TABLE OF CONTENTS

SECTION |
NOVA LINE COMPUTERS

Floating Point
Memory Allocation and Memory Management

Power Fail/Auto Restart
Real-Time Clock
Input/Qutput Bus

Device Addressability

Interrupt Capability

Data Channel

Ease of Interfacing
Input/Output Devices
Software

Languages

Operating Systems
Conclusion

SECTION I
INTERNAL STRUCTURE
INTRODUCTION

INFORMATION FORMATS
Bit Numbering
Octal Representation
Character Codes
Information Representation
Integers
Floating Point
Logical Quantities
Decimal Numbers
INFORMATION ADDRESSING
Word Addressing
Effective Address Calculation
Byte Addressing
Addressing With Address Translation Hardware

PROGRAM EXECUTION
Program Flow Alteration
Program Flow Interruption

TABLE OF CONTENTS (Continued)

SECTION Il
INSTRUCTION SETS

Puze
INT RODUCTION ottt it et e e e et sttt et et et e i et s e e e e s [I1-1
INST RUCTION FORMAT S &« oottt ittt e et et et e e e e e et et s [r-1
CODING AIDS . ottt et e e e e e e e e e e I11-3
FIXED POINT ARITHMETIC . ..t e e e e s e e [1-5
LOAD ACCUMULATOR ..ot e e e e e e e e e e e e [1-5
STORE ACCUMULAT OR . .ottt e e e e e e e e e e e e 111-5
AD DD i e e e e e e e e e e e e e e e e e I11-5
SUBT RAC T . . ittt e e e e e e e e e e e e e e e e e e e s -5
NEGA T E .ottt ittt e e e e e e e e e e e e e e -5
ADD COMP L EMENT . oottt e e e e e e e e e e e i e s e e II1-5
)Y, (101772 1S [11-6
INC REMENT . ottt e e e e e e e e e 1I11-6
LOGIC AL OPERATIONS ot ittt it et e e e e e e s e e e e e s e s ey III-7
COMP L EMENT .ottt e e e e e e e e e e e i e e I1-7
7N 5 & I11-17
STACK MANIPUL A TION . ot ittt ittt et e st st et e e i e e st ae e I11-8
StaCK POINE T .ttt it ittt i i e e e e e e e e s e s 111-8
Frame POINter . ..ottt e e e e e e e I11-8
REtUTN BlOCK . ottt o e e e e e e e e e e e 111-8
LT D 2 a1+ =1 2 I11-9
StaCK ProteCtiON .ot ottt it e e e e e e e e e e e 111-9
Initialization of the Stack Control Registers i i i -9
StaCK POIN T & oottt e it e e e e e e e e e I11-9
Frame PoOInter . .o i i e e e e e e e [11-9
STACK MANIPULATION INSTRUCTIONS . . o e e e s e [1I-10
PUSH ACCUMULATOR .. oot e e e s s e 111-10
POP ACCUMULATOR . oottt o e s e s e 1-160
SAV E o e e [I1-10
MOVE TO STACK POINTER e e s e II-10
MOVE TO FRAME POINTER . .. oo s e s s [I1-10
MOVE FROM STACK POINTER oo e [11-10
MOVE FROM FRAME POINTER . . oottt e s e [1-10
PROGRAM FLOW ALTERATIONo e i [I-11
JUMP e e [I-11
JUMP TO SUBROUTINE . . . o e s e I-11
INCREMENT AND SKIP IF ZERO e e e e e ifn-11
DECREMENT AND SKIP IF ZERO oot o e e e e e e s e 1I1-11
Extended INStructions e e I1-12
RETURN ..ottt e e e r-12 |
TRA P o e e e e [n-12
Rev. 03

ii

TABLE OF CONTENTS (Continued)

SECTION |V
INPUT/OUTPUT

INTRODUCTION .ttt ttte ittt tate s e tatnoaosasarasneessseeotnsastosssassassssesasssenenss
OPERATION OF I/O DEVICESttt ttieatins ot iiesstaatsaaaatsosctansstaassss
PRIORITY INTERRUP TS ..t ittt ettiiiisaseearnsanasesoasssotnaeansacsonssnsssssssasessns
DATA CHANNEL ittt ittt tetteaneeeensatsaesensasosanassassesesesnsataeasnsosssasansnsns
CODING AIDS .ottt eetteen e teanasesesansseesennseteetnaasseeaoussasesassassstsanannssss

1/O INSTRUCTIONS . et e vttt teae e et a et a e aa e eat e aeeaaaananans e eeeene
DATA IN A .+t eovveeee et et et e e e et ettt e ettt it et
DATA IN B o vovvee e eee e et et e et ettt et et e i e e e aa e
DATAINGC s oottt evimee e e e e e e
DATA OUT A o v v ee e e et et ee it et ittt it aa s esansesanteesonnnsns
DATA OUT B otee v ettt e e eaaae e aanenaaanannes T, e
DATA OUTC A SO
020 1) < > R R R PR R
NO I/O TRANSFER .« vt v tutet et ee et ete et e et e et a ettt eaeanns

CENTRAL PROCESSOR FUNCTIONS . .+t ettt teetutennaasaaneate e anentananeanenesansnns
INTERRUPT ENABLE .+ttt tttttnteeiae e et e ie et iaaneaat et ieannns
INTERRUPT DISABLE .« « ettt ettt ettt e e e et et et bt inanns
READ SWITCHES . .t ettt ittt e et et e et et et e ie et e i aasanaans
INTERRUPT ACKNOWLEDGE . ..\ttt ettt eat ittt iiia e aaeseanteeaianaeennns
MASK OUT .+ o v e ee e e e et e et e e et et e e e e e et e e e
L/O RESET .« v e ettt e ettt ettt e e e e e ettt et e e
HALT -« o+ e oo e e e e e e e e e e e e e e e e
CPU SKIP « vttt e et e e e et e et e e e et e et et i e e

SECTION V
PROCESSOR OPTIONS

INTRODUCTION .\ttt ittt it et e e ettt e it e n s a i aasone s esansns

5701034 08 8 -\ & O R R
SKIP IF POWER FAIL FLAG IS ONE ittt ittt it eneaoisaeaseanenn
SKIP IF POWER FAIL FLAGIS ZERO ...ttt ittt iiiiaaieanre e

MULTIPLY/DIVIDE . .t ittt it ittt iesaaesetarssssnaaraasannacssassssans ettt
NOVA Multiply/Dividet ittt et ae e e
NON-NOVA MUIIPLY/DIVIAE . « o ot v et e te et ettt e e eae e e ettt et e aeeaanee e
1Y R08 B 0 022 7 "4 R R I
[5)8728 5 2 R R

REAL-TIME CLOCK ..\t tititinonteatanaensessssseosanseesossasasssassssacesasasutononssns
SELECT RTC FREQUENCY ...t itiiitiitineaaestrattnetsaosrsassssanstcssasnanetnatoceass

Rev. 03 iii

TABLE OF CONTENTS (Continued)

SECTION V (Continved)
PROCESSOR OPTIONS

MEMORY PARITY OPTION
Method of Operation
READ PARITY ERROR ADDRESS

ADDRESS TRANSLATION USING THE NOVA 830 AND 840 MMPU
LOAD MAP
LOAD DEVICE PROTECTION
LOAD PROTECTION CONTROL
ENABLE USER MAP

SUPERVISOR PROGRAMMING FOR THE NOVA 830 AND 840 MMPU
Setting Up For Translation
MMPU Protection Processing

I/0 Protection

Validity Protection
Runaway Defer Protection
Write Protection

ADDRESS TRANSLATION USING THE NOVA 3 MMU AND MPU
LOAD MAP .

READ MMPU STATUS ...t iviiviiiiitreercannnns .
WRITE MMPU STATUS

READ VIOLATION DATA

READ VIOLATION ADDRESS

MAP SINGLE CYCLE

Rev. 04

BB WD e

TABLE OF CONTENTS (Continued)

SECTION V (Continued)
PROCESSOR OPTIONS

CLEAR VIOLATION . it. it tiientonncasesensaneneansnoacaosnsnsennsses e eaere e V-15.4
CLEAR MADP ...t i tiiieinnerennosenasosessssrasanasenssecsnsss et creeesesanes . V-15.4
SUPERVISOR PROGRAMMING FOR THE NOVA 3 MMPU iiitiiiiiititecnssnoscsocannne V-15.5
Setting Up for Translationccetiiuunniunnniieeteieetetaertatiaateseoseans ceers V-15.5
MMPU Protection ProCessSing «c.veveet i vt cnenrrenosennoneanoransoscassanas ceesssesss V-15.5
T/O PrOLECEION 4 v v v v e e e e eo s aasaeseeeesesasnansaneoneesessssssssstossesoensnnnsaeens cee. V-15.6
Validity Prote@Ctionv. v vttt iinr ittt itieeitetaaeestaaronoeossassnsansees V-15.6
Runaway Defer ProteCtiono.en it ittt iiniienenetttaereaeeeaerassesscooccsan V-15.6
WWIIte ProOtECLIOI v ettt vttt eecisieneeesonnusenssssnssnansoasssstasasesssssasanasasens V-15.6
AUto INdeX ProteCtion +.vvvveeeeeneneoreeenssoeiosesanneesssoossssnssesscsnasssnns evees V-15.6
Device Interrupt Processingc.oviivenniononanne. P V-15.6
FLOATING POINT ARITHMETIC ...ttt it et e it ettt it st aenns V-16
Floating Point Unit RegiSters. i i i i et e e V-16
INS T RUCTION SET . vt ittt ettt vt et et et iaeae ot it an it iianan ceaesaaans V-11
LOAD SINGLE .« vt ittt ittt et et e et e et e e e e e v-17
LOAD DOUBLE . o oottt it e e ettt et e e et e e e e e V-17
STORE SINGLE & ot ittt ettt e e et e et e i e et e e V-17
STORE DOUBLE ..o it ittt ittt et e et ettt et i i e V-117
ADD SINGLE vttt et ettt e e e e e e e e V-18
ADD DOUBLE & oottt e et et et e et e e e e e e e V-18
SUBT RACT SINGLE . oottt ittt et et e e e e it e e e e e e e V-18
SUBTRACT DOUBLE . .t ittt ittt ettt e e et n e aane e aeanas V-18
MULTIPLY SINGLE & ottt it ittt ettt et et ettt it et e aaneennas V-19
MULTIPLY DOUBLE .« ottt et it ettt et e et et e et e e et ity e V-19
DIVIDE SINGLE .« o ottt it it e et e e e e e e e e e e e e e e e V-19
DIVIDE DOUBLE . . oottt ittt e e e e e e e e e e V-19
Temporary Buffer Instructions it i e e V-20
MOVE FPAC TO TEMP . ittt ettt et e e e e v-20
MOVE TEMP TO FPAC . . o it ittt ettt e et et e et e et s e aas V-20
ADD TEMP TO FPAC (SINGLE) .+ttt ittt e et et e it it e et V-21
ADD TEMP TO FPAC (DOUBLE) . ottt i it it it et et e it e Vv-21
SUBTRACT TEMP FROM FPAC (SINGLE) .« ottt i e i e i e e v-21
SUBTRACT TEMP FROM FPAC (DOUBLE) ..ottt it et i v-21
MULTIPLY FPAC BY TEMP (SINGLE) . .ot ittt i i e i ittt et can s e v-22
MULTIPLY FPAC BY TEMP (DOUBLE) .ot e et e i e e e e V-22
DIVIDE FPAC BY TEMP (SINGLE) . ..ttt e i v et e e e s V-22
DIVIDE FPAC BY TEMP (DOUBLE) . ot ittt it i it e e et Vv-22
Shift and Logical INStrUCtionS o v it e e et i V-23
ABSOLUTE VALUE .. ot ettt ettt it e ia e et i s V-23
CLEAR FPAC .o ottt e e s e et e e e e e V-23
LOAD EXPONENT & .ttt ittt ettt et e ettt e et e e V-23
N EGATE ot et et et et e e et et e e e e e e e e e e e V-23
NORMALIZE . it i it e e et et et it e et et ettt i e e V-23
READ HIGH WORD e e e e et e e e e aa e V-23
L - 75 3 T I I V-24
Status INSEIUCLIONS | . vttt it ittt ta ittt ioa s aae s tatse s asans s e ssonansas V-24
READ ST AT US . ittt ettt ettt ae et isetataeinane s anerssnsesotoesaeenasasonennns V-24
Rev. 04

TABLE OF CONTENTS (Continued)

SECTION V (Continued)
PROCESSOR OPTIONS

WRITE STATUS
Diagnostic Instructions
READ WORD 1

READ WORD 2

READ WORD 3

READ WORD 4

Mode Settings For The Floating Point Unit
Normal Mode
Parallel Mode

SECTION VI
FRONT PANEL

INTRODUCTION
DATA SWITCHES

CONSOLE SWITCHES
Accumulator Deposit--Examine
Reg Dep--Reg Exam
Reset--Stop
Start--Continue
Deposit--Deposit Next
Examine -- Examine Next
Memory Stép--Inst Step
Program Load
Channel Start

PROGRAM LOADING
Manual Loading
Automatic Loading

TABLE OF CONTENTS (Continued)

APPENDICES

APPENDIX A
1/0 DEVICE CODES AND DATA GENERAL MNEMONICS

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

APPENDIX C
ASCII CHARACTER CODES

APPENDIX D
DOUBLE PRECISION ARITHMETIC

APPENDIX E
INSTRUCTION USE EXAMPLES

APPENDIX F
INSTRUCTION EXECUTION TIMES

This page intentionally left blank

Rev. 04

viii

SECTION |

NOVA LINE COMPUTERS

INTRODUCTION

The Data General Corporation NOVA line of com-
puters are general purpose, four-accumulator,
stored-program computers, with a word length of
16 bits. The maximum amount of main memory is
32,768 16-bit words. For the NOVA 830 and NOVA
10 computers with the MMPU feature, and for the

~OVA 3/12 computer with the MMU feature and

| the NOVA 3/D with the MMU and MPU feature, the
maximum amount of main memory is 131,072
16-bit words. The accumulators are also 16 bits
in length and are used for arithmetic and logical
operations. Furthermore, two of the accumulators
can be used as index registers. Memory can be
addressed either directly or by using indirect
addresses. Chains of indirect addresses can be of
any length. A direct memory access (DMA) data
channel is provided to enable rapid data transfer
between main memory and peripheral devices.
The flexible design of the NOVA line of computers
allows the convenient implementation of applica-
tions in all sectors of the data processing field.

The standard instruction set contains instructions
that perform fixed point arithmetic and logical
perations between accumulators, transfer of

operands between accumulators and main memory,
transfer of program control, and input/output (I/0)
operations. Options are available that add instruc-
tions to this set. These additional instructions
perform such operations as multiply/divide, float-
ing point calculations, memory allocation and pro-
tection, and memory management and protection.

The NOVA line of computers is made up of the
NOVA computer, the SUPERNOVA® computer, the
NOVA 1200 series, the NOVA 800 series, the
NOVA 2 series, and the NOVA 3 series. The
NOVA 1200 series consists of the NOVA 1200 com-
puter. the NOVA 1210 computer, the NOVA 1220
computer, and the NOVA 1200 Jumbo computer.
The NOVA 800 series consists of the NOVA 800
computer, the NOVA 820 computer, the NOVA 800
Jumbo computer, the NOVA 830 computer,. and the
NOVA 840 computer. The NOVA 2 series consists
af the NOVA 2/4 computer and the NOVA 2/10 com-
ter. The NOVA 3 series consists of the NOVA
| 3/4 computer, the NOVA 3/12 computer, and the

I-1 of 4

NOVA 3/D computer, While these computers dif-
fer in specifics such as processing speed, they all
share the same general architecture. This means
that, in general, software is compatible across

the entire line. To a somewhat lesser degree,

hardware is also compatible across the line. The
features of the NOVA line are summarized below.

Efficient Basic Instruction Set

The basic instruction set for the NOVA line of com-
puters contains instructions that perform fixed
point arithmetic and logical operations between ac -
cumulators, transfer of operands between accu-
mulators and main memory, transfer of program
control, and I/O operations. All instructions are
one 16-bit word in length. The arithmetic and
logical instructions have the capability to perform,
in one instruction, the following sequence: per-
form an operation, shift the result one bit left or
right, test the result of the shift, and then condi-
tionally skip the next instruction depending upon
the outcome of the test. In addition, it is possible
to perform this entire sequence without affecting
either of the operands. This means that compli-
cated numerical manipulation and testing can be
performed using a small number of instructions.

Stack

A Last-In/First-Out (LIFO) or push-down stack is
maintained by the NOVA 3 processor. This feature
provides a convenient method for the saving of re-
turn information and passing arguments between
subroutines. The stack also provides an expandable
area for the temporary storage of variables and
intermediate results.

Multiply /Divide

The multiply/divide feature allows the multiplica-
tion and division of operands to be performed
quickly, without resorting to time-consuming soft-
ware routines. Two 16-bit fixed point operands
can be multiplied together to yield a 32-bit fixed
point result. A 16-bit fixed point operand can be
divided into a 32-bit fixed point operand to yield a
16-bit fixed point quotient and a 16 -bit fixed point
remainder.

Rev, 04

INTRODUCTION

Floating Point

The floating point feature allows the manipulation of
both single precision (32 bits) and double precision
(64 bits) floating point numbers. Single precision
gives 6-7 significant decimal digits while double
precision gives 13-15 significant decimal digits.
The decimal range of a floating point number is
approximately 5.4x10-79 to 7.2x10+75 in either
precision.

The floating point feature contains two 64-bit float-
ing point accumulators. Floating point calculations
can take place between these two accumulators or
between one of the accumulators and operands in
main memory.

Memory Allocation and Memory Management

There are three features available with NOVA line
computers that perform memory allocation and
memory management. All of them perform logical-
to-physical address translation, and two of them
allow certain protection features to be implemented.

The memory management and protection unit
(MMPU) is available with the NOVA 830 computer
and the NOVA 840 computer. The memory man-
agement unit (MMU) is available with the NOVA
3/12 computer. The NOVA 3 memory management
unit (MMU) and memory protection unit (MPU) are
available with the NOVA 3/D computer.

The MMPU feature of the NOVA 830 and 840
allows the allocation of memory to a user in blocks
of 1024 words and up to 32 such blocks may be
allocated to a user. A user is prohibited from
accessing those blocks of memory not allocated to
him, thus protecting a user' s area of memory
from unauthorized access. The MMPU feature
allows areas of memory to be write-protected and
areas of memory to be allocated to more than one
user, thus allowing the sharing of data and pro-
cedure areas. The blocks of memory allocated to
a user do not have to be contiguous.

The address translation function which correlates
a logical address to the corresponding allocated
physical memory address is called an ""address
map''. The MMPU feature holds one user map at
a time, but it has the capability of simultaneously
mapping memory references for the data channel
with a different map.

In addition to translating addresses, the feature
also performs various protection functions. A

user is allowed to access only those blocks of mem-
ory allocated to him. This ensures that a user
does not reach out of his own areas of memory for
either instructions or data. Blocks of memory
allocated to a user may be write-protected so that
the user may not modify them. This allows blocks
of memory containing constants or nonself-
modifying procedures to be shared between users.

Rev. 04

The MMPU feature detects and inhibits indirection
chains that go deeper than 16 levels. This protects
the system from becoming disabled by an indirec -
tion loop. The MMPU allows devices to be
declared accessible or inaccessible to a user on an
individual device code basis. This allows any
device to be controlled by the operating system or
dedicated to a user, depending upon user
requirements.

The MMU allows the allocation of memory to a pro-
gram in the same manner as the NOVA 830 and 840
MMPU, but performs no protection functions. In
addition, the MMU can hold two program maps and
two data channel maps at the same time. Only one
program map can be enabled at any one time, but
both data channel maps are enabled at the same
time.

The NOVA 3/D MMU and MPU combination allows
the allocation of memory to a program in the same
manner as the NOVA 830 and 840 MMPU. Like

the MMU, the NOVA 3/D MMU and MPU can hold
two program maps and two data channel maps at -
the same time. Only one program map can be
enabled at any one time, but both data channel

maps are enabled at the same time.

The NOVA 3/D MMU and MPU protection functions
are similar to those provided by the NOVA 830 and
840 MMPU. The NOVA 3/D combination, however,
does not allow individual devices to be declared
inaccessible to a user. Instead, the 1/O protec- .
tion feature allows all devices to be declared
accessible or inaccessible to a user.

Memory

Memory is available in many forms for the differ-
ent members of the NOVA line. For the NOVA
computer, core memory is available in modules of
2. 4, and 8K 16-bit words. For the SUPERNOVA
computer, memory is available in both core and
semiconductor forms. Core memory is available
in modules of both 4 and 8K 16-bit words. Semi-
conductor memory is available in both read /write
and read-only forms in modules of 256, 512, and
1024 16-bit words. For the NOVA 1200 series of
computers, both core and semiconductor memory
is available. Core memory is available in modules
of 4. 8, and 16K 16-bit words. Semiconductor
memory is available in both read/write and read-
only forms in modules of 256, 512, and 1024 16-bit
words. For the NOVA 800 and 820 computers, core
memory is available in modules of 4 and 8K 16 -bit
words. For the NOVA 830 computer, core mem-
ory is available in modules of 16K 16-bit words.
For the NOVA 840 computer, core memory is
available in modules of 8K 16-bit words. For the
NOVA 2 series of computers, core memory is
available in modules of 4, 8, and 16K 16-bit words.
For the NOVA 3 series of computers, memory is
available in both core and semiconductor forms.

Core memory is available in modules of both 8 and
16K 16-bit words. Semiconductor memory is
available in modules of 4K, 8K, 16K and 32K
16-bit words.

In addition, a memory parity option is available
with the NOVA 3 series which will detect any single
bit error in a word read from main memory. If
desired, the parity option can interrupt the central
processor upon finding an error. This allows a
record to be kept of memory errors.

Power Fail/Auto Restart

The power fail, auto restart feature of the NOVA
line provides a "'fail-soft'" capability in the event of
unexpected power loss. In the event of power fail-
ure, there is a delay of one to two milliseconds be-
fore the processor shuts down. The power fail
portion of the feature senses the imminent loss of
power and interrupts the processor. The interrupt
service routine can then use this delay to store the
contents of the accumulators, the program restart
iddress, and other information that will be needed
to restart the system. One to two milliseconds is
enough time to execute 200 to 1500 instructions de-
pending on the processor, so there is more than
enough time to perform the power fail routine.

When power is restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the power switch on the front panel. If

the switch is in the "on'' position, the processor
remains stopped after power is restored. If the
switch is in the "lock' position, then 50 milli-
seconds after power is restored, the processor
executes the instruction contained in the first loca-
tion of main memory, restarting the interrupted
system.

The battery backup option available with the NOVA
3 series operates in conjunction with the power
fail. auto restart feature to provide security for
semiconductor memories in the event of a power
failure. If power fails, the battery backup option
will supply power to the memories for a period of
up to two hours so that they will not lose their data.
If further security is desired, an external battery
backup option is available so that the customer can
connect larger batteries and ensure the integrity of
the memories for extended periods of time.

Real-Time Clock

The real-time clock feature of the NOVA line com-
puters generates a sequence of pulses that is inde-
pendent of the timing of the processor. The clock
will interrupt the system at one of four program-
selectable frequencies. The frequencies are: ac
line frequency, 10Hz, 100Hz, and 1000Hz.

Input/Output Bus

The input/output (I/0) bus is that portion of the
computer that carries commands and data between
the central processor and various peripheral de-
vices connected to it. The bus is made up of a six-
line device selection network, interrupt circuitry,
command circuitry, and sixteen data lines.

Device Addressability

Each I/O device in a NOVA line computer system
is connected to the six-line device selection net-
work in such a way that each device will only re-
spond to commands that contain its own device
code. The fact that the selection network is made
up of six lines gives 26 = 64 unique device codes.
Two of these codes are reserved for specific func-
tions, but there are still 62 device codes available
for use with I/0 devices.

Interrupt Capability

The interrupt circuitry contained in the I/0 bus
provides the capability for any I/O device to inter-
rupt the system when that device requires service.
When a device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either
poll all the I’O devices in the system to find out
which one initiated the interrupt or the routine can
use a special instruction to identify the source of
the interrupt.

The interrupt circuitry of the NOVA line also con-
tains the capability to implement up to sixteen
levels of priority interrupts. This is done with a
16-bit priority mask. Each level of device priority
is associated with a bit in this mask. In order to
suppress interrupts from any priority level, the
corresponding bit in the mask is set to 1.

Data Channel

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater
transfer rates, the I O bus contains circuitry for
a direct memory access (DMA) data channel through
which a device, at its own request, can gain direct
access to main memory using a minimum of pro-
cessor time. At the maximum transfer rate, the
data channel effectively stops the processor, but
at lower rates., processing continues while data

is being transferred.

Rev., 04
INTRODUCTION

Ease of Interfacing

Due to the straightforward logic and general design
of the NOVA line I, O bus, customer-provided or
customer -designed I/0 devices may be easily in-
terfaced to a NOVA line computer system. Informa-
tion on how to interface to the NOVA line may be
found in 'The Interface Designer's Reference
Manual' (DGC 015-000031).

Input/Output Devices

A comprehensive array of 1/0 devices is available
from Data General for the NOVA line. This wide
choice of devices, ranging from teletypewriters to
line printers to video displays for man-machine
interaction: and from paper tape to magnetic tape
to fixed and moving-head discs for data storage
allows a wide spectrum of possible configurations.
Also available are various multiplexors and tele-
communications adapters including an IBM 360 370
interface.

Software

The NOVA line is fully supported by proven Data
General software. Because all members of the
NOVA line are program compatible with each other,
it is possible to create a computer system that can
be easily altered or upgraded as the need arises.

Rev. 04

Languages

In addition to an assembler and a macro-assembler.
there are powerful higher-level language proces-
sors available for use with the NOVA line. Lan-
guage processors such as ALGOL, EXTENDED
BASIC, FORTRAN IV, and FORTRAN 5 can be

used to ease the job of implementing application
systems.

Operating Systems

There is a wide array of operating systems avail -
able for the NOVA line. These range from the
Stand -alone Operating System (SOS) to the Real-
Time Operating System (RTOS) to the Real-Time
Disc Operating System (RDOS), to the Mapped
Real-Time Disc Operating System (MRDOS). SOS,
RTOS. and RDOS software are designed for the
small to medium-size systems, while MRDOS soft-
ware is designed for the large system and gives
full software support for the Memory Management
and Protection Unit.

Conclusion

The internal features, software. and I/O devices
available with the NOVA line of computers ensure
that they will easily meet the continually changing
needs of the data processing industry.

I-4

SECTION II
INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOVA line data processing
system consists of a central processing unit

(CPU), some amount of main memory. the 1/0 bus,
the 1/0 devices connected to the 1/0 bus, and a
console which is on the front panel of the main
computer chassis.

“ MEMORY

TELETYPWRITER

CONSOLE

LiNE
PRINTER

Due to the general-purpose design of the NOVA
line, the type, size, and number of memory mod-
ules and I O devices have no effect upon the inter-
nal logical structure of the CPU. This chapter

II-1 of 10

deals with the addressing of information and the
logical representation of information within the
CPU, and is unaffected by those portions of the
system outside the CPU.

INFORMATION FORMATS

The basic piece of information within the processor
is the binary digit, or ""bit"". A bit is capable of
representing only two quantities, 0 and 1. How-
ever, a bit cannot represent both these values at
the same time. At any one point in time. a bit can
either represent a 0 or a 1, never both,

The normal unit of information within the CPU is
the "word'. A word is made up of 16 bits. Be-
cause each bit is capable of representing two
q&\gntities, a word is capable of representing

27 = 65,536 different quantities. A word may be
broken into two ""bytes’ of 8 bits each. A byte is
capable of representing 28 = 256 different quanti-
ties. I/0 devices transfer information in units of
bits, bytes, words or groups of words called
"“records’ depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are num-
bered from left to right, with the leftmost (high-
order) bit always numbered bit 0. The numbering
extends to the right and is always carried out in
the decimal number system. The rightmost (low-
order) bit in a byte is bit 7. The rightmost bit in
a word is bit 15.

WORD WORD
- A —
BYTE BYTE BYTE BYTE
0,1,2,3,4,5,6,7{0,1,2,3,4,5,6,7|0 13,4,5,6;7]0,+,2,3,4,5,6,7
0123 4567891011121314150 34567 8 9101112131415

1 i1 i

1,2 L]
12 6

Rev. 02
INFORMATION FORMATS

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal re-
presentation of binary information will be used in
this manual. To convert a piece of binary informa-
tion to its octal representation. the bits in the
quantity are separated into groups of three bits
each. starting from the right and proceeding to the
left. If the number of bits to be represented is not
evenly divisible into groups of three, the leftmost
group will contain one or two bits. Each group of
bits can now be represented by one of eight differ-
ent symbols. The digits 0-7 are used to represent
the quantities 0-7. Each encoded digit is called an
octal digit. Because each group of bits can contain
any one of 8 values. this representation is some-
times called ""base 8' representation.

Another way to represent binary information is the
hexadecimal or ""hex' representation. In hexa-
decimal, the bits in the quantity are separated into
groups of four bits each and each group can be re-
presented by one of 16 different symbols. The
digits 0-9 are used to represent the quantities 0-9.

The letters A-F are used to represent the quantities

10-15. Because each group of bits can contain any
one of 16 values. this representation is sometimes
called '"base 16" representation.

The following table gives the correspondence be-
tween the various representations.

DECIMAL | BINARY | HEX | BINARY | OCTAL
0 0000 0 000 0
1 0001 1 001 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 6 110 6
7 0111 7 111 7
8 1000 8 1 100 10
9 1001 9 1 001 11
10 1010 A 1010 12
11 1011 B 1011 13
12 1100 C 1 100 14
13 1101 D 1101 15
14 1110 E 1110 16
15 1111 F 1111 17

Our normal decimal numbering system 1s some-
times called '"base 10" representation. Because
it is sometimes possible to confuse numbers writ -
ten in hex or octal with those written in decimal, a
subscript denoting the base will be used in cases
where confusion might occur. The following ex-
amples illustrate this convention.

64, =40, . = 100

10 16 8
8710 = 5716 = 12’78
6310 = 3F16 = 778

In the last example, it is obvious that 3F is a num-
ber written in hex, but the subscript is included to
erase any possible doubts.

