O

PREFACE

The DGC relocatable loader, for the ECLIPSE® line computers, loads and links

any number of relocatable binary or absolute binary programs produced by the DGC
macro assembler, relocatable assembler, or absolute assembler, plus selected
libraries of relocatable programs.

In relocatable assembly, storage words are assigned a relative location counter
value. The value is initially zero and is incremented for every storage word
generated. At the termination of assembly, if n words are generated, they are
assigned to relative locations 0, 1, ..., n-1. The actual addresses assigned to
words generated are determined by the celocatable loader.,

The loader maintains the value of the first location available for loading, based
on the programs previously loaded. As each assembled program is loaded, the
relocatable loader updates the value of the first location available for loading. In
this way, any number of separately assembled modules can be loaded together
without any conflict in absolute storage assignment.

Library files are simply collections of relocatable binary programs, one or
more of which will be loaded to resolve external references appearing in previously
loaded programs.

There are three versions of the relocatable loader. The stand-alone relocatable
loader is supplied in absolute binary, tape 091-000038, and is used for stand-alone
systems using paper tape I/O. The SOS magnetic tape/cassette relocatable loader
is supplied in relocatable binary form, tape 089-000120, and is used for loading
under SOS systems that use either magnetic tape or cassette I1/O. The relocatable
loader used under the Real Time Disk Operating System, RDOS, is supplied as a
dump tape, 088-000049.

When the relocatable loader is invoked, relocatable binary programs, absolute
binary programs, and libraries will be loaded in the order in which they are given
to the loader. In the case of the stand-alone relocatable loader, this will be the
order in which they appear on the input device. In the case of other versions of
the loader, the order of loading is the order in which the names of the programs
appear in an RLDR command line. Each library is searched once each time its
name appears in the command line.

CHAPTER 1 -

CHAPTER 2 -

TABLE OF CONTENTS

STAND-ALONE RELOCATABLE LOADER

Operation¢cc0tvveeeeeecans e e e 1-1
Table of Responses to Loader Prompt 1-2
Restart Procedures. e et e st e e 1-2
Input to the Stand-Alone Loaderco000.. 1-2
Relocation Variables ZMAX and NMAX 1-3
Determining the Current Values of ZMAX and NMAX ., , 1-4
Forcinga Value of NMAX. . . o v vt v v vt v e e vnnnn .1-4
The Symbol Table (Loader Map) . . . v v vt v v v v v e v e 1-4
Execution of Loaded Programs . . . v v v v eo e v e e ee.1-8
Initiationof Execution.t . o.1-8
Starting Address for Execution 1-9
Loading of Library Tapes . .. e c.oveeeeeeeeesoses .1-9
Loading Local and TitleSymbols0000... . 1-10
Reinitialization of Loading, , ,..,.......... ceeenes 1-10
Determining Available Core , _ , , .. e e et 1-11
Error Detection, ., ., ettt iee e 1-11
Nonfatal Errors, ., , . C e e e c et e 1-12
DO Error . ., C et e e o 1-12
B Error_ ., ., C ettt et .1-12
IN Error ., , .. C et et e 1-13
ME EXTor., . ..ottt neeeeeeeeeeeenonssnes 1-13
TOError........ ceeseesercanaea c e oo 1-13
XE Error et e et et et e e 1-13
Fatal Exrors0cvvevueennn e e e 1-14
CSError et et ese e e cee e 1-14
MOErroroiuietveeunnnnas - 1-14
NAError..,......oiiiiiiienneennns - . 1-15
NCError........ceoceeeuuun. . - 1-15
OW Error...... e et e eceoeanen 1-15
XLError.....ooeeeeee. et et e ee..1-16
ZOETIOT ..o i i ot nnensonceeernoneenneas . 1-16
User Status Table of Loading Information. 1-16

SOS MAGNETIC TAPE/CASSETTE RELOCATABLE
LOADER

Operation.......eo00vueue e e e et e e e e . e 2-1
Symbol Table cesecseeeaenne oo e 2=2
User Status Table chee et e ceecceaa 2-2

CHAPTER 2 - SOS MAGNETIC TAPE/CASSETTE RELOCATABLE
LOADER (Continued)

Command Line
Output File Name Switches
Input File Name Switches ,
Command Line Error Messages .,
Examples of Command Lines
Restart Procedure ,
Error Messages .
Non-fatal Errors ,
Fatal Errors,

CHAPTER 3 -

. LMIT Features

Load Listing ,

Examples ,

Error Messages, , .
Non -fatal Errors .
Fatal Errors. .

Block Formats of Relocatable Binary Tapes , ..

RDOS Status Information ,

Overlay Directory Area , .
Task Control Block Area . .
User Status Table (UST) .

Loading Relocatable Binary Files

User Adjustment of NMAX, ., ..

APPENDIX A -RDOS OVERLAY LOADER

APPENDIX B -RLDR SYMBOL TABLE FORMATS

CHAPTER 1

STAND-ALONE RELOCATABLE LOADER

OPERATION

The relocatable loader tape is in binary format, and is loaded using the binary
loader (091-000004). Once loaded, the relocatable loader will self-start and type:

SAFE=

on the Teletype. This queries the user about the octal number of words to be pre-
served at the high end of memory.

The default response is a carriage return, which will cause the loader to save 200
octal words - enough to preserve both bootstrap and binary loaders.

Otherwise, the user may input an octal number, terminated by a carriage return,
giving the number of octal words to be saved. The user response may be up to
S octal digits long and must be within the limits of memory.

An error on input will cause the loader to repeat the query, SAFE =; the error cases
are:

1. A character other than an octal digit or a carriage return is input.
2. More than five octal digits are input.
3. The number specified is too large for the user's core configuration,

that is, no load space remains.

When the SAFE= query has been correctly answered, the value specified is fixed for
the duration of the loading process. The loader will then prompt a user response by

typing:

* -

on the teletypewriter.

Relocatable loader action is initiated by single digit responses to the loader prompt,
*. The possible loader mode responses are tabulated on the following page and are
described throughout this manual. Each time the loader has completed its response
to a user request, it will type

" *

1-1

OPERATION (Continued)
and await a new request. If an illegal response is input, the loader prints:
?

and awaits a legal response. User-loader interaction is terminated by responding
to a prompt with the digit 8 (terminate loading process and prepare for execution).

To reinitialize the loading process if the process was terminated by a fatal load
error, the user may issue the digit 7 in response to the * query.

TABLE OF RESPONSES TO LOADER PROMPT *

Response Effect

1 Load a relocatable binary or a library tape from the teletype reader.

Load a relocatable binary or a library tape from the paper tape
reader.

Force a loading address for normally relocatable code.
Complement the load-all-symbols switch.

Print current memory limits.

Print a lnader map.

Reinitialize the loader.

Terminate the load process to prepare for execution.
Print all undefined symbols.

RESTART PROCEDURES

To restart the loading process, the user may press RESET, enter 000377 in the data
switches, press START.

INPUT TO THE STAND-ALONE LOADER

The input to the relocatable loader is in the form of relocatable binary tapes output
from the relocatable assembler. Each tape is divided into a series of blocks and

1-2

INPUT TO THE STAND-ALONE LOADER (Continued)

must contain at least a title bl_ock and a start block. The order of blocks input to
the loader is shown below. Each block type is described in detail later in this
manual,

Title block

COMMON block(s)

Entry block(s)

.CSIZ block(s)

Displacement
External block(s)

Relocatable data block(s)
Global addition block(s)
Global start and end block(s)

Normal external block(s)

Local symbol block(s)

Start block

To load a single relocatable binary tape, the user responds to the "*" prompt with:
1 - input from teletype reader, or
" 2 - input from paper tape reader
The binary tape will be loaded, and the loader will respond "*" after the start block
has been processed. The user can then input another relocatable binary tape or give

one of thé other responses to the prompt.

RELOCATION VARIABLES ZMAX AND NMAX

The load addresses input to the relocatable loader are in three modes -- absolute,
page zero relocatable, and normal relocatable. Absolute origined data is loaded
at the locations specified to the assembler. For relocatable origined data, the
loader is initialized to assume two relocation variables called NMAX and ZMAX.

1-3

RELOCATION VARIABLES ZMAX AND NMAX (Continued)

ZMAX has an initial value of octal 50, where 50 is the first location to be loaded
with page zero relocatable data. As each location is filled, ZMAX is updated to
reflect the next location available to receive page zero relocatable data.

NMAX has an initial value of octal 440, the first location available to load normal
relocatable data. As each location is filled with normal relocatable data, NMAX is

updated to represent the next available location.

Determining the Current Values of ZMAX and NMAX

The relocatable loader maintains a symbol table (also called a loader map) which
is built down in core from the saved area (response to SAFE=). The current values
of ZMAX and NMAX are given in the loader map. The user can obtain the current
ZMAX and NMAX values, plus current values of the start and end of the symbol
table (SST and EST) and CSZE (unlabeled COMMON size) by responding to the "*"
prompt by :

The first two values given are NMAX and ZMAX in the format:

NMAX nnnnnn
XMAX nnnnnn

where nnnnnn represents the 6-digit current octal value of each variable.

Forcing a Value of NMAX

Before input of a relocatable binary tape, the user can force NMAX to a given value,
thus determining the absolute load address for normally relocatable data.

