0
0
C
0
&
0
e
0
11

Vianual

Keywords:

Abstract:

RCSL:

Author:
Fditor:
Edited:

RC 8000 COMPUTER _RFFERITCE MANUAL

“he technical information in this
document, whilst correct at the time
of publication, 1is liable to change
without notice.

RC 8000, Computer, Reference !lanual

31-D383
TFinar Mossin
Pierce Hazelton

January 1976

This manual provides basic programming and operating infor-

mation for programmers and users of the RC 8000 computer,

CONTENTS

RC 8000 SPECIFICATIONS

DESIGN FEATURELC

Operand length

Working registers and addressing
Register structure
Program relocation

Escape facility

Monitor control

Input/output system
Bus control

Bus cormunication

DATA FORMATS AND INSTRUCTIONS
Data formats

Working registers

Instruction format

Use of the effective address as an operand

Use of the effective address to refer to memory location

Jump instructions

Modify Next Address instruction

INTEGER ARITIMETIC

Humber representation

Byte arithmetic
Multiplication and division

Overflow and carry indication

FLOATING-POINT ARITHMETIC

Number representation

Arithmetic operations

Normalization and rounding

Underflow, overflow, and non-normalized operands
Number conversion

Exact arithmetic with floating-point instructions

ESCAPE FACILITY

31-D383 RC 8000 Computer

2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.5.1
2.5.2

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.h

4.1
4.2
4.3
bk

5.1
5.2
5.3
5.4
55
5.6

0-1

i
i
o MONITOR CONTROL 7
I INPUT/OUTPUT SYSTEM 8
Main characteristics 8.1
l Input and output operations 8.2
Data In instruction 8.2.1
l Data Out instruction 8.2.2
Exception indication 3.2.3
Standardized block-oriented device controllers 8.3
I Device address ’ 8.3.1
Device description 8.3.2
' Channel program 3.3.3
Standard status information 8.3.4
l Peripheral processors 8.4
. Disc processor 8.h.1
' General device processor 8.k.2
OPERATOR CONTROI, AND AUTOLOAD 9
l Operator control panel 9.1
Operation 9.2
Autoload 9.3
l Options . 9.4
Power restart 9.5
l INSTRUCTION SET 10
l DrFINITION OF INSTRUCTIONS 11
APPENDIX
l ‘ Reserved memory locations Al
Instruction execution times A2
i
I
]
i
I
I ' 31-D383 RC 8000 Computer
|

RC 8000 SPECIFICATIONS 1

Implementation

Large-scale integrated circuits extensively used.
Compromise between hardwired logic and microprogramming, balancing

flexibility and speed.

Bus Structure

Asynchronous unified bus.
Parallel data lines (24 bits + 3 parity bits) and address lines
(23 bits + 1 parity bit).

Primary memory

Magnetic core memory with 800 nanosecond cycle time. Other memory
types as required.
Basic module of 32 768 words. Direct addressing of up to 8 388 608

words. Each word contains 2L data bits and 3 parity bits.

Peripherals

Complete range of input/output devices, interfaced through peripheral
processors or prograrmable front end. Both processor types are con-

nected to the unified bus.

Working registers

Four 2L-bit working registers, three of which also function as index

registers.

The registers are addressable as the first four words of the primary

memory.

Data formats

12-bit bytes and 2k-bit words for integer arithmetic.

L8-bit double words for integer and floating-voint arithmetic.

31-D383 RC 8000 Computer , 1-1

Instruction format

24k-bit single-address instruction. Address modification includes
indexing, indirect addressing, and relative addressing.

Dynamic relocation through use of modified base register technique.

Instruction execution times

0.9 to 2.3 microseconds typically (including access and address

modification time, and depending on primary memory cycle time).

Instructions

Comprise 64 function codes, each working on L4 registers, with 16
address calculation modifications-and a 12-bit displacement.
Arithmetic includes add, subtract, multiply, and divide.

Data manipulation aided by byte operations and word comparison.
Logical operations permit setting and testing of single bits.

Escape facility permits programmed actions on any or all instructions.

Protection system

Privileged instructions and memory protection associated with a

monitor mode ensure complete monitor control.

Interruption system

Program interruption system with 32 priority levels, expandable in
modules of 8 up to G4 levels.

Assignment of levels and disabling of interrupts under program
control.

Interrupt response time, including saving of registers, is 10 micro-
seconds. Return from Interrupt instruction requires 10 microseconds

to re-establish all registers.

Input/output system

All peripherals, except the primary memory, are connected to the
unified bus by means of standardized block-oriented controllers,
which perform all input and output functions under the control of

their own channel programs.

31-D383 RC 8000 Computer 1-2

Data is transferred directly between the controllers and the primary
memory. An asynchronous, fully interlocked request/acknowledge com-

munication technique is employed.

31-D383 RC 8000 Computer

1-3

DESIGN FEATURES

Operand length

Arithmetic and logical operands. The basic arithmetic or logical operand

is a 24-bit word. Double-length operands of 48 bits satisfy the require-
ments of engineering corputation and administrative data processing.

Byte handling. Direct addressing of 12-bit bytes permits efficient

packing of data.
NOTE: The expression "byte" is used in this manual to refer to 12-bit
halfwords, whereas ''character'" refers to 8-bit bytes containing any in-

formation.

Working registers and addressing

Register structure

The RC 8000 has four working registers, three of which also function as.
index registers.

In computers where there is a sharp distinction between the working
register and index registers, programming often becomes awkward. Since
all operations destroy the previous content of the working register,
the programmer is forced to make numerous storage operations in order
to save and restore intermediate results. Empty transfers to memory are
also required when an index register must be modified by the content of
the working register.

The register structure of the RC 8000 eliminates this deficiency. By
extending the number of working registers to four and removing the dis-
tinction between working and index registers, the full instruction set
is made available for immediate address modification, while the number

of empty transfers of registers to memory is greatly reduced.

Program relocation

- —— s - - - = G e 0 e T ————

Efficient relocation requires that programs can be written in such a
way that their execution is independent of their location. This is

achieved in the RC 8000 in two ways.

31-D383 RC 8000 Computer ,

2.1

2.2.1

2.2.2

2-1

First, the instruction format contains a bit that specifies relative
addressing. It indicates that the address part of the instruction is
to be interpreted relative to its current location in the primary mem-
ory. This permits relocation of programs during loading.

Second, the base register structure defines the current relation be-
tween the logical address as seen by the program and the actual physical
address, thereby ensuring that programs also can use saved address;in—

formation after restarting in new memory areas.

Escape facility 2.3

The RC 8000 is provided with an escape facility, implemented by means
of an escape mode and an escape mask, which permits independent super-
vision of instruction execution as well as pnrogrammed emulation of -

virtual memory, instruction sets, and the like.

Monitor control 2.k

In a multiprogramming system, where many concurrent tasks are performed,
it is vital that erroneous programs be prevented from interfering de-
structively with other programs. The various tasks are therefore co-or-
dinated by a monitor program that has complete control of the system.
Monitor control in the RC 8000 is guaranteed by memory protection, priv-
ileged instructions, and program interruption.

llemory protection. An erroneous program may attempt to destroy data

or instructions within other programs. !Mutual memory protection is ac-
complished in the RC 8000 through limit registers, so that a program can
only alter the contents of memory locations in its own area. The remain-
der of the memory is divided into a read-accessible lower part and a
read-protected upper part. The modification of the base register structure
ensures that the lower, read-accessible part is addressed independently
of dynamic program relocation. Any attempt to violate the protection sys-
tem leads immediately to a program interruption.

Privileged instructions. Further protection is achieved through priv-

ileged instructions that can only be executed within the monitor program.

These instructions include all input/output functions as well as control

31-D383 RC 8000 Computer) 2.2

of the interruption system, memory protection, and dynamic program re-
location.

Program interruption. Multiprogrammed computers must respond quickly

to exceptional events. In the RC 8000 this is made possible by a program
interruption system that can register up to Gb signals simultaneously.
Any of these signals interrupts the current program immediately and

starts the monitor program.

Input/output system 2.5

The input/output system is based on a unified bus, i.e. a common bus for
cormunicatior between all devices connected to it, none of which has a
special status. Besides permitting the implementation of a wide range of
systems, including multiprocessing systems, the unified bus facilitates
communication with other systems and provides a basis for implementation
of other bus structures.

The connection of perivheral devices is standardized in such a way that
the central processor is unaware of the types of devices attached to it.
All peripheral devices except the primary memory are connected to the bus
via standardized device controllers (peripheral processors). Data trans-
fers between the central processor and the veripheral processors are handled
by a single input and a single output operation.

In order not to suspend program execution while an input or output oper-
ation is in progress, the direct transfer of data between processors is
nminimized; thus the peripheral processor, as soon as it is started, will
fetch its cormands from the channel program in the primary memory and exe-
cute them without engaging the central processor, which continues with its
prograrn.

When the central processor attempts to initiate an input or output oper-
ation, the peripheral device may reject it. Information about this as well
as other exceptional events is made available in a status register, which
can be used by the program in order to take appropriate action. Device
status will be transferred to the central processor when a data transfer
is completed.

Peripheral devices may also be connected to the bus in & more primitive

manner, i.e. without the channel program concept. In this case, the device

31-D3E3 RC 8000 Computer 2-3

controller will be regarded as a set of registers, to which the central
processor transfers control information and from which it obtains device

information by means of the input and output instructions.

Bus control

Since the bus is shared by numerous devices, only one may have control
of it at a time. This device is called the bus master, and the device
which it addresses is called the slave.

When a device that is capable of being a bus master (viz. a central
unit, primary memory, or peripheral précessor) desires to obtain control,
it sends a request to the bus control unit.

The control unit responds with a select signal, which is daisy~chained
through all the devices on the bus. The first device having sent a re-
quest breaks the chain and returns an acknowledgement, completing the
selection procedure. If the control unit does not receive an acknowledge
signal, it generates a bus timeout, after which the selection procedure
may be repeated.

As soon as the current master completes its transfer and releases the
bus, the selected device becomes the new master and sends a busy signal

while using the bus. During this time the next bus master is selected.

Bus communication

To facilitate interfacing with other systems, an asynchronous fully
interlocked technique is used for bus cormunication. This so-called
handshake technique, in which each request that is sent by a master
must be acknowledged by the slave to complete the transfer, permits

operations between devices having different response times.

31-D383 RC 8000 Computer

2.5.1

2.5.2

2-h

DATA FORMATS AND INSTRUCTIONS

Data formats

The data structure of the RC 8000 is shown in the following figure:

- DOUBLE WORD

e FIRST WORD >ie- SECOND WORD ————»

t—— BYTE —»{¢—— BYTE —>t¢—— BYTE —¢—— BYTE —»4

INTEGER BYTE | INTEGERBYTE
0 11 12 23

INTEGER WORD
0 23

FRACTION EXPONENT
0 35 36 47

INTEGER DOUBLE WORD
0 47

The basic arithmetic or logical operand is an integer of 24 bits.

