checks for the end of a Read Only or Write Only operation. This function also
performs any conversions required by the recording mode key for the Read
Only or Write Only operation being checked.

If the Check Only function finds the logical unit busy, the program temporarily
halts until the operation is completed. As soon as the unit is free, the CBF is
set to -0 (not busy) ; and if errors occur, the appropriate E code is set in the
lower half of 1.+2 in the calling sequence. The exit taken, normal or alternate,
depends on this code. Upon exit, the number of words transferred to or from the
logical unit is placed in the A register.

The Check Only function interrogates the last previous function performed on
the channel of the specified logical unit. If the previous function was other than
1, 4,5, (for input) or 11, no checking is done and a normal exit is made immedi-
ately. If the previous function was 1, 5, or 11, the Check Only function performs
the tasks described below. If the previous function was 4 (Sense Equipment
Ready) . the function performed prior to 4 is interrogated and the appropriate
action is taken.

The READ* calling sequence checks read operations; the WRITE* calling se-
quence checks write operations. One calling sequence may immediately follow
the other, as the two operate independently of each other. In the Check Only

calling sequence, the A, B and rm parameters are not required as they are
obtained from the Read Only or Write Only operation being checked. The inter-
rupt parameter i must be zero, as no interrupt is recognized in the Check Only
operation.

READ OR WRITE WITH CHECKING (fc=3)
combines the Read or Write Only and Check Only functions for non-buffered
input/output. Since the program halts until the operation is completed, no inter-
rupt is recognized. Therefore, the interrupt parameter i should be zero. All
other parameters except Y are required. The data storage area is defined by
A and B. The subroutine exits through the normal or alternate return with the
appropriate error code in E: the CBF is set to -0 before exiting. If the CBF
was set previously, no operation is performed: the alternate exit is taken, and
E is set to 64.

SENSE EQUIPMENT READY (fc=4)
interrogates the status of the equipment, channel, and CBF. The equipment is
checked by requesting the status of the last unit selected. If busy, the alternate
exit is taken; if not busy, the normal exit is taken. For example, assume that
the logical unit in the Sense Equipment Ready calling sequence has been assigned
by the monitor tape 2 of a 1607 or 606 equipment cabinet. If the last unit select-
ed in that equipment was tape 3, the status of tape 3 would be sensed, and the
exit would depend on the status of tape 3, not tape 2. The status of tape 2 is
not checked. This restriction is due to the limitation of the 1604 sense codes
which can check only the status of the last unit selected within a particular
equipment. The Sense Equipment Ready function performs a sense operation
only, it does not select any equipment or units. The value of the CBF for the
specified logical unit is not changed by this function.

The E portion of the calling sequence for this function is set to a specific value
according to the status of the channel, CBF, and last unit selected within the
equipment.

Bit 0 of E is set to one if the last unit selected is busy.

Bit 1 of E is set to one if the channel is active.

Bit 2 of E is set to one if the CBF is set to +0 (busy) .

Otherwise these bits are set to a zero. The alternate exit is taken only when bit
0 is set to one.

This function is not intended for general programming use. When either a nor-

mal or alternate exit is made, the Running Hardware Table entry corresponding
to the logical unit in the calling sequence is entered in the A register. The low-
order 15 bits contain the assigned channel number.

The only required parameters in the read or write calling sequence are the
function code (fc) , the logical unit number (n) , and the normal and alternate
exits. The i code must be zero; values of all other required parameters are
arbitrary.

SPECIAL PURPOSE FUNCTION CODES (fc = 5,6,7,10 OR 11)

INTERRUPT

ERROR CODE

provide facility for such operations as rewinding tape, restoring the page, skip-
ping records or cards, ejecting blank cards, and executing a carriage return on
the typewriter. These functions are listed in table 3-3. The decimal literal B
in the descriptions indicates the number of times that function is to be performed.

For magnetic tape read functions 5 and 11, an interrupt can be selected to sig-
nal the end of the skip forward or backspace operation. For all other functions
the interrupt key is zero. Parameters fc, n, and E are required for all
special purpose codes. For functions requesting interrupt, Y is also required;
all other parameters may have arbitrary values.

A special E code is entered in the functions shown with an asterisk in table 3-4
when the operation is terminated. These functions are primarily used for format
control and the E codeindicates that one of these functions has been executed on
the particular unit.

Interrupt (i) may be selected in conjunction with certain function codes. The
interrupt option is equivalent to the hardware select code interrupt on equipment
ready, and is used primarily for buffered input and output (fc =1) . It is also
used for sensing the termination of skip forward or backspace operations on
magnetic tape.

The Y parameter in the calling sequence specifies the symbolic entry point of
the programmer interrupt subroutine. This entry point must be provided if
interrupt is selected. If interrupt is not selected, the ENQ Y entry may be
omitted from the calling sequence.

An error code (E) is entered in the lower half of L+2 in the read or write calling
sequence by one or more functions depending on the error. For example, all
functions check for parameter errors; however Check Only and Read or Write
with Checking sense for parity and buffer length errors. There are special E
codes for the no-operation and control function.

The E code is a composite of all errors or conditions sensed during the execu-
tion of the calling sequence. If the composite error code implies both normal

$9po) uonoUN «J LIUM/*AVIU "€-€ K(EL

“91.0poo o uonedado [e1oods ay) aald sdemie suonerado asayLs

uoi® uolje uoije uone uolje uolje uolje Sp.1oo9y g SpaodaYy d
-18dQ oN -12dQ ON -aadQ oN -a1adQ oN -1a2dQ ON -aadQ oN -1odQ oN ooedsyoeg aoedsyoeq 11
suan}ay RENRLAR
aderrar) uoye youp uorje oded ayy uonle uonye joo[Iajuf pBIIREITN |
#X1IG 203X -aadQ ON «81 10009 -aadQ ON +«3101SAY -1adQ oN -10do oN Yjim puimay Y im puimay 01
SUJIN}IY Jo1ter],
EXx:) R R1 Jg) uone youg uolje aded oyl uonje uonje
«X1G 0IN2IXY -a2dO ON +81 1094 -19dQ ON «910)S3Y ~-10dQ OoN -12dQ ON putmoy puItmoy L
pug odAl pied
PUB WInoy puy I1sed a1 -Jo-puly
JSELLIED uone uotje uoie oded oyl pae)d pPIEMIO] oI1-Jo 1STd plEMIo]
£03003XH -10dO ON -1adp ON -a1adp oN L0180y «pud yound «dig -puy ONIM diys 9
SWINoY sowed g sowe.l g saut] spae) spac) SPI00IY
RiUR AT He) uonje suejg € plem.iod 4 plemaod Sueigl ¢ pitmaoyd uotju Q plemaod
+§] 0IN00XY -a12dg oN *¢1 1000y «diys so0udg «4 1000 diys -1adQ ON diys 4
Apray Apray Apeoay Apeay Aproy Aprayl Apray Apeay Aprayl
juowdimby Jowdimbg Jowdinby owdinby Juowdinby juswdinby Jowdinbyg juowdinby wuawdinby
ISUIG ISUIG asuog Isudg osusg ISUDS asuodg osuasg asuag 14
sSuppoy) BunPIY)d Su{ooyD kP bhle] Bunjoay)d Suiyoayn Burjoay)d 3uyoayd Aunjoay)
YILn 0L I pedy Yitw yaundg Yim peayl Yim UL Yyim youndg Yitm pray YItm 931y yim pray €
AU YIOUD A[UQ Y29YD AQUQ MOOUD A{ite R bhltte) A[uQ }99YD AJUQ 294D AQUQ ¥OD AUO joayD A[uQO H994D Z
AUQO OILLW AQUQ proy AUQ yaung AUO peay AuQ wrd AuQO young AJUQ peoy AUO DI\ AuQ peay 1
RHIRRN PEIY yound proy RRIREN peay
Jotmody g, RGITRKIHIRN ade], aoaded odue] 1oded wid ourl uaund pred PEo PLED ade] "Sel adu], "SvI (w100)
)

uonuyaq

3-8

OPERATOR
MESSAGES

and alternate exits, the alternate exit is always taken. The bypassed operation
code (128) is a result of a BY entry in the input/output list on the MCS card.

Not all conditions having an error code are considered true errors, therefore
normal exits are used in certain cases. For example. a write buffer length
error is a true error: however, a read buffer length error may or may not be
an error, depending on the intention of the programmer.

Table 3-4. READ-WRITE ERROR CODES

E-Code (octal) Condition Exit
0 No error normal
0 parameter error alternate
1 parity error alternate
2 write buffer length error alternate
2 read buffer length error normal
4 end-of-file sensed normal
4 end-of-tape sensed normal
10 no operation function code normal
20 special operation function code normal
40 illegal character, card output normal
240 . illegal character, card input alternate
100 channel busy alternate
200 bypassed logical unit normal
400 typewriter case conflict alternate

(upper, lower)

Two kinds of messages are typed or printed out as comments to the operator.
One is the result of errors sensed by READ* or WRITE*: the other indicates
the status of tape units, standard and programmer-assigned.

GETCH*

The following error conditions sensed by READ* or WRITE* result in job ter-
mination. The message, ILLEGAL I/0 ON UNIT XX. is written on the standard
output unit and control is returned to the monitor through ERROR*.

1. Logical unit is not defined on MCS card (no RHT entry) .
2. Logical unit number is out of range 1 to 63.

3. Equipment assignment conflicts with function requested (such as an
attempt to write on tape assigned to input on the MCS card). Any
tape, however, may be rewound or backspaced by either a READ*
or WRITEx* calling sequence. WRITE* cannot be used for rewind
or backspace if the file protect ring is removed from the tape reel.

4. Attempt to read past end-of-file on a standard input unit.
5. Attempt to rewind a standard input or output unit.

6. Attempt to backspace a standard input or output unit more records
than were read or written by the current job.

The message, LINE COUNT EXCEEDED, is written on the standard output unit
if the line counter for the standard output unit exceeds the line limit specified
on the MCS card, or the standard line limit if none is specified. (Standard limit
is set by each installation.)

The message, JK2, printed out as a comment to the operator during program
execution, indicates the first time a programmer-assigned logical unit is en-
countered. The READ*/WRITE* subroutine interrogates jump key 2 so that the
operator can indicate whether or not the proper tapes are mounted on the as-
signed tape units. Once JK2 is set during a job, it is not sensed again.

The message, EOT XXXX, is printed out as a comment to the operator when
end-of-tape is sensed on the standard output unit. If this occurs, three addi-
tional records are written on the standard output unit: and the tape ia auto-
matically rewound with interlock. The monitor waits until a new tape is mounted
on the standard output unit and the unit is restored to load-point position.

The three records written on the output unit are END OF TAPE END, end-of-
file mark, and END MONITOR OUTPUT.

The subroutine GETCH* in the resident portion of the monitor system may be
used to determine the channel assigned to a logical unit. It also is used to ob-
tain the contents of the RHT entry corresponding to the logical unit number.
The calling sequence is:

LDA n (logical unit number)

RTJ GETCH*

CHKSTD*

The subroutine enters into the low-order 6 bits of the A register the channel
number assigned to n; the RHT entry is entered in the Q register.

The subroutine CHKSTD* is used to determine if a logical unit has been equated
to the standard input unit (n = 50) on the MCS control card. The calling se-
quence is:

LDA n (logical unit number)
RTJ CHKSTD+*
If n has been equated to the standard input unit, the subroutine exits with 50 in

the A register, otherwise the A register will contain the number n in the low-
order 6 bits.

INTERRUPT PROCESSING 4

REMOVE*

SELECT*

Interrupts are processed under the CO-OP Monitor by the subroutines SELECT*
and REMOVE*. Without these routines, it would be necessary to select an inter-
rupt by an EXF instruction, and when an interrupt occurs, perform a test to
determine the type of interrupt. Storage location 71 would then be set to the
starting address of the programmer's interrupt subroutine, and when it
terminated the interrupt selection would have to be cleared.

By using SELECT*, however, the programmer simply chooses one of the avail-
able interrupts and provides the starting address (entry point) of his interrupt
subroutine. The SELECT* subroutine performs all the tasks associated with
interrupt selection and recognition.

REMOVE* cancels previously selected interrupts so that they do not carry
over into the next program within the same job. REMOVE* may be used at
any point in a program when the interrupt is no longer needed. All interrupt
selections are automatically cleared when a job is terminated.

SELECT* selects the type of interrupt requested in the calling sequence. When
the interrupt occurs, control transfers the programmer's interrupt subroutine,
interrupt lockout is imposed, and the interrupt selection is cancelled. After the
interrupt subroutine is executed, control returns to the main program, and the
interrupt lockout is removed. A programmer must reselect an interrupt if

that selection is to produce additional interrupts. Reselection would normally
be made within the interrupt subroutine, but it may be done at any time.

Calling sequence:

L RTJ SELECT*

t NAME
L+1 error return
L+2 normal return

TThe 1604-A uses location T through 17 for interrupt.

The parameters t and NAME will be transferred to the monitor interrupt
subroutine for future use.

The parameter t is an octal number indicating the type of interrupt as listed
in table 4-1. NAME is the symbolic entry point of the programmer's interrupt
subroutine. SELECT* normally exits to location L+2; however, if an illegal
parameter is encountered, the exit is to location L+1. L+1 may contain a jump
to an error subroutine and L+2 may contain the next instruction pair in the
main program.

A separate calling sequence is used for each interrupt to be selected.
The programmer's interrupt subroutine may be coded as follows:

L NAME SLJ *x

(first executable instruction)

subroutine coding

SLJ NAME

NAME is that of the interrupt subroutine. If the interrupt is to remain
selected, the subroutine should contain another SELECT* calling sequence
using the original parameters. Since interrupt lockout is imposed when
the interrupt occurs, no interrupts will be recognized during execution

of an interrupt subroutine.

Table 4-1. SELECT* Interrupt Keys

t (octal) Type

1 interrupt on channel 1 inactive
2 interrupt on channel 2 inactive
3 interrupt on channel 3 inactive
4 interrupt on channel 4 inactive
5 interrupt on channel 5 inactive
6 interrupt on channel 6 inactive
7 interrupt on arithmetic fault
10 interrupt on overflow

11 interrupt on exponent overflow
12 interrupt on exponent underflow
13 interrupt on shift fault

14 interrupt on divide fault

4.2

MODIRET* After the programmer's interrupt subroutine is executed, control normally
returns to the location in the main program where the interrupt occurred; how-
ever, another return address can be specified by the subroutine MODIRET*.
This call to MODIRET* appears in the programmer's interrupt subroutine and
modifies the program address placed in the upper half of storage location 7 by
the 1604 hardware when the interrupt occurs. The original program address
(the next instruction to be executed in normal program sequence) is transferred
to the A register by MODIRET* and a new address is inserted in location 7.

Calling sequence:

L ENA R
RTJ MODIRET*
L+1 normal return

The address parameter R is the location to which control is to be returned
after completion of the interrupt subroutine. The 1604 sets a flip-flop indicating
whether the upper or lower instruction in address location 7 is to be executed
next; therefore, the programmer must provide both returns in the return
address R.

The contents of R and R+1 would normally be as follows unless the upper
return is to be handled in a different manner than the lower return.