The user can force NMAX to a given value by:
1. Entering the desired octal value in the console data switches, bits 1-15.
2. Responding to the "*" prompt with the digit:
3

THE SYMBOL TABLE (LOADER MAP)

The symbol table is constructed downward in core from the first address below the

1-4

THE SYMBOL TABLE (LOADER MAP) (Continued)

saved area, determined by the SAFE= query.

At the top of the symbol table are entries for NMAX, ZMAX, CSZE, EST, and SST,
Below these are all entry symbols, undefined externals, and local symbols (if the
load locals switch was set by a response of 4 to the "*" prompt).

The maximum symbol length is five characters (stored in radix 50 using 27 bits) and
there is a six-digit octal value associated with each symbol.

For an entry symbol, its value is an absolute number -- either the core address of
the word for which the symbol was a label or the value of the symbol as defined by
an equivalence.

For undefined external normals, the number is the absolute address of the last of

a chain of references to the symbol. If the number is -1, there were no references.
Each reference to the symbol has been replaced by the absolute address of the
previous reference, the first reference having been replaced by -1.

For undefined external displacements, there may be more than one reference chain.
The value printed is the absolute address at the last reference in the first such
chain. The actual symbol table entry has the two-word symbol and the end addresses
of n chains, where the first p-1 have bit O set and the last does not, signifying the
end of the symbol table entry. Within a chain, references are linked via 8-bit
relative displacements, contained in the rightmost byte (right half) of each storage
word. Each chain is terminated by a word having 377g in its right-most byte.

Thus, if two consecutive references are farther than 3678 words apart, a new

chain must be started as shown on the following page.

At termination of the load, undefined external normals will be resolved by the
relocatable loader to the value -1. Each occurrence of that symbol will be replaced

with a -1,

1-5

top of
memory

—

5507

5165

5000

4500

4000

3000

2300

<+——SST

<+——_ EXTD flags (binary)

-—— . EXTN flags

-——EST

2100

2000

1000

Symbol in
Radix 50 | 00011
1 02300
1 04000
0 05507
Symbol in
Radix 50 [00001
04500
[322 .j)
[165 i:)
[377
3000
| 377
1000
| 200 i:>
[100
[377
177777

1-6

THE SYMBOL TABLE (LOADER MAP) (Continued)

A symbol may be flagged on the loader map with one of two letters. A U appears
on the lefthand side of the symbol if the symbol is an external for which no entry
has yet been defined, i. e., an unresolved external.

An M on the lefthand side of the symbol means the symbol is defined in two or
more entry or , COMM statements. :

An example of part of a symbol table follows. EST means the lowest word of the
symbol table - 1. SST means the highest word within the symbol table. CSZE
means size of unlabeled Common.,

TeMme

NMAX (44723
IMAX VY0244
CSIE vavven
EST ndul1dl
SST vbcov}

AHESZ Q@gUoe
bINAR ¢R06227
BUFFe ©16711
BUGIN ¢vvdvo
Cré&w 0174
Ch8Q wovdve
COLOUl wdb622
COLv2 835623
CGL@3 035624
COLo4d 035625
COLUS 235626
COL@6 ¢3v627
COLA7? 36630
COLas 03d631
CULA9 ©iIHeI2
COL1e ¢3I5633
COL11 ©35634
COL12 wiIdvsss
COLLd v3H636
COL14 35647
COL1S n3d564p
COL16 (35641
COL17 vd5642

1-7

THE SYMBOL TABLE (LOADER MAP) (Continued)

To obtain a copy of the symbol table, respond with the digit

6

Thott

to the loader prompt.

To obtain a copy of only the undefined symbols in the symbol table, respond with
the digit

9
to the loader "*" prompt.

EXECUTION OF LOADED PROGRAMS

Initiation of Execution

Loading of programs is terminated when the user responds

8

to the loader query "*". The programs previously loaded are then moved to reside

at the absolute addresses indicated by the loader map. Until the load process is
terminated, the loader resides in low core and all programs are loaded assuming
a pseudo address for location 00000 which exists above the loader itself. Once
loading is terminated, the following occurs:

Location 377 is unconditionally initialized to 2406 (JMP @,+6),
providing a convenient restart address. (Location 405 of the
User Status Table, UST, is set to the starting address of the
loaded core image by the loader. See UST layout on page 1- 16.)

Memory is shuffled down to reflect the true addresses as shown
on the following page.

EXECUTION OF LOADED PROGRAMS (Continued)

During Loading After Load
Top of Memory
Safe Safe

USTSS —

Symbol Table Symbol Table
USTES —=

Available Available

Space Space

Loaded User
Routines

-«— Pseudo address of location
00000 Loaded User

Loader Routines

The loader passes information to loaded routines that may be useful for their
execution. This information is passed in the User Status Table, which starts at
location 400, (See page 1-16),

Starting Address for Execution

After shuffling memory, the relocatable loader will HALT. When the user presses
CONTINUE, the loader will HALT again if no starting address has been specified
on any of the binary tapes.

If only one of the binary tapes loaded contains a starting address, the address will
receive control regardless of the order in which the tapes were loaded.

If more than one binary tape loaded contained a starting address, the last starting
address specified by a binary tape will receive control for execution.

LOADING OF LIBRARY TAPES

Library tapes are tapes containing a set of relocatable binaries that are preceded
by a library start block and terminated by a library end block. Library tapes are
provided by Data General as part of the standard software packages.

Library tapes are loaded in the same way as relocatable binaries. The user mounts

1-9

LOADING OF LIBRARY TAPES (Continued)

the library tape in the appropriate input device and responds to the loader "*"
query with either 1 or 2,

The library load mode is initiated when the loader encounters a library start block.
The loader does not request a new load mode until after encountering the library end
block.

The loader will load selected relocatable binary programs from the library tape.
Programs in a library tape are loaded only if there is at least one entry symbol
defined by that program which corresponds to a currently unresolved external in a
previously loaded program. For example, if programs A, B, and C are on a
library tape and A calls B which calls C, none of those programs will be loaded
unless some program loaded before the library tape has called A. If A has an entry
corresponding to a previously unresolved external, then all three programs A, B,
and C will be loaded.

LOADING LOCAL AND TITLE SYMBOLS

Local and title symbols are normally loaded only when the user intends to use the
symbolic debugger, since the symbols will otherwise'occupy symbol table storage
space unnecessarily.

The loader maintains a local and title symbols switch which is set by default to
inhibit loading of local and title symbols. The user can complement the switch,
altering the mode, by responding to the loader "*" query with

4

The loader responds with S when the switch is set to load local and title symbols.
The user can complement the switch by issuing another 4, and the loader responds
with R, indicating that the switch has been reset,

REINITIALIZATION OF LOADING

If the loading process is terminated by the fatal error (see ERROR DETECTION
section), or if the user wishes to start loading over, the loader must be reinitialized.
The user can reinitialize loading by responding to the loader query ""*" with

7

The loader will then reset ZMAX and NMAX to 50 and 440 respectively, and will
reinitialize the symbol table,eliminating all entries.

1-10

DETERMINING AVAILABLE CORE

Total core available for program loading is dependent upon loader size, core con-
figuration, the size of the SAFE area, and the number of symbols entered in the
symbol table. The following is an approximate formula for determining core avail-
able for program loading:

core available = sc - 2500 - SAFE - 3*ne

where: sc is the core capability of the system configuration, and

ne is the number of entry points (rlus the number of user symbols when in
mode 4) defined by all relocatable programs to be loaded.

The quantities are given in octal.

The user can obtain a printout of the current memory limits during loading by
giving the response

5
to the loader query "*".

ERROR DETECTION

The loader detects two types of errors -- fatal and nonfatal, Fatal errors prevent
further loader action unless the user reinitializes (response of 7). Nonfatal errors
do not stop loading but may change the intended state of the user's loaded system.

All errors are indicated by a two-letter code. The code is printed at the teletype
followed by a symbol name, if applicable, and by a six-digit octal number, if
applicable. The meaning of the octal number is defined later for each of the error
codes. The message has the general form:

€2 §S8S8S8s nnnnnn

where ee is the error code.

sssss is the symbol name.

nnnnnn is the octal number.

1-11

ERROR DETECTION (Continued)

Nonfatal Errors

Code Description

DO Displacement overflow

IB Illegal block type

IN Illegal NMAX

ME Multiply defined symbol

TO Input timeout

XE External undefined in external expression

DO Error

DO nnnnnn

If, while attempting to resolve an external displacement, the loader finds the dis-
placement is too large, a displacement overflow (DO) error results. The dis-
placement is too large if:

the index = 00 and the unsigned displacement is > 377
or
the index # 00, and the displacement is outside the range:

-200 < displacement < +200.

The location nnnnnn represents the absolute address where overflow occurred. The
displacement is left unresolved with a value of 000.

IB Error

IB nnnnnn

1-12

IB Exrror (Continued)

If an illegal relocatable block type is read, anillegal block (IB) error results. The
octal number nnnnnn represents the block code of the illegal block. The loader will
issue a ""*" query after issuing the error code. If an improper tape mounted in the
reader caused the error, it should be replaced by a relocatable binary or library
tape and loading attempted again.