Data is packed with two halfwords per word. The 12-hit halfwords, which

are called bytes, are directly addressable. Double words are used to
represent integers of U8 bits and floating-point numbers with 36-bit

fractions and 12-bit exponents.

Working registers

The register structure includes four 2L-bit working registers, one of
which is specified as the result register in each instruction. Three
of the working registers also function as index registers. The current
index register is selected by the instruction format.

The working registers are addressable as the first eight bytes (or

four words) of the primary memory. The programmer can therefore per-

31-D383 RC 8000 Computer

3.1

3.2

3-1

form operations directly between two registers by specifying a memory
address between 0 and 7. It is also possible to execute instructions

stored in the working registers.

BYTE ADDRESS

0 2L BITS WORKING REGISTER 0 (WO)
2 ok 3ITS WORKING REGISTER 1 (Wl) -
L 2Lk BITS WORYING RFGISTIR 2 (W2)
G 2L BITS WORKING REGISTER 3 (W3)

Two adjacent working registers can be used to hold a double-~length
operand of 48 tits. In double-length onerations, the four registers

are connected cyclically as follows:

W3 concatenate with 170
WO concatenate with Wl
Wl concatenate with W2

V2 concatenate with W3

These connections are established by specifying the second register

of the concatenation in the instruction format.

Instruction format 3.3

The instruction format is divided into an operation byte and an address

byte, each containing 12 bits:

F W M X D
0 56 7 8 9101112 23

Bits 0:5 F field. Contains the function code, specifying one of
sixty-four basic operations.

Bits O:7 W field. Specifies one of the four working registers as
the result register.

31-D383 RC €000 Computer 7 3-2

Bits 8:9 M field. Specifies one of four address modes, used to

control generation of the effective address (see below).

Bits 10:11 X field. Selects the current index register. Only work-
ing registers W1, W2, and W3 act as index registers (X

field = 0 indicates no indexing).

Bits 12:23 D field. Contains a truncated address, specifying a @is-
placement from -2048 to +2047 bytes within the program.
This is adequate for the majority of addresses, but not

sufficient for direct addressing of the entire memory.

A full address of 2L bits is formed by means of the displacement, D,
in conjunction with the content of an index register, X, and the content
of the instruction counter, IC. The generation of the effective address,

A, is controlled by the address mode field, M, as follows:

M= 00 A=X+D
M= 01 A = word (X + D)
M= 10 A=X+1IC+0D
M =11 A = word (X + IC + D)

In the address calculation, the displacement is treated as a 12-bit
signed integer that is extended towards the left to 24 bits before be-
ing added to the index register and the instruction counter. In the
final addition of X, IC, and D, overflow is ignored.

The address modes 0l and 11 permit indirect addressing on one level.
The indirect address fetched from the memory is assumed to be a full
address of 24 bits.

The address modes 10 and 11 modify the indexed displacement with the
current load address of the instruction. This permits relocation of

programs during loading.

Note

In the notation used in this section as well as Chapters 4 and 5, indirect
addressing is indicated by parentheses, and comments are preceded by semi-
colons. The mnemonic operation codes are defined in Chapter 10, which con-

tains a complete list of the instructions and their function codes.

31-D383 RC 8000 Computer 3-3

Use_of the effective address as an operand 3.3.1

- — - o - — - > - - -

For some function codes, the effective address is used directly as an
operand. This is done in three different ways.

The effective address or its two's complement can be assigned to the
addressed register. ‘

The content of the working register can be compared with the effec-
tive address (word comparison) in several ways, the result of the com-
parison determining whether the following instruction is to be executed
or skipped.

The effective address can define a number of shifts to be performed

on the addressed register.

Use of the effective address to refer to memory locations 3.3.2

For other function codes, the effective address is used to refer to
memory locations.

Memory addresses are always expressed as byte addresses. The byte
locations are numbered consecutively starting with zero. In word oper-
ations, the right-most bit in the effective address is ignored; thus
it is irrelevant whether a word operation refers to the left or the
right half of a word. In double-word operations, the right-most bit
in the effective address is also ignored; the word thus specified is
the second word of the operand.

The effective address is used to refer to memory locations in reg-
ister transfer instructions as well as instructions for arithmetic and
logical operations. Fere, the effective address is treated as a logical
address.

If the effective address lies within the current values of the limit
registers less the base, the content of the base register will be ad-
ded to it before the memory is addressed.

If, on the other hand, the effective address lies within the common
protected area, CPA, i.e. is less than the current value of the CPA
limit register, then the effective address will be used directly to ad-
dress the memory, but only read-access will be allowed.

Any attempt to write-access the CPA as well as any reference to areas
outside the ones just mentioned, which are the only logically existent

areas, will result in a program interruption.

31-D383 RC 8000 Computer 3-4

The effective addresses 0:7 will, as previously mentioned, always re-

fer to the working registers.

The following figure shows the physical address as a function of the

logical address for a normal job process:

PHYSICAL ADDRESSES

upper
limit

lower
limit

base

A

common
WARRRA greas

inaccessible
Ay agddresses

LOGICAL

pipantptptpirbipiviidl A\DDRTSSTS
d [e

T l upper limit less base

lower limit less base
CPA limit

The normal division of the logical address area is as follows:

a. 0 <= logical address < 8

Common area for references to the four working registers using

absolute addresses (physical address = logical address).

Normal access.

b. 8 <= logical address < CPA limit

Common protected area (CPA) for references to system parameters

using absolute addresses (physical address = logical address).

Read-access only.

¢. CPA limit <= logical address < lower limit - base

Non-accessible area.

31-D383

RC 8000 Computer

3-5

d. lower limit - base <= logical address < upper limit - base
Program's own job area.
Relocatable (physical address = logical address + base).

Normal access.

e. upper limit - base <= logical address

Non-accessible area.

Jump instructions 3.3.3

The jump instructions represent a special kind of memory reference, as
they transfer program control to the instruction pointed out by the
effective address.

The effective address is treated as a logical address as described
above, and program execution is regarded as a read-access.

Subroutine jumps are implemented as follows: If the W field is dif-
ferent from zero, the logical address of the return point, i.e. the
instruction following the subroutine jump, is placed in the addressed
working register. A jump is then made to the effective address.

At the end of the subroutine, a return jump is made as a simple un-

conditional Jump.

Modify Next Address instruction 3.3.4

The AM instruction, which modifies the displacement in the following
instruction by its own effective address, nrovides various possibili-
ties of address modification.

One use of this instruction is for direct indexing with the content

of any memory location, for example:

AM (X1 + D1)
JL D2

The effective address of the AM instruction is Al = word (X1 + D1).
This is used to modify the displacement D2 in the following JL in-
struction to produce an effective address A2 = word (X1 + D1) + D2.

Another use of the AM instruction is for multi-level indirect ad-

dressing, for example:

31-D383 RC 8000 Computer 3-6

31-D383

AM (X1 + D1)
A (0)
A1 (0)

etc.

; Al

word (X1 + D1)
word (Al)
word (A2)

RC 8000 Computer

3-7

INTEGER ARITHMETIC L

> S e e e S T . T T T P T G U T T T S W G s . S 0 G o St o e > S D S e o S P i S0 S Ak S i e Y " v S —————

Number representation L1

The standard arithmetic operands are sipned intepers of 12 and 24 bits:

S BYTE INTEGER

S WORD INTEGER
0 23

Positive numbers are represented in true binary form with a zero in the
sign bit. llegative numbers are represented in the two's complement no-

tation with a one in the sign bit. The two's complement of a number may
be obtained by inverting each bit in the number and adding 1 to the

right-most bit.

Byte arithmetic L.2

A signed integer represented by a 12-bit byte must be confined to the

following range:
~2**11=_00l8<=integer byte<=2047=2%%11-1

The instruction Load Integer Byte (BL) serves to extend a signed
12-bit byte toward the left to 24 bits, as it is placed in a working
register. The arithmetic instructions Add and Subtract Integer Byte
(BA and BS) perform addition to or subtraction from a working register
with a byte fetched from the memory and extended to 24 bits. The in-
struction Store Half Register (HS) stores the right-most 12 bits of a
working register in a byte.

The sign extension of byte operands makes it possible to perform in-

teger arithmetic with mixed 12-bit and 24-bit operands.

31-D383 RC 8000 Computer L-1

Multiplication and division 4.3

Integer multiplication of the content of a working register with the con-
tent of a memory word produces a double-length nroduct that is placed in

a double register of 43 bits with the sign bit at the extreme left:

N
1 2324 47

ol n

A double-length product will normally consist of a sign bit plus at
most 46 digits. In this case, bit 1 in the double register will be iden-~
tical with the sign bit.

The only exception to this occurs in the multiplication of two maximum

negative numbers:
(-2®*23)* (2®23)=2™6

This result will be represented as shown here:

0100-=-==w== 00 === --
01 2324 47

It should be noted that in this representation of double-length integers,
bit 24 does not function as a sign bit, but contains a sipnificant digit.
The content of a double register can be divided by the content of a
memory word. The dividend is then replaced by a 2Lk-bit remainder in the
left-hand register and a 24-bit quotient in the ripght-hand register. A

non-zero remainder satisfies the following requirements:

(1) dividend = divisor * quotient + remainder
(2) 0 < abs (remainder) < abs (divisor)

(3) sign (remainder) = sign (dividend)

S DIVIDEND
0 u7
S RIMAINDER a QUOTIELT
0 23 0 23
31-D383 RC 8000 Computer 42

Overflow and carry indication

Arithmetic operations indicate a normal or an exceptional result by set-
ting the right-most two bits of a 3-bit register called the exception
register. Physically, the exception bits are the last three bits in the
CPU status register, but they are treated by special instructions as a
logically independent register. Thus the exception register can be test-
ed by a single instruction, Skip if ilo Ixceptions (SX).

After a normal result, exception bits 22 and 23 are set to zero. An
integer overflow will set exception bit 22 to one, and may provoke a
program interruption as defined in Chapter 7.

Lere it should be noted that a program interruption presupposes that
the mask for arithmetic interrupts contains the bit that enables inter-
rupts for integer arithmetic.

An overflow condition is recoprized in the following situations:

(1) The result of an addition, subtraction, or division

exceeds the range of a 2L-bit sipned integer, viz.
-2*23=_8 388 G0B<=inteper word<=8 388 607=2**23-1
lote that multiplication can never produce overflow.

(2) The instruction Load Address Complermented (AC) spec-

ifies complementation of the maximum negative number:
_(_22223)___22*23

(3) One or more significant digits are lost during arith-
metic shifts toward the left., (The shift instructions

test overflow conditions after each single-bit shift).

If overflow occurs in division, the dividend remains unchanged in the
working registers. All other arithmetic operations deliver the result
modulo 2¥¥2L after an overflow,

Exception bit 23 is set when addition or subtraction produces a carry
from the sign position. This indicates that the result interpreted as
an unsigned integer of 25 bits exceeds 23 %2L-1=16 T7T 215. The carry
indication simplifies the programming of multiple-lenpth addition and
subtrartion.