R SLJ 0 *+1 (if upper flip-flop set)
SLJ 0 *+1 (if lower flip-flop set)
R+1 next instruction
REMOVE* The following calling sequence removes interrupt selections that have not
occurred:
L RTJ REMOVE*
+
& 0
L+1 error return
L+2 normal return

The octal parameter t indicates the selected interrupt to be removed as listed
in table 4-2. The error return is taken if this parameter is illegal, otherwise
the return is made to the upper instruction in L+2.

REMOVE* should be used at the end of a program to remove all selected inter-
rupts that have not occurred, so that unwanted selections will not carry over to
another part of the program or to the next program.

Table 4-2. REMOVE* Interrupt Keys

t (octal) Type

1 remove interrupt on channel 1 inactive
remove interrupt on channel 2 inactive
remove interrupt on channel 3 inactive
remove interrupt on channel 4 inactive
remove interrupt on channel 5 inactive

remove interrupt on channel 6 inactive

N o v e W

remove interrupt on arithmetic fault
(except clock)

10 remove all selected interrupts
(except clock)

4-4

OPERATOR-PROGRAM 5
COMMUNICATION

FLAG SETTING

Within the resident portion of the monitor are subroutines that allow the operator
to communicate with the program being executed. Using the typewriter, the
operator can set up to 48 flags that are interrogated by the subroutine FLAGTST*,
or he can type a message (maximum of 31 characters) that is interpreted by the
subroutinc OPCOM* and a subroutine provided by the programmer.

(SENSE SWITCHES) The 48 flags (actually 48 bits in a flag word) are set when the operator control

FLAG TESTING

statement f,al/nl, .. .al/ni is entered on the typewriter. The parameter, a,

is the number of the flag, 1-48, and n the flag value key. If n is 1, the flag is
set. If n is 0, the flag is cleared. For example, if flags 1,30,40, and 48 are to
be set, and flags 5 and 10 are to be cleared, the operator would type the message:

£,1/1,30/1/40/1,48/1,5/0,10/0.

Flag numbers may be in any sequence. The message cannot contain more than
31 characters, including the f, commas, slashes, and terminating period. The
first six of these flags are called sense switches in FORTRAN-63. Bit 0 = flag
1 = sense switch 1, bit 1 = flag 2 = sense switch 2, and so forth.

To interrupt the current program, the operator strikes the carriage return key
on the typewriter. The monitor then types a period and waits for the message
to be typed. After typing the message, the operator returns control to the
monitor by striking a period and a carriage return. If a program has been
interrupted, processing resumes at the point where the interrupt occurred.
Flags may be set at any time, whether or not a job is being processed.

To test the flags, the programmer uses the subroutine FLAGTST*. The calling
sequence 1s:

L ENA a
RTJ FLAGTST*
L+1 normal return

The parameter a is the number of the flag to be tested (1-48). The routine
returns to L+1, and the A register contents indicate the value of the flag. The
A register is negative if the flag is set; positive, if the flag is not set.

5-1

OPERATOR
MESSAGES

MESSAGE
FORMAT

INTERRUPT
SUBROUTINE
FORMAT

The programmer can request a message from the operator of up to 27
characters including spaces, which is stored 8 characters per word, left
justified in BCD format. Blanks are used for fill if the message is less
than a multiple of 8 characters.

The operator initiates a message by striking the carriage return key on a
typewriter. The monitor will interrupt the current program and allow the
operator to type a message in the following format:

com, ... (message). ..

The operator again strikes the carriage return key and the message is
processed by the interrupt subroutine. As soon as the interrupt subroutine
executes either a normal or alternate return, the monitor types an *, indi-
cating that another message can be accepted from the typewriter. (Interrupt
lockout is removed at this time).

To interpret this message within the program OPCOM* and an interrupt
subroutine provided by the programming are used. OPCOM* tells the
monitor to expect a message from the operator and supplies the entry point
of the interrupt subroutine. When the operator types the message, control
is turned over to the interrupt subroutine and an address is sent to the
subroutine indicating where the first word address of the message can be
found. The end of a message is always indicated by a period, therefore the
programmer must search for this period to determine the length of the
message. The calling sequence for OPCOM* is:

L RTJ OPCOM*
ZRO Y
L+1 normal return

The parameter Y is the location of the programmer's interrupt subroutine.
Return is made to L+1 after Y has been transferred to OPCOM* for future
use. This calling sequence to OPCOM* is only for initialization, and must
be executed before a COM message is typed.

The interrupt subroutine is written as a closed subroutine in the following
format:

A SLJ *x

. (subroutine coding)

SLJ A

NORMAL
RETURN

A is the entry point of the interrupt subroutine. When the message is typed,

the ** in the upper address of the entry point is replaced by an address from
OPCOM*, and control is turned over to the interrupt subroutine. (The return

to the main program must be made through OPCOM* after the message has

been interpreted.) The first word of the message is located by indirect address
procedures; the upper address of the entry point word is extracted and decreased
by 1. This modified address from the UA of the entry point word is now the

indirect address of the first word of the message location.

The return address to OPCOM* is also computed from the upper address of the
entry point. In this case, the return address may be one greater than the upper

address of the entry point.

The following coding illustrates a method of obtaining the first word address of

the message block and the return address to OPCOM*.

A separate OPCOM* calling sequence must be initiated for each message, as
the monitor cancels a message request after the message has been processed.
An operator message of the type ""com' is ignored if the current program has
not executed a return jump to OPCOM* when the ""com'" message is typed. The
main program continues normal processing.

MESSAGE

SAVE

ENTRY

SLJ
SIU
LIU
INI
SIL
LDA

N e

. subroutine coding

LIU

1
INI 1
SIL 1
ENI 1
SLJ 0

MESSAGE

* ok

SAVE
MESSAGE
-1

*+1

* %

MESSAGE
1

*4+1

* %

Ak

In this example, the first eight characters of the message are placed in the A
register by the LDA 7 ** instruction. The return to OPCOM* is accomplished
by the coding at the end of the subroutine. Any index registers used in the

ALTERNATE
RETURN

subroutine should be saved and restored as shown. Interrupt lockout, imposed
when the message was typed, is removed by the return to OPCOM*, which in
turn returns control to the next instruction in sequence in the main program,

Control can be taken away from the main program by the programmer interrupt
subroutine, and the interrupt subroutine can act as a new main program. The
alternate return is accomplished by planting a return jump instruction in the
subroutine, using as the M-term the upper address of the entry point location
(unmodified). This will cause a return jump to OPCOM*, giving main program
control to the interrupt subroutine at the location following the return jump
instruction. The following coding illustrates a method of finding the message
and giving main program control to the interpretive subroutine.

ENTRY MESSAGE

MESSAGE SLJ 0 Aok

SIU 1 SAVE

LIU 1 MESSAGE

INI 1 -1

SIu 1 *+1
+ LDA 7 *x

LIU 1 MESSAGE

SIU 1 RETURN
RETURN RTJ ok
SAVE ENI 1 *ok

New Sequence

The RTJ instruction transfers control to OPCOM*, which then returns control
to SAVE rather than to the normal sequence in the main program. This removes
the interrupt lockout.

DIAGNOSTICS 6

LOADER ERRORS

The diagnostics and programming aids discussed in this chapter consist of
loader errors, memory maps and snapshot (SNAP) dumps. Snapshot dumps are
requested by the programmer through SNAP cards interpreted at execution time,
Memory maps can be requested whenever a program is loaded by using the
proper key on a LOAD, EXECUTE or EXECUTER card.

When a program is loaded, the loader routine (Appendix C) checks for various
error conditions. Errors detected by the loader are indicated on the standard
output unit in the following forms:

LOADER ERROR XX YYYYYYYY ZZZZZ777

XX a 2-letter mnemonic code denoting type of error

YYYYYYYY)

T an 8-digit octal number or a symbol

LOADER ERROR CODIS

XX YYYYYYYY VANNANANNN Type ol Error

BC last program name in col. 1 and 2 error in a loader control
loader tables current card card (RELOCOM, etc.)

BR last program name in col. 1 and 2 more than 62 block names
loader tables current card in onc subprogram

BT name of incorrect not significant library tape is in error
library subroutine

CK last program name in col. 1 and 2 card checksum does not
loader tables current card check

CS last program name in col. 1 and 2 current cards of binary deck not
loader tables or previous card in correct sequence

EF last program name in not significant end-of-file encountered
loader tables on standard input unit

ET word 1 current card word 2 current end-of-tape on overlay

6-1

card

tape

IO

LA

LC

LE

LL

LT

MD

ocC

0S

PM

RT

S8

TR

UN

WE

YYYYYYYY

not significant

blank

program name on
current card

last program name
loader tables

word 1 current card
name of current

library subroutine

last program name in
loader tables

word 1 current card

last program name in
loader tables

last program name in
loader tables
word 1 current card

blanks

word 1 current card

word 1 current card

first named transfer

last program name in
loader tables

27227277727

erroneous symbol

blank

col. 1 and 2
current card

not significant

word 2 current
card

col. 1 and 2 current

card

not significant

word 2 current
card

multiple defined
symbols

not significant

word 2 current
card

1st instruction of
LOADER*

named transfer

word 2 current
card

second named
transfer

undefined symbol

BCD overlay LCC card information

6-2

Type of Error

undefined EXT symbol

memory is full, loader
cannot load

illegal I/O assignment
IDC card

linkage address outside
EXT table

illegal data on LCC

illegal card on library
tape

more than 100 library
subroutines called

too many overlay tapes
specified

symbol encountered by
loader has more than one
definition

loaded program has over-
flowed memory

overlay number out of
sequence

error in LOADER* calling
sequence parameters

transfer address not with-
in main program, overlay,
or segment

segment number out of
sequence

more than one TRA card
with a symbolic transfer
address

symbol encountered by
loader is not defined

writing error on overlay
tape

MEMORY MAP

When requested on the EXECUTE, EXECUTER or LOAD card, a memory map
is printed on the standard output unit. This map lists the program names, block
names for labeled common, block names for numbered common, entry point
names, and the absolute addresses assigned to these names when the program
was loaded. The program, block, and entry point names are those of both the
program and the library subroutines loaded with the program. Also listed are
the program names and entry points of the monitor resident routines used by
the program and the library subroutines. (Resident entry points are followed
by asterisks.) For overlay programs, a map is produced for the main program
and each overlay and segment that is loaded.

PROGRAM NAMES

00043 RESIDENT 00030 ERRDUMP* 06000 FLMPY
10000 HORRORS 15000 PLEASE 27000 COMPUTE
50000 HOOTOWL 62000 MIMIC

LABELED COMMON

05650 A 07200 AB 07700 ABC
14323 ABCD 25000 ABCDE 47400 ABCDEF
61200 ABCDEFG

NUMBERED COMMON

04327 1 04377 20 04405 300
04505 L4000 05506 50000 05600 6000

PROGRAM ENTRY POINTS

01000 READ* 01005 WRITE* 01326 SELECT*
01450 REMOVE* 02000 LOADER* 03700 CLBNBCDx*
00300 EXIT* 00400 ERROR* 01372 MODERIT*
00700 BCDBN=* 00100 OPCOM* 00050 RECRET*
00500 RECLIM* 04000 FLAGTST* 04120 MEMREC*
06000 START 06200 NORMALIZ 06317 ANSWER
14322 MASK 12000 INVERT 15000 PACK
16233 SEARCH 22300 STORE 27700 DIVIDE
27502 ERROR 30003 ROUND 50000 BEGIN
50013 PITCH 51120 TEMPO 62000 RDCARD
62100 CONVERT 62405 EXECUTE

6-3

SNAPSHOT DUMPS Snapshot dumps are made of storage areas and console conditions at times
selected by the programmer during the execution of a program. The dumps
are triggered by inserting SNAP instructions at selected points in a program.
A SNAP compiler routine interprets SNAP control cards prepared by the
programmer, :

These SNAP Instructions replace the original instructions at the specified
locations in the object program. The original instructions arc retained in
a SNAP execution routine which is called in from the library tape and acts
as a library subroutine that is part of the program. When a snapshot dump
has been produced on the standard output unit, the original instruction in
that location is executed, and control is returned to the next instruction in
the program sequence.

The programmer can specify on the SNAP control card the number of times
a snapshot dump is to be produced at a particular location. This would occur
only when a snapshot dump is requested within an iteration.

The programmer specifies the number of iterations to be performed before
the first dump occurs, the number of iterations between cach dump, and the
total number of dumps for that location. After the last dump has been per-
formed by the SNAP instruction in that location, the original instruction is
re-entered in that location. The original instruction is executed during
every iteration. If a SNAP dump occurs during an iteration, the original
instruction is executed immediately following the snapshot dump. Ior
example, in an iteration to be exccuted 100 times, the programmer can re-
quest that the first dump occur during the tenth iteration, and thereafter
every fifth iteration, with a total of ten dumps to take place.

RESTRICTION ON

SNAPSHOT DUMP

LOCATIONS An instruction to be replaced by o SNAP dump instruction must meet the
following requirements:

1. The contents of the location containing the instruction to be replaced
must not be referred to by that instruction or others in the program.

2. The replaced instruction must not be modified in any way, since
modification would be to the SNAP instruction.

3. The replaced instruction must not be part of a subroutine transfer
instruction calling sequence unless it is in the alternate or normal
return location.

4. The address field cannot be un EXT symbol.

6-4

SNAPSHOT
DUMP FORMATS

SNAP
CONTROL CARD

The dump produced may have any of five basic formats, with or without the
console conditions. The format is specified in the mode key on the SNAP
control card. Lines which are identical to the previous line, except for the
address, will not be printed.

The SNAP dump contains facilities for a maximum of ten snap locations in any
one program. The SNAP dump routine is in memory at execution time and will
be included as a subprogram of the program being executed.

The console conditions (figure 6-1) will contain the contents of:

1. A register in the specified format and in octal
Q register in .he specified format and in octal
Program adrdress register in octal

Six index registers in octal

9 e W

Input/output channel control words (storage locations 00001
through 00006) in octal

6. Fault indicators and interrupt lockout condition will be included

with identifying titles and described as ON or OFF.

Octal Dump and Octal Dump with mnemonic
The octal dump and octal with mnemonic dump formats (figures 6-2
and 6-3) produce an absolute octal address and six words in each line.

Fixed Decimal Dump
The fixed decimal dump format (figure 6-4) produces an absolute
address and six words in each line.

Floating Decimal Dump
The floating decimal dump format (figure 6-5) produces an absolute
address and six words in each line of the form, +XXXXXXXXXXXX+XXX.

BCD Dump

The BCD dump format (figure 6-6) produces an absolute address and
ten words of eight characters each in each line.