IN Error

=

IN nnnnnn

If the user responds 3 to the loader prompt and the value in the switches is lower
than the current value of NMAX, an IN error results. The octal number nnnnnn
is the illegal value of NMAX. NMAX is unchanged.

ME Error

ME sssss nnnnnn

When-an entry or named common (, COMM) symbol having the same name as one
already defined is encountered during loading, a multiply defined entry (ME) error
results. The name of the symbol sssss is followed by the absolute address nnnnnn
at which it was originally defined.

TO Error

TO nnnnnn

If the time between input characters becomes excessive, a timeout (TO) error
occurs. The usual cause of the timeout error is a binary tape without a start
block or a library tape without an end block. The location nnnnnn represents the
location in the.loader where the timeout occurred. The loader will issue a "*"
request when the error occurs,

XE Error

XE sssss

1-13

XE Error (Continued)

If a , GADD block is encountered that references an as yet undefined symbol, an
external undefined in external expression (XE) error occurs. Zero is stored in
the memory cell. The undefined symbol, sssss is printed out following the error
indicator.

Fatal Errors

Description

Checksum error

Memory overflow

Negative address

Named COMMON error
Overwrite of memory
External location undefined

Page zero overflow

CS Error

CS nnnnnn

If a checksum computed on any block differs from zero, a checksum (CS) error
results. The octal number nnnnnn represents the incorrect checksum that was
computed. '

MO Error

MO nnnnnn

If the value of NMAX plus the loader size itself conflicts with the bottom of the

1-14

MO Error (Continued)

loader's symbol table, a memory overflow (MO) error occurs. The error implies
that the user programs are too large to be loaded in the memory configuration.
The octal number nnnnnn is the value of NMAX that caused the overflow.

NA Error

NA nnnnnn

If bit 0 of an address word is set to 1, a negative address (NA) error occurs. The
assembler restricts addresses to the range:

0 _<_address < 215

A reader error, however, could cause bit O to be set. nnnnnn represents the
negative address.

NC Error

NC sssss nnnnnn

If two programs have different sizes for a given area of labeled COMMON (defined
by . COMM statements), or if the symbol table flags that are associated with the
symbol are not 000109, a named common (NC) error results. sssss gives the
symbol name of the labeled COMMON and nnnnnn indicates the size of the labeled
COMMON requested by the present . COMM .

OW Error

OW nnnnnn

The loader does not permit memory cells to be overwritten by subsequent data
once they are loaded. If an attempt to overwrite is made, an overwrite (OW) error
occurs. The absolute address where the overwrite was attempted is given by
nnnnnn.

1-15

ERROR DETECTION (Continued)

XL Error

XL sssss

If a ,GLOC block is encountered with data to be loaded at the address of a symbol
that is as yet undefined, an external location undefined (XL) error results. The
undefined symbol is given by sssss..

Z0O Error

Z0O nnnnnn

If in loading page zero relocatable code the code overflows the page zero boundary
of 377, a page zero overflow (ZO) occurs., The absolute address of the first word
of the data block that caused the overflow is given by nnnnnn .

USER STATUS TABLE OF LOADING INFORMATION

The relocatable loader provides information concerning the loading process in a
table called the User Status Table (UST). The UST is origined at location 400: a
template is shown below with explanatory information.

UST = 400 ;START OF USER STATUS AREA
USTPC 0 ;PROGRAM COUNTER

USTZM 1 ;ZMAX

USTSS 2 ;START OF SYMBOL TABLE
USTES 3 ;END OF SYMBOL TABLE
USTNM = 4 ;NMAX

USTSA = 5 ;STARTING ADDRESS

USTDA = 6 ;DEBUGGER ADDRESS

USTHU = 7 ;HIGHEST ADDRESS USED BY LOAD MODULE
USTCS = 10 ;COMMON AREA SIZE

USTIT = 11 ; INTERRUPT ADDRESS

USTBR = 12 ;BREAK ADDRESS

USTCH = 13 ;NUMBER OF CHANNELS/TASKS
USTCT = 14 ;CURRENTLY ACTIVE TCB
USTAC = 15 ;START OF ACTIVE TCB CHAIN
USTFC = 16 ;START OF FREE TCB CHAIN

1-16

p)

USER STATUS TABLE OF LOADING INFORMATION (Continued)

USTIN = 17 ;INITIAL START OF NREL CODE

USTOD = 20 ;OVERLAY DIRECTORY ADDRESS

USTSv. = 21 ;FORTRAN STATE VARIABLE SAVE ROUTINE
USTEN = USTSV ;LAST ENTRY

Location 400 - USTPC is the program counter. The loader initializes this word to
0, indicating that the program has never run.

Location 401 - USTZM points to the first available location in page zero for page
zero relocatable code.

Location 402 and 403 - USTSS and USTES point to the start and end of the symbol
table respectively as shown in the diagram on page 1-4. The loader sets 402 and
403 to O if the debugger is not loaded.

Location 404 - USTNM contains NMAX. The loader sets the pointer to the first
free location for further loading or for allocation of temporary storage at run time,

Location 405 - USTSA points to the program starting address, specified by the
-END statement. If no starting address is specified by any loaded program, -1 is
stored in 405. If several programs specify starting addresses, USTSA contains
the address specified in the last program loaded. (Location 377 contains a

JMP @. +6, which transfers control to the program starting address. Therefore,
the user can conveniently restart his program at 377, assuming that he has
specified a starting address.)

Location 406 - USTDA points to the starting address of the debugger, or if the
debugger is not loaded, 406 contains -1.

Location 407 - USTHU is set to the value of NMAX at the termination of loading.
Since no operating system changes USTHU during program execution, it can be
used to reset NMAX when a program is restarted.

Location 410 - USTCS contains the size of the FORTRAN unlabeled COMMON area,
used when the binary relocatable programs being loaded contain .CSIZ blocks,
such as those generated by the FORTRAN compiler.

Location 411 énd 412 - USTIT and USTBR are set to 0 by the loader.

Locations 413-16, 420-21 - These locations are compatible with RDOS.

Location 417 - USTIN contains the address of the start of normally relocatable
code (4408).

END OF CHAPTER

1-17

CHAPTER 2

SOS MAGNETIC TAPE /CASSETTE RELOCATABLE LOADER

Under the Stand-alone Operating System, programs for systems that do not use
magnetic tape or cassette [/0 are loaded using the Stand-alone Relocatable Loader,
091-000038, as described in Chapter 1. Relocatable loader 091-000038 is supplied
in absolute binary.

Programs for SOS systems that have either magnetic tape or cassette [/O, however,
are loaded by the relocatable loader 089-000120, which is supplied as part of the SOS
cassette or magnetic tape system.

OPERATION

The SOS relocatable loader 089-000120 must be loaded by the core image loader in
accordance with the procedures outlined in the Stand -alone Operating System User's
Manual,

Once loaded, the relocatable loader will print the following prompt at the teletype-
writer;

RLDR

The user responds by typing a command line giving the names of files used as input
to and output from the relocatable loader.

The user response to the RLDR prompt consists of a list of file names which may
have local switches. The command causes the relocatable loader to produce from
one or more ,RBor . LB files, an executable core-resident program and a core
image (save) file on magnetic tape or cassette, Both files start at address zero.
The same file cannot be used for both input to and output from the relocatable
loader. At least one input file and an output save file must be designated in the
command line.

The SOS magnetic tape/cassette relocatable loader is compatible with the RDOS
relocatable loader and builds a core resident program in much the same way:

The user program ZREL code starts at location 50 and builds upwards in
page zero.

2-1

OPERATION (Continued)
The User Status Table is contained in locations 400-437,
The User NREL code starts at location 440 and builds upward in memory.
The symbol table is retained in core only if the symbolic debugger,
Debug III, is loaded. At termination of loading, the symbol table is
moved down to the end of NREL code.
The maximum core size of each loaded program cannot exceed the maximum core
address less 1325_. The 1325 locations are required for the core image loader

and pass 2 of the relocatable loader.

Upon completion of a successful load, the message "OK" is output on the teletype-
writer and the system halts with the loaded program in core.

SYMBOL TABLE

The symbol table is built in high core and moved down to the end of NREL code at
termination of loading, The symbol table is retained in core only if the symbolic
debugger, Debug III is loaded. Debug III is supplied on relocatable binary tape
089-000073 and must be loaded as one of the input files in the RLDR command

line if a symbol table is desired. The symbol table is similar to the one shown on
page 1-7 for the Stand-alone Relocatable Loader.

USER STATUS TABLE

Locations 400-437 contain the User Status Table (UST). The table is given below:

USTPC = 0 e

USTZM = 1 ;ZMAX

USTSS = 2 ;START OF SYMBOL TABLE
USTES = 3 ;END OF SYMBOL TABLE
USTNM = 4 sNMAX

USTSA = 5 ;STARTING ADDRESS

USTDA = 6 ;sDEBUGGER ADDRESS

USTHU = 7 ;HIGHEST ADDRESS USED
USTCS = 10 ;FORTRAN COMMON AREA SIZE
USTIT = 11 ;INTERRUPT ADDRESS

USTBR = 12 ;BREAK ADDRESS

USTCH = 13 ;NUMBER OF CHANNELS/TASKS
USTCT = 14 ;CURRENTLY ACTIVE TCB
USTAC = 15 ;START OF ACTIVE TCB CHAIN

2-2

USER STATUS TABLE (Continued)

USTFC = 16 ;START OF FREE TCB CHAIN

USTIN = 17 ;INITIAL START OF NREL CODE

UsTOD = 20 ;OVERLAY DIRECTORY ADDRESS

UsTsv. = 21 ;FORTRAN STATE VARIABLE SAVE ROUTINE
USTEN = USTSV ;LAST ENTRY

COMMAND LINE

When the prompt RLDR is output, the user responds on the same line with a list of
input and output file names. Switches may be attached to one or more of the file
names, and each space is separated from the next by at least one blank space. The
general format of the command line is:

filename;... filename,)

At a minimum, the command line must contain at least one input file name and one
output save file name:

inputfilename outputfilename/S .

where: S is a switch indicating the save file.