Conversion tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes

Within the processor. all information is repre-
sented by binary quantities. The CPU does not re-
cognize certain bit combinations as characters and
certain other bit combinations as numbers. Sooner
or later., however, this information must be trans-
ferred outside the computer in some form easily
understood by humans. For this reason, some
standard correspondence must be made between cer-
tain bit combinations and printable symbols. The
code used to implement this correspondence in 1/0
devices available with the NOVA line is called the
American Standard Code for Information Interchange
(ASCID. This code can represent 95 printable sym-
bols plus 33 control functions. A complete table of
the codes and their corresponding characters can

be found in Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recog-
nize one information type from another. the differ-
ent instructions in the instruction set expect that
the information to be operated on will be in a spe-
cific format. In general, there are four different,
basic information formats. They are integers,
floating point numbers. logical quantities. and
decimal numbers.

Integers

itegers can be represented as either signed or un-
signed numbers and carried in either single or
muitiple precision. Single precision integers are
two bvtes long, while multiple precision integers
are four or more bytes long. Unsigned integers
use all the available bits to represent the magnitude
of the number. A single two-byte word can repre-
sent any unsigned number in the inclusive range 0
to 65,535, Two words taken together as an un-
signed, double precision integer can represent any
number in the inclusive range 0 to 4,294,967, 295.

For signed operations, the two's complement num-
bering system is used. In this system, the leftmost
or high-order bit is used as a sign bit. If the sign
bit is 0, the number is positive and the remainder
of the bits in the number represent the magnitude

of the number as described above. If the sign bit

is 1, the number is negative and the remainder of
the bits represent the two's complement of the
magnitude of the number.

10 create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the comple-
menting process is finished, add 1 to the rightmost
or low-order bit. If the two's complement of a
negative number is formed, the result will be the
corresponding positive number. There is only one
representation for zero in two's complement arith-
metic: it is the number with all bits zero. Form-
ing the two's complement of zero will produce a
carry out of the high-order bit and leave the num-
ber with all bits zero.

Examples:
To form the negative of 4:

4

complement
add 1

0 000 000
[111 111

n+n

-4=1 111 111

To form the negative of 17158:

1’7158

complement
add 1

0 000 001
1 111 110

n+ H

-1715 1 111 110

8
To form the negative of -17158:

-17158-1 111 110

complement = 0 000 001
add 1

1715 0 000 001

8

To form the negative of 0:

0=0 000 000

complement = 1 111 111
add 1

000 000

111 111
1

0=0 000 000

Note that 0 is a positive number, i.

is 0.

000 000

its sign bit

INFORMATION FORMATS

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative num -
bers. The most negative number is a number with
a 1 in the sign bit and all other bits 0. The positive
value of this number can not be represented in the
same number of bits as used to represent the nega -
tive number.

A single two-byte word can represent any signed
number in the inclusive range -32.768 to +32,7617.
Two words taken together as a signed. double pre-
cision integer can represent any number in the in-
clusive range -2,147,483,648 to +2,147,483,647.

It is a property of numbers using the two's comple -
ment scheme that addition and subtraction of signed
numbers are identical to addition and subtraction of
unsigned numbers. The CPU just treats the sign
bit as the most significant magnitude bit.

Floating Point

The floating point feature of the NOVA line allows
operations on signed numbers having a much larger
range than those normally represented as integers.
It would take a 16-word multiple precision integer
to represent the range of a NOVA line floating
point number. Since floating point numbers occupy
either two words for single precision or four words
for double precision, and the floating point feature
is much faster than multiple precision integer
software routines, floating point arithmetic is used
when numbers having a large range must be mani-
pulated.

A floating point number is made up of three parts:
the sign. the exponent. and the mantissa. The
value of a floating point number is defined to be:

(MANTISSA) X (16 RAISED TO THE TRUE VALUE
OF THE EXPONENT FIELD)

The number is signed according tn the value of the
sign bit. If the sign bit is 0, the number is posi-
tive: if the sign bit is 1. the number is negative.

Floating point numbers are represented internally
by either 32 bits (single precision) or 64 bits
{double precisiont.

-4

The formats are shown below:

Single Precision

1

lsl EXPONENT I B MANTISSA 7
i i 1 i 1 1 . ' L A 1 1 1 i 1 1 i i 1 . . H
o1 78 T
Double Precision
)

[sl EXPONENT MANTISSA

1 i 1 1 1 1 yi 1 1 i i 1 1 1 1 a1 i 1 4 i A i " i i e
Q) 8 —k 3

Bit zern is the sign bit: O for positive. 1 for neca-
tive.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the cor-
rect value to the number. So that the exponent field
may accommodate a large range, " Excess 64"
representation is used. This means that the value
in the exponent field is 64 greater than the true
value of the exponent. If the exponent field is zero
the true value of the exponent is -64. If the expo-
nent field is 64. the true value of the exponent is 0.
If the exponent field is 127. the true value of the
exponent is 63.

Bits 8-31 for single precision and bits 8-63 for
double precision contain the mantissa. This means
that bit 8 of the floating point number is bit 0 of the
mantissa. The mantissa is always a positive frac-
tion greater than or equal to 1 16 and less than 1.
The "binary point" can be thought of as being just
to the left of bit 8. Continuing this concept then,
bit 8 represents the value 1 2, bit 9 represents

the value 14, bit 10 represents the value 1/8,

and so on.

In order to keep the mantissa in the range of 1 16
to 1. the results of floating point arithmetic are
“normalized'” Normalization is the process
whereby the mantissa is shifted left one hex digit
at a time until the high-order four bits represent
a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one. Since the
mantissa is shifted four bits at a time, it is pos-
sible for the high-order three bits of a normalized
mantissa to be zero.

Zero is represented by a floating point number with
1l bits zero. This is true for both single and
double precision. This is known as '"true zero".
When a calculation results in a zero mantissa, the
floating point processor automatically converts the
number to a true zero. Note that true zero is posi-
tive. It is not possible to obtain negative zero as
the result of a calculation.

Floating point operands in memory are represented
by two words for single precision and by four words

for double precision. The formats are shown below:

Single Precision

Word 1 [S| EXPONENT
o'i 2 3 ' 4 8 6' 7 8

Word 2 ﬁ

e

] MANTISSA BITS O-7 J
1 1 | 1 1 i

T

1.
9710 1 12 13 1418

MANTISSA BITS 8-23
N S T Sy S T

4 1
2 3 4 5 6 T ® ®'Ii0 il 1213 i4 I8

"ouble Precision

Word 1 LSJ | EXPONENT LMIANT'S.SA.B'T.S 0-7]
—

I 2 83 4 B & T & 910 1 2 13 4 18

word2 [WANTSSABNS 23 |

ot 2 3 4 5 8 T 8

910 1 12 13 14 I8

MANTISSA BITS 24-39]
416161 T8 stio i s 1as

Word 3 [' .
—+

N

Word 4 | MANTISSA BITS 40-55 |
57 L 4 J S— e 1]) L i Il i L

01 2 3 4 5 6 7 8 9 101t iz I3 1413

Logical Quanities

Logical operations in the NOVA line can be per-
formed upon individual bits, bytes, or words.

when using the logical operations, quantities oper-
ated on are treated as unstructured binary quanti-
ties. The number of bits, bytes, or words
operated upon depends on the particular instruction.

Decimal Numbers

Decimal numbers may be represented internally in
two ways. character decimal and packed decimal.
In character decimal. the number is made up of a
string of ASCII characters and the sign, if present,
may appear in one of four places. The sign of the
number may be indicated by a leading or trailing
byte which contains the ASCII code for plus (2B;¢)
or minus (2Dyg). Alternatively, either the high-
order dicit or the low-order digit of the number

may indicate the sign in addition to carrying a digit
of the number. The table below gives the corre-
spondence between certain ASCII characters and
the sign and digit values that they carry.

SIGN
VALUE

DIGIT
VALUE

ASCII HEX
CHARACTER CODE

7B
41
42
43
44
45
46
47
48
49
D
4A
4B
4C
4D
4E
4F
50
51
52

S S S S N T

OO IO N WM = O WRIN U B WhN=O
TVOWOZZERA——TOMEMOOW» —~

The digits that are not carrying the sign must be
valid ASCII characters for the digits 0-9
(3016-3916).

Examples:
In the following examples, the hex value of a byte

is shown inside the box; the corresponding ASCII
character is shown beneath the box.

+2,048 (leading sign) | o8 |32 [30 |34 |38

+ 2 0 4 8

-1, 756 (trailing sign)

| 31 [37]35 [36 |2D
1 7 5 6 -

+1,850 (high-order sign)] 41 |38 {25 [30 |
A 8 5 0

| 33 [39 [37 [1D]

-3,970 (low-order sign)

3 9 1)

For packed decimal, each digit of the decimal num-
ber occupies one hex digit. The sign is specified
by a trailing hex digit. The number must start and
end on a byte boundary. In other words, the num-
ber cannot start or end halfway through a byte.
This means that a packed decimal number will al-
ways consist of an odd number of digits followed by
the sign. The sign must be either Cyg for plus or
Dyg for minus. The only valid codes for digits are
0-9, ..

16

INFORMATION FORMATS

Examples: . ory has the address 0. The next word has the ad-
dress 1, the next word has the address 2. and so

In the following examples, the hex value of a digit on. Word addressing is used to address integers.
is shown within the box: the corresponding decimal floating point numbers, and logical quantities that
digit is shown beneath the box. are formatted in units of words.
Byte Byte Byte
. 2048 Jof2]ofa]8]C ADDRESS WORD
0 20 4 8 - - \ —)
232,456 [3]2]4]5]6]C) _ .
3 2 4 5 6 +
- 1,756 [oT1J7]5]6]D .
0o 1 7 5 6 -) h
25,989 [2[5]9[8]9]D . -
2 5 9 8 9 - - e e .
' BYT 1 BYTE
INFORMATION ADDRESSING 400 BYTE | A |

+

i i } L 1 # 1 % i A
0'1 2 34 5 6 7 89 10 12131415
The information formats described in the preceding

section give a way of representing different types of 40lg r# . BYTE l ., BYTE
data in main memory. Operations cannot be per- 0. 2 345 6 7 8 91011 121314 15
formed upon these data types. however, unless ~

they can be addressed by the CPU. The address of 402g L IBYATEJ L I L lBY‘TEl L]
a piece of information is its location in main mem- 01 2 345 6 7 8 9101 12131415

ory. Once the CPU knows the address of a piece

of information. the desired operation can be per- ¢ *
formed.
Word Addressing 36-0.0535’)

Main memory is partitioned into 2-bvte words. and
each word has an address. The first word in mem-

Rev. 02

Effective Address Calculation

There are six instructions in the NOVA line in-
struction set that directly reference memory using
word addressing. These instructions use eleven
bits in the instruction to define the address of the
desired word. These eleven bits do not directly
specify the address, but are used in a calculation
which results in the address of the desired word.
The resultant address is called the " effective
address' or "E'", and the calculation is called the
effective address calculation' .

The elever, bits in an instruction that are used in
the effective address calculation, are bits 5-15,
| Their format is shown below.

|@|mqexl DISPLACEMENT J
3 4 5 6 7 8 9 10 Il 12 13 14 15

Bit 5 is called the 'indirect bit'', bits 6 and T are
called the 'index bits'', and bits 8-15 are called
the '"displacement bits''.

If the index bits are 00, the displacement is used as
an unsigned 8-bit number to address one of the first
25610 words in memory. This is called "page
zero addressing' and this first block of 256 words
is known as ''page zero'.

If the index bits are 01, the displacement is treated
as a signed, two's complement number. which is
added to the address of the instruction to produce a
memory address. This is called "relative addres-
sing". By relative addressing, any instruction
which uses the effective address calculation can
directly address any word in storage whose address
is in the range -1281¢ to +1271¢ from the instruc -
tion.

If the index bits are 10, accumulator 2 is used as
an index register. If the index bits are 11, ac-
cumulator 3 is used as an index register. In this
form of word addressing, known as ''index regis-
ter addressing'', the displacement is treated as a
signed, two's complement number which is added
to the contents of the selected index register to
produce a memory address. In index register ad-
dressing, the addition of the displacement to the
contents of index register does not change the value
contained in the index register.

The result of the addition performed in relative
addressing and index register addressing is
""clipped' to 15 bits. In other words, the high-
order bit of the result is set to 0. For example,
if accumulator 2 is to be used as an index register
and contains the number 077774g, and the dis-
placement bits contain the number 012g, then the
result of the addition would be 000006g, not
1000064.

After one of the three types of addresses has been
computed from the index and displacement bits,
the indirect bit is tested. If this bit is zero, the
address already computed is taken as the effective
address. If the indirect bit is one, the word ad-
dressed by the result of the index and displacement
bits is assumed to contain an address. In this
word bit 0 is the indirect bit and bits 1-15 contain
an address. If bit 0 of the referenced word is 1,
another level of indirection is indicated, and bits
1-15 contain the address of the next word in the
indirection chain. The processor will continue to
follow this chain of indirect addresses until a word
is retrieved with bit 0 set to 0. Bits 1-15 of this
word are taken to be the effective address.

If an indirect address points to a location in the
range 20-27g (auto-increment locations), that word
is fetched, the contents of the word are incre-
mented by one and written back into the location.
This updated value is then used to continue the ad-
dressing chain. If an indirect address points to a
location in the range 30-37g (auto-decrement loca-
tions), that word is fetched, the contents of the
word are decremented by one and written back into
the location. The updated value is then used to
continue the addressing chain.

NOTE When referencing auto-increment
and auto-decrement locations, the
state of bit 0 before the increment
or decrement is the condition upon
which the continuation of the indi-
rectionchain is based. For exam-
ple: if an auto-increment location
contains 177777g, and the location
is referenced as part of an indi-
rection chain, location 0 will be
the next address in the chain.

Rev. 02
INFORMATION ADDRESSING

\o-svuceucm BITS
o130 TO INTERMEDIATE

" ADDRESS AS
UNSIGNED NUMBER

|

!

T SE1 ACEMENT BITS
A% SIGNED NUMBER
ARE ADDEC TO

WSTRUCTION ADDAESS|

O SPLACEMENT 8ITS i ROER S
35 SIGNE NUMBER Rt
aRE ADDES TC O et

ZONTENTS OF
SCCUMU_ATOR 2 # ADDRESS

A
S'SPLACEMENT BiTS
45 SIGNED NUMBER |

ARE ADDEC TO

SONTENTS OF |
ALCUMULATOR 3 J

/lwsnzcv\ ey
BT:0
I / ,l"L,-

vES FETIm WORC
—8 AT NTERMEL ATE
ADDRESS

/)\ £ZTTC FETIMED
| NCRT AND REOL ANE
SE NEw VAL E
T CONTNGF

<

© woRG “5.BTRACT FROM
NORD i enEr A ——1
L FETCMED ;nc\u . IES ECHED AZRD

< ANG REP_ATE USE
~ s NEW VALUE TC
-~ CONTINUE

NC

-

-

BiTS -2 30 7C
INTERMEL ATE
AODRESS

CNTERMEDIATE
ADDRESS &
EFFEITwE
AZDRESS

—

Byte Addressing

While bytes in main memory cannot be directlv ad-
dressed by the CPU, there is a convenient program
ming method for manipulating individual bvtes of
information. This technique involves the use of a
"pyte pointer’’. A byte pointer is a word in which
bits 0-14 are the address in memory of a 2-byte
word. Bit 15 of the byte pointer is the "byte
indicator''. If the byte indicator is 0, the refer-
enced byte is the high-order (bits 0-7) byte of the
word addressed by byte pointer bits 0-14. If the
byte indicator is 1, the referenced byte is the low-
order (bits 8-15) byte of the word addressed by
byte pointer bits 0-14.

100101 102 103 104 108 106 107 1o L
[WORD [WORD ! WORDIWORD I WORDI

8ITS 0-14
ADDORESS WORD

BIT 15[
SELECTS BYTE

8YTE INDICATOR

o} 0] (¢] 5
BYTE{0o 0 0|0 O 0[O O 1|0 OO 1
POINTER L I [Et [

0 1 23 456 7 8 9101 1213145

Y

[N

06 -00930

An effective address is always 15 bits in length.
This means that an instruction which uses the
effective address calculation can address any one
of 32,7681 words. This gives rise to the concept
of an ""address space', which, in the NOVA line,
contains 64K bytes or 32,768 2-byte words.

Programming routines to load and store individual
bytes using byte pointers are given in Appendix E
of this manual.

Addressing With Address Translation Hardware

The concept of an address space was introduced in
the discussion of effective address calculation.

*he “"program’ or 'logical' address space is that
amount of memory that can be referenced by in-
structions in a program. The maximum logical
address space available to a program running on
a NOVA line computer is 64K bytes or 32K words.

The "'physical’ address space is that amount of
physical memory that can be referenced by the
CPU. I« none of the address translation features
are installed, the maximum physical address
space available to the CPU is 64K bytes or 32K
words, and the logical address space is equal to
the physical space. For a NOVA line computer

with either the MMPU or the MMU feature installed,

the maximum physical address space is 256K bytes
and the logical address space is some subset of the
physical space.

Installation of an address translation feature has
no effect on logical addressing. Addressing calcu-
lations remain the same. The address translation
aatures come into play when the CPU tries to use
a 15-bit address to reference memory. The
address translation features intercept the memory
reference and the 15-bit address. The MMPU and
the MMU features translate the 15-bit address
from the CPU into a 17-bit address and use this
new address to perform the memory reference

P

[LOGICAL ADDRESS

i

!

P h—

|
l ADDRESS
| TRANSLATOR
| FEATURE

|

'
'
|
|

]
i
i
]
1
! |
|

4 i
i PHYSICAL |
MEMORY

r- PHYSICAL ADDRESS

DG-00542

Rev. 04
PROGRAM EXECUTION

PROGRAM EXECUTION

Programs for the NOVA line consist of sequences
of instructions that reside in main memory. The
order in which these instructions are executed de-
pends on a 15-bit counter called the ""program
counter’. The program counter always contains
the address of the instruction currently being exe-
cuted. After the completion of each instruction the
program counter is incremented by one and the next
instruction is fetched from this address. This
method of operation is called ''sequential operation"
and the instruction fetched from the location ad-
dressed by the incremented program counter is
called the ''next sequential instruction’.

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways. Jump instructions alter
program flow by inserting a new value into the
program counter. Conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition

is true. In the case of a conditional skip instruction
when the test condition is true, the next sequential
instruction is not executed because it is not ad-
dressed. After either a jump instruction or a

.___———(| SEQUENTIAL
PROGRAM
' FLOW
INCREASING | . /
ADDRESSES | I~
| ’_"";L/f/ JUMP
Lk
FLOW
3
i R e
i U4
| c
i T
, |
r 0
' g SKiP
j PROGRAM
| FLOW
1
—_—
1 L
0G-00543

successful conditional skip instruction, sequential
operation eentinues with the instruction addressed
by the updated value of the program counter.

Bacause the program counter is 15 bits in length,
it can address 32,768 separate memory locations.
The next memory location after 777T7g is location
0, and the location before 0 is location 77777g. If
the program counter rolls from 77777g to 0 in the
course of sequential operation, no indication is
given and processing continues with the location
addressed by the updated value of the program
counter.

Program Flow Interruption

The normal flow of a program may be interrupted
by external or exceptional conditions such as I O
interrupts or various kinds of faults. In this case,
the address of the next sequential instruction in
the interrupted program is saved by the CPU so
that the I 'O handler or the various fault handlers
can return control to the program at the correct
point. Once the address of the next sequential in-
struction in the program has been placed in the
program counter by the fault handler, sequential
operation of the program resumes.

SEQUENTIAL

- APROGRAM
i [L AFLOW 1/0
-~
— A
R —
_______//
INCREASING |
ADDRESSES g
| 2 JUMP
i — A .
I e <]
N ; e ~1
A Ty]
i R —_— :::, 1
! Y) L A
[.
* % — e V///
e 2
8 ! <A
s “< ACONTINUED RETURN
-7 | PROGRAM

FLOW

il

—tf

i —

DG-00544

II-10

SECTION Il
INSTRUCTION SETS

INTRODUCTION

The instruction set implemented on the NOVA line
is divided into 5 instruction sets. There are in-
struction sets available for fixed point arithmetic,
logical operations, program flow alteration, float-
ing point arithmetic, and 'O operations. In addi-
tion, instruction sets which are a mixture of IO
instructions are available for programming the
stack feature, MMPU, MMU, the RTC {feature,

the power fail’/auto-restart feature, and certain
CPU functions.

INSTRUCTION FORMATS

There are four different formats for instructions
on the NOVA line. These formats allow an exten-
sive instruction set while still keeping the instruc-
tion length to one word. The four formats and
their general layouts are described below.

NO ACCUMULATOR-EFFECTIVE ADDRESS

[0 0 opPCODE] @[INDEX| DISPLACEMENT,]

0|23456789!OIII2'|3|4|5

In the No Accumulator-Effective Address format
instructions, bits 0-2 are 000, and bits 3-4 contain
the operation code. The effective address is com-
puted from bits 5-15 as described under " Effective
Address Calculation' .

ONE ACCUMULATOR-EFFECTIVE ADDRESS

[oppcood ac [g[woex| |
0 1 2 3 4 5 6 T 8

DISPLACEMENT]
9 10 H 12 13 14 15

In the One Accumulator-Effective Address format
instructions, bit 0 is 0. and bits 1-2 contain the
operation code. Bits 3-4 specify the accumulator
for the operation. The effective address is com-
puted from bits 5-15 as described under ™ Effective
Address Calculation™.

Io-1 of 12

TWO ACCUMULATOR-MULTIPLE OPERATION

' [acs [aco [opcooe] sh [¢ [#] skp |

—— ORGANIZATION OF ARITHMETIC UNIT ——

0 1 2 3 4 5 6 T 8 9 10 It 12 13 4 15

In the Two Accumulator-Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the
source accumulator, bits 3 and 4 specify the desti-
nation accumulator, bits 5-7 contain the operation
code, bits 8 and 9 specify the action of the shifter,
bits 10 and 11 specify the value to which the carry
bit will be initialized, bit 12 specifies whether or
not the result will be loaded into the destination
accumulator, and bits 13-15 specify the skip test.
Each instruction in this format utilizes an arith-
metic unit whose logical organization is illustrated
below.

[17 BITS Py

FUNCTION

GENERATOR SHIFTER

I BIT ACS ACD

IC BITS 16 BITS
CARRY [
INITIALIZER

17 BITS

skip SENSOR |

carav) [accusuLarors)

Fior acoemrs] N7eis

LOAD/NO LOAD

D6-00927

Each instruction specifies two accumulators to sup-
ply operands to the function generator, which per -
forms the function specified by bits 5-7 of the
instruction. The function generator also produces
a carry bit whose value depends upon three quan-
tities: an initial value specified by the instruction.
the inputs, and the function performed. The initial
value may be derived from the previous value of
the carry bit, or the instruction may specify an
independent value.

The 37-bit output of the function generator. made
up of the carry bit and the 16-bit function result,
then goes to the shifter. In the shifter. the 17-bit
result can be rotated one place right or left. or the

Rev. 03
INSTRUCTION FORMATS

two 8-bit halves of the function result can be swap-
ped without affecting the carry bit. The 17-bit out-
put of the shifter can then be tested for a skip. The
skip sensor can test whether the carry bit or the
rest of the 17-bit result is or is not equal to zero.
After the skip sensor has tested the shifter output,
it can be loaded into the carry bit and the destina-
tion accumulator. Note. however, that loading is
not necessarv. An instruction in this format can
perform a complicated arithmetic and shifting
operation and test the result for a skip without af-
fecting the carry bit or either of the operands.

-2

INPUT/OUTPUT

CONTROL
{0. I [AC !opjcopsl { [DEVICE CODE ’:
0 | 2 3 4 5 & 7 8 9 10 1 12 13 14 =

In the Input Output format instructions, bits 0-2
are 011, bits 3-4 specify the accumulator for the
operation, bits 5-7 contain the operation code. bits
8-9 specify the control signal to be used, and bits
10-15 contain the device code of the referenced
device.

CODING AIDS

In the descriptions of the separate instructions,
the general form of how the instruction is coded in
assembly language is given along with the instruc -
tion. The general form of how an instruction may
be coded has the following format:

MNEMONIC- optional mnemonics >~ OPERAND STRING

The mnemonic must be coded exactly as shown in
the instruction description. Some instructions
have optional mnemonics that may be appended to
the main mnemonic if the option is desired. The
operand string is made up of the operands for the
given instruction.

The symbols < > and = are used in this manual to
aid in defining the instructions. These symbols
are not coded; they act only to indicate how an as-
sembly language instruction may be written. Their
oeneral definition is given below.

<> Indicates optional operands or mnemonics.
The operand enclosed in the brackets (e.g.,
< #>) may be coded or not. depending on
whether or not the associated option is de-
sired.

Indicates specific substitution is required.
Substitute the desired accumulator, address.
name, number, or mnemonic.

The following abbreviations are used throughout
this manual:

AC = Accumulator

ACS = Source Accumulator

ACD = Destination Accumulator
FPAC = Floating Point Accumulator

In the instructions that utilize an effective address,
the following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding
the symbol @ anywhere in the effective ad-
dress operand string.

The index bits are set by coding a comma
followed by one of the digits 0-3 as the last
operand of the operand string. If no index

is coded, the bits are set to 00. The charac-
ter ''period” (.) can be used to set the index
bits to 01. ' Period" can be read to mean

" address of the current instructions. When
the period is used, it is followed by either a
plus or a minus sign followed by the displace-
ment e.g., ".+7", or ".-2".

The displacement is coded as a signed number in
the current assembler radix. This radix is the
numbering system in which the programmer sup-
plies numbers to the assembler. The default radix
is Base 8 or octal. The assembler radix can be
changed by using the RADIX statement.

The assembler available with the NOVA line allows
the programmer to place labels on instructions or
locations in memory. When the assembler comes
upon a label in the operand string of an effective
address instruction, it automatically sets the index
and displacement bits to the correct values. For

a detailed discussion of the features and operation
of the NOVA line assembler, see the assembler
manual (DGC 093-000017).

The fixed point and logical instructions which use
the two accumulator -multiple operation format
have several options that can be obtained by ap-
pending suffixes to the instruction mnemonic and
by coding optional operands in the operand string.
The characters to be coded are given below with
their results.

CODING AIDS

The characters in the column titled "class abbre-
viation'" refer to specific fields in the two accu-
mulator -muitiple operation format. The characters
in the column titled ''coded character’™ show the
various characters which may be coded for this
option. The numbers in the column titled " result
bits'® show the bit settings in these fields resulting
from each coded character. The comments in the
column titled ""operation" describe the effect of
these bit settings.

CLASS CODED RESULT
ABBREVIATION|{ CHARACTER BITS OPERATION

C foption omitted) a0 Do not mitialize the carry it

/. m Inthahize the carry bit o 0,

(6] n Imtialize the carey bit to 1L

¢ 1 Imitialize the carry bit to the
complement of 1ts present
valuc.

SH (option omttedy 00 l.eave (he result of the arith -
metie or locieal nperation un-
affected,

L 01 Combune the carry and the 16-
bit result mto a 17-bit number
and rorate 1toone it letr.

R 10 Combine the carry and the -
tht result into a 17-bit number
and rotate it one it rent,

S 1 Exchance the twn &-nt halves
of the 16-hit result waithout at-
fectine the carrs

{option omitted) 0 Lnad the result of the <hitt
operation it ACD,
1 Daonot fnad the resualt of the
Sshift aperation mto ACD,

The following diagrams illustrate the operation of
the shifter.

Coded
Character Shifter Operation
L Left rotate one place. Bit 0 is rotated
into the carry position. the carry bit
into bit 15.
R
R Right rotate one place. Bit 15 is ro-

tated into the carry position. the carry

bit into bit 0.
= H

S Swap the halves of the 16-bit result.
The carry is not affected.

8—1i5

[o7 l 815 |

Rev. 02

111-4

The following operands initiate operations that test
the result of the shift operation. If the tested con-
dition is true, the next sequential instruction is
skipped.

CLASS COLED HEN TN
ABHREVIATION | CHARACTER BTs OPERATION
SKIP toption omitted, 00o Never sKip.
kb not Alwits - shap.
SAC i Seapoatearrs = 0,
SN ot Sa toare = 0
s/0 166 Skip it result = 0
SNIt 1ol Skip it result = 0.
sk/ Lo skip tl cither carrs or
result = 1
SHN 11 Skip it hath carryv and
result = U,

NOTE For the NOVA 3 series of computers,
instructions in the Two Accumulator-
Multiple Operation format must not have
boththe "No Load' andthe " Never Skip"
options specified at the same time.
These bit combinations are used by
other instructions inthe instruction set.

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's com-
plement number. Now consider the problem of
determining whether this number is positive or neg-
ative, One way to determine this would be to place
the number zero in another accumulator and use the
SUBTRACT instruction, but this requires an extra
instruction and also destroys the previous contents
of the other accumulator. Another way to deter-
mine the sign of the number in accumulator 3 is to
use the MOVE instruction and the power of the two
accumulator-multiple operation format. With the
MOVE instruction. the contents of AC3 can be
placed in the shifter and shifted one bit to the left.
This places the sign bit in the carry bit. The carry
bit can then be tested for zero, In order to pre-
serve the number in AC3, the instruction can pre-
vent the output of the shifter from being loaded back..
into AC3.

The general form of the MOVE instruction is:

MOV ¢ sh™ acs.acd. ,skip ™

The general bit pattern of the MOVE instruction is:

M) s T -

(facs facofo 1 o s | ¢ [+] sk |
o 1 2 3 4 5 6 7T B 9 10 it 12 13 14 15
To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential

instruction if the bit shifted into the carry bit is
zero, the following instruction could be coded:

MOVL+# 3,3,SZ2C

This instruction would assemble into the following
bit pattern:
o olifo, 1 o

['rll'IilllollxooAl)
C' 1 2 34 5 6'7T 8 910 Il 12713 14 15

FIXED POINT ARITHMETIC

- he fixed point ingtructign set performs binary
arithmetic on operands:in accumulators. The op-
erands are 16 bits in lergth and can be either
signed or unsigned. The instruction set provides
for loading, storing, adding, and subtracting.

LOAD ACCUMULATOR

LDA ac, <@ >displacement< ,index >

lofo 1] ac [@]inoex]| DISPLACEMENT |

0" 1 2 3 4 5 6 1.8 9 10 il 1213 14 15

The word addressed by the effective address, "E",
is placed in the specified accumulator. The pre-
vious contents of the AC are lost. The contents of
the location addressed by '"E’ remain unchanged.

