08/ 000

1604/1604-A COMPUTER

CODAP-1/REFERENCE MANUAL

CODAP-1/REFERENCE MANUAL

8100 34th Avenue South

|
|
CONTROL DATA CORPORATION
Minneapolis 20, Minnesota

|

CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

INTRODUCTION

MACHINE INSTRUCTION FORMAT
Octal Format

CODAP-1 Format

Location Field Symbols

Operation Code Field

B Field

M-Term Field

Remarks Field

PSEUDO-INSTRUCTIONS
Constants

Data Storage Assignment
Symbol Assignments
Format Control

Monitor Control

PROGRAM PREPARATION
Instruction Pairing
Library Subroutines
Input-Output

Interrupt

Subprogram Format

ASSEMBLY AND EXECUTION
Monitor Input

MCS Control Card

CCS Control Card No. 1

CCS Control Card No. 2
Assembled Listing Format
Error Codes

Binary Object Deck Format

Page

- B S L N 7 Y N X

-3

10
15
16
17

19
19
22
22
24
24

27
27
28
28
29
30
31
34

LIST OF TABLES

Page
Table 1 1604 Machine Instructions 35
Table 2 Equivalent Mnemonic Instruction Codes 37
Table 3 Special Codes for FLX or TEL Pseudo-Instructions 38

iv

INTRODUCTION

The CODAP-1 Assembly Program converts programs written in CODAP-1
source language into a form suitable for computer processing under the

1604 CO-OP Monitor System. As a part of the Monitor System, the assembly
program is stored on the Monitor library tape and operates as a subroutine
within the framework of the system.

Source program input to the assembler may be punched cards or card images
on magnetic tape. The outputs from the assembler are an assembled listing,
and a binary object program on punched cards or on magnetic tape (load-and-
go tape). One or more of these outputs may be suppressed as indicated by a
control card placed at the beginning of a CODAP~1 source program deck.

Source programs may be subdivided into subprograms, with each subprogram
being assembled as a separate entity. Addresses assigned to instructions
within a subprogram are relative to the beginning of the subprogram. Absolute
addresses are assigned by the relocatable loader of the CO-OP Monitor
System when the object program is loaded. Under the CO-OP Monitor System,
the programmer has the option of either assembling and executing a program
in one Monitor operation (the load-and-go option) or assembling and executing
in two independent operations.

CODAP-1 functions as a two pass assembler. During pass one it saves each
line of input in memory in a compressed form. If a program exceeds avail-
able memory, the remainder of the compressed form of pass one input is
output on magnetic tape. After pass one is completed, pass two begins proc-
essing the results from pass one which are stored in core. Finally, any
information stored on the intermediate tape is read in and processed to com-
plete the assembly.

MACHINE INSTRUCTION FORMAT

OCTAL FORMAT

CODAP-1 FORMAT

The format for CODAP-1 symbolic instructions is similar to that for octal
machine instructions described in the 1604 Computer Programming Manual.
The major difference between the two formats is that symbolic notation may
be used in CODAP-1 instructions. Also, two additional fields, a location

field and a remarks field, are provided in CODAP-1 instructions. Because
punched cards are the standard source medium, the symbolic fields are
discussed in terms of columns on a punched card. A list of all 1604 mnemonic
instructions is given in Table 1 at the back of this manual.

A 1604 machine instruction consists of eight octal digits (24 bits) in the
following format:

OP-CODE B-FIELD M-FIELD
(2 digits) (1 digit) (5 digits)

The OP-code is a two-digit octal number that specities the operation to be
performed. The B-field is a one-digit number that specifies either an index
register, a stop key, jump key, or a condition to be looked for by the instruc-
tion. The M-field is a five~-digit octal number that specifies a machine
address (direct, indirect or relative), a shift constant or an octal constant

to be used as an operand. These fields are described in the 1604 Computer
Programming Manual.

Two octal instructions are stored as a pair in one 48-bit 1604 machine word
as follows:

24 bits 24 bits

UPPER INSTRUCTION LOWER INSTRUCTION

48-bit machine word

All CODAP-1 instructions, whether symbolic, octal or pseudo-instructions,
are written in the following format:

| 8

Location

17,18

20 40|41 72:73 80

Sequence

M-te R k
rm emarks Number

LOCATION FIELD
SYMBOLS

OPERATION CODE
FIELD

The OP-code, B-field and M-field are the same for both symbolic and octal
instructions. The location field identifies (in symbolic notation) the address
assigned to a pair of CODAP-1 instructions, or to the first or last location
of a block of data. The remarks field is used by the programmer for
identification and description. Remarks are not part of the assembled pro-
gram that is executed; however, they appear in the listing of the assembled
program.

Since two instructions are stored in one 1604 machine word, the programmer
should know in which half of the machine word a given instruction will be
assigned. Detailed rules for instruction pairing are given in Chapter 4.

A symbol in the location field (LOCN) is placed left justified, in columns
1-8. Symbols identify the address of a pair of instructions or the first or
last address of a block of data. (Data blocks are assigned by pseudo-
instructions described in Chapter 3.)

Location field symbols consist of a maximum of eight alphabetic, numeric or
special characters such as comma, $ and imbedded blanks. Any combination
of the three types may be used as a symbol, however the first character must
be non-numeric. Plus and minus signs should not be used as symbols or as
special characters within symbols. The * or ** are not to be used as loca-
tion symbols by themselves.

Acceptable location symbol examples:

A

Al
ABCDEFGH
A1234567
8765

(12)

The operation code (OPN) field consists of any of the 1604 mnemonic or
octal instruction codest, or any of the pseudo-instructions. The code is
placed, left justified, in columns 10-15.

t Since the Monitor normally controls all input-output and interrupt operations,
the EXF and SEN instructions should not be used in a CODAP-1 program that
is to be executed under Monitor control.

B FIELD

M-TERM FIELD

The alternate mnemonic codes provided in CODAP-1 for some of the 1604
mnemonic instructions are given in Table 2. For example, the code RTJ
(return jump) may be used instead of the code SLJ for certain operations.

The B-field (Columns 17 and 18) contains an octal digit that specifies either

an index register modifying the M-term, a stop or jump key, indirect address-
ing or a condition to be sensed by an instruction. Specific uses of the B-term
are explained in the 1604 Programming Manual. Selective stop and jump
switches should not be referenced by CODAP-1 programs as the CO-OP
Monitor System makes use of these switches during program assembly and
execution.

For certain instructions, the B-field may consist of an alphanumeric character
instead of an octal digit (see Table 2). Also, the prefix B may be used to
identify an octal digit used as an index reference.

The M-term consists of either a numeric or symbolic term or a combination
of the two: it is used as either a direct, relative or indirect storage reference,
or as an operand. The M-term is placed in columns 20 through 40. M-term
rules for pseudo-instructions are given in Chapter 3.

Address arithmetic is permitted in the M-term in that a numeric value may
be added to or subtracted from a symbolic term. Symbols cannot be added to
or subtracted from other symbols.

Symbols used as M-terms must appear in the location field of a machine or
pseudo-instruction, or in the M-term of an EXT (external symbol) pseudo-
instruction. Symbols defined as external symbols cannot be modified by
address arithmetic during assembly.

Numeric constants are written and interpreted either as signed decimal or
octal numbers. A number is assumed to be decimal unless followed by a B,
which indicates an octal number. Decimal numbers may be followed by a D
for identification. Decimal numbers cannot exceed +32,767; octal numbers
cannot exceed +77777.

A single asterisk (*) in the M-term indicates that the M-term is to be assigned
the address of the instruction word containing the M-term. A double asterisk
(**) in the M-term indicates an M-term of -0 (77777). For example, if the
instruction pair

IJP1* ENA (0 **

is stored in location 1000, the M-term of the IJP instruction is assembled as
01000, and the M-term of the ENA instruction is assembled as 77777.

REMARKS FIELD

Relative addressing may be used in a CODAP-1 instruction by placing an
asterisk (*) plus or minus a numeric constant in the M-term of the instruc-
tion. The M-term *+5 indicates that the address referenced by the instruction
is five locations ahead of the address containing the *+5 term.

The rémarks field extends from column 40 through column 80. Remarks may
consist of any of the standard key punch characters. When sequence numbers
are used, they appear in columns 73 through 80.

PSEUDO-INSTRUCTIONS

CONSTANTS

BCD

The following pseudo-instructions provide for conversion of constants, data
storage area assignments, input-output control, symbol identification, CO-OP
Monitor communication and insertion of remarks. The general format for
pseudo-instructions is the same as that for machine instructions given in
Chapter 2, except the B-term is blank. Some pseudo-instructions cannot have
location symbols, others allow multiple symbols in the M-term, The mne-
monic codes placed in the OP-code field define the pseudo-instruction.

Octal, decimal, and binary-coded decimal constants may be inserted in a
CODAP-1 program by using the pseudo-instructions below. Additional
pseudo-instructions allow conversion of constants to Flexowriter and Tele-
type codes. The M-term may extend beyond column 40 if necessary.

The BCD pseudo-instruction converts a maximum of 56 characters to
standard BCD code and stores them as consecutive 48-bit words within the
assembled program. The M-term consists of an octal control digit,

n (1=n = 7), followed by a string of alphanumeric characters, which may be
any of the characters on a standard key punch, including spaces. The octal
digit, n, specifies the number of consecutive words into which the characters
will be stored. A maximum of seven words can be filled by one BCD pseudo-
instruction,

If less than 8n characters are written in the M-term, the remaining portion
of the n words is filled with blanks (20). If more than 8n characters appear
in the M-term, only the first 8n characters immediately following the control
digit will be converted and stored. The remainder will appear only in the
assembled listing.