When a SNAP card appears, the Snapshot Dump Routine inserts a snapshot dump
at a specified location in a subprogram. The card format is:

11
9SNAP, specification field
9

jeurrog dwng SOTUOWLUIN Y}Im (8100 "£-9 2anSig

000000Z¢ NW4 L 19%0E0Z VLS 00000409 NVS £S/SE£0Z VIS 00000ShS NSS! 9HEL9E0T VIS 0000LLE1l 2¥1 0ZSHIHOZ VLS %[990

[

000ZL991 DA #%9SSHOT VIS 00H0SHIZ drV S1ZL0S0Z VIS OWZTILHET 4D 0EHMHS0Z VIS 01SLOMOE N4 9£S5/507 VIS 04990

jewrxo dwing [819Q °'g-9 2andig

05L00%SL 0000000§ (H110%SL 00000005 9Z5004SL 00000005 Z050045L 50S2€4HL 00000005 £00000SZ 11000905 00000505 ZZ %00
00000%0S £0000E0S 00000Z0S 00000105 00000005 L#00009L 1010004 9%0000Zt [£00000Z 1000000t ©00ZO®SL 00000005 H9HOO

jeuwrIog dwrng SUOTIIPUO) 9[0SUO) ‘-9 9InSrg

LLLLL LIl 920 001%0 00LHO 991 tzLLo Tello wo0 LLLLL LLLLL €21 LLLLL LLLLL Ta0 LLLLL LLLLL (o1
00000 9 X3AaNI 00000 S X3QNI 00000 # X3aNI 00000 ¢ X3ONI 10000 ¢ Xx3aN|I ¢1000 | Xx3aNI

0 0000000000000000=0 0O 0000000000000000=V 10090=d

6-6

500+0000000001 ~
110+000000000t *

©00+0000000001 °
010+0000000001¢ *

1 ZEngLTENG-

jewrog dwung dog °9-9 9an3ig

IXSIT1IN ITINTING 115S18S70 V1QINSSW JS10S1SS HSSYSSDD SVISAQ4N
rvoLsvls 2010078n SQavaviv QTUNIVNI $11S10$7 vON3SY1S y0SUV0YZ

1ewrxog dwng [ewroaq Surjeold °'g-9 aan3rg

900+0000000001 * £00+0000000001 800+0000000001 ° 600+0000000001 °
¢10+0000000001 ° £10+0000000001 * #10+0000000001 ° $10+0000000001 *

rewrxo] dwn [ewrtodq paxid ‘H-9 2an3dig

i 981 - £21068499h¢C! 0-
6hlZhl- l 9hzENgENL9 Lhl

6-7

The word SNAP appears in columns 2 through 5; a comma in column 6 is
followed by the dump specifications which are free-field; fields are separated
by commas. No blanks are allowed within the field, and the last field is termi-
nated by a period. An omitted field is indicated by two successive commas.
The specification is of the form:

P, =+ Nl’ FWA, LWA, MODE, K

K_,K_, I
1 ’23I

1
P; = Ny denotes the instruction location relative (+ Ny) to the program P,. P
is the program name, and Ny is an octal number indicating the relative position
of the instruction. This is determined from a CODAP-1 listing of a program

or subprogram.

FWA, the first word address of the dumped region, may be in one of the
following forms.

A1 is an unsigned octal number denoting an absolute octal location.
iNz is a signed octal number denoting an octal location relative to Pl.
P2 + N2 denotes an octal location relative to a subprogram or common

block Py. P, is the subprogram or block name, and N, is a
signed octal number.

LWA, the last word address of the dumped region, may be in one of the
following forms:

A2 is an unsigned octal number denoting an absolute location.

+ N3 is a single octal number denoting an octal location relative to
Py if Py has been defined. If not, this location is relative to Pl'

P3 + N3 denotes an octal location relative to a subprogram or common block
Pgy. Pg is the subprogram or block name, and Ng is a signed octal number.

The MODE key indicates the format of the dump by one of the following codes:

O or Blank octal dump

OC octal dump with console conditions

M octal with mnemonics dump

MC octal with mnemonics dump and console conditions
D fixed decimal dump

DC fixed decimal dump with console conditions

F floating decimal dump

FC floating decimal dump with console conditions

B BCD dump

BC BCD dump with console conditions

Kq, Ky, Kgure control parameters to specify the frequency of the dump. When
the replaced instruction has been executed at the K1 time, the specified dump
is output every Kq time the replaced instruction s executed until K2 dumps
have becn output. If these parameters are omitted, the dump will be performed
every time the replaced instruction is encountered.

I is an arbitrary alphanumeric used for identification with every dump, as in
this example:

11
$SNAP, ALPHA+10,B,200,DC,1,20,1,A.
9

This will dump the storage area B+200. The replaced instruction is the tenth
instruction in program ALPHA, and the dump will occur the second and following
times that this instruction is executed until a total of 20 dumps have been output.
Each dump will be in fixed decimal format, it will include the console conditions,
and will be identified by the character A.

COMMON

SNAPSHOT :

DUMPS When snapping a labeled or numbered common block, the parameters Pyand Pq
take on the form . . , COMMON/block name/ + ny (or ng), . .. For blank
numbered common, this takes the form . . . , COMMON/ / + n (or n3), L.

The example below indicates that the second group of 64 words in the numbered
common block 123 are to be output when the snapshot dump is executed in
program BETA.

11
,(7)SNAP,BETA+500,COMMON/123/+100,+1OO,DC,1,1,l,B.
9

SNAP CARDS
IN JOB DECKS Any number of SNAP control cards can be included with a program in a job
deck, but only the first ten are executed.

These cards are placed in any order between the two TRA cards that terminate
an object program. SNAP cards can be included with a load-and-go deck for
FORTRAN-63 or CODAP-1 by using a modified job deck. The modification for
FORTRAN-63 and CODAP-1 consists of removing one of the two END cards at
the end of the source deck and placing the SNAP cards after the EXECUTE

(or EXECUTER) card, followed by a TRA card. The END card removed should
not contain the transfer address for the program. For COBOL load-and-go job
decks the SNAP cards are placed between the EXECUTE card and the TRA
card.

SNAPS IN

OVERLAYS Snapshot dumps may be inserted in the main program or in overlay or segment.
The SNAP control cards for overlays have the standard format. The control
cards are inserted after the first transfer card following the main program,
overlay or segment in which the dump is to occur.

I end-of -file

data deck — — —{optionol)
r TRA
gsnNap,... V¥V SNAP cards
g
(TRA
RBD deck = Sl — — - object program deck
F, EXECUTE.
(;coop. o e MCS card
5 BEGIN JOB, . . .
Execute Only with SNAP Cards
I end-of-file
data deck — — — —{optional)
(TRA
(1)
° SNAPy .. W SNAP cords
9
S EXECUTE
(FiNIS
r ENO
f PROGRAM VOB -/ ————— — —— Source Program
r; FTN,. .. (or CODAPI)
[;’COOP, D O - MCS cord
3 BEGIN JOB. . .

Compile and Execute with SNAP Cards

6-10

OVERLAYS AND SEGMENTS 7

If a program is too large to be contained in core storage as a complete unit, it
may be subdivided into overlays which are treated as subroutines and brought
into storage by the monitor as needed. If necessary, overlays may be sub-
divided into segments. The LOADMAIN subordinate control system provides
for execution of overlay programs.

A flow-chart showing the hierarchy of operations is helpful in determining which
sections will be overlays and which will be segments. When the program is
properly subdivided, each overlay and segment is coded as a separate sub-
program or group of subprograms. A main or control program is required to
call in the overlays during execution. Any of the library functions may be used
by an overlay or segment, but library subroutines should be called by the main
program, as some library routines must be in storage during the entire overlay
program. An overlay or segment may use any portion of the main program as
a subroutine, and a segment may use subroutines in any overlay of which the
segment is a part. Only the main program, one overlay and one segment may
be in storage at one time. Only the main program can call overlays, and
segments may be called only by their associated overlay. The library sub-
routine, ROVER, is implicitly called whenever a call is made to an overlay or
segment.

Information in the labeled and numbered common storage areas defined in the
main program may be used by any overlay or segment. Labeled and numbered
common storage areas and entry points assigned to overlays and segments can
be referenced only when the associated overlay or segment is in storagé.

A FORTRAN or CODAP source program consisting of a main program and one
or more overlays and segments may be compiled and executed (load-and-go) at
one time, or it may be compiled for later execution. In either case, the source
program is compiled in the usual manner. If the operation is to be load-and-go,
the relocatable binary deck is written on the load-and-go unit in the usua. way
with additional overlay control cards for generating an overlay tape. Once the
load-and-go tape is prepared, the program is executed with the EXECUTE card.
During the loading phase, each subprogram is loaded together with library sub-
routines and written as an absolute program on an overlay tape. The address
assignments are made exactly as initially loaded by the EXECUTE card; there-
fore, the overlay program cannot be relocated once it is generated.

Compilation of overlays for later execution requires standard relocatable binary
output; this binary output is used to generate the overlay tapes.

A maximum of four overlay tapes may be generated for one program. Overlays

are numbered sequentially on each overlay tape, starting with 1. Segments with-
in an overlay are also numbered sequentially, starting with 1.

7-

CALLING OVERLAYS
AND SEGMENTS The following FORTRAN program illustrates how overlays are called from a

main program in FORTRAN language.

FORTRAIN CODING FORM

PROGRAM

CONTROL DATA LLLI3

ROUTINE

DATE PAGE OF

: STATE-% FORTRAN STATEMENT SERIAL
o] MENT |n 0: 1€R0 I* ONE 2: TWO NUMBER
E} NO. (T #: ALPHA O 1: ALPHA I 25 ALPHA Z
|
T I L L Y R 228128 LIS LTI IR IR 304315130 41331301 47,) 191901 1192 431803 48] 87 8 031301 5: (323133334187 30 (30180 &5 180187 1881801 IOLE: (12173 1 P30 e 0
L PROGRAM MAIIN v oo fooc g buv iy bllerlaaty ',441 | S SR B B R S O O U R !
cl . MALNL PROGRAM | Loy oo faua oo o gt aa ot bt aaaali) oo
Lo CGOMMON, (A By €y JEPST v v c faacian i i g gt ISV
! AV IREADL (8 ALBL L IBPS, s s s ia o oo b eraias il iy
vos p (RRINT 70 ALBL G UEPS v b v saa funva g aa baa g o b [N ST EN OV RO
YL LiF ((JABSIFI QA A+ B].Bi-1C* .C) -E) LN I T B W S I ST I NN (O I A IV AN S AT R AU AT U AT AT T ST SN AT IV ST i
i 51 (1LF, (AAB\snFA(Aq.LB[Ug 'ICAVIAA.IAX)A.XELPS’Lzlol'lllol"ho#J L e S Y U S SO U U U W SO0 VA U OO0 U U (0 S S A 0 N S R U S U B R
i (1oL L, GABSF (G Ci+AI*A-B"B) - EPIS),20,, 1,5 . 15)] [PV RIS U NS SRR SN I T SO AR ST AU RTO S AR
1 1S CALLL OVERLAY, (00 b oo o d i cogaa o Jo i a it v raa s v b b
)
; IS RN VRN U I e B sotvawdae oo g v o fa b oo
i 200 CALLL OVIERLIAY, (0,00 0200 v o | e gy v Lo i 0y L0 b i NI UGN I EUP N (VT G U SRR
Gy GO0 L e o cd e ca g i i s e T I ISR I ST SRR
4o o8 FORMAT, L (3F 10080, LFS S w ua v b oo b s ooy
Lo 7 FORMAT (GLUH 0L 3F) 00, B G LFi S o vy by oo w1y TN WA D W I I I A ARG AT SR SRR S R
AR T R I I S W D DU W N Cialaa L.
| Y PROGIRAM OVl oo vy v uuiiaiaay e NG W U S S IR U S R R S RO R G R
CL. . OMIERILAY) ol oo b coae v v bov v e by o g g by g [N RN B AR SR
Lol EB—ALVNTA.AQL_AA.A'_L‘L>LIJL‘>AL#,_‘_‘_..LL‘LI" I R | Y WD W Y T S | lAIA;LAL,A,_J,;_‘AA,,_
S AS_LEQAB_I_ AT 1 (29H THILS, 1.5, NOT, | 1 LANGLE) v i v v fuaa s oo fu] tasiy]
dauu) END e e e I IS I I A GV I N TN A Al ST IT NIV IR N RN RN (VY STV EV RN
L ERQEB}:“NLLOLV@LJ;; [T ST TS T TS TG R SRS N NN SN
Cluv cJJOVERILAY, (2 4 0 i v g b ia BT EEEE TS RN ENE RS DS SN eee
Lloca PRUNT, 9y 00 gy v v vy o oy g g a4 41 [N I Bt NN Llrae g |
L1119 EloiwALTl A(IZISAHI LTl}{l,L_Sg LIJSI lAl |RlI G,H‘Tl |T|R11A1N‘LG I:LEA)A_L T T A IR0 R Y U U S S T W Y A N B O O I B B R O S S e
b4 oo DUEND foani e o b v v e e b v o gy g U U W R G S S 0 U O O B 0 U} s v
141 ELNlDl U T - lAllAllllJllllllllAlAlllllAllllllle U U T T W T S VI O B R W
N L T T SRS E T ETE F T TSNS ISR FUT NS REE T NS ETETY 0 SN
lﬂl]_L)A D D WS T S U G W W (T T B I B W JAAIIJAKL,L‘IIIIIL‘AllAllll‘ 1) W '

7-2

The calling sequence to an overlay or segment in FORTRAN is:
CALL OVERLAY(N,P,0)

The calling sequence for a CODAP-1 program is:

L RTJ OVERLAY
L+1 ZRO L(N)
ZRO L(P)
L+2 ZRO L(O)
ZRO 0
L+3 Normal Return T

In CODAP-1, the location of N,P, and O are given in the calling sequence.
These parameters are defined as follows:

N is the logical unit number of overlay tape.

P is the parameter to be passed to the overlay routine; L(P) is zero
if no parameter is to be transmitted.

O is the overlay number to be called.

Any logical unit number from 1 to 49 can be used as an overlay tape. Consec-
utive overlay tapes need not be numbered in consecutive order.

The calling sequence for segments is similar to that of overlays; to call a
segment in FORTRAN, use the following:

CALL SEGMENT (N,P,O,5)

For CODAP-1, use the following:

L RTJ SEGMENT
L+1 ZRO L(N)
ZRO L(P)
L+2 ZRO L(O)
ZRO L(s)
L+3 Normal Return t

t For FORTRAN-62 master tapes the normal return is to [.+4; [.+3 is a dummy location.

7-3

PARAMETER
TRANSMISSION
(FORTRAN)

ROVER

PARAMETER
TRANSMISSION
(CODAP-1)

N is the logical unit number of the overlay tape containing the
segment.

P is the parameter to be passed to the segment. L(P) is zero if
no parameter is to be transmitted.

O is the number of the overlay containing the segment to be called.

5 is the number of segment to be called.

In FORTRAN-63, P may be any standard variable type except logical (integer,
real, double or complex). The parameter is picked up in the same manner as

a function subroutine. Thus, if the parameter Q is to be transmitted to overlay
1 in the example above, the call to overlay 1 in the main program is:

CALL OVERLAY (1,Q,1)
The PROGRAM statement for overlay 1 is:

PROGRAM 0OV1(@Q)

ROVER is a library subroutine which loads and executes overlays and segments.
It also controls the transmission of parameters, and the return of control back
to the calling routine after the overlay or segment has been executed. ROVER
is implicitly called by the statements CALL OVERLAY (RTJ OVERLAY) and
CALL SEGMENT (RTJ SEGMENT) as OVERLAY and SEGMENT are entry points
to ROVER. ROVER is automatically loaded with the main program at execution
time if the main program contains a call to an overlay or segment.