STORE ACCUMULATOR

~TA ac, <@ >displacement < , index ™

Lo | o] AC I@l'NDEXI DISPLACEMENT 1
0 :Lz 3T a5 et 7 8 9 0 1 2 3 a8

The contents of the specified accumulator are
placed in the word addressed by the effective ad-
dress, "E". The previous contents of the location
addressed by "E'" are lost. The contents of the
specified accumulator remain unchanged.

ADD

ADD<c¢ ><sh><#> acs,acd<, skip ™

[u ACSIACOJI I o] SH[c J::[SKIP j
61 2 374 5 67 8 s o 2 3 A s

The carry bit is initialized to the specified value.
he number in ACS is added to the number in ACD

and the result is placed in the shifter. If the addi-
tion produces a carry of 1 out of the high-order bit,
the carry bit is complemented. The specified shift
operation is performed and the result of the shift is
placed in ACD if the no-load bit is 0. If the skip
condition is true, the next sequential instruction is
skipped.

NOTE If the sum of the two numbers
being added is greater than
65.5351 the carry bit is
complemented.

SUBTRACT

SUB<c¢>7"sh><#> acs,acd<,skip>

SKIP 1
10 12 13 14 1%

T

[l A(‘?SIACDIIOILSH c |4
0 | 2 314 516%7 8‘9

The carry bit is initialized to its specified value.
The number in ACS is subtracted from the number
in ACD by taking the two's complement of the num -
ber in ACS and adding it to the number in ACD.
The result of the addition is placed in the shifter.
If the operation produces a carry of 1 out of the
high-order bit, the carry bit is complemented.
The specified shift operation is performed and the
result of the shift is placed in ACD if the no-load
bit is 0. If the skip condition is true, the next
sequential instruction is skipped.

NOTE If the number in ACS is less
than or equal to the number
in ACD the carry bit is com-
plemented.

NEGATE

NEG<e™>7sh™>#> acs,acd<, skip >

[1lacsaco oo 1]sh] ¢ [#] sae |

0 | 2 3 4 5 6 7 8 9 10 1 12 13 14 15

The carry bit is initialized to the specified value,
The two's complement of the number in ACS is
placed in the shifter. If the negate operation pro-
duces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

NOTE If ACS contains 0, the carry
bit is complemented.

ADD COMPLEMENT

ADC- ¢ sh™ =™ , skip ™

1
0o | 2 3 4 5 6 T 8 S 10 i 3 14 15

[Tacs[aco[r oofsn] c T:] I

t

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is ad-
ded to the number in ACD and the result is placed

in the shifter. If the addition produces a carry of 1
out of the high-order bit, the carry bit is comple-
mented. The specified shift operation is performed,
and the result of the shift is loaded into ACD if the
no-load bit is 0. If the skip condition is true. the
next sequential instruction is skipped.

NOTE If the number in ACS is less

than the number in ACD. the
carry bit is complemented.

FIXED POINT ARITHMETIC

MOVE INCREMENT

MOV ¢ ~< sh><#> acs,acd<,skip ™ INC<c > sh>"#> acs,acd .skip”

[1]Acs [aco o 1+ o] sH | ¢ [«] sxp | ["Tacs [acoJo 1 1] sn | ¢ T sk
5 1 2 3'4 5 6 7 8 9 10 11 12 13 14 15 o'+ 2 3 4 5 6 7 8 9 © 2 13 4 =

The carry bit is initialized to the specified value.
The contents of ACS are placed in the shifter. The
specified shift operation is performed and the re-
sult of the shift is loaded into ACD if the no-load
bit is 0. If the skip condition is true, the next
sequential instruction is skipped.

Example:

The MOVE instruction can be used to perform a
signed divide by a power of 2 without using another
accumulator. The following sequence of instruc-
tions will divide the signed, two's complement
number in AC2 by 4 without using another accumu-
lator.

MOVL# 2,2,SZC :SKIP IF POSITIVE

MOVOR 2,2,SKP :SHIFT RIGHT WITH 1 AND
. SKIP

MOVZR 2,2,SKP ;SHIFT RIGHT WITH 0 AND
. SKIP

MOVOR 2,2,SKP ;SHIFT RIGHT WITH 1 AND
: SKIP

MOVZR 2,2 :SHIFT RIGHT WITH 0 AND
. DON'T SKIP

Shifting a number right one bit position is equiva-
lent to dividing the number by 2 and rounding
down. To perform division of a signed number

in this manner, the bit shifted into the high-order
bit must be equal to the sign bit. The first in-
struction determines whether to shift ina 0 or a 1.

1I-6

The carry bit is initialized to the specified value.
The number in ACS is incremented by one and the
result is placed in the shifter. If the incrementa-
tion produces a carry of 1 out of the high -order bit,
the carry is complemented. The specified shift
operation is performed. and the result of the shift
is loaded into ACD if the no-load bit is 0. If the
skip condition is true, the next sequential instruc-
tion is skipped.

NOTE If the number in ACS is 177777g
the carry bit is complemented.

LOGICAL OPERATIONS

The logical instruction set performs logical opera-
tions on operands in accumulators. The operands
are 16 bits long and are treated as unstructured
binary quantities. The logical operations included
in this set are: AND, and COMPLEMENT.

COMPLEMENT

COM<c ><sh><#> acs,acd<, skip >

([ae [[0 0 0] s [¢ [+] s
o 1 2 3 4 5 & 7 8 9 10 I 2 I3 % 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
placed in the shifter. The specified shift operation
is performed and the result is placed in ACD if the
no-load bit is 0. If the skip condition is true, the
next sequential instruction is skipped.

-1

AND

AND<£><§T~(#\ acs,acd<, skip >

[Tees [aeo [T 7 [s [¢ [s] s |
10

o' I 2 3 4 5 & 7 8 9 1213 14 15

The carry bit is initialized to the specified value.
The logical AND of ACS and ACD is placed in the
shifter. Each bit placed in the shifter is 1 only if
the corresponding bit in both ACS and ACD is one;
otherwise the result bit is 0. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

LOGICAL OPERATIONS

STACK MANIPULATION

An important feature of the NOVA 3 series of com-
puters is the stack manipulation facility. A Last-
In. First-Out (LIFO) or "Push-Down' stack is
maintained by the processor. The stack facility
provides an expandable area of temporary storage
for variables. data, return addresses, subroutine
arguments, etc. An important byproduct of the
stack facility is that storage locations are reserved
only when needed. When a procedure is finished
with its portion of the stack. those memory loca-
tions are reclaimed and are available for use by
some other procedure.

The operation of the stack depends upon the con-
tents of two hardware registers. The registers
and their contents are described below.

Stack Pointer

The stack pointer is the address of the "top™ of the
stack and is affected by operations that either
"push'’ objects onto or 'pop"’ objects off of the
stack. A push operation increments the stack
pointer by 1 and then places the "pushed’ object

in the word addressed by the new value of the stack
pointer. A pop operation takes the word addressed
by the current value of the stack pointer and places
it in some new location and then decrements the
stack pointer by 1.

T A STACK POINTER
STACK POINTER I 4 AFTER POP

BEFORE PUSH —
,]P;s-«e:, PPoED : «t—— STACK POINTER
STAFSER'BUSR —T_worc 4 BEFORE POP
R
———
[“—‘kffM

L

INCREASING
ADDRESSES

050056/

Rev. 02

I11-8

Frame Pointer

The frame pointer is used to reference an area in
the user stack called a "frame'. A frame is that
portion of the stack which is reserved for use by
a certain procedure. The frame pointer usually
points to the first available word minus 1 in the
current frame. The frame pointer is also used by
the RETURN instruction to reset the user stack
pointer.

Return Block

A return block is defined as a block of five words
that is pushed onto the stack in order to allow con-
venient return to the calling program. The format
of the return block, therefore. is determined by
how it is used in the return sequence. The format
of the return hlock is as follows:

WORD # POPPED DESTINATION

1 Bit 0 placed in the
carry bit.

Bits 1-15 placed in the
program counter.

AC3
AC2
AC1
ACO

AT s W N

In the stack. the return block looks like this:

STACK POINTER [So]
AFTER RETURN T} Sth WORD
Aco ¥ poPPED
ACI
AC2
AC3
STACK POINTER. TOROGRAM Ist WORD
BEFORE RETURN —P1CARRY. “50ktem | PoPPED
!
‘\~w—v

£6-00566

Stack Frames

In order to implement re-entrant subroutines, a
new area of iemporary storage must be available
for each execution of a called subroutine. The
easiest way to accomplish this is for the subrou-
tine to use the stack for temporary storage. A
“stack frame' is defined as that portion of the
stack which is available to the called routine. In
general, the stack frame belonging to a subroutine
begins with the first word in the stack after the
return block pushed by the called routine and con-
tains all words in the stack up to, and including,
the return block pushed by any routine which the
called routine calls. Variables and arguments can
be transmitted from the calling routine to the
called routine by placing them in prearranged
nositions in the calling routine's stack frame. Be-
cause the SAVE instruction sets the frame pointer
te the last word in the return block, these variables
and arguments can be referenced by the called
program as a negative displacement from the
frame pointer. The called routine should ensure
that reference to the calling routine's stack frame
is made only with the permission of the calling
routine.

Stack Protection

During every instruction that pushes data onto the
stack, a check is made for stack overflow. If the
instruction places data in a word whose address is
an integral multiple of 25610, a stack overflow is
indicated. If a stack overflow is indicated. the in-

struction is completed, an internal stack overflow
flag is set to 1, and, if the Interrupt On flag is 1,
a stack fault is performed. If the Interrupt On flag
is 0, the stack overflow flag remains set to 1, and
as soon as the interrupt system is enabled, the
stack fault is performed.

When a stack fault is performed, if a program map
is enabled, it is inhibited; the Interrupt On flag is
set to 0: the stack overflow flag is set to 0: the up-
dated program counter is stored in physical loca-
tion 0: and the processor executes a ''jump
indirect'' to physical location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be per-

formed, the stack control registers must be ini-

tialized. The rules for initialization are as follows:
Stack Pointer

The stack pointer must be initialized to the begin-
ning address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized to the same value
as the stack pointer. Otherwise. the frame pointer
can be initialized in a subroutine by the SAVE in-
struction.

Rev. 02
STACK MANIPULATION

STACK MANIPULATION INSTRUCTIONS

The stack feature of the NOVA 3 computer is pro-
grammed with eight 1/O instructions which use the
device code 01. Although the instructions are in

the standard I,0 format, the operation of these in-
structions is in no way similar to I/0 instructions.

PUSH ACCUMULATOR

PSHA ac

ﬁ||]Ac]o'|ooooooo:]
‘ll ¢ ijlll}!léll
o 1 2 3 4 S 6 7 8 9 10 Il 12713 14 1I5

The contents of the specified accumulator are
pushed onto the top of the stack. The contents of
the specified accumulator remain unchanged.

POP ACCUMULATOR

POPA ac
[OII[ACJOIIIOOOOOOIJ
1 1 1 i RO VR RN SO & R I ST W W W
C' I 2 3'4 5 6 7T 8 9 10 I 12713 14 IS

The specified accumulator is filled with the word
popped off the top of the stack.

SAVE
SAV
| o1l | 00 1 O 1 00O O OO OO0 O I]
e | | # L ! 1| l i 4 | : + i
0 [2 3 4 5 6 7 8 9 10 11 12 13 a 15

A return block is pushed onto the stack. After the
fifth word of the return block is pushed. the value
of the stack pointer is placed in the frame pointer
and in AC3. The contents of accumulators 0. 1,
and 2 remain unchanged. The format of the five
words pushed is as follows:

WORD # PUSHED CONTENTS

1 ACO

2 AC1

3 AC2

4 Bit 0=0
Bits 1-15=frame pointer
before the SAVE

5 Bit O=carry bit
Bits 1-15=Bits 1-15 of
AC3

Rev. 03

MOVE TO STACK POINTER

MTSP ac

|0||]Aclo|oooooooof
i 1 " RS S | 1 1 1 A i

c' 1 2 374 5 &' 7 B 910 it 2 2 .4 =

Bits 1-15 of the specified accumulator are placed
in the stack pointer. The contents of the specified
accumulator remain unchanged.

MOVE TO FRAME POINTER

MTFP ac
[OIIIACIOOOOOOOOOOI‘]
— It i i 1 i i L1 I i "
0O + 2 ' a 5 &' 7 B 90 (1 12713 18 15

Bits 1-15 of the specified accumulator are placed
in the frame pointer. The contents of the specified
accumulator remain unchanged.

MOVE FROM STACK POINTER

MFSP ac

IOIIT}AC[OIOIOOOOOOI
Yl % Y SN N NN N R SN U M |
o 1 5

T

2 34 5 67 8 9 10 Il 12 13 14 15

The contents of the stack pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the
specified accumulator is set to 0. The contents of
the stack pointer remain unchanged.

MOVE FROM FRAME POINTER

MFFP ac

[OII]ACTOOOIOOOOOOI
i i L | 1 1 1)| 1l 1 | 1 1
0+ 2 3 4 5 6 7 8 9 10 ft 12 3 14 15

The contents of the frame pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the
specified accumulator is set to 0. The contents of
the frame pointer remain unchanged.

11-10

PROGRAM FLOW ALTERATION

As stated previously, the normal method of pro-
oram execution is sequential. That is, the proces-
sor will continue to retrieve instructions from
sequentially addressed locations in memory until
directed to do otherwise. Instructions are pro-
vided in the instruction set that alter this sequen-
tial flow. Program flow alteration is accomplished
by placing a new value in the program counter.
Sequential operations will then continue with the
instruction addressed by this new value. Instruc-
tions are provided that change the value of the
program counter, change the value of the program
counter and save a return address, or modify a
memory location by incrementing or decrementing
and skip the next sequential instruction if the result
is zero.

JUMP

JMP @ >displacement- .index

o 0 oJo ol@[noex] DISPLACEMENT

0|23'456Y78910"|2"jn45

The effective address, "E' is computed and placed
in the program counter. Sequential operation con-
tinues with the word addressed by the updated value
of the program counter.

JUMP TO SUBROUTINE

JSR index

<@ ~displacement- ,
[0 o oo 1]@]moex|

o' | 2 3 4 5 6 T 8 9

DISPLACEMENT]
T EERENE

The effective address, "E'" is computed. Then the
present value of the program counter is incre-
mented by one and the result is placed in AC3.

operation continues with the word addressed by the
updated value of the program counter.

NOTE The computation of "E” is
completed before the incre -
mented proeram counter is
placed in AC3.

e En
is then placed in the program counter and sequential

INCREMENT AND SKIP IF ZERO

ISZ <@>displacement< ,index>

o o OFOI‘NDEX - DISPLACEMENT]

8 9 10 "o 1213|4 15

The word addressed by "E'" is incremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

DECREMENT AND SKIP IF ZERO

DS7Z <@ > displacement< ,index>

Lo o o 1 [@]moex] DISPLACEMENT |
2 osta s et7 8 a0 2 3 @ 15

The word addressed by "E'' is decremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

[RNEAY 02
PROGRAM FLOW ALTERATION

Extended Instructions

The following two program flow alteration instruc-
tions are available with the NOVA 3 series of com-
puters.

RETURN

RET

[o 10 1 01 | 0 0 0O OO OO IJ
1 1 1 i 1 1 1 1 i l i 1 1 1 1
0O | 2 34 5 & 7 8 9 10 1 12 1314 15

The contents of the frame pointer are placed in the
stack pointer and then five words are popped off the
stack and placed in predetermined locations. The

words popped and their destinations are as follows:

WORD # POPPED DESTINATION

1 Bit 0 is placed in the
carry bit.

Bits 1-15 are placed in
the program counter.

2 Bits 1-15 are placed in
the frame pointer.

Bits 0-15 are placed in
AC3.

3 AC2
AC1
ACO

Sequential operation continues with the word ad-
dressed by the updated value of the program
counter.

Rev. 04

TRAP

TRAP g_(ﬁ,g_(_i_,trap number

TRAP NUMBER 1| 00 o]
1 i 1 1 1 1 |

1
6' 7 8 9110 It 12 13 14 IS

L

I [ACS | ACD |
OIIZ 3:45

If a program map is enabled, it is inhibited. The
logical address of this instruction is placed in bits
1-15 of physical location 46g and bit 0 of this loca-
tion is set to 0. Then the processor executes a
"jump indirect” to physical location 47g. The
state of the Interrupt On flag is unaltered.

NOTE The mnemonic TRAP and the in-
struction format illustrated above
will only work with the DGC Macro
Assembler, If the program is to
be assembled using the Assembler
or the Extended Assembler, this
function can be performed by cod-
ing an instructioninthe Two Accu-
mulator /Multiple Operation format
withthe ''No Load ' and the ''Never
Skip'' options both specified. The
trap number can be constructed in
bits 5-11 by specifying the correct
operation code, shift command,
and carry command.

m-12

SECTION IV
INPUT/OUTPUT

INTRODUCTION

In order for the processor to perform useful work
for the user, there must be some method for the
program to transfer information outside the ma-
chine. The Input/Output (I/0) instruction set pro-

vides this facility. There are eight I/O instructions

which allow the program to communicate with /0O
devices, control the I/O interrupt system, control
certain processor options, and to perform certain
wrocessor functions.

The NOVA line has a 6-bit device selection net-
work, corresponding to bits 10-15 in the I/O in-
struction format. Each device is connected to
this network in such a way that each device will
only respond to commands with its own device code.
Each device also has two flags, Busy and Done,
which control its operation. When Busy and Done
are both 0, the device is idle and cannot perform
any operations. To start a device, the program
must set Busy to 1 and set Done to 0. When a
device has finished its operation, it sets Busy to
0 and Done to 1. The case of Busy and Done both
set to 1 is a meaningless situation and will pro-
duce unpredictable results.

The format for the 1/0 instructions is illustrated
-below.

o 1 AC | OP CODE [cONTROL DEVICE CODE
[0, ' 1] Ac [OF CODE fronteo] DEVICE CODE

0 I 2 3 4 5 6 7 8 9 10 Il 2 13 14 IS

Bits 0-2 are 011, bits 2-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the
Busy and Done flags in the device, and bits 10-15
specify the code of the device. The six bits pro-
vided for the device code in the I/0O format mean
that 64 unique device codes are available for use.
Some of these device codes, however, are reserved
for the CPU and certain processor options. The
remaining device codes are available for referenc-

ing I/0 units. Some of the codes have been assigned

to specific devices by Data General and the assem-
bler recognizes mnemonics for these devices. A
complete listing of device codes. the devices as-
signed to these codes, and the mnemonics assigned
to the devices is available in Appendix A.

IV-1o0f 6

OPERATION OF 1/0O DEVICES

In general, the operation of all I/O devices is done
by manipulation of the Busy and Done flags. In
order to operate a device, the program must first
ensure that the device is not currently performing
some operation. After the program has deter -
mined that the device is available, it can start an
operation on the device by setting Busy to 1 and
Done to 0. Once a device has completed its opera-
tion, and set Busy to 0 and Done tc 1, it is avail-
able for another operation. The program can
determine this condition in one of two ways. By
using the I/0 SKIP instruction, the program can
test the status of the Busy and Done flags. Another
way is to utilize the interrupt system that is stan-
dard on the NOVA line of computers. The inter-
rupt system is made up of an interrupt request line
to which each I/0O device is connected, an Interrupt
On flag in the CPU, and a 16-bit interrupt priority
mask. The Interrupt On flag controls the status of
the interrupt system. If the flag is set to 1, the
CPU will respond to and process interrupts. If the
flag is set to 0, the CPU will not respond to any
interrupts. An interrupt is initiated by an 1/0 de-
vice when it completes its operation. Upon com-
pleting the operation, the device sets Busy to 0 and
Done to 1. At this time, the device also places an
interrupt request on the interrupt request line,
provided that the bit in the interrupt priority mask
which corresponds to the priority level of the de-
vice is 0. If the mask bit is 1, the device sets
Busy to 0 and Done to 1, but does not place an in-
terrupt request on the interrupt request line.

If the Interrupt On flag is 1 at the time the proces-
sor ccmpletes execution of any instruction, the
processor honors any request on the interrupt re-
quest line. If the Interrupt On flag is 0, the CPU
does not look at the interrupt request line; it just
goes on to the next sequential instruction. The
CPU honors an interrupt request by setting the
Interrupt On flag to 0 so that no interrupts can in-
terrupt the first part of the interrupt service
routine. If no program map is enabled, the CPU
places the updated program counter in physical

Rev. 03
OPERATION OF i/0O DEVICES

memory location 0 and executes a "jump indirect”
to physical memory location 1. It is assumed that
location 1 contains the address, either direct or
indirect, of the interrupt service routine. If a
MMPU program map is enabled, the updated pro-
gram counter is placed in logical memory location
0, the map is disabled, and the CPU executes a
"jump indirect' to physical memory location 1.

If a MMU program map is enabled, it is inhibited;
the updated program counter is placed in physical
memory location 0 and the CPU executes a "jump
indirect™ to physical memory location 1.

Once the CPU has transferred control to the inter-
rupt service routine, it is up to that routine to

save any accumulators that will be used, save the
carry bit if it will be used, determine which device
requested the interrupt, and then service the inter-
rupt. The determination of which device needs
service can be done by I/0 SKIP instructions or the
routine can use the INTERRUPT ACKNOWLEDGE
instruction.

The INTERRUPT ACKNOWLEDGE instruction re-
turns the 6-bit device code of the device requesting
the interrupt. If more than one device is request-
ing service, the code returned is the code of that
device requesting an interrupt which is physically
closest to the CPU on the I/O bus. After servicing
the device, the interrupt routine should restore all
saved values, set the Interrupt On flag to 1, and
return to the interrupted program. The instruction
that sets the Interrupt On flag to 1 (INTERRUPT
ENABLE) allows the processor to execute one more
instruction before the next interrupt can take place.
In order to prevent the interrupt service routine
from going into a loop, this next instruction should
be the instruction that returns control to the inter-
rupted program. Since the updated value of the
program counter was placed in location 0 by the
CPU upon honoring the interrupt, all the interrupt
routine has to do, after restoring the AC's and the
carry bit, is execute an INTERRUPT ENABLE in-
struction, a "JMP@O'" instruction and control will
be returned to the interrupted program.

Rev. 03

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the in-
terrupt service routine, the interrupt routine can-
not be interrupted and there is only one level of
device priority. This level is determined by either
the order in which the I1/0 SKIP instructions are
issued or (if INTERRUPT ACKNOWLEDGE is used)
by the physical location of the devices on the bus.
In a system with devices of widely differing speed,
such as a teletypewriter versus a fixed head disc,
the programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are
available that allow the implementation of sixteen
levels of priority interrupts.

Each of the I/0 devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same
bit in the mask. Even though the standard mask
bit assignments have the higher numbered bits as-
signed to lower speed devices, no implicit priority
ordering is intended. The manner in which these
priority levels are ordered is completely up to the
programmer. The listing of device codes in
Appendix A also contains the standard Data General
mask bit assignments.

The condition of the priority mask is altered by
the MASK OUT instruction. If a bit in the priority
mask is set to 1, then all devices in the priority
level corresponding to that bit will be prevented
from requesting an interrupt when they complete
an operation. In addition, all pending interrupt
requests from devices in that priority level are
disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without dam-
age. For this to be possible, the main interrupt
routine must save the state of the machine upon re-
ceiving control. The state of the machine consists
of the four accumulators, the carry bit, and the
return address. This information should be stored
in a unique place each time the interrupt handler is
entered so that one level of interrupt does not over-
lay the return information that belongs to a lower
priority level. After saving the return information,
the interrupt routine must determine which device
requires service and jump to the correct service
routine. This can be done in the same manner as
for a single level interrupt handler.

After the correct service routine has received con-
trol, that routine should save the current priority
mask, establish the new priority mask, and enable
the interrupt system with the INTERRUPT ENABLE
instruction. After servicing the interrupt, the
routine should disable the interrupt system with the
INTERRUPT DISABLE instruction, reset the pri-
ority mask, restore the state of the machine, en-
able the interrupt system, and return control to the
interrupted program.

1v-2

DATA CHANNEL I/O INSTRUCTIONS

Handling data transfers between external devices DATA IN A

and memory under program control requires an

interrupt plus the execution of several instructions DIA<f> ac,device

for each word transferred. To allow greater trans- - ==

fer rates the NOVA line contains a data channel o | | l AC]0 0 | l F | DEVICE CODE j

through which a device, at its own request, can o T 3t a 5* s% 7 e‘ . lol “' |2! TS 5

gain direct access to memory using a minimum of '

processor time. The contents of the A input buffer in the specified
device are placed in the specified AC. After the

When a device is ready to send or receive data, it data transfer, the Busy and Done flags are set

requests access to memory via the channel. At the according to the function specified by F.

beginning of every memory cycle the processor

synchronizes any requests that are then being The number of data bits moved depends upon the

made. At certain specified points during the exe- size of the buffer and the mode of operation of

cution of an instruction, the CPU pauses to honor the device. Bits in the AC that do not receive

all previously synchronized requests. When a re- data are set to O.

quest is honored, a word is transferred directly

via the channel from the device to memory or from

memory to the device without specific action by the

program. All requests are honored according to PR)

the relative position of the requesting devices on DIB<f™ ac,device

the I/O bus. That device requesting data channel -

service which is physically closest on the bus in o 1 [AC]0‘ Lol] F [DEVICE CODE]

serviced first, then the next closest device, and O 1 2 3 4 5 6 7 8 9 10 (I 12 13 14 15

8o on, until all requests have been honored. The) . .

synchronization of new requests occurs concur- Thel contents of thg B input bl}ffer in the specified

rently with the honoring of other requests, so if a device are placed in the specified AC. After the

deviee continually requests the data channel, that data transfer, the Busy and Done flags are set

device can prevent all devices further out on the according to the function specified by F.

bus from gaining access to the channel.

DATA IN B

The number of data bits moved depends upon the
size of the buffer and the mode of operation of
the device. Bits in the AC that do not receive
data are set to 0.

Following completion of an instruction, the proces-

sor handles all data channel requests, and then

honors all outstanding [/O interrupt requests.

After all data channel and 1/0 interrupt requests

have been serviced, the processor continues with DATA IN C

the next sequential instruction. The data channel

is fully described in the "' Programmer's Reference £ device

Manual for Peripherals’. ordering number DIC<=> ac. v

015-000021. o v [ac i1 o 1] F [DEVICE CODE
' 9 10

|
T ‘l A
6 ¢ 2 3 4 5 6 7 8 o2 13 14 15

CODING AIDS
o)) The contents of the C input buffer in the specified
The set of 1/0 instructions has options that can be device are placed in the specified AC. After the
obtained by appending mnemonics to the standard data transfer, the Busy and Done flags are set
mnemonic. These optional mnemonics and their according to the function specified by F.
result are given below.

The number of data bits moved depends upon the
CLASS CODED RESULT size of the buffer and the mode of operation of the
ABBREVIATION | CHARACTER | BITs QPERATION device. Bits in the AC that do not receive data

‘option omitted 06 Dnes not affect the are set to 0
Busy and Drne flavs. *

o1 start the device by
settine Busy to 1 and
Dane to 0.

Idle the device by set-

ting botn Busv and Done
o),

Pulse the special in-out
bus control line. The
effect. if anv. depends
upon the device.

Rev. 02
1/O INSTRUCTIONS

DATA OUT A

DOA [ac.device

|
J

'DEVICE CODE _
0 I2v 13 i4 15

The contents of the specified AC are placed in the
A output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The ron-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

DATA OUT B

ac,device
— E——————3

|

T ac |1 o o] F | Device cooe
2 3 4 5 6 7 8 9 10 11 12 13 14 Ii%

The contents of the specified AC are placed in the
B output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

DATA OUT C

DOC f ac.device

ac [1 ol F L DEVICE CODE

|
——— . - I "
t

4 5 & 8 9) 2 5

The contents of the specified AC are placed in the
C output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

The I O SKIP instruction enables the programmer
to make decisions based upon the values of the
Busy and Done flags. Which test is performed 1s
based upan the value of bits 8-9 in the instructinn.
Bits 8-9 can be set by appending an optional mne-
monic to the I O SKIP mnemonic. The optional
mnemonics and their results are given below.

CLASS CODED
ABBREVIATION} CHARACTER OPERATION

RESULT
BITS

1 3N Tests for Busy :
137) Tests for Busv
DN Tests {or Done
D7 Tests {or Done

I/0 SKIP

SKP

‘DEYICE CODEl

EN

T T

0 i i3 14

If the test condition specified by T is true, the
next sequential instruction is skipped.

NO 1/0O TRANSFER

NIO [device

| Jd L]

-7 T T

o | zlo olo o ol F DEVICE CODE
‘-, 144 5164 4

8 9 10 12’

The Busyv snd Done flags in the specified device
are set according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

1O instructions with a device code of 77 perform
a number of special functions rather than control-
ling a specific device. In all but the 1/0 SKIP in-
struction, I O instructions with a device code of
77 uce bits 8-9 to control the condition of the
Interrupt On flag. An I/O SKIP instruction with a
device code of 77 uses bits 8-9 to either test the
state of the Interrupt On flag or to test the state of
the Power Fail flag. The mnemonics are the same
as for normal I'O instructions. The table below
gives the result of these bits for instructions with
a device code of 77.

" RESULT |
' OPERATION

CLASS | CODED
ABBREVIATION | CHARACTER

SEE D X ==

| [romatted ‘ 00 i Does not affect the
state ol the Interrupt
o rla.

Set the Intervupt fn
e el

set the ot rrupt On
flaw e 0.

Does not affect ihe
Sstate ot the torerrupt
sOm rlae.

Tests for interrupt
On L.
c Tests for interrupt
om0,
CTesrs o Power
Fal 1

H ests o Paaer

1
: ; Aszul .

The device code of 77 deals mainly with proces-
sor functions and has, therefore, been given the
mnemonic of CPU. In addition, many of the 17O
instructions that reference this device code have
been given special mnemonics. While these
special mnemonics are functionally equivalent to
he corresponding [O instructions with a device
code of 77. there is the following limitation: the
mnemonics for éontrolling the state of the Inter-
rupt On flag cannot be appended to them. If the
programmer wishes to alter the state of the Inter -
rupt On flag while performing a MASK OUT in-
struction. for example, he must issue the
appropriate I O instruction {DOB {~ ac,CPU)
instead of the corresponding special mnemonic
(MSKO ac). If the special mnemonic is used, bits
8-9 are set to 00. In describing the instructions,
the special mnemonic for the corresponding I O
instruction will be uiven first. followed by the I.O
instruction.