A symbol may be placed in the location field, which identifies the first word
of the n-word block generated by the BCD instruction.

Example
L-term Ob-code B-term M-term
CONST BCD 2ABCD1234EFGH5678

DEC

The constant in the M-term is stored in two consecutive words. The first
word contains ABCD1234, and the second word contains EFGH5678. The
first word of this two-word block is identified by the symbol CONST. If n
had been 3 or greater, the remaining words would contain blanks.

The DEC pseudo-instruction converts decimal constants to equivalent octal
values. Each constant may be converted in either fixed or floating point
format.

The decimal numbers to be converted are written in the M-term of the DEC
instruction in one of the following ways.

1. A sign followed by a maximum of 14 decimal digits and a decimal
point. (Plus signs may be omitted.) This results in a floating
point constant,

2. A decimal number as described above, written without a decimal
point. This results in a fixed point integer constant.

3. A decimal number as described in (1) or (2), followed by a decimal
scaling factor, D + N. D is the decimal identifier and N is the
number representing the scale factor. Both the decimal number and
the scaling factor are converted to octal before the number is
scaled. Only the integral portion of fixed point numbers is retained
after scaling. Loss of significance due to scaling is not detected.

4. A decimal number as described in (1), (2), or (3) followed by a binary
scaling factor B + N. N is a decimal number indicating the number
of binary places (left or right) the number is to be shifted after
being converted to octal. Loss of significance due to scaling is not
detected.

The constant must be written, left-justified, starting in column 20. A
constant may be scaled by both decimal and binary factors. No spaces may
occur within a number, including its associated scale factors, as a space
indicates the end of the constant. Plus signs may be omitted.

Examples

L-term Cooge Tf;m M-Term Comments

CONST A | DEC -12345. FLOATING PT CONST

CONST B | DEC +12345 FIXED PT CONST

CONST C | DEC -12345.D+5 FLOATING PT CONST, DECSCALE
CONST D | DEC 12345D-3 FIXED PT CONST, DECSCALE

CONST E | DEC +12345B+8 FIXED PT CONST, BINSCALE

CONST F | DEC +12345.D12B-18 | FLOATING PT CONST, DECBIN SCALF

oCT

FLX

The constants in the example above are converted to 16-digit octal numbers
as shown:

Name Decimal Octal
CONST A -12345 57611761
STTTT777
CONST B +12345 00000000
00030071
CONST C -12345.D+5 57403315
30145777
CONST D -12345.D-3 00000000
00000014
CONST E +12345. B+8 00000000
14034400
CONST F +12345.D12B-18 20455366
73311360

More than one constant may be written in the M-term using commas to
separate each constant.

Example (3 constants)

MULCON DEC +1D5,06D+8,115.D-6B9

The OCT pseudo-instruction stores one or more octal constants, consecu-
tively, as written in the M-term. Each constant consists of a sign followed
by a maximum of 16 octal digits. Plus signs may be omitted. Constants

are set off from each other by commas, and may be written in the M-term
beyond column 40. A blank character signals the end of the line of constants.

Example (6 constants)

OCTCON OCT +1,-57,20,2040,1776,-2

The FLX pseudo-instruction is similar to the BCD pseudo-instruction
except that Flexowriter codes are generated for each character in the
M-term constant. The special codes for carriage return, tab, backspace,
and others, are given in Table 3. The format for the constant in the M-term
is an octal control digit punched in column 20 followed by a string of alpha-
numeric characters. A space signals the end of the string of characters.

TEL

DATA STORAGE
ASSIGNMENT

BSS

10

If more than 8n characters are contained in the M-term, the excess characters
are ignored. If less than 8n characters are contained in the M-term, the
constant is left justified within the assigned block in storage and the remainder
of the block is filled with space codes.

Up to seven consecutive words will be filled with the Flexowriter constant,
as specified by the octal control digit.

The control characters in Table 3 must be preceded and followed by a zero
with a minus overpunch,

Example Using carriage return and tab

One word will be generated containing the Flexowriter codes for the words
ONE and TWO. ONE is followed by the tab code 51, and TWO is followed by
the carriage return code 45. The four zeros with minus overpunches are not
counted as part of the 8-character field.

TEL pseudo-instruction is the same as FLX pseudo-instruction except that
Teletype codes are generated instead of Flexowriter codes. Table 3 contains
the special control characters such as carriage return and tab,

The following pseudo-instructions reserve storage areas for blocks of data.
BSS and BES reserve storage blocks within the subprogram with which they
are assembled. If these storage areas are to be referenced by other sub-
programs, the name assigned to the block is declared as an entry point in
the program containing the block, and as an external symbol in the program
referencing the block. The ENTRY and EXT pseudo-instructions are dis-
cussed under Symbol Assignments. BLOCK and COMMON reserve storage
areas for data arrays that are to be referenced by more than one sub-
program. EXT and ENTRY are not needed to identify data names specified
as COMMON.

The BSS pseudo-instruction reserves a specific storage area within a
subprogram. The M-term contains a positive numeric value, either octal
or decimal, that specifies the length of the reserved area. The address of
the first word of this reserved area is identified by a symbol in the location
field. Other words in the storage area are referenced by address arith-

FLEXCON FLX 1ONEOTOTWOORO
metic, using the location field symbol as the first term, or by indexing.

BES

BLOCK

Example

A block of 64 words is to be reserved within a subprogram. The pseudo-
instruction would be written as

STORE BSS 64

If the instruction immediately preceding STORE was assigned to location
01477 . the 64-word storage area STORE would be assigned starting at
location 01500 _. The next instruction pair following the BSS would be
assigned to location 01600 . If the preceding instruction was an upper
instruction, the lower instruction of that word would be set to ENI 0.

The BES pseudo-instruction is the same as BSS, except that the symbol in
the location field identifies the last word of the block, rather than the first.

BLOCK AND COMMON

A general method of reserving storage areas that can be referenced by more
than one subprogram is by use of the BLOCK and COMMON pseudo-instruc-
tions. BLOCK reserves a common storage area, as specified in the M-term.
This storage area may be at the beginning of the area assigned to the sub-
program containing BLOCK, or it may be assigied to another part of the
computer core storage. The type of location symbol in the BLOCK pseudo-
instruction determines which of these two areas is to be used. If the
location symbol is alphanumeric, the storage area is reserved at the
beginning of the subprogram. This area is termed "labeled common'. If

the location symbol is a numeric value or blank, the storage area is assigned
a separate portion of core storage termed "numbered common',

The main difference between the two types of common storage is that constants
can be assembled into a labeled common area, but not into a numbered common
area. The location symbol of BLOCK pseudo-instructions is never referenced
by any instruction other than another BLOCK., To describe data arrays within
an area assigned by BLOCK, the COMMON pseudo-instructions are used.
These two pseudo-instructions are always placed at the beginning of a sub-
program. To reference a block of common storage reserved in another sub-
program, the location field symbol of the BLOCK pseudo-instruction in each
subprogram must be identical. Also, the length of these two blocks must be
the same.

The BLOCK pseudo-instruction reserves areas of labeled or numbered
common. If the location symbol is alphanumeric, starting with a non-
numeric character in column 1, the reserved area will be in labeled common.
If the symbol starting in column 1 is numeric or blank, the reserved area
will be in numbered common. Numeric symbols can contain only digits with
the first digit in column 1.

n

COMMON

12

Labeled common symbols

ABCDE
Al234
Numbered common symbol
12345
Illegal symbol
123A5

The M-term of BLOCK can be either blank or a numeric value. A blank
M-term indicates that the size of the reserved area is equal to the sum of
the sizes of the data arrays specified by the COMMON pseudo-instructions
immediately following BLOCK. A numeric value in the M-term specifies
the length of the reserved area which should be equal to or greater than the
sum of the associated data arrays.

The COMMON pseudo-instruction is used to identify one or more arrays of
data in labeled or numbered common. The M-term contains the names and
sizes of the arrays. Each array may have from one to three dimensions.
Each array name may be any legitimate M-term symbol as described for
the symbolic machine instructions. The dimensions of each array are
specified within parentheses immediately following the array name. Each
dimension is written as a decimal integer; dimension integers are set off
from each other by commas. If more than one array is specified in the
M-term, the arrays are separated by placing a comma after the parentheses
enclosing the dimensions of each array. The array names and dimensions
may extend to column 72, however no blanks may occur within the string or
at the beginning, as the first blank column indicates the end of the M-term.
A location symbol in a COMMON pseudo-instruction is illegal. An example
using three arrays of one, two and three dimensions follows:

COMMON A(5),B(5,10),C(5,10,20)

Array A is assigned a 5-word block, array B is assigned a 50-word block
and array C is assigned a 1000-word block.

The use of BLOCK and COMMON is illustrated by examples which demon-
strate ways of assigning data arrays in numbered and labeled common
storage areas.

Example 1

Assign three arrays, ALPHA, BETA, and GAMMA, to labeled common
storage.

ARRAYS BLOCK 300
COMMON ALPHA(100)
COMMON BETA(10,10)
COMMON GAMMA(10,5,2)

A 300-word block ARRAYS will be reserved at the beginning of the sub-
program containing the BLOCK and COMMON instructions. The block size
would have been established as the sum of the array sizes if the M-term 300
had been omitted. Each of the three arrays is 100 words long, and stored
sequentially starting with ALPHA. CODAP-1 does not provide for subscripted
variables, therefore the programmer should use indexing to select a word
within an array.