The exception register, then, has the following meaning after an in-

31-D383 RC 3000 Computer

L.y

teger arithmetic operation:

Bit Meaning
21 (unchanged)
22 integer overflow
23 integer carry
1-D333 RC 6000 Computer

FLOATING-POINT ARITHMETIC 5

Number representation 5.1

A floating-point number F = fraction o xx exponent is stored in a

double word or a pair of working registers:

FRACTION . EXPONENT
S S

0 23 l 24 35 36 47
¢————— FIRST WORD SECOND WORD —»

The address of a floating-point number refers to the second word of

the memory operand. The working register field within a floating-point
instruction refers to the second word of the register operand.

The left-most 36 bits of a floating-point number represent a signed,
normalized fraction in the two's complement notation. The right-most
12 bits are a signed exponent, also in the two's complement form.

The range of floating-point numbers -is the following:
~1%0* 004 7<=F<-0.5%2*%(_2048) F negative

F= 0%2**(_2048) F zero

xgxx

0.5%2*% (_oou8)<=r< 1%2**2047 F positive

or approximately:
10%%(=616) <abs (F)<10*%016

The relative precision of a floating-point number is 2**(_35) / abs(frac-
tion), which lies between 2*%(-35)=3%10"*(-11) ana 2**(-3k)=6*10™*(-11).

The left-most two bits of a normalized fraction are 01 and 10, respec-
tively, for positive and negative numbers.

The floating-point zero is represented by the fraction O and the ex-
ponent -2043.

Accordingly, the sign or zero value of a floating-point number may be
determined by examining its first word only. This can be done by means

of the instructions Skip if Register High, Low, Equal, or Not FEqual (SH,

31-D383 RC 8000 Computer 5-1

SL, SE, or SN) using the effective address zero as a comparison operand.
As an example, consider a floating-point number with the address FO.
The following instructions will load the floating-point number in WO and

Wl and test whether it is nregative:

DL W1 FO
SE WO -1 ; if FO0<0
JL GO ; then goto GO;

Arithmetic operations ‘ 5.2

Before an arithmetic operation, the fractions are placed left-justified
in anonymous 38-bit registers and extended to the right with two zeros.
The positions are numbered O through 37 in these registers.

Addition and subtraction require an alignment of radix points, This is
done by shifting the fraction with the smaller exponent to the right a
number of positions equal to the difference in exponents. Bits shifted
out of the 38-bit register are thrown away. After alignment, the addi-
tion or subtraction of the fractions is performed, and the larger ex-
ponent is attached to the result. The resulting fraction is normalized
and rounded as described below.)

Multiplication is performed by addition of the exponents and nultipli-
cation of the fractions. The fraction product of 38 bits is formed by
repetition of an add-and-shift cycle. Bits shifted out of the 30-bit
register are thrown away. lNormalization and rounding of the resulting
fraction proceeds as for addition and subtraction (see below).

Division is performed by subtraction of the exponents and division of
the fractions. The fraction quotient of 36 bits is formed by the non-
restoring division method. The shift-and-add (subtract) cycle is repeat-
ed until the quotient is normalized. The exponent is adjusted by adding
35 initially and subtracting 1 per cycle. Rounding of the quotient is

performed as described below. The remainder is thrown away.

Normalization and rounding 5.3

If the resulting 30-bit fraction is zero, a floating-point zero with ex-

31-D383 RC 8000 Computer 5-2

ponent -2048 is delivered as the final result.

A non-zero fraction is normalized either by left shifts to eliminate
leading sign bits or by a single right shift to correct for overflow of
the fraction. The exponent is decreased (increased) by the number of
left (right) shifts performed.

A non-zero, normalized fraction is rounded by adding 1 in bit 36.
After rounding, the fraction may require normalization once more before
the high-order 36 bits and the exponent are delivered as the final re-
sult.

The maximum value of the rounding error is 0.5 in the least signifi-
cant position of the 36-bit fraction of the result.

For addition and subtraction this may be seen as follows: Consider

the 36-bit fractions fl and f2 to be exact, fl being the fraction of

the larger operand. If the exponents differ less than three, f2 is
shifted at most two positions and retains all significant bits in the
38-bit register. If the exponents differ more than two, f2 and the re-

sulting fraction satisfy the following inequalities:

abs(f2 shifted)<=1%2%*(_3)
abs(fl + or - 2 shifted)>=0.5-1%2%%(_3)=3/8

Thus at most one left shift is required to normalize the result. If frac-
tion overflow occurs, normalization requires a single right shift. In
both cases, the result contains at least 37 significant bits, and round-
ing to 36 bits can at most cause an error of 0.5. This is also true in
the special cases requiring re-normalization.

After multiplication, the product of the fraction lies in the interval

0.25<=abs (£1¥¢2) <=1

and may thus require one left shift for normalization. Again, the result
contains at least 37 significant bits before rounding takes place.

After division, rounding of the resulting fraction is performed by ad-
ding 1 in bit 35, if bit 36 is 1. Since rounding to 36 bits is performed
on a normalized quotient of 37 bits, it follows that the maximum error
is 0.5.

31-D383 RC 8000 Computer

Underflow, overflow, and non-normalized onerands

Underflow and overflow occur when the exponent of the final result (af-
ter normalization, rounding, and re-normalization) is less than -2048
or greater than 2047, respectively. This will set bit 22 in the excep-
tion register (see Section L.4) to one, and may provoke a program in-
terruption as defined in Chapter 7.

Here it should be noted that a vprogram interruption presupposes that
the mask for arithmetic interrupts contains the bit that enables inter-
rupts for floating-point arithmetic. 4

After underflow or overflow, the fraction is correct while the ex-
ponent is taken modulo 4096, Thus if the sign of the resulting expo-
nent is negative, the interrupt was caused by overflow, otherwise by
underflow,

Division by zero leaves the repister operand unchanged, and may pro-
voke an interrupt as defined in Chavter 7. This is also true, if zero
is divided by zero.

Considering the enormous range of floating-point numbers, both under-
flow and overflow will usually indicate a programming error.

No check is made of whether operands are correctly normalized float-
ing-point numbers. If a floating-point operation is carried out on non-
normalized numbers, it will in some cases give a non-normalized result.

The exception register has the following meaning after a floating-

point arithmetic operation:

Bit Meaning

21 (unchanged)
22 floating-point underflow or overflow
23 0

Number conversion

The instruction Convert Integer to Floating (CI) converts a 24-bit in-
teger stored in a working register to a L8-bit floating-point number
stored in a pair of working registers consisting of the register spec-

ified in the instruction and the preceding one. The effective address,

31-D383 RC 8000 Computer

5.4

55

5k

A, of the instruction is used as a signed scaling factor. Thus the

value of the floating-point number becomes:
integer*2x*A

Program interruption with bit 22 of the exception register set to
one may occur, if the resulting exponent exceeds the 12-bit range.

The instruction Convert Floating to Inteper (CF) converts a U8-bit
floating-point number stored in a pair of working registers to a
2L-bit rounded inteper stored in the register specified in the in-
struction. The effective address, A, of the instruction is used as a
signed scaling factor. Thus the value of the integer becomes:

round(floating-point number 23X)

Program interruption with bit 22 of the exception register set to
one may occur, if the resulting integer exceeds the 24-bit range.
If the real FO and the integer I0 are two Algol variables, the as-

signment statement I0:=F0 can be performed by the instructions:
DL W1l FO ; WOW1l:=FO
CF Wl 0 ; Wl:=round(wow1®2**0)
RS W1 I0 ; I0:=W1

The assignment F0:=I0 may be performed in a similar way.

Since the CF instruction rounds off the result, the Algol function

entier(FO) may be performed by subtracting 0.5 before the conversion:

DL W1 FO ; WOW1l:=FO

FS W1 F1 ; WOW1l:=WOW1l-0.5

CF W1 0 ; Wl:=round(wow1*2**0)

Exact arithmetic with floating-point instructions

The floating-point arithmetic may be used to simulate exact arithmetic

with 35-bit integers in the following sense: As long as operands and

results only assume integer values in the range

235 ap X5

any floating-point operation gives the exact integer result. All inte-

gers in this range can be represented exactly as floating-point numbers,

31-D383 RC 8000 Computer

5.6

5=5

and since the error in each operation cannot exceed 0.5 in the 36th

fraction bit, the error must be zero.

While addition, subtraction, and multiplication of the integer values
automatically give integer results, it is often necessary to modify a
floating-point quotient to obtain an inteper value. If the absolute
value of the quotient does not exceed 2*x3h, the correctly rounded
inteper quotient may be obtained by adding and subtracting the float-
ing-point number E*xSh. In Alpol, the real quotient FO may be rounded
by the statement:

FO:=FO+2 %3, 0%%3),

This works because the addition will shift the fraction of FO to the
right until the last retained bit corresnonds to the integer unit po-
sition of FO.

The inteper division in Alpol defined by
*
)

FO//Fl=sipn(F0/F1) entier(abs(F0/F1))

may be simulated in floating-point arithmetic by the following state-
ments:

Q:=F0/F1;

Q:=if Q>=0 then (0-0.5) else (Q+0.5);

Q:=g+2™*34-0%%3),,

31-D383 RC 8000 Computer 5-

N

ESCAPE FACILITY

__—_—_—__-—-—-_————_———_—-—_—-—_—__————_-———.——_—-—-—-———

When a program is started, the escape function is normally inactive, as
the CPU status bit "escape mode" is logical 0. In the escape mode, i.e.
when this status bit is set, the escape function is controlled by a
mask, which comprises bits 5:11 of the status register. Fach of these

bits represents an instruction characteristic as follows:

Bit Characteristic
6 privileged instruction
T rnodifies the instruction counter
38 involves more than one memory word
9 modifies a memory word

10 refers to a memory word

11 auxiliary function

Each instruction is described by a bit pattern that indicates its
characteristics (see Chapter 10). The six bits of this pattern corre-
spond to bits 6:11 of the status register, i.e. the escape mask. If a
mask and an instruction contain one or more bits in corresponding

positions, an escape routine will be activated to perform some desired

action.

Example

The bit pattern of the Load Double Register instruction (DL) is o01010.
Bit 10 = 1 indicates that DL refers to a nemory location. Bit 8 = 1 in-
dicates that the reference is to a double word operation,

If, for example, the escape facility is being used to emulate virtual
memory, the mask will contain bits 9 and 10, and an attempt to execute
DL will result in an escape.

If, on the other hand, the escape facility is being used for tracing,

the mask will contain bit 7, and the DL instruction will be executed in

the normal way.

An escape normally takes place after generation of the effective address.

An exception to this is indirect addressing, where the instruction is

treated as an instruction that refers to a memory location. Instructions

31-D383 RC 8000 Computer '

with indirect addressing can thus occasion two escapes.

When an escape occurs, return information is saved starting from a
pre-defined escape address. This information contains the working reg-
isters, CPU status, instruction counter, and effective address.