A number of switches may be appended to the names of input and output files in the
command line. They are as follows:

Output File Name Switches

/S The /S follows the name of a cassette or magnetic tape file, indicating
that that device will be used for output of the save file. If no save file is
specified or if a file is incorrectly specified as a save file, an error
message will result and the loader will reinitialize itself, printing the
prompt " RLDR" .

/L The /L follows the name of a device and causes a numerically ordered
listing of the symbol table to the device. The output device for the listing

cannot be the same as that used for the save file.

/A This switch may be appended to the same device as that having the /L

2-3

Output File Name Switches (Continued)

switch, It causes an alphabetic as well as numeric listing to result,
The /L switch must be present.

Input File Name Switches

/N

/P

/U

/n

NMAX, the starting address for loading a given input file may be changed
from the default address by use of this switch. The /N follows an absolute
address, given in octal, and precedes the name of the input file to be
loaded beginning at the octal address. The octal address given must be
greater than the current value of NMAX,

Files to be loaded may be on different cassettes, /P following a file
name causes a halt before the file of that name is loaded that allows the
user to mount a new cassette containing the input file. When the loader
halts, the message: PAUSE - NEXT FILE filename is printed, where
filename is the name of the file that had the /P switch, When the new
cassette is mounted, the user restarts loading by pressing any teletype-
writer key, e.g., RETURN.,

/U causes local user symbols appearing within the file preceding the
switch to be loaded.

n is a digit in the range 2-9. The input file preceding the switch is loaded
the number of times specified by the switch.

Command Line Error Messages

Following are the possible command line error messages:

NO INPUT FILE SPECIFIED
NO SAVE FILE SPECIFIED
SAVE FILE IS READ/WRITE PROTECTED

The save file device must be either a cassette or magnetic tape
and must permit both reading and writing.

"aaaaa I/0 ERROR nn

where: aaaaa is the address associated with the error.

2-4

Command Line Exror Messages (Continued)

nn is one of the following RDOS codes:

1 - Illegal file name

7 - Attempt to read a read-protected file.
10 - Attempt to write a write-protected file.
12 - Non-existent file,

Examples of Command Lines

$TTO/L/A CT2:0/S $PTR CT1:6 16500/N CT1:0)

Input files are the $PTR, CT1:6 and CT1:0. NMAX is reset for CT1:0 to
165008. The save file is written to CT2:0 and an alphabetically ordered
listing is output on the teletypewriter.

If one of the input files, CTL:6, CT1:0 or the $PTR contains the debugger,
a symbol table will be generated.

MT1:0/S MTO:1 MTO0:2 $PTP/L)

Input files are MTO:1 and MTO0:2. The save file is output to MTL1:0. A
numeric listing is to the paper tape punch.

CT0:0/S CT1:2 CT1:0/P)

Input files are on different cassettes, so the /P switch allows a pause for
the user to change the cassette tape on unit 1. The save file is output to
CTO:0.

RESTART PROCEDURE

The loader can be stopped and restarted at location 377 any time in Pass 1 (up until
the end of the listing of the symbol table). Once Pass 2 starts, the loader must be
reloaded from cassette or magnetic tape.

ERROR MESSAGES

In addition to the command line error messages described on the previous page,
the loader produces explicit error messages that are printed to the console.
These include both fatal and non-fatal error messages. The error messages are
followed by an appropriate identifying location, symbol, or both.

2-5

ERROR MESSAGES (Continued)

Non-fatal Errors

Non-fatal errors do not stop loading but may change the intended state of the output
file. The non-fatal error messages are:

DISPLACEMENT OVERFLOW nnn#nn
A displacement overflow error occurs if the loader finds the displacement
is too large when attempting to resolve an external displacement., The

displacement is too large if:

the index = 00 and the unsigned displacement is > 377.

the index # 00 and the displacement is not in the range:

-200 <_disglacement <4200

nnnnnn is the absolute address where overflow occurred. The displace-
ment is left unresolved with a value of 000.

ILLEGAL BLOCK TYPE nnnnnn

The error message normally occurs if the input file is not a relocatable
binary or library file. The file in error will not be loaded. Octal
number nnnnnn is the block code of the illegal block.

MULTIPLY DEFINED ENTRY sssss nnnnnn

This error occurs when an entry symbol or named common (, COMM)
symbol, sssss, having the same name as one already defined is encoun-
tered during loading. nnnnnn is the absolute address at which the symbol
was originally defined.

EXTERNAL UNDEFINED IN EXTERNAL EXPRESSION SSSss

This error occurs if a . GADD block is encountered that references an as
yet undefined symbol, sssss, Zero is stored in the memory cell,

BINARY WITHOUT END BLOCK

This error occurs when a binary file has no end block. The file is
loaded up to the point where the error is discovered.

2-6

Non-fatal Errors

ILLEGAL NMAX VALUE nnnnnn

This error occurs when the user attempts to force the value of NMAX

to a value lower than the current value of NMAX, i.e., if the octal value
following a /N local switch is lower than the current value of NMAX,
nnnnnn is the illegal value. NMAX is unchanged.

NO STARTING ADDRESS FOR LOAD MODULE

This error occurs if at assembly time the user failed to terminate at
least one of the programs to be loaded with a , END pseudo-op that was
followed by a starting address for the save file. The starting address
can be patched by the user into location 405 (USTSA) of the User Status
Table.

EXTERNAL NORMAL/DISPLACEMENT CONFLICT sssss

This error occurs when a symbol sssss appears in a , EXTD block in
one module to be loaded and in a . EXTN block in another module.

CAUTION OLD ASSEMBLY ssss

This error occurs when this program was assembled by an
incompatible assembler.

Fatal Errors

If an error is fatal, the error message and the location at which it was discovered
are followed on the next line by a second message:

*FATAL LOAD ERROR**
and the loader gives the prompt, RLDR. For example:
CHECKSUM ERROR nnnnnn
*FATAL LOAD ERROR**
RLDR
The fatal errors are:

CHECKSUM ERROR nnnnnn

This error occurs if a checksum that is computed on some block differs
from zero. nnnnnn is the incorrect checksum.

2-7

Fatal Errors (Continued)

NEGATIVE ADDRESS nnnnnn

This error occurs if bit 0 of an address word is set to 1. The assembler
restricts addresses to the range: 0< address< 2! ; however, the error
can be caused by a reader error. nnnnnn represents the negative address.

PAGE ZERO OVERFLOW nnnnnn

This error occurs in loading page zero relocatable data if the data over-
flows the page zero boundary (377g). The absolute address of the first
word of the data block that caused the overflow is given by nnnnnn.

NAMED COMMON ERROR sssss nnnnnn

This error occurs if two programs have different sizes for a given area
of labeled COMMON (defined by . COMM statements), or if the symbol

table flags that are associated with the symbol are not 000109. sssss
gives the symbol name of the labeled COMMON and nnnnnn indicates the

size of the labeled COMMON requested by the present , COMM .

SYMBOL TABLE OVERFLOW

This error occurs during loading if the size of the symbol table becomes
so large that it would overwrite the loader in core.

EXTERNAL LOCATION UNDEFINED sssss

This error occurs if a . GLOC block is encountered with data to be loaded
at the address of a symbol, sssss, that is as yet defined.

MEMORY OVERFLOW nuannn

If the value of NMAX plus the loader size itself conflicts with the bottom
of the loader's symbol table, a memory overflow error occurs. The
error implies that the user programs are too large to be loaded in the
memory configuration. The octal number nnnnnn is the value of NMAX
that caused the overflow.

END OF CHAPTER

2-8

CHAPTER 3

RDOS RELOCATABLE LOADER

GENERAL

The RDOS Relocatable Loader is used to build on disk, a Save file of an
executable program. The Save file is built from relocatable binary files, and
system libraries.

The loader is invoked through the RDOS CLI command, RLDR. The order in
which the Save file is built is the order in which the names of programs and
libraries appear in the RLDR command line. Each library is searched once each
time its name appears in the command line,

COMMAND LINE

The general formats of the RLDR command line are:

RLDR rtname; ... r'tname}: [mmamel .o .ovnwneN]

RLDR rtnamey lovnamey ... ovnamey|] rinamey

where rtname is the name of a relocatable binary or library file and

ovname is the name of a relocatable binary file. The square
brackets enclose relocatable binarys to be included in overlays.

Overlays can be built anywhere in the Save file. Overiays are built
in nodes, one node for each set of overlay names enclosed in a

pair of square brackets.