Example 2

Reference the array GAMMA of Example 1 in the next subprogram. The
coding for BLOCK and COMMON should appear in the second subprogram
as follows:

ARRAYS BLOCK
COMMON A(100)
COMMON B(100)
COMMON GAMMA (100)

Within the original block ARRAYS in Example 1. GAMMA is assigned
locations 201-300.

To reference array GAMMA in the subprogram of this example, a BLOCK
pseudo-instruction with the same name as the original block is placed at
the beginning of the second subprogram. (The M-term is blank, but could
be 300.) Tollowing BLOCK are one or more COMMON instructions that
indicate the position of the desired array within the block. Array names
are of no consequence in communication between subprograms: only array
lengths are important. In this example the COMMON statement for array
GAMMA is preceded by two COMMON statements, the lengths of which
indicate that GAMMA starts at word 201 within ARRAYS. These two state-
ments could be replaced by one COMMON instruction having an array length
of 200, Since array names are not communicated between subprograms, any
name could have been used in the second subprogram in place of GAMMA,
The coding could have been written as follows:

ARRAYS BLOCK
COMMON DELTA(200)
COMMON ZETA(100)

Now array ZETA occupies the same storage area asarray GAMMA in the first
subprogram block ARRAYS., Arrays ALLPHA and BETA comprise the
larger array DELTA of the second subprogram.

To demonstrate that more than one array can be written in the M-term of
COMMON, these statements can be rewritten as follows:

ARRAYS BI.OCK
COMMON DELTA(200),ZETA(100)

13

The element that identifies each group of arrays as belonging to the same
group is the name in the location field of BLOCK. Unless this name is
repeated each time, separate array blocks will be reserved. In these two
examples, the name indicates labeled common storage. If numbered common
had been specified (by a numeric or blank location symbol) the same rules
would apply.

Example 3

Insert constants in a labeled common area by use of the assembly program.
The constants can be any of those allowed by CODAP-1.

CONST BLOCK 500
COMMON A(6)

(program instructions)

ORGR A

DEC 1234
DEC 5678

BCD 1ABCD

BCD 1EFGH .
OCT 4321

OCT 7654

ORGR *

(program instructions)

The block CONST will be assigned 500 words of storage in labeled common.
The first six locations in this block are occupied by the array A. By use of
the ORGR pseudo-instruction, the six constants following ORGR A are
inserted (preset) in array A when the program is loaded. The ORGR *
returns the CODAP-1 program counter to the next sequential address in

the program instruction sequence, as if the six constants had not intervened.

The block must be designated as labeled common, and the name of the array
to be preset is placed in the M-term of the first ORGR pseudo-instruction.
The constants to be inserted in the array immediately follow the first ORGR.
The last constant is immediately followed by ORGR *,

SYMBOL ASSIGNMENTS

EQU

ENTRY

The following rules apply to BLOCK and COMMON,

1. Symbols are left-justified in the location fiel('i of BLOCK. Blank
location fields for BLOCK should be avoided in CODAP-1 programs.

2. The M-term of BLOCK is blank or it contains a number that is
equal to or greater than the sum of the length of all arrays within
the block.

3. All COMMON pseudo-instructions associated with a BLOCK imme-
diately follow the BLLOCK pseudo-instruction.

4. All BLOCK and COMMON pseudo-instructions for a subprogram
must appear at the beginning of the program after the IDENT
instruction and before the first program instruction.

The three pseudo-instructions, EQU, ENTRY, and EXT, define symbols as
equal to other symbols, or identify symbols that are defined in other sub-

programs. Linkage between the same symbol in separate subprograms is
provided by the CO-OP Monitor System.

The EQU pseudo-instruction assigns the address of the symbol in the
location field of EQU to the address of the symbol in the M-term, or to a
numeric constant in the M-term. An M-term symbol must be used as a
location field symbol elsewhere in the same program or subprogram.

Example

ouT EQU JUMP

If JUMP is assembled to address 00100, OUT will also be assigned address
00100.

Numeric constants must follow the rules for symbolic instructions. Only
one symbol or constant is allowed in the M-term: however, address arith-
metic is permitted (Symbol + constant).

Symbols to be referenced by other subprograms must be declared as entry
points within the subprogram that defines these symbols. (A symbol is defined
when it appears in the location field of a machine or pseudo-instruction.)
Symbols are declared as entry points by placing them in the M-term of one
or more ENTRY pseudo-instructions. Two or more symbols in the M-term
are separated by commas. No spaces (blanks) can appear within a string

15

EXT

LIB

FORMAT CONTROL

SPACES

16

of symbols, as a space indicates the end of the string. The M-term of the
ENTRY pseudo-instruction may be extended out to column 72. The location
field must be blank,

Example

ENTRY SYM1,SYM2,SYM3

SYM1, SYM2, and SYM3 can now be referenced by other subprograms.

Symbols used by a subprogram which are defined in another subprogram are
declared external symbols by placing them in the M-term of one or more
EXT pseudo-instructions contained in the user subprogram. For example,
to use the symbols SYM1, SYM2 and SYM3 declared as entry symbols in
another subprogram, the pseudo-instruction would be written as:

EXT SYM1,SYM2,SYM3

The M-term may be extended to column 72; symbols are separated from

each other by commas. No spaces (blanks) can appear in a string of symbols,

as a space indicates the end of the string. The location field of an EXT
must be blank. If a symbol in an EXT M-term is the name of a CO-OP
library subroutine, the subroutine will be loaded with the object program
containing the EXT. Address arithmetic cannot be performed on external
symbols.

The LIB pseudo-instruction acts as an EXT instruction, except that only one
symbol may be placed in the M-term. The location field of LIB may contain
a symbol, thereby allowing renaming of an external symbol. Symbols
defined by LIB cannot be modified by address arithmetic.

The pseudo-instructions which provide format control for assembled listings

are shown below. The pseudo-instruction codes do not appear on the assembled

listing.

The line spacing on an assembled listing can be controlled by the SPACES

pseudo-instruction. A decimal constant in the M-term designates the number

of spaces to be skipped before printing the next line. If the number of spaces
to be skipped is greater than the number of lines remaining to be printed on
a page, the line printer skips to the top of the next page. The next machine
instruction following the SPACES pseudo-instruction is assembled as an
upper instruction. A symbol in the location field is ignored.

EJECT

REM

MONITOR CONTROL

IDENT

I/0

ORG

The EJECT pseudo-instruction causes the line printer to skip to the top of
the next page when the assembled program is listed. The next machine
instruction after EJECT is assembled as an upper instruction. A symbol
in the location field is ignored.

The REM pseudo-instruction is used to insert program comments in an
assembled listing. The M-term can be extended to column 72. Any standard
key punch character can be used in the comments. If the comments are to
be written on more than one line, successive REM pseudo-instructions may
be used as necessary. The next machine instruction following REM is
assembled as an upper instruction. A symbol in the location field is ignored.

The following pseudo-instructions provide communication between CODAP-1
programs and subprograms and the Monitor. Some are required in every
program and subprogram; others ave optional.

An IDENT pseudo-instruction appears at the beginning of every CODAP-1
program and subprogram. The M-term contains the name of the program
or subprogram, which can be a maximum of eight alphanumeric characters,
the first being alphabetic. Spaces within a name are ignored and are not
counted as characters. A symbol in the location field is illegal.

The I/0 pseudo-instruction is used to check that the logical input-output

unit numbers in the M-term are defined by the MCS control card required
by the Monitor. (See the CO-OP Monitor Programmer's Guide.) The unit
numbers in the M-term are separated by commas, and the string of numbers
is terminated by a blank. The M-term may be extended to column 72. A
location field symbol is illegal.

Location of a program or subprogram may start at an absolute machine
address by using the ORG pseudo-instruction. The M-term contains either
a decimal or octal machine address. An octal address is followed by a B.
ORG should be used only for special applications. Programs containing
ORG pseudo-instructions cannot be loaded by the Monitor.

17

ORGR

END

FINIS

This pseudo-instruction signals the assembler that the instructions following
ORGR are to be assembled as relocatable, starting at the address (decimal
or octal) given in the M-term. Since programs are normally assembled as
relocatable, the principal use of ORGR is to assemble constants into a block
of labeled common storage. The labeled common storage area must be
defined by a COMMON pseudo-instruction at the beginning of the subprogram.
The set of BCD, OCT, DEC, FLX or TEL constants are immediately pre-
ceded by an ORGR pseudo-instruction containing the name (without dimension)
of the array in the labeled common area to be filled. This sets the assembly
program counter to the first address of the labeled common area. Another
ORGR is placed immediately after the last constant to be stored in labeled
common. The second ORGR is written with an * in the M-term, which causes
the assembly program counter to be set back to the address it contained
before the first ORGR was encountered. The first machine instruction
following an ORGR * is assembled as an upper instruction. See the
COMMON pseudo-instruction for details of labeled common.

The end of a program or a subprogram is indicated by an END pseudo-
instruction. The M-term identifies the starting address of the program
when one or more subprograms are loaded together as one program. One
of the subprogram END cards contains the symbol appearing in the location
term of the first instruction to be executed. Only one END card can contain
an M-term. A location term for an END pseudo-instruction is ignored.