The parameter identifiers need not be the same, as each is a local identifier.

In machine language, the address of the parameter P is transmitted to ROVER,
therefore the overlay or segment must obtain this address from ROVER. The
calling sequence generated by ROVER to call the appropriate overlay or sub-
routine is as follows:

L RTJ Entry point of overlay or segment
ENI 0

L+1 ENI 0 Parameter address
ENI 0

7-4

When the RTJ instruction is executed, the upper address of the entry point
word in the overlay or segment contains the address L+1 of the ROVER calling
sequence. The upper address of L+1 contains the address of the parameter to
be transmitted. The following CODAP-1 overlay example illustrates one
method of obtaining the parameter through ROVER.

IDENT ovi1

ov1 SLJ 0 *x
SIU 1 SAVE
+ LIU 1 *-1
LDA 1 0 (L+1 in ROVER call)
+ ARS 0 24
SAL 0 PARAM
PARAM LDA 0 *k (Parameter now in A-register)
SAVE LIU l *ok
ENI 0
SLJ 0 ovil
- END Oovi1
RULES FOR
OVERLAYS AND
SEGMENTS 1. Overlays and segments must be written as closed subroutines entered by

return jump instructions.

2. Only the main program, one overlay, and an associated segment may be in
storage at any time.

3. A segment cannot reference external symbols in another segment or an
overlay of which it is not a part.

4. An overlay cannot reference internal symbols in another overlay.

5. The main program cannot reference external symbols in any overlay or
segment.

6. The main program and the current overlay and segement can communicate
via labeled common. Numbered common may be used to communicate with
overlays and segments not in core.

7. Parameters may be transmitted from a main program to any overlay.
8. Parameters may be transmitted from an overlay to any of its segments.

9. A segment can be called only from its associated overlay or from the main
program.

10. An overlay can be called only by the main program.
11. Overlays are numbered sequentially starting at 1, on each overlay tape.

12. Segments are numbered sequentially starting at 1, for each overlay.

OVERLAY STORAGE

ASSIGNMENT Only one overlay and segment can be in storage at one time. The storage
assignment made to the main program, library subroutines and the currently
loaded overlay and segment is shown below.

777

I/O Drivers and Tables

LOADMAIN
subordinate control system

Main Program

Main Labeled Common

Library Subroutines
and associated Labeled Common

Overlay

Overlay Labeled Common and
LIBRARY SUBROUTINES

Segment

Segment Labeled Common and
LIBRARY SUBROQUTINES

Segment Numbered Common

Overlay Numbered Common

Main Numbered Common

Monitor Resident

00000

The block reserved for the library subroutines assumes they were called by
the main program; otherwise, the library subroutine falls at the end of the
overlay or segment.

CONTROL CARDS

OVERLAY JOB

Separate numbered common assignments are made if main, overlay and segment
contain different numbered common block references.

If another segment of the same overlay is called in, the new segment is loaded
on top of the old segment, leaving the original overlay intact, and destroying the
previous segment. Labeled and numbered common for the new segment replace
the common areas of the old segment. If a new overlay is called in, only the
main program, associated library subroutines and numbered common remain
intact, as the new overlay is loaded on top of the previous overlay.

When an overlay program is executed, the fixed portion of storage (resident
CO-OP and I/O Drivers) must not occupy more storage space than when the
overlay tape was originally made. Otherwise, the linkages between the overlay
program and the monitor would not be correct.

Three control cards, MAIN, OVERLAY, and SEGMENT, are used in generating
overlay tapes. These cards have the following formats:

11 11 11
IMAIN, n. JOVERLAY,n,0. HSEGMENT,n,0,s.
9 9 9

Each field is separated by a comma; the last field is terminated by a period.
The parameters are defined as follows:

n is the logical unit numbers on which the associated main program,
overlay or segment is to be written.

o 1is the identification number of overlay. For SEGMENT cards, this
is the number of the overlay containing the segment.

s is the identification number of segment.

The parameters n, o, and s on the control card must correspond to the
parameters n, o and s in the CALL statement or CODAP-1 calling sequence
using the overlay or segment. The logical unit number n must also appear in
the I/0 list on the MCS card, defined either as a scratch unit or as both an
input and output unit.

DECK STRUCTURES Overlay tapes may be generated and executed as a load-and-go operation or may

be generated in one operation and executed at a later time.

LOAD-AND-GO

JOB DECKS The following diagrams illustrate the position of the required control cards for
a FORTRAN overlay program, a CODAP-1 overlay program, and a mixture of
the two, including previously compiled binary decks.

Segment 2 |
of Overlay 1 — —/—
data deck

PROGRAM ZETA I
38 ,56. I

INARY,56
ﬁmﬂ sete deck fopronal
Segment [of Overlay | — /£ — dota deck I I
{ PrOGRAM OMEGA '

(3FTN,L.PE.
rc'.SEGMENT,I,l,I_
7

9
f;amnm,ss.

(FINIS
f END

Overloy | - data deck

[

r PROGRAM BETA
r;rm,L,P,e

daoto deck

{

{ PROGRAM BOB
ro'SEGMENT_I,Z,z
3

rgBmARv,se

r FINIS
{eno

doto deck

Segment 2
of overlay 2

[

IPROGRAM HARRY
rgsscmcm,n,z,l.

O OVERLAY, 1,1
7

9
Esmmv,se
r FINIS
(END

Moin Progrom — /- doto deck

PROGRAM ALPHA
rZFTN_L_P,E,

MAIN, 1.

- Segment |
of Overlay 2

(;amARv,se.

j FINIS
rEND

dato deck

f

(PROGQAM TOM

— Overloy 2

JFTN,L,P,E.

W~NOTY

'y OVERLAY,1,2.
7
9

oo

(;snmmv,se.

MCS cord JCOOP, . . . 5/56/1 ... JBINARY,56.

The job deck pictured above compiles a main program, two overlays and four
segments. The intermediate (relocatable) binary output is written on unit 56,
and the final (absolute) overlay tape on logical unit 1. These units are defined
on the MCS card. The BINARY cards are used to transfer the overlay control
cards to the load-and-go unit 56. These control cards are required for
identification of the main program and each overlay and segment.

The overlay process starts with the normal compilation of the program, with
the relocatable binary output written on the load-and-go unit specified on the
FTN cards. On the load-and-go tape, each program is preceded by a MAIN,
OVERLAY, or SEGMENT card and terminated by one END card. The last
segment or overlay in an overlay program deck is terminated by two END cards.
If the program size requires that more than one overlay tape be generated, only
the last overlay or segment to be executed is terminated by two END cards. All
other overlays and segments are each terminated by the one END card. The
END card for each overlay or segment must contain the transfer address for
that overlay or segment. The last overlay or segment to be executed must be
physically the last program on the overlay tape. Only one of the END cards can
contain a transfer address. .

After the load-and-go tape has been written, the EXECUTE card is read and the
overlay tapes are prepared. The main program and each overlay and segment,
including all library routines, are written consecutively on the logical tape unit
specified on the control card (1 in the example). All of these programs, sub-
programs and subroutines are written on tape in absolute binary form and are
not relocatable. As soon as the tape generating process encounters two
consecutive END cards, the main (control) program is loaded and execution
begins.

The following diagram illustrates a CODAP-1 program with two overlays and
two segments. The load-and-go tape is on unit 56, and the overlay tape is
written on unit 5. Each CODAP-1 source deck begins with an IDENT card, and
is terminated by an END card containing a symbolic transfer address, and a
FINIS card.

(The symbols in the example are arbitrary.) The last segment in the deck is
terminated by a second END card.

7-9

data deck

[
(JEXECUTE.
o FiNis
{ END

(IDENT sGI
(4CODAPI,L,PE.
ro'SEGMENT,S,Z,I.
3
(3 BINARY,56.

{ Finis

r END OV 2
(DENT ov2
TCODAPI,L,P,E.

'Q"OVERLAYS,Z
9
IBINARY,56.
I FINIS
(END SEG!
(10ENT sEGI = ——— Segment | of Overlay |
(§coDaPi,L,PE.
FC;SEGMENT,5,I,I.

— — — Segment | of Overlay 2

— ——Overlay 2

7
9

ﬁBiNARY,SG.

r IDENT OVI —— ——Overlay |
ECODAP|,L,P,E.
'<7)'OVERLAY,5,L
9
r;emARv,se.
f FINIS
r END MAIN
r IDENT MAIN — T ——— Main Program

2 copaPI,L,P,E.

ro' MAIN,5.
7
9

f;emARv,se.

JCooP, . . .5/56/5. . .

CODAP-1 LOAD-and-Go Job Deck

7-10

(if required from

The example below is a mixture of CODAP-1, FORTRAN and

binary decks. The first binary deck has one transfer (TRA) dato deck f:::)dord (nput
card at the end of the deck which has the segment 1 entry r
point. The second has two TRA cards at the end with - — Second TRA cord
. . 4
the entry point of segment 2 on the first. (Yiname) Nomed TRA cord
dato deck

- _ - Binary Deck for
Segment 2

(

'J'SEGMENT,3,1,2.
7
9

ﬂ(ﬁome)

dota deck

— —Nomed TRA cord

— — —Binary Deck for Segment |

[

l'o'SEGMENT,3,|,I.
7
9

(Z,EXECUTE.

data deck — — —Overloy | FORTRAN Source Deck

5

rgFTN,L,P,E,
éOVERLAY,S,I.
9

ﬁsmxxm,se.

oo

FINIS

| END START |

dato deck = @ 0—4AA————-— Main Progrom source deck

[

(IDENT START |

(SCODAPI,L,P,E.

o MAIN, 3.
7
9

[gBuNARY,se.

1C00P, .. .5/56/3. . . -qq--—-—- MCS card

7-1

— —Segment 2
of Overlay 2
(two TRA cards)

binary deck

/

['O' SEGMENT, 10,2, 2.

binary deck

— — — Segment |
of Overlay 2
(one TRA card)

'E;'SEGMENT,IO,Z,I,
9

bi
inary deck —— — —Overlay 2

(one TRA card)

[

f,'ovsauxmo,z.
7
9

————— Segment 2 of Overlay |

binary deck
(one TRA cord)

f

F,'SEGMENT,IO,I,Z.
7
9

______ Segment | of Overlay |

binaory deck
(one TRA cord)

[

F}SEGMENT,IO,I,I.

7
9

binary deck -1 ——— Overlay |
(one TRA cord)

[

F;OVERLAY,IO,L
7

9

binory deck T /|~ —————— Main Program
(one TRA cord)

(;LOAD,SO,

JCOOP, .. .S/10. ...

Job Deck for Preparing Overlay Tape from Binary Decks

7-12

GENERATING
OVERLAY TAPE
FOR LATER
EXECUTION

OVERLAY ERROR
DIAGNOSTICS

The job deck in the preceding illustration is used to create an overlay tape from
relocatable binary decks. The LOAD control card loads each program into
storage from the standard input unit (50) using the standard binary loader. The
loader interprets the MAIN, OVERLAY and SEGMENT control cards, and the
relocatable binary decks are written on the overlay tape.

The binary decks are the output of either FORTRAN or CODAP-1 compilations.
Each has only one TRA card at the end which contains the transfer address for
that overlay or segment. The last binary deck in the job has two TRA cards
indicating the end of the program deck. One of these must contain the transfer
address for that overlay or segment.

To execute the overlay tape created by the job deck shown above, the following
control cards are placed on the standard input unit as one job deck.

dota deck (optional)

r;MAIN,IO.

JLOADMAIN, . ..S/10. ...

LOADMAIN acts as a subordinate control system in place of COOP. It reads
in the MAIN control card and loads the main program from the logical tape unit
indicated on the MAIN control card. This MAIN control card has only a 7,9
punch in column 1, instead of the 11,0,7,9 punch for the MAIN control card used
in creating the overlay tape.

Control is turned over to the main program after loading and the overlay
program is executed.

If an error of the type listed below occurs in an overlay program, the monitor
subroutine ERROR outputs an error message on the standard output unit in
the following format:

OVERLAY

SUBR. ERROR, IN or AT TTTTT TYPE Z7Z,A=X00000SSSSSNNNNN
SEGMENT

TTTTT indicates the absolute address of the location where

the transfer to the error subroutine occurred.

TYPE ZZ indicates the kind of error according to the following
list:

7-3

Code

oV

sSC

LT

TO

TP

PE

Error Type Possible Cause

Overlay Requested overlay is not on tape.
O = 0 in FORTRAN overlay call.
L(O) = 0 in CODAP-1 overlay call.
L(S) # 0 in CODAP-1 overlay call.

Segment Associated overlay is not currently
in core.
Requested segment is not in current
file.
S =0 in FORTRAN segment call.
L(S) = 0 in CODAP-1 segment call.

Logical unit number Logical unit number does not fall

into range:
1=LUN=49
Tape overflow More than four logical tapes requested.
Tape position Requested overlay, segment, or tape

numbers do not agree with those on
tape record. First word of requested
record was not read within 300
milliseconds after read command was
activated.

Parity Error Parity check error encountered on
three successive readings of requested
record.

The code in A register is interpreted as follows:

00000

SS8SSS

NNNNN

indicates that the word in error is an end-of-file word.

indicates that the record associated with error is not
an end-of-file word.

the number of the overlay containing the error.

the number of the segment containing the error
SSSSS is zero if the error did not occur in a segment.

the logical tape number of the overlay.

After the error message is written, the overlay program exits to the monitor
through ERROR*, and the job is terminated. ERROR* will produce a dump as
indicated by the recovery key on the MCS card.

7-14

APPENDIX SECTION

EQUIPMENT ASSIGNMENT A
(AET - RHT)

The assignment and control of input/output equipment by the system is ac-
complished by the Available Equipment Table, the Available Equipment
Driver Name Table, and the Running Hardware Table.

AVAILABLE

EQUIPMENT TABLE The AET table contains an entry for each input/output unit connected to the
1604 that can be used by the monitor. This table includes as a subtable the
assignments for the standard input/output units; unit entries may be in any
order. Each installation constructs its own AET table.

AET is in the first record on the library tape and is read into memory with
the bootstrap loader.

AET ENTRY
FORMAT The entries of the AET consist of a 48-bit description of each unit and its
status in the following format:

Bit Position Description

47-45 Allowed Use of Unit
000 not available
001 input only
010 output only
011 input and output
100
110/
111 not operable (down)

}not used

44-43 Assignment Key
11 assigned as I or O for this job
10 assigned as scratch for this job
01 assigned as I or O for last job
00 available

42 Assigned as a standard unit

A-l

Bit Position

41-36

35-24
35-33
32-30
29-27
26-24
23-18

Description

Used in AET entries 1 through 15 as a standard
unit subtable entry giving the entry number of

the standard units in the AET. These bits are

not used in the remaining entries in the AET table.

The standard unit subtable has the following fixed
format; the logical unit number is not contained
in the subtable but is included for reference.

