Trograsamang Tratming Mewwal

CONTLOL BRTE
1604 COMFJILL




Record of Revisions

REVISION

*—W

NOTES

A

Minor corrections only; does not obsolete previous

(11-1-61)

editions.

f>ub. No. 60001500
i‘ebruary 1965

.1965, Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:
Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet located in
the back of this manual,




PREFACE

This manual applies to the 1604-C in all respects, It is applicable to the 1604-A and

1604-B except for some details in Input/Output.




TABLE OF CONTENTS

Chapter I  PRELIMINARY INFORMATION

Introduction

Basic Peripheral Equipment

Optional Peripheral Equipment

Summary of Characteristics

Internal Storage

Address System

1604 Program Step

1604 Instruction Word

Operational Registers

Secondary Registers

CDC 1604 Basic Instruction List
Review Tcat (Chapter I)

Chapter IT FIRST GROUP OF INSTRUCTIONS

First Inastructions

A Right Shift
A Laft Shift
Q Right Shift
Q Left Shift
Load A
Load Q
Store A
Store Q
Add
Subtract
A Jump
Q Jump

Review Test (Chapter II)

Chapter III SECOND GROUP OF INSTRUCTIONS

Second Group of Instructions
Long Right Shift
Long Left Shift
Enter A
Enter Q
Load A
Load Q
Increasce A
Multiply Integer
Divide Integer
Selective Jump
Subostitute Address (Upper)
Subgtitute Address (Lower)
Review Test (Chapter III)

iii

Page

—
q
—

[ ] ]
e e UY BB NN e

& 0o

Pt bumt pt et G bt St Pt Dt Pt Pt

~N
]
[

]
—— AN QNN e e

NN NNNDNDN

]
—
—

T
N -0

uuuuut:awuuuu
e W LN e e



Chapter IV  THIRD GROUP OF INSTRUCTIONS

Third Group of Instructions
Storage Skip
Storage Shift
Index Skip
Index Jump
Load Logical
Add Logical
Subtract Logical
Store Logical
Enter Index
Pass (Do Nothing)
Increase Index
Load Index (Upper)
Load Index (Lower)
Store Index (Upper)
Store Index (Lower)

Review Test (Chapter IV)

Chapter V FOURTH GROUP OF INSTRUCTIONS

Fourth Group of Instructions
Multiply Fractional
Divide Fractional
Selective Stop
Selective Set
Selective Clear
Selective Complement
Selective Substitute
Equality Search
Threshold Search
Masked Equality
Masked Threshold
Replace Add
Replace Subtract
Replace Add One
Replace Subtract One

Review Test (Chapter V)

Chapter VI  FIFTH GROUP OF INSTRUCTIONS

Fifth Group of Instructions
Floating Point Format
Floating Add
Floating Subtract
Floating Multiply
Floating Divide
Scale A
Scale AQ

iv

&
U
[

W
U ]
fa

1
LN

]
=~ =

Linbhuvuuvmunuunn
1 '
w

i
O

mmc'nmaa
W~y owv



Chapter VII SIXTH GROUP OF INSTRUCTIONS

Sixth Group of Imstructions

External Function

Input Transfer

Output Transfer
External Function Codes

APPENDIXES

Results of Exercises

Review Test Answers

1604 Assembly Program

Load and Dump Routines

Trace Program

Program for Duplicating Punched Tape

Program for Adding One Record to File




CHAPTER 1

PRELIMINARY INFORMATION

INTPODUCTION

The 1604 is a general-purpose, parallel, digital computer designed
for large scale scientific problems or for large-volume data processing.,
It features the following general characteristics:

1.

2,

Equipment is low-power, solid-state throughout,

Physical size is such that it can be used in a semi-permanent
office environment.

Several of the peripheral equipments can communicate directly
with computer storage through independent access-channels.
This permits reading and writing on magnetic tapes without
external buffering devices,

Internal storage contains two mapnetic core units operating
topether to form a single storage system of 1,6 million bits
capacity; storage cycle time is 6.4 microseconds,

Real time inputs and outputs may be processed with peak rates
up to 15 million bits per second,

Fixed and floating binary point arithmetic operations are
possible with an average instruction time of 10 microseconds
and a basic addition time of 1.2 microseconds,

The full use of index registers along with the regular instruc-
tion repertoire makes it possible to use almost 500 types of
instructions in programming.

Basic Peripheral Equipment

A

Mapgnetic Tape provides the principal input-output medium.
Recording on tape is in IBM coded or binary format. One
magnetic tape cabinet is provided with the basic unit.
Additional cabinets are available optionally.

Paper Tape equipment consists of a Control Data 350 Reader
and a Teletype BRPE Punch,




c. Typewriter monitoring information, with keyboard entry, is
provided by a modified IBM typewriter.

Optional Peripheral Equipment

a. A Model 1605 Adaptor converts character information from
IBM equipments to 48 bit words. This adaptor communicates
directly with 1604 storage through a separate input-output
channel. This makes possible the use of the following
additional peripheral equipments:

IBM 714 Card Reader

IBM 722 Card Punch

IBM 717 Line Printer

IBM 727 Magnetic Tape Transports

Summary of Characteristics

General Type - Parallel

Vord Length - 48 Bits

Storage - 32,768 words, two phase core
Storage Cycle Time - 6.4 microseconds

Ingtruction Type = Single address (two per word)
Index Reglsters - Six

Average Instruction Time =~ 10 micreseconds

Arithmetic Operations - Fixed & floating binary point
Rasic Add Time - 1.2 microseconds

Circuits - Transistor-diode, direct-coupled
Clock - Two phase, 5 wc rate

Buffered Communication Channels = Six 48-bit channels

Buffer Processing Time - 16 microseconds per word
Block Transfer Channels - Two 48-bit channels

Block Transfer Time - 3.2 microseconds per word
Pover - 4XW (central computer)
Minimim Floor Space - 400 sq. ft.




Internal Storage

The storage section contains two independent magnetic core ‘
storage units each with a capacity of 16,384 words of data 48 bits
in length. These units operate togother during execution of a
progrem and can be considcred as one 32,768 word storage systen.
FIG. 1 indicatc. the corcs.

7
S |

I
° |
|
l
|
I
SR ) E DU N
~ P -
P - 7 o.%/
Yy V- M ot e e oo mm e
s///

<« |28 —> <« |28 ———>

FIG. 1

Two Magnetic Core Units
Each 16,384 Words

All odd storage addresses reference one of the above units;
all even storage addresses reference the other unit. Eack unit
has a storage cycle time of 6.4 microseconds. Actually the cycles
of the two units overlap one another in the execution of a program.
For example, if a person thinks of a storage reference consisting
of a "read" and '"write' time; while one reference is engaged in
"sriting' the next incciruction can be using up the “read" tima
(see FIG.2). This results in an ecffective cycle time considerably
less than the nominal 6.4 microseconds.

Storage Referencc to

READ WRITE ‘?_”,,,,—4«—~ obtain instruction
TIME TIIE
OVERLAP
READ WRITE
Storaze Reference
to obtain ———» | TIME TIME
operand
FIG. 2

Overlap of two Storage References

1-3

i28

£



1604

Address System

The model 1604 1s a single-address computer. This means
that each instruction can contain but one address. As previously
mentioned, even addresses make one of the core units (16,384
locations) available; odd addresses make the other unit (16,384
locations) available. Thus a total of 32,768 locations are avail-
able for addresses. Since 15 bits are set aside for address
designation, the total address range (in octal) 1is

00000 to 77717

In this range, addresses 00000, 00002, 00004 - - - 77776
(even) refer to one storage unit; whereas addresses 00001, 00003,
00005 - - - - 17777 (odd) refer to the other storage unit.

Even Addresses 0dd Addresses
)
00000 00001
00002 00003
OOOO&-& Storage Unit 00005 » —>3torage Unit
—
1 2
77776 77777
o

Certain storage locations in the memory are used for control
and reference functions. These storage locations may be addressed
as operands as well as being addressed implicitly by certain
control functions. The address asslgnments for these functions

are listed below and will be explained in detail later.

Special Address Function or Purpose

00000 Real Time Clock (1/60th of a second steps)

00001 Channel 1 control

00002 Channel 2 control

Go003 Channel 3 control

00004 Channal & control

00005 Channel 5 control

00006 Channel 6 control

00007 Interrupt program (exit»entrance)
Program Step

Fach program step is a 4u-bit werd in storage which usually

contains tuo single-address instructions. Each instruction is
made up of 24 bits. 1f a program step contains a single instructior
it is necessary that the other instruction be a 'do nothing" inscruct:
ion. This "do-nothing" {nstruction will be referred to in tiuis
manual as the "PASS INSTRUCTION" . 1t has a special code and is

described in detail in Chapter 1IV.

1-4



1604

The two inatructions in a program step can be considered as
logically separate entities in a program sequence. A8 a practical
matter in programming coding, however, the pair is an entity
gimilar to a two-address instruction. The two single address
instructions are not separable in the sense that one may not be executed
without the other.

FIG. 3 indicates the possibilities of the general composition
of a program step.

24 Bita 24 Bits
Uspexr Instruction Lower Instruction
24 Dits 24 Bits
Upper Instruction With the Pass Code
24 Dito 24 Bits
With tha Pass Code Lower Instruction
FIG. 3

Possible Word Formats

Instruction

Pach instruction is a 24-bit quantity specifying a certain
operational entity in the execution of a stored program. The
instruction format is shown below in FIG. 4.

Function Code

I
Operation Code Index Base execution addrese
Binary format 6 Bits 3 Bits 15 Bits

of typical !
1604 instruction| 0{0}0[1]/1/0/0}1j0{0!010]0]|0{0jO|1{CiOf1ji}L{1

! | | ! I i !
' | i I | i !
{ 1 1 i 4 i

u.u\

Octal format

l
}

instruction | o 6 2 0 0 2 3 7
I

of sarz 1604
|
Function code withi
limaginary octal | Base execution
|re£erence peint | address in octasl
FI1G. &

Binary and Octael Formats of a Typical
1604 Instruction



Examining FIG. 4, it can be seen that a 1604 instruction
contains 24 bits or 8 octal digits, Of this total, 9 bits or
3 octal digits make up the complete FUNCTION CODE. Actually, the
operation code (first 6 bits) determines the specific imstruction
but there are eight different variations of most instructionms,
dependent upon the index designator. For this reasom, it is
probably better for the programmer to think of the complete
FUNCTION CODE as containing both an operation code and an index
designator (b).

The two operation codes which are not used (00 and 77) are
not valid codes but can be used as fault designators which will
stop computation and indicate malfunction when interpreted as
operation codes.

Since index registers play such an important part in
programming the 1604, it is necessary to define some of their
general characteristics at this time, Six index registers are
available for address modification of the base executiou address.
These index registers are numbered 1 through 6 and are selected
by the corresponding octal number (1l through 6) placed im the
index designator of the instruction. These index registers
perform two different types of functions in the 1604 as defined

below.

1. As adcress modifiers, the contert cof the cdesignated index
register is added to the !ase execut on address Lefore the
computer interprets the specific ‘nstruction. (fddition
is modulus 215 minus cne. one’'s comr emert)

2. As jump conditioners.

For programming facility, let us assume the operation code
of 6 bits 1s separated from the index designator by an octal
reference point as shown below.

06.6\ Each one of these contains the same

06.1 operation code (06) but a different index
06.2 designator. Each index designator

06.3 designates a different functional operation
06.4 > of the basic code (06). For this reason it
06.5 is customary to think of these as eight

06.6 variations of the same instruction or simply
06.7 as eight different instructions.

1-6



The operation code of six bits specifies the general character
of the operation to be performed by the instruction. The index
designator of three bits completes the function code so that the
computer carries out a specific operational procedure. Of the
possible 64 operation codes (six bits can hold 64 different codes),
the 1604 uses 62 for general instructions. Since there are eight
possible index designators (three bits can hold eight different
codes 0 to 7), there are approximately 500 (8 x 62) different
variations available.

It is important to note that regardless of the particular function
they may serve, the use of index registers involves the contents
of the index register which is designated except in the case of
instructions 22, 23, 74, 75, and 76.

In addition to the codes 1 through 6, the index designator can
also indicate 0 or 7, A zero index designation indicates that no
index register is involved. (Exception: In some instructions,

a designation of 0 may refer to a certain conditicn being fuliilled
before a jump occurs.) An index designation of 7 will indicate
that indirect addressing is to be used except in an instruction
where the index designation defines a necessary condition for a
jump and in the external function sense condition. (Indirect
addressing is a means for expanding the reference capabilities

of the instruction execution address. In indirect addressing, the
instruction execution address specifies a storage location in

which is located the operand address.)

Of particular significance to programmers with respect to
the use of index registers is the fact that when the contents of
the index register is added to the execution address, the addition
is performed in a ones complement accumulator, modulus 215 minus
one. Use of index registers along with indirect addressing (for
index 7) will be explained in detail for the individual instructions.

Operational Registers

The operational registers of the 1604 computer are defired
as those registers which are capable of storing data from one
instruction to another; the contents of those registers are
displayed on the control console. These registers do not have
special addresses (as is necessary in two or three address lepic)
but are referenced implicitly by the execution of the different
instruztions, However, it is important that the programmer know
of these registers and ¢f their functional use in the instructions.



Altogether ten different internal registers are available for
auxiliary functions. Two of these are arithmetic registers, six
are index registers, and two perform control functions. The ten
are listed and described below:

Arithmetic [ A Register . . . . . 48 bits
Registers Q Register . . . . . 48 bits
Index 1. « . « « « & 15 bits
IndeX 2, « o o o o o 15 bits
Index __J)Index 3. .. .. .. 15Dits
Registers Index 4¢ o o o ¢ o 15 bits
Index 5. . « o ¢ o & 15 bits
Index 6. . « « ¢ o & 15 bits
Control  fProgram Control Register (U1 upper)...24 bits
Registers Program Address Register (P)eeeeeases 15 bits

The A register, or accumulator, operates as & 43~bit subtract-
ive accumulator during most of the arithmetic o%erations. Normal
arithmetic operations are performed modulus (2“r -1y, This regilster
also has shifting capabilities which are explained under “shiZting'.

The Q register assists the A register in performing the nore
extensive arithmetic operations. For example, wultiply, divide,
and floating point instructions involve both the A and { registers.
The Q register serves as a ''mask" during the logical operations
and it also has shifting capabilities which are explained under
"Shifting".

On some instructions the A and Q registers operate &8 one large
register. For example, it is possible to shift A and ¢ as one -
register of 96 bits.

Six index registers are avallable for modlflicatlion of execution
addresses. In program loops, two approaches are peasible in using
these index registers for looping:

1, The contents of an index register may be advanced each pass
through a loop and the exit 1s initiated when the contents
of the index register attain a given threshold.

2. The contents of ar index register may be preset to 2 certain
amount and then reduced by ome count each passa through the
program loop until an exit is initiated upon the index
register contents reading zero.

The two control reglsters are used to control the internal
sequencing of ingtructions. The Program Contvol Reglster (U*:
holds the current instruction and interprets this instyuction

that the proper execution can begin.

.

o

o



The Program Address Register (P) holds the storage location of the
current program step during the interpretation and execution of

an instruction contained in that program step.

Upon completion of

a step in the program, the program address i{s advanced one count to

specify the location of the next step.

FIG.

functional aspects of the U and P registers.

Step
Number

00011, =
QO01L,

Y

5 indicates the

5e |

N A
Code Address Code Address y
ce aaaaal]dd bbbbb! {3

Upper Instruction

I
| Lower Instruction

£ e
—

\

€ e e — e —— M/

Address

o a4

8 Ocutal Digits
= 24 Bits

|
00012 ,= Address Code Address
4 ee mmmmmnm | kk nnnnn
i -
Y (4 )=
=7 ! 00012 Program Code
“————*<3:}"—-1w—_, Y Control cC
00011 Register
Program
Address 5 Octal digits = 15 Bits
Register

FIG. 5

Explanatign:
(i) Current step number in P,

2 ) Current instruction

goes to U

Next instructicn goes

to U
(E) Program Address Register
is increased by i

Sequencing of P and U




Secondary Registers

In addition to the operational registers there is a group of
twelve registers, not displayed on the control console, which also
perform a vital function in machine operatiom. These are the
secondary registers. Ordinarily they may be thought of as transfer
registers, acting as intermediate storage for computer instructions
or operands as they are manipulated during the execution of an
instruction. The twelve registers include

Auxiliary program control register 02 e o« o« o 15 bits
Storage address register S1 e o o o o o o o o 14 bits
Storage address register 82 o o o o o o o o o 14 bits
Storage restoration register Z1 e e o o o o o 48 bits
Storage restoration register z2 e o o o o o o 48 bits
Address buffer register R, « « « . + « « o o 15 bits
Exchange register X « « « « « « o o« o o » o o 48 bits
Function register 00 . ... 4. e... 150Dits
Output (four provided) registers 01’2’3’4 . o 48 bits
The auxiliary program control register, U2, is an accumulator
used in the modification of the execution address of the current

instruction by the addition of the contents of an index register.

The even and odd 16,384 word memory units each has a storage
address register, sl and S2 respectively. These registers receive
addresses of instructions frgm the address register, P, and
addresses of operands from U<.

Each even and odd memory unit also has a storage restorationm
register, 2zl and 22 respectively, which holds the 48-bit word
which is to be written in a given storage location.

The R register acts as an exchange register for transmissions
involving the index registers. It is used for advancing or reduc-
ing the count in a given index register. During several instruct-
ions it is used to count repetitive operations. Floating-point
instructions use R in performing arithmetic operations on the
exponent or characteristic.

The X register is an exchange and auxiliary arithmetic register.
All input and output data pass through the X register.

1-10




The external function register, 00, is used for exchanging
control information with i{nput-output equipment.

Eour output registers, 01, 02 03, and 04, are provided.

, and 03 are used for output buffer operations where the data
are transmitted at the speed of the inmput-output equipment. Output
register 0% handles all high-speed output transfer operations where
the data are transferred at the internal speed of the computer.

1-11.



CONTROL DATA MODEL 1604 BASIC INSTRUCTION LIST (omitting the
eight possible variations of each instruction due to index
designations 0 through 7)

ZRO
ARS
QRS
LRS
ENQ
ALS
QLS
LLS

ENA
INA
LDA
LAC
ADD
SUB
LDQ
LQC

STA
STQ
AJP
QJP
MUT
DVI
MUF
DVF

FAD
FSB
MU
FDV
SCA
SCQ

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35

SSK 36

SSH

37

(not used)

A Right Shift

Q Right Shift
Long Right Shift
Enter Q

A Left Shift

Q Left Shift
Long Left Shift

\

Enter A

Increase A

load A

foad A, Complement
add

Subtract

Load Q

Load Q, Complement

Store A

Store Q

A Jump

Q Jump

Multiply Integer
Divide Integer
Multiply Fractional
Divide Fractional

Floating Add
Floating Subtract
Floating Multiply
Floating Divide
Scale A

Scale AQ

Storage Skip
Storage Shift

SST
SCL
SCM
SSsuU
LDL
ADL
SBL
STL

ENI
INI
LIU
LIL
ISK
IJP
SIU
SIL

SAU
SAL
INT
OUT
EQS
THS
MEQ
MTH

RAD
RSB
RAO
RSO
EXF
SLJ
SLS
SEV

1-12

40
41
42
43
44
45
46
47

50
51
52
33
54
35
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

Selective Set
Selective Clear
Selective Complement
Salective Substitute
Load Logical

Add Logical

Subtract Logical
Store Logical

Enter Index
Increase Index
Load Index (upper)
Load Index (lower)
Index Skip

Index Jump

Store Index (upper)
Store Index (lower)

Substitute Address (upper)
Substitute Address (lower)
Input Transfer

Output Transfer

Equality Search

Threshold Search

Masked Equality

Masked Threshold

Replace Add

Replace Subtract
Replace Add One
Replace Subtract One
External Function
Selective Jump
Selective Stop

(not used)




instructions are probably easier to learn if a few at one time are
mastered along with an opportunity to use these 1in various shecrt
exarples. This manual will follow this philosophy in the pages
vhich follow. In addition, all floating-point instructions wili
L2 dagscribed under the chapter dealing with this topic (sce
Chapcer on Floating Point).

It is also important to note that instructions will be pre-
sented with mnemonic codes as well as numeric codes. The
wnemonlc codes are for the convenlence of the programmer and rrist
bte converted to the numeric codes when the final draf: of a progi.m

is uvritten.

Following each set of instructions, examples and ewerciscs
presented and at the end of each chapter a general review tost
precented. Solutions to these exercises and tests are precan « .
in thz appeundixes.




CHAPTER 1
Review Test

The following questions review the preliminary information pre-

sented in this chapter. Write the answers in the space provided and
then check vour solutions with those nresented in Aoppendix B.

b,

o

The 1604 uses what type of internal storage? (Vacuum tubes, dyum,
or core)

How many bits does each internal storage location hoid?

What is the total number of internal storage locatiuns?

The model 1604 computer is a two-address machine. (True-Falsoe)

What is the total range of addresses available for pregramming
use?

Sketch a 1604 instruction, showing the important parts and the
number of bits for each part.

Describe or sketch the possible types of program steps.

{astructions must be written in octal format Ior input ‘o P
computer? (True-Falsc)

some instructions? (True-False)

1-14




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

How many index registers are available?

Name two operational registers other than the index registers.

Which register holds the address only of the current imstruction?

Which register holds the current instruction?

Which registers have shifting capabilities?

Are floating-point instructions available? (Yes or No)

Without considering the variations possible through index register
designations, how many basic instructions are available?

What is the approximate minimum floor space required for the
standard 1604 installation?

What are the standard input-output peripheral equipments used
by the computer?

Since the computer contains transistors instead of electronic
tubes, the power requirements are less. (True-False)

In some instructions it is possible to operate on 96 bits as
though they made up the contents of one register. (True-False)




CHAPTER II

FIRST GROUP OF INSTRUCTIONS

FIRST INSTRUCTIONS (With Mnemonic and Numeric Codes) (where "b" rep-
resents the index designator which can be any number O through 7)

A RIGHT SHIFT (ARS.Db) (01.b) STORE A (STA.b) (20.b)
A LEFT SHIFT (ALS.b) (05.b) STORE Q  (STO.b) (21.b)
Q RIGHT SHIFT (QRS.Db) (02.b) ADD (ADD.b) (14.b)
Q0 LEFT SHIFT (QLS.b) (06.b) SUBTRACT (SUB.D) (15.L)
LOAD A (LDA.b) (12.b) A JUMP (AJP.b) (22.b)
LOAD Q (LDQ.b) (16.b) Q JUMP (0JP.b) (23.b)

The first four instructions are SHIFT instructions. These are not”
the only shift instructions - others will be described later., On the
1604 both end-around and end-off shifts are available. The term end-around
indicates a shift in one direction (left on 1604) with bits coming out of one
end of the register (left end) and being carried around to the other end
(right) of the same register. No bits are discarded in an end-around shift.
End-off shifts are shifts in one direction (right on 1604) with the bits
being discarded as they come off one end (right) of the register. On the
1604 computer LEFT SHIFTS are end-around; RIGHT SHIFTS are end-off.

A RIGHT (ARSb) (01.b) (where b may be 0 through 7)

This instruction shifts the contents of the A register to the
right the prescribed number of bit positions indicated by the
sum of the execution address and the contents of the index
register designated. The sign bit is extended (repeated) as
the bits shift right. The lowest order bits are discarded as
they are shifted out of the register. Shift counts greater

than 127 (decimal) are treated as shift faults which may be
sensed by the external function instruction. Shift faults do not
stop the computer.

A LEFT (ALSb) (05.b) (where b may be 0 through 7)

This instruction shifts the contents of the A register circularly
end-around to the left the prescribed number of bit positions
indicated by the sum of the execution address and the contents of
the index register desipnated. The lowest order bit positions,
being vacated, are filled by the highest order bits as the shifting
proceeds. No bits are discarded; those shifting out of the left end
of the register are carried around to the right end. Shift counts
greater than 127 (decimal) are shift faults which may be sensed

by the external function instruction.

2-1




Q RIGHT (QRSb) (02.b) (where b may be 0 through 7)

This instruction shifts the contents of the Q register "end-off"
to the right the prescribed number of bit positions indicated by
the sum of the execution address and the contents of the index
register designated. The sign bit 18 extended (to the right) as
the bits shift right. Low order bits being shifted out of the
register are discarded. A maximum shift count of 127 (decimal)
results in a shift fault which may be sensed by the external
function inmstruction.

Q LEFT (QLSb) (06.b) (where b may be O through 7)

This instruction shifts the contents of the Q register circularly
"end-around" to the left the prescribed number of bit positions
indicated by the sum of the execution address and the contents of
the index register designated. The lowest order bit positions
(being vacated) are filled with the higher order bits as the
shifting proceeds. No bits are discarded - those shifting out
of the left end of the register are carried around to the right
end. Shift counts greater than 127 (decimal) cause a shift
fault which may be sensed by the external function instruction.

The following examples should facilitate learning these four
shift instructions. (Each student is advised to work out the
examples and check the given solutions.)

EXAMPLE I. Assume the A register contains the octal quantity
shown below. Show the instruction and the final octal contents
of the A register after shifting 2710 bit positions to the right.

Given: Initial contents of 00 0 00017 221 06213

A register
Function code Execution address Operand in this
Instruction instruction
—__el_—hﬂ,_&_.‘
required 01 0 00033
(ARSO) (27 decimal = 33 octal)

Final contents
of A register } >100 0 00000 O 0 0 000O01

Explanation: A shift of 27 bit positions is equivalent to 9 octal
Places since 3 shifts (3 bits) equals 1 octal position. Since right
shifts are "end-off", the 9 low order octal digits are discarded

and the sign bits (in this case zeros) are extended. Also note

that the index register designated in the above instruction is zero.
Any combination of execution address and contents of index register
whose sum is 33 (octal) would be correct. For example, an alteinative
solution to the above instruction might be 01 6 0 0 0 3 1 where

Index Register 6 contains 0 0 0 0 2.

2-2




EXAMPLE 2. Assume a programmer wants to shift the initial
contents of the Q register (given below in binary form) right
401y bit positions without discarding any of the given bits.
Show the instruction needed and the final contents of the Q
reglster after shifting.

Given:
Initial contents

of Q register [ | 1100000000
(in binary)

\ J
v

48 Bits
(all ones except § low order zero bits)
Function

Code

—A—
Instruction 060 00010
required ¢

(QLSO0) Note index designator

is zero

Final contents
of Q Register [— |I= 100000000 11111111
~(in binary)

Explanation: Since no bits are to be discarded, a left shift
instruction is required. However, the programmer wishes to shift
right. Fortunately, for every desired right end-around shift
there is an equivalent left end-around shift. The rule 1is to
subtract the desired right shifts from 48 and the result is the
equivalent number of left shifts. In this case 46-40 = &. Then
a left end-around of 8,, bit position gives the desires result.
0 decimal = 10 octal)




EXAMPLE 3. A programmer wishes to shift the contents of the Q
register 17,7 bit positions left, end-around, and then shift the
resulting Q register contents 3 places right, end-off. Show
the program step in octal to do this.

Function Function
Code Code

Required l l

Program —— > [QLS-0 | 000 21 | QRS-0 [ 0000 3
Step

Explanation: The left shift instruction is programmed on the
left side of the word since the left shift is desired first.
The right shift instruction then follows on the right side of
the word. Seventeen (decimal) = 21 (octal). Also note that
other combinations could be used if the index designations are
not zero. For example, an alternative solution might appear
as:

065 00016 024 00002

Sum is
where Index where Index 00003
Register 5 , Register &
contains ——> 00003 Sum contains —= 00001
is
00021

EXAMPLE 4. A count is being generated in index register 5. At
certain times within the program it is necessary to shift both the
Q and A register left by the count in this index register. Show
the program step which will do this.

Function Function
Code Code
Required ¢ ¢
program QLS 5 00000}| ALs5 00000
step

Explanation: Since the number of bit positions to be shifted is
contained in index register 5, the index designator above becomes
5 and the execution address portion is zero. Thus the sum of the
execution address and the contents of the index register is
equivalent to the contents of the index register.




The following exercises are provided for practice on the four
shift instructions presented on the previous pages. Work out the required
solutions and check the answers against those shown in Appendix A. The
number of correct answers will indicate the approximate mastery of these
instructions by cross checking the Rating Table below.

Rating Table 1

If you have 4 or 5 correct answers . . . . . . Excellent

If you have 3 correct answers. . . . . . . . . Good

If you have 1 or 2 correct answers . . . . . . Fair (Review)
If you have 0 correct answers. . . . . . . . . Poor (Restart)
EXERCISE 1,

a. Write a 1604 instruction to shift Q 1410 bit positions right.

b. The A register contains 00002170 0 0001100.
After shifting A left end-around 221 bit positions, what
will A contain? (Show answer in ocgal format.)

c. Write a program stcp which will first shift Q right 7 bits
and then shift the new result in Q left by 12, bit
positions.

d. Write a 1604 instruction to shift A right by 5 bits without
discarding any bits.

e. Would a right end off shift of 6 bits equal a left end-around
shift of 4210 bit positiona? Explain.




With a single address computer transferring data from one storage

location to another is usually accomplished by loading a narticular
register and storing the contents of this register somewhere else. The
next four instructions indicate the basic transfer instructions on the

model

1604 computer. More powerful transfer instructions will be

presented later.

LOAD A (LDA.b) (12.b) (where b may be O through 7)

This instruction replaces the A register contents with an operand
whose location is specified by the sum of the execution address
and the contents of the designated index register. A storage
reference is made to obtain the u48-bit quantity at the location
indicated by the sum of the execution address, and the contents
of the designated index register. A is cleared, the 48-bit
quantity is then loaded into the A register. The memory location
remains unchanged.

LOAD Q (LDQ.b) (16.b) (where b may by 0 through 7)

STORE

STORE

This instruction replaces the Q registe: contents with an operand
whose location is specified by the sum of the execution address
and the contents of the designated index register. A storage
reference is made to obtain the 48-bit quantity indicated by the
sum of the execution address and the contents of the designated
index register. Q is cleared, the 48-bit quantity is then loaded
into the Q register. The memory location remains unchanged.

A (STA.b) (20.b) (where b may be 0 through 7)

This instruction stores the contents of the A register at the storage
location specified by the sum of the execution address and the
contents of the desipnated index register, The A register contents
are not modified by this instruction - that is, A still holds its
initial contents upon the completion of the instruction.

Q (STO.b) (21.b) (where b may be 0 through 7)

This instruction stores the contents of the Q register at the storage
location specified by the sum of the execution address and the
contents of the designated index register, The Q register contents
are not modified by this instruction - that is, Q still holds its
initial contents upon the completion of the instruction,

The following examples should facilitate learning these basic

transfer instructions. (Each student is advised to work out
the examples and check the given solutions,)

2-6




EXAMPLE 5. Assume zeros are contained at storage location 17012.
Show the program step which will load these zeros into the A and
Q registers.

Function Function
Code C]?e
Program step LDAO 17012 LDQ 0 17012
required
Explanation: In each instruction above, the computer will

reference the storage (17012) given in the execution address

and load the contents of 17012 into the A or Q register depend-
ing upon the Code 12 or 16. Note that the index designators
are zeros above. This 18 not a necessary condition. An index
designation other than zero is satisfactory if the contents of
the designated index register plus the execution address equals
17012 above. For example, 12 3 17000 is equivalent to the
left instruction above if the contents of index register 3 are
00012.