The Monitor requires that a second END card follow the END card of the
last subprogram in a program deck. If this card is missing, the program
will not execute properly.

The FINIS pseudo-instruction terminates an assembly operation. It is a
signal to the Monitor that no more programs are to be assembled. The
FINIS card is placed after the second END card of the last program in a
symbolic input card deck. See Chapter 5 for symbolic card deck
composition.

PROGRAM PREPARATION

INSTRUCTION PAIRING

This chapter is to be used as a guide in coding CODAP-1 programs. Rules
are given for instruction pairing, library subroutine references, input-output
and the program format required by CODAP-1.

As specified in the 1604 programming manual, certain 1604 instructions are
required to be upper instructions; other instructions must be lower instructions.
The rules listed below govern instruction pairing in CODAP-1.

1. The normal sequence of instruction pairing by the assembly program
is as follows. Starting with the first two machine instructions in a
subprogram, each pair is assigned as one machine word in consec-
utive locations. The first instruction is assigned to the upper half,
the second instruction to the lower half of the word. This sequence
is maintained until one of the conditions described in paragraphs 2
through 6 is encountered. Pseudo-instructions (except as described
in rule 4) do not affect the sequence of instruction pairing.

The following instructions: are assembled as:
IDENT PROCESS IDENT PROCESS
ENTRY START ENTRY START
EXT OPEN EXT OPEN

REM PARTA REM PARTA
SLJ * ok L SLJ * ok

ENA POINTER ENA POINTER
SAL TRANSFER L+1 SAL TRANSFER
RTJ TRANSFER RTJ TRANSFER
NOP L+2 NOP

ENA PROCA ENA PROCA
REM PARTB REM PARTB
SAL TRANSFER L+3 SAL TRANSFER
RTJ TRANSFER RTJ TRANSFER

19

20

The first four lines are pseudo-instructions and are not assigned to
machine locations. The instruction SILJ ** is assigned as the upper
instruction in location L, and ENA POINTER is assigned as the lower
instruction in location L. The remaining machine instructions are
assembled in sequence (upper, lower, upper, lower). The pseudo-
instruction REM after ENA PROCA does not affect the assembly
sequence. The NOP instruction is equivalent to the machine instruc-
tion ENI 0.

A symbolic instruction that contains a symbol in the location field is
assembled as an upper instruction. If the previous instruction was
also assembled as an upper instruction, a pass (ENI 0) instruction
is generated by the assembly program and placed in the lower half
of the previous word.

The following consecutive instructions:

A LDA 1 ALPHA
B STA 2 BETA
Cc 1LDQ 3 GAMMA
STQ 4 DELTA
are assembled as:
L A LDA 1 ALPHA (upper)
ENI 0 (lower)
L+1 B STA 2 BETA (upper)
ENI 0 (lower)
L+2 C LDQ 3 GAMMA (upper)
STQ 4 DELTA (lower)

Instruction A is assembled as the upper instruction in address L,
instruction B is assembled as the upper instruction in address L+1,
and the instruction C is assembled as the upper instruction address
L+2. The ENI 0 instructions are generated by CODAP-1.

A + character in column 1 indicates that the associated symbolic
instruction is to be assembled as an upper instruction. ENI 0
instructions are generated as explained in rule 1.

The following instructions:

+ LDA 1 ALPHA
+ STA 2 BETA
+ LDQ 3 GAMMA

are assembled the same as those in rule 1 but without location field
symbols.

4, A - (minus) character in column 1 forces an instruction to the lower

half of a word.
The following instructions:

+ ADD
SUB

are assembled as:

L ADD
SUB

L+1 ENI
MUI

L+2 ENI
DVI

[BN, B =}

D O v o B O

ECHO
FOXTROT
HOTEL
KILO

ECHO
FOXTROT

HOTEL

KILO

If a symbol is placed after a minus sign in column 1, the minus sign
takes precedence and the symbol is ignored.

5. The following mnemonic instructions are normally assembled as
upper instructions, unless preceded by a minus sign in column 1:
EQS, THS, MTH, MEQ, ISK, SSH, SSK, EXF7 and SENT .

The following instructions:

EQS
THS
MEQ

are assembled as:

L EQS
ENI

L+1 THS
ENI

L+2 MEQ

- o © o ©

FIVE
SIX
SEVEN

FIVE

SIX

SEVEN

tEXF7 and SEN should not be used in CODAP-1 programs, as the Monitor

provides these functions.

2]

LIBRARY SUBROUTINES

INPUT-OUTPUT

22

The next instruction in sequence would be assembled as a lower
instruction unless otherwise indicated.

The pseudo-instructions that reserve data storage areas within a
subprogram, (DEC, OCT, BCD, FLX, TEL, BSS, BES) force the next
instruction to be an upper instruction of the next word in sequence.
If the preceding instruction had been an upper instruction, an ENI 0
would be inserted in the lower half of that word.

The following instructions:

LOAD LDA 0 DATA+5
DATA BSS 10
STA 0 TEMP

are assembled as:

L LOAD LDA 0 DATA+5
ENt 0

L+1 DATA BSS 10

L+11 STA 0 TEMP

The LDA instruction has a symbol in the location field, therefore
it is assembled as an upper instruction. Since the next instruction
is a BSS, the assembly program inserts an ENI 0 in the lower half
of L. The BSS reserves ten locations starting at L+1, and the STA
is the upper instruction at L+11.

The library subroutines are described in the CO-OP Monitor Library Sub-
routine Manual. To load a subroutine with a CODAP-1 object program, the
name of the subroutine is placed in the M-term of an EXT or LIB pseudo-
instruction. This same method calls routines that are part of the CO-OP
Monitor itself.

The 1604 machine instructions for input-output are not to be used in CODAP-1
programs, as all input-output is controlled by two subroutines in the CO-OP
Monitor. READ* and WRITE* may be used for programmed input-output on

any of the 1604 on-line peripheral equipment. The calling sequence format is
the same for both subroutines, as follows:

EXT READ*(or WRITE*)
ENQ Y
L RTJ 0 READ*(or WRITE*)
rm 0 n (logical unit number)
L+l fe 0 A (FWA)
i 0 B (LWA+1)
L+2 SLJ 0 C (alternate return)
e (error flag)
L+3 SLJ 0 D (normal return)

The definitions of the codes are given below:

rm An octal digit designating the recording mode (binary, coded, BCD,
Hollerith).t

fc An octal number designating the function to be performed by the
specified peripheral device.t

i A single digit, 0 or 1, indicating whether or not to recognize an
interrupt condition such as the termination of a buffer operation
or sensing equipment ready. If the digit is 0, the interrupt condition
is ignored. If the digit is 1, the interrupt is recognized and an exit
is made to the starting address of the interrupt subroutine supplied
by the programmer. This address is stored in the Q register.

Y Symbolic address of the start of the interrupt subroutine supplied
by the programmer.

n Logical unit number of peripheral device to be used by READ* or
WRITE*,

A Symbolic first word address of input or output area.
B Last word address + 1 of input or output area.

C Symbolic address of alternate return to be taken when an error is
sensed during a read or write operation,

e Error flag set by the READ* or WRITE* subroutine to indicate an
error or abnormal condition (such as parity error or end-of-file)

that occurred during operation.}

D Symbolic address of normal return to be taken by READ* or WRITE *.

tSee CO-OP Monitor Programmer's Guide for numeric codes and error codes,

23

INTERRUPT

SUBPROGRAM FORMAT

24

The internal and external interrupts for the 1604 are selected, sensed and
removed by the CO-OP Monitor subroutines SELECT*, DETECT* and
REMOVE*, Calling sequences and subroutine descriptions are given in the
CO-OP Monitor Programmer's Guide.

The positioning of certain of the pseudo-instructions within a subprogram is
extremely important. The first instruction in a subprogram is the IDENT
pseudo-instruction, which has the name of the subprogram in the M-term.
Following IDENT are all BLOCK and COMMON pseudo-instructions. After |
the last of these is placed the remainder of the coding for the subprogram. i
|

The last instruction in any subprogram, the END pseudo-instruction, may
have a symbolic transfer address in the M-term identifying the starting
address of the main program of which the subprogram is a part. This symbol
must appear in the location field of the first machine instruction in the
program to be executed, and it must be declared as an entry point by placing
the symbol in the M-term of an ENTRY pseudo-instruction. If a single
subprogram is to be executed as a main program, the END pseudo-instruction
for this program must have the symbolic starting address in the M-term.

For programs consisting of more than one subprogram, the symbolic transfer
address may appear in any one of the END M-terms. This symbol is declared
an entry point symbol in the subprogram containing the starting address.

Because the Monitor loader program executes a return jump to the location
declared as the starting address,when the program is loaded and executed, the
upper instruction of this address should be an SLJ 0 **, The return jump
operation will replace the ** with the return address to the Monitor loader.
This allows the programmer to exit back to the Monitor by a jump to the
starting address. This jump would normally be the last executable instruction
in the program. When the jump at the end of the program is executed,
processing of this program is terminated ind control is returned to the
Monitcr system.

Saving of Index Registers

The contents of all index registers used in CODAP-1 programs should be
saved at the beginning of the program and restored at the end of the program.
This allows the CODAP-1 program te he used as a subroutine in another
program without destroying index register settings in the other program.

Coding Example

The following example illustrates the order of instructions in a CODAP-1
subprogram.