The working registers are then initialized with information concern-
ing the escape situation, the escape mode status bit 1is reset, so
that the escape function is once more inactive, and program execution
continues starting from the word immediately following the saved re-

turn information.

Example

When a programning error occurs, it is often helpful to obtain infor-
mation about the program sequences that led up to it. This can be done
using the escape facility in the following manner.

The program is first augmented with arn escape routine, and then run
in the escape mode with a mask containing bit 7, i.e. for instructions
that modify the instruction counter.

For every escape, the routine will save the desired sequencing infor-
mation cyclically in a buffer. When the programming error occurs, the

buffer will contain information about the events leading up to it.

When the desired action has been performed, a Return from Escape in-
struction (RE) is executed in order to return to resumption of the
interrupted instruction. The effective address of the RE instruction
points to the saved return information.

By modification of this return information, or by pointing to other,
similar information, the escape return can be used to modify the es-

cape mode and/or escape mask, mask for arithmetic interrupts (as de-

fined in Chapter 7), working registers, and instructior counter.

31-D383 RC 8000 Computer

6-2

MONITOR CONTROL

In course of preparation.

31-D383 RC 8000 Computer

T-1

INPUT/OUTPUT SYSTEM 8

Yain characteristics .1

The input/output system is based on a common bus for communication be-
tween all central units, primary merories, and peripheral device con-

trollers, none of which has a special bus status.

UNIFIED 3US UNIFIED BUS

I 1T T T

GENERAL
CENTRAL PRIIARY DISC DLVICE
UNIT HMEMORY PROCESSOR PROCESEOR

Input/output devices on the bus as regarded as sets of registers. The
only way to communicate with a device is to transfer data to and from
these registers.

Device control functions are performed by addressing a device register
and transferring the appropriate bit pattern to it. Device status is
checked by addressing the status regisfer of the device and transferring
the content to the central processor. The current bus master (see Chapter
2) interrupts a central processor on the bus by addressing and transfer-
ring its interrupt number to a specific repister in that processor.

For further information, the reader should consult the device control-
ler handbook (RCSL 30-1k).

Input and output operations 3.2

All input and output operations are handled by two instructions, Data In
and Data Out, which have the standard instruction format (see Chapter 3).
liere, the W field selects the working register to be connected to the
bus, while the effective address of the instruction is used to address
the device register (see below). The basic bus communication technique

used in these operations is described in Chapter 2.

31-D383 RC 8000 Computer ‘ 8-1

8.2.1

Data In instructiog

This instruction is used for input operations, i.e. whenever data is
to be received from a device address on the bus. The content of the
addressed device register is transferred to the specified working
register,

The master addresses the slave and sends a ready signal. If the ad-
dress is correct, the slave places the data on the bus and sends an
acknowledge signal. The master receives the data and this signal and
checks the data for parity, completing the transfer.

If the received data contains a parify error, the master sets the
parity error status bit and generates an interrupt.

If the slave is busy, it sends a not-acknowledge signal, rejecting
the operation. The master, receiving this signal, sets the communication
error status bit and generates an interrupt.

If no signal whatsoever is received, because the address contains a
parity error or simply does not exist, the master sets the timeout

status bit and generates an interrupt.

Data Out instruction 8.2.2

This instruction is used for output operations, i.e. whenever data is
to be sent to a device address on the bus. The content of the specified
working register is transferred to the addressed device register.

The master addresses the slave, places the data on the bus, and sends
a ready signal. If the address is correct, the slave checks the re-
ceived data for parity and sends an acknowledge signal, completing the

transfer.

If the data contains a parity error, the slave sends a not-acknowledge
signal, rejecting the operation, and sets its own parity error status
bit.

If the slave is busy, it also sends a not-acknowledge signal.

The master, receiving this signal, sets the communication error status

bit and generates an interrupt.

If no signal whatsoever is received, because the address contains a
parity error or simply does not exist, the master sets the timeout

status bit and generates an interrupt.

31-D383 RC 8000 Computer 8-2

Exception indication 8.2.3

The so-called exception bits of the status register have the following

meaning after an operation:

Bit Input Output
21 bus parity error (unchanged)
22 bus timeout bus timeout
23 bus communication bus communication
error (device dependent) error (device dependent)
Standardized block-oriented device controllers 8.3

Standardized block-oriented controllers, such as the disc processor and
general device processor, are started by means of an output operation,
which addresses the controller as described below. Here, the content of
the working register is irrelevant.

Once started, the controller fetches its commands from the channel
program in the primary memory and executes them without engaging the
central processor.

Data to be read from or written to a device is transferred directly
between the device controller and the- primary memory.

The channel program is normally terminated by a STOP command, which
transfers the standard status information to the primary memory and

interrupts the controlling central processor.

Device address 8.3.1

Device addresses have the following format:

1
01 20212223
Bit 0 Logical 1, indicating I/O address. This bit is set by
the Data Out instruction.
Bits 1:20 Device address. Bits 1:20 are also used to calculate
the device description address (see below).
31-D383 RC 8000 Computer . 8-3

In the case of multi-device controllers, the address
is divided into a main device field and a sub-device
field. In the disc storage system, for example, bits
1:18 contain the binary number of the addressed disc
processor, preceded by zeros, and bits 19:20 the
logical number of one of the four disc drives.

The function of direct controller commands is de-.
fined only by the effective address; the data trans-

ferred by the instruction is irrelevant.

Bits 21:22 Device function. Bits 21:22 have the following meaning:

00 START CHANNEL PROGRAM
01 RESET DEVICE
10 (unassigned)

11 (unassigned)

START CHANNEL PROGRAM causes the addressed controller
to start its channel program by fetching the first word
of the device description using the device description
address (see below). During program execution the con-
troller will not accept further START CHANNEL PROGRAM
commands .)

RESET DEVICE causes the addressed controller to enter
an idle and unassigned state, in which it awaits ad-

dressing and can generate no interrupts.

Bit 23 Irrelevant.

Device description 8.3.2

The address of the device description is calculated using the device
address (bits 1:20) as follows: device base + device address x 8

The device base, which is common to all devices connected to the con-
troller, has an absolute address in the primary memory.

The device description contains the following:

1st word: Start of channel program. Address of the first channel pro-

gram command.

2nd word: Status address. First address of the area in the primary

memory to which the standard status information is to be

31-D383 RC 8000 Computer : 8-4

transferred at the end of the program.

3rd word: Interrupt destination. I/0 address of the central processor

to be interrupted at the end of the program.

4bth word: Interrupt level. Current interrunt number to be transferred

to the central processor.

—— s . o e o e o ———

Channel programs consist of sequences of three-word commands, each of
which contains a channel command and two parameters. The cormand proper

(the first word) has the following format:

0 1112 15161718 23

Bits 0:11 Irrelevant.

Bits 12:15 Command field. Contains the function code.
Bit 16 D field. Indicates data chaining.
Bit 17 S field. Indicates skipping.

Bits 18:23 Modifier field. Used to change the effect of the basic

command.

Command field

The basic commands can be divided into three groups according to para-
meter structure: some require two parameters, others only one, still
others none whatsoever.

The parameter FIRST CHAR ADDRESS specifies the start address of the
memory area to or from which characters are to be transferred or fetched.

“he parameter CHAR COUNT specifies the maximum number of characters to
be transferred or fetched.

The parameters DATA 1 and DATA 2, which are device dependent, specify
data areas.

For some device controllers, only three bits of the command field are

interpreted, in which case the bit pattern x111 indicates STOP.

31-D383 RC 8000 Computer

8.3.3

0-5

Bits Basic

12:15 Cormand Parameter 1 Parameter 2
0000 SENSE FIRST CHAR ADDRESS CHAR COUNT
0001 READ " "

0010 CONTROL " "

0011 WRITE " "

0100 WAIT (irrelevant) (irrelevant)
0101 (unassigned) " "

0110 COITROL II0 PARAM " "

0111 (unassigned) - "

1000 (unassigned) DATA 1 (irrelevant)
1001 " " 1"

lOlO 1" 1" 1

lOll " 1" ”

1100 (unassigned) DATA 1 DATA 2

llOl 1" " "

1110 " " 1"

1111 STOP (irrelevant) (irrelevant)

SENSE transfers data from the internal registers or memory of the con-
troller.

READ transfers data from the external data medium.

CONTROL transfers data to the internal registers or memory of the con-
troller.

WRITE transfers data to the external data medium.

WAIT permits the controller to generate an interrupt on certain events,
such as power low or intervention. The controller enters a semi-idle
state, in which it can accept a new START CHANNEL PROGRAM command (see
Section $.3.1).

For devices used for autoloading, CONTROL NO PARAM with modification 0
performs either an initializing function or no function at all.

STOP terminates the channel program.

Other fields

Other fields in the command word are not necessarily interpreted; if

they are, they have the following meanings:

31-D383 RC 8000 Computer

The D field indicates data chaining and is used to link the current

command to the next command, so that a connected data transfer may take
place to or from a non-connected memory area, indicated by a sequence
of FIRST CHAR ADDRESS and CHAR COUNT parameters.

The S field means "skip data transfer" and is used only in conjunction
with data chaining to transfer portions of connected data.

The meaning of the modifier field is device dependent, but modifica-

tion 0 always indicates normal use of the device.

Standard status information

—— s e s et e o e e o T > G S ——————

Standard status information is transferred to the primary memory start-
ing from the status address, contained in the second word of the device
description, either on normal termination of the channel program by the
STOP command or on abnormal termination by a device error.

The standard status information includes the following:

1st word: Channel program address. Indicates the command following the

current command.

2nd word: Remaining character count. Refers to the latest read or write

command or chain of such commands; in the latter case, the

count will be the total count for the chain.

3rd word: Current status. Reflects the status of the device at the ter-

mination of the program.

bth word: Event status. Contains information about events that have oc-

curred since the last sensing of the event status register.

Peripheral processors

All peripheral devices, with the exception of the primary memory, are

connected to the bus by means of peripheral processors (see Section 8.3).

Disc processor

A disc storage system consists of up to four disc drives connected
through a single adapter to a disc processor. The drives are programmed

as separate devices, and their channel programs can be run simultaneous-

31-D383 RC 8000 Computer

8.3.4

8.k

8.h.1

8-7

ly. Up to four disc processors can be connected to the bus.
For further information, the reader should consult the disc processor

reference manual (RCSL 30-M3).

General device processor

The general device processor, up to eight of which can be connected
to the bus, includes the processor proper, a parallel channel inter-
face, and a programmable front end.

The processor contains two independent sub-devices, called the
transmitter and the receiver. These are programmed as separate de-
vices, and can run their own channel programs simultaneously, though
transmission in both directions cannot take place at the same time.

The interface consists of a set of symmetrical input and output

lines, with a maximum transfer rate of 600 000 characters a second.
An asynchronous, fully interlocked request/acknowledge communication
technique is.used.

The front end is the RC 3600, a computer system with an unusually
wide range of peripheral and communications equipment. As a general
device controller for the RC 8000 computer, the RC 3600 handles mag-
netic tape units, printers, paper tape and punched card equipment,
and interactive terminals.