2-7



EXAMPLE 6. At storage location 00017 is the constant 1, The
programmer desires to transfer this constant to storage location
00200. He does not want to disturb the present contents of

the A register. Show the program step which will do this.

Function Function
Code Code

Program step
required

QO 00017| sTQO0 00200

Explanation: The upper instruction loads the contents of 00017
into the Q register. The lower instruction then stores the
contents of Q (which now contains the contents of 00017) into
00200, completing the transfer, Note the index designators

are both zero. This is not a necessary condition. For example,

if index register 6 contains 00200, the lower instruction above
could be:

216 00000

! ™

(STQ.6)

Sum is
00000 + 00200 = 00200

where contents of
index register 6 are——= 00200

2-8




EXAMPLE 7. An address is being generated in index register 4.
Another address is being generated at index register 1, A
programmer wants to store the contents of the generated address
of index register 4 in the generated address of index register 1.
He does not want to disturb the A register while doing this.

Show the program step required.

Function Function
Code Code
Required l l
program
step LDQ 4 00000 STQ 1 00000O0

Explanation: Since A is not to be disturbed, the Q register
instructions are used. The upper instruction loads Q with the
contents of the generated address of index register 4. The

lower instruction then stores the contents of Q into the generated
address which is the contents of index register 1.

Did the contents of index registers 4 and 1 change because of
this program step? What did change?



The following exercises are provided for practice on the four basic
transfer instructions presented in this chapter. Work out the solutions
and check the answers against those in Appendix A. The following Table
indicates your approximate progress in learning to program these
instructions.

Rating Table 2

If you have 4 correct answers . . . . « « . Excellent
If you have 3 correct An8Wers8 . « « o« « « o Good
If you have 0-2 correct answers . . . . « - Review

EXERCISES 2.

a. Given, index register 3 contains 00005 . What will the
instruction, 12300010 accomplish?

b. Write a program step which will transfer the contents of
storage location 01000 to location 01001 without
disturbing the A register.

c. Index register 2 contains 77767.
What will instruction 20200020 accomplish?

d. What is the difference in effect wupon the initial contents
of A or Q when LOAD and STORE instructions are programmed?

The last four instructions of this chapter include two arithmetic
and two jumps. The arithmetics are the basic ADD and SUBTRACT instruct-
ions. The jumps are the A-JUMP and Q-JUMP instructions. Several other
instructions similar to both these types are available in the 1604
instruction repertoire. These will be presented in later chapters.

2-10




ADD (ADDb) (14.b) (where b may be any number O through 7)

This instruction adds a 48-bit operand to the previous contents of
the A register. A storage reference is made to obtain the 48 bit
quantity at the location specified by the sum of the execution
address and the contents of the designated index register. The
operand at this location is then added to the previous contents of
the A register. An overflow fault results when the sum of two
quantities exceeds the capacity of A,

SUBTRACT (SUBb) (15.b) (where b may be any number O through 7)

This instruction subtracts a 48-bit operand from the previous
contents of the A register. A storage reference is made to
obtain the 48-bit quantity at the location specified by the sum
of the execution addrecs and the contents of the designated

index register. The cperand at this location is then subtracted
from the previous contents of the A register. An overflow

fault results when the difference of two quantities exceeds

the capacity of A.

A-JUMP (AJPb) (22.b) (where b may ba any number O through 7)

This is the first instruction, to this point, in which the
index registers are not used to modify the execution address.
In this instruction, the 3~bit index register designator
specifies the particular condition of the A register which will
cause a jump in the program address. The conditions for the
different possible index designations are as follows:

I1f Index register desipnation ia:

Jurp will occur 1if content of A is zero

Jurp will occur if content of A is not zero

Jurp will occur if content of A is positive

Juzp will occur 1if content of A is negative
Return Jurp will occur if content of A is zero
Return Jurp will occur if content of A is not zero
Return Jurp will occur if content of A is positive
Return Jump will occur if content of A 18 negative

~NoUmPwoE~O

Q-JUMP (QJPb) (23.b) (where b may be any number 0 through 7)

This is the same as the A-Jum) cxcept the jump occurs if the

Q register is in a certain condition. The index register
designator specifies the condition which will cause the jump.
The various index designations with the corresponding conditions
are listed below:

2-11



If the Index register designation is:

Jump occurs if Q register content is zero

Jump occurs if Q register content is not zero

Jump occurs 1f Q register content is positive

Jump occurs if Q register content is negative
Return Jump occurs if Q register content is zero
Return Jump occurs if Q register content is not zero
Return Jump occurs if Q register content is positive
Return Jump occurs if Q register content is negative

NP LN ~O

Before trying examples of these last four instructions, some of the
general characteristics of jump instructions should be considered. A
Jump instruction causes the termination of a current program sequence
and the initiation of a new sequence at a different location in storage.
The program address register (P) provides the continuity between program
steps. This register always contains the storage location of the program
step currently being executed. Normally, the address in this register
1s increased by one count at the end of each program step in order to
indicate to the machine the location of the next step. When a jump
instruction is given, the program address register is cleared, and a new
address 1s entered from the jump imstruction. 1In all jump instructions
the base execution address specifies the beginning address of the new
program sequence.

Some of the jump inotructions are conditional upon a register
containing a specific value or upon the position of an operator key on
the console. If the criterion is satisfied, the jump takes place to
the location specified by the execution address. If the criterion is
not satisfied, the program proceceds in its regular sequential order to
the next instruction.

A jump instruction may appear in either position in a program
step. If the jump instruction appcars in the first (upper) part of
the program step, and the jurp ioc taken, the second (lower) part of
that program step is naver executcd. If the jump instruction appears
in the second (lower) part of the program step, the first (upper) part
of that step is executed in the normal manner.

Return Jumps are differcnt from normal jumps in that provision
is made to 'return'" to the locatica following the place where the
return jump was initiated. This operation is important in programming
since one often wishes to exit frcm the main program to some routine
and then return to continue the main program. In all such situations
there must be some way for the computer to 'remember" where the
Return Jump originated.

2-12




On the 1604, a return jump begins a new program sequence at the
second (lower) part of the progrem step to which the jump is made;
that is, the jump is always to the lower part of the program step
gpecified in the Return Jump instruction. At the same time the base
execution address in the upper part of this same program step is replaced
with the address of the location of the return jump instruction plus
one. This allows the new program sequence to return to the step
following the return jump instruction and resume the original program
at a later time, FIG. 6 indicates the return jump sequence.

Return Jump does two things:
(1) Stores address of next
program step, 00102 in below
(2) Jurps to lower part of

step 00700
Program step part of a main program
First instruction
of subroutine
00100 = QLS 0 00030 | LDA 2 00600 jump 1is to here

dress 00102
goes her

—\
00101 = |ENQ 1 00216 | QIP 4 00700| /(00700) =SLJ 0 xxocoxx| ARS 3 00016 |

Other subroutine
instructions here

nain program
continued here on

Unconditional
urp here

(00716) = QLS 1 00043 | SLJ 0 00700
Last instruction
Qf subroutine

FIG L] 6

Unconditiona
jump here to

Return Jump Operation

2-13



The following examples are provided to afford practice om the last
four instructions of this Chapter (Add, Subtract, A-Jump, and Q-Jump).
(Each student is advised to work out the examples and check the given
solutions.)

EXAMPLE 8. Assume the initial contents of the A register are '

000 0C000 021 C0500.
A programmer wishes to add the

contents of storage location 00200 to the contents of A. Show
the instruction required if (a) no index register is to be used
(b) 1f index register 3 (which holds 00171) is to be used.

(a) (b)
Instruction Instruction
required ADD 0| 00 2 0 0| required ADD 3/]0000 7

Explanation: (a) One uses the ADD instruction (code 1l4.x) with
the index designation equal to zero. This adds the contents of
the location specified by the execution address (00200) to the

A register as the problem required.

(b) If an index register is used the contents of
this designated index register is added to the base execution
address and this sum specifies the location of the operand which
is to be added to the A register. In this case since the sum
mst be 00200, and since index register 3 contains 00171, it is
necessary to make the execution address be 00007. (00007 +
00171 = 00200 .)

EXAMPLE 9. Asoume the A register contains 203 00600 060 00400.
Assume address 00300 contains 000 00000 020 00300, After the
completion of imatruction 150 00300 show the contents of (a)

the A register (b) storage location 00300.

(a) The given instruction subtracts the contents of 00300 from
the initial contents of the A register as shown below:

203 00600 06000400 Initial contents of A

000 00000 02000300

203 00H00 04000100 Final contents of A
(b) Final contents of 00300 is 000 00000 020 00300.

Explanation: (a) The A register is changed during the execution
of the imstruction since the arithmetic process (subtraction) takes
place and the result (the difference) is left there.

2-14




(b) The subtraction does not change the quantity»
beirg subtracted from the A register. Thus the final contents of
address 00300 is the sam2 as i{ts initial contents.

EXAWPLE 10. A programrar ig pgenerating a quantity in the Q
register. At program otcp 00100, he wants to test the contents of
Q for two conditiona: (1) if thc content of Q is zero, he wishes

to jurp to step 00600, znd (2) L{f the content of Q is negative, he
wiohzes to jurp to step 00700. Show the instructions required to
do this,

Instructions
requircd

(00100) QPO 00600 |QP3 00700

Explonation: Since ka2 ig testing Q, he uses the Q-Jump. In the
uvpper instruction above, Q io tcsoted for zero by placing a zero

in the index daoignator pooition. If Q contains zero, the jump
will go to address 00600, If Q does not contain zero, the lower
instruction above will bz executed., The lower instruction has a

3 in the index designator position. This causes a jurp to address
00700 2Z the content of Q 1o rogative. If neither condition ebove
i3 satlasfied, instructiona of the next step (00101) are executed.

2-15



EXAMPLE 11, A random number is being generated in the A register.
Each time a random negative number is generated, a jump is made to
a subroutine starting at subroutine step 00300 and exiting at sub-
routine step 00304, Upon exit, a return is made to the main
program. Assuming the test of the contents of A is made at main
program step 01000, show or explain the following:

(a) Test instruction at step 01000.
(b) Vhat happens at sub-routine step 003007
(¢) What happens at sub-routine step 003047

(a) (This could be the upper
(01000) = |AJP 7 00300 or lower instruction of
step 01000)

(b) 01001 First instruction
(00300) = |{SLJ| XXX XX of sub-routine

/

Unconditional Address 01001

jump code is put in here
here by computer
(c) Last insotruction
(00304) = of sub~-routine SLJT O 00300

Unconditional jump to
the starting step of
the sub-routine here

Explanation: (a) Index designator, 7, in the A-Jump tells the
computer there is to be a Return Jump if A content is negative.
The jump goes to the lower instruction of the entrance step of the
sub-routine.

(b) The Return Jump automatically stores the
contents of the "Progrcm Address Register plus one" (01001 in this
exarple) in the execution address portion of the upper instruction
of the subroutine entrance otep.

(c) The exit step of the subroutine should contain
an unconditional jump to the uppar instruction of the entrance step.

it is important to note at this time that all return jumps on the
1604 are not conditional upon the contents of the A or Q register. An
unconditional return jump is available and will be explained in a later

chapter.

2-16




The following exercises are provided for practice on the last four
instructions prescnted in this chepter. Work out the solutions and check
your results with those in Appendix A. The following table indicates
your approximate progress in learning to program these four instructioms.

If you bave 5 correct answers . . .
If ycu kave 3 or & correct answers,
If you Lave 2 correct gnswers . . .
If you kave 0 or 1 correct answers.

Rating Table 3

Excellent

Good

Fair (some review)
Review thoroughly

* & e @
¢ o o o

EXERCISES 3.

a,.

b.

Write an instruction which will add the contents of storage
location 00030 to the contents of the A register.

U'rite progrem steps vwalch will develop the result "G" in
the A rezioter, viere G = (A reg.) - (B) - (C) + (D) + (E).
Asgu=a D = contents of 00341, C = contents of 00042,

D = contents of 00043, and E = contents of 00044,

A progrermrar wiches to juzp to cddress 00050 only 1f the
cculcats of both A and Q cre zero. Can he usc the
L=Ji=p cnd Q=-Juzp in the cams program step? Explain

your ancuer.

An addreos is generated end ctored in index register 5.
One vanto to add the contents of this generated cddress
tu the contcnts of A. The A rcgister 1o then tested for
czero and if it is not zero, a jurp occurs to proZram step
00105. VUrite ome progrem ctep, of two instructioams,
wiaich will accomplich this,

Explain what will occur if the following instruction is
referenced at otep G03C4 and the contents of the A
register arc positive.

Upper Instruction Lower Instruction
(003C4) = AJP 6 00010

2-17



CHAPTER II1
REVIEW TEST

The following questions review the twelve instructions presented
in this chapter. Write answers in the space provided after each

question,

1.

7.

Solutions are given in Appendix B.

What happens to some bits in an "end-off" or '"open-ended"
shift?

All shifts on the 1604 are end-off shifts. (True-False)

What happens to the sign bits when a right shift occurs
on thke 16047

Where does the shifting on the 1604 actually take place?

Is it possible to shift 200 (decimal) bit positions with
one instruction 16047 (Yes or No)

The index designator is not significant with the shift
Instruction. (True-Falce)

If the index designator is 3, you add 3 to the execution
address before interpreting the instruction. (True-False)

Storcae address 00300 contains 0000000000000777. The
programrer shifts the contents of 00300 right 6 bit
positicns with the QRS.0 instruction. (Q Right.) After
storing the ghifted result of Q back in 00300, show the
contents of 00300,

Show the final contents of Q for the above exercise.

2-18




10.

11,

12,

13.

14,

Using the instructions of this chapter show two methods
to transfer the contents of 00050 to the contents of
01000. (Use one program stcep for each mathod.)

Why 1s there a STORE Q instruction as well as a STORE A
inatruction when cach perform essentially the same
function?

Index register 4 contains 00006, Address 00100 contains
0900000000000001, Address 00007 contains all zeros. 1If
thn JOAD A with index designation 4 is given

|LDA 4 00072| show the final contents of A below.

The instruction "STORE Q" with index designation 6 is given
(57Q.0). The execcution address portion of the instruction
is zero. In other words, the instruction is 21 6 00000
(Code for "STORE Q" 1is 21,) Where will the contents of Q
be stored vhen this instruction is executed?

If an index register 1o designated in the ADD instruction,
thae contcats of the designated index register are added to
the previcus contents of the A register. (True-False)

2-19



15. Translate the following flow diagram into 1604 prdg:am |
steps starting with step 00100 below.

Load contents Load contents Store Q
(:)— of 00016 intol— of 00017 into|—{Does (Q) = 0?}—Yes— in 00500
Q A

No

Store A
Does (A) = 0?}—Yes— in
00501
No
Store Q in Add contents
00700 of 00700 to
A

(00100) =
(00101) =
(00102) =
(00103) =

2-20




16. Translate the following flow diagram into 1604 program steps
starting with step 00100 below.

Assume original

Add (S;) is address
(::%—contents of | /18 Q Yes-—<::}Store Q ._.(06400)
(T;) to Q Positive in Reg.
| (s;)

No I
Modify previous flow
step by adding 1 to

(1)

Modify first flow step
by adding 1 to (Tl)

. sume constant
Add 1 to 1 18 stored at
counter o 00

Assume original (T;)
is address 00012
which contains some
unknown quantity

Note jump to subroutina
which exits back to main
program at 2. You nced
only show the jump

instruction

Does counte

()

a 100,47
Subroutine 10
starting at] Aseurma counter is
step 01000 at 00006 and 1o No Yes

originally zero

®

Note jump
to @ here

(00100) =

(00101) =

2-21



CHAPTER III

SECOND GROUP OF INSTRUCTIONS

SECOND INSTRUCTIONS (with Mnemonic and Numeric Codes) (where b represents
the index designator and may be 0 through 7).

LONG RIGHT SHIFT (IRS.b) (03.b) INCREASE A (INA.b)(11.b)
LONG LEFT SHIFT (LLS.b) (07.b) MULTIPLY INTEGER (MUI.b)(24.b)
ENTER A (ERA.b) (10.b) DIVIDE INTEGER (DVI.b)(25.b)
ENTER Q (ENQ.b) (04.b) SELECTIVE JUMP (SLJ.b)(75.b)

LOAD A, COMP.  (LAC.b) (13.b) SUBSTITUTE ADDRESS(UPPER) (SAU.b)(60.D)
LOAD Q. COMP.  (IQC.b) (17.b) SUBSTITUTE ADDRESS (LOWER)(SAL.b)(61.b)

0f the first six instructions, two are shift instructions and four

are transfer instructions. Since basic shift and transfer instructions

vere

given in detail in Chapter II, it is reasonable to assume that these

six instructions can be easily learned in one unit.

LOYG

LOXG

RIGHT SHIFT (IRS.b)(03.b)(vhere b may be any number 0 through 7)

This instruction shifts the contents of the A and Q registers to
the right as onc 96-bit register. The A register is treated as
the leftmost 48 bits and the Q register as the rightmost 48 bits.
The number of bit positions to be shifted is specified by the

sum of the execution address and the contents of the designated
index register. The sign bit of the A register is extended as
the shift is performed. The lowest order bits of the A register
shift into the highest order bit positions of the Q regicter as
the shift is performed. The lowest order bits of the Q register
are discarded zo they are shifted out of the right end of the

Q regioter. Shift counts greater than 127 (decimal) are treated
as ochift faults end procduce cn indication which may be sensed

by the external function instruction.

LEFT SHIFT (LLS.b) (07.b) (where b may be 0 through 7)

This instruction shifts the contents of A and Q registers
circularly end-cround to the left as omne 96-bit register. The
number of bit positions schifted 1is specified by the sum of the
execution address and the contents of the designated index register.
The leftmost bits of the Q register shift into the rightmost bit
positions of tha A register as the shifting is performed. The
bits coming off the left-cnd of the A regicter circulate end-
around to the rightmost bit positions of the Q registers as the
shifting is performed. Shift counts greater than 127 (decimal)
are treated as shift faulto and produce an indication which may
be sensed by the external function instruction,



ENTER A (ENA.b) (10.b) (where b may be 0 through 7)

This instruction enters the sum of the execution address portion
of the instruction and the contents of the designated index
register into the A register. The A register is cleared first,
and the sum of the execution address and content of the desig-
nated index register is then entered into the cleared A register
as a 15 bit quantity including sign (total 15 bits). The
highest order bit (or sign bit) is then duplicated in the remain-
irg (33) higher order bits of the A register. The sketch

below in FIG. 7 indicates the process.

(a) (b)
If no index register ' If index register
is used is used
Mo index
(&cgiuter
A
Instruction 10 O Assume index register 5 is used

and contains

T (Negative number 77731
(ENA.0) Code for ENTER A

These are added———>

Instruction 105C 00032
00000000000(00032
sum LIS

Octal digits forme ,
@ extended oizn bits (A) = (77777777777 3776F
Octal digits formed by extende
sign bits

FIG. 7

(4)

Execution of ENTER A instruction




ENTER Q (ENQ.b) (04.b) (where b may be O through 7)

LOAD

LOAD

This is the same as the ENTER A instruction except the Q register

in used. The sum of the execution address portion of the instruct-
icn and the content of the designated index register is entered
into the Q register as a 15 bit quantity including sign (total 15
bits). The highest order bit (sign bit) is then duplicated in the
reraining higher order bits of the Q register. FIG. 7 indicates
the process except the Q register is used in place of A.

A, COMP (LAC)(13.b) (vhere b may be O through 7)

This instruction replaces the A register contents by the comp lement
of a (8-bit cperand vhose location 18 cpecified by the sum of the
«wecution addrcss and the contents of the designated index register.
After the 48-bit cperand is located it is complementcd and entered
into the A register. A zero index designation (no index register
18 ur2ed) recults in the 48-bit operand being found at the location
rpecified by the execution address portion of the imotruction.

Q, COMP (LQC) (17.b) (where b may be O through 7)

This 15 the seme as LOAD A, COMP except the Q register is used.
Then tha content of the Q register is replaced by the complement
of a 48-bit quentity whose location is specified by the sum of the
c~ccution addrecs and the contents of the designated index register.
A zero index designation (no index register is used) results in

the 48-bit cpercnd being found at the location specified by the
cxccution address portion of the imstructionm.

The following exarples should facilitate learning the previous six

instructiona. (Each student is advised to work out the given
exa=ples and check the given solutioms.)

3-3



EXAMPLE 12. Assume the A and Q registers contain the quantities
given below. A programmer wants to shift both these quantities
right 3973 bit positions as though both made up one 96-bit register.
Show the instruction used, and the final contents of A and Q after
the shift is performad.

A Register Q Register
Given contents
of A and Q in 00472715 13002777 7771111100003333
octal
Required 39 = 47
instruction LRSO 000471{//’—_-‘§ 10 8

Shift AQ Right Code

Final contents A Register Q Register
of A and Q
in octal 0000000000000004 7271513002777777

Explanation: Since one wants to shift 39 decimal bit positions, this
i8 equivalent to a chift of 13 octal digits (since 3 bit positions
equal one octal place). Since the shift is RIGHT (end-~off), there
are 13 octal dicits discarded as they shift off the right end of Q.
Also 13 lcw erder octal digits of A go into the high order positions
of Q. Thka oign Lits (zeros) in A are extended to make the octal
digits in A.




EXAMPLE 13. Assume the Q register contains a generated mumber.

The programmer desires to double this number by shifting Q left

one bit position. However, if there is a significant bit next

to the sign bit, a left shift of one will "overflow' the Q register
and change the sign of the number. For example, if 011011101ll<—>1

|«——48 bits —>|
is contained in Q, a shift of one left would give 1101110111<—>10,
which has changed the sign from plus to minus by the "overflow'.
In order to eliminate this possibility, he decidea to shift A and Q
as one register, Show the instructions required. (Hint: the A
register must be filled with bits all of which are the same as the
sign bit of the initial contents of Q.)

Load zeros

Required Test Q * into A Shift AQ
flow steps for sign? Left
—-1 Load ones

into A
Required Jump to Enter A with operand
steps 00202, {f Q is plus shown (all ones)
—= JU S—
(00200) = {QJP 2 00202 ENAO 77777

Shift AQ Left once

Unconditional jump
(00201) = [LLS O 00001 to 00203 to continue

Enter Zeros into A Shift AQ left once
(00202) = |ENAO 00000 LLIs0 00001

(00203) = Continue program

Explanation: The first instruction tests the contents of Q for
plus or minus, 1f plus, jump to (00202), where zeros are entered
into A by 10 0 00000 and then A and Q are shifted left by 1 as
though they made up one 96-bit register. If the jump at 00200 did
not occur, then Q is negative and all ones are entered into A

by 10 0 77777, and the AQ shift then takes place. (There are
several alternative approaches which can be used to do the above.)




EXAMPLE 14, A count has bcen generated in index register 3.
The progrcr—ar vants to kncw if thio count is equal to the amount
in tha Q register. Show fnstructions which could be used.

Instructions This ceoda otozed Thio code entero the sunm
required cententa of Q at of contents of index register
00100 3 cad cwount shown inm
rccution eddress into A
|14
(00300) = [STQ D 00100 A3 00000 J

Thils coda cubtracts This code jurpo o
coatentrs of addrecs addreoss shown if contents
glietm {rea A of A rcgister arc zero

\

Vi /7
(00301) = {SUBO 00100 AT20 00400 J

Frmlanation:  Tha coatexto of Q cre first stozred at some address
({n this cace CJ100). T2 Cha YEITITR A" inctruction with Irde:x

dapigration 3 cad cmocuilca cddreca CUC00, pleces im A, the ccatents
of index regloter 3 plud tha quantlty cheim in the executica
oddreos, (Contenta ¢ indox rej. S+ C00C0 = contento of irdex

vesister 3.) Ia the nmext step, the coateanto of 00100 (vaich now
equal conteats of Q ) cre cubtreeted from A (which now equals the
contaents of index zreg. 3). Tue lact inotruction jumps to came
cddress if the reouli of tlie cubtvactilon 18 zero. 1f the jump
cceurs, cna hincws the ceatcnis of Q cud index reglister 3 arc
cruivalent, (Altermotive coluticas are possible here.)

3-6




EXAMPIE 15, Assume one wants to load the absolute magnitude of the
quantity located at address 00030 into the A and Q registers. Show
the instructions required. Hint: a test must first be made of the
quantity in 00030 to see if it is positive or megative. If
negative, it must be complemented before loading it into A and Q.-

Instructions
required
(00043) = IDAO _00030) AlP3 00045 |
Unconditional jump to
(00044 ) = IDQ O 00030 (00046) to continue
ad A and Q wit
comp lemented contents
0 030
(00045) = LACO 00030 IEC0 00030
(00046) = Continue program

Explanation: After the test for sign, a jump to 00045 occurs if
the contents of 00030 are negative, and the contents of 00030 are
comp lemented and loaded into A and Q. If jump does not occur
then the contents of 00030 (already in A) are positive and need
only be loaded into Q. (Alternative solutions are possible.)

3-7



The following exercises are provided for practice on the first six
instructions of this chapter. Werk out the given problems and check
your answers with the solutions given in Appendix A. The number of
correct answers will indicate your approximate progress by checking the
Rating Table below:

Rating Table 4
1f you have 5 or 6 correct answers . Excellent
If you have 3 or 4 correct answers ., Good

Fair - Review
Complete Review

. L] L[] .
L] L] * L]
* L] L] L]
. L] L] [ ]
s o e

If you have 1 or 2 correct answers .
If you have O correct answers . . .«

EXERCISES 4

a. Aspume Q contains a positive 3, and A contains negative 7.
As ome 96-bit register shift A and Q right 4 bit positionms.
Show the instruction and the final contents of A and Q.

b. Assume Q contains all ones and A contains all zeros. As
one 96-bit register shift A and Q left 24y, bit positioms.
Show the instruction and the final contents of A and Q.

c. Assume index register 5 contains 01326. Assume storage
address 01111 contains 0000000000007562. Show the final
contents of register A after completion of each of the
following instructions.

(ENA.5)
\
(1) 105 00000
(Both instructions contain the
(ENA.5) "ENTER A" code)

105 00100

d. Mark the following True or False.

The same instruction cannot shift A and Q in two differemnt
directions.

Usually a left shift of both A and Q of one bit position
18 equivalent to multiplying the 96 bits im AQ by 2.

3-8




3. ENTER A and LOAD A instructions will do the sam= thing

if the same execution addresses and index designators
are used in each instruction.

4., LOAD Q COMP instruction will always load Q with a positive
quantity.

Assure register 00200 contains 0000000000007777. Show the
final contents of Q after each of the following instructions:

1 04000200 (Enter Q code)
2 17000200 (Load Q COMP code)
3 16000200 (Load Q code)



The last six instructions of this chapter are probably best learmed
by dividing them into twv groups, The first group contains three arith
metic instructions to be ndded to the ADD and SUBTRACT instructions of
the lant ckmpter.

INCREASE A(TT'A.b) (11.b) (b may be 0 throvsh 7)

This instrvcticn £713 to A the cum of the contents of the designated
irdex reginter £rd cha cxecutien cddress itsclf. The cuecution
rddreas is treated as a 15-bit quontity including sign (15 bits
tctal)., The additfon is perforcad as if the cxzecution cddresa were
o LB8-ble cunatity with the higher order bits ccpies of tho oign bit.
If crorflea czers, tha eszditica sy be cenced by the cutermal
functien fnatructica., The follculcg eketch 1llustrates thio
instruction, Sco FIG, 8

(a) (b)

If ro index zeglsocter fn wned
1.0 irdex Lic3a,

Instruction—>1 /1\\‘0 00111

(INA.O) Ceode foz Incrcace A

Initial centento ol
A reglster —= 006$33C€0000007777

/44 exmecutlon

cddress oo if it

vaze 68 bitag 000770000000011.1
OoduvvauOOOIUllo

Final ccatcats of A////
realoter

FIG. 8

If index register in upe
(}ndex Reg.
/

Instruction—=113 00111

(INA.3) (Ccde for Ircrease A)

Asouma index reg. 3 = 01137
Add to cxecution 00111
Address 01250

Add thioc cun oo

48 bito to initial

coantents of A 0000030000007777
0000000900001250

Firal ccatcat— 0000600000011247

of A register

LCxtecutica of Increcace A Instructiom

3-10




MULTIPLY INTEGER (MUI.b) (24.b) (b may be O through 7)

This instruction forms a 96-bit product from two 48-bit operands.
The multip]ier must be loaded into the A register prior to the
execution of this instruction, The sum of the contents of the
designated index register and the execution address specifies the
location of the multiplicand. The resulting product is contained
in the QA register as a 96-bit quantity where least significant
bits are in A. FIG. 9 indicates the execution of this instructiom.

(a) (b)
If no index register is used If index register is used
Assume (A) = 0000000000000003 Assume (A) = Q€¢—>03
Assume (00100) = 0000000000000007 Assume Index Register 5 = 00022
(MUI.0) (code for multiply) Asgsume (00100) = Q<—> 07
Instruction—>24 000100 Assume (00122) = 0 €«—————> 012
Multiplicand is found in 00100. Instruction 24500100

Product is 3 x 7 = 2110 = 258
Multiplicand is found in 00122
(since 00100 + 00022 = 00122.)

Final contents of Product is 3 x 12 (octal) = 36
Q Register A Register octal
0€—>0 0 s—> 025 '
Y Final contents of
Sign of 0 Register A Register
Product ‘0 <> 0 L 036.’

v

Sign of Product:)

96-Bit Product 96-Bit Product

FIG. 9

The Multiply Integer Instruction

3-11



DIVIDE INTEGER (DVI.b)(25.b)(b may be O through 7)

This instruction divides a 96-bit integer dividend by a 48-bit
integer divisor. The 96-bit dividend must be formed in the QA
register, with the least significant bits in A, prior to the execu-
tion of this instruction. The 48-bit divisor is read from the stor-
age location specified by the sum of the designated index register
contents and the execution address. The quotient is formed in the
A register. The remainder is left in the Q register at the end of
the operation. The remainder and the initial dividend will have

the same algebraic sign.

The following examples are provided to afford better understanding
of the three instructions previously defined.

EXAMPLE 16. Each time a program reaches step 00050, the A register
is to be increased by the amount in index register 2, and the sum
is to be stored in storage address 00400. Show this program step.

C Code for Increase A)(( Code for Store A)

(00050) = INN2 00000 STAO 0040 0]

Explanation: The first instruction increases the contents of the
A register by the sum of the contents of the designated index
register (2 in this case) and the amount specified in the execution
address. Since the amount in execution address is zero, the A
register is increased by the contents of index register 2. The
second instruction stores A in storage address 00400.

3-12




EXAMPLE 17,
Assume (A) = 0000000000000011
Asgume (00025) = 0000000000000047

After the following instruction (MJLTIPLY) is executed, show the
firal contents of A, Q, ond otorage address 00025.

(MUI.0)
Instruction 240 00025

Contents of 00025 (cultiplicand) is multiplied by contents of A
(multiplier) crd tke 96-bit product is dcvelcped im the Q and A

regioters as chowm,

(in octal)
(00025) = 0 €e—m> 0Ou7
(A) o Qs——> 011
7
7
a0 >0 0 €«——> 0537
Q Regisnter A Register

R 7

Sign of
Product

Storage address (00025) will still contain 0€—> 047 after
completion of the multiply.