INTERRUPT ENABLE
INTEN

NIOS CPU

[o 1 1]o ofo 0 oo 1]

Illlli
b Al

]
0 | 2 3 a4 5 6 T 8 9 10 tI 12 13 14 (5
The Interrupt On flag is set to 1. If the state of
the Interrupt On flag is changed by this instruction,

the CPU allows one more instruction to execute
before the first I/0O interrupt can occur.

INTERRUPT DISABLE
INTDS

NIOC CPU

[o 1 1]o o]0 0 of 1 el 11
o . 374 5 6 7 8 9 0 i 2 13

The Interrupt On flag is set to 0.
READ SWITCHES
READS ac

—_—

DIA< > ac,CPU

lo v 1 [ac]o o] F [11
o'+ 2 2 4 5 6 7 8 3 10 I' 2

The setting of the console data switches is placed
in the specified AC. After the transfer, the Inter-
rupt On flag is set according tc the function speci-
fied by F.

INTERRUPT ACKNOWLEDGE
INTA ac

DIB- {> ac,CPU

o 1] ac [o v] F T v v 0
6o « 2 3 4 5 6 7 8 9 0 I " 14

The six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on
the bus is placed in bits 10-15 of the specified AC.
Bits 0-9 of the specified AC are set to 0. After the
transfer, the Interrupt On flag is set according to
the function specified by F.

Rev. 02
CENTRAL PROCESSOR FUNCTIONS

MASK OUT
MSKO ac

DOB > ac.CPU

HALT
HALT

DOC<{> ac,CPU

WII]A?[IO‘OIE[IIIIIIJ

+ + 1 i 1

ot 1| ac i

1

I

i J
a 15

0"+ 2 3 4 5 6 7 8 9 10 1 12 i3 14 1S

The contents of the specified AC are placed in the
priority mask. After the transfer, the Interrupt
On flag is set according to the function specified by
F. The contents of the specified AC remain un-
changed.

NOTE A 1 in any bit disables in-
terrupt requests from de-
vices in the corresponding
priority level.

The Interrupt On flag is set according to the func -
tion specified by F and then the processor is
stopped.

NOTE If the mnemonic DOC is used
to perform this function, an
accumulator must be coded to
avoid assembly errors. Dur-
ing execution of this instruc-
tion, the AC field is ignored.

/O RESET CPU SKIP
IORST SKP- t>- CPU
DIC<{> ac,CPU .

= = o 1 wJo ol v T v
O.'K‘IAF L'IO"KFLI'['J'A"\!} 0 I 2 3 4 5 & 7 8 9 10 Il 12 13 14 1S
ot T 2 3% 5 67 8 5 w01 2 3 4 15 If the test condition specified by T is true, the next

The Busy and Done flags in all IO devices are set
to 0. The 16-bit priority mask is set to 0. The
Interrupt On flag is set according to the function
specified by F.

NOTE For the NOVA 3 series of com-
puters, if the RESET jumper is
installed in the CPU, the instruc -
tion DOA<{> ac,CPU is equiv-
alent to DIC<f> ac,CPU.

If either the mnemonic DIC or
the mnemonic DOA is used to per-
form this function, an accumula-
tor must be coded to avoid
assembly errors. Regardless of
howthe instructioniscoded. dur-
ing execution, the AC field is ig-
nored and the contents of the AC
remain unchanged.

Rev. 02

sequential instruction is skipped.

SECTION V
PROCESSOR OPTIONS

INTRODUCTION

Optional equipment for the NOVA line computers
includes a power monitor with the facility for auto-
matic restart after a power failure, multiply/divide,
real-time clock, memory address translation, and
floating point arithmetic.

POWER FAIL

In the NOVA line, when power is turned off and
then on again, core memory is unaltered. How-
ever, when the power is turned on, the state of the
accumulators, the program counter, and the var-
ious flags in the CPU is indeterminate. The power
fail option provides a ' fail-soft" capability in the
event of unexpected power loss.

In the event of power failure, there is a delay of
one to two milliseconds before the processor shuts
down. The power fail option senses the imminent
loss of power, sets the Power Fail flag, and re-
quests an interrupt. The interrupt service routine
can then use this delay to store the contents of the
accumulators, the carry bit, and the current pri-
ority mask. The interrupt service routine should
also save location 0 (to enable return to the inter-
rupted program), put a JUMP to the desired re-
start location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 200 to 1500 instructions depending on the
processor, so there is more than enough time to
perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on
the front panel. If the switch is in the "on' posi-
tion. the CPU remains stopped after power is re-
stored. If the switch is in the '*lock' positicon,
then 50ms after power is restored, the CPU exe-
cutes a "JMP 0" instruction. restarting the inter-
rupted program.

The power fail option has no device code and no
interrupt disable bit in the priority mask. It does
not respond to the INTERRUPT ACKNOWLEDGE
mnstruction. The Power Fail flag can be tested by
the CPU SKIP instruction. Testing of the Power
Fail flag is described below.

V-1 of 30

SKIP IF POWER FAIL FLAG IS ONE

SKPDN CPU
[O‘llllo o||‘|||| oIn R '1
ot 1T 2 374 s s 7 e,erlo'nluz'Lmlm' 15

If the Power Fail flag is 1 (i.e., power is failing).
the next sequential instruction is skipped.

SKIP IF POWER FAIL FLAG IS ZERO

SKPDZ CPU
o 1]o ofv v [
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the Power Fail flag is 0 (i.e., power is not fail-
ing), the next sequential instruction is skipped.

MULTIPLY /DIVIDE

Multiplication can be performed on the NOVA line
by software routines that utilize the standard in-
struction set, but if many of these operations are
required, a loss of efficiency can result. The
multiply/divide option provides the capability of
performing these operations in hardware, with a
corresponding increase in CPU efficiency and
utilization. Two versions of this option are avail-
able: one for the NOVA computer, and one for the
rest of the computers in the NOVA line The two
versions of this option and the instructions for each
are described below.

NOVA Multiply /Divide

The multiply/divide option for the NOVA computer
is an 1/0O device and is controlled by I/0Q instruc-
tions. The device code for the NOVA computer
multiply/divide option is 1. It has no Busy and
Done flags and does not respond to the INTERRUPT
ACKNOWLEDGE instruction. It has three buffers:
A, B, and C that can be written and read using stand-
ard I/O instructions. Multiplication and division is
controlled by the setting of the control field in the
I/0O instruction. The control field setting and the
resulting operation are described below.

Rev. 02
POWER FAIL

[cobrn RESUT T D|V|DE

EERRAERE I O] CHARANCTER Hers OPERATION
W A | None DIV
anted
0 Phe crontents of the A and I DOCS 2,MDV
hatters are trested as anun-
<iwned, double teneth intecer, T
with the A hulfor being the oll 1| ! ! Lol') | loloL' IOIOXOAOLOAI_‘I
left }»v.v” and llu.l.!hu[l(x hrl-nu Oj) 2 3 4 5 6 T 8) T 10 11 '2' 13 14 15
the rizht halt. This number s
divided by the unswened antewer K .
contamed e the (| hul:rr.} '|‘|;l‘ The 32-bit unsigned number contained in ACO and
queticnt s plaeed i the 3 bhuf - . PO . . .
| Ler and the rensander s placed ACI 1S d}Vlded by the 16-blt uns"gned n_umber in
! i butter | The ot AC2. Bit 0 of ACO is the high-order bit of the
o he © ffer remy hime e P . . .
v bt o e dividend and bit 15 of AC1 is the low-order bit.
¢ v | e A batter s set 10 0 The quotient and remainder are 16-bit unsigned
i P il The unsizned inteders vontatnea numbers and are pla(‘ed in ACl and ACO, re-
RN and € buttir s v et spectively. The carry bit is set to 0. The con-
lenuth. ur\hlslll‘ﬂ. ntermediate tents of ACZ remain un(‘hanged.
re=ult. The unsizned mieco:
contamed n the A buffer i~ added
toothi~ number and the final result NOTE Before the divide Operation
1~ placed m the A and B butters .
he deft halt s placed i the A takeS plaCe, ACO 1S com-
vufter and the reht half s placed pared to AC‘Z. If the number
e the Is bufter Fhe contents o N i
the C buffer remain uncharniced n ACO 1S greater than or

equal to the number in AC2.
an overflow condition is in-
dicated. The carry bit is set
to 1and the operationis ter-
minated. All operands re-
main unchanged.

Non-NOVA Multiply /Divide

The multiply/divide option for the rest of the com-
puters in the NOVA line is a part of the CPU. For
compatibility, the instructions for the option are
1/O instructions that reference device code 1.

The assembler recognizes the mnemonics MUL
and DIV for these operations. The Mnemonics
and the 1/0 instructions generated along with a
description of the instructions appear below.

MULTIPLY
MUL

DOCP 2, MDV

I?LIJI]IAOlI'IIIO[ILIIOJOIO‘OLOLIJ
o1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

The 16-bit unsigned number in AC1 is multiplied
by the 16-bit unsigned number in AC2 to yield a
32-bit unsigned intermediate result. The 16-bit
unsigned number in ACO is added to the intermediate
result to produce the final result. The final result
is a 32-bit unsigned number and occupies ACO and
AC1. Bit 0 of ACO is the high-order bit of the re-
sult and bit 15 of AC1 is the low-order bit. The
contents of AC2 remain unchanged. The carry bit
remains unchanged. Because the result is a
double -length number, overflow cannot occur.

Rev. 03

REAL-TIME CLOCK

The Real-Time Clock (RTC) option available on the
NOVA line generates a sequence of pulses that is
independent of the CPU timing. It will generate

'O interrupts at any one of four program select-
able frequencies. The Busy and Done flags of the
RTC option are controlled by bits 8-9 of the I/0
instruction. The RTC option is device code 14g and
has the mnemonic RTC. The interrupt disable bit
is priority mask bit 13.

Setting Busy allows the next pulse from the clock
to set Done, and the RTC option requests an I/O
interrupt if its interrupt disable bit is 0. A DATA
OUT A instruction to select the clock frequency
only has to be given once. After each interrupt, an
NIOS instruction will set up the clock for the next
interrupt.

When Busy is first set the first interrupt can come
at any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts

~ome at the clock frequency, provided that the pro-
gram always sets Busy before the clock period ex-
pires. After power up or /O reset, the clock is
set to the line frequency. After power up the line
frequency pulses are available immediately, but
five seconds must elapse before a steady pulse train
is available from the crystal for other frequencies.

The RTC frequency is selected by the following
instruction:

SELECT RTC FREQUENCY
DOA<{> ac,RTC

I I O
O:IlZ 3 4 5 6 7

[o‘oll

'.°ﬂ

8 9 10 I 12 13 14 15

The clock frequency is set according to bits 14-15
of the specified AC. The contents of the specified
AC remain unchanged.

AC BITS 14-15 FREQUENCY
00 AC line frequency
01 10Hz
10 100Hz
1000Hz

MEMORY PARITY OPTION

The Memory Parity option available on the NOVA
3 series of computers provides a means of detect -
ing single-bit memory errors as they occur. In
the event of a memory error, the parity option
can either directly reset the system or initiate a
program interrupt request. If an interrupt is
requested, the programmer can determine the
physical address of the word in which the error
occurred, and then proceed or halt as desired.

The parity option consists of a parity controller
and memory modules with parity circuitry. It is
possible to have both parity and non-parity memory
modules in the same system. In such a system,
the parity controller will ignore accesses to non-
parity memory modules.

Method of Operation

Parity is a method of detecting single-bit errors,
i,e., one bit in a word unintentionally changed
fromaOtoal, orfromaltoa0. This is done
by adding a single additional bit to each word, and
coding that bit such that the total number of bits
set to 1 in each word is odd or even, depending
upon whether odd or even parity is being used.

The word length of a parity memory is thus 17
bits, consisting of 16 data bits and 1 parity bit.
Each time a memory location is written. the parity
option computes the parity bit and passes it to the
memory along with the data bits. Each time a
location is read, the parity option computes the
parity and checks this parity bit against the parity
bit read from memory. If the two bits are the
same, no error has occurred and the 16 data bits
are passed along with no delay in the cycle time of
the memory. If the two bits are not the same, a
single-bit error has occurred and the parity option
either executes a system reset or initiates a pro-
gram interrupt request.

The parity option may operate with either odd or
even parity. This choice is under program control.
For odd parity, the parity bit will be set so that

the total number of birs set to 1 in the 17-bit mem-
ory word is an odd number. For even parity, the
parity bit will be set so that the total number of
bits set to 1 in the 17-bit memory word is an even
number. Note that 0 is an even number. This
means that if a memory location fails such that all
117 bits are read as 0, this will be an error with
odd parity, but not with even.

The choice of whether the parity option executes a
system reset or initiates a program interrupt
request upon finding a memory error is selectable
by jumpers on the parity option board.

Rev. 04
MEMORY PARITY OPTION

Device code 4 and the mnemonic PAR are assigned
to the parity option. The parity option has a Busy
and a Done flag, with the following meanings:

Busy: 1 = Parity error

0 = No parity error
Done: 1 = Even parity

0 = Odd parity

The flag control commands for the parity option
are as follows:

f=3S8 Set odd parity, enable parity
interrupts.

f=0C Clear parity error, set odd parity,
disable parity interrupts.

f=P Set even parity. enable parity
interrupts.

In addition, an I;O RESET instruction will clear
parity error, set odd parity, disable parity inter-
rupts. This is also the state that the machine is
in when power is first turned on.

Rev. 04

Two instructions are used to find the address which
*hich caused the parity error:

READ PARITY ERROR ADDRESS

DIA <f>ac, PAR

(o I :]Ac ‘oo |] F 0 0 01t 00
L L L 1 l A 1 L i i e
0O 1 2 3 &4 5 6'7 8 9 10 n 12°

I3 14 15

The parity bit associated with the most recent
memory error is placed in bit 0 of the specified
AC. The low-order 15 bits of the physical memory
address where the parity error was found are
placed in bits 1-15. After the transfer, the func-
tion specified by F is performed. The format of
the specified AC is as follows:

ER PHYSICAL MEMORY ADDRESS }
J L 4 i 1 l | } I
o' 1 2 3'a 5 & 7 819'I01I|112'|3‘I4J|5
BITS CONTENTS
0 Parity bit associated with memory
error.
1-15 Physical memory address where
parity error was found.

READ EXTENDED ERROR ADDRESS

DIB <" f> ac, PAR

Oél l]Af on' IL F 01010

Q ! 2 3 4 5 6 7 8 9 10 t 12

I 0 O
| I
13 14 15

i
T

The two high-order bits of the physical memory
address where the most recent parity error was
found are placed in bits 1 and 2 of the specified
AC. Bits 0 and 3-15 are set to 0. After the trans-
fer, the function specified by F is performed. The
format of the specified AC is as follows:

HOB [
L i A 1 F3 I 1 3 3 L.k 3 1
0' 1 2 3'4 5 6 7 8 9 10 Il 12 13 14 15
BITS CONTENTS
0 Reserved for future use.
1-2 High-order bits of the physical

memory address where the parity
error was found.
3-15 Reserved for future use.

v-3.1

This page intentionally left blank

v-3.2 Rev. 04

MEMORY MANAGEMENT

Background to Address Translation

The concept behind the various memory manage-
ment features available with the NOVA line com-
puters is that of "Logical-to-Physical Address
Translation’'. The amount of memory required by
a user's program is defined to be his "ogical ad-
dress space'’. This space may be as large as 32
1K pages. The areas of physical storage assigned
to the user are defined to be his ""physical address
space'’. The address translation function that con-
verts addresses in the logical space to addresses
in the physical space is called the "address map"
for that user. Each user has his own, unique
logical-to-physical address map. In addition,
there is a map for the data channel which can be,
but does not have to be equal to the user map. The
multiprogramming operating system determines
what these maps are to be, and then transmits this
information to the address translation hardware.
The following instruction shows a possible two-user
configuration.

Figure 1 shows a 128K physical address space and
its utilization by a two-user multiprogramming
system. The supervisor resides in pages 0-7 of
physical space. The first 16 pages of user #1 are
in pages 8-23 of physical memory. The remain-
ing 16 pages of the address space for user *1 re-
side in pages 40-55 of physical space. User #2
also has his 32K of logical space split into two

Rev. 03

areas. Pages 0-15 of user #2 are in pages 24-39
of physical space and pages 24-39 of physical
space and pages 16-31 of user #2 are in pages
56-71 of physical space. The data channel is
capable of servicing both users. Any data chan-
nel reference to pages 0-15 of logical space will
be mapped to pages 0-15 of the logical space of
user “1. Any data channel reference to logical
pages 16-31 will be mapped to pages 0-15 of the
logical space of user 2.

.
. | !
USER |
_2% oA,]
r,——\ ![_ |
‘! .
| I |
i : 4 bz - i
‘ i
| i P
‘ ; |
& ‘ 23 : .
€ | |ea i ===
; ‘ | ' |
! i ‘ i
| : = ' ?
- b

i
|
|
{
1
{
| ' DCh
1 | LOGICAL

Figure 1 Logical-to-Physical Address Translation

In order to manage memory efficiently, the operat-
ing system makes use of the validity and write pro-
tect features of the address translation hardware,
if possible. Figure 2 shows a two-user configura-
tion where these features are used.

In Figure 2, a '""W" in a page means the page is
write -protected. By convention, mapping a logical
page to physical page 127 and write protecting it
makes that page validity protected. Both users
have declared that page 1 of their logical space is
to be write-protected.

Physical page 8 is the logical page 1 for user #1
and physical page 10 is the logical page 1 for user
#2. User #1 is only using 13 pages of his 32 page
logical address space, so logical pages 13-31 have
been declared invalid for him. Any reference by
user #1 to logical pages 13-31 will cause a validity
error. User #2 is only using 21 pages of his logi-
cal address space, so logical pages 21-31 of his
logical space have been declared invalid. Any
reference by user #2 to logical pages 21-31 will
result in a validity error.

The address translation hardware resides between
the memory and the CPU, and the memory and the
data channel, and is transparent to all of them.
When either the CPU or the data channel requests
a memory operation, the address translation hard-
ware intercepts and services the request. The
address translation hardware translates the 15 bit
logical address coming from the CPU or the data
channel into a 17 bit physical address. The mem-
ory operation is then performed using this 17 bit
address. The memory access cycle time is un-
changed.

The mapping information needed to service a CPU
or data channel request is given to the address
translation hardware by the operating system
through I/0 instructions that reference the address
translation hardware. This information is trans-
mitted before the supervisor enables either the
user map or the data channel map.

V-5

PHYSICAL
MEMORY

0

SUPERVISOR]

USER |
LOGICAL

0
|

USER 2
LOGICAL

o

|
2 - 32
3

06-00232

« I

Figure 2 Logical-to-Physical Address Translation
With Write and Validity Protection

Rev. 02
BACKGROUND TO ADDRESS TRANSLATION

ADDRESS TRANSLATION USING
THE NOVA 830 AND 840 MMPU

The Memory Management and Protection Unit
available with the NOVA 830 and NOVA 840 com-
puters is programmed with ten I/0 instructions.
Through the use of these instructions, the multi-
programming operating system tells the MMPU
what the address translation functions are to be.

An address translation function is called a "'map"
and the two maps for the MMPU are the "'user map"
and the "'data channel map''. These two maps are
separate and independent. They can be enabled
concurrently. Enabling the user map allows the
MMPU to translate addresses for the CPU. Enabl-
ing the data channel map allows the MMPU to trans-
late addresses for the data channel.

The MMPU operates in two modes called user mode
and supervisor mode. In user mode, all logical
addresses coming from the CPU are translated us-
ing the user map. Checking is also performed for
all protection features that are enabled. In super-
visor mode, the user map for logical pages 0-30 is
disabled and no protection checking is performed.
All addresses in the range 76000g-77777g will be
translated using the user map for logical page 31.
This enables the supervisor to access portions of
user space while in supervisor mode, without re-
sorting to lengthy use of the ENABLE SINGLE
CYCLE instruction. The data channel map can be
enabled or disabled in either of these modes.

When power is first turned on, or after an IORST
instruction, the MMPU is in the supervisor mode
and the data channel map is disabled. Logical

page 31 is mapped to physical page 31. On power
up, the user map, data channel! map. and the device
protect codes are undefined. After the first LOAD
MAP instruction, logical page 31 is mapped accord-
ing to whatever address is in that portion of the
MMPU.

The instructions for the MMPU are in the standard
1/0 format. The device code for the MMPU is 2.

LOAD MAP

DOA ac,MMPU

o 1 1]a clo 1 oJo oJo o0 0o 1 o
. ' : e
¢] 2 3 4 5] 7 8 9 TolEnl! 2 13 14 48

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re-
main unchanged. The format of the AC 15 as
Inllowe-

ofepi] coviea e |

] Physical Page
T4 5 & S ’ e

a v!;

c

Rev, 04 V-6

BITS CONTENTS j
0 Must be 0.
Must be 0.
2 0 = this instruction gives an address trans-

lation for the CPU (user map).

1 = this instruction gives an address trans-
lation for the data channel (data chan-
nel map).

3-1 Logical page number. This is an octal
number in the range 0-37.

8 0 = no write-protect for this page.
1

this page is to be write-protected.

NOTE: A logical page is validity protected
by mapping it to physical page num-
ber 127 and setting the write-
protect bit.

NOTE: If both the data channel bit and the
write -protect bit are set, the write !
protect bit is ignored.

9-15 | Physical page number. This is an octal
number in the range 0-177.

This is the instruction that sets up the translation
function from logical memory to physical memory.
After this instruction is issued and the correspond-
ing mapping feature enabled, any address in the

1K logical page is translated to the corresponding
address in the 1K physical page.

Example:

Assume that a LOAD MAP instruction has been is-
sued with bit 2=0, logical page=24, and physical
page=105. With the user map enabled, the CPU
requests data from location 50302. The MMPU
will intercept this request, translate it, and re-
trieve the data from physical location 212302.
This LOAD MAP instruction. mapping logical page
24 to physical page 105, would allow the mapping
of all addresses in the range 50000-51777 of log:-
cal memory. Anv request for an address in this
IK page would be translated to locations 212000 -
213777 in physical memory.

NOTE All numbers in the above ex-
ample are octal.

LOAD DEVICE PROTECTION

DOA ac.MMPU

o)
-

c! l

4

>

%017|

——
O

€ " 3 9

”

0o 1 0i0 o]0 o
3 o i

210

[N

i

(€]

I

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re-

instructions. Entry into a user program should be
done in the following manner:

SOME COMBINATION OF

. LOAD PROTECTION

: CONTROL, LOAD DE-

. VICE PROTECTION, AND

: LOAD MAP.
NIOS 2
INTEN
JMP @ .41
ADDR ;USER START ADDRESS

The contents of ADDR and all succeeding CPU re-
quests for memory are mapped.

INITIATE PAGE CHECK

DOA ac,MMPU

EAI‘IIA cloL|Jo|olo]o+o‘o‘o‘|lo

0 | 2 3 4 5 6 7 8 9 10 (i 12 (3 14 15

“he contents of the specified AC are transferred to
.ne MMPU for later use by READ STATUS. The
contents of the specified AC remain unchanged.
The format of the AC is as follows:

Llolil

Loglccl Peqo

Ignored
L) L . 1
5 6 7 8 9 10 (I 12 13 14 IS5

The status bits for the MMPU and the write -protect
bit and physical page number which correspond to
the logical page number given in the last INITIATE
PAGE CHECK instruction are placed in the speci-
fied AC. The previous contents of the specified
AC are lost. The format of the data placed in the
specified AC is as follows:

' Phyltlcull Pq‘n .j

170 V
",lvn(}' Vio v'| ¢"l\ q 'c p l w

0 9 10 N 12 13 14 15

BITS MEANING IF SET

BITS CONTENTS

0 Must be 1.
1 Must be 0.
2 Data channel bit.
0
1

this instruction refers to the user map.

this instruction refers to the data chan-
nel map.

H

3-1 Logical page. This is an octal number in
the range 0-37, and is the number of the
logical page for which status will be re-
quested.

8-15 | Ignored.

0 User mode. The last program interrupt
occurred while in user mode.

1 Write violation. A write violation has
occurred.

2 [°0 violation. An [/0O violation has oc-
curred.

3 Validity violation. A validity violation has
occurred.

4 Single instruction map. The error oc-

curred in the map cycle of an ENABLE
SINGLE CYCLE instruction.

5 Reserved for future use.

6 Defer violation. The seventeenth level of
a defer loop has been detected.

7 1 Floating point. A write-protect violation
i or validity violation occurred during a
; floating point unit data channel cycle.

8 ! Write-protect. This is the write-protect
bit associated with this physical page.

9-15 | Physical page. This is an octal number in
the range 0-177 and is the number of the
physical page which corresponds to the
logical page given in the last INITIATE
PAGE CHECK.

This instruction is used. in conjunction with the
READ STATUS instruction. to determine the trans-
lation function for a logical page. The INITIATE
PAGE CHECK instruction indicates to the MMPU
which map and logical page should be referenced
for the next READ STATUS instruction.

READ STATUS

DIC ac.MMPU

SEE ¢l o i]lo olo o0 0 1 ol

0 . 2 3 4 5 6 7 8 9 0 1 12 13 i4 15

READ INSTRUCTION ADDRESS

DIA ac, MMPU

T
[0 v i1[aclo o 1o 3]0 0 00 1 0
ot T 2 374 5 617 8 9 0o i iz 3 1a 15

The logical address of the instruction that caused
the trap is placed in the specified AC. After the
instruction, bit 0 of the specified AC is cleared
and bits 1-15 contain the address as an octal num-
ber in the range 0-77777. The original contents
of the specified AC are lost.

V-T ADDRESS TRANSLATION USING THE MMPU

READ INVALID ADDRESS

DIB ac, MMPU

o 1 1[a cfo 1 1]o oJo 00 0 1 0]

i 1
0 ! 2 3 4 5 6 7 8 9 10 Il i2 13 14 15

The logical address which caused the trap is placed
in the specified AC. After the instruction, bit 0 of
the specified AC is cleared and bits 1-15 contain
the address as an octal number in the range
0-7771717. The original contents of the specified

AC are lost.

ENABLE SINGLE CYCLE

NIOP MMPU
0 1+, 1/00jo 0 ofr 1]o 00 0 1 0]
0 1 2 3 4 5 6 7 8 9 10 4l 12 13 14 15

The data fetch portion of an instruction is trans-
lated using the user map. Two fetch or defer
cycles are allowed to elapse and the third fetch or
defer cycle is translated using the user map. Suc-
ceeding fetch or defer cycles are mapped until an
execute cycle occurs.
the user map is disabled and succeeding instruc -
tions are done in supervisor mode.

NOTE No protection features are
enabled during this mapping
process.

This instruction can be used for at least two pur-
poses:

a) to access data out of logical memory when not
in user mode with a minimum of overhead.

b) to execute an instruction in the supervisor as if
it were a user instruction.

NOTE This instruction clears the
status register.

Example:

The following instructions will load the contents of
logical locatian 400g into ACO while in supervisor
mode:

NIOP 2

LDA 0.G@.+2
JMP .2
000400

After the first execute cvcle,

V-8

PHYSICAL
LOGICAL MEMORY

[¢] ¢}
400 L

SUPERVISOR

NIOP 2
LDAO,@.+2

JMP +2)
000400

o —

5
16

23
24

3

25-00239

Figure 3 Graphic Representation of Example

SUPERVISOR CALL

NIOC MMPU

(o 1 1]lo o[o o o]1 0

o I 2 3 4 5 6 7 8 9

olololollL;]
0 1 12 13 14 58

The MMPU disables I 'O requests, enters the
supervisor mode and the next instruction is fetched
from location 42 (octal) of physical memory. This
instruction can be used to implement supervisor
functions at the discretion of the individual instal-
lation.

READ INVALID ADDRESS

DIB ac.MMPU

(0|
O;I‘

1 Ja cJo 1 1Jo o]o 0 00 1 0
2 3 4 5 6 7 8 9 10 Il 12 13 14 (5

The logical address which caused the trap is placed
in the specified AC. After the instruction, bit 0 of
the specified AC is cleared and bits 1-15 contain
the address as an octal number in the range
0-777177. The original contents of the specified

AC are lost.

ENABLE SINGLE CYCLE

NIOP MMPU
1o oJo o o]

N V|0, 0.0 0 1 0]

0t 2 3 4 5 & 7 8 9 10 1 2 (3 14 15

The data fetch portion of an instruction is trans-
lated using the user map. Two fetch or defer

ycles are allowed to elapse and the third fetch or
defer cycle is translated using the user map. Suc-
ceeding fetch or defer cycles are mapped until an
execute cycle occurs. After the first execute cycle,
the user map is disabled and succeeding instruc-
tions are done in supervisor mode.

NOTE No protection features are
enabled duringthis mapping
process.

This instruction can be used for at least two pur-
poses:

to access data out of logical memory when not
in user mode with a minimum of overhead.

to execute an instruction in the supervisor as if
it were a user instruction.

NOTE This instruction clears the
status register.

Example:

The following instructions will load the contents of
logical location 400g into ACO while in supervisor
mode:

NIOP 2

LDA 0.@.+2
JMP .12
000400

PHYSICAL
LOGICAL MEMORY

0 o
400 L |

SUPERVISOR

NIOP 2
LDAO,@.+2

P42)
000400

7
8

DG-00239

Figure 3 Graphic Representation of Example

SUPERVISOR CALL

NIOC MMPU

[0 1, 1]o 0Jo,0 ofi 0lo o 00 1 0

0 | 2 3 4 &5 6 7T B8 9 10 I 12 13 14 15

The MMPU disables I/0 requests, enters the
supervisor mode and the next instructicn is fetched
from location 42 (octal) of physical meraory. This
instruction can be used to implement supervisor
functions at the discretion of the individual instal-
lation.

V-9
ADDRESS TRANSLATION USING THE MMPU

SUPERVISOR PROGRAMMING FOR
THE NOVA 830 AND 840 MMPU

Setting Up For Translation

The information that allows the MMPU to translate
addresses comes from the multiprogramming
supervisor. The instructions used are LOAD
MAP. LOAD DEVICE PROTECTION, and LOAD
PROTECTION CONTROL. By using the LOAD
MAP instruction, the supervisor gives the MMPU
a beginning physical address for each of the 32
logical pages. At any single point in time, all 32
pages should be described. If there is no physical
storage available to hold a logical page (for in-
stance a machine with 16K of storage), then that
page should be mapped to physical pagenumber 127
and write -protected. If this is the case, any
attempted reference to this logical page will gen-
erate a validity trap. The LOAD MAP instruction
is also used to direct the actions of the data chan-
nel. If the user is allowed to directly initiate data
channel activity, the data channel map should be
the same as the user map. If, however, the con-
vention is that the supervisor will perform all 1/0,
the data channel map need not be the same as the
user map.