Each overlay within a node is made up of one or more binary files.
Commas separate the binary files for the different overlays. For
example:

lovname, ovname,, ovnames, ovnameyl

describes a node with three overlays. The first overlay is made up
of two binary files, ovnarme, and gpname., - The second and third

overlays are made up of one relocatable binary each ovname, and
ovname , respectively. The size of a node is determined by the size

of the largest overlay within it. Space for overlays is allocated
in units of 256 decimal words (with the exception of virtual overlays

3-1

COMMAND LINE (Continued)

which are allocated in units of 1024 decimal words). Thus if binary files ovnarme;,

ovname,, ovnames and ovname, consist of 10, 15, 20 and 40 words respectively,
the last overlay will determine the node size. Since space is allocated 256 words
at a time, the node will be allocated 256 words. If the sizes were 200, 60, 252 and
121 words instead, the first overlay with a total of 260 words would determine
node size. Two units of 256 words or a total of 512 words would be required.

If the system library (SYS. LB) is not specifically named as a ptngme in the
command line, it is automatically searched after the last specified file name.

COMMAND LINE SWITCHES

Both global and local switches are provided to control the building of the Save file
and the output of the loading operation. Global switches are appended to the com-
mand name (RLDR) and local switches are appended to file names or to octal
values specified in the command line.

Global Switches

The global switches are /N - /A, /E, /H, and /M - /D and /S - /C and /Z - /X
and /Y, /I, /K, /O, /P, /U and /B.

/N If the command line does not specifically name the system
library (SYS. LB), it is automatically searched after the
last named file in the command line. To prevent this
search, /N is appended to the command RLDR.

/A, /E, /H, and /M When /A is appended to RLDR and local switch /L is
appended to an output device name, an alphabetically
ordered listing of the symbol table is produced, along
with the numerically ordered listing. For example:

RLDR /A ROOT $LPT/L

produces both an alphabetically ordered and a numerically
ordered listing of the symbol table on the line printer.

NOTE: $LPT/L can be used without using /A,
and only the numerically ordered listing
is produced.)

3-2

/Aa /E, /H, and /M
(Continued)

If a listing file is not specified in the command line,
error messages are output on the system console. How-
ever, when a listing file is specified, error messages to
the console are suppressed; being output on the listing
device. To cause the error messages to be output to the
system console when a listing device is used, append /E
to the command RLDR. Thus,

RLDR ROOT $LPT/L

causes error messages to be output only to the line
printer, while:

RLDR/E ROOT S$LPT/L

causes error messages to be output on the system console
as well as on the line printer.

Normally, numbers are output in octal. To have numbers
output in hexadecimal, append /H to the command RLDR,

To shorten the time it takes to create a Save file in systems
using a teleprinter system console, append /M to the
command RLDR. This inhibits all output to the system
console.

NOTE: /M should be used with caution since
error messages also are suppressed.

When /D is appended to RLDR, the symbolic debugger
DEBUG @I is incorporated in the Save file. To have IDEB
become part of the Save file rather than DEBUG IlI, the
name IDEB, RB must appear in the command line. Hence:

RLDR/D ROOT

causes DEBUG III to be loaded, and

RLDR/D ROOT IDEB.RB

causes IDEB to be loaded.

The symbol table becomes part of the Save file only when
/D is specified or if the symbol ",SYM." is included in

one of the loaded files.

3-3

/D and /S When the command

is executed, a Save file will be created which will have the

NMAX
HMA

is executed, the Save file created looks like the following

(Continued)
RLDR /D A B
following configuration when called into core.
RDOS
J'\ ~~
SYMBOL TABLE
DEBUG 1III
B
A
When the command line
RLDR /D/S A B
when called into core.
RDOS
r———b
SAVE FILE IN SYMBOL TABLE
CORE FOR 3
EXECUTION
l DEBUG III
B
A

When the global /S switch is used, the symbol table is built
into the save file immediately under the RDOS system or at

3-4

/D and /S
(Continued)

/C and /Z

/X and /Y

the top of the address space in a mapped system. Other-
wise, it occupies the locations immediately above the highest
(last) relocatable binary file.

Note the relative positions of NMAX and HMA in the pre-
ceding two diagrams. The area of free core, while not
changed in size, has different starting and ending locations
depending on whether /S is used when the Save file is
created.

Switches /C and /Z are used to create a Save file in the
RDOS environment that can be executed in the SOS or RTOS
environment or in an environment without an executive.

NOTE: Save files created in RDOS using
/C or /Z in the RLDR command
line cannot be executed in the RDOS
environment.

When /C is appended to RLDR

Initial NMAX is set at 440g.
. Save file starts at absolute location 0.
. USTSA contains the program starting address.
« SYS. LB is not searched unless it appears in
the command line.

The Save file created using /C can be executed in the SOS
or RTOS environment.

When /Z is appended to RLDR, the Save file begins at
absolute location 0 so the routine can use locations 0 - 15.
The Save file must be output using the CLI command MKABS
/Z to produce an absolute binary file that can be loaded

for execution with the stand-alone loader or with HIPBOOT.

The switches /X and /Y are provided to perform a system
load. The /X switch allows up to 12810 system overlays

and /Y allows up to 256 system overlays. It should be
noted that /X and /Y aré mutually exclusive switches.

3-5

The /I switch allows loading into locations that would
otherwise be illegal e.g., 0~158. /1 also suppresses

loading of a UST. /I is used with /Z.
Do not delete the symbol file at the end of the load.

Do not put symbols in the same file even though /D
is used.

Print the starting relative address of a module along
side its title as it is loaded.

Do not resolve undefined symbols to -1.
" Force short TCB's.

Case 1. No COMM task, no command line
declaration.
Result. 1 long TCB (independent of /B).

Case 2. Either a COMM Task or a command
line declaration.

Result. Using /B switch causes all short TCB's.
No /B causes all long TCB's.

Local Switches

/C and /K Switch /C is inserted in the command line following an
octal value. The octal value represents the number of
channels to be assigned when the Save file is brought into
core for execution. Unless specifically included in the
command line or specified in a . COMM TASK statement in
the first relocatable binary, 8. _ channels are assigned by
default. For example, if 910 channels are required when
the Save file is executed, the command line should include:

RLDR ROOT1 1/C

Local Switches (Continued)

/Cand /K
(Continued)

/E and /L

Switch /K also is inserted in the command line following

an octal value. The octal value represents the number of
required tasks. Unless specifically included in the command
line, 1 task is assigned. Therefore, if ROOTI in the pre-
ceding example is a multi-task program with 8 10 tasks,

then the command line should be:
RLDR ROOT1 11/C 10/K

NOTE: The octal values specified by /C and /K
replace the contents of USTCH in the User
Status Table. The number of channels is
stored in the right-hand byte and the num-
ber of tasks in the left-hand byte. These
values replace the corresponding values
in a .COMM TASK block. Note also that
in a multi-task program, either a . COMM
TASK statement must appear or the RLDR
command line must contain both /C and /K
switches, otherwise the fatal error LOAD
OVERWRITE 17 occurs.

Recall from the discussion of global switch /E that error
messages can be output to the system console even though
a listing file is specified, Local switch /E is used to name
a device other than the system console to which error
messages are to be output when global switch /E and local
switch /L are specified in the same command line:

RLDR/E ROOT1 S$LPT/L $TTOL/E

/E and /L
(Continued)

causes a list of the symbol table including error messages

to be produced on the line printer and only the core map
portion of the load listing and error messages to be output
on the teleprinter. No output goes to the system console even
though the global switch /E is present.

Local switch /L is used to designate an output device to
receive the symbol table when it is desired to save the
symbol table, Recall that the symbol table is output
numerically ordered unless global switch /A also appears
in the command line. In the latter case, both a numerically
and an alphabetically ordered list is produced.

By default, the Save file is built to be executed in the back-
ground. Local switch /F can be included in the command line
to cause the save file to be built for execution in the fore-
ground, The switch follows an octal value specifying the
desired foreground NREL starting address. If the value
specified is not an integer multiple of 400 plus 16, the loader
rounds it up to the next highest such multiple. Therefore, if

RLDR ROOT! 1421/F
is specified, the loader sets the foreground NREL to 2016.

Normally, ZREL is set at location 50 by default. To change
the ZREL starting location, include an octal value followed
by switch /Z in the command line. This switch also is

used to specify the ZREL foreground position. Thus, the
command line

RLDR ROOT1 70/Z 1421/F

sets the foreground ZREL at location 70 and the foreground
NREL at 2016.

When the Save file is created the extension . SV is appended
to the first named file in the command line, and that name
with the extension is given to the Save file. If overlays

are included in the Save file, the overlay file also is named
for the first specified file and has the extension . OL. Thus,
the names of the Save file and overlay file from the command

RLDR ROOT1 [R1, R2]

3-8

/S and /U

(Continued)

/N

are ROOT1. SV and ROOT1.0OL. To have the Save and
overlay files named something different, append the
switch /S to any file name in the command line.

RLDR ROOT1 ROOT/S [Rl, R2]

causes the Save file to be named ROOT. SV and the over-
lay file to be named ROOT. OL.