*fral Contents

I'xnlanation: (Sce description above)

3-13



EXAMPLIE 18. One wishes to divide 249 by 15. Show the steps re-
quired. Assume high order bits of 249 are in storage address
00010 and 15 is in storage address 00011l.

Steps Load Q Enter A
required code code

(00300) = {ILDQO 00010 ENAO 00000O

Divide
code

(00301) = [DVIO 00011

Explanation: 249 = 10« -» 0
L J

o
49 zero bits

or 249 a \900000000000000%} LOOOOOOOOOOOOOOOQ) (octal)
Asgume this is This will go to A Reg.
stored in 00010, before DIVIDE
will go to Q

The first instruction loads 0000000000000002 into Q.
The second instruction loads zeros into A.
The third instruction divides by 15 in address 0001l.

After the divide the quotient will be in A and the remainder
will be in Q.

- 3-14




The following exercises are provided for practice on the three
instructions just described. Solve the given problems and check your
answers with the solutions presented in Appendix A. The number of
correct answers will indicate your approximate progress by checking
the Rating Table below: ,

Rating Table 5

If you have 4 or 5 correct answers
If you have 3 correct anowers. . .
I1f you have 1 or 2 correct answers
I1f you have 0 correct answers. . .

Excellent

Good

Fair (Review)
Complete Review

EXERCISES 5.

a. . Assume index register 6 contains 00017 and the A register
contains 7777777777770135. The following "IICREASE A"
instruection is given (11 6 00761).  Show the contents of
the A regicter after execution of this instruction.

b. One wants to multiply the contents of storage location
00050 (the multiplicand) by..the contents of index register 2
(the multiplier). Show the program step required to
do this. _

c. Yark the following as True or False:

1. The multiply does not affect the magnitude of the
miltiplier in A. In other words, the multiplier
hao the same value after the multiply has bcen
exccuted.

2. Before the multiply instructionm is referenced, it 1is
nccessary to LOAD the rultiplier into the A register
with a previous instruction.

3. The product of two 48-bit quantities may “overflow" the
96-bit product possible in the QA register.

d. Ascuma the Q register contains 0000000000000000. The A
register contains 0000000000000020., Assume storage
location 00100 contains 0000000000000003. The DIVIDE
{nstruction 25 0 00100 is given. Show the final contents
of the A register, the Q register, and storage location
00100. ikl B el [

ecdl, 100 wifiracd.

3-15



e. Show program step which will "INCREASE A" by the contents
of index registers 2 and the contents of the storage
location whose address is given by the contents of index
register 5.

The last three instructions to be described in this chapter include
one instruction which is a SELECTIVE JUMP and can be used as the basis
for an "unconditional jump'. The other two are useful in modifying or
substituting new execution addresses in the lower or upper instructions

of a progran ctep.
SELECTIVE JUMP (SLJ.b)(75.b)(where b may be O through 7)

This instruction causes a jump determined by specific settings
of operator keys on the console of the computer. These keys
are "selected" bzafore the program starts and determina whether
or not the jurp will occur when the program reaches the location
of the SELECTIVE JUMP instructionm. The index register desig-
nator cpecifies vhich jurp key 1s set. Thus, on this instruct-
ion, the index registers are not used. The following index
designations indicate the following conditioms:

Index Designation Condition
/Z!J:W,t/ Afpewf (/ f),(_f
Jurp Unconditiond&ly (no key setting)
Juzp if jump key 1 is set
Jurp if juzp key 2 is set
Jump 1if jump key 3 is set
Return Juxp unconditionally (no key setting)
Return Juzp if jump key 1 io sct
Return Jump if jump key 2 is set
Return Jump if jump key 3 is set

~NoOounMPwWNNEHO

SUBSTITUTE ADDRESS (UPPER) (SAU.b)(60.b)(where b may be 0 through 7)

This instruction replaces the execution address portion of the
left or upper instructiom of a word, whose location is specified
by the sum of the execution address and the contents of the
designated index regioter, by the lowest order, 15 bits of the A
register contents. The remaining bits of the designated word

in storage arc not modified by this operation. This instruction
effectively incerts an address in the first instruction at the
designated storage location. FIG. 10 indicates the process.

3-16




_ [Substitute upper address

SAU3 00032 ~ \with index designation 3

Sum of these, 00032 + 00005 = 00037
Determines location of operand

Assume Index
Register 3 contains 00005

Assume storage location
00037 contains

Assume A reglster
contains 000200 replaces

00042
02300042D120 00100
00000000000§0200) ‘ . — —

Low order Upper Instruction Lower Instruction
15 bits

02300200 120 00100

Final Contents of 00037

FIG. 10

The Substitute Upper Instruction

3-17



SUBSTITUTE ADDRESS (LOWER) (SAL.b) (61.b) (where b may be O through 7)

This instruction performs the same as SUBSTITUTE ADDRESS (UPPER)
see FIG. 10 , except the instruction inserts an address in the
lower instruction of the word whose location is specified by the
sum of the execution address and the contents of the designated
index regilster.

The following examples should facilitate learning these three last
instructions of this chapter.(Each student is advised to work out the
given examples and check the given solutions.)

EXAMPLE 19. When a certain program reaches step 00046 the first
time, the program jumps to location 00200 where an output routine
using magnetic tape is processed. The second time the program

{s run and location 00046 is reached, the program wants to go on
in sequence with 00047 which is an output routine on punched cards.
Show the instruction at 00046 and explain how it would take care
of these conditions.

Required Some other
Instruction (00046) = SLJ 1 00200 instruction

Explanation: The instruction is the SELECTIVL JUMP with index
desipnation 1. The first time, Jump Key 1 on the console would
be set and the program would jump to the output routine using
magnetic tape. If the second time, Jump Key 1 was not set on
the console, and the program would continue with the step at
ooou7,

EXAMPLE 20. At location 00600, on the left side, is a "dummy"'
ENTER Q instruction. This dummy instruction is ENQ 0 xxXxXXX.
Before the computer reaches this location, the program will ente:

an amount for the xxxxx of this instruction. Assume the amount
to be entered is being generated in storage location 00300. At
step 00577, the substitution is to take place. Show program
step 00577.

Required

Program Step (00577) = LDA O 00300 SAU O 00600

Explanation: The first instruction above LOADS A with the
contents of register 00300. Thus A now contains 00000000000ssss
(where sssss is some gquantity). The second instruction tells the
machine to SUBSTITUTE INTO THE LEFT INSTRUCTION OF 00600 the 15
low order bits of A. Thus sssss goes into the positions held by
xxxxx and the left instruction at 00600 becomes

(00600) = |ENQ O 8 3 S S8 Some Other Instruction

3-18




EXAMPLE 21. Storage location 000u0contains two generated
Instructions. Interchange the execution address portions of
each of these instructions. Show program steps starting with
00100 which will do this.

(00100) LDA O ooou4o0 SAU O 00040

(00101) ARS O 00030 SAL O 00040

Explanation: LOAD contents of 00040 into A, Substitute low
order 15 bits in A (execution address of lower instruction)

into upper instruction execution address. Then shift original
content of 00040 (which is still in A) ryight 24,4 bit-positions,
Then substitute 15 low order bits of A (now the execution address
of original left instruction) into right instruction execution
address. This completes the interchange.

3-19



”

The following exercises are provided to afford practice on the last

three instructions of this chapter. Work out the solutions and check
results with those in appendix A. The following table indicates your
approximate progress in learning to program these three instructions.

Rating Table 6

I1f you have 4 or 5 correct answers . . . . . . Excellent
1f you have 3 correct answers. . . . . . . . . Good
If you have less than 3 correct answers. . . . Review

EXERCISES 6.

At location 00020, it is desired to jump to a subroutine

a.
starting at step 00072, This subroutine exits at 00105
back to the main program, continuing at 00021. Show
the Return Jump at 00020, the first instructionm at 00072
and the exit instruction at 00105.

b. Assume 00022 contains 123 00100 0640 2 00.
Assume 00023 contains 0 0 0 00000 000 0 001.

Show the steps, starting at 00112 which will modlfy (00022)
to 123 00001 064 0100 0 using only the given
locations above along with A and C.

c. Assume index reglster 5 contains a generated number. If
this number is positive, store it in the last 5 octal digit
positions of location 00047 and then jump to step 00700 if
jump Key 2 is sot. I1f it is negative add to it the
contents of address 00100 and jump to step 00700. (Start
steps at location U0417.)

d. Increase the contents of address 00003 by the contents of
index repister 3 and if Jump vey 3 is set on the console,
jump to prosram step J30. Write the propram steps to <o
this startine at location 00050,

e. Study the following sketch.

Point R — >0 Steps between points R and T perform

at location TASK G. Steps between points T and

00032 Y perform TASK H. A programmer wishes

Task G to be able to do the following at
E different times.

Point T-———>0 1. Do TASK G and TASK H

at location 2. Skip TASK G, Do TASK H

00112 3. Do TASK G, Skip TASK H

Task H 4. Skip both TASKS

Point Y*—-—~—%>% Write two instructions, one at Point R and one

at location at Point T which will enable all four of these

00200 to be done at different times in a program.

3-20




CHAPTER III

REVIEW TEST

The following questions review the twelve instructions presented in
this chapter. Write answers in the space provided after each question.
Solutions are given in Appendix B.

1.

The AQ register is really two separate registers. A and Q are
treated as onc register on certain instructions (True-False)

The fact that chifts greater than 127;, are treated as shift
faults, stops one from shifting the AQ register the equivalent
of 200,, positiona. (True-Tclse)

The "ENTER A" and "ENTER Q" instructions always lead to 15
bits being entered into A or Q and the generation of 33 other

-sign bits which correspond to the left most bit of the 15

bita which are entcred. (True-False)

Assume index regicter 3 coantains 77777. If "ENTER A"
instruction 1 03 000 0 1 1is given, what quantity will be
entered into the A register?

Assume location 00100 contains 0000000000000003, Show the
contents of the Q register after the LOAD Q COMP instruction
(Lec. 0) 177 ... vy

170 00100

One wants to increase the contents of the A register by the
amount contained in index rcgister 4. Show an instruction
which will do this.

Is there any diffcrence in the £inal result between "INCREASE A"
and "ADD" 1astructions if the exccution address portions are
cach zero and the came index designation 18 used in each.

in other wvords, is INA 2 0 0 0 G O tlic same as ADD 2 0 0 0 O 07
(Yes or Lo)

3-21



8. Where 18 the multiplier located when the "Integer Multiply"
instruction 18 executed? Where is the multiplicand. Where
18 the product after the execution of the instruction?

(Multiplier)
(Fultiplicand)
{Croduct)

9. If the dividend 18 5 and the divisor is -3, what will the
following registers contain after the DIVIDE INTEGER
Instruction is executed?

A Reglster
Q Register

10. Show program steps which will accomplish the following flow
diagram. (Start with stop 00300.)

(00300)
Load A with Increase A by Load Q wit
<:>——COntents of —Jcontents of -1(??;:i;§:>>Plu&—)contents of—{:>
location 00007| [Ind. Reg. 2 for sign location
00050
VY—sMinus—=/Store A in
Divide QA by Store location
(:)———contents of (remainder in |HJump to Q0060
location 00100| {location 00200 {Step 01000 |
Jump to
Step 01000

11. Write program steps starting with step 00200 which will divide
the sum of the A and Q register contents by the difference
obtained by subtracting the contents of Q from the contents of
A.

12. An approximation to the function G can be found by the formula:

G=1 - X 2 Assume X is a whole number

=
stored in index register 3. Write program steps starting with
step 00100 which will compute G and store it in storage location

00077.

3-22




CHAPTER IV

THIRD GROUP OF INSTRUCTIONS

THIRD INSTRUCTIONS (vith Mnemonic and Numaric Codes) (where b refers to index
register designation).

STORAGE SKIP (SSK.b)(36.b) ENTZR INDZX (EI'L.b)(50.b)
STORAGE SHIFT (SSH.b)(37.b)  PASS (Ei1T.0)(50.0)
IND7ZX SKIP (ICX.b)(54.b)  INCIZASE IIDEX (L Z.b)(51.b)
INDIX TP (ZJ2.b)(55.b) LOAD INDIX UFZIR (LIU.b)(52.b)
LOAD I.C3ICAL (IOL.b)(%4.b)  LCZD INCIX 145.72R (LIL.L)(53.b)
ATD 1N3ICAL (DL.L)(45.b) CICIE IIEIX Uiz (SIU.b) (56.b)
SUBT"ACT LOGICAL (S3L.L)({45.b)  SI0AT LBEX LOUIR (SiL.b)(57.b)
$1.0P12 LOGICAL (STL.b)(&7.b)

The third group c¢f instructions are fifteen in nucber. These are
probably best lecarned by dividing them into groups containing four, four,and
seven instructicns, respectively.

The first threce instructicns are similar in that they cay be thought of
as "two address”™ jumps. These are limited to usc in the first position of
a progrem step. The sccond position in the progrcam step is normally occupied
by en unconditional juzmp instruction. 1Tails pailvr cf instruciione thea oparates
as a tuo eddrags juzp Iastiucticn. The flvst e€linass of tla otorcge chilp ond
sterege ghifs Ingctouctions in this projrca step cpocifies tlhia stouege locetien
o7 tl:2 operend reguired in tho jump decision. Tin2 cacond cidrecs cpocifies the
destination of the jump 4f tcdicn, Octher combincilons will Le cbvicus to th2
progrome2r as he learns the instructicas.

STORAGE SKIP (SSK.b)(36.b) (vhere b may bz O through 7)

This instructicn cences th2 gign bit of the cueatity in the lozction desig-
nated by the cum of th2 cixecution cddrecs and tle centents of the deocigncted
ird2x register, If the decigrated quoatity 1is regetive, the nont inciruction
i5 clkipped. If the dosignated queatity is positive, the nont inctruction is
ciecuted, FIG. 11 indicates the process.

(a) (b)
o Index Dagister is If Index Pagister 2 ic
Easignated 2cignated
fissuze 00100 containg O 01157 Lot indon rog. 2 ceatedn C303C
fLsuume folleowing progroam step Lot stoxc;2 leccatici GCG37 cc..zein
7 7ol
Lsouma follcuing iogeeca oty

(C0C40) 36 0 00100 75 0 00052 (6CT%50) 356 2 06C0O3 75 0 GLLI™
C-2zcnd at 00100 (0+00100=00100) Coowend oz CUU37 (i:0005-0C ... -32037)
i3 rositive. 15 negeotive,  the nmont ingCrict’ = ic
“i2 n2ut Instruction (75 0 00052) slilpred cad progream continucs at (00041).

i5 e:mcuted,
This is an unconditional jump to

step 00062, FIG, 11 One use of Two-Address Jump

4-1



It is important to note that the second position need not be an
unconditional jump. Thus if a single instruction is to be executed, or
not executed, as a result of tne sensing operation, then such an instruc-
tion may be used in the second position with the sensing instruction in
the first position. Examples following these descriptions indicate these
possibilities.

STORAGE SHIFT (SSH.b)(37.b) (b may be O through 7)

This instruction senses the sign bit of the quantity in the storage
location specified by the sum of the execution address and the contents
of the designated index register. If the designated quantity is nega-
tive, the next instruction is skipped. If the designated quantity is
positive, the next instruction is executed. In either case the quan-
tity in storage is shifted circularly, end-around, left ome bit position,

The initial contents of A and Q arenot disturbed by this shifting pro -
cess,

INDEX SKIP (ISK.b)(54.b) (where b may be O through 7)

This instruction compares the quantity in the designated index register
with the base execution address. If the two are equal, then the
designated index register is cleared and the next instruction in the
program is skipped. If the quantity in the designated index register
1s not equal to the base execution address, then the quantity in the
index register is increased one count and the next instruction in the
progrzm is executed. The flow diagram in FIG. 12 indicates the process.
(Note the special situation when the designated index register is zero.)

Compare Clear
contents of index register Equal—s| Index register
with execution address to zero
I
Not Equal
skip *k
next
M instruction
increase >
index register by \ (See note
1 below)

Hext instruction

*If the index designation
is zero, the computer
assumes the contents
of index register is
zero

FIG. 12

Index Skip Instruction




*%xIt is important to remember that the two-way sensing instructions
occupy the first position (upper instruction) in the progrem step. In
case they are used in the second position (lower instruction) the skip
will not take place which provides the two-way possibilities.

The fourth and last instruction in this group is the INDEX JUMP. It
is similar to the INDEX SKIP instruction just described.

INDEX JUMP (IJP.b)(55.b) (where b may be O through 7)

This instruction examines the quantity in the designated index register.
If this quantity i not zero, it is reduced by one count and a jump 1is
executed to the base exescution cddress. If this quentity is zero, then
the jump is not executed and the present progrem sequence 1is continuad.
(llote in this instruction an index designation of zero would have little
use unless it was chenged during the program. A zero designation would
simply have the scr2 effect as 1f the contents of the index register
vare zoro.)

The follcwing cremples should facilitate learning the previous four
instructions. (Each student is advised to work out the given examples
and to check the given solutions.)

EXAMPLE 22. A quantity is genzrated in storage location 00023, If
this quantity is positive, jump to progrcm step 00077. If negative,
the program is to continue in sequence. Shov a progrem step which
will do this. (Use location 00100 for program step.)

(00100) = SSK 000023 SLJOOO0O077

(oo101) = Continue Program

Explanation: The first instruction checks the sign of the operand

at the location specified by the sum of the designated index register
(0) and the execution eddress (00023). If this operand @t 00023) is
positive, the next instruction (750 00077) is executed, which is an
unconditional jump to step 00077. If the operand (at 00023) is nega-
tive, the jump instruction (750 00077) is skipped and the program
continues in sequence at step 00101,



EXAMPLE 23. 1If the quantity contained at storage location 00200 is
positive, it is desired to add it to the contents of the A register
and continue in sequence. If it is negative, it is desired to con-
tinue in sequence to step 00031. Write program step 00030 which will
do this

(00030) = SSK 000200 ADD 000200

(00031) = Continue Program

Explanation: The first instruction does a "STORAGE SKIP" on con-
tents of storage location 00200 (specified by sum of execution

zddress and contents of designated index register), If contents of
00200 are positive, the next instruction (140 00200) will ADD the
contents of 00200 to the A register and continue to (00Q31). If the
contents of 00200 are negative, the ADD instruction is skipped and the
program continues, (Note: This is an example showing the use of a
"possible two-address jump' without using an unconditional jump fol-
lowing the sensing instruction.)

EXAMPLE 24. Assume storaze location 01000 contains

25 25 25 25 25 25 25 25 (octal). At step 00300 in a program it is
desired to use the "STORAGE SHIFT" instruction with index designation
zero and execution address 01000. (See below)

"

(00300) SSH 001000 Jump to 0 0 6 00

[}

(00301)

Instruction C Jump to 0 04 00

The program reference step 00300 several times., Explain what will
happen in terms of the jumps shown,

Ansver and Explanation:

Each time the Storase Shift instruction is executed, the contents of
01000 will shift left one bit position. Since 01000 contains alternate
zeros and ones (in bits), the following will cake place:

First time: The jump to 00600 will occur
Second time: Instruction C and jump to 00400 will occur
(Succeeding tines: Repeat the above in same order)

4-4




EXAMPLE 25. Assume index register 6 contains all zeros (00000 in
occtal). A programmer wants to use this index register as the
counter (K) indicated below in the flow chart. Show the progrem
step for dotted area below

Load A Add r 1
(:)——-with contents [— contents Store |— [compare Equal I
of (S1) of Q in (Ty) | K to 2510| ——>|Continue||
in
' Not s5C |
quence
| equa;_jL |
Increase K by 1 |
|land jump to 00100
________ J
Program
Step Required— | IEK 6 0 003 1 SLJO0OO00100

Continue steps in sequence

Explanation: The first instruction is the "INDEX SKIP". This com -
pares the contents of the designated index register (6) with the
execution address cmount (in this case 25,45 = 31g). If not equal,
the contents of index register 6 are increased by 1 and the next
instruction, 75 00 01 0 0, (Unconditional jump to 00100) takes
place. Each time the program loops through here the seme sequence
of events tckes place until the contents of index register 6 equals
2519 end then the jump instruction igs skipped and the progrem con-
tinves in cequence. (Sce Exemple 47 for enother instance of index
skip.)

EXANMPLE 26, Assum2 index register 3 contains 00007. A program con-
tains a locp which involves a jump to location 00112 sceven times
during the progrem. The eighth tims the program is to continue in
sequence. Show a progrem ctep at (00061) which will provide the
looping, (use INDEX JU}? instruction.)

(00061) = IJP300112 Continue Progrem

Lxplrnntion: Caly one ingtruction ig required. The INDEX JUMP
chove checks the contents of indexn register 3 for zero. If not zero,
it reduces the contents by one &nd jumps to the step spacified in
the execution addrecs portion (00112 in this case). This continues

7 timoo until index register contents are reduced to zero., At this
time (cighth time) the jump is not taken but the next instruction

is e::ecuted,

4-5




The following exercises are provided for practice on the first
four instructions of this chapter. Work out the given problems and
check your solutions with those given in Appendix A. The number of
correct angwvers will indicate your approximate progress by checking
the Rating Table below:

Rating Table 7

If you have 4 correct answers . . . . . . . Excellent

If you have 3 correct answers. . . . . Good

If you have 2 corrcct answezrs . . . . o . . Fair

If you have 0-1 correct answers . . . . . . Complete Review

EXERCISE 7

a.

When progran step 00032 1g reached, the contents of storage
location 0CJ50 are to bte tested for sign, If positive, the
jurp fo to go to step GO110. If negative, a jump 1is to be
made to 00200. Using the STORAGE SKIP instruction, show
program step 00032,

Explain what happens if a conditional jump with jump key
2 not sct, follows the STORAGE SKIP instruction as shown
below:

Storage Skip Conditional Jump

(00052) =jssk 0 00100 SLJ2 00200

In storage location COC40 there 1is an octal digit (0 through
7). e programmer vants to determine if the digit is odd
or even by use of the STORAGE SHIFT instruction. Write
program steps that would do this. (Hint: First shift the
richt-most blt of the octal digit to the left-most bit
position and then use the STORAGE SHIFT instruction.)

In a certain program, if the contents of index register 5
equal the nunber 1001 , the program jumps to step 00200,

If the contento of iugcx register 5 do not equal 100;,, the
program jumpo to step 06050, Write instructions which will
do this, using the INDEX SKIP instruction.




The second four instructions of this chapter fnclude those instruyct-
ions known as '"logieal inatructions". These are the instructions
generally used in programming situations that extract or mask portions
of words,

LOAD LOGICAL (LDL.b)(44.b)(where b may be O through 7)

This instruction loads the A register with the bit-by-bit logical
product of the Q register contents and the quantity in atorage
located by the cum of the execution address and the contents of
the designated index register. This lopical product utilizes

the following rules:

1X0=0
0X1=0
0X0=0
1X1=1

ADD LOGICAL (ADL.b)(45.b)(vhere b may be O through 7)

This instruction addo to the contcnts of the A register, the
logical product of tha Q vcgister contents and the quantity in
storage whose location is given by the sum of the execution address
and the coatents of the designated index register. This a normal
add for the scelected bits of the operand, thc non-selected bits

of the operacd being interpreted as zeros.

SUBTRACT LOGICAL (SDL.b)(46.b)(where b may be O through 7)

This instruction subtracts from the contents of the A register the
logical product of the Q register contents and the quantity in
storage whose location is specified by the sum of the execution
address and the contents of the dcoignated index register, This
10 a normal subtraction for the cclected bits of the operand, the
non-gelected bits of the cperand interpreted as zeros.

STORE LOGICAL (STL.b)(47.b)(vwhere b may be O through 7)

This instructicn otores the logical product of the A register and

Q regioter contents at the storage location which specified by

the sum of the execution address and the contents of the designated
index register. Neither the A nor the Q rcgister initial contents
are modified by this instruction.

It i{s important to note that in the first three instructions,
involving the logical producis, the "extractor" can be placed in either
tka Q register or in the operand at the specified storage location. In
ti:e2 STORE LOGICAL instruction, the "extractor'" may be either in the Q

rcgister or the A register,

4-7



The following examples should facilitate learning the previous four
instructions. (Each student is advised to work out the given examples
and to check the given solutions.)

EXAMPLE 27. It is desired to examine the right-most nine bits

of the contents of storage location 00017. The extractor is placed
into Q and the LOAD LOGICAL instruction is executed. Show the
instruction, the contents of Q, and the contents of the A register
after the execution of the instruction.

This loads A with
logical product of
INSTRUCTION REQUIRED LDL O 000 1 7€ Q and contents of

00017
Extractor in Qq—>000000000000027 7 7
The nine "one Bits'" here
will extrecct the last nine
bits of contents of 00017 Right nine
bits of 00017

Final contents of A—>0 000000000000 XX

Explanation: The logiczl product of contents of Q and contents of
00017 will give the right nine bits of the contents of 00017. These
nine bits (which make 3 octal digits) are loaded into the A register.




EXAMPLE 28. Storage location 00100 contains eight six-b’: codes. Each
code designates the number of times tiie Q register contei.zs cre to be
shifted. The A register contains the "dummy' SHIFT Q LELS instruction

as the lower, and za unconditional jump to 00200 as the upper instvuctiomn.
(750 00200 060 O0000)., it is desired to yick off the riglht
six-bit code in address 001C0, add tlls code to the durzy shiit in A,

and send thz result to som2 other step in sequonce. Siowy tle pregren
steps to do this, starting with step 0C010. (lilnt: scve tlhe initial con-
tents of Q while using Q to extract gix bits from C0100.)

A =1 SLJ 0 00200 ALS 0 0000 0|
Store 0 in Load O with
00050 Extractor
(00G10) = ST 0 00050 LDQ 0 0 0 0 C_g]
rdd Logical Product Shift A Left 24 gbit positions
to Dummy in A to put Dummy in left part,
(00011) = {ADL 0 60100 ALS 0 00030
Store Dummy Reload 0 with saved
at Step 00013 initial contents
(0012) = ISTA 0 00013 LR 0 00050

Unconditional Jump

0013) CALS 0 000 XX SLJ 0 00200
t
. olanatfcn: Q is firot saved. Then the extracicr is loadad into Q.
Sriracior ore 1s i: 00062 cud should equal 0G00000000GCG077). To2 thicad
~ostruction adds the right sin code-bits of (00160) to the dummy shift

iustruction in A, Tais is tlien shifted left 24 n positions to put the
instruction on the upper portion of the word. The word is then sent to
step 00013. The Q register is re-loaded with its initial contents.

4-9



EXAMPLE 29. Assume storage location 00055 contains

0000000000000% sz (vhere X, X,, X, are generated octal digits).

It 1e desired boZsdore 000005006000K X,0 in storage location 00056.
Show the program steps, starting at 00477 which will do this. (Assume
extractor 1is in 00100 end show this extractor.)

Load Q with Load A with contents
Extractor of 00055 (X X X )
123
(00477) = LDQO 00100 LDAO 00055
Subtract Logical Store in
Product from X X X 00056
123
(00500) = SBLO 00055 STA O 0 0 0 566

vhere extractor in storage location 00100 is 0000000000000007

Expleanation: The extractor, which will Pick off X , is loaded into the
Q register. The quentity X, X, X 1is then loadea into the A register.
At step 00500, the SUBTRACT!LOGECAL3instruction subtracts from A (X, X,X,)
the logical product (2 ) which rasults from the logical multiply of tfie
contents of 00055 by the extractor in Q. This leaves Xlxz 0 in A and

this is stored in storage location 00056.

ENAMPLE 30. Assume A contains 16 octal digits which are unknown to the
programmer. It 1s desired to pick off the laftemost octal digit and store
it at location 00312. Show how this can be done with the STORE LOGICAL
instruction. (Hint: first load Q with the correct extractor - show this

extractor.)

Load Q with Store Logical Product of
Extractor A and Q at 00312
(c) LDQOO0O0O014 STLO 0031 2

where extractor at 00014 1is 7000000000000000

Explenation: Since the left-most digit is desired, the extractor contains
three one bits (octal 7) in the left-most octal position. This extractor

1s first placed in Q. The STORE LOGICAL instruction then stores the logical
product of the 16 octal digits in A and the extractor in Q at location 00312.
At the end of the operation, 00312 will contain X000000000000000, where X

1s the left-most octal digit. If this is desired to be in the far right
position, the appropriate shift must be executed. What shift would be

needed?

4-10




The following exercises are provided for practice on the previous
four instruction of this chapter. Work out the given problems and check
your solutions with those presented in Appendix A. The number of correct '
answers will indicate your approximate progress by checking the Rating
Table below: .

Rating Table 8

If you have 4 correct answers . . . . Excellent

If you have 3 correct answers . . . . Good

If you have 2 correct answers . . . . Fair

If you have 0 or 1 correct answers . Complete Review
EXERCISES 8

a. Storage location 01012 contains eight 6-bit characters as shown:

(01012) K K K X K K K K
1 2 3 4 5 6 7 8
The left most bit of each character contains parity data.

Tf there is a 1 in any one of these eight positions, the whole
word is to be cleared. Write program steps which will make
the test and clear out the word if necessary. Show any ex-

tractors used.

b. At program step 00111 the following ADD LOGICAL and STORE A
instructions are given as chown.

(00111) =453 00000|200 00100

Assuming the A register contains 1200000000000000, the Q
register contains 0070000000000000, and index register 3 contains
00111, chow the final contents of the A register after cozpleting

step 00111,

c. Urite program steps which will zcduce the quantity in storage
location 00712 by thesum of the left-most and right-most octal
digits of that quantity. :

d. Answer the following questions:

1. Can a logical product equal the extractor?

2. Can a lopical product exceed in magnitude both of the factors? :
Explain.

3. If the content of either A or 0 is positive, is it possible

for the LOGICAL STORE instruction to store a nepative
quantity? Explain,

mreS

4-11 -

¥



The last seven instructions in this chapter are held together by a
common bond. Each deals with an index register in some relationship. For
this reason, these instructions can probably be learned as a group.

ENTER INDEX (ENI.b)(50.b) (where b may be 1 through 7)

This instruction replaces the contents of the designated index
register with the value of the base exccution address. No storage
reference is made in this instruction. Thus if index register 3
contains 00007 and instruction "5 0 3 011 1 1" is given, then
01111 will replace 00007 in index register 3. (Note: in this
instruction "b" cannot be zero - it has a special meaning when used
in this particular instruction - see below.)

PASS (Do Nothing) (ENI.O) (50.0)

This is a special code of the last instruction. When 5 0 0 is used
as the first 3 octal digits in an instruction the machine knows that
this portion of the step 15 not used - that is, it is to be passed
by. The program thus proceeds to the next instruction. This PASS
can be used in either half of a program step.

INCREASE INDEX(INI.b)(GLb)(where b may be O through 7)

This instruction adds the value of the base execution eddress to

the contents of thka designated index register. (A zero index designa-
tion has little meaning here but if used the contents of the index
register are considered to be zero by the computer.)

LOAD INDEX(UPPER) (LIU.b) (52.b)(where b may be 0 through 7

This instruction replaces the contents of the designated index re-
gister with the upper address of the word in the storage whose
location is given by the base execution address. This instruction
thus extracts the address from the upper instruction of a word at

a designated storage location and enters this value into a particular
index register. A zero index register designation has no meaning
here and should not be used. If used, the machine uses up some time
in referencing storage and then continues with the next instruction.
This is not a fault.