AET Logical
Entry Unit
Number Description Number

1 library unit 0

2 standard input 50

3 standard output 51

4 standard punch 52

5 comment from operator 53

6 comment to operator 54

7 accounting unit 05

8 standard scratch unit 1 56

9 standard scratch unit 2 57
10-15 not used

For example, if entry 3 in an AET table contains
an octal 20 in bits 41-36, it indicates that entry
20 in the AET table contains the status and de-
scription of the standard output unit.

Equipment Code
Channel Number
Cabinet Number
Sub-Cabinet Number
Unit Number
Hardware Code

00 typewriter
01 card unit
02 printer
03 paper tape
04 magnetic tape
05 magnetic tape (high density only)
06 cathode ray display
07 disc file
10 drum storage
11
12 } not used
1
14 satellite magnetic tape unit
15 satellite magnetic tape unit (high density
only)
16-77 not used

AET LISTING

AVAILABLE

EQUIPMENT DRIVER

NAME TABLE

Bit Position Description
17-15 Not Used
14-0 Location in AEDNT that contains name of equip-
ment driver routine required for the unit de-
scribed in this entry.

The AET table can be listed and modified as described in Appendix B. The
listing of an AET table having 20 entries appears below:

Subtable

01 = 00051201b4014576
02 = 0015120204014576
03 = 0006120304014576
04 = 0017120404014576
05 = 3121320104010301
06 = 3121320204010301
07 = 3024320304014576
10 = 3007320404014576
11 = 3010520104014576
12 = 3000520204014576

13 = 3000520304014576
14 = 3000520404014576
15 =1100141001011243
16 = 1000142001014600
17 =2100140201011640

20 =2000760002012477
21 =3100111000012201
22 =0000112203014610
23 =1000112103010723
24 =2100112403011164

]

The third and fourth digits fromtheleftin each entry comprise the standard
unit subtable. This subtable indicates that entry 5 describes the library
unit, entry 15 describes the standard input unit, entry 6 describes the
standard output unit, and so on.

The AEDNT table contains the names of all equipment driver routines avail-
able either in resident or on the library tape. Each entry in the AEDNT con-
sists of two words. The first word contains the driver name in BCD, left
justified with blank fill. The second word indicates whether or not the driver
is already in storage. If the driver is already in storage, the upper half of
the second word consists of 77 0 XXXXX where XXXXX is the address of the
driver in storage. If the driver is not in storage when the job sequencer

RUNNING
HARDWARE TABLE

references the AEDNT, the upper half of the second word is zero. This
indicates that the driver must be loaded from the library tape. If the
driver is not on the library, a return jump is executed to the lower half
of the second word, which consists of SI.J O HOWLER, an alarm routine
that indicates to the operator that the driver was not found in the library.

The RHT table consists of all AET entries required to process the current
job. Entries are ordered according to logical unit number and the table is
fixed length, 64 entries. RHT is created for each job from the I/0 list in
the MCS card, and from the standard unit subtable in the AET table. For
each job, entries 0 and 50 through 55 in the RHT contain the AET entry for
each standard unit.

When an MCS card is processed, the AET table is scanned for unassigned
equipment. As an entry is found that corresponds to the description in the
1/0 list on the MCS card, this entry is transferred to an RHT entry position
corresponding to the logical unit number in the I/0 list.

When the entry is transferred, two modifications take place, and the asso-
ciated equipment driver is loaded into the high portion of core storage.
When the routine that processes the MCS card I/0 list finds an appropriate
AET entry, the AEDNT table is searched to find the name of the cquipment
driver for that entry. If the driver is not in storage, the driver is loaded
from the library tape. The AET entry is then transferred to the RHT, with
bits 14-0 now containing the absolute address of the entry point of the as-
sociated equipment driver routine. The assignment key for that entry is
set to the appropriate value in the AET, and the 1/0 list processor pro-
ceeds to the next logical unit number.

Assignments are processed in the following order:
1. All unit numbers assigned as both I and O units
2. All S units
3. All I only units
4. All O only units

All E units

(7]

If an error is encountered during I/0 list processing, the job is terminated.
The RHT is set for each job and cannot be altered during the job.

A-4

OPERATOR CONTROL B

CONTROL
MESSAGE ERRORS

The operator and the monitor communicate with each other through a cen-
tral control routine. The operator supplies information on the typewriter;
the monitor supplies information on the typewriter and the comment-to-
operator unit which may be any output device connected to the computer, but
will usually be the typewriter.

The operator may supply information to the monitor under three conditions:
When the monitor requires information to continue processing.

When the program being processed requires information to con-
tinue running. (See Chapter 5.)

When the operator wishes to interrupt normal processing to im-
pose a new requirement on the system or to supply equipment
information.

The information supplied by the operator is a control statement, a message
of Jess than 33 charagters, that is always initiated in the same way. The
monitor types an asterisk (*) on the typewriter when it is ready to receive
an interrupt from the operator. To type a control statement, the operator

1. Strikes the carriage return key to interrupt processing.

2. Waits until the monitor types a period to indicate readiness to
accept a message.

3. Types the message and terminates it with a period and carriage
return.

Pl 1l e
If the message does not contain a terminal period, or if an apostrophe (') is
typed before the terminal carriage return is typed, the message will be ig-
nored: the monitor will type a carriage return and a double asterisk (**)
to so indicate. The operator may return to step 1 above to retype the

message.

If the routine requested is not available, the letter "u'' will be typed followed
by a carriage return and a double asterisk (**). The operator may return
to step 1 above to type another message.

If the message line contains ﬂgr_eimm@c“t% including the terminal
period, it will be ignored. The control routine will type a CR followed by
"too long", another CR, and a double asterisk (**). The operator may return
to step 1 to type another message.

OPERATOR
CONTROL
STATEMENTS Operator control s

ents which may be typed a isted below:

Flag setting statement

f, a /n,

Togram communication state

(See Chapter 5)

JOB SEQUENCER
STATEMENTS Initiation statements may be given only after initial loading of the monitor or
after a monitor run has been terminated.

m. Rewind standard input unit and start processing.

< m,XXX. Find job xxx (operator's identification number)
on the standard input unit and start processing.

?uu&«c‘évi " m,n. Skip to the next job on the standard input unit and
- start processing.

T l/lé\"
'/W{ (lammtnn 820 m,xXxx,n. Z Find job xxx (operator's identification number)
'6!<L~' /,,& on the standard input unit, skip to the next job and

) start processing.
l"“&ﬁht/({'&%‘(

m,t. Backspace the standard input unit to the beginning
= of this job and start processing.

Termination statements may be given whenever the operator communication
routine is ready to accept an interrupt; they are equivalent to an END MONITOR
INPUT card in the job deck.

mstp. Terminate the current monitor run immediately.

V7 7a4 L'S ,’ mstp,t. Terminate the current monitor run at the end of
the current job.

mstp,Xxx. Terminate the current monitor run at the end of
the job xxx (operator's identification number).

AET TABLE
CONTROL These statements may be used to display and update the Available Equipment
Table and to reassign the standard units.

aet,o,n. Contents of the AET will be written on the unit
specified by AET entry n, a decimal number.

aet. Contents of the AET will be written on the comment-
' to-operator unit.

aet,i,n, Contents of the AET will be replaced by the AET read
from the unit specified by n, a decimal number.

sio, Entries of the AET assigned as standard input/output
units will be written on the comment-to-operator unit.

aet,n/m., Current contents of AET entry n will be replaced by
m; m may be a 16-octal digit quantity or one of the
following alphabetic codes that modifies bits 47-43 in
entry n, a decimal number.

n not to be used

i use as input only

0 use as output only

io use as input and output
d unit down

sio,n1 /m1,n2/m2.....n4/m4.

This statement changes standard unit assignments. Standard input/output unit
nj will be assigned the unit specified by AET entry mj. nj is a code or a number
from the following list.

Code Number Description
1 0 library unit
i 50 standard input unit
0 51 standard output unit
p 52 standard punch unit
ic 53 comment-from-operator unit
oc 54 comment-to-operator unit
a 55 accounting unit
1s 56 standard scratch unit 1
2s 57 standard scratch unit 2

Operator-program communications are described in Chapter 5.

Additional operating procedures are described in the CO-OP Monitor Operator's
Guide, publication no. 509.

B-3

PART | BINARY LOADER C

IDC

RBD

The monitor binary loader is used for loading programs and monitor library
routines, including subsystems, compilers and assemblers. A program may
consist of one or more subprograms. Subprograms and library routines are
in the form of relocatable binary cards or card images. Subprograms may
be loaded from punched cards or magnetic tape: library routines are loaded
from the currently defined system library tape.

The binary deck of a subprogram contains six types of cards generated by a
compiler or assembler. The deck may also contain one or more of the loader
control cards described in chapters 2 and 6. All cards except the loader con-
trol cards are punched in column binary format. Column binary cards for the
1604 are punched four columns for each 48-bit word, starting with columns 1-4
which represent the first word on the card. Row 12 of column 1 represents bit
47 of the first word; row 9 of column 4 represents bit 0 of the first word. One
card contains 20 words.

The six card types described below are generated by compilers and assemblers
that operate under monitor control.

IDC Subprogram identification card. The first IDC card in a subprogram deck
contains the FWA and the LWA + 1 of the subprogram, followed by the subpro-
gram name in BCD. The name of the subprogram is arbitrary and need not
correspond to the symbolic entry points within the subprogram. If a CODAP-1
subprogram contains an I/0 pseudo instruction, the logical unit numbers in the
1/0 m-term appear on the first IDC card. Additional IDC cards are used to
contain the names and lengths of numbered and labeled common blocks declared
in the subprogram. IDC cards are generated by the IDENT and BLOCK pseudo
instructions in CODAP-1.

1}
Relocatable binary program card contains the machine language code of the
subprogram. One or more RBD cards contain the machine instructions for the
subprogram.

C-l

EPT

EXT

LAT

TRA

Entry point table card contains the symbolic name (in BCD) of each entry
point defined in the subprogram and the corresponding relocatable address
within the subprogram. Entry points may occur anywhere within the subpro-
gram. EPT cards are generated by ENTRY pseudo instructions in CODAP-1.

External symbol table card contains all symbols declared as external to the
subprogram. These are the symbolic entry points of other subprograms and
library subroutines. EXT cards are generated by EXT pseudo instructions in
CODAP-1.

Linkage address table card gives the relocatable address within the current
subprogram of an instruction which references an external symbol. LAT
cards are generated by EXT pseudo instructions in CODAP-1.

Transfer card indicates the end of a subprogram; one is required at the end
of each subprogram. The last subprogram to be loaded must have two cards
at the end of the subprogram deck to indicate the end of the program. Only
one of the TRA cards in the program deck may contain the name of the entry
point to which control will be released when loading is complete. Columns 2
through 8 of the TRA card are blank with the named transfer entry point in
Hollerith beginning in column 9. TRA cards are generated by END cards in
CODAP-1.

These cards make up a subprogram deck in relocatable format. The card
formats are described in detail in Part II. Cards are ordered within a single
subprogram in the same sequence as the card type descriptions above. A
subroutine on a library tape does not contain EPT or EXT cards.

The loader uses the information on these cards to generate an absolute binary
object program in storage. The object program contains only absolute ad-
dresses. The subprogram is assigned to a block of storage determined by the
loader, and all relocatable addresses and external symbols are assigned
absolute addresses during the loading process. At the same time all labeled
and numbered common blocks are assigned in the order given in the memory
layout in Chapter 1.

LOADING

SEQUENCE Subprograms are loaded in the following sequence:

1.
2.

o

6.

The subprogram is loaded.

A search is made for all external symbols listed on the EXT cards
for that subprogram. The search is made in the following order:

a. Checks if used as entry point of previously loaded
subprogram.

b. Checks if this is an entry point of a library subroutine.

c. Checks if this is an entry point of the resident monitor.
If no entry point is found, the external symbol is held in
a table so that subsequent subprograms can be checked
for this symbol. If no corresponding entry point is found,
an error is flagged and the job is terminated.

All library routines named by the subprogram external symbols have
space in core reserved for later loading by the system.

The next subprogram is then loaded, and the process repeated.
The library subroutines are loaded.

All external symbols referenced in each subprogram are replaced
by the appropriate absolute addresses before the loading process
is terminated.

PART Il BINARY CARD FORMAT

The binary cards interpreted by the loader are in column binary format.
Columns 1 and 2 contain punches identifying the card, as well as punches for
indicating addresses and control and sequence information. Octal addresses
are those that appear on the assembled listing.

iIDC CARD (First) The first IDC (31) card in a program deck contains the name and first and last
word addresses of a subprogram in the following format.

Column

1
2
3 and 4

5,6,7,8
9 and 10

11 and 12
13,14,15,16

29-80

C-4

Content

11,0,3,7,9. (11,0,3=31
blank

g

checksum (ignored if row 8 in column 1
contains a punch)

blank

relocatable octal FWA of the subprogram
(blank if no labeled common in subprogram)

relocatable octal LWA + 1 of the subprogram

BCD program name of the subprogram
(generated from IDENT card in a CODAP-1
subprogram)

programmer assigned I/0 unit numbers
generated from the I/0 pseudo instructions
in CODAP-1 with a maximum of 63 I/O unit
numbers.

h NOILVHOGHO0D VIVG TOMINOD ©'994® S3&vi 0
| 3}
||||||||||||||||||||||||||||| - 1
-
||||||||||||||||||||| — 22 v £
55 b0 .S
|||||||||||||||||||||||||||| [n = -~
£ — 2 9
llllllllllllllllllllllllllll = - 3
3 -
|||||||||||||||||||||||||||| [} ..ment
3} oo s 4
|||||| S = =
llllllllllll n lrn’-l
|||||||||||||||||||||||||||| -~ ..DaOO
@ EEET
llllllllllllllllllllllllllll R v @ =2 o
||||||||||||||| SR .. £S5 2 & mDms
|||||||||||| o =~ < = £ 0 &
o 3 v ~ =~ w05 —) ©
||||||||||||||||||||||||||||| o, = Q o © ~ — CBdK
— 19 o £ L oo - 00
|||||||||||||||||||| T T o — T 2 n =5
o &} > _ € € ©v W O ~ 2R
llllllllllllllllllllllllllll <] c & < 9« 5 o [[S W
- z) o © o - am
e} [o}] (¥ w o St —
||||||||||||||||||||||||||| - < CWSSle..m mbm f.mre
||||||||||||||||||||||||||| g - ¢ =~ 3 3z 8P E . A °LZ o=
< =1 QunOOfOpl [+ e(d
|||||||||||||||||||||||||||| O > £ L L oW g £ g =
m ~ U ~ ~ ~ gJgawm g 30 amrb
||||||||||||||||||||||||||||| Q @ roow S~ £ w0 g P
a) R S @ W= L 5 X'go o e B
|||||||||||||||||||||||||||| = = c ® © a4 o o€ g2 ol £ a2l ¥
- o PR R =) v Q0 © enacomaa
||||||||||||||||||||||||||||| 17} & ICOOOCthhol [U= T Y
o o IOOOODTunchBD.neb
||||||||||||||||||||| o= b —
& W — =)
||||||||||||||||||||||||||| 5 g9 e®
) Q O T w)
|||||||||||||||||||||||||||| ® 234.wmnm '
|||||||||||||||||||| 9 5 B v =353 v
> R N T OO
llllllllllllllllllllllllllll b=t S I T T Y Doy
O O U «< vwuwo] -~
|||||||||||||||||||||||||| % o < 81) —
llllllllllllllllllllllllllll " g o -~ -
o = Lo~ | = ﬁ/»149 c
||||||||||||||||||||||||||| 5 2 o © <o o
o™ T)
llllllllllllllllllllllllllll Q o rOOu: —
O
a
—
)
c
£
o)
<
e
c
o __
P
w .E
(!I
3
. mo
Nl TEN W -_—
llllll 4 <0
L e (S =
QYVS AMYNIE NWNT0D $09I :
Cd
a s
- 0

seole S3gv,

NOILVE0dH00 VIVQ TOULNOD

in column 15 and continues in column 16.