Local symbols (i.e. not declared as . ENT's) are not
normally included in the symbol table. To have them
incorporated in the symbol table, when debugging the
program for example, append local switch /U to the name
of the relocatable binary file containing the program to be
debugged. Remember, to have the symbolic debugger
incorporated in the Save file, global switch /D must be
appended to the command RLDR. For example,

RLDR/D ROOT1/U ROOT2

causes DEBUG III to be incorporated in the Save file and
the user defined symbols in the program file ROOT1 to be
included in the symbol table along with the external
symbols from ROOT1 and ROOT2. ROOT1 must have been
assembled with global /U switch,

When the Save file is loaded for execution, it is loaded
into core upwards from the lowest available address. To
specify where a particular program in the Save file is to
start in core, enter the octal value of the desired location
followed by switch /N followed by the relocatable binary
file name. The value specified becomes the program's
NMAX and must be larger than the current NMAX. Thus,
the command

RLDR ROOT1 2000/N ROOT2

causes the program in binary file ROOT2 to be loaded into
core starting at location 2000. The number specified
cannot be lower than any previously loaded address.

/v Local switch /V only applies to operations in the mapped
environment. It enables the creation of a virtual overlay.
To create a virtual overlay, the switch /V immediately
follows the right-hand bracket of an overlay specification
in the line. For example,

RLDR ROOT1 [R1, R2}/V

When a virtual overlay is used it can appear anywhere in the
command line but all virtual overlays must precede all
non-virtual overlays. Thus,

RLDR ROOT1 [R1]1/V [R2] [R3]/V

produces an error; but,

RLDR ROOTL [R1l/V [R3]/V [R2]

‘does not,

SYMBOL FILE

RLDR maintains its symbol table in a file named <save filename> .ST. This file
is deleted at the end of a load unless the global /K switch is used. A table
containing undefined symbols is maintained in core. This table grows as external
symbols are encountered and then shrinks as they are resolved. A ' Symbol
Table Overflow" error means that this table has grown too large for the area
from the top of RLDR to the system (on a foreground program). Since the max-
imum size of this table is a function of the peak number of undefined symbols
rather than the total number of symbols in the load, rearranging the order in
which files are loaded may avoid the error.

3-10

SIZE OF THE SAVE FILE

Since relocatable binaries are loaded directly to a save file on disk, it is possible
to create a save file that is too large to be executed within the core limitations

of the machine that performed the loading. While there is no direct method by
which the user can avoid this possibility, there is a way to determine whether his
save file will run in available core once it is loaded.

If the user appends the D and S switches to RLDR, the symbol table will be fixed

at the highest location available in the machine in which loading occurs. The
symbol table will be appended to the save file at these locations. If the symbol
table is successfully appended to the save file without a resulting fatal error, the
user is assured that the loaded programs will fit into his current core configuration.

Should the current NMAX of the save file be higher than the last location in the
symbol table when an attempt is made to append the symbol table, the fatal error
message:

SYMBOL TABLE TOO LARGE FOR CORE STORAGE

will be given. Note that the occurrence of the error does not necessarily mean
that the loaded programs cannot fit in current core, since the debugger was loaded
and the symbol table requires space. However, absence of the error message
insures that the save file will fit into available core.

.LMIT FEATURES

When only part of a module is loaded, through the use of . LMIT pseudo -op entry,
symbols defined in the nonloaded part of the module are treated in a special way
by RLDR. RLDR determines whether a symbol is in the loaded part of the module
by comparing its value to the limit value, If the value is greater than the value

of the limited symbol, the entry symbol is assumed to be defined in the non-
loaded part of the file. Entry symbols defined in the non-loaded part of the module
are treated in a way to show that the code they represent does not really exist in
the same file. If the symbol has previously been added to the symbol file by a
module that declared it as an EXTD or an EXTN, the value of the symbol is set

to -1. If the symbol has not been declared by a previous module, it is not added
to the symbol table at all. The order in which entry symbols appear in the RB

is important in this process. RLDR can only make this determination after it
encounters the limited symbol. Thus only entry symbols following the limited
symbol are defined as described above. The order in which entry symbols appear
can be controlled when MAC is used to create RB's. MAC outputs entry symbols
in the opposite order of the way they are declared with . ENT pseudo-ops.

3-11

LOAD LISTING

The load listing has two distinct parts: a core map and a symbol list.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

ROOTO
001470
000,000 OLOO 000004
000,001 OLO1 000004
002070

002276
001,000 OL10 001010
003676
TMIN
NO STARTING ADDRESS FOR LOAD MODULE
NMAX 003752
ZMAX 000050
CSZE 000000
EST 000000
SST 000000

NOTE: Line numbers do not appear on the core map. They are included here

only for discussion purposes.

Lines 00, 05, and 09 contain root titles.

Titles of modules loaded from libraries are also printed. Each title is printed
when the corresponding START block is encountered, except in case of error, in
which case the title is printed before the corresponding error message.

LOAD LISTING (Continued)

Load map flags are:

XD - external displacement undefined
XN ~ external normal undefined

C - named common

M - multiply defined

A named common symbol is followed by both its address and size.

Lines 01 and 06 contain node points, which are the starting addresses of the
overlay areas.

Lines 04 and 08 contain overlay area ending addresses.
Lines 02, 03, and 07 contain node and overlay numbers, titles of modules loaded

in the overlays, and the length in words of the overlays. For example, line 03
is interpreted as follows

000, 001 OLO01 000004
o S S——
node overlay Title of Length of overlay in
number number overlay words

Notice in the sample above that node 0 begins at location 001470 and ends at

location 002070, an area of 4008 words even though the overlay OLO0O and OLO1
are each only 4 words long. Notice also that node 1 is allocated 1400g words but
that overlay 0, named OL10, is only 1010g words long. In both of these cases, the

loader rounded up the size of the node to the next integer multiple of 400g.

NOTE: Symbol USTAD always appears on the Symbol list and indicates the starting
address of the User Status Table,

EXAMPLES

Following are some examples of command lines, shown with the save and overlay
files that are created.

3-13

EXAMPLE (Continued)

RLDR ROOTO ROOT1 [A,B, C,

ROOTO0.SV RDOS

Symbol
Table

Node 1 space

ROOT2

DEBUG 11

TMAX and re-
lated files

NODE 0 space

- e -

D] SYS.LB ROOT2 [E,F] 2/K)

«— P+ integer multiple ,
of 400g May contain
EorF

-— P

<+——— M+ integer multiple
of B-C May contain A

or D or B-C

-— M

<« Ntllg = INMAX

<+———— (430+2*TLN) = N

<-——— points to OLDIR

<« 400

3-14

EXAMPLES (Continued)
RLDR FILE1l 300/Z 20000/F FILE2)
FILE1l.SV
RDOS
(
Symbol
Table
NREL
Code
<+— 20046+TLN
TCB
-— 20046
usT
«-—— 20016
Actual
Save
File
-— 400
ZREL
«—— 300
l«—— 16
\ le—— O
3-15

ERROR MESSAGES

Explicit error messages are output by the loader for both non-fatal and fatal errors.
The error messages are output to the file designated by the appropriate RLDR
command line switches (local /E and /L and global /E) and are followed by an
appropriate identifying location, symbol or both.

Non-fatal Errors

Non-fatal errors do not stop loading but may change the intended state of the user's
save file. The non-fatal error messages are:

DISPLACEMENT OVERFLOW nnnnnn
A displacement overflow error occurs if the loader finds the displace-

ment is too large when attempting to resolve an external displacement.
The displacement is too large if:

the index = 00 and the unsigned displacement is > 377.

the index # 00 and the displacement is outside the range:
-200 < displacement < +200

nnnnnn is the absolute address where overflow occurred. The
displacement is left unresolved with a value of 000.

ILLEGAL BLOCK TYPE nnnnnn

The error message normally occurs if the input file is not
a relocatable binary or library file. The file in error will
not be loaded. Octal number nnnnnn is the illegal block.

MULTIPLY DEFINED ENTRY sssss nnnnnn

This error occurs when an entry symbol or named common (. COMM)
symbol, sssss, having the same name as one already defined, is
encountered during loading. nnnnnn is the absolute address at which
the symbol was originally defined, Of course, two or more named
commons with the same name can occur, but an attempt to redefine
an ENT as a COMM or a COMM as an.ENT will result in an error.

ERROR MESSAGES (Continued)

EXTERNAL UNDEFINED IN EXTERNAL EXPRESSION sssss

This error occurs if a . GADD block is encountered that references
an as yet undefined symbol, sssss. Zero is stored in the memory cell.

ILLEGAL NMAX VALUE nnnnnn

This error occurs when the user attempts to force the value of
NMAX to a value lower than the current value of NMAX, i.e.,
if the octal value following a /N local switch is lower than

the current value of NMAX. nnnnnn is the illegal value.

NMAX is unchanged.

SYSTEM LIBRARY NOT FOUND

This error occurs when the system library (SYS. LB) could
not be found on the current directory.

NO STARTING ADDRESS FOR LOAD MODULE

This error occurs if at assembly time the user failed to
terminate at least one of the programs to be loaded with a

. END pseudo-op that was followed by a starting address for
the save file. The starting address can be patched into the
TCBPC word of the TCB pointed to be USTCT. It must be
stored as the starting address multiplied by 2.

BINARY WITHOUT END BLOCK

The error occurs when a binary file has no end block. The
file is loaded up to the point where the error is discovered.