4-12




LOAD INDEX (lower) (LIL.b) (53.b) (b may be 1 through 7)

STORE

STORE

This is similar to the previous instruction except the contents of
the designated index register is replaced by the lower address of

the word in the storage whose location is given by the base execution
address. A zero index register designation has no meaning and should
not be used. If used, it will skip to the next instruction but time
is wasted by the machine making storage references involved. No
fault will occur,

INDEX (upper) (SIU.b) (56.b) (b may be O through 7)

This instruction stores the contents of the designated index register
in the address portion of the upper instruction of the word whose
location is given by the base execution address. The other bits at
the specified storage location are not modified. A zero index
register designation has no meaning, but if used, zeros are inserted
in the address portion of the upper instruction of the word whose
location is specified by the base execution address and the other
bits are not modified by the insertion.

INDEX (lower) (SIL.b) (57.b) (where b may be 0 through 7)

This instruction is similar to the previous instruction except the
contents of the designated index register are stored in the address
portion of the lower instruction of the word whose location is
specified by the base execution address. A zero index register
designation has little meaning, but if used, zeros are inserted
into the address portion of the lower instruction of the word

whose location is specified by the base execution address. Regard-
less, the other bits at the specified storage location are not
modified by the insertion,

4-13



The following examples should facilitate learning the previous
seven instructions (six and the PASS code). Each student is advised
to work out the given examples and to check the given solutions.

EXAMPLE 31. At step 00021 the programmer wants to clear
index registers 1 and 2. Show the program step with the
necessary instructions.

(00021) = ENI1 00000 ENI2 00000

Explanation: Each instruction. is the ENTER INDEX. The value
in each execution address portion of each instruction is entered
into the designated index register. Since the value is zero in
each case, index registers 1 and 2 will contain zeros after the
above step is performed.

EXAMPLE 32. At program step 00172, it is desired to increase
the quantity in index register 5 by 10, and decrease the
guantity in index register 2 by 10y,. Show program step 00172,

(00172) = [INL5 00012 | INI2 77765 |

Explanation: Two INCREASE INDEX instructions are required. The
first instruction adds 10_, (which is 00012 in octal) to the
contents of index registe%oi. The second instruction adds
negative 1019 (which 1is 77765 in octal) to the contents of index
register 2. The addition of negative 1010 is the equivalent of
subtracting a positive 1010.

4-14




EXAMPLE 33. Write program steps for the following flow diagram
(Start at step 00100)

Is A
Load address part
Yes of upper instruction gtfmp
of step 01101 in g -
&D index register 2 'ﬁ 00200

Load address part

of lower 1instruction
of step 01101 in >
index register 3

Load index register 2 with

If A is positive address part of upper in-
jump to struction of 011Ul
(00100) = [AJP 2 000102 ] LIUZ2 0110 L]
Unconditional jump Pass
(00101) = [SLJO 00200 | ENIO 0000 0|
Load index register
3 with lower side of Unconditional jump to
01101 00200
(00102) = |LIL3 01101 [ SLJO 00200 ]

Explanation: After the test on the contents of A, the"LOAD INDEX
(upper)'" or the "LOAD INDEX (lower)" instructions place the address
portions of the instructions of 01101 in the respective index
reglsters. Note the use of the PASS instruction at Step 00101.

EXAMPLE 34, When the program reaches step 00362, it is desired
to shift the A register contents left and the Q register contents
right. The number of left shifts is to be determined by the
contents of index register 4 and the number of right shifts by the
contents of index register 5. This is done by the following two

program steps.

Store contents of index Store contents of

register 4 in upper index register 5 in lower
address of 00362 dddress of 00362
(00361) [STU 4 00362 | SIL5 0036 2 |
A Letft shift Q Right shift

(00362) [ALS O 00000 | QRSO 00000 |

Is it possible to accompiish the same thing by using program
step 00362 only above? Show step 00362

4-15



Although the following exercises are provided for practice on the
last seven instructions of this chapter, some general review is also
provided on using the instructions up to this point. Check your
solutions with those given in Appendix A. The number of correct
answers will indicate your approximate progress by checking the Rating
Table below:

Rating Table 9

If you have 5 correct answers . . . . « . o+ = Excellent

If you have 3 or 4 correct answers. . . . . . Good

1f you have 2 correct amswers . . . . . « . . Some Review

1f you have 0-1 correct angwers . . . . . . . Complete Review

EXERCISES 9

a,

A trucking concern charges a flat rate plus a zome rate.
Zone rates are stored in index registers 1 through 4.
Minimum distances have no zone rate. Assuming the

flat rate i stored in index register 6, write steps for
the total charge to a company which required service

for 1 minimum distance, and 1 distance for each of the
~ones 1 through & (total of 5 distances). (Try to do this
by using “STORE INDEX'" and "INCREASE INDEX" instruction.)

Write program steps which will count the number of index
registers, 1 through 6, which contain negative quantities.
(Start with step 00154.)

Write program steps which will modify the upper instruction
of step 00026 by adding an octal digit (0-7) which is
contained in index register 2 to the operation code bits
(left 3 octal digits) of the inmstruction.

Urite program steps, which will increase the contents of
index register 6 by the sum of the contents of index
register 4 and the contents of Q.

A oubroutine conoisting of 42,  steps is coded with
consecutive addresces startin& with 00000. A programmer
vants to otore these 42,, steps at consecutive locations
starting with 00377. se 18 made of index register 3 to
do this. Explain or show how it can be done.




CHAPTER IV

REVIEW TEST

The following questions review the fifteen instructions préﬁented
in this chapter. Write answers in the spaces provided after each
question. Solutions are given in Appendix B.

1. The "two-way jump' instructions such as STORAGE SKIP,
STORAGE SHIFT, and INDEX SKIP should be used as which
instruction in a program step? (Upper or lower)

2, The STORAGE SKIP instruction senses the sign bit of a
quantity in a epecified storage locatiom. If it is plus,
what action is taken?

3. What is the main difference between the STORAGE SKIP and
STORAGE SHIFT instructions?

4, If the content of index register 3 is 00001, and the INDEX SKIP
instruction 5 4 3 00 0 0 1 18 executed, what will occur?

5. Assume the content of index register 4 is 00002, If the
INDEX JUMP instruction 554 00 10 0 is given, how
many times will a jump to 00100 take place?

6. In trying to extract bits from a word, name three places
vhere the extractor may be stored.

7. Show the rules of multiplication which govern a logical
product.

8. If one wishes to save the bits in a word, he should store
zeros in the corresponding positions of the extractor.
(True-False)

4-17



10.

11.

12,

13.

14.

Most of the logical instructions destroy the original contents
of the A and Q registers. (True-False)

If one wanted to extract the four right-most bits of a word,
what would the extractor be?

Can the logical product be zero? (Yes or No)

Show the PASS instruction.

The PASS instruction can not be used in the second or lower
position of a program step (True-False)

The ENTER INDEX instruction and the INCREASE INDEX instruction
make use of the value specified by the execution address rather
than referencing a storage location. (True-False)

Write program steps which will find the sum of the octal digits
contained in index register 5 and deliver the sum to index
register 3.

4-18




CHAPTER V

FOURTH GROUP OF INSTRUCTIONS

FOURTH INSTRUCTIONS (with Mnemonic and Numeric Codes)

MULTIPLY FRACTIONAL (MUF.b)(26.b) EQUALITY SEARCH (EQS)(64.b)
DIVIDE FRACTIONAL (DVF.b) (27.b) THRESHOLD SEARCH (THS)(65.b)
SELECTIVE STOP (SLS.b) (76.b) MASKED EQUALITY (MEQ)(66.b)

MASKED THRESHOLD  (MTH)(67.b)
SELECTIVE SET (SST.b)(40.b) REPLACE ADD (RAD)(70.b)
SELECTIVE CLEAR (SCL.b)(41.b) REPLACE SUBTRACT (RSB)(71.b)

SELFCTIVE COMPLEMENT (SCM.b)(42.b) REPLACE ADD ONE (RAO)(72.b)
SELECTIVE SUBSTITUTE (SSU.b)(43.b) REPLACE SUBTRACT ONE(RSO)(73.b)

The first three of the above are similar to other instructions
which have previously been described. However, they involve unique
features which make them different to program.

MULTIPLY FRACTIONAL (MUF)(26.b)(where b may be O through 7)

This instruction forms a 96-bit product from two 4&-bit operands.
All quantities in this operation are treated as fractions with
the binary point immediately to the right of the sign bit. (The
sign bit here is the single left-most bit of the register.)

The multiplier must be loaded into the A register prior to the
execution of the instruction. The multiplicand is read from

the storage location specified by the sum of the execution
address and the contents of the designated index register. The
product is formed in the AQ register and the multiplier is
discarded in the multiplication process. The following examples
indicate the process.

Multiply 1/8 by 1/4
48 bits —»f

Assume 1/8 18 stored at address (00100) as 0.0010€———>0

je———— 45 bits—>
Assume 1/4 18 stored in register A as 0.0100 «—»0

The product in the AQ register will then be:

0.00 00100 =« » 0

96 possible bits

The correct answer then will be

0100000000000000 (in octal)

5-1



Maltiply 5/8 by 1/4

|1-—=68 bing —
5/8 = 0.1010 - rmmm 0

=48 L2ig——3]

1/4 = 0.010 >0

Product in AQ will ba:

[*—06 bits =]
0.001010= >0

Expressad in octal the produvct is

0500000000000000

DIVIDZ FRACTIONAL (LDVZ) (27.b}(wierc b ray be 0 thrcugh 7)

This instruction divides a 95-bit dividend by c 48-bit divicor.

All quantities Involved in t¢his cpcration are treated as fraciicus
with che binazy polnt iczadlately o the vicis of tha left-mos:
Ble fofea LLE). e 00-Dir dinidond must L Locded into tha 43
cociotor pricr o Che cncoazicn of this instoacticon.  Tho &48-bit
wirlzor Lo reed fvea tlo ctorage ocaclon soccified Ly the sum of
cu2oclizeutlon addsess amd thie comlcats of tha designated index
ronlister., At ti2 ¢nd ol the cperation, tla quotiert is left in
tl2 A regloter ond 2 remaindar 79 left in thie Q veglsoter. (Iote
thils 15 just the reverce of tiee LIVIDZ INILGER.) T2 quoticat
aad rezalnder Lear the sem2 algeliraic oiga.

Pracple Livide i/3 Ly 1/4

Asguzz AQ contains 0.00L0<————-m—>0 = i/8

Aogerm2 picrege Locatlen CO1C0 comialms 0.010<—————>0 = 1/4
PIVILZ IUSTRUCLICI EVP? 0 GO1CO

Tae quoticont in A wiill L2 0.10<——>0 = 1/2
and the remalnder 4n Q ia zero.

Czpreoced in octal the quoticent io

20000000006000000

5-2




SELE

CTIVE STOP (SLS)(76.b)(where b may be O through 7)

This instruction causes the program to stop on specified conditions
of operator lever keys on the console. This is similar to the
SELECTIVE JUIP settings discusced previously. The index registers
are not used for addrcss modification in this instruction. The
th=ea-bit index desigrator cpecifies which stop key is sampled in
detcrmining the stop decision. A jump to the base execution
address occurs rcgardless of the stop decision as shown below:

IF JIIDEX COMPUTER ACTION UPON
DESZCI'ATION COMFUTER ACTION IF CORRECT RESTART OR IF STOP KEY
15 Se? VY 15 ELT IS NOT SET
0 Steds uncenditionally - Jurp to Execution address
1 €zeng LF step key 1 is set Jump to Execution address
2 Steno 1L sted key 2 Lo set  Jump to Executlon address
3 Creos 17 cted key 3 is set  Jump to Execution address
4 Steos vncenditionally Return jump to Execution
address
5 S=cpo 1if stcp ley 1 13 set Return jump to Execution
cddress
6 Stepo if ctep key 2 is set  Return jump to Execution
cddress
7 Stcno 1L otep key 3 io cet  Letura jump to Execcution
cddress

5-3



SELECTIVE SET (SST)(40.b)(where b may be 0 through 7)

This instruction sets individual bits in the A register to 'one"
where there are corresponding ones in the word at the storage
location address specified by the sum of the execution address
and the contents of the designated index register. This is a
bit-by-bit function and does not involve normal addition.

FIG. 13 indicates the procedure:

(a) (b)
IF MO INDEX REGISTER IF INDEX REGISTER 1S
IS DZSIGLATED DESIGNATED
Instruction Instruction
in Octal 40000150 in Octal 40300150

Assurz (A) = 11111 0<>0000{Assume index
register 3 = 00005

Assurz (00150) = 000000<->0111 |Sum of execution address and
contents of index register
The threc one bits in (00150) (3 18 00 15 5

will cat the corresponding bits

in A to ones, so that (A) Operand is found "at
becczas agssume (00155) = 0<—>01110000
(A) =111110—>0111 {[Assume (A) = 1 <—>10000000

The three one bits in (00155) will
cet one bits into corresponding

positions in A
(A) becomes 1<———————>11110000

FIG. 13

Setting one bits in A Register




SELECTIVE CLEAR (SCL)(41.b)(where b may be O through 7)

This instruction clears individual bits of the A register where
there are ones in corresponding bit-positions in the quantity

in storage whose location is specified by the sum of the execution
address and the contents of the designated index register.

FIG. 13 indicates the same procedure except zeros are set in (A)
instead of ones.

SELECTIVE COMPLEMENT (SCM)(42.b)(where b may be 0 through 7)

This is the same as the SELECTIVE SET instruction except this
instruction complements individual bits in the A register

vhere there are ones in corresponding bit positions in the
quantity in storage specified by the sum of the execution address
and the designated index register. FIG. 13 can also be used

to indicate the process, except the ones in the control quantity
complement the corresponding ones in A.

SELECTIVE SUBSTITUTE (SSU)(43.b)(where b may be 0 through 7)

This instruction substitutes portions of an operand into the

A register using the Q register as a mask. This action may be
considered in two 8tcP8. First individual bits in A are
cleared where there are corresponding ones in the Q register.
Second, these same (cleared) individual bits in A are replaced
with the corresponding bit values from the storage location
specified by the sum of the execution address and the contents
of the designated index register.

The following examples should facilitate learning the previous
seven instructions, (Each student is advised to work out the examples
and to check the given solutions.)

EYAMPLE 35. Assume storage location (00111) contains the
fraction, 1233000000000000. A programmer wants
to cquare this quantity, store the result in storage location
(00112), and stop. Vrite program steps to do this and show
th2 contents of storage location (00112) and the AQ register
after the MULTIPLY FRACTIONAL is executed.

Load Multiplier in A Fractional Multiply

(00050) IDAO 00111 MIFO 00111
Store A in 00112 Unconditional Stop
(00051) STAO 00112 SLs 0 00200

The product in the AQ register will then be 0000110110010011101100100 0
which is expressed in octal as 0331166200000000



EXAMPLE 36. It is desired to use the DIVIDE FRACTIONAL instruct-
ion to divide 324 (octal) by 51 (octal). Assume the divisor (51)
is stored at address (00042). Assume (324) is stored at address
(00040). Show the program steps, the format in which the 324

and 51 should be stored, and the final contents of the A and Q
registers after the DIVIDE.

Store 324 in (00040) as ——1520000000000000

Store 51 in (00042) as —————— 2440000000000000

]
Load A . Zeros to Q

(00100) = | LDAO 00040 ENQO 00000

Divide Fractional

(00101) = | DVF O 0004 2

Final Contents of A Final Contents of Q
The Quotient The Remainder

2453552112732422 0000000000000036

EXAMPLE 37. The first time a program reaches step 01C05, the
program is to jump to stcp 00200. The second {ime when step
01005 is reached the program is to step. Explain how this could
te accomplished using a SELECTIVE STOP instruction,.

I:mlanation: There are scveral ways this might be done. A
SELECYIVE STOP with index designation 1 could Le used and the

astop key 1 selected in the console. When the program recached

step 01C05 the computer would astop but by depressing the START

Lutton it could jurmp to C0200. The oecond tikxz it would also

Swap. fnother mathod misht be to use the SELECTIVE STO2 with

a designation, but a differcn:t ctop key setting, for example,7€ 2 00200
vith step key 1 13 set. The first time, there would be no step

and the program would jurd to 00200. Beforc reaching stop 01005

thz second time a wmodification of 01005 (7 6 2 00 2 0 0) to

761 00200 could be made and this time the STOP would occur.

Explain vhat will occur 1f pregrem steps (00050) and (00051) are
given and stop key 3 18 the caly key ecctting on the console.

SLS 100100 | sis_2 02200

(00050) .
SLS 3 00300 | SLS 0 00100

(00051)

nn

5-6




EXAMPLE 38. Assume the A register contains eight 6-bit characters.
1f the content of Q is positive, it is desired to set the left-most
bit of each of the eight characters to one. If the content of Q

is negative, the left-most bit of each of the eight characters is to
be set to zero. If the sign of the contents of address 00011 is
used to set the ones and zeros, show the program steps and the

contents of address 00011.
Set bits in (A) corresponding to

Test O for one bits in 00011 to zeros
positive
(00050) = l QJp 2 0005 2 SCL U 0001 IJ
Jump Exit Pass
(00051) = SLJ O 00053 ENI O 00000
Set bits in (A) Pass
to ones
(00052) = SST 0 00011 ENI O 00000
(in bits)
Contents of address 00011 ——=100000 100000 100000....... etc.
(In octal) »>4 04 0404040404040

Explanation: First Q is tested for positive content with Q-JUMP.
I1f positive, jump occurs to 00052 where 'ones" are set in A by the
pattern in address 00011. If Q {3 negative, jump does not occur,
and "'zeros" are gset Iin A by pattern in 00011. Note "exit" jump
needed in step 00051. Why?

5=7



EXAMPLE 39. The numeric code for the Q-Jump with zero index
designation is 2 3 0. The numerical code for the A-Jump with
zero index designation on 2 2 0. At step 00117 in a program
the Q JuiP, "2 30 0015 0", 15 given, foilowed by a PASS
instruction. On the second time through this step, change

the Q-Jump to the A-Jump " 2200015 0", The third time,
it is to be returned to its original form, etc. Each time
through this step, it is desired to alternate between a Q-Jump
and an A-Jump. Assume the ncecessary modification 1s done at
step 00150 by using the SELECTIVE COMPLEMENT instruction. Show
this instruction and the contents of the storage address contain-
ing th2 necessary ''change pattern'.

Load (A) with Complement bits in A by
stcp 00117 pattern of ones in address 00200
(sce below)
(00156 = | LDA O O0C L 17 seio 00200
(00151) = STA O 00117 Next Instruction
Where (00200) contains (in bits) > 0000010 «<—>0

or(in octal) ———>0100000000000000

Q-Jump Pass
Explanation: First 230 (090150 500 00000 1is LOADED into A.
WSELECTIVE COMPLIMENT' then changes the 230 part of instruction
to 220. The next time it will be reset to 230, etc. Then A

is stored in 00017.




EXAMPLE 40. Assume storage location 00100 contains the following:

140 00600 200 00300
It is desired to change this to the following:

142 00600 200 00426
To do this, patterns are set up in Q and address 00050. The

"SELECTIVE SUBSTITUTE" instruction used. Show the steps
necessary and the contents of Q and address 00050.

Load Pattern into Load Instructions to be modified
into A
(00022)=[LDQ0 00051 ILDAO 00100J
Selective Substitute Store Modified Instructions
(00023) = Ssu 0 00050 STA O 00100

Contents of 00051 = contents of Q = 00700000 00000777

Contents of 00050 > 00200000 00000426

Explanation: The pattern of sevens in Q clears the corresponding
ocial digits in the A register. The octal digits in 00050 then
replace these corresponding cleared positions in A. The modified
instruction is then returned to 00100 by ''STORING A".




The following exercises are provided for practice on the first seven
instructions of this chapter. Some general review may also be included
in the exercises. Check your solutions with these given in Appendix A.
The number of correct answers will indicate your approximate progress by
checking the Rating Table below:

Rating Table 10

If you have 5 correct answers . . . . . . . . Excellent

1f you have &4 correct answers . . . . . . . . Good

If you have 3 correct amswers . . . . . . . . b>ome Review needed
1f you have 0-2 correct answers . . . . . . . Complete Review

EXERCISES 10.

. Storage address 00025 containz a tax rate whose ranpe is between
1.5% and 2.5%. A company has found that 37.5% (stored in
address 00026) of this tax rate is a good barometer of

business trend in general. The procedure is to calculate
this barometer, round it to three digits and subtract the
result from 1. Program this, starting at step 00050 and

using the given address contents above.

b. Starting at storape address 00011, there are 1610 quantities
stored. Each negative quantity is to have its right-most 3
bits replaced by onc bits. Eich positive quantity is to
have its right-most 3 bits replaced by zero bits. Show
program steps starting at step 00200 to do this. show
contents of all addrcsses used as constants.

c. Program the following flow chart:

Is the left-
most bit of
rhese 15 bits

Pick off right
— 15 bits of
address 00014

Comp lement
Yes-| the 15 *’(E)
bits

©

Add 15 Bits
No —— 2 to contents Stop
of index

register 3

d. Write a program which will count the non-significant octal
zeros contained in storage location 00100.

e. Starting at step 00300 show a program which will exchange the
contents of index register 4 with the right-most 15 bits
contained in storage location UOlUO0.

5-10




The next four instructions are similar in that they are search

instructions and they are extensions of the 'two address jump" instruct-

ions,

These instructions are also limited to use in the upper position

of program steps. The lower position in such a program step is normally
an unconditional jump instruction. Thus the first address (in the upper
instruction) specified the location of the operands required in the jump
decision; whereas, the second address (in the lower instruction) specifies
the destination of the jump if taken. If these search instructions are

used

in the second position of program steps, no skip will take place

which removes most of the power of the instruction.

EQUALITY SEARCH (EQS)(64.b)(where b may be 0 through 7)

This instruction searches a list of operands beginning at the
search address specified by the sum of the execution address and
the contents of the designated index register minus one and
continuing back toward the execution address until an operand is
found that is equal in value to the contents of the A register or
until the operand at the execution address has been searched.
Before each operand is searched, the search address is reduced one
count at a time (by reducing the index register coantents) until
the equality is found or the base execution address is reached.
If an operand is found that is equal to the contents of the

A register, the search is terminated and the next instruction is
skipped. If no operand in the list is equal to the contents of
the A register, then the next instruction is executed.

It is important to note that if an index register designation of
zero is used, the search will only be made on one operand - - that
1s the operand located at the base execution address.

Usually the instruction which follows the search instruction is a
Jump . When the search criterion is met, this instruction is
skipped. The programmer often desires to know the address of the
register containing the value which equals the contents of the A
register. This is easily accomplished by adding the reduced

count in the designated index register to the base execution address.

The following flow chart of the SEARCH procedure is outlined in
FIG. 1l4. This should further indicate the procedures followed by
the computer while executing this type of an instruction. Also
note that one stores the exact number for the number of searches
to be made since the preliminary reduction made by the machine

ad justs for this.

5-11



e
o5
~

Search
<::}‘Instruction e —

'Preliminary

is Referenced

:Reduct
———————— 1 Index
547 1
Contents of Indiccced
index register is
added to execution
address. This 13 thc

initial address. I

Search consists in
comparing contents of
A register with the
centents of each
storage location from
inirial address back
touvasd execution
address. Each
coarison reduces
ccatents of index
rendster by one.

Example L—€>Not Equal 3
| ——————"

Equality Search

645 00020

(00050) Jump Instruct-

ion

Index register 5 is designated

Assume index register 5 contains 00004

-—— -

ion of ! Example 00004 -1 = 00003

Registert
l

|
---—---"'goozo + 00003 = 00023

c
Laﬁ?x
. Search start here

Contents Conten:;\\
of = of >
A 000237 Equal

Reduce Index Regilster
00003-1 = 00002

y

I-——->Not Equal———

TN
Contents Contents\

Y

Equal
Reduce Index Reglster
00002-1 = 00001

of = of
A 000227

y
e
Congg;:;\

Contents >
of = of Equal
A 0GJ217?

i7 an operand is found
cl.a=z 13 cqual to contcnis
P ¢ A, the search it cuded
& 1 the ncit instruct-
.o ia ckinped.
T o econcrand in the
Itan 4g egual to A,
©1 -~ pegt instruction ug

l Reduce Index Register
sNot Lqual——4 00001-1 = 00000

Com:cnz;ﬁ Y

Executio

< Exc %f the jump
N | instruction

Search, skip
to step 00051

——

\

FIG. 14

n of a Search Iastruction

5-12

Contcntis >
of = cf Equal "
A (IO 4
L4>Not Lqual———1
I \-I
Exzarple | Take Terminate




THRESHOLD SEARCH (THS)(65.b)(where b may be O through 7)

This instruction is similar to the EQUALITY SEARCH except it
searches a 1ist of operands for onme which is greztcr than the
value in the A register. If an operand is fcund vhich i8 greater
than the value in the A register, the scarch i3 tcruinatced cnd

the noirt instruction is skipped. If no opersud in the list is
greater thaa tha value in the A register, the ucxi inmstruction

is cxecuted.

The cearch begins at the address specified by thLz sum of the
exccuzion cd ress and the contents of the desijuated index register
minua ona crd continues bacik toward the executicn address value.
P2ore cach o-orage address is searched, the coutents of the index
renister 15 reduced one count.

If a zero irdex register designation is used, then the computer
searches iuo* one address, viz., the one whosc location 18 given
by the emccution address part of the instruction. ¥IG. 14
indicates thk> cearch proccas with everything Loing the same
exceat th2 coparicon is made to see if any cperand is greater
than the value in the A register rather than for equality. Also
note that the programmer stores the exact number of searches

ha Cesires in an index rcgister since the preliminary reduction
takes care ol the neccdsary adjustments.

MASKED LCUALITY (12Q)(66.b)(where b may be O through 7)

Tais instruction searches a list of operands starting at the
location cpocified by the sum of the execution address and the
contcnts of the designiated index registex. If an operand is
found such that the lcjical product of thc operand and the
ccateats of the Q register 1s equal to tlie contents of the A
rcrloter, tlhoe oearch iy terminated and ti:e next instruction is
cliirped. iZ np opecrend in the list mozis this requirement, the
reoxi instruction is ex2cuted. As in tlic case of the previous
tv:o oearch nstructions, the search begins at the location
cpecified Ly the sum c¢f the enccution acdress and the contents

of the designated indci regiscter minus c:e and continues backward
¢hzcugh concocutive ctorvage location toiard the execution address
valca. Lafore each scarch is made, tlic contents of the index
reoigter 18 rceduced by one count. The cearch continues until

ca coerand satisfying the requirement is met, or until the
cperand in the base execution address lLas been searched.

A zero index designation infers that no index register is being
vcod cnd as a result only ona storage lccation is searched,
v.z., the one located at the Lace exccution address. FIG. 14
cca Le used to trace this irotructicn voing the cuiterion
H{ACIED EQUALITY" instead of the "EQUALITY" critevion shown

therein.

5-13



MASKED THRESHOLD (MTH)(67.b)(s7ac.e | may be O tu.-'3h 7)

This instruction is the cex2 as th2 MASKED L(JALITY instruction
except thz scarch 1o wmad2 on the criterion of trying to fird an
operand cuch that tke Zcgical product of the cperand and the con-
tents of the Q register 13 prcater than th2 conicnts of the A
reglscter. If cuch an (jeve il 18 found, th2 scarch 18 ended and
the next instruction is chkip:ed. If no such ¢perand is found
the next instruction i3 cuocuted. The . nzch Legins at the
locaticn cpecified by the cun of the exc L.icn cddrecs and the
contcnts of the designated Zidex registcr ricvs cac end continues
baclward through concacuzive ctorage locatic. vipea addresses

arc clove the base exccuiicn address, Loicue cach cddress is
searclied, the contents of the designated iudc: vegister is
reduced one count until the contents becocz zero (this will ba
th2 situation vwhen the bacc execution addrecs has beca reached
and searched).

A zero Index designation w1ll result in jusi one stored location
being ccarched - that one cdasignated by the bLase exccution
address. PIG. 14 can be uced as indicative of the process
folloved except the MASKED THRESHOLD criterion shkould be sub-
stituted for the EQUALITY critcrion shown thercin.

5-14



The following examples should facilitate learning the four previous
search instructions. (Each student is advised to work out the given
examples and to check the given solutions.)

EXAMPLE 41. There are 100,,5 constants stored in consecutive
locations starting at address 00100. Show steps starting at
00011 needed to count the number of zero quantities in these
addresses,

Enter zeros into

index register 2 Pass
(00011) = | ENLI2 00000 ENIO 00000
Enter zeros into A Enter 10079 into index register 3
(00012) = | ENAO 00000 ENI3 00144
Equality Search This jump will occur if equality is
: not found, it will be skipped if
equality is found
(00013) = I EQS3 00100 SLJO 00017
Increase index Index jump index register 3 is
register 2 by examined for zero. If not zero,
one count reduce index register 3 by 1,
(00014) = | INI 2 00001 IJP3 00016 Jump to 00016
Pass Jump to exit
(00015) = | ENLO 00000 SLJO 00017
Increase Index register Continue search
3 by one count at (00013)
(00016) = | INI3 00001 SLJO 00013
(00017) = Exit. When exit is reached the count of the number

of zeros will be in Index Register 2.

Explanation: Zeros are first put into index register 2 which is
used as a counter for the number of zero quantities found. The
number of storage locations to be searched is entered into index
register 3. (Note this 1s 144 in octal since 10049 = 1448.)

At step 00013, the EQUALITY SEARCH instruction is given. The
next instruction (75 000017) will be executed as long as no
equality is found. Thus if all 100 addresses do not contain zero,
a jump to 00017 will be made. If a zero is found, this jump is
skipped and at step 00014, the contents of index register 2 (the
counter) is increased by 1.




The INDEX JUMP instruction is then used to examine the contents
of index register 3 for zero (which would mean all 100 locations
had been searched before a zero was found). If the contents of
index register 3 are not zero, the INDEX JUMP instruction reduces
it by 1. Thus it is necessary to add 1 to the register before
jumping back to continue the search. For this reason, the
instruction at step 00016 is used to increase the index register

3 by 1.

EXAMPLE 42. A programmer desires to search 50)p storage addresses
starting with address 00200 to find the first one of these
addresses containing the quantity 7. He wants to know the address
of the first one of these locations which contains a 7. Show
program steps starting at 00100.

Enter 7 Enter 50 into
into (A) Index Register 6
(00100) = ENAO 00007 ENI 6 00062
If no address contains 7,
jump to exit
(00101) = EQS 6 00200 SLJO 00103
Enter A with ~ Store Result
200 + (BS) in 00050
(00102) = ENA6 00200 STAO 00050

Explanation: First 7 is put into A and 5039 = 62g is put into

Index repister 6. The search instruction is then executed. When

the first address containing 7 is found, step 00107 is executed.

At this time the sum of the contents of index register 6 and the
execution address (00200) of the SEARCH instruction will pive the
address of the first location containing a 7. The ENTER A INSTRUCTICN,
of step 00102, puts the sum of 200 and the contents of index resister 6
into the accumulator and from here it is stored in location 00050.




EXAMPLE 43. There are 1000, tax accounts stored in consecutive
storage locations starting at 00126. Write program steps, starting
at 00010 which will transfer those accounts greater than 9450},
into consecutive addresses starting at location 03000.