LOAD DEVICE PROTECTION tells the MMPU what
devices are to be declared inaccessible to the user.
If the user tries to access a protected device and
I/0 protect is enabled, the MMPU will generate an
I/0 protect trap and the supervisor can take appro-
priate action. This allows the implementation of
user dedicated devices.

NOTE Although the 8020 Floating
Point Processor is an 1/0
device and operates through
the data channel, all float-
ing point operations are pro-
cessed using the user map.

After issuing the desired LOAD MAP and LOAD
DEVICE PROTECTION instructions, the super-
visor can direct which protect features are to be
enabled by the LOAD PROTECTION CONTROL in-
struction. Each protect feature described in the
LOAD PROTECTION CONTROL instruction can be
enabled separately and independently of the others.
When the supervisor has established the parameters
for address translation, the ENABLE USER MAP
instruction tells the MMPU to begin translating
addresses. The MMPU will continue its mapping
function until it senses a protection violation, at
which point it will trap into the supervisor as
described in the next section.

Rev. 04

MMPU Protection Processing

In order to achieve efficient processing, the
MMPU must perform its task until an exceptional
condition arises and then tell the supervisor about
the condition in a forthright manner. The MMPU
does this through the use of two trap locations and
three instructions. The trap locations are pre-
determined addresses in physical memory where
the supervisor places instructions that are entries
into supervisor routines. When the MMPU senses
a violation of one of the enabled protect features,
it will disable address translation, and direct the
CPU to fetch the next instruction from one of these
locations depending on the type of condition. The
trap locations and their corresponding condition
types are as follows:

CONDITION

PHYSICAL LOCATION
(octal)
40 I. O protect or validity
error
41 Runaway defer or write
protect error

The MMPU instructions that allow the supervisor
to determine what caused the trap are READ IN-
STRUCTION ADDRESS. READ INVALID ADDRESS.
and READ STATUS. Upon entry into the 1/0O pro-
tect, validity error, runaway defer, or write-
protect error routines, the supervisor can use
these instructions to determine the type of error
and its location. After learning this information.
the supervisor can take appropriate action and re-
start or abort the user.

The MMPU performs checking only for these pro-
tection features that are enabled. The four types
of protection and how they are handled in the
MMPU are discussed below.

1/0 Protection

If I O protection is enabled. the MMPU decodes all
[O instructions and then looks in the I O protect
table to see if the referenced device is user pro-
tected. If it is not, the MMPU takes no action. If
the device is protected. the MMPU does not allow
execution of the instruction. Instead, the MMPU
stores in both the INSTRUCTION ADDRESS and
INVALID ADDRESS registers the logical address of
the instruction, disables IO interrupt request.
enters the supervisor mode, and directs the CPU
to fetch the next instruction from physicai location
40 (octal).

Validity Protection

By convention, validity protection can not be dis-
abled. Any logical page that is mapped to physical
page 127 and write -protected, is assumed to be
validity protected. The MMPU checks all CPU re-
quests for invalid addresses. If the address is
found to be valid, the MMPU proceeds with the re-
quired translation. If the address is invalid, the
MMPU stores the invalid address in the INVALID
ADDRESS register and stores the logical address
of the instruction in the INSTRUCTION ADDRESS
register. If the invalid address occurred in a
defer or execute cycle, the instruction is allowed
to complete with zeroes as data. Upon the com-
pletion of the instruction, the MMPU disables I O
interrupt requests, enters the supervisor mode,
and directs the CPU to fetch the next instruction
from physical location 40 (octal). If the invalid
address occurred in a fetch cycle, the MMPU im-
mediately disables the CPU interrupt system,
enters the supervisor mode and directs the CPU

5 fetch the next instruction from physical location
40 (octal).

Runaway Defer Protection

If runaway defer protection is enabled, the MMPU
checks memory references to see if they are part
of a defer cycle. If the MMPU detects seventeen
consecutive defer cycle memory requests, it traps.
Upon receiving the seventeenth request, the MMPU
stores the address of the instruction that started
the defer loop in the INSTRUCTION ADDRESS reg-
ister and the address of the sixteenth level of the
defer loop is stored in the INVALID ADDRESS reg-
ister. The MMPU then disables 1,0 interrupt
requests, enters the supervisor mode, and directs
the CPU to fetch the next instruction from physical
location 41 (octal).

Write Protection

If write-protection is enabled, the MMPU monitors
all modify memory requests and determines whether
or not that logical page is write -protected. If the
page is not write -protected, the MMPU allows the

operation to proceed. If the page is write-protected,
the MMPU stores the instruction address in the
INSTRUCTION ADDRESS register and stores the
memory address in the INVALID ADDRESS register.
The MMPU then disables 1/O interrupt requests,
enters the supervisor mode, and directs the CPU

to fetch the next instruction from physical location
41 (octal).

Device Interrupt Processing

Because of the way in which the MMPU disables

I 'O interrupt requests upon entry to 2 trap routine,
the supervisor should execute an INTDS instruction
as soon as possible in the trap routine. If the
supervisor does not issue this INTDS instruction,
then upon issuing the INTEN instruction, the inter-
rupt system is enabled immediately, no: after one
more fetch or defer cycle. This means that it is
possible for an interrupt service routine to begin
executing in user mode.

Example:

:ENTRY TO TRAP ROUTINE
:NO INTDS INSTRUCTION

NIOS 2 First interrupt could
INTEg/occur here P

JMP © @. +1

ADDR :USER START ADDRESS

The installation of the MMPU causes a small
change in the normal device interrupt procedure.
Normally, when the CPU processes a device inter-
rupt, the Program Counter (PQC) is stored in phys-
ical location 0 and the CPU does a jump indirect to
physical location 1. With the MMPU installed, the
PC is stored in logical location 0, the MMPU is
placed in supervisor mode. and the CPU does a
jump indirect to physical location 1. This is done
so that the supervisor's job of restarting the user
after handling the interrupt will be simplified.

v-11

MMPU PROGRAMMING

ADDRESS TRANSLATION USING THE MMU

The Memory Management Unit (MMU) available with

the NOVA 3 series of computers is similar to the
MMPU in concept and operation, but it does not
have anyv of the protection features of that unit.
The instruction set is also somewhat different.

The MMU expands the. physical address space of a
NOV A 3 computer to 128K 16-bit words by per-
forming logical-to-physical address translation.
The maximum logical address space is 32K words.
The MMU allows 4 maps (two program maps and
two data channel maps) to be defined at any one
time. These maps are called program map "A",
program map "B, DCH map A", and DCH map
"B. Each map consists of 32 1K pages. The
selection of which program map is to be used to
map logical addresses coming from the CPU is
under program control. The selection of which
data channel map is to be used is under control of
the peripheral controllers. Those peripheral con-
trollers not equipped to make this distinction will
use data channel map ""A'" by default.

The two program maps and the two data channel
maps are completely independent. Only one pro-
gram map may be enabled at a time, but both data
channel maps are enabled at the same time. The
mapping of program addresses and the mapping of
“data channel addresses may or may not be enabled
at the same time depending upon the wishes of the
supervisor program. If either program mapping
or data channel mapping is disabled then, for that
function, the physical address space is equal to the
logical address space and only the lowest 32K words
of memory are accessible.

When power is first turned on, or after a Clear
command to device code 3. both the program map
and data channel map portions of the MMU are dis-
abled. The physical address space is equal to the
logical address space and only the lowest 32K
words of memory are accessible.

The instructions for the MMU are in the standard
1/0 format. The MMU takes two device codes: 2
and 3. The mnemonic for device code 2 is MMU.
The mnemonic for device code 3 is MMU1.

Device code 2 has a Done flag which is set to 1 by
the MMU any time address translation is enabled
and not inhibited. Device code 3 does not have a

Busy or a Done flag.

Rev. 04

The flag control commands for device code 2 are
as follows:

§l

Reserved for future use.

Reserved for future use.

[T T Y
i
T O w

The second non-data channel memory
address after the issuance of this command
is mapped using the map indicated by the
Single Cycle Select bit in the MMU status
word.

The flag control commands for device code 3 are
as follows:

f =S Reserved for future use.

f =C The program map and data channel map
portions of the MMU are disabled. All
internal MMU logic is initialized.

f = P Reserved for future use. See table under
I/O Coding Aids for bit patterns of the flag
control commands.

LOAD MAP

DOB<{> ac,MMU

[o,v [ac 1 oo[F Joooo i 0]
' ' 10

0 1 2 3 &4 5 &6 7 8 9 12 13 14 15

The contents of the specified AC are transferred to
the MMU. The contents of the specified AC re-
main unchanged. The format of the AC is as
follows:

EEL Logical Page IA/s J 0 [Physical Poge
o 1 2 3 4 5s7eg4uo o213 e 1%
BITS CONTENTS
0 0 - this instruction gives an address

translation for the CPU (program map). ;

| 1 = this instruction gives an address |
translation for the data channel (data
channel map).

1-5 Logical page number. This is an octal
number in the range 0-37.

6 0 = this instruction gives an address
translation for map "A" of the map in-
dicated by bit 0.

1 = this instruction gives an address
translation for map "'B'' of the map in-
dicated by bit 0.

7 Reserved for future use. Should be 0.
Must be 0.
9-15 Physical page number. This is an octal

@

number in the range 0-177.

V-12

INITIATE PAGE CHECK

JOA [ac,MMU1

ololololqu

Cac [0 T o[¢
! T3 4 15

I
i ,
2 34 5 6'7 B8 9 10 M 12

The contents of the specified AC are transferred to
the MMU for later use by the PAGE CHECK in-
struction. The contents of the specified AC remain

READ MMU STATUS

DIA<f> ac,MMU

|°#'.'l A{C]OIO%I F o000 10

0O I 2 3 4 5 6 7 8 9 10 It 1213 14 15

The 16-bit MMU status word is placed in the speci-
fied AC. The format of the AC is as follows:

Program map enable

unchanged. The format of the AC is as follows:

[SEL{ Logical Page
4 i I . 1

i 4 e

]A/B! ‘ 1

L A J
T

A 4

0 [

2

3 4 5 6 7 8 9 10

o120 13 14 15

BITS

CONTENTS

0

DCH map enable

Single cycle
select

Progrom map
select

/ / g Program map inhibit
L] et

1 [}

o i+ 2 3 4 5 6

7 8 9 10 H 12 13

CONTENTS

0 = page check is for a program map.

1 = page check is for a DCH map.

1-5 Logical page. This is an octal number
in the range 0-37 and is the number of
the logical page for which the check is
requested.

0 = page check is for map "A" of the
map indicated by bit 0.

1 = page check is for map '"B" of the
map indicated by bit 0.

7-15 Reserved for future use. Should be 0.

PAGE CHECK

DIA<f> ac.MMUl

[0, [acfoo [FJoooo 1]
T 9 10 !

0 1 2 34 5 6 7 8 12 13 14 15

The number of the physical page which corresponds
to the logical page number given in the last INI-

ATE PAGE CHECK instruction is placed in bits
v-15 of the specified AC. The format of the speci-
fied AC is as follows:

lsg;_l ITogif:ol Page LA_/B . Phxsic?l Palge 1

0 o2 3 a4 5 & E]

T

10 12 13 14 18

BITS CONTENTS

0-6 Bits 0-6 from the last INITIATE PAGE
CHECK instruction.

7-8 Reserved for future use. Set to O.

9-15 Physical page. This is an octal number
in the range 0-177 and is the number of
the physical page which corresponds to

the logical page given in the last INI-

TIATE PAGE CHECK instruction.

program mapping is disabled.

program mapping is enabled.

data channel mapping is enabled.
= program mapping is not inhibited.

0
1
0 = data channel mapping is disabled.
1
0
1

= program mapping is inhibited. If
set, this bit takes precedence over bit 0.

Set to 0.

0 = single cycle mapging will use pro-
gram map "A".

Reserved for future use.

1 = single cycle mapping will use pro-
gram map ''B'.

Set to 0.

0 = program mapping will be done with
program map "A'".

Reserved for future use.

1 = program mapping will be done with
program map ''B'".

NOTE: The Program Map Inhibit bit is set by a
stack overflow, I/O interrupt, or execu-
tion of a TRAP instruction.

Rev. 03
MMU INSTRUCTIONS

WRITE MMU STATUS

MAP SINGLE CYCLE

DOA<=_f_> :}_E,MMU NIOP MMU

[o v 7] acTo o] F Jo ooo I o] fo||00000|10000101l
i\ I 1 1 e 1 1 1 4 1 1) L 1 i 1 i 1 1 L 1 3 L i i
0 1 2 3'a4 5 67 8 910 Il 2 (3 14 15 0'1 2 3'4 5 67 8 9 10 11 1213 14 15

The contents of the specified accumulator are
placed in the MMU status word. The Program Map
Inhibit bit in the MMU status word is set to 0.

The new settings of the Program Map Enable bit, the
Program Map Inhibit bit, and the Program Map Se-
lect bit are compared to the settings of these bits be-
fore the instruction was issued. If any of these has
changed, none of them takes effect until the mem-
ory cycle after the next defer cycle. All three of

the bits take effect at that time. This allows the
program to change the settings of these bits and

then transfer control to the new environment in an
orderly manner.

The format of the specified AC is as follows:

Program map enable Single cycie Program map
/ » DCH map enable select select
‘ [1] 1 1 I\ | l [L d 1 l]
0 1 2 3'4 5 €6 7 8 9 10 Il 1213 14 15
BITS CONTENTS

0 0 = program mapping will be disabled.
1 = program mapping will be enabled.
1 0 = data channel mapping will be dis-

abled.
1 = data channel mapping will be en-
abled.

2-9 Reserved for future use. Should be 0.

10 0 = single cycle mapping will use pro-
gram map ''A".
1 = single cycle mapping will use pro-
grazn map "B”.

11-14 | Reserved for future use. Should be 0.

15 0 = program mapping will be done with
program map 'A'"".
1 = program mapping will be done with
program map 'B'’.

Rev. 04

The second non-data channel memory reference
after this instruction is issued is mapped with the
user map indicated by the Single Cycle Select bit
in the MMU status word.

CLEAR MAP
NIOC MMU1
o 1 I
1 1 IO.OXOLOIOA‘1OLOIOLOAOAIJ_IJ
0' 1 2 3'4 5 & 7 8 9 10 Il 12 13 14 15

The program and data channel maps are disabled,
and all internal MMU logic is initialized.

V-14

SUPERVISOR PROGRAMMING
FOR THE MMU

~etting Up For Translation

The irformation that allows the MMU to translate
addresses comes from the multiprogramming
supervisor. The instructions used are LOAD
MAP and WRITE MMU STATUS.

By using the LOAD MAP instruction, the super-
visor gives the MMU a physical address for the
beginning of a page of logical address space.
Thirty-two LOAD MAP instructions are required
to completely define the map for one logical space.

Although the floating point processor available with
the MOVA line of computers is an [/O device and
operates through the data channel, all floating
point operations are processed using the currently
enabled user map.

After defining the maps that will be used, the
supervisor gives the MMU information regarding

“ow and when the maps are to be enabled via the
RITE MMU STATUS instruction.

If a WRITE MMU STATUS instruction is issued
with bit 0 of the specified accumulator set to 1,
then address translation will begin with the mem-
ory reference after the next defer cycle. This
provides a convenient method for the supervisor
to transfer control to the user program after the
maps have been defined. One way of transferring
this control is as follows:

.ENOUGH LOAD MAP
INSTRUCTIONS TO
DEFINE ALL THE
MAPS THAT WILL

cs BE USED.

LDA 0,STAT .

.. .RESTORE USER'S

. ACCUMULATORS.

:--USE NO

: INDIRECTION.

:ADDRESS IN

. USERPC WILL
BE MAPPED

:ENABLE USER MAPPING,
ENABLE DCH MAPPING.
SINGLE CYCLE MAP

FOR USER A,

MAP ADDRESSES

. FOR USER A.
:STARTING ADDRESS

JMP @QUSERPC

STAT: 140000

USERPC:

Device Interrupt Processing

The MMU has been designed to allow for orderly
processing of 1/0 interrupt requests by a super-
visor program. When an I/O device requests an
interrupt, the MMU sets the Program Map Inhibit
bit in the MMU status word to 1. This immediately
disables the translating of user addresses so that
the remainder of the interrupt process happens in
the same manner as those NOVA line computers
that have no address translation hardware. That
is, the Interrupt On flag is set to 0, the updated
program counter is placed in physical memory
location 0, and the CPU executes a '"'jump indirect"”
to physical memory location 1.

To return control to a user after an I, O interrupt,
the supervisor can follow the method outlined
above. The INTERRUPT ENABLE instruction
should be placed immediately before the

JMP @USERPC instruction.

v-15 Rev. 03
MMU INSTRUCTIONS

ADDRESS TRANSLATION USING
NOVA 3 MMU AND MPU

The NOVA 3 series of computers is available with
a Memory Protection Unit (MPU) which, when
used with the Memory Management Unit (MMU)
provides mapping and protection features similar
to those available in the NOVA 800 series Memory
Management and Protection Unit (MMPU). The
combination of an MMU and an MPU will therefore
be referred to in this section as an MMPU.

The MMPU expands the physical address space of
a NOVA 3 computer to 128K 16-bit words by per-
forming logical-to-physical address translation.
The maximum logical address space is 32K words.
The MMPU allows four maps (two program maps
and two data channel maps) to be defined at any o
one time. These maps are called program map
"A" program map "'B', DCH map "A'", and
DCH map ""B'". Each map consists of 32 1K
pages. The selection of which program map is to
be used to map logical addresses coming from the
CPU is under program control. The selection of
which data channel map is to be used is under
control of the peripheral controllers. Those
peripheral controllers not equipped to make this
distinction will use data channel map ""A" by
default.

The two program maps and the two data channel
maps are completely independent. Only one pro-
gram map may be enabled at a time, but both data
channel maps are enabled at the same time. The
mapping of program addresses and mapping of
data channel addresses may or may not be enabled
at the same time depending upon the wishes of the
supervisor program. If either program mapping
or data channel mapping is disabled then, for that
function, the physical address space is equal to
the logical address space and only the lowest 32K
words of memory are accessible.

The instructions for the MMPU are in the standard
I/0 format. The MMPU takes two device codes:

2 and 3. The mnemonic for device code 2 is MAP,
The mnemonic for device code 3 is MAP1.

Device code 2 has a Done flag which is set to 1 by
the MMPU any time address translation is enabled
and not inhibited. Device code 2 also has a Busy
flag which is set when a Data Channel error occurs.
Device code 3 does not have a Busy or a Done flag.

The flag control commands for device code 2 are as
follows:

f = S Reserved for future use.

f = C Clear violation status word.
P

f

The second non-data channel memory add
address after the issuance of this com-
mand is mapped using the map indicated by
the Single Cycle Select bit in the MMPU
status word.

Rev. 04

The flag control commands for device code 3 are
as follows:

f =S Reserved for future use.

f = C The program map and data channel map
portions of the MMPU are disabled. All
internal MMPU logic is initialized.

f = P Reserved for future use.

See table under I/O Coding Aids for bit patterns of
the flag control commands.

LOAD MAP

DOB < f> ac,MAP
o I 1 [AC] I 0 ol F
4 1 It i I 1
0 ¢ 2 3 4 5 6'7 8 9 10 H 12 13 14 15
The contents of the specified AC are transferred
to the MMPU. The contents of the specified AC
remain unchanged. The format of the AC is as
follows:

ooooxo]

e ' : 1 i

FEL HOGIlCALlPAciE [mlwp]vpl _PHYSICAL PAGE

1 1

O 1 2 3 a4 5 6 7T 8 9 10 I 12 13 14 IS5
BITS CONTENTS
0 0 = this instruction gives an address trans-

lation for the CPU (program map).

1 = this iastructions gives an address trans-
lation for the data channel (data channel
map).

1-5 Logical page number. This is an octal
number in the range 0-317.

6 0 = this instruction gives an address trans-
lation for map ""A" of the map indicated by
bit 0,

1 = this instruction gives an address trans-
lation for map ''B" of the map indicated by

bit 0.
1 0 = Write protect disabled.
1 = Write protect enabled.
8 0 = Validity protect disabled.
S13 =1 5V.’:lli{i)ity protect enabled (if bits 7 and

9-15 | Physical page number. This is an octal
number in the range 0-177.

V-15.1

INITIATE PAGE CHECK

DOA > ac, MAP1

PAGE CHECK

DIA <f> ac, MAP1

!Il1 AC lolulol F Jo o oo |J

L i 1

B , |

T, 2 3'a 5 67 8 9 10 Il 1213 14 15

The contents of the specified AC are transferred to
the MMPU for later use by the PAGE CHECK
instruction. The contents of the specified AC
remain unchanged. The format of the AC is as
follows:

Olllllzl AJC I()lolI Fl. ololO‘Lo‘LIAI_]

0 3'4 5 6.7 8 9 10 Il 12 13 14 15

The number of the physical page which corres-
ponds to the logical page number given in the last
INITIAGE PAGE CHECK instruction is placed in
bits 9-15 of the specified AC. The format of the
specified AC is as follows:

FEL LOGICAL PAGE fase]] [se] LoGICAL PAGE laze WP[VP| PHYSCAL PAGE
571 2z 3'4 5 67 8 9 10 Il 1213 1415 0 1 2 3'a4 5 6'7 8 9 10 1 1213 14 15
BITS CONTENTS BITS CONTENTS
0 0 = page check is for a program map. 0-6 Bits 0-6 from the last INITIATE PAGE
CHECK instruction.
1 = page check is for a DCH map.
7 0 = Write protect disabled.
1-5 Logical page. This is an octal number in
the range 0-37 and is the number of the 1 = Write protect enabled.
logical page for which the check is
requested. 8 0 = Validity protect disabled.
6 0 = page check is for map "A" of the map 1 = Validity protect enabled (if bits 7 and
indicated by bit 0. 9-15 = 1).

1 = page check is for map ""B'' of the map
indicated by bit 0.

7-15 | Reserved for future use. Should be 0,

V-15.2

9-15 | Physical page. This is an octal number in
the range 0-177 and is the number of the
physical page which corresponds to the
logical page given in the LAST INITIATE
PAGE CHECK instruction.

Rev. 04
NOVA 3 MMPU

READ MMPU STATUS

DIA {> ac,MAP

WRITE MMPU STATUS

DOA [ac,MAP

o[[0 [[00,00 710

[OltllLA::]olnto] F

T T

" . L
0 1 2 3'a 5 67 8 9 10 i1 12 13 1415

The 16-bit MMPU status word is placed in the

specified AC. The format of the AC is as follows:

o', 2 3 4 &5 6 7 8 9 10 1 12 i3 14 15

The contents of the specified accumulator is
placed in the MMPU status word. The Program
Map Inhibit bit in the MMPU status word is set to
0.

The new settings of the Program Map Enable bat.
the Program Map Inhibit bit, and the Program
Map Select bit are compared to the settings of
these bits before the instruction was issued. If
any of these has changed, none of them takes
effect until the memory cycle after the next defer
cycle. All three of the bits take effect at that ti
time. This allows the program to change the set-
tings of these bits and then transfer control to the
new environment in an orderly manner.

The format of the specified AC is as follows:

[PM DCM‘PMII) L e S'-’7ECL|AIﬂDP A [WP‘A,/B]
0 1 2 3 4 5 6 7 B8 9 10t 12 i3 1415
BITS MEANING WHEN 1
0 Program mapping enabled.
1 . Data channel mapping enabled.
2 Program map inhibited. Takes prece-
dence over bit 0.
3-8 Reserved for future use. Set to 0.
9 Single cycle write protect enabled.
10 Single cycle select. 0= A, 1 = B.
11 Auto increment/decrement protect
enabled.
12 Defer protect enabled.
13 I/0 protect enabled.
14 Write protect enabled.
15 Program map select. 0 = A, 1 = B.
Rev. 04

IPMIDCMI L 3 AS/%]AIP]DPI 4 lwpk@;
0 2 34 5 6 7 8 9 10 il 12 13 14 15
BITS MEANING WHEN 1
0 Program mapping enabled.
1 Data channel mapping enabled.
2-8 Reserved for future use. Set to 0.
9 Single cycle write protect enabled.

10 Single cycle select. 0= A, 1 =B

11 Auto-increment /decrement protect enabled.
12 Defer protect enabled.

13 : I/O protect enabled.

14 Write protect enabled.

15 Program map select. 0= A, 1 = B,

Vv-15.3

READ VIOLATION DATA

DIB - {> ac,MAP

READ VIOLATION ADDRESS

DIB <{> ac, MAP1

i oooono]
L 1) N I SN S 1

L

OlellAgc |011| F

07T 2 3 4 § 677 8 9 10 i 1213 14 15

The violation status bits for the MMPU are placed
in the specified AC, along with the logical page in
which the violation occurred. The format of the
data placed in the specified AC is as follows:

vF] LOGICAL PAGE ‘]sc VVIAIIDEFI/OIWV]A/Bl
1 1 L | 1 i

1

571 2 3 4 5 6'7 8 9 10 1 12 13 14 15

BITS CONTENTS

0 Violation flag. Set to 1 if any of bits
10-14 = 1.

1-5 Logical page number. This is an octal

number in the range 0-37.

6-8 Reserved for future use. Set to 0.
9 1 = single cycle was enabled during
violation
10 1 = validity violation.
11 1 = auto-increment /decrement violation.
12 1 = defer violation.
13 1 = [/0 violation.
14 1 = write violation
15 0 = violation occurred in map "A'"".

1 = violation occurred in map "B".

V-15.4

[O=I1I] AC lolnsll F [olologolllu]
o' 1 2 3 4 5 6 7 8 9 10 1l 12 i3 14 5

The logical address of the instruction that caused
the violation is placed in the specified AC. After
the instruction, bit 0 of the specified AC is cleared
and bits 1-15 contain the address as an octal
number in the range 0-T7777.

MAP SINGLE CYCLE

NIOP MAP

|0 | | o 0 0 0 Oo|l! +v|]O O O O 1 O
1 1 1 L 1 | 1 1 1 i e 1 1
0% 1 2 3 a4 5 6 7 B8 9 10 1l 12 13 14 15

The second non-data channel memory reference
after this instruction is issued is mapped with the
user map indicated by the Single Cycle Select bit in
the MMPU status word.

CLEAR VIOLATION

NIOC MAP

ﬁ) , | oo o o0oO|l 0lO O O O | o}
I} 1 1 " L 1 } 1 L i 1 1 1

0T 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

The violation status word for the MMPU is ¢
cleared. The Busy flag for device code 2, which
indicates data channel errors, is also cleared.

CLEAR MAP

NIOC MAP1

[7OIIOOOOOIOOCOOIIJ
JrlL:lLl Il J S J

! 2 3 4 5 6

4
7 8 910 tI 12 13 14 15

The program and data channel maps are disabled,
and all internal MMPU logic is initialized.

Rev. 04
NOVA 3 MMPU

SUPERVISOR PROGRAMMING
FOR THE NOVA 3 MMPU

Setting Up for Tronslation

The information that allows the MMPU to translate
addresses comes from the multiprogramming
supervisor. The instructions are LOAD MAP and
WRITE MMPU STATUS.

Bv using the LOAD MAP instruction, the super-
visor vives the MMPU a physical address for the
beginning of a page of logical address space.
Thirty-two LOAD MAP instructions are required
to completely define the map for one logical space.

Although the floating point processor available with
the NOVA line of computers is an 1/0 device and
operates through the data channel, all floating
point operations are processed using the currently
enabled user map.

After defining the maps that will be used, the
supervisor gives the MMPU information regarding
how and when the maps are to be enabled via the
WRITE MMPU STATUS instruction. This instruc-
tion also defines which protect features are to be
enabled. Each protect feature described in the
WRITE MMPU STATUS instruction can be enabled
separately and independently of the others.

Rev. 04

If a WRITE MMPU STATUS instruction is issued
with bit 0 of the specified accumulator set to 1,
then address translation will begin with the memory
reference after the next defer cycle. This provides
a convenient method for the supervisor to transfer
control to the user program after the maps have
been defined. One way of transferring this control
is as follows:

:ENOUGH LOAD MAP
INSTRUCTIONS TO
DE FINE ALL THE
MAPS THAT WILL
ce BE USED.
LDA 0,STAT ;
DOA 0, MAP ‘WRITE MMPU STATUS
:RESTORE USER' S
: ACCUMULATORS.
:=-USE NO
e . INDIRECTION.
INTEN ;ENABLE INTERRUPTS
JMP @QUSERPC ;ADDRESS IN
; USERPC WILL BE
i MAPPED.
;STATUS WORD:
ENABLE USER
: MAPPING,
;. ENABLE DCH
: MAPPING.
; SINGLE CYCLE MAP
; FOR USER A
; MAP ADDRESSES
: FOR USER A.
;STARTING ADDRESS.

STAT: 140000

USERPC:

Note that a defer instruction must appear after
WRITE MMPU STATUS instruction and before

the next WRITE MMPU STATUS instruction for
the second instruction to take effect.

MMPU Protection Processing

When a map violation is detected. interrupts are
inhibited, and address translation is disabled.

The contents of physical location 46g are lost and
the supervisor directs the CPU to ' jump indirect'
to location 47g. The superviscr can then deter-
mine the type of violation using the READ VIOLA -
TION DATA instruction.

The READ VIOLATION ADDRESS instruction can
be used to find the instruction that caused the prob-
lem. The supervisor can then restart or abort the
user' s process as appropriate.

Note that location 46g is normally
where the return address is found
after a TRAP instruction has been
executed. If the trap is caused by
an MMPU violation, however,
location 468 should be ignored and
the READ VIOLATION instruction
used instead.

V-15.5

The MMPU performs checking only for those pro-
tection features that are enabled. The five types
of protection and how they are handled by the
MMPU are discussed below.

1/O Protection

If I O protection is enabled in the NOVA 3 MMPU,
it protects all I/O devices except those using
device codes 1, 74, 75, and 76. Device code 1 is
generally assigned to the NOVA multiply/divide
option, and device codes 74-76 are generally
assigned to the optional Floating Point Unit. The
I/0 devices using these device codes are not pro-
tected by [/0 protection under any circumstances.