SAMPLE PROGRAM

LOCN OPN B OPERAND OR M-TERM REMARKS
10 17 20 4
IDENT SQUARES
ARRAY BL@CK
COMMEN INTEGER(101),SQUARE(100),BUFF (1500)
ENTRY START
EXT BINBCD,PRINT
START SLJY Kk
Stu 1 REG1 SAVE |NDEX
ENI 1 0
ENA 1
STA INTEGER
MULT LDA 1 INTEGER
MU] INTEGER
STA] SQUARE
+ LDA 1 INTEGER
| NA 1
STA 1 INTEGER +1
+ ISK 1 99
SLJ MULT
RTJ BINBCD
+ RTJ PRINT
REGI1 ENI 1 *% REST@RE INDEX
SLJ START
END
I DENT PRINT
ARRAY BL@ACK
COMMEN A(201) ,BUFF(1500)
ENTRY PRINT
EXT WRITE*,START
PRINT SLJ *%k
SIU 5 REG] SAVE INDEX
SIL 4 REG)
ENI 5 0
ENI L 0
NEXT ENA L BUFF
SAU TAG
ENA L BUFF+15
SAL TAG
ENQ *%
+ RTJ WRITE*
1 51
TAG 3 *k
0 *%k
RTJ 208
ZR@ 0
INI L 15
ISK 5 99
SLJ NEXT
REG1 ENI 5 *% REST@RE [NDEX
ENI i *k
SLJ PRINT
END START
END
FINIS

25

ASSEMBLY AND EXECUTION S

MONITOR INPUT To assemble and execute a CODAP-1 program under control of the CO-OP
Monitor, the control cards shown below must be placed at the beginning and
end of each CODAP-1 program deck.

=
f
74

p/
7 Data Deck
—
r (if required)
TEXECUTE
9 CCS Control Card No. 2
(if required)

FINIS —
1 ~———— FINIS Card

END
l <+———— END Card

|

~<+———— END Card of last Subprogram

!

CODAP-1 Source Program Deck

IDENT

IDENT Card of First Subprogram

7
9CODAPI.
~¢=——————— CCS Control Card No. 1

“coop,

©

4= MCS Control Card

27

MCS CONTROL CARD

CCS CONTROL
CARD NO. 1

28

The formats for the MCS and CCS control cards are described in detail in the
CO-OP Monitor Programmer's Guide. A brief description is given below.

The MCS Control Card is placed at the beginning of a CODAP-1 program deck
to be assembled. The general form of this card is as follows, starting in
column 1 from left to right:

gCOOP, Accounting Number, Programmer's Name or Initials,
Input-Output Assignments, Time Limit, Printer Line Count,
Recovery Key, Comments.

A comma terminates each field except the last, which is terminated by a
period.

Example

7

COOP,31003-00,ABC,1/1/0/2/8/3,10,1000,4,ASSEMBLE AND EXECUTE.

The gCOOP identifies the control system to be used, 31003-00 is the
accounting number and ABC are the programmer's initials, I/1 assigns
logical unit 1 as an input device, O/2 assigns logical unit 2 as an output device,
and S/3 assigns logical unit 3 as a scratch unit. (A scratch unit may be used
as either an input or output device.) The 10 following S/3 indicates a time
limit of ten minutes, the number 1000 indicates the maximum number of lines
to be printed, and 4 indicates that recovery key 4 is to be used during
execution. The time limit is the maximum time allowed for assembling and
executing the program. The remainder of the card may contain program
comments. Omitted fields are indicated by one or more commas. For
example, to omit the input-output assignment, the example above would be
written as follows:

JcooP,31003-00,ABC,,10,1000,4, ASSEMBLE AND EXECUTE.

The gCOOP, the accounting number and the programmer's name or initials
must be on the MCS card. The line may be terminated by a period at the end
of the name or any subsequent field. The example below contains the
minimum number of fields.

Icoop,31003-00,ABC.

The first CCS control card identifies the subordinate control system to be used
in processing the program deck. For CODAP-1 assemblies the subordinate
control system is CODAP-1. The format for this card is as follows, starting
in column 1:

gCODAPI, Listing Key, Binary Object Card Key,
Load-and-Go Tape Unit Number.

CCS CONTROL
CARD NO. 2

gCODAPI indicates that the CODAP-1 assembly program is to be loaded and
executed. The listing key is 1 if an assembled listing is to be printed,
otherwise it is 0 or blank. The binary card key is 1 if binary cards are to
be punched, 0 or blank if no cards are to be punched. The last field is the
logical unit number of the tape unit to be used to write a load-and-go tape.t
Each field except the last is terminated by a comma; the last field is
terminated by a period.

To write a load-and-go tape on logical unit 3, and to obtain binary cards and
an assembled listing, the control card would be punched as follows:

YCODAP1,1,1,3.
To obtain only an assembled listing, the card would be punched:
7CODAPL,1.

To obtain an assembled listing and a load-and-go tape on logical unit 3,
the card would be punched:

TCODAP1,1,0,3.

The combination gCODAPI,O,l. would result in a binary deck only.

If, after the program has been assembled, it is to be immediately loaded and
executed from a load-and-go tape, a second CCS control card is placed after
the FINIS card. The format of this card is as follows, starting in column 1:

gEXECUTE ,Time Limit, Logical Unit Number of Load-and-Go Tape,
Memory Map Key.

The value in the time limit field indicates the maximum number of minutes
the Monitor will allow for execution time. For load-and-go assembly
operations, the time limit may be omitted, as the time allowed for execution
is determined by the Monitor. The time taken by the actual assembly is
subtracted from the time limit on the MCS card to determine the execution
time. The logical unit field contains the number of the logical tape unit
specified as the load-and-go unit on the first CCS control card.

The memory map key indicates whether or not the Monitor will list the
absolute address of all external symbols and program names referenced
by the program; 0 indicates the listing is to be produced, 1 indicates no
listing.

tA load-and-go tape contains the binary card images of the object program
generated by the assembler. This allows loading and executing of the object
program from the load-and-go tape under Monitor control.

29

ASSEMBLED LISTING FORMAT

30

Example

gEXECUTE,&3J.

will cause the Monitor to load and execute a program from logical tape unit 3,
setting a time limit of 5 minutes. No memory map will be produced.

JEXECUTE,,5.

will execute the program from logical tape unit 5. The time allowed will be
the time specified on the MCS Control Record card less the assembly time. A
memory map will be produced.

If data is to be loaded from the standard input unit,I the data deck should
follow the EXECUTE card as shown. If a program is to be assembled but not
executed, the EXECUTE card is omitted from the program deck.

An assembled listing of the program in Chapter 4 is shown at the end of this
Chapter. The addresses assigned to each subprogram are relative addresses
only. Absolute addresses are assigned when the program is loaded by the
Monitor load routine. All COMMON blocks are assigned consecutively,
starting at relative location 00000, The first machine instruction is assigned
to the first word following the last COMMON block. The range of locations
assigned to the machine instructions (first word address and last word address
plus one) are given at the beginning of each subprogram. Following this is a
list of all entry points and external symbols, and the address assignments for
all BLOCK and COMMON pseudo-instructions. (The second and following
symbols in a string of M-term symbols are repeated individually on

separate lines.)

External symbols are assigned identification numbers by the assembler. The
Monitor loader assigns the proper absolute addresses.

The address of each instruction word is the leftmost field for each instruction
in the assembled listing, (Error codes would appear to the left of this field.)
The + after an address indicates that the address is relative and will be
modified by the Monitor loader. The next three fields, from left to right, are
the octal operation code, B-term and M-term. Relative addresses are indicated
by a + to the right of the octal address. External M-term symbols are
indicated by an X immediately to the left of the octal M-term. This value
corresponds to a number in the list of external symbols at the beginning of the
subprogram. The remaining fields correspond to those in the symbolic source
program.

At the end of each subprogram is a list of symbols that may have been used
incorrectly. Doubly defined symbols are those that appear two or more times

in a location field or in the M-term of a COMMON, EXT or LIB pseudo-
instruction. Undefined symbols are those in the M-term of a machine instruction

1 The standard input unit is that which is normally used by the Monitor for
loading all jobs.

ERROR CODES

which are not defined in any location field or in a COMMON, EXT or LIB
pseudo-instruction. Nulls are those symbols that are defined but not used in
any machine instruction M-term,

The following error codes appear as the leftmost field on an assembled

listing.
Code

B

Explanation

Illegal character in the B-term.
B-term follows a NOP instruction which is not blank or zero,
B-term symbol appears where none is required. Substitute a zero.

Attempt to assemble too much data in a labeled common block.
Assembler continues processing and listing source input but no
binary output is produced until the C error flag is cleared. (The
C error flag is cleared when the assembler encounters the next
ORGR or ORGR * instruction.)

Same symbol used in more than one location field term. Only the
first symbol is recognized; the remainder are ignored. A list of
doubly defined symbols appears on the assembled listing.

Symbol table is full. No more location field symbols will be
recognized.

IDENT pseudo-instruction occurs in position other than as the
first card in a subprogram deck. Misplaced IDENT cards are
ignored.

LOCN term is missing from an EQU pseudo-instruction.
LOCN term is present where none is permitted.

A + or - character for forcing upper or lower appears in the
LOCN term of an OCT, DEC, BCD, FLX, TEL, BSS, or BES
pseudo-instruction. No location symbol assignment is made in

such cases,

Location field symbol of a BLOCK pseudo-instruction is not
left-justified.

Leading character of location field symbol for BLOCK is numeric,
followed by non-numeric characters.