Enter 100015 into

index register &4 Pass
(00010) = [ENI4 01750 [ENIO 00000 |
Enter 94504 into
the A register Pass
(00011) = ENA O 22352 ENIO 000O00O
Threshold Search If no accounts are found that are
greater than 9450),5, jump to exit
at step 00017
(00012) = THS &4 00126 SLJ 0 00017

Pass Pass

Substitute generated '"address' into
Enter A with the address portion of upper instruc-
126 + (34) tion at step 00014

(00013) = ENA 4 00126 SAUO 0001 4

Load A with contents Store at locations
of address (xxxxx) starting at 03000
(00014) = LDA O (x x x x x)| STA O (03000)
Load previous program Increase A by 1 - which modifies
step into A register storage location (03000) of
previous step
(00015) = 'LDA 0O 00014 INANO 00O0O01
Modified step sent
back to original Jump back to start
location search again

(00016)= |STAO 00014 [SLJO 00012 |

Explanation: After finding the addresses of the locations containing
quantities greater than 94505, the contents of these addresses

must then be transferred to addresses starting at 03000. This

is the reason for the right instruction at 00013 and step 00014,
Another method, referred to as Indirect Addressing, 1s an alterna-
tive to perform this operation. Indirect addressing is described

in the 'Operational and Technical Characteristics" manual,

5-17



EXAMPLE 44. Starting at location 00500 there are 500 quantities

stored in consecutive addresses. The right-most bit of each of
these quantities is reserved for parity data. If any one of these

contain a parity designation of 1, the 500;7 addresses are to be
cleared. Show program steps starting at 00071.

Enter extractor Enter comparator in
in Q register A register
(00071) = l ENQO 00001 [' ENAO 00O00O ll
Enter search number Enter 500 into index register 3
into index register for a counter for index jump
(see 00076)
(00072) = | ENI 2 00764 ENI3 00763
Start Masked If no parity is found in all of
Equality Search the locations jump to exit at
(00077)
(00073) = | MEQ 2 00500 SLJO 00077
Enter zeros in Clear address register
a register contents gtarting at
(00500)
(00074) = { ENAO 00000 [ sTAO (005 00) |
Load previous step Increase A by 1 which increases
into A register storage designation of lower
instruction of step 00074
(00075) = | LDAO 000 7 &4 ] INANO 00001 ]
Store modified step Index jump based upon contents
back in original of index register 3
location
(00076) = [ STAO 00074 | 1JP3 00074]

Explanation: The extractor entered into Q picks off the right-most
bit (parity designation in this example) and compares it with
contents of the A register. If equality is found (indicating an
address contains parity 1) step 00074 is taken. Steps 00074 and
00075 clear the addresses starting at 00500. The INDEX JUMP at
(00076) controls the number of times (500) the clearing takes

place.

Note that program step 00075 modifies the previous program step by
adding a 1 to it. There is a '"neater' method of modifying by
using an index register. For example, step 00074 could have been
LDA O 00000 STA 5 00500 where index register 5 contains zero
initially. Then this index register can be increased by 1 before
looping back. Write the above program to include this method.

5-18




EXAMPLE 45. consecutive locations starting at address
00100 contain ei%ger eight alphabetic characters of 6 bits each,
or eight numeric characters of 6 bits each. The formats for
numerical and alphabetic characters are shown below: (where
symbol "x'" may be a 0 or 1).

Each numeric character is of the form 00xxxx (6 bits)
Each alphabetic character is of the form Olxxxx (6 bits)

Numerical and alphabetic characters will not appear in the same
storage address.

Show program steps which will store in address 00200 the address
of the first alphabetic location found.

Enter extractor Enter zeros into
into Q Register A register
(c) = ENQ O 00020 ENA O 00000

Enter search count
6079, into index register 5 Pass

(ct1) = ENI5 00074 ENIO 00000
Start Masked If nc locations contain alphabetic
Threshold Search characters jump to exit at (c+5)
(c+2) = MTH 5 00100 SLJ 0 (ct5)
Enter contents of index Increase contents of A by 100
register 5 into A to get address of first alpha-
register betic location
(c+3) = [ENA 5 00000 1 INAO 00100 ]
Store address in
(00200) Pass
(ct) = [STAO 00200 ENIO 00000
(c+5) = Continue Program



The following exercises are provided for practice on the four
SEARCH instructions just described. Some general review is also
included in these exercises. Check your solutions with these given
in Appendix A. The number of correct answers will indicate your
approximate progress by checking the Rating Table below:

Rating Table 11

If you have 4 correct answers . . . . . . . . Excellent
If you have 3 correct answers . . . . . . . . Good

If you have 2 correct answers . . . . . . . . Fair

If you have 0-1 correct answers . . . . . . . Review

EXERCISES 11

(a) 5010 consecutive addresses starting with 00100 contain
accounts '"C", 501 consecutive addresses starting with
00200 contain accounts 'D". If any of accounts 'C"
equal accounts "D" store a 1 in register 00032 and stop.
Write program steps for this, starting at step 00400.

(b) Use SEARCH instructions to do the following: if the
contents of address 00200 is greater than the contents
of address 00201, jump to step 00400; if the contents
of address 00200 equals the contents of address 00201,
jump to step 00500.

(c) Given the following portion of a program. Explain what
this is attempting to do.

(00050) ENI6 00144 |[ENA6 00000

(00051) [ THs 6 00100 [SLIO 00060

(00052) [ ENQO 00000 [STQO 005 00|

(d) Explain what would occur in the following two separate
program steps. (Treat each program step as a separate
occurrence.)

I. (00700) [MTA3 00050 [SLJO 00700 |

II. (00105) [ LDAO 00050 JEQ3 00200 |

5-20




The last four instructions of this chapter are the REPLACE ADD and
REPLACE SUBTRACT instructions. In programming one is often concerned
with modifying an instruction and replacing it in its original locationm.
Tl s is the primary function performed by these instructioms. They are
described below.

REPLACE ADD (RAD)(70.b)(where b may be O through 7)

This instruction replaces the quantity whose location is given by
the sum of the execution address and the contents of the desig-
nated index register, by its original value plus the contents of
the A register. The resultant sum is also left in the A register.

Thus if A contains 0000000000000003 (in octal) and if address 00100
contains 0000000000000005, then RAD O 00100 will replace the above

contents of 00100 with 0000000000000010 (since 3+5 = 10 in octal).

This same result will also be left in the A register.

REPLACE SUBTRACT (RSB)(71.b)(where b may be 0 through 7)

This is the same as the previous instruction except the process
is subtraction. This instruction replaces the quantity whose
location is given by the sum of the execution address and the
contents of the designated index register, by its original value
minus the contents of the A register. The resultant difference
is also left in the A register.

REPLACE ADD ONE (RAO) (72.b)(where b may be O through 7)

This instruction replaces the quantity whose location is given by
the sum of the execution address and the contents of the designated
index register with its original value plus one. The resultant
sum is also left in the A register after the execution. For
example, if A contains 0000000000000010 (in octal), and address
00100 contains 0000000000000006; then ''RAO" O 00100 will replace
the contents of address 00100 with 0000000000000007 (6+1 = 7) and
this same result (0000000000000007) will be left in the A register.

REPLACE SUBTRACT ONE (RSO) (73.b)(where b may be O through 7)

This is the same instruction as the previous one except 1 is sub-
tracted rather than added to the original contents of the address
whose location is given by the sum of the execution address and the
contents of the designated index register. The resultant difference
i3 also left in the A register after the execution. Using the
example given above (see REPLACE ADD ONE), if the instruction had
been '"'RSO" 0 00100, the contents of 00100 would have been
0000000000000005 (6-1 = 5) and this same result would have been

left in the A register.



The following examples should facilitate learning the REPLACE

instructions, which have just been described.

working through to your solution and then compar

solution.

EXAMPLES 46-47.
starting at 00300 to the contents of the

Add the contents of 100

Check each example by
ing it with the given

consecutive addresses

starting at 00500 and
starting at 01000.

store the sums
Program this starti
methods (46) without USING INDEX REGISTER

}8010 consecutive addresses
in 10019 consecutive addresses
ng at step 00011 by two
S FOR MODIFICATION AND

(47), USING INDEX REGISTERS FOR MODIFICATIONS.

EXAMPLE 46.
Enter 9910 into index
register 3 for counter Pass
(00011) = [ENI 3 O 0143 [ ENI 0 00000 |
Load A with contents
of address (V0300) Add contents of (00500)
(00012)=ﬁDA0(00300)1 ADD O (005 00) ]
Pass Store in (01000)
(00013) = [ENIO 00000 [ STAO0 (0100 0)]
Add 1 to contents Add 1 to contents of 00012
of step 00013 and replace and replace. (This modified
(00014) = [RAO O 00013 | RAOO 00012 tne(%soo}'
above.)
Add contents of 00050 Store in 00012. (This
to contents of A will modify the (00300)
above)
(00015) = |ADDO O 0050 STAO 00012
Index Jump back Where (00050) =
to 00012 for 99 times 00000001 00000000
(00016) = rIJP 3 00012 I Program continueng
Note: The only use of an index register was as a counter and

not to modify. Location (00050) =

0000000100000000




EXAMPLE 47. (Same as previous example except using index register
to modify instructions.)

Enter zero into

index register & Pass

(00011) | ENI4 00000 | ENIO 00000

Load A with contents Add the contents of the address
of "00500 + contents located by the sum of 00300 and

index register 4" contents of index register 4
(00012)[ LbA4 00500 | ADD 4 00300 ]

Store in location

given by (01000) + Pass

contents index register &
(00013)[ sSTA4 01000 [ ENIO 00000

Index Skip checks Jump back to

contents of index register step 00012

4

(00014)[ ISk 4 00143 [SLJO 0001 2]

Explanation: Index register 4 contains a zero to start. This means
that 00100, 00300, and 01000 will be used as the location of the
operands in steps 00012 and 00013 the first loop through. However,
step 00014 (INDEX SKIP) checks the contents of index register 4
against the execution address part of the instruction (99,p) and if
not equal adds 1 to index register 4 and takes the next instruction
(JumMp). The second loop through, 00101, 00301, and 01001l will be
used as the location of the operands in steps 00012 and 00013 since
index register 4 now has a 1 in it, etc., until the INDEX SKIP at
step 00014 sees the index register 4 contains 9910 and skips the
jump . (Why 1s 99,4 instead of 100, used?)

EXAMPLE 46&. Examine the contents of the A register for sign. If
positive, increase the contents of 00100 by 1 and decrease the
contents of 00101 by 1 and then jump to step 00250. If negative
program a selective stop with a restart at 00200. (start the
program steps at 00200.)

If (A) is negative Replace Add 1 to

jump to step contents of 00100
00202
(00200) [_AJP_3 00202 ] RAOO 00T1T00]
Replace Subtract 1 Jump to step

to contents of 00101 00250
(00201)[7RSO 0 00101 [ SLJ O 0025 O]

Stop with restart Pass
at step 00200
(00202)[5LS 1 00200 | ENTO 00000|
(Where stop key 1 is set on the computer console)

5-23



Explanation: The REPLACE ADD ONE and the REPLACE SUBTRACT ONE
instructions are used when the content of A is positive. Other
steps above are self-explanatory.

EXAMPLE 49. It is desired to add to the contents of address 00050
the contents of consecutive addresses 00060 to 00067 inclusive.
The total sum is then to be stored in index register 3. Show the
program steps stacting at 00712 to do this.

Enter zero into

index register 6 Pass
(00712) ENI 6 000900 ENI O 00000

Load YA with

(00060) + 1index

register © (00050) -+ (A) (00050)
(00713) 'LDA 6 00060 RAD O 00050

Index Skip checks
index register 6 Jump to 00713

(00714) [ISK 6 00007 | SLIO 00713 |

Load sum into index

Store sum in "A" -
register 3

(00715) STA O 00100 LIL3 00100

Explanation: Index reg:ster 6 is first loaded with a zero. The
A register is then loaded with the contents of the location whose
address is the sum of 00060 and the contents of index register 6.
Thus the first time, contents of address'00060 -+ 0" = "contents
of 00060" goes to A; the next time, contents of "00060 4+ 1" =
"eontents of 00061" goes to A, etc. Then a REPLACE ADD instruction
replaces the contents of 00050 by the sum of A and the contents of
00050. Each time the contents of 00050 are replaced by the sum

of its current contents and the contents of the address then in A.
This continues until contents of index register 6 are equal to
00007 in INDEX SKIP instruction at step (00714). Ther at step
(00715) the current sum (still in A) is entered into index

register 3. [f the sum exceeded 15 bits, the total in index 3

would not be correct. Assume that the total didn't exceed 15 bits.

5-24



Although the following exercises are provided for practice on the
REPLACE instructlons, come general review ia included on the instructions
presented up to this peint. Check your sclutions with these given 1in
Appendix A. The number of correct answers will indicate your approximate
progress by checking the Rating Table below:

Rating Table 12

If you have 5 correct answers . . . . . . . . Excellent
If you have 3 or 4 correct answers. ., . . . . Good

If you have 2 correct answers . . . . . . . . Fair

If you have 0-1 correct answers . . . . . . . Review

EXERCISES 12

(a) There are 1001 positive quantities stored in consecutive
locations starging at address 00201. Find the largest of
these and store 1t at address 00077. Start program at
step 03001.

(b) A company uses the following formula to cowpute '"Withholding
Tax". (Gross Weekly Pay - $13 (Number of Dependents)x18% = Tax.
Preogram the tax computation starting at step 00101.

Assume: Gross Weekly Pay is stored in address 00022=xxx,xx
Number of dependents stored in address 00024 = x.
Constant 12 1s stored in address 00025 = :18.
Constant 13 1s stored in address 00027 = 13.
Tax (rounded to nearest cent) stored in
00030 = xx,xx

(c) The third octal digit from the right end of each of 100
consecutive registers starting at 00312 contains a codelgf one
octal Zigit. Write a program tc determine the number of
codes which are greater than 3. Start program at step
00011 and store result in address 01000.

(d) Write a program starting at step 00312 which will interchange
the first and last of the 16 octal digits stored in each of
30010 consecutrive addresses starting at address 02000.

(e) Each of 50;45 consecutive registers starting at 00011 contain
2 separate positive numerical quantities, each of 24 bits.
Write a program starting at step 01000 which will compare
the two quantities in each and order them so that the larger
of the two quantities will always be stored in the left 24
bits of each address.

5-25



CHAPTER V

REVIEW TEST

The following questions review the fifteen instructions presented
in this chapter. Write answers in the spaces provided after each
question. Solutions are given in Appendix B.

1. The MULTIPLY FRACTIONAL is similar to the MULTIPLY INTEGER
in that the multiplier must be loaded into the Q register
prior to execution of the instruction. (True-False)

2. Where is the product formed in the MULTIPLY FRACTIONAL
instruction? (What Registers?)

3. Assume one of the factors used in the MULTIPLY FRACTIONAL
is stored as 0100 «————» 011 (in binary). How will the
computer treat this quantity during the process (show
where binary point will be considered)?

4 . What is the largest positive fractional quantity which can
be stored directly in its absolute form without scaling and
be used by the MULTIPLY FRACTIONAL to get a correct result?

5. In the DIVIDE FRACTIONAL instruction, the dividend must be
loaded into the AQ register prior to execution of the
instruction. (True-False)

6. In the DIVIDE INTEGER instruction, the quotient 1s left in Q
and the remainder of the division process is left in the A
register. In the DIVIDE FRACTIONAL, the gquotient and
remalnder are left in the same locations. (True-False)

7. The SELECTIVE STOP instruction, with stop key 3 set on the
console, will not stop the computer program unless the index
designation of 3 is used in the instruction word., (True-
Fulse)

5-26




10.

11.

12.

13.

14.

15,

16.

A programner desires to set corresponding bits In the A
register to ones where there are ones in the storage location
whose address s 00100. Show the instruction which will

be used.

Using the same counditions given in 8, show the instruction
whick wtli set zeros in A iustead of ones.

If the EQUALLITY SEAKCH instruction is given with an index
register designation of zero, what will occur?

What kind of an instruction generally follows a SEARCH
instruction?

What happens when the SEARCH condition is satisfied?

What happens {f the SEARCH condition is not satisfied?

After a SEARCH, if one wants to find the address of the
location which met the search condition, what must be done?

Name or explain the four types of SEARCH instructions possible
with the 1604,

Show the instruction which can be used to find if any of the
contents of 50 0 consecutive addresses starting at address
00062 exceed tée contents of the A register. Use index
register 5 to hold the search count. Show the instruction and
the contents of Iindex register 5.

Instruction:
Contents of:
Index register 5:

5-27



17.

18.

19.

20.

What is the difference between an ADD instruction and a
REPLACE ADD instruction?

Given A = 000000000000000O07
(00100) = 000000000000000O0GEG

Show contents of A and (00100) after execution of the REPLACE
SUBTRACT imstruction:

(RSB)
710 00100

A Register

(00100)

Using the conditions given in 18, show contents of A and 00100
after execution of the REPLACE ADD ONE instruction:

(RAO)
720 00100

A Register

(00100)

There are 1000}y quantities stored in consecutive addresses
starting ad address 0020l. Write a program which will advance
each quantity three memory locations.

5-28




CHAPTER VI
FIFTH GROUP OF INSTRUCTIONS

FIFTH GROUP OF INSTRUCTIONS (with Mnemonic and Numeric Codes) (where b
refers to index register designation)

FLOATING ADD (FAD) (30.b) SCALE A (SCA) (34.b)
FLOATING SUBTRACT (FSB) (31.b) SCALE AQ (3CQ) (35.b)
FLOATING MULTIPLY (FMU') (32.b)
FLOATINC DIVIDE (FDV) (33.b)

The first four of these instructions are related to the 1604 floating-
point format. The last two instructions will probably be used frequantly
to "pack'" and "unpack' to or from floating-point format. To understand
these instructions thoroughly it becomes necessary to know the floating-
point format of words. The first part of this chapter is devoted to this
subject.

Words packedin floating-point format make it possible to add, subtract,
multiply, and divide, and have the computer automatically position the
binary point between the integral and functional parts of the results.

This feature removes the necessity of the programmer having to continually
scale and rescale as the problem progresses.

In order for the computer to do this, it is necessary for all
numbers to be expressed in a particular format (floating-point format)
before the floating-point instructions are executed. This means that
if floating-point instructions are to be used with many factors, a
conversion routine (from binary to floating-point) will probably be
used on the input parameters. Likewise, after the results are deter-
mined (in floating-point format), an output conversion routine (from
floating-point to binary) will probably be used. The 1604 floating
point format is shown in FIG. 15.

Sign
bit Exponent Fractional Number |
: 11 bits 36 bits - 1

T 4{mnn T

Sign of number Binary Point
1 bit

(1]

FIG. 15

1604 Floating Point Format



Wwithin the machine floating point numbers are represented in a form similar
to that used in "scientific" notation, that is,a coefficient, or fraction,
multiplied by a number raised to a power, Since the machine uses binary
numbers only, the numbers are multiplied by powers of 2.

fraction

a¢ ]
=
N
las ]
i

m
1]

exponent
10.5625;0 = 1010.10017
.105625%102 = ,10101001%2"%
In the 48-bit machine word the fraction is in the lower 36 bit positions.

The exponent in the next upper 1l bit positions and the 48th bit position
is the sign of the fraction.

l+8 u7 L] L] . L] 37 36 . . L] L] . L] l
S Exponent Fraction
In order to represent positive and negative exponents, the exponent is

biased by (A) 10 000 000 0007 (2000g) if positive, and by (B) 01 111 111 1112
(1777g) if negative. 2000g as an exponent means 20,

(A) 2001 +1 (B) 1776 -1
2002 +2 1775 =2
2003 +3 1774 =3
3776 +1776 0001 =-1776
3777 +1777g 0000 -1777g

The range of floating point numbers in the machine is r#21777g to F%2-1777g

(}“.':21023 to F#2-1023) = (K*10309 to K*lO'BOg)

The number 10,001, would be represented in the machine in floating point
form as 2002 420000000000g. This means the fractional part, converted to
binary, .1000100==02 is to be multiplied by 22, or the binary point is to
be moved two places to the right; 10.00100—>0j3.

To convert a number from decimal to machine floating binary, first convert

the number to binary, then move the binary point to the left of the highest
order non-zero binary digit keeping account of the number of places,

6-2




1. Convert 10.5625;4 to machine floatiny binary:

(A) 1010 .= 101045 -

(B) .5625

|~

|

i
.
[
[N
ol

(K=]
.
L)
o
O

0.5000
T2
1.9000

?. Convert .125;¢

«125
2

| 5
.
N

o
|8

| O
o
o

N O

(-

‘.
o
o
o

12530

N OIR O

From (A) and (F)
10.562510 = 1015.1001;
I~l

10 = ,101010010%24
The machine exponent

.10C  is 2004g

.1001 - The fraction as octal is ,52200000000

.1001, The floating peint machine word is
2004522000000000¢g

to machine f{loating point binary:

.0 The machine exponent is 17754
.00 The fraction as octal is .40000000000g

.001 The floating point machine word is
1775400000000000y

L1%272

In the machine a nepative number, both for fixed point and floating
point, is represented as the complement of the positive number.

.125 in floating point is 1775400000000000¢

-.125, then, would equal 602377777777777g

10.5625 in floating point is 2004522000000000,

-10.5625, then,would equal 5773255777771777



Arithmetic performed by the computer with operands packed in the
floating-point format follows the normal algebraic rules. In additionm
and subtraction the terms are expressed with like exponents; the co-
efficients are then added or subtracted to obtain the coefficient of
the answer, its exponent being the exponent of the terms,

The product of two floating-point operands is a quantity whose co-
efficient is the product of the coefficients of the terms, and whose
exponent is the sum of the operand exponents, Similarly, a floating-
point quotient is a quantity whose coefficient is the quotient of the
dividend coefficient divided by the divisor coefficient, with an ex-
ponent which is the difference of the exponents of the terms.

The computer performs floating-point arithmetic by separating the
exponents from the coefficients and performing the necessary operations
on the two portions independently. The results of the two independent
actions are assembled to obtain the final answer.

6=t




Before the final result is assembled the computer inspects the
fraction to determine if it is properly expressed for assembly. The
most-significant bit of the fraction must be a "1", if not it is shifted
until a "1" appears in this position, the exponent is adjusted to
maintain the magnitude of the entire quantity. This operation is the
""normalize'" routine,

Since the result of a floating-point instruction is expressed
within the limits of the A register, the residue of the computation
in Q must be inspected to determine if it is great enough to cause the
fraction to be increased by one when expressed to the nearest 2°
position. This is the '"round" routine. Both normalize and round are
performed automatically during the course of the execution of a floating
point instruction.

Returning to the six instructions at the start of the chapter, let
us examine how these use the floating point formats.

FLOATING ADD (FAD) (30.b)(where b may be 0 through 7)

This instruction forms the sum of two 48-bit quantities which are
packed in floating-point format. An operand is read from the
storage location specified by the sum of the execution address

and the contents of the designated index register and is added to
the previous contents of the A register. The result 18 normalized
and rounded in the A register at the end of the operationm. The

Q register contains the residue from the rounding operation at

the end of the sequence.

FLOATING SUBTRACT (FSB)(3l.b)(where b may be O through 7)

This instruction subtracts an operand in floating-point format from
the previous contents of the A register, also in floating-point
format. The operand is read from the storage location specified
by the sum of the execution address and the contents of the desig-
nated index register. The result is normalized and rounded in the
A register. The residue from the rounding operation is left in
the Q register at the end of the sequence.

FLOATING MULTIPLY (FMU) (32.b)(where b may be O through 7)

This instruction forms the product of an operand in floating-point
format with the previous contents of the A register, also in
floating-point format, The operand is read from the storage
location specified by the sum of the execution address and the
contents of the designated index register. The result 1is normal-
ized and rounded in A. The residue from the rounding operation
is8 left in the Q register at the end of the sequence.

6-5



FLOATIMC DIVIOs (¥ }(33.b)(where b may be 0 through 7)

This foatreccien forme the quotient of two 48-bit quantities in
filcating-nlinn Lorwat. The dividend must be loaded into the A
reglster piiuvi to the execution of this instruction. The divisor
is read from ihe siorage location specified by the sum of the
executlon aduress and the contents of the designated index

register. The quotient 18 normalized and rounded in the A register
at the end o1 the operation, The residue from the rounding
operation is Jeft in the Q register at the end of the operation.

The following example indicates how the floating-point add functions:
Example: Adid 56y and 1228 in floating point.
565 = .101 110. (Exponent = + 6)
flvating-point format = 0 10 000 000 110.101 110€—=0
octal f{loatiug-point format for 568 is, 2006.560000000000
’2?5 = (00,1010010. (Exponent = +7)
floating-point format 1s 0 10 000 000 111.1010010«>0
octal Lloating-point format for 1224 18, 2007.510000000000
Assume the first of these numbers (56_,) is in the A
register, and the second (1228) is in memory location

00100,

The following instruction is given:

FAD 0 00100

The following addition, normalizing, and rounding takes place: Since
the exponents are different, one fraction must be shifted to make the
exponents equivaient, before the fractional parts of the two floating-
point words are added. The general procedure in this regard is to shift
the smaller number right by difference of the two exponents.

In the example, the two exponents ( 2006 and 2007) are compared and
subtracted, The difference is 1. The number with the smaller exponent
18 then shifted cight 1 bit,. This 18 shown below:

568 = 2006.560000000000

1225 = 2007.510000000000
2007 - 2006 =~ 1 = difference in exponents, the larger exponent is

stored (in this example, 2007 1s stored). Shift the number of the smaller
exponent right 1 bit,

6-6




The nuchar =f oo 3mallar exponent ts 560000000000 (in octal)

Shift 1ight 1, gives .270000000000 (in octal)
. 270000000000
At 5om meptere .510000000000

Octai sum of 2 fractiona! number is _1.000000000000

This son must b2 norwmilized, which thesretically means moving the
binary point to the left of the most-significaat "1". In the example
1t 18 peceraa-y t> wove the binary point one place to the left which
meand the s:ocrsd 2xvonaanz {2007 must be increased by 1, the number of
shifts required,

Shifitew ovcgal sum 18 .40000060C009
And adding |l to the stored exponent gives: 2007+1 = 2010

The suwm i# then rounded by imspecting the bit immediately to the
right of the 36 bics of significance in the sum. If there is a "1"
the 36th bit is changed; otherwise, the rounding has no effect, 1In
the exampie, the rounding does not change the sum, (In machine rounding
provision must be made for the case when rounding might possibly develop
a carry all the way through the number.)

The fina! resuir in A 1s 201G.400000000000

Check: 56, + 1225 = 200, = 28 (.4g) = 128,

8
The preceding example indicates the large number of internal sequences
required to execute a floating-point instruction. Although the machine

process 18 more complex, the example indicates some of the problems the
machine must solve imorder to carry through a floating-point instruction.

The last two instructions of this chapter are explained with the
floating-point instructions since they involve scaling and they enable
the programmer to simulate the normalizing process which takes place
automaticaily in the floating-point processes.

SCAIE A (SCA) (34.t) {where b may he O through 7)

This favtruction shifts the quantity in the A register circularly
to the ieft until the most-significant "1" is immediately to the
right of the sign bit. The base execution address is reduced

by the number of bit positions shifted. The shift is terminated
If the bane execution address becomes zero before the normalizing
i8 completed. In any event, the reduced base execution address

is then entered Into the designated index register,



SCALE AQ (5C3y) {35.b)(where b may be O through 7)

This instruction shifts the quantity in the AQ register circularly
to the left until the most-significant "1" is immediately to the
right of the sign bit, The bas> execution address is reduced by
the number of bit positions shifted. The shift 1s terminated if
the base execution address becomes zero before the normalizing
operation is completed. In any event, the reduced execution
address ir then entered into the designated index register.

Either of thesa instructions can be used to indicate the scaling of
numbers or results of aritbmetlc procesnes. Each instruction is so
executed that the number of shifts to normalize is left in the designated
index register. 4As shown in later examples this quantity is used to
determine the exponent of a floating-point number.

As an example of the use of one of these instructions, the SCALE A
instruction 18 used to indicate the scaling of the mumber in the follow-

ing example.

Example: The quantity 4028 is in storage location 00100.
Normalize and show the contents of the designated index
register after the quantity 1is normalized.

Given: Storage location 00100 contains:

39, bits 9 bits
T< >0 100 000 010" (in binary)

After loading this into A, the SCALE A instruction is executed.

Instructions are:
LDA O 00100 SCA 3 00057

The SCALE A instruction shifts A left, and reduces the execution
address (00057) by 1 on each left shift. The shift is terminated if
the execution address becomes zero before the normalizing is completed.
The reduced execution address 1s then entered into the designated

index register (3 above).

Ia the example, there will be 38 _ shifts required to put the
contents of 00100 in normalized form &9 shown below:

38 bits

010 000 091 00 <-——>0 (normalized)




Since 3714 shifts were requl ed; he cxecwiion address (9057,) is
reduced by 38 = 4&, 000578 - 000465 = J001ig This reduced
amount sutomatically entered intc the {ndex register 3. Thus

at the end of the exacution, fudex register 3 -cutains:
?
15 bjta
0 001001 Al Dilary)

It should be noted that this ruduved aweunt is exactiy equivalent

to the true floating-point exponent of the base 7.
402g = ,100 000 010,
9 shifta
Thus 402g - 2° (0.402g)
The above cxample indicates & uweipod wiich .aa be used by the
programmer to pack binsry numbers into v [loating-point format. This
chapter is concluded with an exaaplie "pzilicg viutine" for positive

whole numbers with positive cxponents.

The following rvulive paske & piSi..ve do.aly whole number with a
positive expeneut in floating-polnt format sud ieaves it in Q.

j.oad tirst word into A,

() = |LDA 0 SL | AW 2 NEG.J 1f negative, jump.

- —, Norupalize, then shift
(C+1) = | uC L #2087 | ALS ( i j left 1.(8ee note below)

[

r e o ... Store normalized number,
(C+2) = | 1A U 7T FNA 1 9 { enter floating point

b e sxponent into A,

- woad normalized number
| IS 0 14 ] into q, shift to
77 floating point position
in Q.

]
bl
2
O,
=

(C+3)

*Note by using 2057 in the executicn address part of the SCALE A
instruction, the sign ¢{ the exponcat le .vatained along with the
exponent after the nermaliziag has tuken pisce. Thus i{n the above
example, if the normziizing iuvolved 50g shifrs, then

20578 - 50 = 2007 = 010 0G0 00C il {iu binary)

sign of numbe‘

expensnt

6=



(1)

Azsume S1 convains o
floating-poine form:
exponeant. Weite &

1t
p
in 1A04 Fleating-poin

aairher which can be expressed in 1004

ax a positive nuaber with positive
vogTam which wili "pdck fhis wancber
© format.

o




CHAPTER VII

SIXTH GRCUP OF INSTRUCTIONS

A description of the input-output section is a prerequisite to a
discussion of Group Six instructions., Communication of data between
the computer and external equipment is carried out in either of two
modes of operation. The first and most frequently used method is Luffering, The
most important feature of buffer communication is that individual words are
exchanpged independently from the main computer program. Once the main
program prepares for and initiates a buffer operation, no further main-
program attention is required. Computation continues and is suspended
for brief periods whenever individual words are taken from or entered
into the storage section of the computer,

The second method of communication is the hiph-speed transfer, used in
exchanging data between computers or other special external equipment.
Transfer communication is accomplished under main program control, and thus
computation may not continue independently durinp the transfer of words, as
was the case for buffering, For this reason, the transfer instructions are
used only with equipment capable of handling data at a very rapid rate,

There are six 48-bit channels for use in bufferinp. Channels 1, 3, and
5 are for input, while channels 2, 4, and 6 are for output. The high-speed
transfer uses channel 7 for both input and output. The external equipment
at the 1604 console (reader, punch, and typewriter) are connected to buffer
channels 1 and 2. Channels 3, 4, 5, and 6 may provide connection to a 1604
magnetic tape system and to the 1605 adaptor and thereby to several external
IBI1 equipments or other peripheral devices,

Buffer operations involve the manipulation of blecks of data, where
a block may ranpe from one word to several thousand. The size of a block
is determined by specifying the initial and terminal storape address + 1
which is to be used.