When I, O protection is enabled, the MMPU decodes
all 1,0 instructions to see if the referenced device
is user protected. I¢ it is, the MMPU does not
allow the execution of the instruction. Instead, it
stores the logical address of the instruction in the
VIOLATION ADDRESS register, disables I O
interrupt requests, enters the supervisor mode,
and directs the CPU to " jump indirect' to loca-
tion 47g.

Validity Protection

By convention, validity protection cannot be dis-
abled. A logical page is validity protected by
mapping the page to physical page 12719 (177g).
and setting the validity protect and write protect
bits.

Note that it is not necessary for
physical page 1274 ¢ to exist.
Validity protection is indicated
by setting the physical page bits
to 177g, and setting the validity
protect and write protect bits.
Since validity protection pre-
vents the writing of the page.
the existence of the physical
page is not required.

The MMPU checks all CPU requests for invalid
addresses. If the address is found to be valid,
the MMPU proceeds with the required translation.
If the address is invalid, the MMPU stores the
logical address o! the instruction in the VIOLA-
TION ADDRESS register. The MMPU then dis-
ables I 'O interrupt requests. enters the
supervisor mode, and directs the CPU to ""jump
indirect” to location 47g.

Runaway Defer Protection

If runaway defer protection is enabled, the MMPU
checks memory references to see if they are part
of a defer cycle. If the MMPU detects 15 consec -
utive defer cvele memory requests, it traps.

Upon receiving the 15 requests, the MMPU stores
the address of the instruction that started the defer
loop in the VIOLATION ADDRESS register. The
MMPU then disables the I/O interrupt requests,
enters the supervisor mode, and directs the CPU
to ' jump indirect" to location 47g.

Write Protection

If write protection is enabled, the MMPU maeonitors
all modify memory requests and determines
whether or not that logical page is write-protected.
If the page is not write-protected, the MMPU
allows the operation to proceed. If the page is
write-protected, the MMPU stores the instruction
address in the VIOLATION ADDRESS register.
The MMPU then disables I/O interrupt requests,
enters the supervisor mode, and directs the CPU
to " jump indirect' to location 47g. Any write to
memory is inhibited.

Single cycle write protection works in the same
way as normal write protection, but it can be
enabled separately.

Auto Index Protection

If auto index protection is enabled, any indirect
reference to memory locations 20-373 will be
considered a violation and will therefore trap.

The system then stores the locical address of the
instruction that caused the vioiation in the VIOLA-
TION ADDRESS register, disables 1/0 interrupt
requests, enters the supervisor mode, and directs

the CPU to " jump indirect’ to locaticn 47g.

Device Interrupt Processing

The MMPU has been designed to allow for orderly
processing of I/0 interrupt requests by a super-
visor program. When an I/O device requests an
interrupt, the MMPU sets the Program Map
Inhibit bit in the MMPU status word to 1. This
immediately disables the translating of user
addresses so that the remainder of the interrupt
process happens in the same manner as in those
NOVA line computers that have no adcress trans-
lation hardware. That is, the Interrupt On flag

is set to 0, the updated program counter is

placed in physical memory location 0, and the
CPU executes a '"'jump indirect" to pLysical mem-
ory location 1. A similar process occurs fr—
stack overflow, normal trap instructions, and
MMPU violation traps.

To return control after an I/0 interrupt, the
supervisor can follow the method outlined previ-
ously (see ''Setting Up for Translation''). The
INTERRUPT ENABLE instruction should be
placed immediately before the JMP @USERPC
instruction.

Rev. 04
NOVA 3 MMPU

FLOATING POINT ARITHMETIC

In addition to performing fixed point arithmetic,
romputers in the NOVA line can perform floating
point arithmetic if they are equipped with the float-
ing point unit. This feature provides the capability
to perform rapid and convenient arithmetic opera-
tions on numbers with a much larger range than
would be feasible using the fixed point arithmetic
instruction set. The precision with which these
numbers can be manipulated exceeds the precision
readily available with the fixed point instruction
set.

Floating Point Unit Registers

There are three registers available to the pro-
grammer in the Floating Point Unit (FPU).

These are the Floating Point accumulator (FPACQC),
the Status Register (SR), and the Temporary Buffer
(TEMP). FPAC and TEMP are used for computa-
tions and SR is used to control and monitor the
operation of the FPU,

FPAC and TEMP can both contain either single or
double precision floating point numbers. SR is a
16-bit register containing bits that reflect the cur-
rent status of FPAC and the FPU. The format of
SR is as follows:

L . STATUS BITS RESERIVEDI Pnooe qlTs]

It L 4 i L - 1 +
T t T

0 1+ 2 3 4 5 < / 8 9 10 1l 12 i3 14 15

BIT

MNEMONIC

STATUS REGISTER BITS

MEANING WHEN SET

ANY

OVF

UNF

bvz

MOF

GTZ

EQZ

LTZ

IND

PPM

DMD

Indicates that anv of bits
1-4 are set.

Overflow indicator meaninge
that during processing of an
FPU nstruction, the FPU
detected an exponent over-
flow. The result is correct
except that the exponent is
128 too small.

Underflow indicator mean-
ing that during processing
of an FPU instructinn, the
FPU detected an exponent
underflow. The result is
correct except that the ex-
ponent 1s 128 too large.

During a divide instruction,
the FPU has detected a zero
divisor. The division was
aborted and FPAC remains
unchanged.

Mantissa overflow indicator
meaning that during a scale
instruction, a left shift was
required.

Greater than indicator,
meaning that the operand in
FPAC is positive and the
mantissa is different from
zZero.

Equal indicator, meaning
that the operand in FPAC is
equal to true zero. This bit
examines only the mantissa
and sign of FPAC.

Less than indicator, mean-
ing that the operand in FPAC
i1s less than zero.

Reserved for future use.

Interrupt Disable bit means
that the FPU will not inter-
rupt the program for an ex-
ponent overflow, exponent
underflow, or divide by
zero.

Parallel processing mode
means that the FPU will not
request data channel cycles
for the entire time it is pro-
cessing an instruction.
Therefore, the programmer
must check the BUSY status
of the FPU before 1ssuing
the next FPU instruction.

Diagnostic mode means that
the program can issue clock
pulses and monitor the pro-
gress of the FPU cycle by
cycle. The data channel
will not be held during this
mode.

INSTRUCTION SET

decause the FPU is considered an I/0 device by
the CPU. FPU instructions are really I/0 instruc-
tions and take the I 'O format. The device codes
for the FPU are as follows:

DEVICE
MNEMONIC CODE MEANING

FPU1 ’ T4g Floating Point-Single
! ! Precision

FPU2 | 5, l Floating Point-Double
! | Precision

FPU 768 " Floating Point Unit-
; used for status in-
! | structions and in
} | diagnostic mode.

The programmer can either write 1 O instructions
for the FPU, or he can use the .DUSR and .DIAC
functions of the assembler and define his own

nemonics. A paper tape containing . DUSR and
.DIAC functions describing the DGC standard float -
ing point mnemonics is supplied with the FPU. A
detailed discussion of this tape can be found under
Floating Point Unit Mnemonics. In describing the
instructions available for the FPU. both the I O
instruction and the corresponding DGC mnemonic
will be shown. For a further discussion of I O in-
structions in general, see the I O section of this
manual.

When processing a floating point instruction, the
FPU assumes the following:

1. In instructions that refer to operands in
memory. the accumulator specified by AC
is assumed to contain the address of the
first word of the storage that contains or
will receive a floating point number. This
area is either 2 or 4 words long. depending
on the precision specified.

2. In instructions that refer to an operand
coming from memorv, the number is as-
sumed to be in the format described under
“"Number Representation’. The number
1s assumed to be normalized.

3. In arithmetic instructions. 1t 1s assumed
that a floatine point number 1s alreadyv pre-
sent in FPAC.

V-19

LOAD SINGLE

.FLDS ac

DOBP ac, FPU1

Lo | ITAC[I 001| !ll o
otz 3ta 5 6! ‘ [‘

5 6 7 8 9 10 ! 12 13 14 15

LOAD DOUBLE

.FLDD ac

DOBP ac, FPU2

o 1 1] ac lllo‘ollll[IAl |_|‘o‘|]

0O I 2 3 4 5 6 7T 8 9 10 !l 12 13 14 15

The FPAC is loaded with the floating point number
contained in storage starting with the address in

the specified AC. The operation proceeds one word
at a time, starting with the most significant word.
Two words are transferred for single precision.
Four words are transferred for double precision.
The operand in storage and the address in the speci-
fied AC remain unchanged. For single precision,
the 32-bit floating point number goes into the high-
order 32 bits of FPAC and the low-order 32 bits of
FPAC are set to zero.

STORE SINGLE
. FSRS ac

DOBS ac, FPUl

o 1 t[Aac 1 oo0fo 1 1 I 1 1 00|
0 7 2z 374 5 67 8 3 00 w2 3 TG
STORE DOUBLE
.FSRD ac
DOBS ac, FPU2
B?I |JA§ Y'i°%°I°1'1' ! |¢x‘o‘|
o] ! 2 3 4 5 [7 8 9 10 2 3 14 5

The FPAC is stored into memory starting at the
address contained in the specified AC. The opera-
tion proceeds one word at a time, starting with the
most significant word. Two words ar2 transferred
for single precision. Four words are transferred
for double precision. The number in FPAC and
the address in the specified AC remain unchanged.

Rev. 02
FLOATING POINT ARITHMETIC

ADD SINGLE is terminated. When this condition occurs, the
number in the FPAC is correct except that the ex-

. FAS ac ponent is 128 too small.
DOA ac, FPUI If there is no overflow, the mantissa of the inter-
mediate result is examined for leading hex zeroes.
ro . I AC]0 o \ 00 I b oo OJ If the mantissa is found to be all zeroes. a true
c . 2 3 4 5 & 7 8 9 10 b 12 I3 4 IS zero is placed in the FPAC and the instruction 1s
terminated.
ADD DOUBLE

If the mantissa is non-zero, the intermediate re-
ac sult is normalized, and the number placed in

FPAC. If the normalization results in an exponent
DOA ac, FPU2 underflow, the UNF bit is set in the SR and the
instruction is terminated. The number in the

. FAD

o]

io vl] A‘C 10 ! Ao 0 ‘0 - b ' 10) 'J FPAC is correct except that the exponent is 128
0 | 2 3 a4 5 6 7 8 9 10 !l 12 13 14 15 too large.
The floating point number which starts at the ad- Upon termination. the FPU sets the appropriate
dress contained in the specified AC is added to condition code bits in the SR.
the floating point number in the FPAC. The result
is normalized and remains in the FPAC. The op- SUBTRACT SINGLE
erand in storage is transferred to the FPU, most
significant word first, before the add operation . FSS ac
takes place. Two words are transferred for single o
precision. Four words are transferred for double DOAS ac, FPU1
precision. The operand in storage and the ad- —
dress in the specified AC remain unchanged. For o I 1 [AC IO) .011 o il bl 0.0
single precision, the low-order 32 bits of the o' 1 2 3 a4 5 6 7 8 9 10 Il 12 13 14 18

FPAC are turned to zero before the operation.
SUBTRACT DOUBLE
Floating point addition consists of an exponent

comparison and a mantissa addition. The exponents .FSD ac

of the two numbers are compared. and the mantissa o

of the number with the smaller exponent is shifted DOAS ac, FPU2

right. This exponent alignment is accomplished by _

taking the absolute value of the difference between o 1 1] ac Jo 1 oo | [t v 11 o
the two exponents and shifting the mantissa right 5Tz 374 5 67 8 9 0w 12013 @5
that number of hex digits. For double precision.

bits shifted out of the right end of the mantissa are The floating point number which starts at the ad-
lost, and do not take part in the addition. For dress contained in the specified AC is subtracted
single precision. the last 8 bits shifted out are re- from the floating point number in the FPAC. The
tained as hex ""guard’ digits. This increases the result is normalized and remains in the FPAC.
accuracy of single precision addition. If all signif- The operand in storage is transferred to the FPU,
icant digits are shifted out of the mantissa. the most significant word first, before the subtract
operation is equivalent to adding the number with the operation takes place. Two words are transferred
larger exponent to zero. This requires a shift of at for single precision. Four words are transferred
least 8 hex digits in single precision and at least 14 for double precision. The operand in storage and
hex digits in double precision. the address in the specified AC remain unchanged.
After alignment, the FPU adds the mantissas to- Before the operation takes place, the sign bit of
gether. The result of this addition is termed the the operand fetched from storage is inverted. Af-
intermediate result. The sign of the result is ter the inversion, the operation is equivalent to
determined from the sings of the two operands by addition.

the rules of algebra. If the mantissa addition
produced a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right
one hex digit and the exponent is incremented by
one. If this shift produces an exponent overflow,
the OVF bit is set in the SR, and the instruction

Vv-20

MULTIPLY SINGLE

.FMS ac

DOAP ac, FPUL

DIVIDE SINGLE

.FDS ac

DOA ac, FPUL

o | l[AC lOA"Ol"'[’

" I

0 1 2 3 4 5 6 7 8 9
MULTIPLY DOUBLE

.FMD ac

DOAP

ac, FPU2

|0||lAc]os[|ofrulnooj
otz 3 a = 19'|o'n |z‘r|3l|4'|5

5 6 7 8
DIVIDE DOUBLE
.FDD ac

DOAC ac, FPU2

[oln‘|[A.c |olalo{|‘o

[01 IIAC—[OIOIIIIIIIIOW
oz 374 5 6 7 8 9 0o 2 s s

The floating point number in the FPAC is multi-
plied by the floating point number which starts at
the address contained in the specified AC. The
result is normalized and remains in the FPAC.
The operand in storage is transferred to the FPU,
most significant word first, before the multiply
operation takes place. Two words are transferred
for single precision. Four words are transferred
for double precision. The operand in storage and
the address in the specified AC remain unchanged.

Fcr single precision, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. The exponents of the two numbers are ad-
ded together and 64 is subtracted. This subtraction
of 64 maintains the '"Excess 64" notation. The re-
sult of the exponent manipulation becomes the ex-
ponent of the intermediate result. The sign of the
intermediate result is determined from the signs

of the two operands by the rules of algebra.

If the exponent processing produces either over-
flow or underflow, the result 1s held until normal-
ization, as that procedure mayv correct the
condition. If normalization does not correct the
condition, the corresponding bit in the SR is set.
The number in the FPAC is correct except that,
for exponent nverflow. the exponent 1s 128 too
small, and for exponent underflow. the exponent
1s 128 too larce.

0O + 2 3 4 5 6 7 8 9 (0 1l 12 (3 14 I5

The floating point number in the FPAC is divided
by the floating point number which starts at the
address contained in the specified AC. The result
is normalized and remains in the FPAC. The
operand in storage is transferred to the FPU, most
significant word first, before the divide operation
takes place. Two words are transferred for single
precision. Four words are transferred for double
precision. The operand in storage and the address
in the specified AC remain unchanged.

For single precision, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The operand from storage is checked for a zero
mantissa. If the mantissa is zero, the DVZ bit is
set in the SR and the instruction is terminated. The
number in the FPAC remains unchanged.

The two mantissas are then compared and if the
mantissa of the number in the FPAC is greater
than or equal to the mantissa of the operand from
storage, the mantissa of the number in the FPAC
is shifted right one hex digit and the exponent of

the number in the FPAC is increased by one. Since
all operands are assumed to be normalized, this
guarantees that the mantissa of the nuraber in the
FPAC will alwavs be less than the mantissa of the
operand from storage.

FLOATING POINT ARITHMETIC

The mantissa in the FPAC is then divided by the
mantissa from storage and the quotient is the
mantissa of the intermediate result. The exponent
from storage is subtracted from the exponent in
the FPAC and 64 is added to this result. This
addition of 64 maintains the '*Excess 64'' notation.
The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign
of the intermediate result is determined from the
sign of the two operands by the rules of algebra.

If the exponent processing produces either over-
flow or underflow, the result is held until normal-
ization, as that procedure may correct the
condition. If normalization does not correct the
condition, the corresponding bit in the SR is set.
The number in the FPAC is correct except that,
for exponent overflow. the exponent is 128 too
small, and for exponent underflow. the exponent
is 128 too large.

V-22

Temporary Bufter Instructions

The Temporary Buffer. or TEMP, is an area
within the FPU capable of holding a single or dou-
ble precision floating point number. The following
instructions make use of this facility.

MOVE FPAC TO TEMP

.FMFT

NIOP FPU2

o 1 1Joolo o ofr il v 1 1o 1]
07 2z 3 4 5 €7 8 9 0 1 12 13 4 15

The double precision floating point number in the

FPAC is moved to the TEMP buffer. The number
in the FPAC remains unchanged.

MOVE TEMP TO FPAC

.FMTF

NIOC FPU2

o 1+ 1Joojoo ofir olr v 1 1 0|
0 ' 2 3 4 5 € 7 8 9 10 11 12 {3 14 1%

The double precision floating point number in the
TEMP buffer is moved to the FPAC. The number
in the TEMP buffer remains unchanged.

NOTE The operands in these two in-
structions are 64 bit floating
point numbers. If the previous
instructionthat referred to the
FPAC was a single precision
instruction, then that instruc -
tion zeroed the low-order half
of the FPAC and the FPAC can
be considered a double preci-
sion number with no problem.

2D TEMP TO FPAC (SINGLE)

. FATS

DOC 0, FPU!

{Oil“oo‘}||o'|oo‘!||l|ool
o 2 3 4 5 67 8 8 10 1 12 I3 14 15

ADD TEMP TO FPAC (DOUBLE)

. FATD
DOC 0,FPU2
I
ollllloéoluli 0001 1 |%110Lj
0 | 2 3 4 5 6 7 8 9 10 1 12 13 14 15

The floating point number in TEMP is added to the
floating point number in the FPAC and the normal-
ized result is placed in the FPAC. The number in
—“EMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The ADD TEMP TO FPAC instruction is identical
to the ADD instruction described previously, ex-
cept that the second operand comes from TEMP,

not from memory.

v-23

SUBTRACT TEMP FROM FPAC (SINGLE)
. FSTS

DOCS 0,FPUl

[o 1 1o oft 1 ofo 1]1 1 1 1 0 0]
0 1| 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SUBTRACT TEMP FROM FPAC (DOUBLE)

. FSTD

DOCS 0, FPU2

[o | |[o oI| I ofo 1t 1 1 1 0O 1]
R 5ta 5 677 8 9 10 0 uzj'13A|41|5

The floating point number in TEMP is subtracted
from the floating point number in the FPAC and
the normalized result is placed in the FPAC. The
number in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The SUBTRACT TEMP FROM FPAC instruction

is identical to the SUBTRACT instruction described
previously, except that the second operand comes
from TEMP, not from memory.

Rev. 02
FLOATING POINT ARITHMETIC

MULTIPLY FPAC BY TEMP (SINGLE)
. FMTS

DOCP 0, FPU1

DIVIDE FPAC BY TEMP (SINGLE)
. FDTS

DOCC 0, FPU1

] | !
'01'.01 I | o¥0J

fo | I}o o]nln Ollllrlll‘lllloloi
. i ' 9 10 Il 12 I3 14 15

0o I 2 3 4 5 6 T 8
MULTIPLY FPAC BY TEMP (DOUBLE)
. FMTD

DOCP 0, FPU2

lo o |o Oll
% 1 ﬁlr ’ # e .y
o] | 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DIVIDE FPAC BY TEMP (DOUBLE)
. FDTD

DOCC 0, FPU2

IT‘ILIIOJOIIJI O]I‘III b o‘!]

[o‘tll]ogoln‘:loil o{n It 1 0 ﬂl

i i I i n
T

0 | 2 3 4 5 6 T 8 9 10 Il 12 I3 14 (5

The floating point number in the FPAC is multiplied
by the floating point number in TEMP and the nor-
malized result is placed in the FPAC. The number
in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The MULTIPLY FPAC BY TEMP instruction is
identical to the MULTIPLY instruction described
previously, except that the second operand comes
from TEMP not from memory.

V-24

0 ' 2 34 5 6 T B 9 10 Il 12 13 14 1%

The floating point number in the FPAC is divided
by the floating point number in TEMP and the
normalized result is placed in the FPAC. The
number in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The DIVIDE FPAC BY TEMP instruction is iden-
tical to the DIVIDE instruction described previ-
ously, except that the second operand comes from
TEMP not from memory.

Shift and Logical Instructions

The following FPU instructions are included to en-
able the pregrammer to convert numbers from in-
tecer representation to floating point representation
and vice-versa. This section also contains in-
structions for logical operations and for working
with the Status Register.

ABSOLUTE VALUE
. FABS

NIOP FPU1

IIIOOJOOO!IIIIIOO

| 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The sign bit of the FPAC is forced to zero. Bits

1-63 of the FPAC remain unchanged.

CLEAR FPAC
.FCLR

NIOS FPU1

[OL'L']OAOIO,O.OiO.‘j' I 11 00

0 1 2 3 4 & 6 7 8 9 10 il i2 3 14 1§

All 64 bits of the FPAC are forced to zero. In
other words, the value of the FPAC is forced to
true zero.

LOAD EXPONENT
.FLDX ac

DOBC ac.FPU2

I 0 Ol1 otl
. L i '
5 & 7 8 9

1 1 0 1 J
1 A
i0 | i3 14 5

Bits 1-7 of the specified AC replace bits 1-7 of

the FPAC. Bits 0 and 8-15 of the specified AC are
ignored. Bits 0 and 8-63 of the FPAC remain un-
changed. The entire contents of the specified AC
remain unchanged.

NOTE The exponent 1s assumed to
be 1n ' Excess 64 represen-
tatinn.

NEGATE

.FNEG

NIOC FPU1

Lo i n]o o]ooo]u Oll o
- i = l'.~'9ﬁtoA||l ;

0o I 2 3 4 5 6 71 8 127 (3

The sign bit of the FPAC is inverted. Bits 1-63
of the FPAC remain unchanged.

NOTE If the number in the FPAC
is true zero, the sign bit of
the FPAC remains zero.

NORMALIZE
. FNRM

NIOS FPU2

t

zW' IIOOTOOOIOIIIIIOIJ

0O I 2 3 4 5 6 7 8 9 10 I 12 I3 14 I8
The floating point number in the FPAC is norm-
alized. If all bits of the mantissa are zero, a true
zero is set in the FPAC. If an exponent underflow
occurs, the UNF bit in the SR is set and the number
is correct, except that the exponent is 128 too
large.

READ HIGH WORD
. FHWD ac
DIA g,FPUl

ro IXII aC IOLO%'IOLOi','."’ ‘o‘oJ
[7 8 9 10

o 1 2 3 4 5 12 13 14 s

The high-order 16 bits of the FPAC are placed in
the specified AC. The previous contents of the
specified AC are lost. The contents of the FPAC
remain unchanged.

FLOATING POINT ARITHMETIC

DOB ac. FPU2

[T.' |Tl AC [llvoLololl o .°.L|

t

o' - 2 3 a4 5 67 8 9 10 11 12 13 14 IS

The mantissa of the floating point number in the
FPAC is shifted either right or left, depending
upon the contents of bits 1-7 of the specified AC.
The contents of the specified AC remain un-
changed.

Bits 1-7 of the specified AC are treated as an ex-
ponent in "Excess 64" representation. The differ-
ence between this exponent and the exponent in the
FPAC is computed by subtracting the exponent in
the FPAC from the number contained in bits 1-7 of
the specified AC. If the difference is zero. the
instruction is terminated. If the difference is
positive, the mantissa contained in the FPAC is
shifted right that number of hex digits. If the
difference is negative, the mantissa contained in
the FPAC is shifted left that number of hex digits
and the MOF bit in the FPSR is set. After the
shift, the contents of bits 1-7 of the specified AC
replace the exponent contained in the FPAC.

Bits shifted out of either end of the mantissa are
lost.

If the entire mantissa is shifted out of the FPAC.
the FPAC is set to true zero.

Rev. 02

V-26

Status Instructions

READ STATUS

.FRST ac

DIAC ac,FPU
IOII{ACOOIIOIIIIIO]
o 1 2 3'456’789lo'u‘|z’13‘|4'15

The contents of the 16 bit status register are placed
in the specified AC in the format shown previously.
Bits 0-4 of the SR are set to zero.

WRITE STATUS

.FWST ac

DOA ac,FPU

oL|‘|| AC]O‘I‘OlOAOlIlIlI‘I |‘oJ

'
071 2 34 5 6 7 8 9 10 11l 12 13 14 15

The contents of the specified AC are placed in the
status register. The contents of the specified AC
remain unchanged.

Diagnostic Instructions

NOTE The following instructions
are for diagnostic use only.

READ WORD 1

DIA ac, FPUI

OlllACIOOIOOIlIIOO
O#I‘Z 3¢456'789|0|1 12° 13 14 18
READ WORD 2
DIB gg,FPUl
OlIlAClOI |loo]| 1 lloﬂ
01 2 3 4 5 6'7 8 9 10 11 12 13 14 15

READ WORD 3

DIA ac, FPU2

lOIIlAC[OOiOOIIIIO|J
o'Lnla 3‘456%7esno o2 13 14 15
READ WORD 4
DIB g,FPUZ
|_01 IIAC [o 1 fo o1 1t 1 1 01
ot 2 372 5 6 7 8 9 10 1 12 13 14 15

These instructions read the four most significant
words of the FPU arithmetic unit. When the FPU
is idle, these words are words 1-4 of the FPAC.
When the FPU is in diagnostic mode, these instruc-
tions, along with the FPU CLOCK instruction, al-
low the program to monitor the output of the FPU
arithmetic unit.

v-27

FPU CLOCK

NIOP FPU
r0| |'o o]o|oo|s i e o|
0’!12 354.':6:7 8l9 0 I2=ISII4.I5

When placed in diagnostic mode (bit 15 of the SR)
and issued an instruction, the FPU will initiate
execution, request the data channel cycles required,
and halt. This instruction causes a single clock
pulse in the FPU. The results of any arithmetic
manipulation can then be monitored by the program
by the READ WORD instructions. An IORST will
force the FPU to the idle state or if encugh FPU
CLOCK instructions occur, the FPU will eventually
go to the idle state by normal sequence.

NOTE Diagnostic commands are for
diagnostic purposes only and
are not supported in the As-
sembler. The user should use
the STORE FPAC instruction
to retrieve the FPAC.

FLOATING POINT ARITHMETIC

Mode Settings For The Floating Point Unit

The low-order three bits of the Status Register
control the mode in which the FPU operates. The
mode can be changed with the WRITE STATUS in-
struction. Bits 13-15 of the Status Register and
the modes that they imply are summarized in the
following table.

Status Register Modes

BIT 13| BIT 14 | BIT 15| PROCESSING MODE

0 0 0 Normal mode --inter -
rupt enabled

1 0 0 Normal mode-inter -
rupt disabled

0 1 0 Parallel mode--inter-
rupt enabled

1 1 0 Parallel mode--inter-
rupt disabled

X X 1 Diagnostic mode

Note: X = May be either zero or one.

Normal Mode

The FPU is defined to be in normal mode when bits
14 and 15 of the Status Register are both set to 0.
In this mode, the FPU will request data channel cy-
cles whenever it is busy processing an instruction.
The FPU should always be assigned a lower DCH
priority than any device requiring the data channel
while the FPU is busy.

Normal mode imposes the following restrictions on
instruction ordering, if the FPU is running with
any NOVA line computer other than the NOVA 800
computer or the NOVA 820 computer.

1. FPU instructions must be separated by at
least one non-FPU instruction. which must
not modify the storage operand of the pre-
ceding FPU instructions.

2. The operand of a STORE FPAC instruc-
tion cannot be tested immediately after
the instruction. At least one machine
cvele must elapse.

V-28

Examples:

LDA 1,PTRX :LOAD AC1 WITH

: POINTER TO X

.FLDS 1 :LOAD X TO FPAC--
1 SINGLE PRECISION
.FMS 1 :MULTIPLY X BY

. ITSELF

In this case there is no non-FPU instruction be-
tween the LOAD and the MULTIPLY. Results will
be unpredictable.

:LOAD AC3 WITH
: POINTER TO X

LDA 3.PTRX

.FLDS 3 :LOAD X TO FPAC--
. SINGLE PRECISION
STA 3.0.3 :USE X LOCATIONS
: AS HOLD AREA
. FNRM :NORMALIZE X

In this case the intervening instruction modifies
the location which holds the floating point number
X. The number loaded into the FPAC would have,
as its high-order 16 bits, the pointer to X,

:LOAD AC1 WITH

; POINTER TO X
;LOAD X TO FPAC--
: SINGLE PRECISION
:LOAD AC2 WITH

. POINTERTOY
:LOAD AC3 WITH

; POINTER TO

; RESULT

:STORE FPAC INTO
;. RESULT

LDA 1,RESULT :LOAD AC1 WITH

: FIRST WORD OF

: RESULT

LDA 1,PTRX
.FLDS 1
LDA 2,PTRY

LDA 3,PTRES

.FSTS 3

In this case the last instruction of the example wil.
not produce the desired effect. Because of the re-
strictions discussed above, RESULT does not hold
the sum of X and Y at the time of the LDA instruc-
tion. After a floating store, one more instruction
cvele must elapse before the receiving area con-
tains the contents of the FPAC.

Eurallel Mode

The FPU is defined to be in parallel mode when bit
14 is set to 1 and bit 15 is set to 0. In this mode,
the FPU will only request data channel cycles if
they are required to fetch or store an operand.
After the data channel is released, the CPU is free
to process instructions in parallel with the FPU.
Before the programmer issues another FPU in-
struction, however, he must ensure that the FPU
has finished processing the previous instruction.
This may be accomplished in either of two ways:

1. The number of non-FPU instructions be -
tween FPU instructions are of sufficient
number to guarantee that the FPU will be
idle.

2. The programmer must look at the BUSY
flag of the FPU and issue the next in-
struction when the FPU is not busy.

~he advantage of parallel processing is that it al-

.ws the programmer to use effectively the time
the FPU spends in processing instructions. This
time may be used for moving operands, updating
pointers, etc.

Example:

:LOAD ADDRESS OF

. OP1

:LOAD OP1 TO FPAC--
: SINGLE PRECISION
:SOME LIST OF IN-

: STRUCTIONS WHERE
. THE TOTAL EXECU-
. TION TIME IS GREAT -
: ER THAN THAT OF

: .FLDS

:LOAD ADDRESS OF

. OP2

‘MULTIPLY OP1 BY

: OP2--SINGLE PRECI-
. SION

:BUSY ?