Illegal operation code. Zeros are substituted for the operation code
Undefined symbol. The assembler assigns the symbol to a region

following the last program entry. A list of undefined symbols
will appear on the output listing.

3

32

BEGIN JOB 091 05 08 63

CcooP,31003#00,ABC,1000,5.

CODAP1,1.
RANGE FWA
03245
ENTRY POINTS
03245
EXTERNAL SYMBOLS
00001
00002
00000+
00000+
00145+
00311+
03245+
00001
00002
03245+ 75 0 77777
56 1 03257+
03246+ 50 1 00000
10 0 00001
03247+ 20 O 00000+
50 0 00000
03250+ 12 1 00000+
24 1 00000+
03251+ 20 1 00145+
50 0 00000
03252+ 12 1 00000+
11 0 00001
03253+ 20 1 00001+
50 0 00000
03254+ 54 1 00143
75 0 03250+
03255+ 75 4 X00001
50 0 00000
03256+ 75 4 X000C2
50 0O 00000
03257+ 50 1 77777
75 0 03245+

NO DOUBLY DEF!INED

- LWA+]
03260

START

BINBCD
PRINT
ARRAY

START

MULT

REG1

NO UNDEFINED SYMBOLS

NO ERRORS
NULLS

| DE

NT

BLOCK
COMMON

ENT
EXT

SLJ
SIU
ENI
ENA
STA

LDA
MU
STA

LDA
I NA
STA

ISK
SLJ
RTJ

RTJ
ENI

SLJ
END

RY

BUFF

SQUARES

INTEGER(101),SQUARE(100),BUFF(1500)
SQUARE (100)
BUFF (1500)
START
BINBCD,PRINT
PRINT

*%

REGI

0

]

INTEGER

SAVE [INDEX

INTEGER
INTEGER
SQUARE

INTEGER
1
INTEGER+1

99
MULT
BINBCD

PRINT

*% RESTORE !INDEX

START

I DENT PRINT
RANGE FWA - LWA+]
03245 03262
ENTRY POINTS

03245 PRINT
EXTERNAL SYMBOLS
00001 WRITE*
00000+ ARRAY BLOCK
00000+ COMMON A(201),BUFF(1500)
00311+ BUFF (1500)
03245+ ENTRY PRINT
00001 EXT WRITE*
03245+ 75 0 77777 PRINT SLJ *%
56 5 03260+ Siu 5 REGI SAVE [INDEX
03246+ 57 L 03260+ SIL L4 REGI
50 5 00000 ENI 50
03247+ 50 L4 00000 ENI L o
50 O 00000
03250+ 10 4 00311+ NEXT ENA L BUFF
60 0 03254+ SAU TAG
03251+ 10 4 00330+ ENA L4 BUFF+15
61 0 03254+ SAL TAG
03252+ O4 0 77777 ENQ *k
50 0 00000
03253+ 75 4 X00001 + RTJ WRITE*
01 0 00063 1 51
03254+ 03 0O 77777 TAG 3 *x
0o 0 77777 0 ol
03255+ 75 L4 00020 RTJ 208
00 0 00000 ZRO 0
03256+ 51 4 00017 INI L 15
50 0 00000
03257+ 54 5 00143 + ISK 5 99
75 0 03250+ SLJ NEXT
03260+ 50 5 77777 REGI ENI 5 **% RESTORE [INDEX
50 L 77777 ENI L %%
03261+ 75 0 03245+ SLJ PRINT
50 0 00000
00000 END START

NO DOUBLY DEFINED
NO UNDEF INED SYMBOLS
NO ERRORS
NULLS A
END

1 MINUTES, 5 SECONDS.
END JOB 091.

33

BINARY OBJECT
DECK FORMAT

34

The format of the binary object program deck that is produced for a CODAP-1
program consisting of two subprograms is shown below. The format for each
type of card is described in the CO-OP Monitor Programmer’'s Guide.

|¢————TRA Card

f ———TRA Card

o~ LAT Card

s

J:_ EXT Card

EPT Card

Binary Program

(RBD) Cards
&)
) a
g ~—— IDC Cards (Subprogram 2)
(}e——TRA (transfer) Card
~—— LAT Card
| EXT Card
s EPT Card
p -

~~— Binary Program (RBD) Cards

~<——— IDC Cards (Subprogram 1)

The binary deck for each subprogram contains one or more IDC cards, the

RBD (program) cards, and one or more EPT, EXT, LAT, TRA cards. The

last subprogram is followed by a second TRA card. The complete program
deck (consisting of all subprograms) is loaded and executed under control

of the CO-OP Monitor as described in the CO-OP Monitor Programmer's Guide.

Octal Mnemonic
00 ZRO
01 ARS
02 QRS
03 LRS
04 ENQ
05 ALS
06 QLS
07 LLS
10 ENA
11 INA
12 LDA
13 LAC
14 ADD
15 SUB
16 LDQ
17 LQcC
20 STA
21 STQ
22 AJP
23 QJIP
24 MUI

TABLE 1 1604 MACHINE INSTRUCTIONS

Description
(not used)
A Right Shift
Q Right Shift
AQ Right Shift
Enter Q
A Left Shift
Q Left Shift
AQ Left Shift
Enter A
Increase A
Load A
Load A, Complement
Add
Subtract
Load Q
Load Q, Complement
Store A
Store Q
A Jump
Q Jump

Multiply Integer

Octal Mnemonic
25 DVI
26 MUF
27 DVF
30 FAD
31 FSB
32 FMU
33 FDV
34 SCA
35 scQ
36 SSK
37 SSH
40 SST
41 SCL
42 SCM
43 SSU
44 LDL
45 ADL
46 SBL
47 STL
50 ENI
51 INI

Description
Divide Integer
Multiply Fractional
Divide Fractional
Floating Add
Floating Subtract
Floating Multiply
Floating Divide
Scale A
Scale AQ
Storage Skip
Storage Shift
Selective Set
Selective Clear
Selective Complement
Selective Substitute
Load Logical
Add Logical
Subtract Logical
Store Logical
Enter Index

Increase Index

35

36

Octal Mnemonic
52 LIU
53 LIL
54 ISK
55 P
56 STU
57 SIL
60 SAU
61 SAL
62 INT
63 OouT
64 EQS

TABLE 1 1604 MACHINE INSTRUCTIONS (CONT)

Description
Load Index, U
Load Index, L
Index Skip
Index Jump
Store Index, U
Store Index, L
Substitute Address, U
Substitute Address, L
Input Transfer
Output Transfer

Equality Search

Octal Mnemonic
65 THS
66 MEQ
67 MTH
70 RAD
71 RSB
72 RAO
73 RSO
74 EXF
75 SLJ
76 SLS
77 SEV

Description
Threshold Search
Masked Equality
Masked Threshold
Replace Add
Replace Subtract
Replace Add One
Replace Subtract One
External Function
Selective Jump
Selective Stop

(not used)

TABLE 2

EQUIVALENT MNEMONIC INSTRUCTION CODES

1. A-JUMP AND A-RETURN-JUMP
Operation

AJP
AJP
AJP
AJP
ARJ
ARJ
ARJ
ARJ

Z2RWZNZYZN

2. Q-JUMP AND Q-RETURN-JUMP

QJP z
QJP N
QJP P
QJP M
QRJ z
QRJ N
QRJ P
QRJ M

3. RETURN JUMP

RTJ
RTJ
RTJ
RTJ

LN o

4. STOP AND RETURN JUMP

SRJ
SRJ
SRJ
SRJ

LW N o

5. NO OPERATION

NOP

6. EXTERNAL FUNCTIONS

SEN 0
SEL 0
ACT b

Equivalent

AJP
AJP
AJP
AJP
AJP
AJP
AJP
AJP

S o u e W= o

QJIP
QJIP
QIP
QJIP
QJP
QJP
QJP
QJP

OO WD - O

S1J
SLJ
SLJ
SLJ

2O W

SLS
SLS
SLS
SLS

SIS TN

ENI 0

EXF
EXF
EXF

T o

t Z = Zero, N = Non-zero, P = Plus, M = Minus

37

TABLE 3
SPECIAL CODES FOR FLX OR TEL PSEUDO-INSTRUCTIONS
These alphabetic codes are used with the F1LX and TEL pseudo-instructions to
indicate the specified control functions.

FLX ENTRIES

Code FLX Octal Equivalent
R carriage return 45
14 shift to upper case 47
L shift to lower case 57
B backspace 61
C ¢color shift 02
T tab 51
S stop 43
D delete 77
F tape feed 00

TEL ENTRIES

Code) TEL Octal Equivalent
R carriage return 10
U ghift to figures 33
L shift to letters 37
F line feed 02
I ignore 00

38

INDEX

Assembled listing format
B-Field

BCD

BES

Binary object deck format
Binary scaling factor

BLOCK

BSS

Calling CO-OP Monitor Library

Subroutines
CCS control card No. 1
CCS control card No. 2
COMMON
Common storage areas
DEC
Decimal scaling factor
EJECT
END
ENTRY
EQU
Error Codes
EXT
FINIS
Floating point constant
FLX
IDENT
I/0
Input-Output
Instruction pairing

Integer constant

Page No.

30
3,5

11
34

11
10

23
28
29
12
11

17
18
15
15
31
16
18

17
17
22
19

Interrupt

Job deck structure
Labeled common

LIB

Location field

Location field symbols
Lower instruction
M-Field, term

MCS control card
Minus sign in column 1
Numbered common
OCT

OP-code

ORG

ORGR

Plus sign in column 1
Presetting common
READ*

Relative Addressing
REM

Remarks

Rules for BLOCK and COMMON
Sample Assembled Listing
Sample Program
Sequence number
SPACES

Subprograms

TEL

Upper instruction

WRITE *

Page No.