The RC 3600 is also a basic component in the RCNET computer network,
where it serves as a network node, local device controller for the
RC 8000, communications front end for the RC 8000 and computers of

other manufacture, remote device controller for visual display unit

terminals, and, finally, as a device controller performing the func-
tions of a terminal controller, cluster controller, remote job entry
terminal, or data entry system.

For further information, the reader should consult the reference

manual for the general device processor (RCSL 30-M5).

31-D383 RC 8000 Computer

8.k.2

8-8

OPERATOR CONTROL AND AUTOLOAD

Operator control panel

Operator control of the RC {000 is exercised from a panel containing a
power key, three indicator lamps, and an autoload button.

The power key is used to switch power to and remove power from the
central unit, primary memory, and device controllers.

The indicators are marked POWER OK, RUI, and AUTOLOAD.

When POWER OX is 1lit, the power to the above-mentioned units is as
it should ve.

When RUN is 1lit, the RC 0000 is running.

AUTOLOAD lights when the autoload function is initiated, and remains
1it until the autoloading is completed.

The autoload button, when pressed, stops the RC 8000; its release

causes a reset, and the autoload function is initiated.

Operation

Power is removed from the RC 8000 by turning the power key to the off
position. This generates a power interrupt, which permits the saving
of restart information before the power disappears.

Power is switched to the RC 0000 by turning the power key to the on
position. This causes a reset, and the power restart function is ini-
tiated.

If a power restart is undesirable, e.g. in a new installation or a
system change, the autoload button is held depressed while the power
key is turned to the on position; this places the RC 8000 in the
stopped state, and when the autoload button is released, the autoload
function will be initiated without power restart.

The autoload function is initiated by pressing the autoload button

and releasing it.

31-D383 RC 8000 Computer

9.1

9-1

Autoload

The autoload function places a device description, channel program,
and autoload program loop in the primary memory and activates the loop.
This causes a block to be loaded into the memory in a permanent area
from a device with a permanent device number. The loading overwrites
the autoload loop and must therefore, in the latter's place, consist
of jump instructions to the jump address in the loaded block. The
permanent device number is assigned to the desired autoload device
when the system is configured, and the autoload channel program is
designed so that any block-oriented input device can be used.

The AUTOLOAD indicator is extinguished by the loaded program after

a self-check.

Options

The RC 8000 can be supplied with a special autoload device and/or a

more sophisticated control panel as options.

Power restart

A power failure will cause the pgeneration of a power interrupt so that
restart information can be saved. The return of power will cause a re-
set, and the power restart function will be initiated.

Power restart may be regarded as an interrupt without the saving of
information, since it is assumed that the necessary information was
saved on the power interrupt.

A more detailed description of the power restart function will de-

pend on the system in question.

NOTE

This chapter will be expanded at a later date.

31-D383 RC 8000 Computer

9.3

9.4

9.5

INSTRUCTION SET

——— - -

Mne- Nu- Descr. Bit Pattern!
monic meric (Status Reg. Bits)
Code Code (6 7 8 91011)

Address handling
AM Next Address, Modify 9 0 0 O
AL Address, Load 11
AC Address Complemented, Load 33 0 0 0

Register transfer
HL Half Register, Load 3 0O 0 0 01 0
HS Half Register, Store 26 0 0 01 00O
RL Register, Load 20 0 00 0 1 0
RS Register, Store 23 0 0 001 0 O
RX Register and Memory Word, Fxchange 25 0 0 01 1 O
DL Double Register, Load 54 0 01 01 0
DS Double Register, Store 55 0 01 1 0 O
XL ZIxception Register, Load 16 0 00 01 O
XS Exception Register, Store 27 0O 0 01 0 O

Integer byte (halfword) arithmetic
BZ Integer Byte, Load (Zero Extension) 19 0 0001 O
BL Integer Byte, Load (Sign Extension) 2 0 00 01 O
BA Integer Byte, Add 18 0 00 01 O
BS Integer Byte, Subtract 17 0O 0 0 0 1 ©
1 Bit Instruction Characteristic

6 privileged

T modifies instruction counter

8 involves more than one memory word

9 modifies memory word

10 refers to memory word
11 auxiliary function

31-D383 RC 8000 Computer

10

10-1

WA
WS
WM
WD

55

CI
CFr

FA

FM
FD

LO

AD

NS
ND

Integer

word arithmetic

Integer
Integer
Integer

Integer

Integer

Word, Add
Word, Subtract
Word, Multiply

Word, Divide

double word arithmetic

Integer

Integer

Double Word, Add
Double Word, Subtract

Arithmetic conversion

Convert

Convert

Integer to Floating
Floating to Integer

Floating-point arithmetic

Floating, Add

Floating, Subtract
Floating, Multiply

Floating, Divide

Logical

operations

Logical
Logical
Logical

And
Or

Exclusive Or

Shift operations

Arithmetically Shift Single
Arithmetically Shift Double
Logically Shift Single
Logically Shift Double

Normalize Single

Normalize Double

31-D383

10
2k

56
57

32

AN\

RC 8000 Computer

o O O O

o O O O

o O O O o O

o O O O

o O O O

o O O O O O

o o O O

HoE

o o ©C O O o

o O o O o O O o

H H O O O O

B e

o e

o O O O O O

o O o o

o O O O

©C O FH B

10-2

Kt

+
I

X
=

)
4

H o=
S

g

Mms
I TL

JL
SH
SL
SE
SN
S0
Sz
SX
Sp
RE

JE
JD
GP
IS
RI

GG

DO
DI

31-D383

Sequencing ;

Jump with Register Link
Skip if Register High

Skip if Register Low

Skip if Register Equal

Skip if Register Not Fqual
Skip if Register 3its One
Skip if Register Bits Zero
Skip if No Exceptions

Skip if No Write Protection

Return from Escape

Monitor control

Jump with Interrupt Fnabled
Jump with Interrupt Disabled
General Register, Put
(unassigned)

Return from Interrupt
(unassigned)

General Register, Get
(unassigned)

(unassigned)

Data Out

Data In

(unassigned)

(unassigned)

(unassigned)

(unassigned)

(unassigned)

(unassigned)

13
Lo
L1
Lo
43
LYy
Ls
L6
21
22

?;729

51

— 0
58
59
60
61
62

RC 8000 Computer

O O O O O O O O O ©O

R R R T i e I = T T = O S P py E IR IR

T R T T SRS SR S R S R

o O O O O O 0O 0O 0O 0O O 0O +FHF o Ok H

H O O O O O © O O o

O O O O O O O O O 0O 0O O +H o o o o

O O O O O O O O O ©

O O O O O O O O O O O O o O o o o

H O O o & 0o 0o O O O

O O O O O O O O 0O O 0O O ¢+ o o o o

O B F H H H K H H O

o O O 0o 0o 0o+ +H oo +H O o o - o o

10-3

DEFINITION OF INSTRUCTIONS 11

In course of preparation.

NOTL

As many of the instructions found in the RC 4000 computer recur in the
RC 8000 (cf. Chapter 10), the chapter "Defintion of Instructions" from

the RC 4000 Computer Reference Manual is included here for your infor-

mation.

31-D383 RC 8000 Computer 11-1

Chapter 14

DEFINITION OF INSTRUCTIONS

14.1. Algol Notation

This chapter gives a formal definition of the instruction logic. The basic
instruction cycle and all operations are described in the Algol 60 language,
extended with the following concepts:

Declarations. A register declaration consists of an identifier, followed by a
specification of the bit size in parentheses. As an example:

register SB(0:23)
is a declaration of a storage buffer register SB of 24 bits, numbered 0 to 23 from
the left. Similar declarations are introduced for register arrays and the internal
store: ,)

register array W(0:3)(0:23)

storage array word(O:word limit)(0:23)

Algorithms. Reference to a sub-field within a register is defined in the
following way: Bit number i in the register SB is denoted SB(i). The register field
from bit i to bit j is described as SB(i;j). Storage references to bytes, words, and
protection keys are denoted byte(SB), word(SB), and protection key(SB),
respectively.

14.2. Register Structure

The instruction logic is defined within the frame of the register structure
shown in the following figure. It corresponds very closely to the actual structure
of the central processor.

A data-word transferred to or from the store is held in the combined register
SB and PK.

When an instruction is fetched, the operation byte is assigned to the FR
register, while the displacement byte is placed in SB and extended to 24 bits.

SB and AR act as input registers to the adder. AR performs single-length shift
operations and, combined with BR, double-length shift operations.

14.2. REGISTER STRUCTURE

STORAGE BUS ADDER BUS
«— wo -«
<+ w1 <+—» WORKING REGISTERS
——————— w2 ————P
DUE— w3 o«
> STORE
PROTECTION KEY
——— { PK PR |le——»| PROTECTION REGISTER
- » FR FUNCTION REGISTER
PR 1C €« »] INSTRUCTION COUNTER
S — BR ———— B REGISTER
AR «———»] A REGISTER
ADDER I
SB «—— STORAGE BUFFER
SC l@—— SEQUENTIAL COUNTER
» EX EXCEPTION REGISTER
L IR 5| INTERRUPT REGISTER
> IM L » INTERRUPT MASK
la——>»| |10 CONTROL }——»
10 BUS I
DEVICE 0
DEVICE 1 DEVICE BUFFERS

ETC.

14.2. REGISTER STRUCTURE 53

SE. AE, and BE denote extensions of the registers SB, AR, and BR used in
floating-point operations.
The sequential counter SC is used to determine the number of iterations in

arithmetic operations.
The functional units are declared as follows:

register PK(0:2), PR(0:7). FR(O:11), 1C(0:23),
BR(0:23), AR(—1:23), SB(0:23),
BE(24:35). AE(24:37), SE(24:37),
SC(11:23). EX(21:23), IR(0:23), IM(0:23):

register array W(0:3)(0:23),
device buffer(O:device limit)(0:23):

storage array word(O:word limit) (0:23).
protection key(O:word limit) (0:2);

boolcan monitor mode, interrupt disabled.
reset key, start key, autoload key:

In references to registers and the store, the tollowing abbreviations are used:

Abbreviation: Used instead of:

W W(FR(6:7))

Wpre W(if FR(6:7) = 0 then 3 else FR(6:7)—1)
. Wifrac Wpre concat W(0:11)

Wexp W(12:23)

ARBR AR concat BR

BF BR concat BE

AF AR concat AE

SF SB concat SE

SBexp Various 12-bit registers holding the

exponent of a storage operand.
byte(SB) if SB(23) = 0 then word(SB)(0:11)
else word(SB)(12:23)
fraction(SB) word(if SB = 0 then 6 else SB—-2) concat word(SB)(0:11)
exponent(SB) word(SB)(12:23)

54 14.3. ELEMIEENTARY OPERATIONS

14.3.Elementary Operations

Instructions operating on registers and storage opcrands will be defined in
terms of the following elementary operations:

positive signed not + — shiftleft shiftright

The monadic operator positive extends an operand to the left with zeroes
until it has the same number of bits as the operand to which the result is
assigned.