Each buffer channel operates asynchronous with the computer program
and the other channels, All channels are treated with equal priority by
a scanner which sweeps sequentially through all buffer controls every 3.2
microseconds. If a channel requires processing, the scanner stops while
the word is transferred and then resumes scanniny to the next channel.
In the event that all channels should simultaneously request action the
last would be processed in a maximum of 240 microseconds. This time limits
the rate of communications to a 5 KC word rate per channel if all channels
are used simultaneously,

7-1



The detail sequencing of a buffer operation i8 coordinated by a
special buffer control section in the central computer. The buffer
control utilizes a special address in storage for each communication
channel. These special addresses (00001 - 00006) contain the current
storage address for buffering data and a terminal address for stopping
the transfer at the end of the block of data. Only the upper and lower
address portions of these special storage locations are treated as
significant by the buffer control. The terminal address, which is one
greater than the address of the last word transferred, must be entered
in the lower address position of the control word prior to the initiation
of the buffer action. This entry may be made by either a substitute
lower address (61) or by a simple store instruction since the quantity
appears in the lowest 15 bits of the word in storage.

The storage address of the first word in the block to be buffered
18 entered into the appropriate control word by the external function
instruction (74) which initiates the buffer operation. This address is
entered much like a substitute upper address imstruction (60) and does
not alter the other bits in the control word.

Each word transferred during a buffer operation requires the
execution of three storage references. The first reference reads the
appropriate control word from the special storage address and extracts
from the upper address position from the current storage location for the
word data being buffered. The address is then used for the second
storage reference which transfers the data to (or from) the central
storage unit. A third reference is then made to replace in the upper
address position the current buffer address with its initial value plus
one, The current and terminal addresses are compared and if they are
equal the buffer operation is terminated.

The status of a buffer operation may be monitored by the computer
program during the buffer operation. This is accomplished by a normal
reference to the appropriate control word and a comparison of the current
buffer address with the terminal address. The buffer operation is
completed when the current address is equal to the terminal address.

7-2




SIXTH GROUP OF INSTRUCTIONS (With Mnemonic and Numeric Codes)(where
"b" represents the index designator which can be of any number O
through 7)

EXTERNAL FUNCTION (EXF.b) (74.b)
INPUT TRANSFER (INT.b) (62.b)
OUTPUT TRANSFER (OUT.b) (63.b)

These instructions are used to transfer informatiom into the computer
from some external equipment or out of thecomputer to some external
equipment. The first instruction is a buffer instruction and is used
with most of the input-output equipment. The last two instructions
utilize a special communication channel and are provided primarily to
facilitate the high-speed transfer of information betwen the memories
of two or more 1604 computers or other similar data transfer requirement.

EXTERNAL FURCTION (EXF.b)(74.b)(where b may be O through 7)

This Imstruction has eight sub-instructions which are used to control
the transfer of information between the computer and input-output
equipments. The index registers are not used for address modification
in this instruction. The index designator is used to specify which
one of the eight sub-instructions 1s to be performed.

The sub-instructions and the operation performed by each are:

74.0  Select external equipment

74.1 Activate communication channel one

74.2  Activate communication channel two

74.3 Activate communication channel three

74 .4  Activate communication channel four

74.5 Activate communication channel five

74.6  Activate communication channel six

74.7 Sense external condition

Execution of a 74.1 through 74.6 sub-instruction initiates the
buffering of a block of data between the computer and a previously
gelected external equipment. The base execution address of such an
instruction designates the starting address in computer storage. Thus,
if the current instruction is 74 2 05000, an output buffer is initiated
on channel 2. The first word to be sent out 18 taken from ~ddress
05000. During the execution of 74.2, the initial address for the buffer,
in this example 05000, i8 stored at the upper address position of storage

address 00002, the terminal address plus one having previously been
entered into the lower address position at 00002,

7-3



Thus if 100 (octal) words are to be buffered out, beginning at address
05000, then the terminal address is 05100. This address quantity,
05100, was entered jin the lower podtion at 00002 by a 61 instruction
that has been executed prior to the 74.2. As a result the last word
to be buffered is taken from addrese 05077.

A 74.0, or external select instruction, provides for transmitting
control information or codes to the control section of an external
equipment. Such codes cause the equipment to prepare for the transfer
of data to or from the computer. The computer may sense the status of
the external equipment by means of the 74.7 external sense instruction.
For both the 74.0 and the 74.7 instructions the base execution address
is used to specify the channel, equipment, and condition.

The interpretation of the various digits of the execution address
for a 74.0 or 74.7 instruction is shown in Figure 16. The upper three
bits are interpreted in the computer to determine the channel that is to
receive the remaining 12 bits. The latter bits are called the
"external select' code for 74.0 and the "external sense" code for 74.7.
The various select and sense codes used with external equipment appear
at the end of this chapter.

Operation Index Execution
Code Code Address
74 —_—
4 r_____:m —
0 Select Selects 4L—Specifies operation
7 Sense Channel for selected equipment
Selects
Equipment
0 Internal selection
1 Channel 1
2 Channel 2
3 Channel 3
4 Channel 4
5 Channel 5
6 Channel 6
7 Channel 7

Figure 16. Interpretation of Octal Digits in External
Function Imstruction




The case of a 74.0 or 74.7 instruction when the upper octal digit
of the execution address is 0, is a special one. This involves no com-
munication with external equipment, but instead provides for examining
computer fault conditions. An example of 74.0 external select instruc-
tion is the following

74 0 11200

Execution of this instruction sends the code 1200 (the lower four octal
digits of the execution address) to the equipment conmnected to channel 1
at the 1604 conscle. The code 1200 selects the paper tape reader which
is connected to chamnel 1. As a result, the reader is prepared to begin
operation as soon as a 74,1 instruction (activate communication channel
1) is executed.

The 74.7 instruction, which senses a computer fault or a condition
in an external equipment, 1s always used as the upper instruction. This
follows from the fact that the lower instruction is skipped on the basis
of the results of sensing the presence or absence of the specified con-
dition. For each specified condition two scnse codes are provided.

They are identical except for the lowest digit. The code with an even
digit in the lowest position senses the presence of the condition, that
is, a positive response results when the condition does not exist. The
code with an odd digit in the lowest position senses the absence of the
condition and a positive response results. In either case a positive
response causes the next, that is, the lower, instruction to be skipped.

A typical use of the 74.7 instruction is in sensing whether a tape
unit in the 1604 magnetic tape system is ready to read. The instruc-
tion format is as follows

74 7 32040

Execution of this instruction sends the code 20j0 to tape unit j of the
1604 tape system. If this tape unit is ready to read, a positive
response is returned to the computer. As a result, the next, that is,
the lower, instruction is skipped. If the tape unit is not ready to
read, a negative response is sent back and the computer executes the
lower instruction.

7-5



An alternative method for sensing the same condition uses the
following format:

74 7 32031

The difference in the lowest digit means that {f tape unit j is ready to
read, a positive response {s sent back. If it is not ready a negative
response 18 sent to the computer.

The 74.7 instruction with an even sense code is quite typically
used with a jump as the lower imstruction. The jump would enter a
routine for handling the specified condition. The jump instruction
is skipped unless the condition sensed by the 74.7 is present. Such
a use of an even external sense code and a jump as the lower instruction
is convenient for cases where several conditions are to be sensed in a
Successive manner. The 74.7 with an add sense code affords another
option which is useful in other circumstances.

The individual external equipments interpret the equipment selection
digit in an external fumnction. Each equipment recognizes its own
code. The remaining nine bits of the external control cable are
then sampled by the selected extermal device. The external equipment
is continually monitoring these control Iines. No resume signal is
sent back to the computer indicating receipt of the information. How-
ever, an external sense code causes the equipment to produce a responding
signal on the sense return line when the condition specified by the code
18 present.

INPUT TRANSFER (INT.b)(62.b)(where b may be O through 7)

This instruction transfers a block of data from an external equip-
ment into the central computer storage. This transfer utilizes

a special communication channel of 48 lines and is intended for a
very rapid transfer of data between the memories of two or more
1604 computers or other similar data transfer situations. The
number of words transferred is specified by the contents of the
designated index register. The words are stored in consecutive
locations beginning at the location specified by the base execution
address.

The first word received is stored at the last address. For each
word transferred the designated index register is reduced by one.
Thus the index register is cleared at the end of the transfer.

I1f the index code is zero, one word is transferred. If the
contents of the designated index register are zero, no transfer
takes place.




OUTPUT TRANSFER {OUT.b)(63.b){where b way be 0 through 7)

Thir inctruction transfers a block of data from the central
computcr storage to an external equipment. This transfer
utilizes a special commnicziion channel of 48 lines and is
intended for very repid transfer of data between the memories

of two or more 1604 computers or other esimilar data transfer
situations, The number of words transferred is specified by the
content of the designated index register. The words are

located in « vonsecutive list beginning at the location specified
by the base executlon address. The first word transferred out
is obtained from the last address. For each word transferred
the designared index reglster 1s reduced by one. Thus the

index reglster is cleared at the end of the transfer. If the
index code 1s zero, one word is transferred. If the contents

of the designated index register are zero, no transfer takes
place.

EXAMPLE

Write a program which will load 100 (octal) words from paper

tape and store 1t 1ip consecutive addresses beginning at

address 200, Assume that words are to be loaded in the assembly
wode. Regin program at address 00050. (The external select

and sense cedes used with 74.0 and %4 .7 sub-instructions appear
at the end of the chapter.)

O0cse 7407 11220 75000050

00051 10 0 00300 20000CG1.

00052z 74 7 11201 76600052

00053 74 O 11200 ‘74100200

00034 74 7 11220 75000054

00055 76 0 00050 00000000
EXPLANATIOR.

I1f this is a routine in the middle of a program, then at the time
the rourine is to be executed some plece of Inmput-output equipment
on channel 1 may be recelving information; so the first program
step tests channel 1 to ensure that information is not being
buffered at this time. 1f i{nformation is beilng buffered an
unconditional jump back to the sense instruction is executed, and
this step will be repeated untll 211 the information has been
buffered. Wwhen this happens, the lower portion of step 00050 1is
skipped and step 00051 is executed. This step loads A with the
last address plus one at which the information will be stored, and

the lower instructicn of step 00051 stores this address in the
lower portion of address 00001.

7-7 .



Step 0005Z then senres the paper tape reader to ensure that the
reader 1s in the  azcembly mo.ls, if it 18 not, the lower portion
of Step QOCE2 is evecuted, which 1s an uvncondiifonal stop so

that rhe operatur may thiow the awltch waich wiil put the reader
ir the asesmbly mode. 1f the reader is already in tie assewbly
ode the stop lustruction 18 skipped and step V0033 is executed.

The upper portion of scep 30057 selects the paper tape reader.
The lower portion then selects the channel by means of the index
designator and the flrst address at which to store thg incoming
information by means of the base sxecution address. These are
all the zteps that are necessary to activate the buffer. One
could now do comgutation or set up a buffer om a different
channel. However, in this case we chose to simply load in the
words and stop the coimputer. Since the buffering action will
cease 1f the computer 13 stopped, we must test to determine when
all 100 (octal) words have becn I1saded. This 18 atcomplished by
the same method as explained in the beginning of this example.
Once the end of the buffer has.been sensed, the program executes
step 00055 wh'ch stops the computer.

EXAMPLE

Using the high speed transfer instruction, write the step for
transferring 50 (octal) words from an external equipment to memory,
Store the last word at address 00300, Where will the first word
be stored?

01000 50 1 00050 62 1 00300

EXPLANATION

Index register one is loaded with the number of words to be trams-
ferred. The first word will be stored in the address which is
the sum of the base execution address of the input transfer
instructions and the content of the designated index register.
lowever, since the Index reglster is reduced one before this
transfer takes place, the first word will be stored at address
00347, the next word at 00346, etc. The last word will be
transferred when the index register one equals zero so that it
will be stored at address CO3QH,

7-8




USE OF 74.7 INSTRUCTION

The 74.7 external function instruction may be used in either the
upper or lower positions. When used in the upper position, a 74.7 is
a skip instruction. That is, the lower instruction is skipped if the
condition given by the EF code is present, but the lower instruction
is executed if the condition given by the EF code is not present. In
the first case, the 74.7 "exits" to the next pair of instructions. In
the second case, the 74,7 '"half exits'' to the lower instruction.

When the 74.7 is used in the lower position, it is not a skip
instruction. Instead the 74.7 is simply executed’repeatedly until the
condition given by the EF code occurs. At this time the 74.7 exits to
the next pair of instructions. Until the condition given by the EF code
is present, the 74.7 simply half exits to repeat itself. A 74.7 in the
lower position is therefore a means of awaiting the occurrence of a
specified condition,

Throdghout the attached list of sense codes, the term "exit' and
"half exit'" are used with the meaning indicated above. An exit is per-
formed if the stated condition is present; if not present, a half exit
is performed.

Any lxxxx select code clears all previous selections on channel 1.
Likewise, any 2xxxx select code clears all previous selections on
channel 2.

EXTERNAL FUNCTION CODES

The attached lists present external function codes for the
following:

CODE CONDITION
Oxxxx Internal

Ixxxx Channel 1
2XXXX Channel 2

Internal Select

0x010 - Select interrupt on channel 1 inactive
0x011 - Remove selection

0x020 - Select interrupt on channel 2 inactive
0x021 - Remove selection

0x030 - Select interrupt on channel 3 inactive
0x031 - Remove selection

0x040 - Select interrupt on channel 4 inactive
0x041 - Remove selection .

0x050 - Select interrupt on channel 5 inactive
0x051 - Remove selection

0x060 - Select interrupt on channel 6 inactive
0x061 - Remove selection

0x07x - Clear arithmetic faults .

0x100 - Select interrupt on arithmetic fault
0x101 - Remove selection

Olxxx - Start clock

02xxx - Stop clock

7-9



Internal Sense

0x010 - Channel 1 active

0x011 - Channel 1 inactive

0x020 - Channel 2 active

0x021 - Channel 2 inactive

0x030 - Channel 3 active

0x031 - Channel 3 inactive

0x040 - Channel 4 active

0x041 - Channel 4 inactive

0x050 - Channel 5 active

0x051 - Channel 5 inactive

0x060 - Channel 6 active

0x061 - Channel 6 inactive

0x110 - Divide fault

0x111 - No divide fault

0x120 - Shift fault

0x121 - No shift fault

0x130 - Overflow fault

0x131 - No overflow fault

0x140 - Exponent fault

0x141 - No exponent fault

Channel 1 Select

1110x - Keyboard entry

1114x - Keyboard entry and interrupt on carriage return
1120x - PT reader

1121x - PT reader and end-of -tape indicator
1122x - PT reader and interrupt on end-of -tape
Channel 2 Select

2110x - Print assembly mode

2111x - Print character mode
2120x - Punch assembly mode

2121x - Punch character mode
2124x - Turn punch motor off
Channel 1 Sense

11100 - Keyboard carriage return
11101 - No keyboard carriage return
11140 - Keyboard lower case

11141 - Keyboard upper case

11200 - PT reader, end-of-tape
11201 - PT reader, no end-of-tape
11210 - PT reader, assembly mode
11211 - PT reader, character mode
Channel 2 Sense

212x0 - Punch, end-of-tape

212x1 - Punch, no end-of-tape

7-10



APPENDICES



APPENDIX A

RESULTS OF EXERCISES

EXERCISES I (solutions)
Alternative Solution:’

An Index designation other than
zero may be used 1if the octal sum
QRS O 0001 6_J of the contents of the designated
index register and the execution
address equals the desired shift
count.

[+]

b. 00000220 00000436

c. |QRSO 00007 | QLSO 000 14| (See alternative solution
above)

d. |ALSO 0005 3 | (See alternative solution above)

since no bits are to be discarded, one must use equivalent left
shift. (48 - 5 = 43 decimal shifts required.)

e. No. Since the end-off shift discards some bits, the two results
can not be the same.



EXERCISES 2 (solutions)

This is the LOAD A instruction. Since index register 3 is desig-
nated, the instruction will load the contents of address 00015
(00010 + 00005) into the A register. This address is the sum of
the execution address (00010) and the contents of index register 3
(00005).

Qo) 01000 STQ 0} 01001

The upper instruction loads the contents of address 01000 into Q.
The lower instruction then stores the contents of Q at location
01C01l. (Alternative solutions are possible by using index
registers whose contents added to the contents of other execution
addresses would give the execution addresses above.) Since the
A register was not to be disturbed, the Q instructions were used.

The instruction given STA 2 0 0 0 2 0 stores the contents of

the A register in a location equivalent to the sum of the execution
address (00020, above) and the contents of the designated index
register (2). Since index register 2 contains 77767, and execution
address is 00020, the location of the operand is equal to the sum
below.

address (00020) 00020
contents of index

register 2 77767
one's complement 1 00007
with end-around
carry in this 1
case, to give =-==-- 00010

Therefore the given instruction will store the contents of the A
register in address 00010,

When LOAD instructions are given, the initial contents of A or Q are
destroyed since this register is cleared before the LOAD operation
is executed.

When STORE instructions are given, the initial contents of A or Q
are not disturbed by the execution of the instruction.



EXERCISES 3 (solutions)

a. |ADDO { 000360

b. (K)= |SUBO (00041 SUBO | 0004 2
(K+1) =|ADD O | 000 4 3 ADDO | 0004 &4
C. Yes,
00100 AJP 1 00101 QJP 0 00050
d. |ADDS5 | 00000 AJP 1/ 00105

e, The upper instruction is a Return Jump since the index designator
6 calls for a Return Jump 1f A contents are positive. The location
of the Return Jump instruction (00304) is increased by 1 (to 00305)
and this goes to the execution address portion of the upper
instruction at step 00010, A jump then occurs to the lower
instruction of step 00010.

EXERCISES 4 (solutions)
a. INITIAL CONTENTS of A and Q were given as:
A Register Q Register
7777777777 177770 0000000000000003

(Shift A and Q Right 4)
Instruction Required ------- [ LRSO 0000 4]

A Regilster Q Register
Final Contents )
of A and Q ) 77772771771777777  4000000000000000



b. INITIAL CONTENTS of A and Q were given as:

?

A Register Q Register
0000000000000000 7777717777717 7171717
(LLS.0) (Shift A and Q left 2410 places)
Instruction Required——=> 070 00030

Note 2410 = 30 (octal)

Final Contents
of A and Q
A Register Q Register
0000000077777777 7777777700000000

c. Given: Index Register 5 contains 0 1 3 2 6
Address 01111 contains 0000000000007562

(:) | ENA5 000 046] After this ENTER A instruction, the contents
of A will be:

0000000000001326

<:> IﬁENA 5 0010 OI After this ENTER A instruction, the contents
of A will be:

00000000000014 26

d. 1. TRUE (Two instructions would be needed)
2. TRUE (Unless overflow takes place)
3. FALSE (One uses contents of execution address, other uses

execution address as operand)

4. FALSE (It can just as well send a negative to Q)

e. 1. After[040 00 200} Qwill contain:
0000000000000200

2. Afterll 70 0020 0] Q will contain:
7777777777770000

3. After[1 6 0 00 20 0] Q will contain:
0000000000007777




EXERCISES 5. (solutions)

a. Add the execution address . . . . . . 00761

and the contents of index register 6. 00017

Extend sign bits of suiz/ >(01000
0000000000OOC1L1O0OCO

"Increase A" by this amount
77777771777 770135

Contents of A will be 777777777777 1135

b. (00100) ENA 2 |00O0O0O MUI 0O | 00050
tggde for Zpode for
Enter a Integer Multiply

First enter contents of index register 2 into A (the multiplier).
Then multiply using contents of 00050 as multiplicand.

c. 1. False (Final content of A is part of the product.)
2. True (Otherwise one would not know the multiplier)
3. False (Product of two 48 bit factors cannot overflow 96 bits)

d. The dividend is contained in Q and A and is given:

Q Register A Regilster
[0000000000000000] 00000000000 0020]

The given instruction divides the contents of 00100 into this.
Address 00100 contains 0 00 000000000000 3.

After the divide, the following quantities will be left in the A
and Q registers and address 00100.

FINAL CONTENTS

A Reglster
0000000000000001 0000000000000005

Sign ot Sign of “Quotient
Dividend Quotient

Address 00100 0000000000000003 (unchanged)

Q Register

Remainder




(00040) = (INA2 | 00000 ADD5 | 00000

The first instruction '"increases A" by the contents of index
register 2. The second instruction adds to A the contents of
the address located at index register 5. Note the execution
addresses above are each zero which reduces each instruction
to a function of the contents of the index registers involved.
However, INCREASE A uses the contents of the index register as
the operand; whereas, ADD uses the contents of the index
register as the address of the operand.

EXERCISES 6. (solutions)

a.

(00020) = LSLJ 4 l 0007 2 ] Some other instructio;]
(00072) = ISLJ 0! ] First Instr. of Sub-Routine
(00105) = |Last Instr. of Sub-| SLJO 0007 2

Routine

Explanation: The SELECTIVE JUMP with index designation 4 18 an
Unconditional Return Jump which stores contents of Program Address
Register plus one (00021) in the upper inmstruction at 00072 and
the jump goes to the lower instruction at 00072. The exit at
00105 jumps back to 00072 whence another jump goes back to 00021,

(00112) = (LDAO| 000 23 | savofooo2 2|

(00113) = |[ALS 0| 00011 | saLo 000 22|

The first instruction LOADS A with 0000000000000001. The second
instruction SUBSTITUTES the low order 15 bits of A (00001) into

the execution address portion of the upper side of 00022. Then A
is shifted left nine places to become 0000000000001000. Again the
low order 15 bits of A (01000) are SUBSTITUTED into the address
portion of the lower side of 00022.

A-6




(00417) = |[ENAS| 00000 AJP 2 | 004 21
(00420) = LéDD 0 ] 00100 [ SLJO [ 0070 o]
(00421) = ’SAL 0 | 0004 7 ] SLJ 2 J 0070 2q

Contents of Index Register 5 are first sent to A. The A register
is tested for positive contents, If positive jump goes to 00421;
if not to 00420. At 00420 contents of 00100 are added to A and
jump goes to 00700, At (00421), the contents of A are stored at
00047 and jump goes to 00700 if Jump Key 2 is set.

(00050) = | ENA3 | 00000 ADDO| 0000 3
(00051)= STA O 0000 3 SLJd 3 00030
(00032) = [SLI1[ 00112 | Some Other Instr. |
(00112) = [ SLJ 2 ] 00200 [ Some Other Instr.l

If neither key is set, it will perform TASK G and TASK H. If Jump
Key 1is set and Jump Key 2 not set, it will skip TASK G and do
TASI. H. If Jump Key 1 is not set and Jump Key 2 is set, it will
do TASK G and skip TASK H. If Jump Key 1 is set and Jump Key 2
is set, it will skip both tasks.



EXERCISES 7. (solutions)

a. (00032) = |SSK O | 00050 SLYO| 00110
(00033) = |(SLJO | 00200 Some Other Instr.

b. Given Jump Key 2 not set
(00052) = | SSKO 00100 | SLJ2 00200

The first instruction tests the contents of 00100 for sign. If
negative, the next instruction (7 52 00 2 0 0) is skipped. If
positive, the next instruction is interpreted but since Jump Key
2 is not set, thejump will not occur to 00200. Therefore, in
either case the instruction 752 00 .2 0 0 is skipped until
Jump Key 2 1s set on the console. . .
Toad A w/contents Shift A Ripht 1 bit place
<::9f 00040 j::) to put last bit in left-most
positinn

c. (00013) =[TLDAO 00040 [ LRSO 00001 |
Pass
(00014) = [STQO 0005 O] ENIO 00000 |
(00015) = [ssHO ©00050] SLJO 00200 |
(00016) = Continue
The STORAGE SHIFT at step (00015) tests the sign of the last bit
of the unknown digit. If positive (even in this case) the next
instruction jumps to 00200. I1f negative (ordd in this case) the

instruction at 00016 is the next step to Le performed.

d. —
(c) 15k 5 00144 [ SLJO 00050

(c+1)

SLJ O 00200 Some Other Instr.

The first instruction tests the contents of index register 5 against
the number in the execution address (100 If not equal, the jump
to 00050 occurs, If equal, the next inégruction is skipped and

the jump to 00200 occurs,



THIS PAGE HAS BEEN DELETED.

A-9



EXERCISES 8 (solutions)

Load A with logical
Load Q with product of Q and contents
extractor of 01012

(¢c) = |LDQO 00054 LDLO 01012

Jump if content Enter zeros into A
of A is zero register
(c+1) = JAJP O (ctk) ENAO 00000O
Store the zeros in
N A in 01012
(ct2) = ETAO 01012| ]
(Alternative solutions are possible)
Extractor at 00054 40 40 40 40 40 40 40 40
(A) = 1200000000000000
Given: (00111) = 4530000020000100
Q) = 0070000000000000
Index Reg. 3 = 00111

Final Contents of A —>{12300000 0000000 0]

Explanation: The given instruction at (00111) forms a logical
product of the operand located at the sum of the execution address
(00000) and the contents of index register 3 (00111), and the
contents of Q. Thus the logical product formation takes place
between contents of Q and contents of 00111. This gives the
result 0030000000000, When this is added to A, the final result
is obtained. The second instruction in the step does not

affect the contents of A - it stores A at 00100.

A-10



Given (00712) contains X Xz X PP ¢ 6 where each X
is an octal digit of 3 bles? 3The problem 1is %o reduce this
quantity by the sum of X and X16’

Load A Load Q with
Extractor
(c) ={LDA0 00712 LXQO ooosoJ

where (00050) = 0000000000000007
Store Log.Product Shift A Register
of Q and A left 3 places

(c+1) = [STLO 00051 [ ALSO 00003 | .
00051 now contains 000000000000000X 1¢
Store Log. Product Reload A with
of Q and A Original Quantity
(c+2) = [STLO 00052 | LDAO 00712 |
00052 now contains OOOOOOOOOOOOOOOX1
Subtract X16 Subtract Xl
(¢#3) = [ SUBO 00 051 SUBO 0005 2
Store Reduced Amount
in 00712
(cts) = IVSTA 0 00712 Continue AJ
(1) Yes.

(2) No. A bit-by-bit product cannot exceed the number of bits
in each of the factors.

(3) No. Since the positive factor will generate a positive
bit in sipn of product regardless of other factor.

A-11



EXERCISES 9. (solutions)

Given: Zone rates in index registers 1 through 4. Flat rate in
index register 6.

Store index Store index
register 1 register 2

(00100) = [SIL 1 00102 | SstTu2 00103 ]
Store index Store index
register 3 register 4

(00101) = '[SIL 3 00103 l SIu4sd 00104 |
Store index Enter index
register 6 register 5

(00102) = [SIL 6 00104 ] ENI5> (000 O’O)]
Increase index Increase index
reglister 5 register 5

(00103) = [INI 5 (00000) [ INI5 (000 OAU)I
Increase index Increase index
register 5 register 5

(00104) = LINI 5 (00000) [ INI5 (0000 0)]

(00105) = |[Continue Program | ]

Explanation: The first five instructions store the contents of index

register 1, 2, 3, 4, and 6, respectively, in consecutive instructions
starting with the lower instruction of step 0 0 1 0 2. The next
instruction enters index register 5 with the contents of index
register 1, The last four instructions increase the contents of
register 5 by the contents of index registers 2, 3, 4, and 6,
respectively. The desired rate is then found in index register 5.

A-12



Clear A

o

(00154):/ ENA O 00000 | ENIO 00000]

r=
()
O
O
o
(@]
~d
(]
(e
—
o
~

| _qm
00 | QP 7 00164 ]|

(00155):] ENQ 1

N
o
o
o

(00156)-] 1

(%
(@]
o
(]
le]
o

(00157)=[ ENG

[ QP 7 0016 4]
|

(001603=/ Q4 0 0000 QP 7 00164 |
(00161):{ENQ 5 00000 | @7 00 164]
(00162)<[ENQ6 00000 [ QP7 00164&]

(00163):[SLJO 00200 [ ENIO 00000O0]
]

(00164)=[S1.J 0 (0 0000) | INNO 00001

(00165)=[SLJ 000164 | )

Explanation: The A-register 18 cleared to use as a counter. The
contents of each Index register are entered into the Q-register.

Q is then tested to see 1if it contains a negative nurwer. I1f Q is
negative, & return jump 18 made to a subroutine which adds one to
the A-register (counter). After all index regilsters have been
tested, the A-rogister will contain the number of negative index registers.

Enter Index Shift (A) Left 391O
register 2 into bit positions
(A)

(c) = [ENA2 00000 JALSO 0004 7]
Add Instr. Store Modified Instruction
at 00026 at 00026

(c+1) = [ADDO 00026 |[STAO 000 2 6]

Explanation: The first instruction enters the contents of index
register 2 into (A). (A) now appears as;

These octal digits
000000000000DO00O0X come from index
= register 2
(A) 1s now shifted left 13 (octal) or 3970 bit positions.
(A) now contains
00X00000000000O00O0

The contents of (00026) are then added to A which modifies the

upper Instruction by adding the digit (X) to the operation code
bits (left nine bits) of the upper instruction. The result is
then stored in 00026.



Enter Index Register Increases (A) by

6 in (A) contents of Index
Register &4
(c) = [ENA6 00000 | INA4 0000 0)
Store (Q) in Add contents of 00050 (which=Q)
00050 to contents of (A) Register

(c+1) = BTQO0 00050] ADDO 00050 |

Store (A) at Loads Index Register 6 with
00050 Lower 5 Octal Digits of (00050)
(c4+2) = ISTA 0 00050 LIL6 00050
Explanation: The first instruction enters contents of index

register 6 into the A register. The second instruction INCREASES A
by the contents of index register 4. The contents of Q are sent

to (00050). Then (00050) is added to A. (A) now contains the

sum of index register 6 and 4 and the contents of Q. This sum

is stored in 00050. Address 00050 now contains:

00000000000 xxxxx

Sum of Q, index
register 6, and
index register 4
The last instruction, LOAD INDEX LOWER, loads index register 6
with the LOWER order 15 bits (5 octal digits) of 00050.

(00600) [ENI3 00051 ENIO 000O0O

(00601) [LDA3 00000 STA3 0037 7|

(00602) [IJP 3 00601 Continue program ]

Explanation: First index register 3 is set to total number of steps
minus one. Then the subroutine is transferred to the new location,
starting with the last step and ending with the first,

A-14



Alternative Solution for problem of Exercise Je.