24
27
11
16

14, 18
22, 23

17
3,6
15
32
25

16
24
10

22, 23

39

3-Phase Automonitor

PERT for 1604 Computer

1604 Programming Manual

Fortran Autotester

1604-A Reference Manual
Fortran-62

CO-OP Monitor/Programmer's Guide
CO-OP Monitor /Operator's Guide
CODAP-1 Reference Manual

CDM2 Linear Programming System
CO-OP Monitor/Library Subroutines
Introduction to COBOL

COBOL /Reference Manual

Fortran 63 Volume 1

Fortran 63 Volume 2

Other publications concerning programming for the CONTROL DATA
1604 and 1604-A Computers are:

#131
#133
#167b
#186a
#245
#506a
#508
#509
#510
#511
#516a
#520
#521
#527
#528

CONTROL DATA

CORP AT N

PROGRAMMING SYSTEMS

CODAP-1 System Revisions

The CODAP-1 Assembly program has been revised to include numeric,
Hollerith, Teletype and Flexowriter literals, special symbolic tags,
page title cards, and special pseudo instructions. Also, a symbol
cross reference table, unless deleted, is printed at the end of the
assembled listing of each subprogram,

CONTENTS

Literals
Special Symbolic Tags
Pseudo Instructions
LITDEC
LITOCT
UNLIST
LIST
TITLE
DETAIL
REF
SYSTEM
CALL
N\ "
Page Titles
Symbol Cross Reference Table

(S AN VL VAR SR T T ~ S S S T S T UC T U S U0 T U0 Sy e

Control Card Format

CONTROL DATA CORPORATION
Documentation & Evaluation
3330 Hillview Avenue
Palo Alto, California

December, 1963 PSB-AE-10

LITERALS

The literals are placed in the M-terms of machine instructions in the

following manner, starting in column 20: =cL

The = sign identifies the M-term as a literal value, ¢ is an alpha-
betic character or a period that identifies the type of literal, and L is
the literal. The value of each literal is computed and stored as one word in
a table at the end of the subprogram. The address assigned to the word con-
taining the literal is inserted in the octal equivalent of the symbolic machine

instruction.

Literals may be of any of the types defined in the table below:

Code (c) Type
D Decimal literal. One or two decimal constants as

specified by the DEC pseudo instruction may be used
as decimal literals. Two constants, separated by a
comma, result in a two-word double-precision literal.
Decimal constants are assumed to be integers unless
a decimal point or an E scale factor is encountered
in the constant field. The form =.n is always

assumed to be a decimal floating point constant.

0 Octal literal. One or two octal constants of up to
16 digits can be used as in an M-term as an octal
literal. Two constants, separated by a comma, result

in a two-word double-precision literal.

H Hollerith literal. Up to eight Hollerith characters
in the M-term are converted to 6-bit BCD codes. If
more than eight characters are placed in the M-term,
only the first eight are converted; less than eight
characters are left justified within the word and the

remainder of the word is filled with blanks (208).

nge

Flexowriter literal. Up to eight characters in the

M-term are conve to 6-bit Flexowriter codes.

Spaces are ed to fields that are shorter than
acters. Special characters such as carriage
and tab are indicated as specified for the FLX

pseudo instruction.

T Teletype literal. Up to eight characters in the M-term

are converted tb §

added to fiel

1t Teletype codes. Spaces are
that are shorter than eight characters.
Special chdffracters such as carriage return and tab are

indicated as specified for the TEL pseudo instruction.

Examples:

Octal Literals Hollerith Literal
=012345 =HABCDEFGH
=0-56767
=0+54321 Flexowriferditeral

=0+7,-7 (double precision) "2loPQ

Decimal Literals

Teletype Literal
=D7 =pPRYRYRY

=D187 .91E+14 (floating point)
=D-13

=D-4 ,+4 (double precision)

Numeric literals may be written without the identifying code (D or 0).

In any subprogram, numeric literals are ass to be decimal unless the

instruction containing the literal ig p eded by a LITOCT pseudo: instruction.
All numeric literals not identified

al.

a D or O following a LITOCT pseudo
1]
instruction are assumed to be g The decimal mode may be reestablished

at any point in a subprogram by a LITDEC pseudo instruction.

-2 -

SPECIAL SYMBOLIC TAGS

Instead of reserving one word of temporary storage with a BSS or BES
pseudo instruction, a special symbolic tag can be used in the M-term of any
machine instruction. This tag has the form: =S symbol. The =S identifies
the symbol as being a special tag, and the symbol is any legal CODAP-1 sym-
bol that does not contain a plus or minus sign. Therefore, in the instruction:
STORE STA =SFIVE the contents of the A register will be stored in location
FIVE. The assembler will reserve a word of temporary storage at the end of
the subprogram with the symbolic tag FIVE. If this tag has been used in a
location field elsewhere in the subprogram, that location assignment would
override the special symbol tag and FIVE will be assigned to the location

with that tag in the location field.

STORAGE OF LITERALS AND SPECIAL SYMBOL TAGS

Symbol tags are assigned storage locations immediately following the

last location reserved by explicit program instructions.

Literals are assigned storage locations immediately following the
area reserved for symbol tags. Up to 500 words of storage may be used for
literals. Any two literals with the same internal octal representations
will be assigned to the same storage area. Unless a TITLE pseudo instruction

is used, all numeric literals will appear at the end of the program listing,

PSEUDO-INSTRUCTIONS

The following pseudo instructions are added to those currently in
CODAP-1, and are used to set the literal mode. If neither of these has

appeared, the literal mode is decimal.

LITDEC indicates that all subsequent numeric literals of the form
=n, = + n, = -n are to be treated as decimal.

LITOCT indicates that all subsequent numeric literals of the form
=n, =+ n, = - n are to be treated as octal.

3

-3 -

UNLIST

LIST

TITLE

DETAIL

SYSTEM

CALL

indicates that no assembled listing is to be produced for
the subsequent instruction. This pseudo instruction applies

only if the list option is selected on the CCS control card.

reinitiates listing of the subprogram after an UNLIST pseudo

instruction has suppressed it.

In a normal assembly listing for CODAP-1, all M-term strings
are listed on the same line with the pseudo instruction
identifying the string, such as EXT, ENTRY, COMMON, BCD, FLX.
Each element, starting with the second, is also listed on a
separate line following the pseudo instruction.

The TITLE pseudo instruction eliminates these single entries;
therefore they appear only once in the M-term of the pseudo

instruction. For example, the pseudo instruction

ENTRY START, ONE, TWO THREE
is normally listed as
ENTRY START, ONE, TWO, THREE
ONE
TWO
THREE

The TITLE pseudc instruction would result in only the line

containing the card image being printed.

cancels the TITLE format for assembled listings and restores

the normal format.

deletes the symbol cross reference from the assembled listing

of a subprogram.

generates library directory cards for the associated subprogram.
SYSTEM is used in a subprogram that is to be added to a CO-OP

Monitor subroutine library using the Monitor routine LIBEDIT,

is equivalent to two instructions: an EXT pseudo instruction
and an RTJ machine instruction. CALL is used when entering
other subprograms such as library subroutines. The M-term
contains the name of the subroutine to be entered; this name
is inserted in the M-term of the RTJ instruction and in the

External Symbol Table. For example, the pseudc instruction

CALL SQRT
generates one line of coding:
RTJ SQRT

-4 -

e s

and defines SQRT as an external symbol, just as if an EXT
SQRT had been used.

REMARK is identical to the REM pseudo instruction except that
REMARK does not force the next machine instruction to be an

upper instruction.

PAGE TITLES

An assembled listing is produced with page titles by including a
page title card before the IDENT card of the first subprogram to be assembled.
The page title is continued throughout the assembly unless another page title

card is encountered.

The format for page title cards is as follows:

Column 1 * (asterisk)
Columns 2-8 Blank
Columns 9-72 Page title

A maximum of 64 characters can be used for a page title.

The current date and the page number are always printed on each page
of the assembled listing. Page title cards may be placed anywhere in a
source program deck. Each card causes a page eject for the assembled list-

ing and sets the page numbering sequence to 1.

SYMBOL CROSS-REFERENCE TABLE

Each symbol in a subprogram is printed in a table at the end of that
subprogram assembly listing. The table lists the address of the instruction
which contains the symbol in the location field, and also the addresses of

all instructions that use the symbol in the M-term.

-5 -

CODAP1 Card

7
9CODAP1, options

Field 1: 7-9 punch in column 1 followed immediately by CODAPI.

The card is free field after column 2. The options may appear
in any order separated by commas, Unrecognized options and
extraneous characters are ignored. The option field is ter-

minated by a period at the end of the control card. If no
options are present, only error messages and the basic assem-

bler headings are printed.

its first character only,

7

oCODAPL, L,E,B,

CODAP1, LIST =1, E=10.

Any option can be abbreviated to

Any option may be followed by =n, where n is the number of
a logical unit which is to be used for that option.