Remaining columns on the card repeat
the scheme for column 9 through 16 for

This number starts in rows 7 through 9
each common block.

octal length of previously named block.

15 and 16

J e ST ettt STt
G ————--%
.
) ettt el ettt
lllllllllllllllllllll Y — — — —
L
<
o
] et ettt sttt
|||||| S SR R
e -
i | [DR ..
1
L o __ S _____
S R R
LY NN SN NSNS SN S i
- — T 3
— Wt e— T ———=
I __dEh | am W | = = =
Sk .~ h T ainiah S Sh— .FHM
—u - L) T
||||| TTTEET T W W W e W S
D §
= W v e W
- -
QY¥VS ANVYNIE NWNNTOD +091

Row 12 of the first

Content
rows 12 through 3, six rows contain the word

count, a two-digit octal number indicating the
number of instruction words on the RBD card.
rows 4 through 6, three rows represent the
high order octal digit of the relocatable ad-
dress of the first instruction word on the card.

Second IDC Card, containing one block name
C-6

instructions are in column binary format, with a group of four columns repre-
Column

senting a complete word. Columns 1 through 4 represent the first 48-bit word,

An RBD card contains part or all of the instructions in a subprogram. These
columns 5 through 8 the second 48-bit words, and so on.

column represents bit 47, and row 9 of the fourth column represents bit 0.

First Word (Columns 1 through 4)

RBD CARD

rows 7 through 9: 7 and 9 contain a punch.

If the checksum is to be ignored, 8 is also

punched.

the remaining four octal digits of the re-

locatable address of the first machine word

The low-order digit is in rows

on the card.
7, 8 and

9.

checksum

3 and 4

Second Through Fifth Word (if necessary)

The relocation bits indicate

which instruction contains relocatable program or common block addresses.

Only as many words are punched as required. The relocation hits are

These words comprise the relocation bit field.
described below.

The remainder of the RBD card contains machine instructions: the number of

instruction words are indicated by the word count in column 1.

NOILVHOJYOD vivd TOMLNOD

818040 J5IyL

- B T W [
SR _ S ___ S m—— =

|

TR AT e T W W
B — —_

Ed = w— o~ - Tl [a0 -~

QYVS AMUNIS NNNI0D 091

RBD Card

Relocation Bits

The relocation bits on a card are grouped in sets or bytes and the length of each
byte depends on the number of common blocks in the subprogram. Bytes are

C-7

EPT CARD

counted by column starting in row 12 in column 5. As many bytes are
included as there are instructions on the card. Dummy bytes are included
for BSS storage words and constants within the program. A byte may be split
between two columns but not between words. The first byte of the relocation
bit field is an extra byte for thé starting address punched in columns 1 and 2
(column 5, row 12).

The length of each byte is computed as follows: the number of words used to con-
tain the relocation bytes is indicated by the right hand column.

No. Common Blocks Byte Length No. Relocation Words
none 1 bit 1
lor2 2 bits 2
3 through 6 3 bits 3
7 through 14 4 bits 3
15 through 30 5 bits 4
16 through 62 6 bits 4

The value of the byte indicates if the address is absolute. If it is to be re-
located, it indicates whether it is to be relative to the absolute address of the
first word of the subprogram or relative to the absolute starting address of a
common block. The absolute addresses are contained in a table within the
loader in which the common blocks are listed in the order of appearance on the
IDC cards.
Absolute Address Used for
Byte Value (Octal) Modification of Instruction Address

No modification

FWA of subprogram

FWA of 1st common block

FWA of 2nd common block

4-75 FWA of 3rd through 64th common
block

w N = O

The EPT (32) cards contain the BCD names of all the declared entry points in
the subprogram and their relocatable addresses.

Column Content
1 11,0,2,79 punches (11,0,2=32g)
1 rows 4, 5 and 6 contain high order octal

digit of EPT card sequence number

2 low order 4 digits of sequence number
00000., 00010., 00020., etc.

checksum of EPT card

3 and 4

blank

5,6,7,8

Each successive group of eight columns, starting with column 9, contains an

8-character BCD entry point and its relocatable address within the subprogram.
The BCD name is punched in the first four columns, and the address is punched

in columns 7 and 8, and columns 5 and 6 are blank.

NOILVHOdYOO VIVO TOHLINOD

e 23001
QI80L® T gv,

Qyvy AMYNIG

R £
|||||||||||||||||||||| i
||||||||||||||||||||||||| —5
~ | — B
~ -
|||||||||||||| |||.||I..|||||l'.m
= R S e R
P miibintn louhabuin b S — £
1
3
ol S R) Ppp———-
il SO E—— i S PP
Py Sntniiinin s— S — ————— X
||||||| o= -———-
T O I————C m
p——— A P S I _———_2
] -~
e e ettt et
bl i 1 6
T F
....... RS [A
o
R RS S SUPR
Y —— P _—____ —
....... T ___ 1 - _____%
IIIIIII LT ey NSNS pI S
N B
r-————fp——————d —_—————r_—— ——— — 3]
2
B nbtuluiniute miii St St
S S | I S —
xuunu-nnnnl:vv|||||||||||||lm_
. 2
S NS PN SRy L oy
- ———J-—————_= E|
T . =
~ - | o En I il eahaiat
e o= @ B | W S
§ i einiy sinliats b wN i eineahe a__ix]
— — e W -
TN W T T T T T W S
= I NN RN
NNNT0J 091

EPT Card

The EXT (33) cards contain the BCD names of all declared external symbols in

the subprogram.

EXT CARD

Content

Column

11,0,2,3,7,9 punches (11,0,2,3=33)

rows 4, 5 and 6 contain the high-order octal

digit of the EXT card sequence number

low-order four digits of the EXT card sequence
number which is sequenced the same as EPT

cards

checksum

3 and 4

blank

5,6,7,8

c-9

The remaining columns starting with 9 contain the BCD names of the external
symbols, 8 characters for one name, and four columns contain one name.

NOILVHOAYOD VIVO TOHINOD ©'994® S3&%L

|

22

17

13
58] %)

15

(L]

48]47148448]50]31

3

12

331 291 404411421 83

The high-order

34g)
bit is the upper-lower indicator (0 for upper,

Three addresses are con-

Each address is represented as 16
Content

-order four digits of the sequence
, which is sequenced the same as

rows 4, 5 and 6 contain the high-order octal
EPT card

digit of the LAT card sequence number
16-bit relocatable addresses which contain

11,0,1,7,9 punches (11,0,1

EXT Card
checksum
1 for lower).

number
tained in every four columns.

blank
external symbols.

the low

c-10

3 and 4
5,6,7,8
9-80

The LAT (34) card contains the relocatable addresses in the subprogram that
Column

contain references to external symbols.
bits, with the high-order bit acting as an upper-lower instruction indicator.

Ilh 13,10

101111113

QYYD AMYNIB NNNTOD 09!

LAT CARD

NOILVHOdYO0D vivd TOHLINOD

8160L9 315y,

23

22

21

- ——

(k4

15

1"

13

2

(L]

-1} i3

i

:

— n_| <
WMl W T W TE W
G RN ECEe

QuUVO ANYNIE

NWNNT0D »09I

LAT Card

The TRA card is the last card in a subprogram. Two successive TRA cards

indicate the end of an object program. One TRA card in an object deck must

TRA CARD

contain the name of the transfer address which must be declared as an entry

point.

An unnamed TRA card has 7, 9 punches in column 1 and columns 2-80 are

blank.

A named TRA card has 7, 9 punches in column 1 and columns 2-8 are blank.

The transfer address in Hollerith (maximum of 8 characters) is punched

starting in column 9. The remainder of the card is blank.

c-n

I Sttt tedteiettals Ittt s
llllllllllllll ————— = ———F
“r--—-—--|)-———---—-———
b
I ittt ntiei et S S ——-
IIIIIIIIIIIIIIIIIIII JE R
~
e et [N R
||||||||||||||||||| —_——_——_——
-4
IIIIII 8 PREONR Y VU (5
N it o tutteie el s
|||||||||||||||||||| J PR
llllllllllllllllllllll =
IIIIII IIII||||m|r||||||||.II.||.|.m
II l i e Y NI U S ——— N —
| 1T - =
—————— JL__ 1) AN S
N .
))
|||||||||||||||||||| o Sp—
— =
1< o — ~ o | e e e il e -
QUVS AHYNIE NWNT0D +09I

TRA cord (one or two)

LAT cord (one or more)
EXT cord (one or more)
EPT cord (one or more)
IDC card (one or more)

RBD cards

TRA Card with Transfer Address
C-12

IDC

SAMPLE BINARY
SUBPROGRAM

DECK

PATCHING OBJECT PROGRAMS D

PATCH
CONTROL CARD

ASSEMBLING
A PATCH

Relocatable binary program (RBD) decks can be corrected by providing a binary
correction deck when the object program is loaded. This correction or patch
deck must be the output of a CODAP-1 assembly, and the correction information
must be written in CODAP-1 language. The instructions in the correction deck,
which are loaded after the object program, replace the original instructions in
the locations specified on the PATCH control card. The object correction deck
has the standard RBD format.

The PATCH control card indicates the locations in the preceding object program
that are to be corrected by the deck following the PATCH card. It has the
following format:

11
$PATCH, p+n
9

Column 1 contains 11,0,7,9 punches, PATCH starts in column 2 and a comma in
column 6 is followed by subprogram name, p, plus or minus an octal constant n.
The binary object deck following the PATCH card is loaded at the location
indicated by n relative to the start of the subprogram p. For example:

11
IPATCH, POPOV+122
9

The relocatable binary subprogram which follows this card will be loaded at the

location determined by the location of POPOV plus 122 octal.

The octal integer on the PATCH card is determined from the assembly listing.
This integer enables the loader to reference the first word of the area to be
patched. The choice of this octal integer is dependent upon the particular patch
required as illustrated in the following examples.

A patch may be assembled from symbolic coding by CODAP-1. The rules
governing these patch assemblies are:

1. The patched subprogram must not occupy a greater number of words in
memory after the patch is included than before.

2. The instructions to be patched must be contained in an integral number
of computer words. '

3. ORG and ORGR pseudo instructions may not be used in a symbolic patch.

D-l

The listing of subprogram SUB1 shown below illustrates the patch capability.

IDENT SUBI
RANGE FWA - LWA+]
01750 01754
ENTRY POINTS
01750 SUB1
EXTERNAL SYMBOLS
00001 SCANNER
01750+ ENTRY SUB1
00000+ BLOCK
00000+ COMMON CRDBUFFR(L400),
CBUFF (600)
00620+ CBUFF (600)
00001 EXT SCANNER
01750+ 75 O 77777 suBi SLJ 0 *%
50 6 00620+ ENI 6 CBUFF
01751+ 75 4 X00001 RTJ 0 SCANNER
50 O 00000
01752+ 52 § 01750+ + LU 5 SUBI
51 5 00001 INI 51
01753+ 56 5 01750+ S1u 5 SUBI
75 0 01750+ SLJ 0 SUBI
END
NO DOUBLY DEFINED
NO UNDEF INED SYMBOLS a
NULLS CRDBUFFR ((9 S
(Eno
(eno
In this subprogram the ENI (NI 4 CBUFF
instruction is to be changed
to ENI 4 CBUFF. The job (sLY .
deck for accomplishing r' COMMON CRDBUFFER {400), CBUFF (600)
this patch should be:
(IDENT PATCH
rziooApg:,|,5&
s PATCH, sus!
H
RBD deck

(ZBnNARY,se

% COOP, THE, 35000-00, $/56/57, 10, 1000.

Relocotable binary
deck without o second
TRA cord.

D-2

Any number of instructions may be changed by using the BSS or BES pseudo
instruction to properly position the instructions relative to the original program.
Following is a listing of subprogram ALPHA.

(§ EXECUTE.

[FINIS
4 END
{ END
(sLJ ALPHIA
{ STA L
(ADD K
{ ADD J

(AJP 2 ALPHA
(ALPHIA SLJ * %
(EXT ALPHA, J, K, L
(ENTRY ALPHIA
(IDENT ALPHIA

L END
{ NOP

4 RTJ LOOK

f NOP

(RTJ ALPHIA
(BSS 9

f(BSS)
ﬂ BSS |
rL BSS 2
(BSS a
f ENTRY K, L

r EXT ALPHIA, LOOK

IDENT PATCHA

IS CODAPI, I, I, 56.

rc; PATCH, ALPHA

7
9

Relocatoble binory deck
RBD deck Y A B of subprogram ALPHA
without o second TRA

card.

ﬁ BINARY, 56

J COOP, THE, 35000-00, $/56/57, 10, 1000.

D-3

If a patched subprogram requires more words than the original, the additional
instructions may be included in a new subprogram which is entered by a return
jump patched into the original subprogram. In the listing of the sample sub-
program ALPHA, the change PATCHA shown below requires more words than
the original. The job deck for accomplishing this patch should be as follows:

IDENT ALPHA
RANGE FWA - LwA+1
00003 00026
ENTRY POINTS
00013 ALPHA
EXTERNAL SYMBOLS
00001 LOOK
00002 LOOKUP
00000+ BLOCK
00000+ COMMON !
00001+ COMMON JJ
00002+ COMMON KK
00013+ ENTRY ALPHA
0000} LI8 LOOK
00002 LIB LOOKUP
00003+ UPDATE! BSS !
00004+ L BSS 1
00005+ 00 0 00000 [DEC 50
00 0 00062
00006+ 00 0 00000 J DEC 75
00 0 00113
00007+ 00 0 00000 K DEC 100
00 0 001ky
00010+ 00 0 00000 TERM) DEC 3600
00 0 07020
00011+ L0 0 00000 LARGE ocT 4,000000000000000
00 0 00000
00012+ 00 0 00000 UPDATE ocT 2
00 0 00002
00000 CLK £QU 0
00070 TERMI | EQU 708
00071 TERM EQU 718
00072 TERM2 } £QU 728
00013+ 75 0 77777 ALPHA sLJ ok
12 0 00010+ LDA TERM]
00014+ 24 0 00012+ MUL 0 UPDATE
20 0 00003+ STA 0 UPDATE)
00015+ 12 0 00011+ LDA LARGE
15 0 00003+ SUB UPDATE
00016+ 20 0 00000 STA CLK
12 0 00003+ LDA UPDATE |
00017+ 20 0 00071 STA TERM
20 0 00070 STA TERM1 1
00020+ 20 0 00072 STA TERMZ2 |
12 0 00005+ LDA I
00021+ 14 0 00006+ ADD J
W 0 00007+ ADD K
00022+ 20 0 00004+ STA L
75 4 X00001 RTJ LOOK
00023+ 10 0 00005 ENA 3
1L 0 00005+ ADD |
00024+ 20 0 0000+ STA 0t
75 4 X00002 RTS LOOKUP
00025+ 75 0 00013+ Sty ALPHA
50 0 00000
00000 END ALPHA
NO DOUBLY DEF INED
NO UNDEFINED SYMBOLS
NULLS 1 JJ KK

D-4

JOB DECK
FOR PATCHING Program correction cards can be compiled and inserted in binary object decks
with PATCH load control cards described in Appendix D. CODAP-1 must be
used as the source language of the correction deck. More than one patch may

Because J, K, and L are local variables in subprogram ALPHA, they must be
declared as entry points so that they may be referenced by ALPH1A.