YES

:NO. STORE RESULT IN
: OP1

LDA 0,AOP1

".FLDS 0

LDA 1.AOP 2

.FMS 1
SKPBZ FPU

JMP -1
.FSTS 1

V-29

interrupt Enable and Disable

To provide maximum flexibility, the FPU has an
interrupt disable bit in the status register (bit 13),
and is maskable via the MASK OUT instruction

(bit 5). If both these bits are set to 0, the FPU
will signal an interrupt for exponent overflow, ex-
ponent underflow, or divide by zero. These con-
ditions are represented by bits 1-3 in the status
register. Detailed discussions of these conditions
can be found in the section entitled '"Floating Point
Unit Registers''. If either or both of the interrupt
disable bits is set to 1, the FPU will not request an
interrupt for any of the above conditions, but will
set the representative bit in the status register and
set bit zero of the status register. These bits will
remain set to 1 until cleared by the programmer.

If running with interrupt disabled, it is the program-
mer's responsibility to test the status register
periodically in order to detect errors ir floating
point processing.

NOTE The FPU returns 76g as the
device code in response to
the INTA instruction.

FLOATING POINT UNIT MNEMONICS

To enable implementation of the mnemonics used
throughout this manual, a paper tape (DGC Part
Number 090-001248) is supplied with each floating
point unit. This tape is in assembler-readable for-
mat and contains .DIAC and . DUSR instructions
which define the mnemonics. There are two ways
to use this tape, depending on whether or not the
user has a supervisor for his machine.

If the user's machine has no supervisor, then he
should read this tape into pass 1 of the assembler,
then read in his program. After the tape is read
into pass 1 of the assembler, the assembler will
correctly assemble all mnemonics usec in this
manual. If the programmer plans on extensive use
of these mnemonics, it is advisable that he read in
this paper tape to pass 1 of his assembler and then
punch out this new version of the assembler. This
punched copy of the assembler will always under -
stand the floating point mnemonics.

If the user's machine has a supervisor, either DOS
or RDOS, then this paper tape should be put on disc
as a symbolic file and then specified (with /S switch)
as the first file in a multi-file assemblv. If this
tape is not specified as the first file, floating point
mnemonics read into the assembler before this

tape is read in, will be flagged as errors.

A table of these .DUSR and . DIAC instructions
follows.

FLOATING POINT ARITHMETIC

.DUSR and .DIAC Instructions for Floating Point Unit Mnemonics

DEVICE CODES

.DUSR FPU= 6 .FLOATING POINT PRIMARY CONTROL
.DUSR FPUl= 74 :FLOATING POINT SINGLE PRECISION
.DUSR FPU2- 75 :FLOATING POINT DOUBLE PRECISION
MEMORY REFERENCE INSTRUCTIONS
.DIAC . FLDS-= DOBP 0, FPU1 :LOAD SINGLE
.DIAC . FLDD= DOBP 0, FPU2 :LOAD DOUBLE
.DIAC . FSRS= DOBS 0. FPUl :STORE SINGLE
.DIAC . FSRD-= DOBS 0.FPU2 STORE DOUBLE
ARITHMETIC INSTRUCTIONS
T T
| |
.DIAC . FAS- . DOA 0.FPUl | :ADD SINGLE
.DIAC _.FAD= | DOA 0,FPU2 .ADD DOUBLE
.DIAC . FSS= ~ DOAS 0.FPUl | :SUBTRACT SINGLE
.DIAC | .FSD= | DOAS 0.FPU2 ‘SUBTRACT DOUBLE
_DIAC | .FMS= DOAP 0.FPUI1 ‘MULTIPLY SINGLE
.DIAC . FMD= DOAP 0.FPU2 ‘MULTIPLY DOUBLE
.DIAC . FDS= DOAC 0,FPU1 | :DIVIDE SINGLE
.DIAC . FDD= DOAC 0,FPU2 :DIVIDE DOUBLE
TEMP INSTRUCTIONS

.DUSR .FMFT-= NIOP FPU2 ‘MOVE FPAC TO TEMP
.DUSR _FMTF-= NIOC FPU2 ‘MOVE TEMP TO FPAC
.DUSR .FATS= DOC 0.FPUl : :ADD TEMP SINGLE
.DUSR _FATD- | DOC 0.FPU2 | :ADD TEMP DOUBLE
.DUSR JFSTS= | DOCS 0.FPUL | ‘SUBTRACT TEMP SINGLE
.DUSR _FSTD- | DOCS 0.FPU2 ' :SUBTRACT TEMP DOUBLE
.DUSR _FMTS- | DOCP 0.FPU1 ' :MULTIPLY TEMP SINGLE
.DUSR .FMTD= DOCP 0.FPU2 ‘MULTIPLY TEMP DOUBLE
.DUSR _FDTS= | DOCC 0.FPUl ‘DIVIDE TEMP SINGLE
.DUSR | .FDTD= | DOCC 0.FPU2 ‘DIVIDE TEMP DOUBLE

| o

SHIFT AND LOGICAL INSTRUCTIONS

I E T -
.DUSR | .FABS= ' NIOP FPUI | .ABSOLUTE VALUE
_.DUSR | .FCLR= NIOS FPUI | :CLEAR FPAC
.DIAC | .FLDX- DOBC 0.FPU2 | :LOAD EXPONENT
'DUSR | .FNEG= , NIOC FPUIl . :NEGATE
.DUSR 1 .FNRM= ' NIOS FPU2 i :NORMALIZE
.DIAC | .FSCL- | DOB 0,FPU2 | :SCALE
.DIAC | .FHWD= | DIA 0.FPUl . :READ HIGH WORD

i |

STATUS INSTRUCTIONS

T

i
.DIAC . FRST-= DIAC 0,FPU ‘READ STATUS
.DIAC _FWST= DOA 0,FPU ‘WRITE STATUS

v-30

SECTION VI
FRONT PANEL

INTRODUCTION

The front panels of the NOVA line computers con-
tain all the function switches and display all the
information needed to operate them. As shown in
the figure, all the consoles are essentially the
same. The console at the top is for the NOVA
computer, beneath it is the SUPERNOVA computer
console, next is the console for NOVA 1200, NOVA
800, and NOVA 2 computers. Next is the console
found on NOVA 3 computers. The bottom console
is a turnkey console, which is available for all
NOVA line computers. This console is designed

FRONT PANEL LIGHTS

for those computers that will be running in dedi-
cated environments and contains only those switches
needed to initiate processing. These switches, and
the one light, operate exactly the same as those
found on the other consoles.

The function and data switches on the consoles
allow the operator to perform many useful opera-
tions and the lights reflect the current state of the
machine. If a light is lit, it means the correspond-
ing bit is 1. If the light is not lit, the correspond-
ing bit is 0. The lights and their meanings are
described below.

LIGHT MEANING WHEN LIT LIGHT MEANING WHEN LIT

ADDRESS These 15 lights display what is MEM PAR The memory parity feature has
currently in the memory address detected a memory error. (NOVA
register. 3 computers only.)

CARRY The carry bit is 1. MEM PWR Power is being supplied to the

. . . semiconductor memories.

DATA These 16 lights display what is (NOVA 3 computers only)
currently on the memory bus.

DCH The next CPU cycle will be used | ON g‘;gowfgo‘zze;“fofr‘)“"pt‘;g to l“]e)
by the data channel to gain access ’ pu ¥
to memory. (NOVA, SUPER- OVERLAP Two Accumulator-multiple opera-
NOVA, and NOVA 3 computers tion format instructions are being
only.) executed out of read-only memory

. and the CPU is overlapping the

DEFER ;rhf Tle}:: gp‘i\giy“ft.w;n ::iﬁsed execution of one with the fetching

o follow an indirection chain- of the next. (SUPERNOVA com-

EXECUTE The next CPU cycle will be used puter only.)
to execute an instruction. PI The next CPU cycle will be used

FETCH The next CPU cycle will be used to start a program interrupt by i
to fetch an instruction. storing the program counter in |

INSTRUCTION| These 8 lights display the high- location O (NOvA and SUPER-
order 8 bits of the instruction P o

! just completed. (NOVA and PROTECT The MAP feature is operating in
; | SUPERNOVA computers only.) user mode. (SUPERNOVA com-
i

I ION The Interrupt On flag is 1. puters only.)

. ey RUN The CPU is executing instructions
MAP B Program”m.:j\p B or data chan- or data is being transferred via
nel map "B’ is enabled. the data channel
! (NOVA 3 computers only))

! MAP One of the two program maps is

| ENABLED enabled and not inhibited or a

E data channel map is mapping

| addresses. (NOVA 3 computers
only.)

06-01929

Vi-1of 8

For the NOVA 3 series of computers, there is one
row of lights that serves the function of both AD-
DRESS and DATA in the above table. The current
contents of the program counter is displayed in
these lights unless a console function is being per-
formed.

Rev. 03
FRONT PANEL LIGHTS

POWER ! INSTRUCTION o { o o o [(5 -]] | © [o
|
ON . ———— —— ——— S — —

FETCH EXECUTE

: ADORESS | o < o | < o o | ¢ v o | o o o | o -] [} ° o
or l | DEFER

‘ DATA © o | o pc o o | o o o | © o o | o o o -

3 14 1%
| camay ocw "

6 0660 OO0 PO OO OO Sl

[o— <V ac2 acs nasgY START pEPoONT CANINE MEMORY STEP PROGRAM LOAD
O @ @—o—=06+ © O © © © © ©
sTor CONTIUE DEMOBIT MEXT EXAMIME NEXT InSY STRP STARY
{ (b DATA GENERAL CORPORATION | NOVA| |
0G-0I872
NOVA
OVEALAP PROTECT N 1N
POWER INSTRUCTION) | o [o | o o o (] [} o -3 [}
o ’ n o - - T FETCH DXECUTE
! ADDRESS B o o ! o o o | o o o | o o o | o o o] ° °
0"‘@ o oata O o | o 6 o | © © o | o o o | o © o 1 o o o ";“
CARRY o] 1 2 Al 4 k] (3 7 L] L] n ‘4 19 ocw "
©® @G PG OO @@@ @@@ | e e
perosiT . A0 At ac2 RESEY START oePosIT ELAMINE WEMORY STEP PROSRAN LOAD
(©JN (O © © @+ © © © © © © O
COMTINUE DEPOSIT NEXT EXAMINE NDIT INST STEP CHANNEL STARY
[(b DATA GENERAL CORPORATION | SUPERNOMWA| |
DG- 0187/

SUPERNOVA

Qg == e
el l9l9e [@e|@ JUb celciclele

oEPOSIT ACO ACH AC2 ACS AESET STARY DEPOSIT EXAMINE MEMORY STEP PROGRAN LOAD
O cumd® ® O] ©t 6 ©] © ©® © ©® O
sTOP COMY INUVE DEPOSIT NEXT EXAMNE NEXT INST STEP
((Jo DATA GENERAL CORPORATION | novae J

DG-01870

NOVA 800/1200 and NOVA 2

Rev. 02

g‘v
I ‘

OoN
o»‘@ Locx

-] PROSRAM LOAD
[«

(@)

CONTINUE

(p DATA SENERAL CORMPORATION) [noval

56 01863

NOVA TURNKEY

DG-0/868

NOVA 3 TURNKEY

DATA SWITCHES

Beneath the data lights is a row of 16 switches.
These switches are used to enter either data or ad-
dresses and can be read using the READ SWITCHES
instruction. Only switches 1-15 are used for enter-
ing addresses. When these switches are in the up
position, they represent a 1: when down, they re-
present a 0.

CONSOLE SWITCHES

In addition to the data switches, there are a number
of function switches. These switches are spring
loaded. When pushed up, they perform the function
labeled above the switch, and when pushed down,
they perform the function labeled below the switch.
When released, these switches return to a neutral
"off'" position. The switches and their functious
are explained below.

Accumulator Deposit--Examine

On all consoles except the NOVA 3 consoles, the
left-hand four switches reference the four CPU
accumulators. The switches are numbered 0-3
from left to right. Each switch affects only its
corresponding accumulator. When one of these
switches is pushed up, the current setting of the
data switches is deposited into the corresponding
accumulator. The data lights display the informa-
tion placed in the AC. When one of these switches
is pushed down, the contents of the corresponding
accumulator are displayed in the data lights.

Reg Dep -- Reg Exam

For the NOVA 3 computers, the accumulator deposit
and examine functions are performed by the com-
bination of one function switch and a 7-position
rotary switch. The seven registers available for
depositing and examining are the four accumulators,
the stack pointer, the frame pointer. and the pro-
gram counter. When the function switch is pushed
up, the contents of the data switches are deposited
into the register indicated by the current setting of
the rotary switch. As long as the switch is pushed
up, the value indicated by the data switches is dis-
played in the lights. When the switch is released,
the program counter is displayed in the lights.

Rev. 02

When the function switch is pushed down, the con-
tents of the register indicated by the current setting
of the rotary switch are displayed in the lights. As
long as the switch is held down, the value is dis-
played in the lights. When the switch is released,
the program counter is displayed in the lights.

Reset--Stop

When this switch is pushed up, the RESET function
is performed and an I O RESET instruction is exe-
cuted. The CPU is stopped after completing the
current processor cycle. The Interrupt On flag.
the 16-bit priority mask, and all Busy and Done
flags are set to 0.

When this switch is pushed down, the STOP function
is performed. The CPU is stopped after complet-
ing the current instruction and before executing the
next instruction. If an IO device requests an in-
terrupt during the execution of the current instruc-
tion, it is honored before the CPU is stopped. All
outstanding data channel requests are honored be-
fore the CPU is stopped. For the NOVA 3 series
of computers, data channel requests are honored
while the machine is in the stopped state. After the
CPU is stopped, the address lights display the ad-
dress of the next instruction to be executed and the
data lights display the current contents of the mem-
ory bus.

Start--Continue

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter and
sequential operation of the processor begins with
the word addressed by the updated value of the pro-
gram counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Deposit--Deposit Next

When this switch is pushed up, the DEPOSIT func-
tion is performed. The current setting of the data
switches is placed into the word addressed by the
current value of the program counter. The up-
dated value of the altered word is displayed in the
data lights.

When this switch is pushed down, the DEPOSIT

EXT function is performed. The program counter
1s incremented by one and the current setting of the
data switches is placed into the word addressed by
the updated value of the program counter. The up-
dated value of the program counter is displayed in
the address lights and the updated value of the al-
tered word is displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORY DEP--DEP NEXT switch.
As long as the switch is held in
either the up or down position, the
value indicatedby the data switches
is displayedin the lights. When the
switch is released, the program
counter is displayed in the lights.

Examine--Examine Next

“hen this switch is pushed up, the EXAMINE func-
..on is performed. The address indicated by data
switches 1-15 is placed in the program counter.
This value is displayed in the address lights. The
contents of the word addressed by the program
counter are then read and displayed in the data
lights.

‘Whern this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORY EXAM--EXAM NEXT
switch. As long as the switch is
held in either the up or down posi-
tion, the value contained inthe mem-
ory location is displayed in the
lights. Whenthe switchis released.
the program counter is displayed in
the lights.

Memory Step--Inst Step

When this switch is pushed up. the MEMORY STEP
function is performed. The CPU performs a single
processor cycle and stops. After the processor
stops. the lights indicate the next cycle to be
executed.

When this switch is pushed down. the INSTRUC-
TION STEP function is performed. The instruc-
tion contained in the word addressed by the current

value of the program counter is executed and then
the CPU is stopped. The address lights display
the updated value of the program counter and the
data lights display the contents of the memory bus.

Program Load

In the NOVA 1200, NOVA 800, and NOVA 2 com-
puters, when this switch is pushed up, the PRO-
GRAM LOAD function is performed if the Program
Load option is installed on the machine. The con-
tents of the bootstrap read-only memory are placed
in memory location 0-37g and a ""JMP 0" instruc-
tion is performed. If the option is not installed,
this switch has no effect.

In the SUPERNOVA computer, when this switch is
pushed up, the PROGRAM LOAD functicn is per-
formed. Thirty-three words are read from the de-
vice whose device code is set in data switches

10-15 on the console. These words are placed in
locations 0-40g of main memory. After the last
word is read, a "JMP 40" instruction is performed.

NOTE For the NOVA 3 computers, the
MEMORYSTEP function has been
deleted. The PROGRAM LOAD
and INSTRUCTION STEP functions
share the same function switch.

Channel Start

When this switch is pushed down, the CHANNEL
START function is performed. A "JMP 317" in-
struction is placed in location 377g of main mem-
ory. Then a DATA IN A with a Start (DIAS)
instruction is issued to the device whose device
code is set in data switches 10-15 on the console.
After the instruction is issued, a "JMP 377" in-
struction is performed.

Power

The POWER switch is a three position key switch.
The three positions are labeled "OFF', "ON", and
"LOCK'". With the switch in the OFF position all
power to the CPU is shut off and the machine will
not run. Turning the switch to the ON position
turns on the power and enables all the switches.

Turning the switch to the LOCK position enables the
key to be removed. While the CPU is processing
and the switch is in the LOCK position, all console
functions are disabled. If the switch is turned to
the LOCK position while the CPU is stopped or if
the CPU executes a HALT instruction while the
switch is in the LOCK position, all the function
switches are enabled.

Rev. 02
CONSOLE SWITCHES

PROGRAM LOADING

Before a program can be executed, it must be
brought into memory. This requires that a loading
program already reside in memory. In the event
that there is no loading program in memory, a
small, specialized loading program is normally
placed in memory and used to read in the loading
program. This small loading program is called a
"bootstrap loader'. The function of the bootstrap
loader is to read in a more general-purpose load-
ing program which can be used to load the user's
programs. Two methods are available for entering
a bootstrap loader into memory. The operator can
either enter it via the data switches and the deposit
switch, or, if the computer is so equipped, he can
use the program load option or the channel start
feature.

Manvual Loading

When using a NOVA computer or a computer from
the NOVA 800, NOVA 1200, NOVA 2 series or
NOVA 3 series without the program load option, a
bootstrap loader must be entered into memory
manually using the switches on the console. The
following loader is the bootstrap loader designed
by DGC for use with binary loader #091-000004.

LOCATION CONTENTS

X7757 126440 GET SsUBo v CLEAR ACT AND
CARRY

X7760 0636 -- SKPDN -- DENVTCER 3175y

X7761 000777 e RS AN

X17762 0605 - - DIAS 0, - READ FRAME
FROM DEVICE

X7763 127100 ADDL 1t SHIFT ACY LEFT

.2 BIEN

X7764 127100 DL 1 SHIFT NCULEFT
2 BIVS

X7765 107003 ADIy GOV NG ADDINNEW
FRANE

X7766 100772 IMP GET CGETTONEWM FIRANMI

X1167 001400 NP A} CFULL WORD--
RETERN

X7770 0601 -~ BSTRP NIO~ CPRINTE THE DE-
Vi

X771 004766 ISkt GET GET A MORD

X7772 144402 STA L2 STORE 1T

X1773 004764 iR [GETOANOTHE R
AMOih

This loader reads in a specially formatted tape
from either the paper tape reader or the reader on
the console teletypewriter. This tape has only 4
bits per frame and the loader assembles these
frames into complete words. This bootstrap should
be placed in memory starting at that location which
is 20g less than the highest available memory loca-
tion. In other words, for the X' in the LOCA-
TION column, substitute a 0 for a 4K system, a

1 for an 8K system, a 2 for a 12K system, and so
on. For the dashes in the CONTENTS column,
substitute 10g if the console teletypewriter is being
used. or 12g if the paper tape reader is being used.
After the bonotstrap is entered,. start it at location
X71170.

Rev. 02

Auvtomatic Loading

When using a SUPERNOVA computer, a loading
program can be placed in memory by using either
the PROGRAM LOAD function or the CHANNEL
START function available on the console. The
PROGRAM LOAD function reads 66 bytes of data
from the device whose device code is set in data
switches 10-15. These 66 bytes are compressed
into 33 16-bit words and placed in memory loca-
tions 0-40g. The first two bytes read are placed
in location 0, with the first byte read being placed
in bits 0-7, and the second byte read being placed
in bits 8-15. This process continues until a word
is placed in location 40,. After a word has been
stored into location 40g, a "JMP 40" instruction
is executed.

This sequence is designed to be used with binary
loader #091-000041.

Alternatively, when using a SUPERNOVA computer,
the CHANNEL START function can be used to bring
in a loading program. The CHANNEL START func
tion places a "JMP 377" instruction in location
377g and then issues a DIAS instruction to the de-
vice whose device code is set in data switches
10-15. After issuing the DIAS instruction, a

" JMP 377" instruction is executed. This sequence
initiates a data channel transfer from the device to
memory beginning at memory location 0. The CPU
will continue to execute the ""JMP 377" instruction
until the data channel places a word in that location.
After a word has been placed in location 377g, it is
executed as an instruction. Typically, this word is
either a HALT or a JUMP into the data that the data
channel has placed in the first 3778 memory
locations.

When using a computer from the NOVA 800, NOVA
1200, NOVA 2 series, or NOVA 3 series with the
program load option, a loading program can be
placed in memory by using the PROGRAM LOAD
function available on the console.

To enter a loader program, the operator must
first set up the device that is to be used and set its
nctal device code into data switches 10-15. If the
device is a data channel device, set data switch 0
to 1. If the device is a low-speed device, set data
switch 0 to 0. After this is done, push the
PROGRAM LOAD switch to the up position. The
bootstrap loader will be deposited into memory
locations 0-3'78 and started at location 0.

The bootstrap loader reads the data switches, sets
up its own 1/0 instructions with the specified de-
vice code, and then performs a program load pro-
cedure depending upon the state of data switch 0.

If the switch is a 1, the bootstrap loader starts the
device for data channel storage beginning at loca-

VI-6

tion 0 and then loops at location 377g until a data negative of the total number of words to be read,
hannel transfer places a word into that location. including the first word. The number of words to
be read, including the first word may not be

After a word has been placed in location 3717g, it greater than 192,,. The bootstrap loader stores
is execuied as an instruction. Typically, this these words beginning at memory location 100,.
word is either a HALT or a JUMP into the data After storing the last word read, it transfers
that the data channel has placed in the first 3778 control to that location.
memory locations.

NOTE For proper program loading
1f data switch 0 is a 0, the bootstrap loader reads via the data channel, the de-
the loader program via programmed 1/0. The vice used must be initiated for
device must supply 8-bit data bytes, and each pair readingby an [/ORESET fol -
of bytes is stored as a single word in memory: lowed by an NIOS instruction.
wherein the first and second bytes read become In addition, it is up to the de-
the left and right halves of the word. To simplify vice to stop reading after 255
the positioning of the tape in the reader, the boot- words have been read.
strap loader ignores leading null characters. It
does not begin storing any words until it reads a Listed below is the standard 32 word bootstrap
non-zerc synchronization byte. The first word loader. This program is capable of loading in
following this synchronization byte must be the either of the manners described above.

BOOTSTRAP LOADER

IORST ‘RESET ALL 1/0

READS 0 :READ SWITCHES INTO ACO
LDA 1,C71 :GET DEVICE MASK (000077
AND 0,1 :ISOLATE DEVICE CODE
COM 1.1 :- DEVICE CODE -1

ISZ OP1 :COUNT DEVICE CODE INTO ALL
ISZ OP2 :1’0O INSTRUCTIONS

ISZ OP3

INC 1,1,SZR :DONE?

JMP LOOP :NO, INCREMENT AGAIN

LDA 2,C377 YES. PUT JMP 377 INTO LOCATION 3177
STA 2,371

060077 :START DEVICE: (NIOS 0) - 1

MOVL 0,0,SZC :LOW SPEED DEVICE? (TEST SWITCH 0)
JMP 371 :NO, GO TO 377 AND WAIT FOR CHANNEL

JSR GET+1 :GET A FRAME
MOVC 0.0.SNR IS IT NON-ZERO?
JMP LOOP2 :NO. IGNORE AND GET ANOTHER

JSR GET :YES. GET FULL WORD

STA 1.@C77 :STORE STARTING AT 100 2's COMPLEMENT OF WORD COUNT
: (AUTOINCREMENT)

ISZ 100 :COUNT WORD - DONE?

JMP LOOP4 :NO. GET ANOTHER

JMP 17 :YES - LOCATION COUNTER AND JUMP TO LAST WORD

SUBZ 1.1 :CLEAR AC1, SET CARRY

063577 :DONE?: (SKPDN 0) -1

JMP LOOP3 :NO, WAIT

060477 :.YES. READ IN ACO0: (DIAS 0,0) -1

ADDCS 0.1,SNC :ADD 2 FRAMES SWAPPED - GOT SECOND?
JMP LOOP3 :NO, GO BACK AFTER IT

MOVS 1,1 :.YES, SWAP THEM

JMP 0.3 :RETURN WITH FULL WORD

0 :PADDING

Rev. 02
PROGRAM LOADING

This page intentionally left blank.

APPENDICES

I/O DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL AND HEXADECIMAL
CONVERSION

ASCIl CHARACTER CODES

DOUBLE PRECISION ARITHMETIC
INSTRUCTION USE EXAMPLES

INSTRUCTION EXECUTION TIMES

A-10of 4

1/0 DEVICE CODES AND DATA GENERAL MNEMONICS

APPENDIX A

OCTAL
DEVICE PRIORITY
CODE MNEMONIC MASK BIT DEVICE NAME
00 . -- Unused
01 MDV -- Multiply/Divide
02 MMU } - Memory Management Unit
03 MMU1
02 MMPU -- Memory Management and Protection Unit
04
05
06 MCAT 12 Multiprocessor adapter transmitter
07 MCAR 12 Multiprocessor adapter receiver
10 TTI 14 TTY input
11 TTO 15 TTY output
12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch
14 RTC 13 Real-time clock
15 PLT 12 Incremental plotter
16 CDR 10 Card reader
17 LPT 12 Line printer
20 DSK 9 Fixed head disc
21 ADCV 8 A/D converter
22 MTA 10 Magnetic tape
23 DACV -- D/A converter
24 DCM 0 Data communications multiplexor
25
26
21
30 QTY 14 Asynchronous hardware multiplexor
302 SLA 14 Synchronous line adapter
e eyl 13 [BM 360/370 interface
33 DKP 7 Moving head disc
34 CAS 10 Cassette tape
2

gg x;((; } 11 Multiline asynchronous controller
36 IPB 6 Interprocessor bus--half duplex
37 IVT 6 [PB watchdog timer
40 DPI 8 IPB full duplex input
41 DPO 8 IPB full duplex output
403 SCR 8 Synchronous communication receiver
414 SCT 8 Synchronous communication transmitter
42 DIO 7 Digital 1/0
43 DIOT 6 Digital I/0 timer

DG6-0/932

2Code returned by INTA

3Cam be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

Rev. 03

APPENDIX A (Continued)

I/0 DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL
DEVICE PRIORITY
CODE MNEMONIC MASK BIT DEVICE NAME

44 MXM 12 Modem control for MX1/MX2
45
46 MCATI1 12 Second multiprocessor transmitter
47 MCARI1 12 Second multiprocessor receiver
50 MMI1 14 Second TTY input
51 TTO1 15 Second TTY output
52 PTRI1 11 Second paper tape reader
53 PTP1 13 Second paper tape punch
54 RTC1 13 Second real-time clock
55 PLTI1 12 Second incremental plotter
56 CDR1 10 Second card reader
57 LPT1 12 Second line printer
60 DSK1 9 Second fixed head disc
61 ADCV1 8 Second A/D converter
62 MTA1 10 Second magnetic tape
63 DACV1 -- Second D/A converter
642 FPUL |
65 FPU2 5 Alternate location for floating point
66 FPU
67
70 QTY! 14 Second asynchronous hardware rnultiplexor
702 SLA1 14 Second synchronous line adapter
;; : 13 Second IBM 360/370 interface
73 DKP1 T Second moving head disc
742 CAS1 10 Second cassette tape
;g '(11 Second multiline asynchronous controller
742 FPUL |
75 FPU2 5 Floating point
76 FPL Y
(i CPU -- Central processor and console functions

2Code returned by INTA

3Ca.n be set up with any unused even device code equal to 40 or above

4Can be set up with anv unused odd device code equal to 41 or above

Rev. 01

This page intentionally left blank

A-4

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate
table the decimal equivalent for the octal or hex
digit in that position. Add the decimal equivalents
to obtain the decimal number

To convert a decimal number to octal or hexa-
decimal:

1. Locate the largest decimal value in the
appropriate table that will fit into the
decimal number to be converted;

2. note its octal or hex equivalent and column
position;

3. find the decimal remainder.

Repeat the process on each remainder. When the

remainder is 0, all digits will have been generated.

8° g* g° g2 | gl |g°
0 0 0 o] o] oo
1| 32,768 | 4,006 | 512 | 64| 8|1
2 | 65,53 | 8,192 | 1,024 | 128 | 16 | 2
3 | 98,304 | 12,228 | 1.536 | 192 | 24 | 3
4 | 131,072 | 16.384 | 2,048 | 256 | 32 | 4
5 | 163,840 | 20,480 | 2.560 | 320 | 40 | 5
6 | 196,608 | 24.576 | 3.072 | 384 | 48 | 6
7 | 229.376 | 28.672 | 3.584 | 448 | 56 | 7

3,840

16° 16 | 163 | 162 [16! |16
0 0 0 0 ol ol o
1 | 1,048,576 | 65,536 | 4,096 | 256 | 16| 1
2 | 2,097,152 | 131,072 | 8,192 | 512 | 32 | 2
3| 3,145,728 | 196,608 {12,288 | 758 | 48 | 3
4 | 4,194,304 | 262,144 | 16,384 |1,024 | 64 | 4
5 | 5,242,880 | 327,680 | 20,480 |1,230 | 80 | 5
6 | 6,201,456 | 393,216 | 24,576 1,536 | 96 | 6
7 | 7,340,032 | 458,752 | 28,672 | 1,792 |112 | 7
8 | 8,388,608 | 524,288 | 32,768 | 2,048 |128 | 8
9 | 9,437,184 | 589,824 | 36,864 | 2,304 |144 | 9
A |10,485,760 | 655,360 | 40,960 | 2,560 |160 |10
B 11,534,336 | 720,896 | 45,056 | 2,816 |176 |11
C 12,582,912 | 786,432 | 49,152 |3,072 192 |12
D 13,631,488 | 851,968 | 53,248 | 3,328 | 208 |13
E | 14,680,064 | 917,504 | 57,344 | 3,584 |224 |14
F | 15,728,640 | 983,040 | 61, 440 240 |15

B-1of 2

This page intentionally left blank.