Options: n¢ 0
LIST List assembled programs List source
language program
PUNCH Punch relocatable binary Punch binary on
deck on logical unit 52 unit n.
EXECUTE Write load-and-go tape 56 Write load-and-
go tape n
INPUT Input source from 50, Same Input source
if option is not present from n
SYMBOLS Allot 2048 words to assem- Allot max.(M,1024)
bler symbol table; if option words to the assem-
is omitted, allot 1024 words. bler symbol table
REFERENCES Suppress assembler symbol ‘Suppress table
reference table; if option
is omitted, print table
NULLS Suppress null listing; if Suppress null

option is omitted, print
null listing.

listing

(If n is O, the option is interpreted as if it were not present).

- 6 -

COSsY
AN ASSEMBLY PROGRAM FOR THE 1604

Cosy

COSY is a 1604 assembly program which offers in addition to the options
of CODAP1l, the following new options:

Outputs compressed symbolic deck (COSY deck).

Outputs a CODAPl symbolic deck sequenced with eight characters:
the first three characters of the IDENT name and five digits.

Accepts a COSY deck as input for assembly or a correction deck
for updating and assembly.

COSY is called by the COSY control card described on page 4. A COSY
deck consists of a COSY identification card, followed by the compressed
symbolic cards. The COSY identification card contains the following:

Columns 10-13 40-80

COSY DATE (date is optional)
The first word of a compressed symbolic card is: 3%SS
(in column binary) 6XSS
XXSS
5XSS
The first word of the last card is: 3X3X
7X7X
XXXX
5X5X

XXXXX is a sequence number and SSSSSSSS is a checksum. The remainder of the
card is empty.

Two pseudo instructions, DELETE and INSERT, may be combined with CODAP1
cards to form a Correction Deck for updating a COSY deck.

Columns 10-15 20-31
DELETE m
or DELETE m,n

The CODAPl cards to replace the deleted instructions follow this card.
This card deletes symbolic input line m or lines m through n; m and n are sequence
numbers (m € n). All subsequent CODAPl symbolic cards replace the deleted cards
until a DELETE, INSERT or COSY identification card is encountered.

Columns 10-15 20-25

INSERT m

The CODAP1l symbolic cards following this card up to a Codapl END card are
inserted between line m and mt+1l, until an INSERT, DELETE or COSY identification
card is encountered. (Any Codap cards following this END card are ignored.)
An Inserted END card will cause the loss of all COSY information following that
point,

All DELETE and INSERT cards must be arranged in the Correction Deck so

that COSY sequence numbers are referenced in ascending order.

If the first

card of the deck is not an INSERT, DELETE or COSY identification card, it is

assumed to be a CODAPl symbolic deck.
before the assembly listing detailing changes.

A listing of the correction deck appears
If a DELETE or INSERT card

appears out of order, it is flagged as an error and its CODAP1l correction cards

are inserted under the control of previous INSERT or DELETE.

in the COSY deck causes an error diagnostic and the assembly is terminated.
A checksum error is flagged, but assembly continues.

In the assembly listing, inserted cards are flagged with *** unless a CODAP
symbolic deck is requested.

or a CODAP symbolic deck is requested.

SAMPLE LISTING

PRE-PROCESSOR CORRECTION LISTINGS

DELETE
BCD
BCD

BCD
BCD

BCD

BCD

BCD

BCD

BCD
DELETE
STA

ALS

STA
DELETE
ENA 5
LDA
DELETE
ENA 5
SLJ

ENI 4
LDA

RTJ

SLJ
DELETE
ENA 5

153,156
7
7\

7
7

~crO0OOO0O0NON

878

AR+2

6

AR

1194

0
EXTEQUIV
1221,1222
0
ENTRY7A
AR
EXTEQUIV
PKLD
ENTRY7A
1240

0

EXT NUMBER

EXT NUMBER

EXT NUMBER
PACK LOCATION DIGITS

YES

*dkk

00153
00154

00155
00156

dekede

Fkk

*dek

Fkk

*kk

Fkk
00878

Fkk

*kk

dekk
01194

Fkdke

ek
01221

01222
k%

*k%k
kkk
%k
*dkk

01240

A sequence error

A nevw sequence number will appear if a COSY deck
Otherwise the sequence number is blank.

DELETED
DELETED

DELETED
DELETED

INSERTED
INSERTED
INSERTED
INSERTED
INSERTED

DELETED
INSERTED
INSERTED

DELETED
INSERTED

DELETED
DELETED
INSERTED
INSERTED
INSERTED
INSERTED

DELETED

SAMPLE LISTING
(cont'd.)

LDA
DELETE
LIB4 LDQ
LIB4 LDQ
DELETE
SLJ
SLJ
DELETE
SLJ
BSSIB LDQ
SLJ
INSERT
LDQ
STQ
INSERT
LDQ
STQ
DELETE
SLJ
SLJ
INSERT
LDA
STA

INPUT TO COSY

EXTEQUIV
1254

WS2
EXTEQUIV
1466
BSS8
BSS1B
1471
BSS8
LOCCTR
BSS9
1490
LARELBIT
RELBITS
1498
LARELBIT
RELBITS
1511
BSS8
BSS1B
1533
LARELBIT
RELBITS

YES

ENTER L-TERM INTO SYMBOL TABLE
ENTER L-TERM INTO SYMBOL TABLE

(PASS2), GO TO

AND GO TO DUMPBIN

COSY will accept three basic input decks:
A Standard CODAP1 (BCD) deck.

The first card is an IDENT or TITLE card.

beyond column 72. (columns 73-80 are ignored by COSY.)

A COSY deck.
The first card has COSY punched in columns 10-13.

A COSY deck preceded by a correction deck.
The first card of the correction deck contains either INSERT or DELETE

in columns 10-15.

COSY OUTPUT

date.

*k*k

*kk
01254

kdek

Jekde
01466

*kd

*kk
01471

*kd

k%

Fekk

dkk

Jedede

*kk

*kk

k%

*kk
01511

kX

*kk

Kk

Fekk

The card

INSERTED

DELETED
INSERTED

DELETED
INSERTED

DELETED
INSERTED
INSERTED

INSERTED
INSERTED

INSERTED
INSERTED

DELETED
INSERTED

INSERTED
INSERTED

No address fields may extend

1. When the COSY option appears on the control card, a new COSY deck is
output on the punch unit for each subprogram assembled.
sequence numbers correspond to the numbers on the assembled listing.
Preceding each COSY deck is a COSY identification card with the current

If two END cards appear in sequence, the second one is punched

in BCD, and a FINIS card is punched following the last COSY deck or the
second of two sequential END cards,

2. When the BCD option appears on the COSY control card, a CODAP1 sym-
bolic deck is output on the punch unit for each subprogram assembled.
Each deck is sequenced in columns 76«80, with numbers from 1 to 99999.
Columns 73-80 of all cards except the IDENT and any title card pre-
ceding it, contain the first three letters of the IDENT name. The
second of two END cards and the FINIS cards are not punched. 1If
the COOP standard punch unit (52) is not used, two EOFs are written

after the last symbolic deck.

record if possible.

CODAP1 Card

Field 1

The card is free field after column 2.
order separated by commas,
are ignored.
the control card.
basic assembler headings are printed.

;COSY, OPTIONS

its first character only,

;COSY, L,E,B.
;cosy, LIST =1, E=10.

The unit is then backspaced one

7-9 punch in column 1 followed immediately by COSY,

The options may appear in any
Unrecognized options and extraneous characters
The option field is terminated by a period at the end of

If no options are present, only error messages and the
Any option can be abbreviated to

Any option may be followed by =n. (If n is O, the option is interpreted
as if it were not present).

QBtions
LIST

PUNCH

EXECUTE

INPUT

SYMBOLS

REFERENCES

List assembled programs

Punch relocatable binary deck
on logical unit 52

Write load-and-go tape 56

Input source from 50. Same if
option is not present.

Allot 2048 words to assembler
symbol table; if option is omitted,
allot 1024 words.

Suppress assembler symbol reference
table; if option is omitted, print
table

ng O

List source
language program

Punch binary on
unit n.

Write load-and-
go tape n

Input source
from n

Allot max.
(M, 1024) assem-
bler symbol table

Suppress table

NULLS

COSY

BCD

Suppress null listing; if option is Suppress null

omitted, print null listing. listing

Punch compressed symbolic deck on Punch on unit n
unit 52

Punch BCD deck on unit 52 Punch on unit n

If both COSY and BCD are requested on the same unit, the BCD request

will be ign

ored.

COSY COMPRESSION CODES

Cosy compresses multiple blanks into one or two BCD characters accord-
ing to the following table:

blank

blanks
blanks
blanks
blanks
blanks
blanks
blanks
blanks
blanks
blanks

_oOoOwvwo~NouULMPWLWND

-

20
15
16
17
35
36
37
55
56
57
75

Twelve or more blanks are represented by 76nn (00 2 an &7); nn is the

number of blanks

Example,

in excess of 12. The result is packed into column binary.

L ° M

NOP

would result in:

5 4 0
6 6 0
4 4
5 7

The special code 77 or 00 (when not preceded by 76) indicates the

end of a CODAP1

card.

UP DATE DECK

7
7/ other programs,
/ A COSY or CODAP1

FINIS ,
/
/ ’
/ /
/ 7
/ ’
/ /

COmpressed SYmbolic deck

o

COSY

COSY identification card

DELETE

Correction Deck

(’3 cosy, ...

coop, ...
(Z

COSY control card

Control cards

Syl

/7

A4

"

K

g

~<

<

16

AN

\

\.\\,\\m

i W

1 v

Va7

/5

N

prae

¥
(d /5¢

$77

LISIS

)%)