The monadic operator signed extends the signbit of an operand to the left
until it has the same number of bits as the operand to which the result is
assigned.

The monadic operators shiftleft and shiftright shift an operand one position to
the left and right with zero extension.

The monadic operator not necgates all bits of an operand, i.e. ones become
zeroes and zeroes become ones.

The dyadic operators + and — perform addition and subtraction of two
operands in the binary two's complement representation.

Consider four registers:

register R(0:j). A(O3), B(O:j). C(ij)
where 0 <1 < j. The operators can now be defined by the following statements:
Statement: Definition:

R: = positive C; R(i:))=C:RO:i-1):=0:

R:= signed C; R(i;j):= C;
for bit:= 0 step 1 until i—1 do R(bit):= R(i):

R:= shiftleft R; R(O:)-1)=R(1:j): R(j)=0:
R:= shiftright R: R(1:j):=R(0:j—1): R(0)=0:

R:= not R; for bit:= O step 1 until j do
R(bit):= if R(bit) = O then 1 else O;

R:=A +B; next carry:= 0;
for bit:=j step — 1 until 0 do
begin carry:= next carry;
if A(bit)<>B(bit) then R(bit):= not carry
clse begin R(bit):= carry; next carry:= A(bit) end:
end;

R:

H
>
&

R:= A + ((not B) + 1),

14.4. CONTROL PANEL FUNCTIONS 55

14.4. Control Panel Functions

Reset System:
word(10):= IC;
comment: the system is reset-when the operator unlocks the control panel and
depresses the reset key, when the power is switched off, or when input errors
are detected during autoloading;

Power On:

monitor mode:= interrupt disabled:= true;

reset key:= start key:= autoload key:= false;

comment: these booleans are set to true, when the operator depresses the corre-

sponding keys on the control panel;

After Reset:

if autoload key then

begin IC:= SB:= 0;
goto Autoload Word;

end;

if start key then

begin IC:= word(14);.1C(23):
goto Fetch Instruction;

end;

goto After Reset:

0;

14.5. Instruction Fetch Cycle
Next Instruction:
if interrupt disabled then goto Fetch Instruction;
Interruption Service:
for bit:= O step 1 until 23 do
begin it IR(bit) = 1 and IM(bit) = | then
begin IR(bit):= 0;
word(8):= shiftleft bit:
word(10)= IC;
IC:= word(12), 1C(23):= 0;
monitor mode:= interrupt disabled:= true:
goto Fetch Instruction;
end;
end;

Fetch Instruction:
AR:= positive IC; comment: save relative address:
if IC > word limit then goto Instruction Exception:

56 14.6. PROTECTION PROCLEDURLES

it reset key then goto Reset System;
FR:= byte(IC); SB:= signed byte(IC +1);
PK:= protection key(1C);
Decode Instruction:
C:=1C + 2:
if not monitor mode and PR(PK) =1
then goto Instruction Exception;
monitor mode:= PR(PK) = 1;
if FR(8) <>0 then SB:= SB + AR(0:23): comment: relative address:

if FR(10:11) <> 0 then SB:= SB + W(FR(10:11)): comment: indexing:

if FR(9) <> 0 then

begin Test Address: SB:= word(SB); comment: indirect address:
end;

comment: SB contains the effective address and IC points to
the next instruction:

goto operation (FR(O:S‘));

14.6. Protection Procedures

Instruction Exception:
IR(0):= 1, comment: IM(0) is always 1
goto Interruption Service:

procedure Test Address:
begin if SB(0:22) > word limit then goto Instruction Exception,
end;

procedure Test Mode;
begin if not monitor mode then goto Instruction Exception;
end;

Procedure Test Protection;
begin PK:= protection key(SB);
if not monitor mode and PR(PK) = 1
then goto Instruction Exception;
end;

14.7. ARITHMETIC PROCEDURLS 57

14.7. Arithmetic Procedures

procedure Test Integer,

begin if AR(-1) <> AR(0) then IR(1)=EX(22)= 1:
EX(23):= camry: :

end:

procedure Fetch Floating Operands;
comment: The procedure moves the register and storage operand to the
following registers:
AF register fraction
SF storage fraction
Wexp register exponent
SBexp storage exponent;
begin
AF(—1:35):= signed Wfrac; AF(36:37):= 0O
SF({0:35):= fraction(SB); SF(36:37):= O:
SBexp:= exponent(SB);
end: '

procedure Test Precision Mode and Store:
comment: Depending on exception bit 21 the procedure leaves the fraction in
AF unchanged. or scts the last two bits of it cqual to the last but two.
Finally, the fraction in AF and the exponent in SC are stored in double
working registers;
begin

if EX(21) = 1 then AF(35):= AF(34):= AF(33);

Wirac:= AF(0:35); Wexp:= SC(12:23);
end;

procedure Normalize and Round Floating:

comment: The procedure normalizes the fraction in AF, rounds it, and re-normal-
izes it if necessary. The exponent in SC is adjusted correspondingly. Finally, the
exponent is tested for overflow and underflow, i.c. the interrupj and exception
bits are set if the exponent exceeds 2047 or —-2048;

begin

58 14.8. INSTRUCTION EXIECUTION

Again: if AF(1) <> AF(0) then
begin comment: Right shift;
AF(0:37):= AF(1:36): SC:= SC + [;
end clse .
it AF =0 then SC:= 2048 clse
begin
for SC:= SC. SC 1 while AF(0) = AF(1) do
AF:= shiftleft AF:
comment: Left shifts until normalized:
end:
if AF(36) = 1 then
begin comment: Rounding:
AF= Al + 4 AF(36:37):= 0: goto Again:
end;
if SC(11) <> SC(12) then EX(22)=1R(2):= 1I:
end:

14.8. Instruction Execution

For each instruction the normal exccution is defined. Also specificd are the
setting of the exception register and the conditions that will cause a program
interruption. The algorithms tollow the actual micro-program closely with the
omission of irrelevant intermediate steps.

Modify Next Address
Use the effective address as an increment to the displacement in the next
instruction. The operation changes only the effective address of the next
instruction whose D ficld remains unchanged.

comment: the modificr address is saved in AR, and the next

instruction is fetched and moditied;

AR:= signed SB;

if 1C > word limit then goto Instruction Exception;

FR:= byte(IC), SB:= signed byte(IC + 1);

PK:= protection key(IC);

SB:=SB + AR(0:23):

AR:= positive [C; comment: save relative address:

goto Decode Instruction;
Exception: unchanged.
Interruption: disabled until the next instruction has been executed.

14.8. INSTRUCTION EXECUTION 59

Load Address
Load the W register with the cffective address.
W:= SB; goto Next Instruction;
Exception: unchanged.
Interruption: none.
Note: When the same register is specified by the W and X fields, the operation
increments the register by the value of the D field.

Load Address Complemented
Load the W register with the two’s complement of the effective address.
Complementation of the maximum negative number -2%#23 gives the result
- 2%%23 and produces an overtlow.

EX(22:23)=0;

AR:= 0 - signed SB:

W:= AR(0:23): Test Integer:

goto Next Instruction:
Exception: (22) overflow. (23) carry.
Interruption: (1) integer overtlow.
Note: When the same register is specified by the W and X ficlds and the D field
is zero, the operation is a sign reversal of the register.

Load Half Register
Insert the storage bytc addressed in the right-most 12 bits of the W register
without changing the left-most 12 bits. The storage byte remains unchanged.
Test Address; W(12:23):= byte(SB):
goto Next Instruction:
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves 12 bits from the left or right side of
one register to the right side of another register.

Store Half Register
Store the right-most 12 bits of the W register in the storage byte addressed. The
register remains unchanged.

Test Address: Test Protection:

byte(SB) = W(12:23):

goto Next Instruction;

60 14.8. INSTRUCTION EXECUTION

Exception: unchanged.

Interruption: (0) undefined address or protection violation.

Note: When SB < 8, the operation moves 12 bits from the right side of one
register to the left or right side of another register.

Load Register
Load the W register with the storage word addressed. The storage word remains
unchanged.
Test Address; W:= word(SB):
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < &, the operation is a register to register transfer.

Store Register
Store the W register in the storage word addressed. The register remains

unchanged.
Test Address; Test Protection;
word(SB):= W;

goto Next Instruction:
Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < &, the operation is a register to register transfer.

Exchange Register and Store
The W register is stored in the storage word addressed and the previous contents
of the storage word is loaded into the register.
AR:= signed W;
Test Address: W:= word(SB):
Test Protection; word(SB):= AR(0:23):
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation exchanges the contents of two registers.

14.8. INSTRUCTION EXECUTION 61

Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation exchanges the contents of two registers.

Load Double Register
Load the register pair Wpre and W with the storage double word addressed. The
storage word remains unchanged.
= if SB = 0 then 6 else SB — 2;

Test Address;

W:= word(SB); Wpre:= word(BR); -

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < &, the operation is a double register to double register transfer
except when the W register is also the first word of the storage operand.

Store Double Register
Store the register pair Wpre and W in the storage double word addressed. The
register pair remains unchanged.
Test Address; Test Protection; word(SB):= W
SB:=if SB = 0 then 6 else SB — 2
Test Protection; word(SB):= Wpre;
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation is a double register to double register transfer
except when the Wpre register is also the last word of the storage operand.

Load Byte with Zeroes
Insert the storage byte addressed in the right-most 12 bits of the W register and
extend it towards the extreme left with zeroes. The storage byte remains
unchanged.

Test Address; W:= positive byte(SB);

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves 12 bits from the left or right side of
one register to the right side of another register. followed by a zero extension to
24 bits.

62 14.8. INSTRUCTION EXECUTION

Load Integer Byte
Insert the storage byte addressed in the right-most 12 bits of the W register and
extend the sign bit towards the extreme left. The storage byte remains
unchanged. :
Test Address; W:= signed byte(SB):
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves-12 bits from the left or right side of

one register to the right side of another register, followed by a sign extension to
24 bits.

Add Integer Byte, Subtract Integer Byte
The storage byte addressed is extended towards the left to 24 bits and added to
(or subtracted from) the W register, and the result is placed in the register. The
storage byte remains unchanged.

EX(22:23):= 0; Test Address:

if add then AR:= signed W + signed byte(SB)

else AR:= signed W signed byte(SB);

W:= AR(0:23); Test Integer;

goto Next Instruction;
Exception: (22) overflow, (23) carry.
Interruption: (0) undefined address, (1) integer overflow.
Note: When SB < 8, the operations adds (or subtracts) 12 bits from the left or
right side of one register to (or from) 24 bits in another register.

Add Integer Word, Subtract Integer Word
The storage word addressed is added to (or subtracted from) the W register, and
the result is placed in the register. The storage word remains unchanged.
EX(22:23):= 0; Test Address:
if add then AR:= signed W + signed word(SB)
else AR:= signed W — signed word(SB);
W:= AR(0:23); Test Integer;
goto Next Instruction;
Exception: (22) overflow, (23) carry.
Interruption: (0) undefined address, (1) integer overflow.
Note: When SB < 8, the operation adds (or subtracts) one register to (or from)
another register.