B-2

APPENDIX C
ASCIl CHARACTER CODES

‘[To Produce
| ASCII Control On TTY Mod 33, 35 Even Parity
Decimal Octal Hex Character Function Cntrl Shift Char &-bit code
0 000 00 NUL Null R P 00
1 001 01 SOH Start of Heading v A 81
2 002 02 STX Start of Text v B 82
3 003 03 ETX End of Text v C 03
4 004 04 EOT End of Transmission v D 84
5 005 05 ENQ Enquiry v E 05
[006 06 ACK Acknowledge v F 06
7 007 07 BEL Bell v G 87
8 010 08 BS Backspace v H 88
| 9 011 | 09 HT Horizontal Tab v I 09
‘ :
10 012 | O0A NL New Line line feed 0A
| . v J | oA
, / line feed 8al
11 013 ' OB VT J Vertical Tab ! v K 8B
12 014 i 0C | FF Form Feed | v L I ocC
13 015 | OD ! RT 1 Return return 8D
| | v M 8D ’
v return OD1
14 016 | ok SO Shift Out v N 8E !
i i
15 017 | OF s Shift In v o oF |
16 020 10 | DLE Data Link Escape v P 90
17 021 | IO DC1 | Device Control 1 v Q 11
18 022 ‘ 12 ! DC2 ' Device Control 2 | v R 12
19 023 ;13 f DC3 Device Control 3 * v S 93
l
20 I 024 | 14 ! DC4 : Device Control 4 v T 14
21 025 | 15 | NAK | Negative Acknowledge v U 95
22 026 | 16 f SYN | Synchronous Idle v v 96
23 027 17 | ETB]’ End Transmission Block v w 11
24 030 15 ., CAN | Cancel v X 18
: |
25 031 |, 19 EM " End of Medium v/ Y 99
26 032 1A SUB -~ Substitute i v Z 9A
27 0 033 | 1B . ESC | Escape i esc 1B
| : ‘ | ! oo/ K 1B
i 28 ., 034 . 1C : FS ' File Separator ! v L 9C
| 29 035 ID GS " Group Separator ! V4 M 1D
L 30 036 IE | RS . Record Separator | s N 1E
L 31 037 - IF ' US © Unit Separator ! o/ (o} 9F
L32 040 20 SP ! Space } space A0 '
33 . 041 . 21 ' 1 v 1 21
. 34 o042 22 / 2 22
C 35 043 23 | v 3 A3
36 044 . 24 $! v 4 24 .
31, 045 25 ~ : | v 5 A5 |
38 046 26 & ; | v/ 6 A6 ;
39 047 - 27 ' g ;' v (i 27
40 | 050 28 : | % 8 28 [
41 ©051 . 26) Jl v 9 A9 |
S5TGuess T T T T

1On even parity TTY's, these codes are odd parity

Rev. 02
C-1of 4

APPENDIX C (Continued)
ASCIl CHARACTER CODES

— T T
I| 1 ; To Produce :
‘ T ASCII i On TTY Mod 33, 35 | Even Parity
| Decimal Octal | Hex l Character | Cntrl Shift Char | 8-bit code
! 42 052 | 2A | . i i T AA
43 053 | 2B | . : o 2B
44 | 054 ¢ , v ’ & 2C
45 055 2D - : ; 1 2D
i 46 056 2E : : 1 2E
| 47 057 2F | AF
48 . 060 30 0 0 ; 30
: 49 . 061 31 1 1 Bl
50 | 062 32 2 2 B2
51 L 063 33 3 3 33
52 064 34 4 4 B4
53 085 35 5 5 35
54 . 066 36 6 6 ; 36
55 o087 . 31 7 7 E B7 :
56 © 070 38 8 8 : B8 1
57 071 39 9 9 39 ‘
58 072 3A ; : 3A |
59 073 3B ; : BB ;
|
60 S 074 3C v/ 36
61 075 3D : soo- BD
| 62 - 076 3E / BE
63 S] 3F ? v 3F
64 100 40 w v P co
1
‘ 65 . 101 41 A A 41
! 66 102 42 B B 42
67 103 43 C C c3
68 104 44 D D 44
69 105 45 E E C5
| i
1 70 . 106 46 F F cé
| 71 107 47 G G 47
72 |10 48 H H 48 |
| 73 111 49 [I C9 !
| 74 ‘ 112 4A] J ! ca |
. i |
1 5 S Dk ‘ 4B K K i 4B E
g 76 114 4C L L : cC ;
. 71 boo11s 4D M M | 4D |
i 78 . 116 4E N N i 4E 1
| 19 1T 4F o] o] ! CF ‘1
| \
| 80 . 120 | 50 2 P 1‘ 50 |
| 81 Y2 W 51 Q Q ‘ D1 ,
82 o122 52 R i R , D2 |
| 83 o123 53 S \ s ! 53
| 84 124 54 T 5 T [D4
06-01939 S prm— e T

Rev. 02

APPENDIX C (Continued)
ASCIl CHARACTER CODES

To Produce
ASCII On TTY Mod 33, 35 Even Parity
Decimal Character Cntrl Shift Char 8-bit code

0O ZR2r®RN <KMsE<a

103

110
111
112
113
114

115
116 -
117
118
119

120
121
122
123
124

| 125
| 126
: 127

26-0m35

This page intentionally left blank.

APPENDIX D
DOUBLE PRECISION ARITHMETIC

A double length number consists of two words con-
catenated into a 32-bit string wherein bit 0 is the
sign and bits 1-31 are the magnitude in two's com-
plement notation. The high-order part of a nega-
tive number is therefore in one's complement form
unless the low-order part is null (at the right only
0's are null regardless of sign). Hence, in pro-
cessing double length numbers, two's complement
operations are usually confined to the low-order
parts, whereas one's complement operations are
generally required for the high-order parts.

Suppose we wish to negate the double length num-
ber whose high and low-order words respectively
are in ACO and AC1.
but we simply complement the high-order part
unless the low order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;:LOW ORDER ZERO
COM 0.0 :LOW ORDER NON-ZERO

We negate the low-order part.

Note that the magnitude parts of the sequence of
negative numbers from the most negative toward
zero are the positive numbers from zero upward.
In other words, the negative representation -x is
the sum of x and the most negative number. Hence,
in multiple precision arithmetic, low-order words
can be treated simply as positive numbers. In
unsigned addition a carry indicates that the low-
order result is just too large and the high-order
part must be increased. We add the number in
AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1,SZC
INC 0,0
ADD 2,0

In two's complement subtraction a carry should oc-
cur unless the subtrahend is too large. We could
increment as in addition, but since incrementing

in the high-order part is precisely the difference
between a one's complement and a two's comple -
ment, we can always manage with only two instruc-
tions. We subtract the number in AC2 and AC3
from that in ACO and AC1.

SUBZ 3,1,SZC
SUB 2,0,SKP
ADC 2,0

D-1of 2

This page intentionallv left blank.

APPENDIX E
INSTRUCTION USE EXAMPLES

On the following pages are examples of how
the instruction set of the NOVA line of com-
puters may be used to perform some com -
mon functions.

Clear an AC and the carry bit.
SUBO AC AC

Clear an AC and preserve the carry bit.
SUBC AC. AC

Generate the indicated constants.

SUBZL AC.AC :GENERATE +1
ADC AC.AC :GENERATE -1
ADCZL AC.AC :GENERATE -2

Let ACX be any accumulator whose contents are zero.
Generate the indicated constants in ACX.

INCZL ACX,ACX :GENERATE 2
INCOL ACX, ACX :GENERATE +3
INCS ACX, ACX :GENERATE -+ 4004

Subtract 1 from an accumulator without using a constant from memory.

NEG AC AC
COM AC.AC

Check if both bytes in an accumulator are equal.

MOVS ACS.ACD

SUB ACS.ACD.SZR

JMP :NOT EQUAL
:EQUAL

Check if two accumulators are both zero.

MOV ACS.ACS.SNR

SUB= ACS.ACD.SZR

JMP --- :NOT BOTH ZERO
--- --- :BOTH ZERO

Check an ASCII character to make sure it is a decimal digit. The character is in ACS and is not
destroved by the test. Accumulators ACX and ACY are destroyed.

LDA ACX.CHRO :ACX=ASCIl ZERO
LDA ACY.CT! :ACY = ASCII NINE
ADCZ+ ACY.ACS.SNC :SKIPSIF (ACS) ™ 9
ADCZ+ ACS.ACX.SZC :SKIPSIF (ACS) -0
JMP :NOT DIGIT =
--- --- :DIGIT

C60: 60 :ASCIl ZERO
cT: 71 :ASCII NINE

9. Test an accumulator for zero.

MOV AC.AC.SZR
AMP --- ’ :NOT ZERO
--- --- :ZERO

E-10of 6

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

10. Test an accumulator for -1.

COM= AC.AC.SZR
JMP === :NOT -1

--- --- :-1

11. Test an accumulator for 2 or greater.
MOVZR# AC,AC.SNR
JMP --- :LESS THAN 2
--- --- :2 OR GREATER

12. Assume it is known that AC contains 0, 1. 2, or 3. Find out which one.
MOVZR= AC.AC.SEZ

JMP THREE :WAS 3
MOV AC,AC.SNR
JMP ZERO ‘WAS 0
MOVZR# AC.AC.SZR
JMP TWO ‘WAS 2
--- --- :WAS 1

13. Multiply an AC by the indicated value.
MOV " ACX.ACX :MULTIPLY BY !
MOVZL ACX,ACX ‘MULTIPLY BY 2
MOVZL ACX.ACY ‘MULTIPLY BY 3
ADD ACY.ACX
ADDZL ACX, ACX :MULTIPLY BY 4
MOV ACX.ACY :MULTIPLY BY 5
ADDZL ACX ACX
ADD ACY . ACX
MOVZL ACX,ACY :MULTIPLY BY 6
ADDZL ACY, ACX
MOVZL ACX, ACY :MULTIPLY BY 7
ADDZL ACY . ACY
SUB ACX ACY (IN ACY
ADDZL ACX. ACX :MULTIPLY BY 8
MOVZL ACX.ACX
MOVZL ACX.ACY :MULTIPLY BY 9
ADDZL ACY.ACY
ADD ACY ACX
MOV ACX ACY :MULTIPLY BY 10,

ADDZL ACX.ACX
ADDZL ACY.ACX

MOVZL ACX . ACY :MULTIPLY BY 1244
ADDZL ACY ACX
MOVZL ACX . ACX

MOVZL ACX.ACY :MULTIPLY BY 18,
ADDZL ACY.ACY
ADDZL ACY.ACX

E-2

APPENDIX E (Continued) |
INSTRUCTION USE EXAMPLES

14. Perform the inclusive OR of the operands in ACO and AC1. The result is placed in AC1. The carry
bit is unchanged.

COM 0,0
AND 0,1
ADC 0,1

15 Perform the exclusive OR of the operands in ACO and AC1. The result is placed in AC1. The con-
tents of AC2 and the carry bit are destroyed.

MOV 1,2
ANDZL 0,2
ADD 0,1
SUB 2,1

16. Move 30 words from locations 2000g - 2035g to locations 3000g - 3035g. Two auto-increment loca-
tions are used to hold the source and destination addresses.

LDA 0, ADDRS :SET UP SOURCE ADDRESS
STA 0,20
LDA 0, ADDRD :SET UP DESTINATION ADDRESS
STA 0,21
LOOP: LDA 0,@20 ~INCREMENT SOURCE ADDRESS AND GET WORD
STA 0,@21 -INCREMENT DESTINATION ADDRESS AND STORE WORD
DSZ CNT :DECREMENT COUNT
JMP LOOP :GO BACK FOR NEXT WORD
:SKIP HERE WHEN COUNT IS ZERO
ADDRS: 1777 :SOURCE ADDRESS MINUS ONE
ADDRD: 2777 :DESTINATION ADDRESS MINUS ONE
CNT: 36 ;WORD COUNT --364 EQUALS 304

17. Perform the following unsigned integer comparisons.
SUB# ACS,ACD,SZR :SKIP IF CONTENTS OF ACS
SUB# ACS,ACD,SNR :SKIP IF CONTENTS OF ACS
ADCZ# ACS,ACD,SNC :SKIP IF CONTENTS OF ACS CONTENTS OF ACD
SUBZ# ACS,ACD,SNC :SKIP IF CONTENTS OF ACS CONTENTS OF ACD
SUBZ# ACS,ACD,SZC :SKIP IF CONTENTS OF ACS : CONTENTS OF ACD
ADCZ# ACS,ACD,SZC SKIP IF CONTENTS OF ACS P CONTENTS OF ACD

I

CONTENTS OF ACD
CONTENTS OF ACD

/N

/A

18. Compare the signed, two's complement

integer contained in ACS to 0.

MOV+# ACS,ACS,SZR :SKIP IF CONTENTS OF ACS EQ 0
MOV# ACS, ACS,SNR :SKIP IF CONTENTS OF ACSNE 0
ADDO# ACS, ACS,SBN :SKIP IF CONTENTS OF ACS GT 0
MOVL# ACS, ACS,SZC :SKIP IF CONTENTS OF ACSGE 0
MOVL# ACS, ACS,SNC :SKIP IF CONTENTS OF ACS LT 0
ADDO¥ ACS, ACS,SEZ :SKIP IF CONTENTS OF ACS LE 0

Rev. 02

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

19. Simulate the operation of the MULTIPLY instruction.

.MPYU: SUBC 0,0 ;,CLEAR AC0, DON'T DISTURB CARRY
_MPYA: STA 3,.CB03 ;SAVE RETURN
LDA 3,.CB20 ;GET STEP COUNT
. CB99: MOVR 1,1,SNC ;CHECK NEXT MULTIPLIER BIT
MOVR 0,0SKP ;0 SHIFT
ADDZR 2,0 ;1 - ADD MULTIPLICAND AND SHIFT
INC 3,3,SZR ;COUNT STEP, COMPLEMENTING CARRY ON FINAL COUNT
IMP . CB99 JITERATE LOOP
MOVCR 1,1 ;SHIFT IN LAST LOW BIT (WHICH WAS COMPLEMENTED BY
;FINAL COUNT) AND
JMP @ CB03 ;RESTORE CARRY
. CBO3: 0
. CB20: -20 ;1619 STEPS

20. Simulate the operation of the DIVIDE instruction.

. DIVI: SUB 0,0 ; INTEGER DIVIDE CLEAR HIGH PART
.DIVU: STA 3,.CcC03 ;SAVE RETURN
SUBZ# 2,0,SZC ;TEST FOR OVERFLOW
JMP .CC99 ;YES, EXIT(ACO>AC2)
LDA 3,.CC20 ;GET STEP COUNT
MOVZL 1,1 ;SHIFT DIVIDEND LOW PART
.CC98: MOVL 0,0 ;SHIFT DIVIDEND HIGH PART
SUB# 2,0,SzC ;DOES DIVISOR GO IN?
SUB 2,0 ;YES
MOVL 1,1 ;SHIFT DIVIDEND LOW PART
INC 3,3,SZR ;COUNT STEP
JMP CC98 ; ITERATE LOOP
SUBO 3,3,SKP ;DONE,CLEAR CARRY
. CC99: SUBZ 3,3 ;SET CARRY
JMP @. CCo03 ;RETURN
.CCO03: 0
. CC20: -20 ;1610 STEPS

Rev. 04

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

Load a byte from memory. The routine is called via a JSR. The byte pointer for the requested byte
is in AC2. The requested byte is returned in the right half of ACO. The left half of ACO is set to 0.
AC1, AC2, and the carry bit are unchanged. AC3 is destroyed.

LBYT: STA ;SAVE RETURN ADDRESS
LDA
MOVR ;TURN BYTE POINTER INTO WORD ADDRESS AND SKIP IF
; REQUEST BYTE IS RIGHT BYTE
MOVS :SWAP MASK IF REQUESTED BYTE IS LEFT BYTE
LDA ;PLACE WORD IN ACO
AND :MASK OFF UNWANTED BYTE AND SKIP IF SWAP IS NOT
: NEEDED
MOVS ;SWAP REQUESTED BYTE INTO RIGHT HALF OF ACO
MOVL 2,2 :RESTORE BYTE POINTER AND CARRY
JMP @LRET :RETURN
LRET: 0 :RETURN LOCATION
MASK: 3717

Store a byte in memory. The routine is called via a JSR. The byte to be stored is in the right half
of ACO with the left half of ACO set to 0. The byte pointer is in AC2. The word written is returned
in ACO. AC1, AC2, and the carry bit are unchanged. AC3 is destroyed.

SBYT: STA 3,SRET ;SAVE RETURN
STA 1,8AC1 ;SAVE AC1
LDA 3,MASK
MOVR 2,2,SNC ;CONVERT BYTE POINTER TO WORD ADDRESS AND SKIP IF
; BYTE IS TO BE RIGHT HALF
;SWAP BYTE AND LEAVE MASK ALONE
;SWAP MASK
;LOAD WORD THAT IS TO RECEIVE BYTE
;:MASK OFF BYTE THAT IS TO RECEIVE NEW BYTE
;ADD MEMORY WORD ON TOP OF NEW BYTE
;STORE WORD WITH NEW BYTE
;:RESTORE BYTE POINTER AND CARRY
LDA ;RESTORE AC1
JMP ;RETURN
0 ;RETURN LOCATION
0
31

MOVS
MOVS
LDA
AND
ADD
STA
MOVL

12
o)
o

NMNOOHOWOo

S
Q
—

[2%

N O W WO
[

o e e e = e

®
19
os)
o]
~

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

23. The transfer of control between routines is made easier and more orderly by using the stack facility
of the NOVA 3 series of computers.

The basic method of transferring control to a subroutine is via a JUMP TO SUBROUTINE instruction.
The subroutine executes a SAVE instruction at the subroutine entry point and returns control via the
RETURN instruction.

;CALLING PROGRAM

CALL: JSR SUBR
:SUBROUTINE

SUBR: SAV

RETRN: RET

This method has the following characteristics:

1. ACS3 of the calling program is destroyed by the JSR.

2. The call is only one word.

3. Upon return to the calling program, AC3 contains the calling program's frame pointer.
4. A SAVE instruction is required at each entry point.

5. Arguments are easily passed on the stack because SAVE sets up the frame pointer for the
called routine and RETURN places the frame pointer of the calling routine in AC3.

24. Assume that ACO contains a signed, 16-bit, two's complement integer. The following three instruc-
tions will place an indicator of the sign of the number in AC0O. If the number is greater than 0, ACO
| is set to +1. If the number is less than zero, ACO is set to -1. If the number is equal to 0, ACO
remains 0. The previous contents of the carry bit are lost.

ADDO ACO0, ACO,SBN ;SKIP IF GT 0
ADCC ACO0, ACO,SNC ;ACO GETS -1
SUBCL ACO0,ACO ;COPY CARRY INTO BIT 15

Rev, 04 E-6

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

NOVA 3 INSTRUCTION EXECUTION TIMES

INSTRUCTION

8K CORE

16K CORE

SEMICONDUCTOR

MIN

MAX

MIN

MAX

MIN

MAX

LDA

STA

ISZ. DSZ

JMP

JSR

COM, NEG, MOV, INC

ADC, SUB., ADD, AND
Each level of @, add
Each autoindex, add
*If skip occurs, add

170 input (except INTA)

INTA

NIO

1/0 output

1O skips
*If skip occurs, add
For S, C, or P, add

MUL

DIV
Successful
Unsuccessful

PSHA
POPA
SAV
RET
MTFP
MTSP
MFFP
MFSPF
TRAP

INTERRUPT LATENCY

With MUL DIV
Without MUL DIV
DATA CHANNEL
Input

Output

Latency

HIGH-SPFEED DATA CHANNEL

Input
Output
Latency

1.
1.
1.
.8

.1

.8
. 8*

w

DY U —_

DN DN
W O = st s e s GO

[VVNe olie oo olife o IRV SN CNVe I« A T %1

DO

3
3
'

-2

»

1.
1.
2.

—

DN NN DN
O O WrHr = == =~ WNXXOO— OO

w

LYY = = - DD

OOV OO O &

o o

* *

*

oo

v O o

—

1.
1.
1.
.9
.2
. 9*

—

—

DN
O OCOWMNNDNDNDNDNDDND

DN = =D

DO O OO = U

o2 3N SV)

5
5
g*

w
*

3 — D

**

— e e = D) DO DN

*

P S S
QO DWNNMNDNPNDNNNAEOODOONON OO

D

QO ret e 2 D DB — O
WO OOO LU= O O

—
—
[FCREN]

(S0 \C I \N-}
—

—
O W

1.
1.
1.
T

.0

LT
LT

NN
0 OWOOOOO W™

Y B —

O -1 -1 -3-30N -Ib Lk

1
1
6*

W

Nejie]

DO W

1.

—

2.

p—

. NMP’)NN
DO OWOOOOOWW=-1~130O 1kl

[V B —

D123 -TJU =]

o —
o Mo N2

* *

*

—

—

06-01873

F-3

Rev. 02

This page intentionally left blank

F-4

APPENDIX F
INSTRUCTION EXECUTION TIMES

SUPERNOVA read-only time equals semiconductor time, except
add 0. 2 for LDA, STA, ISZ, and DSZ if reference is to core.
NOVA times are for core; for read-only subtract 0.2 except
subtract 0.4 for LDA, STA, ISZ, and DSZ if reference is to
read-only memory. When two numbers are given, the one at
the left of the slash is the time for an isolated transfer,

the one at the right is the minimum time between consecutive
transfers. All times are in microseconds.

r " SUPERNOVA 1200 | 800.820 NOVA 2
NOVA SC | CORE | SERIES | 840 830 | 8K | 16K
LDA L 5.2 1.2 | 1.6 2.55 1.6 2.0 | 1.6 2.0
STA 5.5 1.2 1 1.6 2.55 1.6 2.0 | 1.6 2.0
ISZ. DSZ 5.2 . 1.4 | 1.8 3.15 1.8 2.2 | 1.7] 2.1
JMP 5.6 0.6 | 0.8 1.35 0.8 1.0 | 0.8 1.0
JSR 3.5 1.2 1.4 1.35 0.8 1.0 | 1.1 1.2
COM. NEG. MOV, INC 5.6 0.3 0.8 1.35 | 0.8 1.0 | 0.8 1.0
ADC. SUB, ADD. AND 5.9 0.3 0.8 1.35 | 0.8 1.0 | 0.8 1.0
Each level of @. add 2.6 0.6 0.8 1.2 0.8 1.0 | 0.8 1.0
Each autoindex. add 0.0 0.2 0.2 0.6 0.2 0.2 0.5 0.5
Base register addr. add 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
If skip occurs, add 0.0 . 0.8 1.35 0.2 0.2 0.3 0.2
1 O input (except INTA) 4.4 2.8 2.9 2.55 2.2 2.4 | 1.4 1.5
INTA 4.4 3.6 3.7 2.55 2.2 2.4 | 1.4 1.5
I O output I 3.2 3.3 3.15 2.2 2.4 | 1.6 1.7
NIO 4.4 . 3.2 3.3 3.15 2.2 2.4 | 1.6 1.7
1.0 skips . 4.4 2.8 2.9 2.55 1.4 1.6 | 1.1 1.2
If skip occurs. add 0.0 0.0 0.0 0.0 0.2 0.2 | 0.3} 0.2 |
For S. C. or P: add 0.0 0.0 0.0 0.0 0.6 0.6 | 0.3 0.3
MUL
Average 11.1 3.7 3.8 3.75 8.8 9.0 6.1 6.2
Maximum 11.1 5.3 5.4 3.15 8.8 9.0 6.1 6.2
DIV
Successful 11.9 6.8 .9 4.05 8.8 9.0 6.4 6.5
Unsuccessful 11.9 1.5 1.6 2.55 1.6 2.0 6.4 6.5
P.I. CYCLE 5.2 1.8 .2 3.0 1.6 2.0 | 2.2| 2.5 |
INTERRUPT LATENCY ‘ !
With MUL DIV ' 12.0 ' 9.0 9.0 7.0 10.6 12.0 | 5.8 5.9
Without MUL DIV | 12.0] 5.0 5.0 7.0 4.6 6.0 | 1.9 2.3
DATA CHANNEL !
Input | 3.5 i 2.3 2.3 1.2 2.0 2.2 2.0 2.1
Output L4441 2.8 2.8 |1.21.8 2.0 2.2 | 2.1 2.2
Inc rement 4.4 | 2.8 2.8 1.8 2.4 2.2 2.4 2.2 2.3
Add to memory C5.3 0 2.8 2.8 -——-- -——- N A --- --- .
Latencv* } |
With MUL DIV 17.3 + 11.8 11.8 9.4 5.8 6.4 | 5.2 5.3
© Without MUL DIV 17.3 | 7.8 9.4 5.8 6.4 | 5.2 5.3
|HIGH SPEED DATA CHANNEL ;
Input NA | 0.8 0.8 N A 0.8 1.0 {0.8[0.91.0
Output 0.8 1.0{0.8 1.0 0.8 1,0 1,01.2]|1.2 1.3
Increment 1.0 1.211.0 1.2 1.0°1.211.2 1.4] 1.3 1.4
Add to memory \ 1.0.1.2 (1.0 1.2 ---- ---- N A - -
Latency* l '
With MUL DIV | 5.7 5.7 4.8 5.4 | 4.3 4.4
Without MUL DIV 3.7 3.1 3.2 3.6 | 4.3 4.4 |
— U 4
1t 2AC-multiple nperation mstruction is skipped. add 0.3: otherwise add 0.6.
-For hichest priority peripheral on I O bus. |
e ok Rev. 01

F-lof 4

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES
Floanme Poant Unit Instruction Execution Times*
TOTAL EXECUTION TIME
FPU BASE TIME FOR NOVA 800 WITH HIGH
INSTRUCTION Alicroseconds: SPEED DATA CHANNEL
- -~ L —
MAXIMUNM \ MINIMUNM MAXIMUNM ~ MINIMUM
. FLDS 12 1.2 6.3 6.3
.FLDD . 0.4 0.4 7.9 7.9
. FSRS 0.4 0.4 5.4 5.4
. FSRD 0.0 0.0 7.1 7.1
. FAS 3.8 3.7 8.3 8.2
. FAD 3.4 3.3 9.9 9.8
. FSS 3R 3.7 8.9 8.8
.Fsb 3.4 an 10.5 10. 4
. FMS H. Y Lo 12.0 12.0
.FMD 12.¢ 12.9 20.0 20.0
. FDS 10.1 9.3t2.0V+ 15.2 14.4(7. 1)+
. FDD 16.1 15.301. 6 23.2 22.4(8. 1)
.FMFT 1.0 0.9 3.8 3.1
.FMTF 1.0 0.9 3.8 3.7
.FATS 3.6 3.4 5.8 5.6
.FATD 3.0 3.4 5.4 5.6
. FSTS 3.6 3.4 6.4 6.2 i
.FSTD 3.6 3.4 6.4 6.2 |
. FMTS 6.7 6.6 9.5 9.4 ;
.FMTD 13.1 13.0 15.9 15.8 i
 FDTS a < 9.001.7 12.% 11.8(4.5) "
.FDTD 16.3 15. 4017 19.1 18.2(4.50 !
.FABS 10 0.9 3.8 3.7 .
.FCLR 1.0 0.4 3.8 3.7 ’
. FLDX 1.0 0.9 3.8 3.7 !
.FNEG 1.0 0.9 3.8 3.7 i
FNRM 1 1.0 3.9 1 38 |
. FSCL 1.1 1.0 3.3 3.2 ;
. FHWD 0.0 0.0 2.2 2.2 4
.FRST 0.0 0.0 2.8 2.8 ‘
: 0 . ‘ .
L__ . F‘W_S_’I: L 7().7(?”” o 7‘0‘.7 S _2—2 | 2.8 }
*Total Execution time Base time - [O mstruction time - Data Channel time (it anv).,
**Times in parentheses are times it Udivide -by -zero” 15 sensed.
0501355

Rev. 01

F-2

w
£
-
o
=
O
&)
Q
Z
o
-
<
'—-
-]
Q

(]
]
¢
[}
(]
(]
)
1
(]
)
1
1
t
t
]
[]
[}
[}
L}
i
(]
[}
[}
1
+
i
(]
]
[}
1
]
]
]
]
]
1
[]
1
'
]
]
]
]
]
(]
(]
1
1
]
]
[}
[}
1
1
)
]
]
]
]
(]
[}
[}
[}
)
)
(]
[}
1
[}
[}
1
]
]
]
[}
[}
'
]
1]
]
(]
(]
1
1
1
]
1
]
[}
]
[}
)
[}
]
1
]
[}
]
]
]
]
]
]
]
[}
[}
(]
]
'
[}
[}
1
]
)
]
(]
(]
]
]
]
[}
[}
[}
t
1
]
]
'
[}
'
'
]
]
(]
]
[}
]
[]
)
]
t
[}
[}
[}
t
]
]
[}
[}
]
(]
[}
‘
]
t
]
'

READERS COMMENT FORM

DOCUMENT TITLE:

Your comments, accompanied by answers to the Did you find the material:
[following questions, help us improve the quality e Useful YES () NO ()
and usefulness of our publications. If your answer « Complete..................... YES () NO ()
to a question is "m0’ or requires qualification, e Accurate YES () NO ()
please explain. *» Well organized. YES () NO ()

. . N o Well wnittenYES () NO ()
How did you use this publication’ . Well dlustrated.. YES () NO (]
() As an introduction to the subject s Well indexed. ... YES () NO ()
() As an aid for advanced knowledge o Easytoread.............YES {) NO ()
{) For information about operating procedures e Easy to understand.. .. YES () NO ()
() To instruct in a class
{y As a student in a class We would appreciate any other comments; please
{) As a reference manual label each comment as an addition, deletion, change,
{) Other or error and reference page numbers where applicable.

COMMENTS

PAGE| COL |PARA| LINE FROM Y0

Frem

NAME. ... TITLE .o
FIRM ... oo DIV, oo,
ADDRESS oot e
CITY oo e STATE ...
TELEPHONE DATE ...,

Data General Corporation

ENGINEERING PUBLICATIONS
COMMENT FORM
DG-00935

FOLD DOWN FIRST FOLD DOWN

FIRST CLASS
PERMIT NO 26

SOUTHBORO
MASS 01772

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

]
USINESS REPLY MAIL I
]
Postage will be paid by:]
]
DataGeneral ——
€ N
Southboro. Massachusetts 01772 I
u sachusetts
ATTENTION: Engineering Publications
FOLD UP SECOND FOLD UP

STAPLE