TASKS OR CHANNELS SPECIFIED =0

This error occurs when there was a . COMM task block with
left or right byte of its equivalence word = 0 or when 0/K or
0/C appears in the COM.CM file.

ERROR MESSAGES (Continued)

Non-Fatal Errors (Continued)

NO SCHEDULER STARTING ADDRESS

In a stand-alone load (global /C) this error occurs if no start
block contained a starting address. The starting address can
be patched into USTSA. '

WARNING *** ZERO LENGTH OVERLAY

This error indicates that an attempt has been made to load an overlay
that contains nothing.

Fatal Errors

If an error is fatal, the error message and the location at which it was discovered
are followed on the next line by a second message:

FATAL LOAD ERROR

For example:

LOAD OVERWRITE 001700
FATAL LOAD ERROR

The message is output to the error file, and return is made to the CLI which prints
the message:

FATAL SYSTEM UTILITY ERROR
The fatal errors are:
CHECKSUM ERROR nnnnnn

This error occurs if a checksum that is computed on some block differs
from zero. nnnnnn is the incorrect checksum.

NEGATIVE ADDRESS nnnnnn

This error occurs if bit 0 of an address word is set to 1. The assembler
restricts addresses to the range: 0< address < 215, however, the error
can be caused by a reader error. nnnnnn represents the negative
address.

3-18

ERROR MESSAGES (Continued)

Fatal Errors (Continued)

NAMED COMMON ERROR sssss nnnnnn

This error occurs if two programs have different sizes for a given area
of labeled COMMON (defined by . COMM statements) and the second

is larger. sssss gives the symbol name of the labeled COMMON and
nnnnnn indicates the size of labeled COMMON requested by the present
. COMM.

LOAD OVERWRITE nnnnnn

The loader does not permit save or overlay file locations to be over-
written by subsequent data once they are loaded. If an attempt to over-
write is made, this error occurs. The absolute address where the over-
write was attempted is given by nnnnnn.

EXTERNAL LOCATION UNDEFINED sssss

This error occurs if a .GLOC block is encountered with data to be
loaded at the address of a symbol, sssss, that is as yet undefined.

PAGE ZERO OVERFLOW nnnnnn
This error occurs in loading page zero relocatable data if the data
overflows the page zero boundary (377g). The absolute address of the

first word of the data block that caused the overflow is given by nnnnnn.

SYMBOL TABLE TOO LARGE FOR CORE IMAGE
This error occurs when a global switch /S has been given in the RLDR

command line and the symbol table would overwrite loaded programs
in the save file built by the loader.

ILLEGAL LOAD ADDRESS

This error occurs when an attempt is made to load into locations 0-15.

3-19

ERROR MESSAGES (Continued)

Fatal Errors (Continued)

SYMBOL TABLE OVERFLOW

This error occurs during loading if the size of the symbol table
becomes so large that it would overwrite the loader in core.

RDOS ERROR

This error indicates that the loader issued a system call that could
not be completed and that resulted in an exceptional return. See the
RDOS User's Manual for system calls and possible error returns.

TASK MONITOR ERROR (USTCH)

This error occurs when a . COMM block with symbol TASK is
encountered at a point when NMAX differs from the initial value
of NMAX. This occurs if . COMM TASK occurs in some module
after the first module is loaded.

OVERLAY DIRECTORY OVERFLOW

This error occurs when the number of nodes exceeds 128 or number
of overlays at a given node exceeds 256,

BLOCK FORMATS OF RELOCATABLE BINARY TAPES

The order of blocks for gnput to the relocatable
loader was shown on page 1-3 of the manual. Follow-
ing are the formats for each type of block,

Relocatable Data Block

word

—

2
word count
relocation flags 1
relocation flags 2
relocation flags 3
checksum
address
data
data

Trr O O NI LN

data word count + 6

Entry Block*

word

3
| wordcount |
relocation flags 1

relocation flags 2

relocation flags 3
checksuin
symbol in

radix 50 [flags
equivalence

v O 00N N WN

symbol in
radjx S0]ﬂa;zs

equivalence word count +6

External Displacement Block

word

4
word count
6
6
6
checksum
symbol in
radix 50 fflags
77777

cr D 00 N N U WN -

symbol in
radix 50 lags
7777 word count +6

* Entry blocks can contain either .ENT or .ENTO,
which are differentiated by the contents of flag
bits 11-15 of S1 (word 8, etc.)

3-21

Normal Extermal Block

Start Block

Title Block

.
.
.

symbol in
radix 50 | flags

address of last ref,

6

word count (-1)

relocation flags 1

0

0

checksum

address

word

5 1 1

word count 2
relocation flags 1 3
relocation flags 2 4
checksum 5
symbol in 6
radix 50 I flags 7
address of last ref, 8

word count +6

word

O W N

word

7

word count (-3)

0

0

0

c hecksum

title in

radix 50 [flags

equivalence

Local Symbol Block

10

word count

relocation flags 1

relocation flags 2

relocation flags 3

checksum

symbol in
radix 50 | flags

equivalence

symbol in __]
radix 50 | flags

equivalence

)

(YoRE+ NN B NN, B SN UR]

word

—

N 00 NN U R W

word count +6

’

RDOS STATUS INFORMATION

The figure on page 3-14 shows that the start of user NREL code is given as variable
location INMAX. (This value is given in USTIN of the UST.) The location is
variable because the number of words required for RDOS status information: the
overlay directory area, the task control block area, and the user status table area.

Overlay Directory Area

The overlay directory, OLDIR, is always created as part of the RDOS status
information if there exists at least one overlay. If there are no overlays, no
locations are set aside for OLDIR.

As described in the RDOS User's Manual, an overlayed program has

a root or core-resident portion with a number of node points at which overlays
may begin. The size of the overlay directory, OLDIR, will vary with the number
of nodes, where up to 128)() nodes are permitted, and up to 256 overlays are
permitted in a given node. The number of words required for OLDIR is:

4*(number of nodes)+1
Word zero of OLDIR contains the count of number of nodes. The zeroth word

is pointed to by USTOD in the User Status Table. For each node, the contents
of the four words are as given in the diagram below.

Node address for this node

Starting block number (in the overlay
file) of sverlay O at this node.

Number of over- Size of an overlay
lays in this node, in blocks.

Resident overlay Use count
number

0 7 8 ' 15

This word is used by RDOS at run time and contains 177400 at load time.
3-22

RDOS STATUS INFORMATION (Continued)

Overlay Directory Area (Continued)

The overlay directory area is built up in the save file immediately above the Task
Control Block area.

Task Control Block Area

The TCB (task control block) area of the RDOS status information contains informa-
tion for each task in the program. The number of words required for the TCB area
is obtained by multiplying the number of tasks by TLN.

(number of tasks) * (TLN)
TLN is the number of words required for each TCB and is defined on the user
parameter tape, 090-000883. A listing of the parameter tape is found in the RDOS

User's Manual.

The task control block area is built up in the save file immediately above the
User Status Table.

User Status Table (UST)

A User Status Table, which is defined on the user parameter tape, 090-000883, is
shown following.

USTPC =0

USTZM =1 ;ZMAX

USTSS = 2 ;START OF SYMBOL TABLE
USTES = 3 ;END OF SYMBOL TABLE
USTNM = 4 ;NMAX

USTSA =5 ;STARTING ADDRESS OF TASK SCHEDULER
USTDA =6 ;DEBUGGER ADDRESS

USTHU =7 ;HIGHEST ADDRESS USED
USTCS = 10 ;FORTRAN COMMON AREA SIZE
USTIT =11 ; INTERRUPT ADDRESS

USTBR = 12 ;BREAK ADDRESS

USTCH = 13 ;NUMBER OF CHANNELS

USTCT = 14 ;CURRENTLY ACTIVE TCB

RDOS STATUS INFORMATION (Continued)

User Status Table (UST) (Continued)

USTAC =15 ;START OF ACTIVE TCB CHAIN

USTEC = 16 ;START OF FREE TCB CHAIN

USTIN =17 ;INITIAL START OF NREL CODE

USTOD = 20 ;OVERLAY DIRECTORY ADDRESS

USTSV = 21 ;FORTRAN STATE VARIABLE SAVE ROUTINE
USTEN = USTSV ;LAST ENTRY

USTPC is maintained by the system to provide compatibility with SOS, the Stand-
alone Operating System.

USTZM contains ZMAX, the first location in page zero for page zero relocatable
.code.

Locations 402 and 403, USTSS, and USTES, respectively, point to the start and
the end of the symbol table. Under default conditions, the loader loads the
symbol table at the termination of loading so that the last location in the

symbol table + 1 coincides with the value of NMAX after all programs are loaded.
USTSS, USTES, and NMAX are updated. If the user requests that the symbol
table be placed in upper core (/S switch on an RLDR command), the contents of
402, 403, and NMAX remain true and are not updated at the end of loading. If
the debugger has not been loaded, locations 402 and 403 are set to zeroes.

USTNM contains the current value of NMAX at run time. This value changes as
NMAX is increased or decreased,

Location 407, USTHU, is initialized by the loader to the value of NMAX at the
termination of loading. This word is never changed by the operating system
during program execution. It is used to reset USTNM whenever a program is
started by the system.