14.8. INSTRUCTION EXECUTION 03

‘ Multiply Integer Word
The W register is multiplied by the storage word addressed. The 48-bit signed
product is placed in the register pair Wpre and W. Overflow cannot occur.
comment: The multiplicand and the multiplier are placed in SB and
BR. SC determines the number of iterations. After multiplication,
ARBR contains the product;
Test Address: AR:= 0; BR:= W; SB:= word(SB);
for SC:= 22 step —1 until 0 do
begin if BR(23) = I then AR:= AR + signed SB:
ARBR(0:47):= ARBR(—1:46);
end;
it BR(23) =1 then AR:= AR - signed SB;
ARBR(0:47):= ARBR(--1:46):
Wpre:= AR(0:23); W:= BR;
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is a register by register multiplication.

Divide Integer Word
The register pair Wpre and W is divided by the storage word addressed. The
24-bit signed quotient is placed in the W register, while the 24-bit signed
remainder is placed in the preceeding register Wpre. The absolute value of the
remainder is less than the absolute value of the divisor, and a non-zero remainder
has the same sign as the dividend. An overflow is registered, if the divisor is zero
or if the quotient exceeds 24 bits. In this case the dividend remains unchanged in
the working registers.
EX(22:23):= 0; Test Address;
AR:= Wpre; BR:= W; SB:= word(SB);
comment: The dividend and the divisor are placed in ARBR and SB. After
division by the non-restoring method, AR(—1:22) contains a remainder and
ARBR(23:47) contains a 25 bit quotient in which the left-most bit is
represented by its complemented value and the right-most bit by a one;
next digit:= if AR(—1) = SB(0) then 1 else O:
for SC:= 23 step —1 until 0 do
begin ARBR:= shiftleft ARBR; ARBR(47):= next digit;
AR:=if next digit =1 then AR — signed SB
else AR + signed SB;
next digit:= if AR(-1)=SB(0) then 1 else O:

64

14.8. INSTRUCTION EXECUTION

end:
ARBR:= shiftleft ARBR; ARBR(47):= 1;
if AR(23) = BR(0) then '
Quotient Overflow:
begin IR(1):= EX(22):= 1; goto Next Instruction end;
comment: the following ensures that abs(remainder) <abs(divisor):
if abs(AR(—1:22)) = abs(SB) then
begin if SB <0 then BR:= BR — 1 else
begin BR:= BR + I '
if AR(23) = BR(0) then goto Quotient Overflow;
end;

end:
AR(0:23):= AR(--1:22);

comment: the following cnsurcs that sign(remainder) = sign(dividend)
for a non-zero remainder:
if AR <> 0and AR(-1) <> Wpre(0) then
begin if AR(—1) = SB(0) then |
begin AR:= AR - signed SB; BR:= BR + 1 end
else
begin AR:= AR + signed SB; BR:= BR — 1 end;,
end;
Wpre:= AR(0:23); W;= BR:
goto Next Instruction;

Exception: (22) overflow, (23} zero.
Interruption: (0) undefined address. (1) integer overflow.
Note: When SB < 8, the operation is a double register by register division.

Add Integer Double Word, Subtract Integer Double Word

The storage double word addressed is added to (or subtracted from) the register
pair Wpre and W, and the result is placed in the register pair. The storage double

word remains unchanged.

EX(22:23):= 0: Test Address:

if add then AR:= signed W + signed word(SB)
else AR:= signed W — signed word(SB);

W:= AR(0:23);

14.8. INSTRUCTION EXECUTION 65

SB:=if SB = 0 then 6 else SB — 2;

if add then :

begin if carry then AR:= signed Wpre + signed word(SB) + 1

else AR:= signed Wpre + signed word(SB);

end else

begin if carry then AR:= signed Wpre — signed word(SB)

else AR:= signed Wpre — signed word(SB) — 1;

end; :
Wpre:= AR(0:23); Test Integer:

Exception: (22) overflow, (23) carry.

Interruption: (0) undefined address, (1) integer overflow.

Note: When SB < 8, the operation adds or subtracts two register pairs except

when the W register is also the first word of the storage operand.

Convert Integer to Floating
Convert the W register, interpreted as an integer multiplied by 2**effective address,
to a floating-point number and place it in the register pair Wpre and W. An overflow
is registered if the exponent exceeds the 12 bit range.

EX(22:23)=0;

AF(—1:23):=signed W: AF(24:47):= 0;

if AF =0 then

begin Wfrac:= 0; Wexp:= - 2048;

goto Next Instruction;

end;

SC:=23;

Normalize and Round Floating;

SC:=SC + SB(11:23):

if SC(11) <> SC(12) then EX(22)=1R(2):=1;

Wfrac:= AF(0:35); Wexp:=SC(12:23);

goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (2) floating-point overflow.

Convert Floating to Integer

Convert the register pair Wpre and W, interpreted as a floating-point number
multiplied by 2**effective address, to an integer and place it in the W register. Wpre
remains unchanged. An overflow is registered if the integer exceeds the 24 bit
range.

66 14.8. INSTRUCTION EXECUTION

EX(22:23)=0:
AF(—1:35) = signed Wfrac; AF(36:37):=
SB:=23 — SB — signed Wexp: SC:= SB(ll 73)
it SB<<0and AF <> 0 then goto Integer Overflow:
if SB>= 04 then AF:=0:;
if 0 < SB and SB< 64 then
for SC:=SC - I step —1 until 0 do AF(0:37):= AF(1:36);
it AF(24)=1 then AR:= AR + I: comment: Rounding;
if AF(—-1)<> AF(0) then
Integer Overflow: EX(22):=IR(1):= 1
else W:= AR(0:23);
goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (1) integer overflow.

Add Floating, Subtract Floating

The storage double word addressed is added to (or subtracted from) the register
pair Wpre and W as a floating-point number, and the result is placed in the

register pair. The storage double word remains unchanged.
EX(22:23):= 0; Test Address: Fetch Floating Operands;
SC:= signed Wexp — signed SBexp;
if SC >= 38 then
begin SC:= signed Wexp; Test Precision Mode and Store;
goto Next Instruction:
end else
if SC <= 38 then
begin if add then
begin AF:= signed SF; SC:= signed SBexp;
‘Test Precision and Store;
goto Next Instruction;

end:
Wexp:= SBexp; AF:= 0;
end else
if SC > 0 then
for SC:= SC —1 step —1 until 0 do SF(1:37):= SF(0:36) else
if SC < 0 then
begin Wexp:= SBexp;

for SC:=SC + 1 step 1 until 0 do AF(0:37):= AF(—1:36):

14.8. INSTRUCTION EXLECUTION 67

end;
if add then AF:= AF + signed SF
else AF:= AF -- signed SF:

SC:= signed Wexp;

Normalize and Round Floating;

Test Precision Mode and Store:

goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.
Note: When SB < 8. the operation is a floating-point addition or subtraction of
two register pairs.

Multiply Floating
The register pair Wpre and W is multiplied by the storage double word addressed
as a floating-point number, and the product is placed in the register pair. The
storage double word remains unchanged.

EX(22:23):= 0; Test Address; Fetch Floating Operands;

BF:= AF(0:35); AF:= 0;

for SC:= 34 step —1 until 0 do

begin if BF(35) = | then AF:= AF + signed SF;

AF(0:37)= AF(—1:36); BF := shiftright BF;

end,

if BF(35) = 1 then AF:= AF — signed SF;

SC:= signed Wexp + signed SBexp:

Normalize and Round Floating;

Test Precision Mode and Store;

goto Next Instruction:
Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.
Note: When SB < 8, the operation is a floating-point multiplication of two
register pairs.

Divide Floating
The register pair Wpre and W is divided by the storage double word addressed as
a floating-point number, and the quotient is placed in the register pair. The
storage double word remains unchanged.

EX(22:23):= 0; Test Address; Fetch Floating Operands;

SC:= signed Wexp — signed SBexp + 35;

if AR =0 then

14.8. INSTRUCTION EXECUTION

begin comment: Zero result or overflow for 0/0;
if SB =0 then EX(22):=IR(2):=1
else Wexp:= —2048;
goto Next Instruction;
end else
if SB = 0 then
begin comment: Overflow for X/0;
EX(22):=IR(2)=1;
goto Next Instruction;
end else
if AF(—1)=SF(0) then
begin comment: First quotient digit = 0;
BF:= 0; AF:= shiftleft (AF — signed SF);
end else
begin comment: First quotient digit = 1,
BF:= -1; AF = shiftleft (AF + signed SF);
end;
next digit:= if AF(—1) =SF(0) then 1 else O;
for SC:= SC, SC — 1 while BF(0) = BF(1) do
begin comment: The iteration proceeds until the quotient is
normalized. SC then contains the exponent;
BF:= shiftleft BF; BF(35):= next digit;
AF:= if next digit = 1 then AF — signed SF
else AF + signed SF;
next digit:= if AF(—1) =SF(0) then 1 else O:
AF:= shiftleft AF;
end;
if AF(—1) =SF(0) then AF(36:37):= 2 else AF(36:37):=0:
AF(—1:35):= signed BF:
Normalize and Round Floating;
Test Precision Mode and Store:
goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.
Note: When SB < &, the operation is a floating-point division of two register
pairs.

N\

14.8. INSTRUCTION EXECUTION 69

Logical And
The W register is combined with the storage word addressed by a logical And
operation. The result is placed in the register. The storage word remains
unchanged. :

Test Address; SB:= word(SB);

for bit:= 0 step 1 until 23 do

W(bit):= if W(bit) = 1 and SB(bit) = 1 then 1 else O;

goto Next Instruction;
Exception: unchanged,
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an And combination of two registers bit by
bit.

Logical Or
The W register is combined with the storage word addressed by a logical Or
operation. The result is placed in the register. The storage word remains
unchanged.

Test Address; SB:= word(SB):

for bit:= 0 step 1 until 23 do

W(bit):= if W(bit) = 1 or SB(bit) = I then 1 else O;

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an Or combination of two registers bit by
bit.

Logical Exclusive Or
The W register is combined with the storage word addressed by a logical
Exclusive Or operation. The result is placed in the register. The storage word
remains unchanged.

Test Address; SB:= word(SB);

for bit:= 0 step 1 until 23 do

W(bit):= if W(bit) <> SB(bit) then 1 else O:

goto Next Instruction; .
Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an Exclusive Or combination of two
registers bit by bit. When all bits in the word addressed are ones, the operation is
a logical Negation of the register, bit by bit.

70 14.8. INSTRUCTION EXECUTION

Shift Single Arithmetically
Shift the contents of the W register the number of places specified by the
effective address in SB. If SB is negative, then shift right with sign extension in
the upper bits, otherwise shift left with zero extension in the lower bits.
Overflow is tested for each single shift.
EX(22:23):=0;
if SB = 0 then goto Next Instruction;
if abs(SB) >=64 then SB:= sign(SB)*48§;
if SB < 0 then :
begin for SC:= 1 step 1 until —SB do W(1:23):= W(0:22);
end else
begin for SC:= 1 step 1 until SB do
begin if W(0) <> W(1) then EX(22):= IR(1):= 1;
W:= shiftleft W:
end;
end;
goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (1) integer overflow.