Assume index register 3 contains 00377

Assume index register 2 contains 00000
Store index register Store Index register
2 in upper 00601 3 in lower 00601

(00600) = | SIU2 00601 SIL 3 00601J
Dummy Load Dummy Store

(00601) = LDA O (0000 0) STAO (00000 )
Index Skip Pass

(00602) = [ ISK2 00051 ENIO 0000090
Index Skip Unconditional Jump Back to (00600)

(00603) = | ISK3 00450 SLJO 00600

Two index registers are used and are each increased by one in the
INDEX SKIP instructions in (00602) and (00603). Also note the
PASS following the first INDEX SKIP. This works here since the
record INDEX SKIP instruction at (00603) acts as the true barometer
as to when to exit. Otherwise the PASS at (00602) would not be
able to be used. Why can't the second INDEX SKIP INSTRUCTION be
moved into the right side of 00602 and eliminate the PASS2

A-15



EXERCISES 10 (solutions)

a.

Assume contents of (00025) =  XXX0000000000000
Assume contents of (00026) =  1400000000000000

(Note 37.5% is equivalent to 0.3 in octal) which is 140 <—>0 in
fractional format

(00050) [LDA D 00026 MUFO 00025 ]
(00051) |[LRS O 00 04 6 STA 0 00100

(ooosz)lmmo 00001 "UB 0 R
(00053) [5TA 0 V0100 Continue ]

Explanation: First the multiplier is entered into the A-register.
Then the Multiply Fractional is performed. The result is shifted
so that it is in the lower part of A and rounding off is performed
if it is necessary.

Mask (00070) = 00000000 00000007

Start (00200) |ENI1 00017 | ENIO 00000 |
(00201) |LDAL1 00011 ATP2 00203
(00202) [SSTO 00070 | SLIO 0020 4|

(00203) [ SCLO 00070 ENLO 00000 |

l
(00204) | STA1 00011 [ IJP°2 1 00201
I

]

Explanation: Each quantity to be tested is entered into the A-regis-

(00205) ’ Continue program

ter and tested to see whether it is positive. If the quantity is
positive, a jump 1s made to step 00203 where the lower three bits

of the quantity are cleared. If the quantity is negative, the lower
three bits are set at step 00202, In either case, the quantity is
stored at its original location and an index jump is made to test
the next quantity.

A-16




c. Load Q with L(Q) (00014)

extractor in 00070 to A register
(001C0) = |(LDQ O 00070 IDLO 00014
Store 15 bits shift 15 bits in A
in 00071 to leftmost position
(00101) = |STAO 00071 ALS 0 00041
Jump if A Complement upper
is positive 15 bits of A
(00102) = |AJP 2 00103 scM O 00073
Shift 15 bits to Add contents of
original position index register 3 to A
(00103) = |ALS O 00O017 INA3 00O00O00O
Enter index
Store A register 3
(00104) = [STAO 00 0 72 LIL3 0007 2
Stop
(00105) = [sLso 00100 | ]

Extractor in 00070 is 00000000G6077777
For complementing 00073 is 7777700000000000

Explanation: The steps above contain descriptions of the functions per-
formed.

A-17



Assume 00200 contains 7000000000000000

(This is to be used as an extractor.)

Assume 00201 contalns 000 0000000000000

(This is to Le used as a counter,)

Asgume 00202 contains 0 00 0000000000020 = 1510

(00050) [ENI1 00000 | ENAO 000O0O0| Clear index;

clear A
(00051) [LDQ O 00100 ENIO 000O0O]| (00100)—>Q; Pass
(00052) [LLs 0 00003 ATPL 0005 5| One digit —> A;

jump if A # O

(00053) [ ISK1 00017 SLJO 0005 2 Skip if all digits
tested; jump

(00054) |ENI1 00020 ENIO O00O0O0O0 | Enter 1675 into
ind. reg. l; pass

(00055) | Exit i

Count will be in index register 1

Explanation: Index register 1 and the A-register are cleared. The

number to be tested is entered into the Q register. One octal digit
is shifted into A. If A is not zero, a jump is made to the exit. If
A is zero, this is a non-significant zero, so the count is increased
by one and a jump is made to shift the next octal digit into A and
test it. If the number to be tested contained sixteen zeros, index
register 1 would be cleared to zero. That is why, at step 00054, in-
dex register 1 is set to 20g.

Enter Contents of Replace Contents of Ind. Reg. &4
Ind. Reg. 4 into (A) by 15 Rightmost bits of 00100
(00300) = [ENA4 00000 LIL4 00100]

Substitute Low Order 15 Bits
in (A) into Rightmost 15 Bits of 00100

(00301)= [SALO 00100

Explanation: Although the above program is short, there are ome or
two critical conditions which must be satisfied. First, in order to
exchange parts of two addresses one part must be sent somewhere else
before the exchange begins. In this case the contents of index reg-
ister 4 are first sent to the A- register. To transfer the contents

A-18



e. (Continued)

of A to the contents of 00100 without disturbing the other bits
requires an instruction similar to the SUBSTITUTE ADDRESS instruction
above (SAL 0 0 01 0 0). Note that a "STORE A" instruction cannot
be used since it would erase the other bits in 00100. The "LOAD
INDEX LOWER" instruction above (LIL 4 0010 0) replaces the con-
tents of index register 4 by the 15 rightmost bits of the contents of
0o1o00.

A-19



EXERCISES 11

a. 00100)
00101 Contain 50,
.
. Accounts
. el
00161 |

L]

Given che following:

OOZOO]

0201 | CC”JtiiiD..S()lc
* Accounts
« ! rpn

oozelj

If any of Accounts "€ = Accounts "D", put a 1 in (00032)

Enter 5019 into
Index Reg.

Load Contents of (00100)
2 into A Begister

(00400) = F¥7 % 0006 2[DA0 (00 L 00) |

Zgquality Sesrch  If Account '"C" in "A" Does not equal

Starting ac 00200 any Account in 'D'", Jump to (00404),.
(00401) = [Fos % 00z00SLIC 00404 ]

Enter 1 into Store Q in Reg. 00032

¢ keglster (This puts a 1 there)
(00402) = [mNg 0 000 01[SIQO 00032 ]

STOP PASS
(00403) = [SLSO 004 OOJENEO 00000

Increase "A" by 1. This

Put Stop 00400 increases the Account "C"

into A Reglster storage location Reference by 1.
(00404) = WA 0 004 00[INAO 00001 ]

Store A" in 00400, Subtract Contents

This modified the step of (00050) from "A"
(00405) = |STAO 004 00[SlBO 00050 |

Storage address 00050 contains, 503 00062 120 00162.
This will be the quantity tested, in "A", when all accounts are

searched,

(00406)

Jump Back to 00400
if "A" is not zero

| ATP 1

0040 BTEontiﬁ;E”Program ]

J

A-20



Put Covdornte of

(00201) into “A' Reg. Pass

e e ——
() = i 0 057651 ; ENIC 00030 |

SRR AR
\Juluq) > (.‘A) 2'\\,1.:._) JUDAp to (C+3), if (00200) is not
greater than (A)

S
(1) = 4us 0 00200 5 SL.Y o3 l

Jump to (00400). Since

(00200 > /00201) Pass
o e e e e
(c+2) = [SLT 0 0C¢ 400 ERT ¢ 600C O
Baurliiy Seavch, iF
TOURQy s LAY tedy)
. Jump to sowe location
(c¥3Y = !5<S O 602009 Juinp Exlit ! for program following
‘ T T » the condition that
(A0500Y, Siuce (00200) is less than
w4 = (oozgg} Paas (00201)

P e e i i e e i e

(eiwey = Hag o G oW S GG J‘ ENE u u L', () 00 ]

Explavation: Sipce SUARCY dnstraciions omst dappear in the upper in-
struction of & prograr step, the Iirst twe pass instructions above are
needed., Alse note that the index register designators in the SEARCH
instructions above are zero. This will result in the contents of one
address being cowpared tc the contents of the A register.

The portion of the program given is attempting to accomplish the fol-
lewing:

1. The number 100, is UNTERED into index register 6.
The contents of index register 6 (10010) is put into A"

w N
.

A Threshold Scarch s made of 10070 consecutive storage locations
starting with the contents of sturage locations 00100 to see if any
of the«t 100 storage locaticons contailan quantities greater than
10010 (which 45 in Ay,
4. 1If none or tna 100 otorage locatious contain quantities greater than
100, a fump gocs to step 02060, 15 a storage location is found
whose coatent s greater than 100 (lu A), then at step 00052, zeros
are enweved into ¢ ard bthen ingo storspge location 00500.

In swmary, this procram 10 rrving e Jetoarmice if any of the 100 con-

secutive storane locatjon: starting ac address 00LCC contain quantities
greater than 100; and if so, ©to store & zero in storage location 00500.

A-21



Part I. Given (00700)=|MTi3 00050]| SLJO 00700

Here is a MASKED THRESHOLD SEARCH followed by a jump to the same
address containing the search instructions. As long as the logical
product of (Q) and the contents of the storage locations starting at
address 00050 is greater than the contents of "A'", this jump is
skipped; however, if the criterion is not met, then this jump back
to the search is made. If the jump instruction is reached, the
search 1s complete and the index register contains zero. This step
(2 instructions) would be endlessly repeated, but no search would
take place in the first half. The danger lies in the fact that if
the criterion is not met, a non-terminating loop is formed.

Part II. Given (00105)=|tDAO 00 050| EGS3 00200

Here the EQUALITY SEARCH is programmed in the lower instruction of
a program step. When this happens, the next instruction is never
skipped and in effect one would always go to the next step at 00106
regardless of the equality criterion being met. The only way one
would know whether the criterion was met would be to look at the
contents of index register 3. If index register 3 contains a zero,
the criterion was not met; if index register 3 contains any number
other than zero, the criterion was met.

A-22



EXERCISES 12.

(a)

Set index Pass
(03001) = | ENI3 00143 ENIO 00000O
One word to A Pass
(03002) = [LDA3 00201 | ENLO 00000 |
Ship 1if (M) >(A) Jump 1f (A)> (M)
(03063) = |THS 3 00201 SLJO 03005
Jump to test new (A) Pass
(03004) = [SLJO 03002 | ENLO 00000 |
Store greatest quantity Stop
(03005) = [STAO 00077 | SLsO 03001 |
Explanation: The first step sets an index equal to ome less

than the total number of quantities to be examined. At 03002
the last quantity in the list is entered into the A register.

At 03003 the remainder of the list is searched to determine if
there 1s a quantity greater than the quantity in the A-register.
If such a quantity is found, a jump is made to 03002 where the
greater quantity 1s entered into the A-register. The search

1s then resumed at the point where it found the greater quantity.
When the entire list has been exhausted, a jump is made to

03005. At this time, A contains the greatest quantity in the
list and this quantity is stored at 00077.

A-23



(b) Given: [Gross Pay - $13 (No. of Deps.)]lS% = Tax
Assuming Gross Pay stored at 00022, No. of Deps. stored at

00024, Constant 18 stored at 00025, Constant 13 stored at
00027, and TAX to be stored at 00030.

No. of Deps.—» A Multiply by 13.

as Multiplier Product XXX. (Max.) in "A"
(00101) = |LpAO 00024 | MUIIO 00027 |

Shift Product

2 Octals Store Product (00020) =

XXX .00 (Max.)

(00102) = [&Ls 0 00006 | STA0 00020 |

Gyoss Pay ~—=(4) Gross Pay - $13 (No. of Deps) —>(A)
(00103) = [1a0o 00022 ] SvBO 00020 |

Store Difference Constant 18 to A as

, Multiplier

(00104) = [STAO 00021 [LDQO 00025 |

Multiply
(00105)=[1~ﬁ110 00021 [LRso 00006]

Round off if necessary

(00106) = | QP 2 00107 INA O 00001!

Store result
(00107) = [ STAO 00030 | ]

A-24



(c)

intar Zaros into Enter 100;35 into
Ind. Reg. 5 Ind. Reg. 3
(00011} - { =l & 25000 ]' ENL3 0014 Kﬁ]
S,
knter Extract Enter Code Comparator
Pattern in Q in-A Reg.
(00012) = [ENQO "0 0700 | ENAO 00300
Masked Threshold Junp to 00016
(00013) = | MrH 3 00312 SLIO 00016
Add 1 to contents of Pass
00100 and Replace
(00014) = [RAGO GO10O0 | ENNIO 000C00

Where initial contents of (00100) = counter =
0€«——>0
_luodex Skip Jump Back to (00012)
(00015 ) = {r ISK5 001 %3 ["SLTJ0 00012 —]

Explanation: A critical peint in the above program is the use of

the "RLEPLACE ADD ONE" instruction at step 00014, Keep in mind that
this instruction destroys the originmal contents of A (in this case
the comparator). Thus the jump back must go to step 00012 where
the comparator 18 entered into A. If some other plan is used for
the counter then it may be possible to jump back to step 00013
instead of 00012, (Perhaps you used some other method of running

a counter.)

A-25



i
¥

(d) (0C060) 0777771717777 7171770

Setf index Pass )
(00312) = [ENT 2 00453 [ ENVO 060000}
(me word to A Leftmost octal digit to Q
(00313) = [ LDA 2 02000 [ LLSO 00003 |
chift Q left 6 bit Sshift AQ left 42 bit
positions positions
(00314) =[ Qs 0 00006 T uzso 0005 2 |
Mask to Q Set the original 14 center
octal digits
(00315) = | LDQ O 00060 | sSsU2 02000|
store word Jump if index register
2¢0
(00316) = [ sTA 2 02000 [ I 2 00313]
(00317) = | Continue program ! I

L

Explanation: The number 1s shifted around to interchange the first
and last octal digits without regard for what is happening to the
other fourteen octal digits. After the first and last octal

digits have been interchanged, the other fourteen octal digits are
set between and the altered number is stored at its original position.
Index register 2 is reduced by one in the lower instruction at

step 00316, so that the next number will be interchanged when the

jump is made.

A-26



(e) Given: each Jocation is made up of the following format:

’ 2% Ritrs 24 Bits
Lfirst Quantity Second Quantity

Compare and order two quantities in each of 50 addresses.

Enter Zero into Load Extract Pattern
Index register 6 into Q Register

(01000) = ENy 6 00000 [ L o 00050 |

(where 00050 contains 0 00 0000077777777
(this extracts the SECOND QUANTITY OF EACH ADIRESS)

Load Q with Log. Prod. Shift A Left 24 Bits
of Q and Each Address

(01001) = [ipL 6 O00TIT [T ALe © 00030
Subtract Constants If "A" is Negative Jump
of each Address to (01i005)

(01602) = [ SUE ¢ 00011 Jajgp 3 019005 |
Load “A" with Contents Shift "A" left 24 bits
of each Address

(01003) = [TDA 6 00011 Jae O 00030 ]
Store in Original Pass
Address

(01004) = ISTA 6 00011 [ENI 0 0000 0"]
Index Skip

(01005) = [ ISk 6 00061 | 517 0 01001

(01006) = [ Continue Program J 1

Explanation: The A JUMP test at step 01002 determines if the
second quantity is larger than the first. If so, they are
reversed 1n steps 01003 and 01004. The INDEX SKIP instruction

at (01005) acts as a count of the 5010 times,

A-27



EXERCISE 13

a. (1) 318 = Oki\i_fzg/;, (in binary)

Must shift 5 places to binary reference point. Exponent
is + 5
floating-point = 010 000 000 101. 110 010 0<—>0 (in binary)

floating-point = 2 0 0 5 . 620 000 000 000 (in octal)

(2) - 156 0 (Negative number, plus exponent) (Treat as a
posit}ve number, complement the result)

156, = 234_ = 0}]0 011 10 (in binary)
Must shift § places; exponent is 8
floating-point = 010 000 001 000. 100 111 0«—>0 (in binary)

floating-point = 2 0 1 0 . 470 000 000 000 (in octal)

Complement to ) 5767.307 777 777 777 (in octal)
obtain the firnal)
result )

(3) 0.44 = .100 (in binary)

(binary point is in the right position - no shifts are
required; exponent is zero.)

floating-point = 010 000 000 000. 100 0 «——> 0 (in binary)
floating-point = 2 0 O 0 . 400 000 000 000 (in octal)

(4) - 0.002g (Ne2gative number, negative exponent) (Treat as plus
number, negative exponent, and complement the final result.)

+0.002g = .000 000 010 must shift 7 places, exponent is -7
floating-point = 001 111 111 000. 100 €«—>0 (in binary)
floating-point = 1 7 7 0 . 400 000 000 000 (in octal)

Complement to obtain ) = 6007, 377 777 777 777 (in octal)
the final result )

A-28



b. (1)

(2)

2 010, 612 GQO 000 €00

The bipary form is O}O 000 001 009; 110 001 010 Of%—B-OJ

Y Y
Sign of) 7 Biased Fractional
Number Exponent Number

Sigy of number ia +
Exponent (unbiased) 1is 8
To fiud number, shift point 8 places right
110 0010 = Q11 000 101 = 305
Q\\\«~_,,j” 4

Number 1is 3058

5772.317 777 71771 7717

The binary form is 101 111 111 010.011 001 111€—>1

J

Y R
Sign of Bilased Fractional
Number Exponent Number

Sign of number is -
Since sign of number is minus, complement the whole form.

2005.460 000 Q00 000 (comp lemented)

010 000 000 101,100 110 0€————>0

A\ v

Biased Number
Exponent

The unbiased exponent is +5. Therefore, shift 5 places
right in the number.

100 110 O

\

Number is -23

A-29 ~—



- [-ENI 2 0 ENL 0 ——— Clear (Bz), pass

(c)
(c+l) = |LDA 2 S1 scal 2057 (s1) A Normalize
{(c+2) = [ALS O 1 STA O T Shift Left 1 Store
Number
(c+3) = |ENA L 5 jRLY] 6 T Exponent to A,normalized
pumber to
(ctia) = [LLS O 44 ! Shift into floating-point
T format in A
Using the above, follow the following example, assume (S1) = 358
Q= )2 shifts
(ct+1) = 35— > A, r"“—l EUII Iﬁzpnormalized in A
Shift left 1 in A
(c+2) = illi 010<%-~—%b0} > Store in T
1 1
(c+3) = Shift count in B = 2057 - 52 = 2005 in B . Enter this
in A; enter normalized number im Q.
A Q
[0o=——= 0 010 000 000 101] [111 010«—— 0 |
(c+4) = Long left shift 3610 places puts number in floating-point

format in A.

A-30



APPENDIX B

SOLUTIONS TO THE CHAPTER REVIEW TESTS

This appendix provides the key to the review tests which
are found at the end of the first five chapters of the pre-
liminary instruction manual. Alternative solutions are pre-
sented in some instances where program routines are asked for,
indicating that oftentimes there is no hard and fast approach
to programming situations.




CHAPTER I

1. Core
2. 48
3. 32,7681,
4, False
5. 00000 - 77777
6.
Operation Index
Code Designator Address
12 1 01000
6 bits 3 bits 15 bits
7.
Lﬁ}nstruction _J Instructionl
| Instruction l Pass J
rﬁ Pass l Instructiogj
6 True (unless there is an assembly routine which permits
decimal notation)
9. False
10. 6
11. Accumulator and Q Regilster
12. Program Address Register (P)



13. Program Control Regilster (u)

14. Accumulater and Q Register
15. Yes

16. 62

17. 400 sq. ft.

18. (1) Magnetic tape units

(2) Paper tape reader
{(3) Paper tape punch
(4) Typewriter

19. True
20. True
CHAPTER II
1. Some of the rightmost bits are lost
2. False
3. The sign bit is extended to the right in the register
4. Accumulator or Q Reglster
S. Yes, and a shift fault will be set
6. False
7. False
8. 0000000000000007
9. 0000000000000007



10.

11,

12.

13.

14.

15.

(1) [LDA 0 00050 | STA 0 61000 |

or
(2) [LDQ 0 00050 | 5TQ 0 01000]

It is an advantage to be able to transfer through Q without
disturbing (A), and it saves an instruction if it is desired

to store a quantity already in Q.

0000000000000001

At the address contained in index register 6

False

00100

0101

00102

00102

H

]

| LDQ 00016 LDA 00017 ]
| QJP 00102 STQ 00500 |
| AJP 00103 STA 00501 ]
| ST 00700 ADD 00700 ]




16.

(00011)
(00005 )

001060

00101

00102

0061G3

00104

00105
U010s

00147

0G110

00111

00112

1t

0000000100000C00
N00£000000000144

constants

| S1Q 0 00010

I

LDA O 00010 J (Q) —— A

AJP 7 01000 | Add Ty, return

jump 1f negative

STA 0 00010 | store (A) in Sy

and at 00010

_ADD ¢ 00011 J Add 1 to S1

| ADD 000012 |
[ STA 0 00400 ]
[Loa 0 00102 l
[sTA 0 00102 |

LpA 0 00101 ] Store (Sl) +1

back in 5y

LADD O 0UCLL

STA 0 00101 | Add 1 toc 00101

[Lba O 00006

ADD G 00007 ] Add 1 to counter

[ STA_ 0 00006

SUB 0 00005 | Test counter for

~  equality to 10014

| AP 1 00111

1

SLS 0 00000 | Jump if (4)# 0,

stop

[ LbA 0 00010

AJP 0 00101 | Load 00010 into

A, jump to 00101

[AJF 1 00101

l

Continue Program|

B-5



4.

o

10.

True

False

True

0000000C00000001

77777777777777174

[INA 4 00000

No

CHAPTER III

(because the arithmetic is one's complement)

Mulciplier - A register

Multiplicand - storage address

Product - QA register

A register - 7777777777777776
Q register - 0000000000000002

(00300)
(00301)
(00302)
(00303)

(00304)

| LDA 0 00007 | 1INA 00000 |
[AJP 3 00304 | 1LDQ 00050 |
[DvI 0 00100 | sTq 00200 |
[SLI 0 01000 | ENI 00000 |
[sTA 0 00060 | SLJ 01000 |




11.

12.

[N}

Store (Qi) and

(00200) = STQ 00100 STA O 00101 (Ai)

(00201) = SUB 00100 STA 0 00102 Subtract (Q)
from (A), store
the difference

(00202) = LDA 00151 ADD O 00100 Load Ay into A,
add Qi

00203y = | AJp 3 00208 | ENQ 0O 00000

(00204) = | DVI 00102 Continue Program|

(00205) =

(00206) = ENQ 77777 SLI 0 00204

(00100) = | EmA (L9090 STA 0 00200 | Place X in Q
and memory

(00101) = (-MUI 00200 ARS O 00001<J Square X and
divide by two

(00102) = [ sTA 0 90.0i ENA 0 00001 | Store (Q), enter

' 1 into A

(00103) = | SUB 00201 STA 0 00077 | Subtract (00201)
from 1, store
in 00077

CUHAPTER 1

Upper

The next instruction is executed.

The contents of the mewory location are not changed by the

storage skip, thcy are shifted lert one place by the storage

shift.

B-7



10.

11.

12.

13.

14.

15.

Index register 3 is cleared and the next instruction 1is

skipped

Twice

Memory, Accumulator or Q register

False

ol ol & N @}
L
—
L}
[=]

False (A yes, but Q no)

0000000000000017

Yes

ENI 0 00000 |

False

True

(00100)

(00101)

(00102)

(00103)

|ENT 1 00000 | ENI 00000 ]
ENQ 0 00007 | ENA 5 00000
STL 1 00100 | ARS O 00003
ISK 1 00004 | SLI 0 00102

Clear B1

Extractor— Q,
(Bs)' A

Store the last
digit, Shift A
right

Loop back to
00101 4 times



(00104)

(00105)

(00106)

(00107)

(an alternative solution)

(00100)

(00101)

(00102)

(00103)

(00200)
(00201)

f

nn

[Lpa 1 00100 | 1INI 1 00001 |
[ENT 0 00000 | apD 1 00100 |
[IsK 1 00004 | SLI 0 00105 |
| STA 0 00050 | LIL 3 00050 |
[ENI 1 00004 | ENQ 5 00000 |
[LDL 0 00201 | ADD O 00200 |
| STA 0 00200 | QRS O 00003 |
[1Jp7 1 00101 | LIL 3 00200 |
0000000000000000
0000000000000007 constants

B-9

Place first
digit in A, and
a l in index
register 1

Add first two
digits

Add 3 remain-
ing digits

Store sum in
00050 and index

reglister 3

Enter 4 into
index register 1

and (index register

5) into Q

Load last digit
into A, add
(00200)

Store (A), Shift
right 3

Jump to 101,
reduce index reg.
1, when ind. reg.
1 =0, load sum
into ind. reg.3




CHAPTER V

1. False

2. A and Q

3. 0.100 — 011

b, 0.111 =— 111 or .377 =—— 7lg

5. True

6. False

7. False (either 3 or 7 will stop the computer)

8. S3T 0 00100

9. [sc. 0 00100

10. One storage location will be searched - the one whose

address 13 the execution address

11. An unconditional jump

12. The next instruction is skipped

13. The next instruction is executed

14. The execution address of the search instruction is added

to the contents of the index register referenced by the
search instruction

B-10




15.

16.

17.

18.

19.

Equality Search
Threshold Search

Masked Equality Search
Masked Threshold Search

Instruction: lTHS 5 000651

Contents of index register 5:

00062

The Add instruction stores its sum in A, the Replace Add
does this but also stores the sum in mewory.

A register: 7777777777777776

(00100)  : 7777777777777776

A register: 0000000000000007

(00100)  : 0000000000000007

(00100) = [ENI 1 01747 | ENI 0 00000 |

(00101)

Il

|LDA 1 00201 | sTa 1 00204 |

(00102)

[1JP 1 00101 [Continue Program|

(an alternative solution)

(00100) = |ENI 1 77777 ENI 2 01747
(00101) = |LDA 1 02150 | STA 1 02153
(00102) = |INI 1 77776 | 1JP 2 00101]

B-11

Enter 1747 (1000 0)
into index reg. 1
Load contents of
last address into
A, store at
address3 greater

Repeat 1000 times

Enter negative zero
into B,. Enter
100010-1 into B,

Load contents of
last address into
A, store at address
3 greater

Subtract 1 from
ind. reg. 1, jump
to 00101 repeat
1000 times



APPENDIX C

1604 ASSEMBLY ROUTINE
(JUNE 1959)

GENERAL DESCRIPTION

The assembly routine will convert a program from a special symbolic
shorthand notation to a fully-encoded program suitable for loading into
the computer.

In this shorthand notation, each instruction or constant is represented
by one entry. An entry is one line of information, as typed on a Flexo-
writer or punched onto one card.

Certain pseudo-instructions can also be represented by certain entries,
Pseudo-instructions are used to specify a starting address, to insert
constants, to reserve space, to include special remarks, to assign add-
resses to alpha-numeric location symbols, to call for the assembly of
certain subroutines from a special magnetic library tape, or to end the
assembly,

Each entry consists of one to four terms, followed by remarks. Each
term consists of one or more consecutive characters, followed by one

or more spaces or tabs (Flexowriter tabulator functions.). The remarks
consist of anything following the last term.

The arrangement and nomenclature of terms and the remarks for each
entry are as follows:

Tag, operation code, b-term, m-term, remarks,

For certain types of entries, some of these terms are not required.
The remarks are always optional. The operation code term is always
required.

The tag term is used to assign an alpha-numeric location symbol to an
instruction or constant, This permits execution addresses in the pro-
gram to be represented symbolically., A location symbol consists of

a letter, followed by letters or digits, to a maximum of eight characters.

The operation code term can be either a three-letter mnemonic code,
or two digits corresponding to the octal operation code portion of the
desired instruction,




The b-term, used to represent the b-designator for instructions, can be
either a single digit (0-7) or the letter "N'" to represent indirect address-
ing. ''N' is equivalent tob = 7,

The m-term is a value in either absolute or symbolic representation.
For instruction entries, the m-term represents the m-portion, or base

execution address, of the instruction.

Tor example, an instruction is represented by a tag (optional), 2 three-
letter operation code, a single-character b-term, and an m-term repre-
senting a base execution address. A portion of a program encoded in

this manner will appear as follows:

Operation
Tag Code B-term M-term Remarks
LOOP ADD 0 CONSTANT Add Constant
SUB 6 LIST+7 Subtract next value
INDEX P 6 LOOP Index B6
SLS 0 EXIT Stop, jump to exit

The symbol LOOP appearing in the m-term of the IJP instruction thus
specif ies an indexed jump to the ADD instruction. The terms CONSTANT,
LIST, and EXIT refer to otherlocations specified in a similar manner,
elsewhere in the program. In the SUB instruction, the value following the
symbol LIST modifies it, so that the base execution address portion of the
instruction is equal to the numerical location equivalent of LIST, plus

seven,

A typical pseudo-instruction entry is that for the Origin Address function.
To start a program at address 70000, the Origin pseudo-instruction
would precede the first instruction entry, as follows:

Operation
Tag Code B-term M-term Remarks
{(none) ORG {none) 70000 Start at 70000




The use of the symbolic codes and locations not only simplifies the
writing of a program, but also facilitiates debugging, allows rapid
reencoding for different ranges of addresses, and provides the pro-
grammer with a clearer understanding of what a program is accom-
plishing than could be had by examination of an entirely numerical copy
of the program. Also the pseudo-instructions used with the assembly
permit many programming short cuts to be made.

A simplified flow diagram of the program is shown in Figure 17. In-
structions are entered on consecutive lines of a worksheet. These
entries along with remarks the programmer may have entered to the
right of any entry are either typed on a Flexowriter to punch a paper
tape, or punched onto 80-column cards (one line per card). The cards
or paper tape entries are first converted to successive binary-coded -
decimal records on magnetic tape, and the resulting tape is used as the
input medium for the ""assemble' portion of the assembly program.

The '"assemble''routine will normally require two executions, or ''passes''.
The first pass examines the input magnetic tape to determine the assign-
ment of all location symbols., The assignments are stored in a directory
capable of holding assignments for 2048 location symbols. The second
pass, made with the same input tape, performs the translation from the
symbolic-encoded form to the numeric form and records both forms

along with the original remarks. Both passes check for certain errors
and record these errors on a printed sheet via the monitor typewriter.

If a simple arrangement rule is followed, the routine can function as a
one-pass assembler, The rule is that each location symbol must be
defined by using it as a tag before it is used in an m-term. If the opera-
tor is attempting to write for one-pass but has ignoredthis rule, the
assemble routine will sense the error and stop for a change to the two-
pass mode,

The output is on magnetic tape, which can be converted to paper tape
punched in Flexowriter code, converted to line-printer copy, or loaded
into the computer memory.

Examples of a symbolic-encoded program and the resulting output are
given in Tables I and II. The rules for using the instructions, pscudo-
instructions, tags, and remarks are given below,




MAGNETIC
TAPE
INPUT

MAGNETIC
TAPE
QUTPUT

PRINT
PUNCH

COMPUTER
MEMORY

LINE
PRINTER
LISTING

TYPED
LISTING

Figure 17
SIMPLIFIED FLOW DIAGRAM

Assembly Program
c-4




DESCRIPTION OF ENTRIES

a. REMARKS ONLY - If it is desired to enter a line of remarks only on
the copy, an operation code REM is followed by a maximum of 80 charac-
ters. For all other types of entries, remarks are limited to 48 characters.

b. EQUIVALENCE - To assign a location symbol to the first location of
a group of working storages, or to equate two location symbols, a tag
consisting of a location symbol (letter followed by letters and digits, up
to eight characters) is followed by the operation code EQU, and an m-
term address. The address can be an all-numeric octal value denoted

by a value consisting of a maximum of five digits; an all-numeric decimal
value denoted by appending "D'' to the value term; or regional address,
consisting of a location symbol followed by a + or — and a value of one

to five digits, with a "D'' appended if the modifying value is to be inter-
preted as decimal.

c. ORIGIN ADDRESS - To start a sequence of instructions at a particular
locztion, an operation code ORG is followed by a regional or numeric m-
term address similar to that used to the right of the EQU operation code.

d. INSTRUCTION - For an instruction, the tag term is optional, but,
when used, assigns a location symbol to theinstruction location. A loca-
tion symbol tag can only appear to the left of an instruction that is to be
assembled into the upper half of a word.