USTIT is the interrupt address (CTRL A). At the termination of loading, this
address is set to a -1. If unchanged at run time an unconditional return to the
CLI occurs when a CTRL A interrupt occurs. The user core image is not saved.
The user program can set USTIT at execution time to an address to which control
will be transferred if a CTRL A interrupt occurs. The ACs will be lost upon
transfer to such an address.

RDOS STATUS INFORMATION (Continued)

User Status Table (Continued)

USTBR is the break address (CTRL C). At the termination of loading, the address
is set to a -1. If unchanged at run time, whenever a CTRL C break occurs the
core image will be written to the file BREAK. SV on the default directory device
and return made to the CLL. Alternatively, the user program can set USTBR to
an address to which control will be transferred if a CTRL C break occurs. As
with CTRL A, the ACs are lost.

USTCH contains the number of program tasks in its left byte, and the number of
I/0O channels in the right byte.

USTSV is the address of the FORTRAN State Variable Save routine (initialized to 0),
which is part of the FORTRAN library. This routine is required in a multitask
FORTRAN environment to keep track of each task's FORTRAN run time stack
variables. Among the variables handled by this routine are QSP, SP, NSP, and
AFSE. For more information about the FORTRAN library, see the FORTRAN

Run Time Library User's Manual.

USTSA points to the appropriate task scheduler, except when global switch /C

is used in the RLDR command; /C causes USTSA to point to the starting address
of the program. When USTSA points to the task scheduler, the scheduler obtains
the program starting address from the first task control block. (word TCBPC).

3-25

LOADING RELOCATABLE BINARY FILES

Loading Direction

Loading Direction

RDOS

Symbol Table

User Program (NREL)

<~ Top of Memory

< SST

<«—- EST
<« NMAX

«— INMAX

Rl R T .

Overlay Directory (OLDiR)

- 400

-——50

-— 16

Reserved for RDOS

3-26

The Real Time Disk Op-
erating System resides in
upper memory and the
first 16 locations (0-15).

The symbol table (loader
map) is built into high core.
At loading termination it is
moved down in the save file
to the first location avail -
able above the program.

This portion of code is
written directly tc the
save file, starting at lo-
cation INMAX.

RDOS status information
contains OLDIR, the
overlay directory present
whenever there is an over-
lay file or files; the pool of
TCBs (task control blocks);
and the User Status Table
(UST).

This portion of code is writ-
ten directly to the save file,
The starting location of
ZREL code is 50g by default
but can be changed by a
command line switch.

LOADING RELOCATABLE BINARY FILES

SST is the start of the symbol table which is the first address below RDOS during
loading. EST is the end of the symbol table, which is the first address available
below the symbol table during loading. NMAX is the first available address for
further loading; and INMAX is the beginning of user NREL code.

The RDOS relocatable loader permits loading beginning at location 16. ZREL

code begins at location 50. Locations 16 - 47 can be reserved by the . LOC pseudo-
op at assembly time. INMAX is determined by the number of tasks and overlays.
By default, the number of tasks is one.

User Adjustment of NMAX

When loading a number of programs, the user can adjust the value of NMAX. The
loader will accept any value of NMAX that is not less than its current value. The
value can be adjusted by a local option as shown below:

RLDR A 2000/N B)

where: 2000/N is a local option giving an adjusted NMAX (2000 octal) at which
to begin loading the next program, B.

RDOS

~———— HMA
<+———— NMAX after loading B

B

— <+——— NMAX before loading B (=2000g)

<+———— NMAX after loading A

A
<+———— INMAX

END OF CHAPTER

3-27

APPENDIX A

RDOS OVERLAY LOADER

Supplied as part of the RDOS system is OVLDR.SV, the overlay loader, which may
be invoked by the CLI command OVLDR. The overlay loader can be used to create
an overlay replacement file. The overlay replacement file can later replace one or
more overlays in an existing overlay file. Up to 127 overlays can be replaced.

The format of the OVLDR command is:

OVLDR filename overlay-descriptor, /N overlay-list { overlay-descriptorz/N 1)
overlay-list ...} {filename/ L-] { filename/E} J

where:
filename is the name of the save file associated with the overlay file in which
overlays are to be replaced. The replacement overlay file is named
filename. OR.

overlay-descriptor is eithera 1 to 6 digit octal number giving the node
number /overlay number that identifies the overlay or is the symbolic name
of the overlay. The overlay descriptor must be followed by the local /N
switch. If the symbolic name is used, it must have been declared in a . ENTO
pseudo-op in the save file.

overlay-list is a list of one or more relocatable binaries that are to replace
the preceding overlay.

filenames followed by /E and /L are optional error and listing files respec-
tively.

The global switches are:

/A listing of an alphabetical/numeric core map. Note that a local /L
switch must also be given to define the listing file for the core map.

/E do not suppress output of error messages to the console. (Used only
when there is a listing file (/L) that suppresses console error output.)

/H print all numeric output in hexadecimal. By default output is printed
in octal.

The local switches are:

/E preceding file is designated to receive error and information-messages.

/L~ preceding file is designated to receive the core map listing. :.?-:I‘_he map
will be numeric unless the global /A switch is given. '

/N must follow an overlay-descriptor.

To use OVLDR, the following conditions must exist:

1. There must be an overlay file, filename.OL, created by the RLDR
command.

2. The save file, filename. SV, must contain a symbol table.
For example, presume that the following RLDR command was executed:
RLDR/D A B[C,D E,F] G[M, NO])

The following save and overlay files were created:

A.SV A.OL
symbol table ""I-C\)I -------- overlay 1
debugger M <+—————overlay 0
node 1
F .
overlay area 1 < node 1 <——— overlay 2
G __E___ ~————— overlay 1
D
overlay area 0 <_node 0 C <———— overlay 0
node 0
B
A

Use of the /D global switch assured loading of the symbol table but also caused the
debugger to be loaded. To save core space, the user may wish to load only the
symbol table by including it as an external normal in the save file:

.EXTN .SYM

OVLDR can create a file of replacement overlays. For example, to create replace-
ment overlays for M (node 1, overlay 0) and for N-O (node 1, overlay 1), the
following command might be given:

OVLDR/A/E A 400/N M1 M2 401/N M3 OLIST/L)

In the example, the error and information listing will be to the console and an
alphanumeric core map will be listed in OLIST.

When OVLDR is executed, the file A.OR is created containing the following:

A.OR

M3

-—— node 1, overlay 1 replacement

M1 and M2

-—— mnode 1, overlay 0 replacement

0 .OR File Directory

The CLI command, REPLACE, is used to replace current contents of an overlay file
with the new overlays created by the OVLDR command.. For exainple, to replace A.OL
overlays with the contents of A.OR, the following command would be given:

REPLACE A)

When the command to replace is executed, A.OL would appear as follows:

overlay 1

e e——

~<+——— overlay 0
< overlay 2
~<——— overlay 1

overlay O

| -— node 0

The error messages that may occur in executing an OVLDR command are given
below. They are all fatal.

A'LLEGAL LOAD ADDRESS
Any attempt to load into an address outside the overlay area.
NO SYMBOL TABLE

The symbol table was not created when the save and overlay files were
loaded.

NO OVERLAY DIRECTORY

The save file does not contain the overlay directory, OLDIR.

INSUFFICIENT MEMORY

OVLDR cannot execute in available memory.
COMMON SIZE ERROR

An overlay defines blank COMMON to be larger than that in the save file.
EXTERNAL LOCATION UNDEFINED OR NOT WITHIN OVERLAY

Either a symbol is not defined within the save file or the symbol value
is not legal for the overlay area.

END OF APPENDIX

APPENDIX B

RLDR
Symbol Table Formats

Disk Symbol Format

Word 0 Type in left byte, Length of name in words in right

Word 1 Symbol equivalence

Word 2 Node/Overlay word, node/ overlay of definition of the symbol (ENT"'s only)
Named common size--(COMM's)

Word 3--Word n symbol name packed
2 characters per word.
Ist in left, 2nd in right, etc.

The equivalence of an ENTO is the same as the contents of its node
overlay word.,

All symbols, defined and undefined have a disk entry. Undefined symbols
also have entry in core,

Disk symbols are hashed to 20_ buckets. The algorithm is (1st character,
3rd character, last character) masked to 0-178. Entries are placed
sequentially within a bucket, They are not sorted within the bucket. As
many symbols as will fit are placed in each block. This number varies
with the size of the entries. The last word in a block is the overlay
pointer. It carries the block number of the next block of this bucket.

If it is zero, there is not subsequent block.

Titles and local symbols are placed (if loaded) in block 20 and subsequent
overflow blocks. All local symbols in a module precede the corresponding
title.

Core Symbol Format

Undefined symbols are represented in core as well as on disk.

Word 0: block # and channel bits in high order bits.

Word 1: Offset in left byte. Type in right.
Offset is offset of symbol in disk symbol block.
Type designations are as shown in RLDR manual.
Bit 13 is flag for extended format,

Word 2-n chain pointers.

END OF APPENDIX

DataGeneral | SOFTWARE DOCUMENTATION

REMARKS FORM

Document Title Document No. Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:
Name Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004 Rev.7-75

FOLD DOWN

PERMIT
No. 26
Southboro
Mass 01772

BUSINESS REPLY MAIL

No Postage Necessary It Marea In Tre United States

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Software Documentation

FOLD UP

FOLD UP