BSS pseudo instructions in the patch provide definitions for J, K, and L which
agree with their definitions in ALPHA.

be used.
(end-of -file
/ data deck - — — {optional)
(3 EXECUTE.
f FINIS
r END
(END
correction deck —#Ft++——————— CODAP-I correction cards
7 CODAPI,L,E.

ro' PATCH, .
7
9

———————————— existing object progrom
(one TRA card ot end of
RBD)

RBD

(; BINARY,56.
ﬁcoop, .. .S/56/57. ..
J BEGIN JOB. ..

Compile and Execute with a Patch Deck

USER ENTRY POINTS 'E
IN RESIDENT MONITOR

CLNBCD*

BCDBN*

Some of the entry points in the resident portion of the CO-OP monitor are
available for program use. Most of them are entries to special purpose
subroutines in the monitor.

This routine converts a 20-word Hollerith card image to a 10-word BCD
image. The Hollerith card images must have a 7,9 punch in column 1 and
be stored four columns per word in column binary format.

Calling sequence:

ENA YHOL
ENQ YBCD
L RTJ CLNBCD*

L+1 error return
L+2 normal return

YHOL is the location of the first word of the 20-word Hollerith card image.

YBCD is the location of the first word of the area to contain the 10-word

BCD image. The 7,9 punch in column 1 is converted to the BCD code 00.

If an illegal Hollerith punch is found in colums 2 through 80 of the card
image, the illegal character is converted to the BCD code 00, and the error
return is taken as soon as column 80 has been converted. If no error is
detected, the normal return is taken.

This routine converts a word of up to 8 BCD numeric characters to its
equivalent positive binary integer. The word to be converted is placed in
the A register before entering the routine. If less than 8 characters, the
word is right justified with leading 00 fill.

EXIT*

ERROR*

ERRDUMP*

RECRET*

Calling sequence:
L RTJ BCDBN*
L+1 normal return

On return, the A-register contains the converted binary integer. No error
return is provided.

This entry point can be used for normal termination of a job.
Calling sequence:
SLJ 0 EXIT* or RTJ EXIT*

No recovery dumps occur when EXIT* is used, however, a SNAP dump
planted at XITDUMP* will be executed.

This entry point is used by the monitor for abnormal job terminations be-
cause of an error condition. A dump will be made according to the re-

covery key on the MCS card. If a SNAP dump has been planted at ERRDUMP*,
it will be executed first. A programmer may use this entry point by using

the calling sequence RTJ EXIT *.

This name, used as the P1 parameter on a SNAP control card, will cause a
snapshot dump if the job is terminated through ERROR*. The N, parameter
on the SNAP card is omitted.

This routine permits the user to regain control for 60 seconds after ERROR*
has been entered and any requested SNAP post mortem dumps have been
performed. The following calling sequence is a flag to the monitor to in-
dicate that if an ERROR* exit occurs, control is returned to the location
indicated for 60 seconds.

L RTJ RECRET*

ZRO (location to which control is to be transferred)

RECLIM*

MEMREC*

This routine sets limits of program and data regions for extended re-
covery options.

Calling sequence:

LDA L(DLIM)
LDQ L(PLIM)
L RTJ RECLIM*

L+1 Return

If DLIM = 0, return is with the currently defined data limits in the A reg-
ister and program limits in the Q register. If DLIM # 0, the data limits
will be set according to the contents of the A register and the program
limits according to the contents (PLIM) of the Q register. Limits are de-
fined by a word containing the first word address and the last word address
of the region in the upper and lower address positions.

This routine is used to reserve and release internal storage areas and to
obtain the limits of memory not yet reserved, It is used primarily by the
binary loader, but may be used by the programmer.

Calling sequence:

L RTJ MEMREC*
L+1 ZRO A
ZRO B

L+2 normal return

The parameters A and B are zero when MEMREC* is for determining available
memory. The subroutine exits to the next instruction in L+2, with FWA and
LWA of unassigned memory in the A register. The upper address portion

of A contains the FWA and the lower address contains the LWA. The con-
tents of the Q register will be zero.

If a program needs additional space, a portion of occupied memory no longer
needed may be released. To release a specific area, it is necessary to first
find the currently reserved portion of memory by using a MEMREC * calling
sequence with A and B set to 0. Any amount of storage area may be released
by executing another return jump to MEMREC *, with parameters A and B set
to the complement of the FWA and LWA of the block to be released. The
only restriction is that the FWA of the block to be released must be one

E-3

DATE*

LIBREW*

LOADER*

greater than the LWA in unreserved memory. In other words, a block of
memory cannot be released unless it is contiguous to the unreserved
portion of memory.

To reserve unassigned areas of memory, parameters A and B are set to
the FWA and LWA of the area to be reserved. This block must bhe entirely
within unassigned memory.

On return from MEMREC* the A register always contains the FWA and
LWA of available memory, and the Q register contains an error code if an
error was detected.

Q = O(or positive number) No error
Q=-0 In L+1, FWA was greater than LWA
Q=-1 Attempt to reserve memory when

either FWA or LWA fell outside
available memory

Q=-2 Attempt to release a block of

memory which was not adjacent to
a previously assigned block

This entry point consists of the BCD coded date in columns 17-24 of the
BEGIN JOB card. To obtain the date in the A register, use LDA DATE*
or the equivalent.

This subroutine will rewind the currently defined library tape to the local
point.

Calling sequence:

RTJ LIBREW*

This entry point is to the relocatable binary loader; the A and Q registers
contain the required parameters.

E-4

Calling sequence:
L RTJ LOADER*
L+1 Return

The parameter in the Q register, if non-zero, must be a library subroutine
entry point. The A register consists of subparameter R in the upper ad-
dress and subparameter N in the lower address, with zero in the remaining
bits. If the A register is positive, a memory map of all subroutines and
subprograms loaded during the current call of the loader is produced on
the standard output unit. If the A register is negative, the memory map is
suppressed and the A register parameter is complemented before extract-
ing subparameters R and N.

The subparameter N denotes the logical unit number of the current input
unit. If it is a library tape, N must have been assigned to a magnetic tape

unit.

The following paragraphs describe the loader execution as a function of
the input parameters.

Q register = Entry Point Name

Subparameter N must agree with the last defined logical unit number for
the library tape. The library subroutine containing the entry point name
and all library subroutines referenced by it are loaded from library tape N.
Any TRA card containing a symbolic name is ignored during this loading.
The A register will contain in the lower address the relocated address of
the entry point name; the remainder of the A register will be zero. The
original contents of Q are destroyed.

Q register = 0

Subparameter N is the logical unit number of an input tape. The loader will
begin reading cards from unit N. Two successive TRA cards will cause a
normal return from the loader. An end-of-file on an I/O unit other than the
standard input unit will cause loading to continue at that point from the
standard input unit. An end-of-file on the standard input unit produces an
error. Undefined external symbols are assumed to be entry points of sub-
routines on the last library tape defined before they are finally classed as
undefined symbols. The contents of the A register on return from the
loader will be as follows:

a) TRA card entry point from input only
UA = 00000
LA = relocated address of that entry point

E-5

R=1
R=2
R=3

b) TRA card entry point from both the input unit and the library tape
UA = relocated address of input TRA
LA = relocated address of library subroutine TRA
¢) TRA card entry point from a library subroutine only
UA = 00000
LA = relocated address of that entry point
d) No TRA card entry points
UA = 00000
LA = 00800

A register bits not included in UA or LA are always zero.

The Q resister is ignored; subparameter N defines the library tape. Unit
N is rewound and the directory loaded from it. All standard I/O drivers
defined in RHT are loaded. On return, the contents of the A register are
zero.

Subparameter N must agree with the last defined library tape number. All
non-standard I/O drivers as defined in RHT are loaded.

Q-register = Entry Point name

The library subroutine containing the entry point and all library subroutines
referenced by it are loaded from library tape N. The lower address of the
A register will contain the relocated address of the entry point name; the
remainder of the A register will be zero. The original contents of the Q
register are destroyed.

The Q register is ignored. Subparameter N defines the library tape. Unit
N is rewound and the directory loaded from it. On return, the contents of
the A register are zero.

E-6

RELOAD*

Detected errors are indicated by a line of output on the standard output
unit in the following format:

LOADER ERROR XX YYYYYYYY 272727272727
XX is a two-letter mnemonic code denoting the type of error, YYYYYYYY
is an eight-character quantity containing a symbolic name, and ZZZZZZZZ
is an eight-digit octal quantity denoting the upper half of the first word of a

binary card or the upper instruction of the loader entry point, LOADER*.
See Chapter 6 for loader errors.

This routine calls the loader if the loader in resident has been destroyed.
This would occur when RELOCOM or LIBRARY loader control card is
used.
Calling sequence:

RTJ RELOAD*
The A register contains two parameters.

Ay=3

Aj, = logical unit number of current library tape

All subsequent loader calls are through LOADER*.

E-7

CLOCK CONTROL F

A real-time clock is a valuable programming aid. It is convenient for auto-
matic time logging and imposing time limitations on programs executed under
a monitor system. The real-time clock on the Control Data ®1604 is auto-
matically incremented every 1/60 second. Since incrementing is performed
in the accumulator, interrupt on arithmetic fault is used to indicate the end

of a specified time period. The clock may cause an interrupt after a specified
time by providing a proper initial value. For example, if an interrupt is
required after two minutes the initial setting is (247 -1)- (2x60x60). An
arithmetic fault occurs when the time period has elapsed.

Three functions are performed during clock operation in the monitor.

1. Job sequencer timing includes imposing a time limit on the job and
maintaining an elapsed time record. The time limit is obtained
from the MCS card.

2. CO-OP Control System Timing is the time limit specified on the
EXECUTE or EXECUTER card.

3. Programmer timing includes reading and setting the clock at the
request of the programmer.

Two clock times are kept in the monitor: the over-all job time and a time
interval set by the routine SETCLK*. This routine is used by the program-
mer to obtain the remaining over-all time and to set time intervals within
his program. When a time interval set by the programmer has elapsed,
control returns to an interrupt routine provided by the programmer. Only
one time interval can be in force at any one time. The elapsed portion of
the current time intervals is maintained in a table. .

The first entry in this table is the setting from the Job Sequencer. Initially
this setting will be equal to the time indicated on the MCS card and may be
cleared only by the monitor. If the time is exceeded, the contents of the
1604 real-time clock is saved to indicate the elapsed time for the job.

A time limit on an EXECUTE card is treated as a programmer time inter-
val set by SETCLK*.

F-1

SETCLK* CALLING
SEQUENCE

READING THE
MONITOR CLOCK

SETTING
TIME LIMITS

Prior to entering the SETCLK* subroutine, the address of an interrupt
subroutine is placed in the low 15 bits of the Q register, and the time
interval, t, is placed in the A register. The interrupt subroutine will be
executed when the time interval, t, has elapsed. The time interval, t, is
expressed as a binary integer representing the interval in sixtieths of a
second. '

The calling sequence to SETCLK* is:

L RTJ SETCLK*
L+1 Error Return
L+2 Normal Return

Regardless of the return or the initial value of t, the remaining over-all
job time is set in the A register by SETCLK*.

To read the current value of the monitor clock, the parameter, t, is set to
0, and a return jump is made to SETCLK*. The routine will exit through
the normal return L+2, with the remaining over-all job time in the A register.

Time limits are entered in SETCLK by setting, t, to the time limit desired;
t may be either a positive or negative value (bit 47 is 0 or 1). If t is greater
than zero, one of three possibilities will occur:

The error return (L+1) is taken if t is greater than the over-all
time remaining for the job.

The error return is taken if a previous time interval set by SETCLK*
has not elapsed. This interval would have been set by a previous
program call to SETCLK* or by the time limit on the EXECUTE card.

If no previous time interval was in effect, the new interval t is set
into the clock table by SETCLK*, and a normal exit is made. When
the time interval t has elapsed, the interrupt subroutine will be
executed.

If t is less than zero, t is first complemented, and one of the following actions
will occur:

If the complement of t is greater than the remaining over-all time,
the error return is taken.

If the complement of t is less than the over-all time remaining,
any previous time interval is cleared and replaced by the new

(t complement) time interval. The previous interrupt will be re-
placed by the new interrupt entry point in Q.

CLEARING
A PREVIOUS

TIME INTERVAL A previous time interval set by SETCLK* can be cleared by entering

SETCLK* with t=-0. No interrupt routine will be executed.

F-3

LIBRARY TAPE LAYOUT

M

Beginning Of Tape

Bootstrap Load

Record 1 Routine and AET
Table
Record 2 Recovery and Dump

Procedures

Master Control

R d

ecord 3 System (MCS)
End-of-file
Record 1 Library Directory
Remaining Records Library Routines
End-of-file

G-l

RESERVED ENTRY POINT LIST

H

The words in this list are the entry points to the monitor resident and library routines as indicated.
These words should not be used as entry points in user programs. If these words are encountered as
external symbols by the loader, and have not been previously defined as entry points in a user sub-
program or subroutine, the library routine containing that entry point will be loaded.

Not all systems library tapes contain all the systems listed below; conversely, new systems may be
added to the list. Each installation should examine their systems tape directory in order to obtain a
complete and correct reserved entry point list.