The b-designator may be a digit (0 through 7) or the letter "N', which is
equivalent to 7 and denotes "indirect',

The m-term can consist of a numerical or regional address similar to
that used after the EQU code. An additional feature is that the region
symbol portion of this term can also consist of a slash (/), to denote the
location of the current word. Thus, to jump to a location two greater than
the current location, the operation code, b, and m-terms are as follows:
SLJ 0 /+2.

e. DECIMAL VALUE - To insert a decimal constant into a location, the
operation code DEC is used. A tag consisting of a location symbol is
optional. The m-term consists of a sign (+, -, or blank), a value of up
to 14 decimal digits, a decimal scaling consisting of a ''D'" followed by

a sign (+ or- ) and one or more decimal digits, and a binary scaling con-
sisting of a "B " followed by a sign (+ or - ) and one or more decimal
digits. If the value contains a decimal point (period) in any position, the
constant is packed into floating point form. If no decimal point is present,
an integral constant will result, Both the dedmal and binary scalings are
optional.

‘C-5



f. OCTAL VALUE - To insert an octal constant, the operation code OCT
is used. A tag consisting of a regional symbol is optional. The m-term
consists of a sign (+, -, or blank) and up to 16 octal digits.

g. BINARY-CODED-DECIMAL INSERTION - To insert binary-coded-
decimal characters into a word, the BCD .operation code is used. A region
symbol tag is optional. The m-term consists of a slash (/) and the next
eight characters, including spaces.

h. FLEXOWRITER CODE INSERTION - To insert Flexowriter codes into
a word, the FLX operation code is used. A region symbol tag is optinnal.
The m-term consists of a slash (/) and eight characters, including spaces.

i. LIBRARY SUBROUTINE ASSEMBLY - To insert an entire library sub-
routine into the program, the title of the subroutine (stored on the library
tape) is used as a tag. This is followed by the operation code term LIB,
and an m-term representing a regional or absolute starting address for
the subroutine. The starting address is similar to the m-term used for
an instruction,

jo RESERVE BLOCK STARTING WITH SYMBOL - To reserve a block

of consecutive addresses and assign a location symbol to the first location
of the block, a location symbol tag term is followed by the operation code
BSS and an m-term consisting of a maximum of five digits, appended by
“D" if the value is to be interpreted as decimal, or no "D" if the value is
octal. The m-term specifies the number of locations to be reserved.

k. RESERVE BLOCK, END WITH SYMBOL - If it is desired to reserve a
block as described above, except that a location symbol is to be assigned

to the last location of the block, a location symbol tag is followed by BES,
and an m-term similar to that used for BSS,

1. END ASSEMBLY - To end the assembly program during either pass,
the last entry must consist of the operation code END,

FORMAT RULES

Each entry is interpreted as the information on a punched card or one line
of Flexowriter copy. If Flexowriter tape is to be used, a blank line (pro-

duced by a carriage return not preceded by any visible symbols) is ignored
by the assembly program.

The assembly program detects terms by means of their separatinn of
spaces, with the number of terms that are detected depending upon the type



of entry. Anything appearing to the right of the last term is interpreted
as remarks. The only input format requirement is that each term
(except the m-term for FLX or BCD) consist of successive characters,
and that the left-most character of the tag term, if present, must be in
the extreme left position of the input: i.e., column 1 on a punched card,
or the left margin for Flexowriter input. Any number of spaces may sep-
arate the terms. Non-significant digits of a valne may be omitted. In
an all-numeric term of positive value, the+ sign may also be omitted.

All of these features are included to eliminate the tedious writing of re-
dundant symbols on the input copy, and to make the reproduction onto
the cards or tape as simple as possible,

During encoding, the programmer must realize that each instruction occu-
pies one-half of a word, and each operand occupies an entire word.
Because some instructions such as Load Index Lower refer to a specific
half of a word, and because the addition of a constant n to an address
increments the address by n locations (not by n instructions), it is neces-
sary that the programmer pair his instructions; i.e., he must know, for
each instruction, whether it is to be assembled into the upper or lower
half of a computer word, and must include pass instructions (ENI with b= 0)
or blanks.

The detailed format rules for each type of entry are given in Table III
and its accompanying notes,

c-7



TABLE I

ASSEMBLER INPUT FORMAT

REM -- TRANSFER 6SIN3X TO Y, FOR 3 X-VALUES
YSTOR EQU 6000 Assign Y storage

ORG 500 Start at address 500
COMP ENI 10 Start of computation, clear sl

ENA 0 O Clear A
LOOP LDQ 1 XSTOR X-Storage to Q

MUI O CONST Multiply by 3

LLS 0 60 Shift product to A

SLJY 4 SINE Return jump to sine

LRS 0 60 Sine to Q

ENA O O Clear A

MUI O CONST+1 ' Multiply by six

STQ 1 YSTOR Store Product

ISK 1 2 Index Bl toward 2

SLJ 0 1LoQPp Junp to obtain next X

SLS 0 COMP Stop

000 Blank

XSTOR DEC +1247D+1 Value 12470 dec.

DEC 79825 Value -78825 dec.

DEC  +52891B+1 Value +105782 dec.
CONST OCT 3 Value 3

oCT 6 Value 6
TEMP  BSS 3 Reserve 3 locations
SINE77 LIB / Load Sine Routine No. 77 here

END End Assembly



TABLE 11

ASSEMBLER OUTPUT FORMAT

REM -- TRANSFER 6SIN3X TO Y, FOR 3 X-VALUES
YSTOR EQU 6000 ASSIGN Y STORAGE
ORG 500 START AT ADDRESS 500
00500 50 1 00000 COMP ENI 1 0 START OF COMPUTATION, CLEAR Bl
10 6 60000 ENA O O CLEAR A
00501 16 1 00600 1OOP LDQ 1 XSTOR X-STORAGE TO Q
24 0 00100 MUT O CONST MULTIPLY BY 3
00502 07 0 00060 LIS 0 60 SHIFT PRODUCT TO A
75 4 00514 SLT 4 SINE RETURN JUMP TC SINE
00503 03 0 00060 LIRS O 60 SINE TO Q
10 0 00000 ENA 0 O CLEAR A
00504 24 0 00101 MUI O CONST+1 MULTIPLY BY SIX
21 1 00604 STQ 1 YSTOR STORE PRODUCT
00505 54 1 00002 ISK 1 2 INDEX Bl TOWARD 2
75 0 00501 SLJY 0 Loop JUMP TO OBTAIN NEXT X
00506 76 0 00500 SLS 0 COMP STOP
00 0 00000 000 BLANK
00507 00 O 00000 XSTOR DEC  +1247D+1 VALUE 12470 DEC.
00 O 30266
60510 77 7 77777 DEC -79825 VALUE -79825 DEC.
77 5 44056
00511 00 0 00000 DEC  +52891B+1 VALUE +105782 DEC.
00 3 16526
00512 00 O 00000 CONST OCT 3 VALUE 3
00 0 00003
00513 00 0 00000 OCT 6 VALUE 6
00 0 00006
00514 00 0 00000 TEMP BSS 3 RESERVE 3 LOCATIONS
00 0 00000
00517 75 0 77777 SIN77 LIB / LOAD SINE ROUTINE NO. 77 HERE
50 6 00007

(etc., to end of sine routine)

01026 12 0 01000

75 0 00514
END END ASSEMBLY

Cc-9



TABLE III

Detailed Format Rules
(See Accompanying Notes)

Function Tag Op. Code B-term M-term Remarks
Remarks
only REM Note 13
Symbol
Equivalence Note 1 EQU Nae 7 Note 14
Origin

- Address ORG 7 Note 14
Instruction Note 2 Note 5 Note 6 Note 7 Note 14
Decimal
Value Note 3 DEC Note 8 Note 14
Octal
Value Note 3 OCT Note 9 Note 14
BCD
Characters Note 3 BCD Note 10 Note 14
Flexowriter
Characters Note 3 FLX Note 11 Note 14
Library
Assembly Note 4 LIB Note 7 Note 14
Reserve
Block, Start
with Symbol Note 3 BSS Note 12 Note 14
Reserve
Block, End
with Symbol Note 3 BES Note 12 Note 14
End Assembly END Note 14

€-10



Note 1:

Note 2:

Note 3:

Note 4:

Note 7:

Note &:

Note 9:

Note 10:

The tag must be present, and must be a location symbol (a
letter followed by letters or digits, to a maximum of eight
characters).

The tag is optional, but if present, must be a location symbol
and must be located only to the left of an instruction that is
to occupy the upper-half position of a word.

The tag is optional, but, if present, must be a location symbol.

The tag specifies the title of a library routine. The title, which
must agree with that recorded in the first word of the library
routine on the tape, must consist of one to eight characters.

For instructions, the operation code may be either the three-
letter mnemonic symbol, or the two-octal-digit operation code.

The b-designator may be either a single octal digit (0 through 7),
or the letter ""N'', to denote indirect addressing. The letter "N"
is equivalent to 7,

The m-term may be either an absolute octal address (cone to

five octal digits), an absolute decimal address (one to five digits
followed by a D), or a symbolic relative address consisting of

a location symbol, a sign (+or -), and a modifying value. The
modifying value may be octal, or decimal digits followed by

a D. Also, for instructions on library assembly, the location
symbol can be a slash mark (/) and a modifying value, with

/' denoting "'this location'.

The m-term for a decimal constant must consist of a sign

(4, -, or blank) followed by a maximum of 14 digits. A deci-
mal scaling consisting of a D followed by a sign (+ or -) and a
decimal value, and a binary scaling consisting of a B followed

by a sign (+ or - and a decimal value are both optional, If a

decimal point appears in the value, or to the right of the value,
the value is packed into floating point form.

The value for an octal constant must consist of a sign (+ , -, or
blank) followed by a maximum of 16 octal digits.

To insert binary-coded-decimal characters, the value must

congist of a slash (/) followed by eight characters, including
spaces.

c-11



Note 11:

Note 12:

Note 13:

Note 14:

To insert Flexowriter characters, the value must consist of

a slash (/) followed by eight characters, including spaces,
shift up, and 2hift down. If the program input is via punched
cards or the cutput Is via the line printer, certain characters
are not permlieaible,

The value for a block reserve must consist of a + sign or blank,
followed by a maximum of five digits and a ""D" if the value is
decimzl, If the '"D'is not present, the value is interpreted

as octal,

Remarks for the REM code may consist of a maximum of 80
characters, lncludlng spaces.

Remarks for all codes except REM may consist of a maximum
of 48 characters, Including spaces.

c-12




TABLE IV

SUMMARY OF OPERATION CODES FOR 1604 ASSEMBLER
A, INSTRUCTION OPERATION CODES

Note: Use Either Mnemonic or Two-Digit Code

Digits Mnemonic
00 ZRQO Zeros in Operation Code Pouition
0l ARS A Right Shift
02 QRS Q Right Shift
03 RS Long (AQ) Right Shift
04 ENQ Enter Q
05 ALS A Left Shift
06 G1.S ) Left Shift
07 118 Long (AQ) Left Shift
10 ENA Enter A
11 INA Increase A
2 LA Ioad A
13 1LAC Load A, Complement
14 ADD Add
15 suUB Subtract
16 LDQ Load Q
17 LQC Load Q, Complement
20 STA Store A
21 S5TQ Store Q
22 AJP A Jump
23 QIP Q Jump
24 MUI Multiply Integer
25 DVI Divide Integer
26 MUF Multiply Fractional
27 DVE Divide ¥Fractional
30 FAD Fleating Add
31 - FsB Floating Subtract
32 EMU Floating Multiply
33 FDV Floating Divide
34 SCA Scale A
35 SCe Scale AQ
36 SSK Storage Skip
3 S&5H Storage Shift
40 S5T Selective Set
41 SCL Selective Clear
42 SCM Selective Complement
43 SSU Selective Substitute
44 ILDL Load Logical



INSTRUCTION OPERATION CODES (Continued)

45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

ADL
SBL
STL
ENI
INI
LIU
LIL
ISK
op
SIU
SIL
SAU
SAL
INT
OouT
EQS
THS
MEQ
MTH
RAD
RSB
RAO
RSO
EXF
SLJ
SLS
SEV

Add Logical

Subtract Logical

Store Logical

Enter Index

Increase Index

Load Index, Upper

Load Index, Lower

Index Skip

Index Jump

Store Index, Upper

Store Index, Lower
Substitute Address, Upper
Substitute Address, Lower
Input Transfer

Output Transfer

Equality Search

Threshold Search

Masked Equality

Masked Threshold
Replace Add

Replace Subtract

Replace Add One

Replace Subtract One
External Function
Selective Jump

Selective Stop

Sevens in Operation Code Position

- C-14



REM
EQU
ORG
DEC
OoCT
BCD
FLX
LIB
BSS
BES
END

B. PSEUDO-OPERATION CODES

Enter Remarks Only

Equate or.Define Location Symbol

Set Origin Address

Insert Decimal Constant

Insert Octal Constant

Insert Eight BCD Characters

Insert Eight Flexowriter Characters
Insert Library Routine

Reserve Block, Start with Location Symbol
Reserve Block, End with Location Symbol
End Assembly



TABLE V
BCD CODES USED FOR ASSEMBLER

Character Code Character ~ Code
0 12 0 46
1 01 P 47
2 02 Q 50
3 03 R 51
4 04 S 22
5 05 T 23
6 06 u 24
7 07 v 25
8 10 w 26
9 11 X 27
A 61 Y 30
B 62 Z 31
C 63 =2 13
D 64
E 65 - 40
F 66 $ 53
G 67 * 54
H 70 + 60
I 71 . 73
J 41 ) 74
K 42 blank (space) 20
L 43 / 21
M 44 , 33
N 45 _ ( 34

Note: In the event that these do not agree with the codes used at a
particular installation, the assembly routine can be modified
easily, as these codes are all contained in a compact 'code
list'" in the routine.

c-16



APPENDIX D

LOAD AND DUMP ROUTINES

FLEX LOAD

The Flex Load routine will read a paper tape prepared in flexcode,
translate it into binary, and load it into the core memory of the com-
puter. For each memory location to be loaded, the paper tape must
contain the address of the memory location and the information which

Is to be loaded into that location. The address must be preceded by

a carriage return. The routine will accept paper tapes which contain

a check sum (output of Flex Dump routine). To load paper tapes
pPrepared on the Flexowriter, set Selective Jump Key 1. (It is assumed
that tapes prepared on the Flexowriter will not contain a check sum. )

The Flex Load routine will accept tapes prepared in two different
formats:

1. Carriage return, address, tab, upper instruction, remarks
(optional), carriage return, tab, lower instruction, remarks
(optional).

2, Carriage return, address, upper instruction, lower instruc-
tion, remarks (optional).

If a tape prepared in format 2 is to be loaded, set Selective Jump Key 2.
In either format the spacing within the instruction may be variable.

The last information to be entered into the computer should be followed
by a carriage return and an end code. When the routine recognizes this
end code, the check sum punched on the paper tape is compared with
the check sum computed while the paper tape is being loaded. If these
are the same, a jump to the beginning of the Flex Load routine is made
and the computer stops. If they are not the same, the typewriter types
'check sum error', a jump is made to the beginning cf the Flex Load
routine, and the computer stops.

D-1



FLEX DUMP

The Flex Dump routine punches, in flexcode, a paper tape of the
contents of a specified area of core memory. The area is specified
by placing the first address of the area in index register 6 and the
last address of the area in index register 5. These addresses are
inclusive. If it is desired to suppress punching the contents of those
addresses containing zero, Selective Jump Key 1 should be set.

A check sum of the contents of the locations being dumped is computed
and punched on the tape. This check sum is preceded and followed by
carriage returns. Each address of the specified area is punched,
followed by the contents of that address and a carriage return. When
-an address ending with seven is punched, the contents of that address
are followed by two carriage returns. After the carriage return fol-
lowing the contents of the last address to be dumped, an end code is
punched. This end code will be recognized by the Flex Load routine if
this tape is used as an input tape.

Format sample:

76 543210 01 2 34567 (check sum)
01000 751 01101 20 0 01076
01001 10 001200 14 3 02000

D-2



BIOCTAL LOAD

The bioctal load routine is used to load a bioctally-punched paper
tape into the computer via the paper tape reader. The format re-
quired on the paper tape is the same as the output format of the
Bioctal Dump routine, The addresses to be loaded appear first on
the tape, followed by a check sum of the information to be loaded.
The information to be loaded into those addresses then follows.

A check sum is computed as the information from the paper tape is
loaded into the computer. After the tape has been loaded, the com-
puted check sum is compared with the punched check sum to see if
they are the same. If they are the same, this I8 a reliable indication
that the information has been loaded correctly. A difference in check
sums indicates that the information has not been correctly loaded into
the computer. In the latter case, the typewriter will type'check sum
error'. In either case, the computer stops at the beginning of the
bioctal load routine.

The reader assembly mode of operation is used in this routine, necessi-
tating the presence of a seventh level hole every eighth frame.

D-3



BIOCTAL DUMP

The Bloctal Dump routine punches a bioctally-coded paper tape of

the contents of a specified area of core memory. This area is
specified by entering the first address into index register 6 and the
last address into index register 5. Each location of memory dumped
occupies eight frames of paper tape (six bits per frame) and a seventh
level hole is punched in the first frame of each group of eight frames.
This seventh level hole is used for control in loading tapes.

The beginning and ending addresses of the area of core memory being
dumped are first punched on the tape. This makes the tape suitable
for reloading into the computer by use of the Bioctal Lioad routine.
Following the area being dumped, a check sum of the contents of that
area is punched. The actual contents of each storage location being
dumped are then punched on the tape in consecutive order.

This routine also punches leader at the beginning and end of the punched
area. There are no seventh level holes in the leader.



e
Sample of fcrmat: hNT }
-]
. f leader
.3
——>{0 :
0o 0
b addresses
A o2 §
(o] 0] Oo
009 o )
o check sum
7th level 9° 2:000 f
control e
lo 00000 0
o) o
ogo
o oo (01200)
00 0°0 00
000
> °3
i 0 0000 1(01201)
o oe o ||
> ° J
o) 300 0 00 O
= ° 0°0 0
s (01202)
y 0 o
< o
- .
° } leader
H
H
/\Q/\

Bioctal dump of addresses 01200 through 01202, containing the following:

(01200) 75 4 01400 50 0 00000
(01201) 57 3 01000 56 4 01100
(01202 75 4 01500 50 O 00000

D-5



TAPE CONTROLLED IL.OAD

The Tape Controlled Load routine will load a paper tape into any area
of core memory, providing the tape has been prepared in the correct
format. It s impossible to load a tape in the same area in which the
Tape Controlled Load routine is located, but the routine itself checks
for this conditicn. The desired starting address is entered into index
register 6.

Tapes to be loaded using this routine should be coded starting at
address 00000. However, instead of typing the address on the tape,
as is done for the Flex L.oad routine, a control digit precedes the
information to be loaded into each address. This control digit is
interpreted by the routine as an address modifier, so that when a tape
is loaded starting at a base address (index register 6) the base address
is added to each execution address which requires modification. Add-
resses are loaded consecutively starting with the base address, so
there must be information on the tape for each address and it must be
in consecutive order. The paper tape must be coded in flexcode. It
may be prepared on the Flexowriter or by using the Tape Controlled
Dump routine,

The control digits used are 0, 1, 2, 3, 4, and 7. The meanings of
these digits are as follows:

do not modify

modify the upper address of this word
modify the lower address of this word
modify both addresses of this word

check sum (not to be loaded into computer)
end of tape, stop

N b WY~ O

Example of tape format:

75 4 00066 50 0 00045
551 00011 16 000122
10 0 00045 50 1 00000
201 00114 75 4 00075
54 1 00004 75 0 00Cl4
56 7 00267 30 5 00302

~N bV WO W

Using the above tape and setting index register 6 to 76400, the contents
of addresses 76400 - 76404, after the tape has been loaded, will be:

D-6



(76400)
(76401)
(76402)
(76403)
(76404)

75
55
10
20
54

O — &

[P W

76466
76411
00045
76514
00004

50 0 00045
16 0 76522
50 1 00000
75 4 76475
75 0 76414

D-7



TAPL CONTROLLED DUMP

The Tape Controlled Dump routine will punch on paper tape the contents
of a specified area of core memory in a format which may be used as
input for the Tape Controlled L.oad routine.

Each execution address of each memory location in the specified area is
examined to see whether it falls between the first and last address being
dumped (inclusive). If neither address is in this area, the contents are
punched on the paper tape preceded by a control digit of zero. This
control digit indicates to the Tape Controlled Load routine that this word
should be loaded as it is, without modification. If either address falls
within the area being dumped, the word is further examined to see if
either of the function codes is one which uses the execution address as an
operand*, in which case the half word in which that function code occurs
is not modified. If it is found that only the upper address of a word should
be modified, the control digit for that word is a one; if only the lower
address should be modified, the control digit is a two; and if both addresses
should be modified, the control digit is a three. The first address of the
area being dumped is subtracted from those addresses which should be
modified before they are punched on the paper tape.

A check sum of the area being dumped is computed. This sum is punched
at the end of the tape, preceded by a control digit of four. The four indi-
cates to the Tape Controlled Load routine that the word following should
not be loaded into the next location but should be used to compare with
the check sum computed during the loading process,

The last entry on the tape, following the check sum, is a control digit of
seven, which is merely a signal to stop. Each control digit is preceded

Dy a carriage return. An extra carriage return is punched after every
eight words.

%01, 02, 03, 04, 05, 06, 07, 10, 11, 34, 35, 50, 51, 54, 74,0, 74.7.

D-8



TYPE TEXT

Type Text is a subroutine which may be used to type out error indica-
tions or other information for the benefit of the operator. The subroutine
is entered by a return jump.

Flexcode for the information to be typed should be stored, eight codes
per storage location, in consecutive addresses immediately following
the address in which the return jump is located. The order in which

the flexcode is sent to the typewriter is from left to right. A 77 code
should be stored following the flexcode for the last character to be typed.

Any number of locations may be used for storage of Ilexcode. The Type
Text subroutine modifies its own exit each time it uses one storage
location packed with flexcode, In this way, when the 77 code is reached,
control is returned to the main routine at the address following the one
in which the 77 code is stored.



APPENDIX E

TRACE PROGRAM

GENERAL

The TRACE program monitors the execution of any other program by
indicating the instruction location and the contents of A and Q, after
execution of each instruction. Indication is primarily by means of a
paper tape punched in Flexowriter code, but a printed copy can also
be made at any time at the monitor typewriter, so that the progress
of the monitored program can be observed.

A number of options are available, so that the program can be made to
(1) either punch, or print and punch; (2) indicate either all instructions,
or only those lying within certain pre-selected ranges; (3) indicate
either the location and contents of A and Q, or just the location; and
(4) either perform the functions described above, or indicate only
locations of all executed jumps and their destinations.

To accomplish this, the TRACE program is first set up by loading the
starting address of the program-to-be -monitored, along with the
desired ranges of locations to be traced, into a ''directory."

When the TRACE program is started, it extracts each instruction from
the monitored program, enters it into a special ''test block, ' executes
it, and punches or prints certain indicators, in accordance with para-
meters in the directory. Also, if any of the input/output channels are
activated by an instruction of the monitored program, printing or
punching ceases until all previously activated channels are deactivated;
this feature prevents interference with the use of the input/output equip-
ment by the trace program, and thus permits the use of TRACE on any
type of program, providing the monitored program does not destroy

any of the addresses within TRACE.

DIRECTORY

The directory is punched on paper tape in Flexowriter code, in a format
which is the same as that used for Flex-load. An example is shown in
Table V 1.

The first word of the directory, to be loaded into address 77600, con-
tains a ''mode designator'' and a starting address equal to the initial
location of the program to be monitored. Succeeding words contain



ranges, with the lower-value address in the left half, and the higher,
in the right half. The directory is terminated by choosing the right-
most address of the next word equal to zero. A maximum of 200
(octal) words can be used in the directory.

OPERATING INSTRUCTIONS

After TRACE and the program-to-be-monitored are loaded, load the
directory via the Flex-load routine. Set the program address counter
to 72000, and select the jump keys in accordance with the program
being monitored.

TABLE VI
TYPICAL DIRECTORY

77600 77 7 00000 00 O 01000 Designator Starting Address
77601 00 O 01000 00 O 01377 Range

77602 00 O 01600 00 O 01607 Range

77603 00 0 01614 00 O 01614 Range

77604 00 0 02010 00 O 02014 Range

77605 00 0 00000 00 O 00000 End of Directory

Note: In word 77600, the left-most three octal digits (815, 814, 813) con-
trol the mode, and are selected as follows:

Digit 815 = 0 : Punches instruction location and contents of A
and Q.

#0 Punches only jump sources and destinations.
Digit gld = 0 Punches for each instruction.
#0 Punches only for instructions within ranges
specified by directory.
Digit 813 =0 Punches
0 :" Prints and punches.

E-2



APPENDIX F

Program for Duplicating

Punched Tape

The operator places a tape in the reader with first punched data frame
leas than 20 (octal) frames ahead of the reading station. The program
reads each group of 20 consecutive frames, and reproduces these on
the high speed punch. As soon as 20 consecutive blank frames (trailer)
have been punched, program stops.

Flow Chart

Turn on Set Address
@—' Punch [ 1 & 2 lower (:)

Initiate
Read of No
20 frames

Yes

Initiate Punch
of 20 frames

Done ?

Yes

ol

All blank? Yes Stop

Bt




Program

(60000)

(60001)

(60002)

(60003)

(60004)

(60005)

(60006)

(60007)

(60010

(60011)

(60012)

(60013)

(60014)

EXF
ENI

SIL
SIL

EXF
SLS

EXF
EXF

LIU
Pass

ISK

SLJ

EXF
EXF

LIU
Pass

ISK

SLJ

ENI
Pass

LDA
AJP

ISK
SLJ

SLS

(&)

o~

N

11211
60120

00001
00002

11211
00000

11200
60100

00001

60120

60004

11200
60100

00002

60120

60007

00000

60100

60000

oool7
60012

60000
asee;

Select and turn on punch motor
Set .erminating address in B

Store Term. Address in lower (00001,
Store Term. Address in lower (00002)

Sense presence of char. mode; if not

present, stop.

Select Reader
Activate read, starting at 60100

Put machine count of words
read from 00001 (upper) into B6

I (B6) =Terminating Address, skip
If (Bb) $Terminating Address, take N.I.

Jump to test step agan.

Select punch in character mode

Activate punch starting from (00100)

Put machine count of words punched

from upper (00002) in B®

If (B6) =Terminal Address, skip

I (Bé) #$Terminal Address, take N.I

Jump to test step again

Clear B6

Send word to A

If first word - 0, go back for more data

If (86) =17, skip, (all last words were

1t (B®) #17, take N. I

STOP

F-2

zeros)



This program adds one record to the end of magnetic tape 1.

APPENDIX G

Program for Adding One Record to File

It is assumed

the end of data on tape is marked by an end-of-file mark. The program ad-
vances the tape past the end of file mark, backs up two records, advances

one record and then writes the addttional record from memory 60000-60177,
and then writes a new end-of-file mark.

The reason for backing up two after reading end-of-file, then advancing by

one, is so that writing shall follow a forward movement.

If writing follows

a back-up, especially over an end-of-file mark, the spacing between records
will not be constant.

Flow Chart

Ready
to read?

No —-

Yes(E)—

Read 1
Record

Back 1
(End of 13— No—(2) Dack 1
N Read? / Yes -
¥ o_]
Back 1 Ready\y—N
Record to Read Yes—» Read 1
Record
Write J
Additional Ready No Write
Record to read? Yes—> End of File
Mark
Note: '"Ready to read'' implies

""previous function completed. "

(Ready to read? — Noj

Y

es



program

(50000) = EXF 7 32010 Is mag. tape 1l ready to read?
SLJY 0 50000 If not ready, wait.
(50001) = ENI 6 Temp+1 Set B® to temp. address 1
SIL 6 00003 Store term address in lower (0003)
(50002) = EXF 0 32010 Select Mag. Tape 1 to read
EXF 3 Temp Read one word to memory - tape
moves one block,
(50003) = EXF 7 32010 Sense if ready to read again
SLJ 0 50003 If not ready, walit.
(50004) = EXF 7 32012 Sense if end-of-file read
SLJ 0 50001 If not end-of-file - read again.
(50005) = EXF 0 32011 Move back one record
Pass
(50006) = EXF 7 32010 Sense, if ready to read
SLJ 0 50006 If not ready, wait.
(50007) = EXF 0 32011 Move back one record.
Pass
(50010) = EXF 7 32011 Sense, if ready to read
SLJ 0 50010 If not ready, wait.
(50011) = ENI 6 Temp+l Set B6 to Term Address
SIL 6 00003 Store term. add. in 00003.
(50012) = EXF 0 32010 Select mag. tape 1
EXF 3 Temp Activate read
(50013) = EXF 7 42012 Sense end-of-file on tape 1
SLJ 0 50013 If not ready, wait.
(50014) = ENI 6 Rec+200 Set B to term address
SIL 6 00004 Enter term. add. in 00004.
(50015) = EXF 0 42010 Select Write
EXF 4 Rec Write activate
(50016) = EXF 7 42017 Sense end of write indicator
SLJ 0 50016 If not ready, wait,
(50017) ~ EXF 0 42016 Write end-of-file mark on tape
Pass



(50020)

(50021) =

(50022) =

(50023) =

EXF
SLJ

EXF
Pass

EXF
SLJ

SLS

~d

~

42012
50020

32015

32010

50022

50000

G-3

Skip if ready
Wait

Rewind
Sense end of rewind
Wait

Stop



CUT ALONG LINE

———— . —— - - - = - A = > o T - o . A S T T D - - - - - - - - - - T S T - - - - - - " " - T - S = ST T T M D - S - - S T G - Y - - - -

COMMENT SHEET
CONTROL DATA 1604 COMPUTER
Programming Training Manual
Pub. No. 60001500

FROM NAME :

COMMENTS: (pDEscrRIBE ERRORS, SUGGESTED ADDITION OR
DELETION AND INCLUDE PAGE NUMBER, ETC.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE



STAPLE

FOLD

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY
CONTROL. DATA CORPORATION
8100 34TH AVENUE SOUTH
MINNEAPOLIS 20, MINNESOTA

ATTN: TECHNICAL PUBLICATIONS DEPT, |
COMPUTER DIVISION
PLANT TWO

STAPLE

STAPLE

- - - - - - —— - - > P . - - T > = = > = " - - - - - - - - > - - - - - - - - - —
——— v ———— -~ - ———— " > " — — - - -

CUT ALONG LINE