Shift Double Arithmetically
Same as Shift Single Arithmetically performed with the register pair Wpre and W.

Shift Single Logically
Shift the contents of the W register the number of places specified by the
effective address in SB. If SB is negative, then shift right with zero extension in
the upper bits, otherwise shift left with zero extension in the lower bits.
Overflow is not indicated.

if SB = 0 then goto Next Instruction;

if SB <= 64 then SB:= sign(SB)*48;

if SB < O then

begin for SC:= 1| step 1 until -SB do W:= rightshift W;

end else

begin for SC:= 1 step 1 until SB do W:= leftshift W;

end;

goto Next Instruction;
Exception: unchanged.
Interruption: none.

14.8. INSTRUCTION EXECUTION 71

Shift Double Logically
Same as Shift Single Logically performed with the register pair Wpre and W.

Normalize Single
Shift the contents of the W register left with zero extension until bit O is
different from bit 1. The number of shifts performed is stored as a negative
integer in the storage byte addressed. If W = 0 the number of shifts is set to
—2048.

if W =0 then SC:= —2048 else

for SC:= 0, SC—1 while W(0) = W(1) do W:= shiftleft W;

Test Address; Test Protection;

byte(SB):= SC(12:23);

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.:

Normalize Double
Same as Normalize Single performed with the register pair Wpre and W.

Jump with Register Link
If the W field <> 0, the instruction counter is stored in the W register.
Following this, a jump is made to the effective address.

Test Address; Test Protection;

if FR(6:7) <> 0 then W:= I(C;

IC:= SB; IC(23):= 0;

goto Next Instruction;
Exception unchanged.
Interruption: (0) undefined address or protection violation.
Note: When the W field = O the operation is a simple unconditional jump that
leaves all registers unchanged. When the W field <> 0, the operation is a
subroutine jump that places the return address in the W register. A return jump
is performed as a simple jump, with the same register specified in the X field.

Skip if Register Iligh

Compare the W register and the effective address as signed integers. If the register
is greater than the address, then skip the following instruction. The register
remains unchanged.

72 14.8. INSTRUCTION EXECUTION

AR:= signed W — signed SB;

if AR > 0 then IC:=1C + 2;

goto Next Instruction;
Exception: unchanged.
Interruption: none.

Skip if Register Low ,
Compare the W register and the effective address as signed integers. If the register
is less than the address, then skip the following instruction. The register remains
unchanged.

AR:= signed W - signed SB;

if AR <O then IC:=1C + 2;

goto Next Instruction:
Exception: unchanged.
Interruption: none.

Skip if Register Equal
Compare the W register and the effective address as signed integers. If the register
equals the address, then skip the following instruction. The register remains
unchanged.

AR:= signed W - signed SB:

if AR =0 then IC:=IC + 2;

goto Next Instruction;
Exception: unchanged.
Interruption: none.

Skip if Register Not Equai
Compare the W register and the effective address as signed integers. If the register
is unequal to the address, then skip the following instruction. The register
remains unchanged.

AR:= signed W - signed SB;

if AR <> 0 then IC:=IC + 2;

goto Next Instruction;
Exception: unchanged.
Interruption: none.

Skip if Register Bits One

Use the effective address as a mask to test selected bits in the W register. If all
the selected bits are one, then skip the following instruction. The register remains
unchanged.

14.8. INSTRUCTION EXECUTION 73

for bit:= 0 step 1 until 23 do
AR(bit):= if SB(bit) = 1 then not W(bit) else O;
if AR(0:23) =0 then IC:=1C + 2:.
goto Next Instruction;
Exception: unchanged.
Interruption: none.
Note: When the effective address is zero, the operation skips the following
instruction unconditionally.

Skip if Register Bits Zero |
Use the effective address as a mask to test selected bits in the W register. If all
the selected bits are zero, then skip the following instruction. The register
remains unchanged.

for bit:= 0 step 1 until 23 do

AR(bit):= if SB(bit) = I then W(bit) clsc O:

it AR(0:23) =0 then IC:=IC + 2:

goto Next Instruction;
Exception: unchanged.
Interruption: none.
Note: When the effective address is zero. the operation skips the following
instruction unconditionally.

Skip if No Exceptions
Use the right-most three bits of the effective address as a mask to test selected
bits in the exception register. If all the selected bits are zero, then skip the
tollowing instructions. The exception register remains unchanged.

AR:= positive EX;

for bit:= 0 step 1 until 23 do

AR(bit):= if SB(bit) = 1 then AR(bit) else O;

if AR(0:23) =0 then IC:=IC + 2;

goto Next Instruction:
Exception: unchanged.
Interruption: none.
Note: When the effective address is zero. the operation skips the following
instruction unconditionally.

Skip if No Protection

Use the protection key of the storage word addressed as an index to select a bit
in the protection register. If the selected bit is zero, then skip the following
mstruction.

O

74 14.8. INSTRUCTION EXECUTION

Test Address; PK:= protection key(SB):
if PR(PK) =0 then IC:=IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.

Jump with Interrupt Enabled
Same as Jump with Register Link, except that the interruption system is enabled
first. This is a privileged instruction.

Test Mode: Test Address; interrupt disabled:= false:

if FR(6:7) <> 0 then W:=IC:

IC:= SB; IC(23):= 0:

goto Next Instruction:

Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Jump with Interrupt Disabled
Same as Jump with Register Link. except that the interruption system is disabled
first. This is a privileged instruction.
Test Mode; Test Address; interrupt disabled:= true;
if FR(6:7) <> 0 then W:=I(;
IC:= SB:; IC(23):= 0:
goto Next Instruction;
Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Clear Interrupt Bits
Use the effective address as a mask to clear selected interruption signals. This is a
privileged instruction.
Test Mode;
for bit:= 0 step 1 until 23 do
if SB(bit) = 1 then IR(bit):= 0;
goto Next Instruction;
Exception: unchanged.
Interruption: (0) not monitor mode.

14.8. INSTRUCTION EXECUTION 75

Store Interrupt Register
Store the interrupt register in the storage word addressed. The interrupt register
remains unchanged.
Test Address; Test Protection;
word(SB):= IR:
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load IMask Register
Insert the storage word addressed in the interrupt mask register. Bit O of the
mask register is permanently equal to one. This is a privileged instruction.
Test Mode: Test Address:
IM:= word(SB); IM(0):= 1;
goto Next Instruction;
Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Store Mask Register
Store the interrupt mask register in the storage word addressed. The mask
register remains unchanged.
Test Address; Test Protection;
word(SB):= IM:
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load Exception Register
Insert the right-most three bits of the storage byte addressed into the exception
register. The storage byte remains unchanged.
Test Address;
SB(12:23):= byte(SB); EX:= SB(21:23);
goto Next Instruction;
Exception: set as defined above.
Interruption: (0) undefined address.

OF

76 14.8. INSTRUCTION EXECUTION

Store Exception Register
Extend the exception register towards the left with zeroes and store it in the
storage byte addressed. The exception register remains unchanged.
Test Address: Test Protection;
byte(SB):= positive EX:
goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load Protection Register
Insert the right-most seven bits of the storage byte addressed into the protection
register. Bit O of the protection register is permanently equal to one. The storage
byte remains unchanged. This is a privileged instruction.

Test Mode; Test Address;

SB(12:23):= byte(SB); PR:= SB(16:23): PR(0):= 1,

goto Next Instruction:
Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Store Protection Register
Store the protection register in the right-most eight bits of the storage byte
addressed. The left-most four bits of the storage byte are set to zero. The
protection register remains unchanged.

Test Address; Test Protection;

AR:= positive PR; byte(SB):= AR(12:23);

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load Protection Key
Load the right-most three bits of the W register with the protection key of the
storage word addressed. The left-most twenty-one bits of the W register are set to
zero. The protection key of the storage word remains unchanged.

Test Address; :

W:= positive protection key(SB);

goto Next Instruction;
Exception: unchanged.
Interruption: (0) undefined address.

14.8. INSTRUCTION EXECUTION 77

Store Protection Key
Store the right-most three bits of the W register into the protection key of the
Storage word addressed. The register -remains unchanged. This is a privileged
instruction. :

Test Mode; Test Address:

protection key(SB):= W(21:23);

goto Next Instruction;
Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Input/Output
An input/output operation is initiated, if the selected device is available. If the
device is busy or disconnected, the operation is rejected. This is indicated in the
exception register. The detailed execution of the four basic commands: read,
write. sense, and control is defined in Chapter 8.

Test Mode:

device:= SB(0:17);

EX(22):= if disconnected (device) then 1 else 0O-

EX(23):= if busy(device) then | else 0;

if EX(22:23) <> 0 then goto Next Instruction:

if SB(22:23) = 0 then W:= device buffer(device):

comment: sense command:

if SB(23) =1 then device buffer(device):= W:

comment: write or control command:

goto Next Instruction;
Exception: (22) disconnected, (23) busy.
Interruption: none.

Autoload Word
Four 6-bit characters with odd parity from device number O are loaded into the
storage word addressed, and the protection key of the storage word is set to
zero. This is a privileged instruction. It repeats input, if the status bit O (end of
buffer) is set. The computer is, however, set in the reset state, if the loading
device is disconnected or if any other status bits are set during input.

Test Mode;

comment: save the load address in SF and BF and read 4 characters

into AR from device 0;

SF(24:35):= SB(0:11); BF(24:35):= SB(12:23);

AR:=0;

78

14.8. INSTRUCTION EXECUTION

for SC:= 1 step 1 until 4 do

begin

Start Input:

SB:= 2; comment: read command to device O;
if disconnected(0) then goto Reset System:

if busy(0) then goto Start Input;
EX(22:23)= 0;

Wait Input:

end:

SB:= 0; comment: sense command to device 0;

if disconnected(0) then goto Reset System;

if busy(0) then goto Wait Input;

EX(22:23):= 0;

SB:= device buffer(0);

if SB(0) =1 then goto Start Input;

comment: end of buffer status:

AR(0:17):= AR(6:23); AR(18:23):= 0:

for bit:= 0 step 1 until 23 do

AR(bit):= if AR(bit) = 1 or SB(bit) = 1
then 1 else 0O; ‘

if SB(0:11) <> 0 then goto Reset System;

comment: other status bits; \

SB(0:11):= SF(24:35); SB(12:23):= BF(24:35);
Test Address;

word(SB):= AR(0:23); protection key(SB):= 0;
goto Next Instruction;

Exception: (22) zero, (23) zero.
Interruption: none.

APPENDIX

Reserved memory locations

In course of preparation.

31-D383 RC 8000 Computer

Instruction execution times

In course of preparation.

31-D363

RC 8000 Computer

A2