CODAP

CODAP2
CODAP=
cosy

COBOL

ACCEPT
ADD10
ADDRESSO
ADDO1
ADDO05
ADDO7
ADDO8
ADDO09
ADVBLNK
ALLG60
ALLIT3
ALLIT4
AND/OR
ATTN
BDITNT1
BITE1l
BITE2
BLKA
BLKB
BUFAR
CATBIT
CATBITX
CATCHEX

COBOL

CBLDG1
CBLDG2
CBLERR
CEDIT
CLOSE
COBOL
COBOLMC
COMPO1
CONDFLG
COPY
COPYBIT
COPYFLAG
CRACKED
CRDBR
CURNLEVL
CURNLOC
CURNQUAL
CURNTWD
CURNTWDA
DI4ZZ1A
DATAMAP
DATMPFLG
DB1A

DB1B

DB2A

DB2B
DBDEPON
DBINT1
DBINT1A
DBINT2

COBOL

DBINT2A
DBINT3A
DBINT3B
DISPLAY
DIVD10
DIVDO1
DIVDO7
DIVDO08
DIVDO09
DMYNTRY
DNT
DNTAVSP
EPE
EPECLNUP
ERRTRIG1
EXAM1
EXAM2
EXAMS3
EXAM4
EXAMO1
EXE
EXECLNUP
FDPM
FEGEN1
FEGEN2
FEGEN3
FEGMSKLA
FENCE
FET

FETX

COBOL

FILL1
FILL2
FILLUP
FILP4
FNT
FNTAVSP
GOIF
GRABC

IF

IF01

IF05
IMAKER
JUMPADD
L2R
LASTWORD
LDANDGO
LEAP
LEVEL1
LGFLAG
LGFLAGX
LIBPREP
LIBSRCH
LISTFLAG
LITDROP
LK8
LNSCOM
LN9COMX
LNACOM
LNACOMX
LOOKUP

COBOL COBOL COBOL
LRS OEDIT RP1.1
MOVEO1 OPEN RP1.2
MOVEO05 OPER1 SCMUDV1
MULT10 OPER1SUB SEG
MULTOl OPER2 SEQ
MULTO07 OPER2SUB SEQB
MULTO08 OPERS3 SFINC
MULTO09 OPER3SUB SHIFT1
NEXTWORD OSR SIZDEFX
NILE PAIL44 SIZETRIG
NLE PAIL44X SIZFXDE
NOLDFLG PERFTABL SSW
NONZRC PERMCON SUB10
NUMCONVO PIAT SUBO1
NUMOCT PM SUBO7
NUMOCTX PNCHFGX SUB08
NUMREC PRINT SUB09
NXTWORD PUNCH TESTCEL1
NXTWRD PUNCHFLG TESTCELL
OADDSUB QUALBILD THISWORD
OADSB1 QUE TRACARD
OADSB2 RDPROC TRIVFLAG
OBJLOC READ TSTPRMCN
OBJSTR RECT UDT
OB/ZR REFTAB UDTAVSP
oCC REFTABX UDTLOOK
OCCBEG RESTRAC VALPROC
OCCFNL RFINC VLFILL
OCCLIM RNDFXDE VLMASK
oCcCM RNT VLMUDV1

COBOL

VLMUDV2
VLMUDV3
VLXFER
VS
WORDCODE
WRDCRK
WRDPRNT

FORTRAN-63

FERROR=
FTN
LENGTHF
Q0Q06200
Q0Q06300
Q1Q00100
Q1Q00200
Q1Q00210
Q1Q00220
Q1Q00300
Q1Q00310
Q1Q00320
Q1Q00330
Q1Q01100
Q1Q01200
Q1Q01210
Q1Q01220
Q1Q01300
Q1Q01310
Q1Q01320
Q1Q01330
Q1Q02100
Q1Q02200
Q1Q02210
Q1Q02220
Q1Q02300
Q1Q02310
Q1Q02320
Q1Q02330
Q1Q03100
Q1Q03200
Q1Q03210
Q1Q03220

COBOL

WRITE
WSBIT
WSBIT1
XCPC
XCURWDX
XDNTX
XFER

FORTRAN-63

Q1Q03300
Q1Q03310
Q1Q03320
Q1Q03330
Q1Q04100
Q1Q04200
Q1Q04210
Q1Q04220
Q1Q04300
Q1Q04310
Q1Q04320
Q1Q04330
Q1Q05100
Q1Q05200
Q1Q05210
Q1Q05220
Q1Q05300
Q1Q05310
Q1Q05320
Q1Q05330
Q1Q10000
Q1Q10010
Q1Q10020
Q1Q10030
Q1Q10100
Q1Q10110
Q1Q10120
Q1Q10130
Q1Q10200
Q1Q10210
Q1Q10220
Q1Q10230
Q1Q10300

COBOL

XFER2

XFER2A
XFERZ2R
XFER2S
XFER3

XFERS3A
XFER3R

FORTRAN-63

Q1Q10310
Q1Q10320
Q1Q10330
Q1Q10400
Q1Q10410
Q1Q10420
Q1Q10430
Q2QLOADA
Q3Q00040
Q3Q00140
Q3Q00240
Q3Q00340
Q3Q01040
Q3Q01140
Q3Q01240
Q3Q01340
Q3Q02040
Q3Q02140
Q3Q 02240
Q3Q02340
Q3Q03040
Q3Q03140
Q3Q03240
Q3Q03340
Q3Q04040
Q3Q04140
Q3Q04240
Q3Q04340
Q3Q05040
Q3Q05140
Q3Q05240
Q3Q05340

COBOL

XFER3S
XFER4
XFER4A
XJMPX
XLDGOX
XLOOKUPX
XNUMCON

FORTRAN-63

Q3Q10040
Q3Q10140
Q3Q10240
Q3Q10340
Q3Q10440
QTQFLOAT
QTQLDCC3
Q7QLDDC3
QTQLDIC2
Q7QLDID2
QTQLDLC4
Q7QLDRC2
Q7QLDRD2
Q7QLODCC
Q7QLODDC
Q7QLODIC
Q7QLODID
Q7QLODLC
Q7QLODRC
Q7QLODRD
Q8QBACKS
Q8QBCDDI
Q8QBINTY
Q8QBOTTY
Q8QBUTAB
Q8QCKSLT
Q8QDPI/0O
Q8QENBIN
Q8QENBOT
Q8QENGIN
Q8QENGOT
Q8QENTRY

COBOL

XPRINTX
XPUNCHX
XQUEX
XRECTX
XTHSWDX
XWRDCRKX
ZSCP

FORTRAN-63

Q8QEXITS
QB8QFILES
Q8QFORMS
Q8QFTSEN
Q8QFTSET
QB8QGINTY
Q8QGLIST
Q8QGNSEN
Q8QGNSET
Q8QGNTAB
Q8QGOTTY
Q8QGTTAB
Q8QHUNCH
Q8QIBJOB
Q8QRQIFORM
Q8QINBFI
QS8QINBFO
Q8QINBIN
Q8QINBOT
QB8QINGIN
Q8QINGOT
QB8QIOSEN
Q8QIOSET
Q8QLOADA
Q8QLPSEN
Q8QLPSET
Q8QLUNCH
Q8QLURCH
QS8QREWND
QB8QSENLT
Q9QEVALL
QI9QEVALB

ABSF
Q8QABSF
ACOSF
Q8QACOSF
ASINF
Q8QASINF
ATANF
Q8QATANF
COSF
Q8QCOSF
CUBERTF
Q8QCUBER
DIMF
Q8QDIMF

I/O DRIVERS

BFT
CARDPNCH
CARDREAD
PRINTD
PRINTS
PTI

PTLOG
PUPT
RW1615
R1617
TYPEI/O

FUNCTION ROUTINES (FORTRAN-63)

EXPF
Q8QEXPF
FLOATF
Q8QFLOAT
INTF
Q8QINTF
ITOJ
Q8QITOJ
Q2Q07000
ITOX
Q2Q07101
Q8QITOX
LOGF
Q8QLOGF

MAXOF
MAXI1F
MINOF
MIN1F
MODF
Q8QMODF
POWRF
Q8QPOWRF
Q2Q07111
RANF
RANFGET
RANFSET
Q8QRANF
SIGNF

RESIDENT

BCDBN*
CBF*
CBF1*
CBF2*
CBFT7*
CHKSTD*
CLBNBCD*
DATE*
DETECT*
ERROR*
EXIT*
EXSEN*
FCH*
FLAGTST*
GETCH*
ILMF*
IOSLECT*
LIBPSIT

LIBREW*
LMSRCH*
LOADER*
LOK1*
MEMREC*
MODIRET *
MRW600*
OPCOM *
READ*
RECLIM*
RECRET *
RELOAD*
RELOCOM *
REMOVE *
SELECT*
SETCLK*
SIEOF *
WRITE *

H-3

QB8QSIGNF
SINF
QB8QSINF
SQRTF
Q8QSQRTF
TANHF
QBQTANHF
XABSF
Q8QXABSF
XDIMF
Q8QXDIMF
XFIXF
QB8QXFIXF

XINTF
Q8QXINTF
XMAXI1F
XMAXOF
XMINOF
XMIN1F
XMODF
Q8QXMODF
XSIGNTF
Q8QXSIGN
XTOI
Q2Q07110
QB8QXTOI

MISCELLANEOUS SYSTEMS

and PROGRAMS

coor
COPY*
DUMP

ELT
ERROR
ERROR2

10
LOADMAIN

SORT

MERGE
S/MERGE
SORT
SORTN
SORTP
VGEN

MAP
OVERLAY
PLT
SEGMENT
SETCLK
SNAP
SNAPTABL
VERIFY*

BCD CODES

Character

T Q" oH O QW o

—

H © N K X £ < 3”3 OH Yo Z2 20 R -

Code

(Octal) Character
61 2
62 3
63 4
64 5
65 6
66 7
67 8
70 9
71 &
41 -
42 (blank)
43 /
44 . (period)
45 $
46 *
47 , (comma)
50 %
51 #
22 @
23 =
24 0 (numerical zero)
25 record mark
26 0 (minus zero)
27 0 (plus zero)
30 group mark
31 tape mark
12
01

I-1

Code
(Octal)
02
03
04
05
06
07
10
11
60
40
20
21
73
53
54
33
34
13
14
74
12
32
52
72
Kii
17

TYPEWRITER CODES

CHARACTERS
UC LC
A
B b
C c
D d
E e
F f
G g
H h
i
J j
K k
L 1
M m
N n
(0] o}
p P
Q q
R r
S s
T t
U u
\'% v
w w
Backspace

Lower Case

CODE

30
23
16
22
20
26
13
05
14
32
36
11
07
06
03
15
35
12
24
01
34
17
31
61
57

CHARACTERS

ucC 1.C
X X
Y y
Z z
) 0
* 1
@ 2
3
$ 4
% 5
¢ 6
& 7
1/2 8
(9
? /
" 1
° +

tab tab

space

Carriage Return

Upper case

CODE

27
25
21
56
74
70
64
62
66
72
60
33
37
52
44
54
46
42
50
40
02
51
04
45
47

INDEX

Available Equipment (AET) Table A-1
Available Equipment Driver Name
(AEDNT) Table A-3

Batch Execution 2-19
BCD BN* E-1

BCD Codes H-1
BEGIN JOB Card 2-2
BINARY Card 2-14

Channel Assignment (standard units) 3-11
Channel Assignment (non-standard units)
Channel Busy Flags 3-1
Check only 3-5
CLNBCD* F-1

Clock Control F-1
COBOL Control Card
COBOL Deck Structures
CODAP-1 2-25
CODAP-1 Compile only 2-25
CODAP-1 Control Card

Compile and Execute 2-27
Compile and Execute Deck 2-21
CO-0P Control System 1-5, 1-6
CO-0P Monitor Levels of Control
CO-OP Monitor System 1-1

2-29

1-3

DATE* E-4

Debugging Aids v
DEFINE Card 2-14
Define Card Use of 2-32

EPT Card C-2

EPT Card C-8
Equivalence of logical units
ERRDUMP* E-2

ERROR* E-2

Error Codes for READ*/WRITE *
EXECUTE Card

Execute Only 2-26

EXECUTER Control Card 2-13
Execution only Deck 2-18

2-5

3-9

EXIT* E-2
EXT Card C-9
EXT Card

Flag Setting 5-1
Flag Testing 5-1
FORTRAN-63, CODAP-1 Combination 2-31
FORTRAN-63 Compile only deck 2-17
FORTRAN-63 Control Card 2-8
Function Codes
3-10 IDC Card C-1
IDC Card C-4,C-5
Input/Output Assignments
Input/Output vi
Interrupts vi
Interrupt Cancellation 4-1, 4-3
Interrupt keys REMOVE* 4-4
Interrupt keys, SELECT* 4-2

2-4

Interrupt with READ*/WRITE* 3-7
Interrupt Selection 4-1
1/0 Driver Storage Assignment 1-4

Job Decks 2-17

Job Processing v

Job Sequencer 1-1

Job Sequencer Storage Assignment 1-3
Labeled Common Storage Assignment 1-5, 1-6
LAT Card C-2

LAT Card C-10

LIBRARY Card 2-15

Library Card use of 2-34

Library Subroutine Storage Assignment
Library Tape Layout G-1

LOADER*

Loader Control Cards 2-15

Loader Description C-1

Loader Error Codes 6-1

Logical Units 3-3

Logical Unit Assignment Precedence 2-6
Logical Unit Numbers 1-1

1-5, 1-6

Index-1

Logical Unit Numbers 1-1

Machine language (CODAP-1) input/output 3-1

MCS Card 2-3

MCS Card I/O Field Format

MEMREC* E-3

Memory limit adjustment

Memory Map Format 6-3

Modifying interrupt return 4-3

Monitor Control Cards 2-2

Monitor Operation 2-1

Multiple CODAP-1 Compilation and
Execution 2-28

2-6

E-3

Numbered COMMON Storage

Assignment 1-5, 1-6
Operator Comment Messages 3-9
Operator Control Statements B-1

Operator Messages 5-2

Overlays 7-1
Overlay Control Cards 7-7
Overlay Error Codes 7-13

Overlay Job Decks 7-8, 7-10, 7-11, 7-12
Overlay Parameter Transmission 7-4
Overlay Rules for 7-5

Overlay Storage Assignment 7-6
Partial Compilation and Execution 2-23
PATCH Card 2-15

PATCH Control Card D-1

Patch Deck D-2, D-3, D-5

Patching CODAP-1 Programs D-1

Program loading sequence C-3

Program Termination E-2

RBD Card C-1

RBD Card C-7

RBD Deck C-12
READ* Calling Sequence

Read Only 3-3

READ* Parameter Codes
Read with checking 3-6

Recording Modes 3-3
Recording Mode Keys

3-1

3-2

3-4

Recovery Keys 2-7
RECLIM* E-3
RECRET* E-2
RELOAD* E-7
RELOCOM Card 2-15

RELOCOM Card 2-16
Relocom Card use of 2-33
REMOVE*
Repeated Execution 2-20
Resident Storage Assignment
REWIND Card 2-15
Rewinding Library tape E-4
Running Hardware (RHT) Table
Running Hardware Table Storage
Assignment 1-3, 1-4

A-4

SELECT* 4-1

Sense Equipment Ready 3-6

Sense Switches 5-1

SETCLK* F-2

SNAP Card 2-15

SNAP Cards v

SNAP Control Card 6-5

SNAP Dumps 6-4

SNAPS and Overlays

Standard Scratch Units

Standard Units 1-1, 1-2

Subordinate Control System Storage
Assignment 1-4

Subprogram Storage Assignment

6-9
1-2

TRA Card C-2
TRA Card C-11
Typewriter Codes 1-1

WRITE * Calling Sequence 3-1
Write with checking 3-6
Write Only 3-3

WRITE* Parameter Codes

Index-2

1-3, 1-4

1-5, 1-6

