%

. R RN - g

can @ oxh VNG

&

KXo B G &

OO =

Title:

THE COROUTINE - MONITOR FOR RC 3600

E 8§ REGNECENTRALEN

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

RCSL No:
Edition:
Author:

43-R10371
July 1976
__Jorgen Lindballe

Keywords:

RC 3600, Coroutine-Monitor, Coroutines, Semaphores, Program Description

Abstract:

The Coroutine-Monitor is a set of procedures for the RC 3600, the purpose of
which are to ensure synchronization and exchange of data between coroutines
in a process in a MUS-Multiprogramming System. 30 poges.

. U.nlef this m'umul are eﬂuﬁm': that the ifications & ‘
confained herein are ect to change ot any time
Copyright © A/S Regnecentralen, 1976 | without prior nofice: 'c"*"hm ":"z for mrony Tote
cal or arithmetic errors which may appear in this monual

Printed by A/S Regnecentralen, Copenhagen and shall ot be remonsible. for any Gamages caveed by
rellence on any of the materials presented,

THE COROUTINE-MONITOR FOR RC 34600

CHAPTER 1:

COROUTINES AND PROCESSES

constants and variables in page 0
MUS-monitor

basic input-output

s

driver processes

coroutine~monitor

coroutine

coroutine-descriptions PROCESS

coroutine

process-description

NA T
VNG

coroutine

PROCESS

process=description
L

NN A
N~ NN

Fig. 1.1: RC3600 MEMORY LAY-OUT

Fig. 1.1 illustrates a typical RC 3600 memory lay-out. Besides the basic software
the memory contains a number of processes. Each process is terminated by its
process-description. The memory contains the Coroutine-Monitor, too. One or
more of the processes consist of a number of coroutines and the descriptions of
the coroutines.

So the memory contains a normal MUS-system with two extensions:

a. The Coroutine Monitor has beed added.

b. Some of the processes are structured in socalled coroutines.

A coroutine is a piece of code, which is executed again and again in a cyclic
manner only suspended in one or more waiting points. The execution of code be-
tween two waitingpoints is done in an indivisible way, i.e., the coroutine is not
interrupted by other coroutines in the process. The coroutines in a process are
synchronized and they exchange data by means of socalled semaphores (ch. 2.4).

So a coroutine is either active, or it is waiting in one of the queues, of which
the most important are the semaphore-queues (in which the coroutines are waiting
for signals to the semaphores) and the active queue (coroutines ready for the exe-
cution of instructions, because signals has been received).

But the processes still exchange data by means of the MUS-procedures (send message -
wait answer, etc) and they share the CPU-time in the ordinary way.

CHAPTER 2:

DESCRIPTIONS, SEMAPHORES AND OPERATIONS

2.1.

DESCRIPTIONS

Fig. 2.1 shows as an example how the different coroutine-descriptions (repre-
senting the coroutines) for one process are linked into different queves.

The current process are pointed out by "CURRENT PROCESS". The active co-
routine and the active-, the answer-, and the delay-queues are linked to
pointers in the process description. The semaphore queues and the operation
queues are linked to semaphores.

The Coroutine Monitor allows a coroutine to wait not only for an answer but
also for a message (ch. 4.3).

PROCESS DESCRIPTIONS

Every process is terminated by a process-description used by the MUS~Monitor.
Used together with the Coroutine Monitor the process description must be ex-
tended by the following words:

current process:

[

process~ ~ process- process—
description description description
o—rt current coroutine: o o—
o—u1 head of active queue: > —r
o—+ head of answer queue: - —+t
o—14 head of delay queve: Q- -—1
CD CD « CD l CD_l
l | T
: : : the active
CD ; CD 4 CD & coroutine
the delay- the answer- the active
queue queve queve
chained
semaphore semaphore
(closed) (open)

col

[

F

@ 4

semaphore-queue

ord

OP <

operation-queue

semaphore
nevutra
simple opg¢n)

Fig. 2.1: QUEUED COROUTINE-DESCRIPTIONS AND OPERATIONS

2.3.

COROUTIVE ~ELEMTWUTS P P ROAEL- DEsce pTi OV ¢

.

7.

Name: Contents:

CCOROUT Address of the description of the current
“coroutine (the active coroutine).

LATIME Clock value of the latest time the delay
queuve was scanned by the coroutine
monitor,

HACTIV Address of the description of the first
coroutine (the head) of the active queve.

HANSWER Address of the description of the first co-
routine (the head) of the answer queue.

HDELAY Address of the description of the first co-
routine (the head) of the delay queue.

(TRETURN a: Return oddress from CTOUT
b: Message buffer address).

(TRECORD Address of test record).

The two last words are only used by the test-procedures (chapter 8).

COROUTINE DESCRIPTIONS

Each coroutine has its own description, which may be stored everywhere in-
side the process. A coroutine-description consists of the following 6 words:

Name: Contents:

CIDENT CIDENT (0) : Priority (ch. 4.2)
CIDENT (1:7) : Test (for test only)
CIDENT (8:15) : Ident (for test only) (ch. 8.1)

NEXT 0 (terminaf-ion) or address of next coroutine
description in queue.

CEXIT Return address to coroutine after a waifinépoint.
(. D)

CLATOP Latest operation (ch. 6).

CRETURN Return address of coroutine after call of
procedure.

CACISAVE Saved AC1,

SEMAPHORES AND OPERATIONS

A semaphore is a word which may be referred to by a name from every co-
routine inside the process: N

0 1415

SEM: | A

The contents is changed by the coroutine-monitor-procedures. It is used for
synchronization of the coroutines and for exchange of data (operations) be-
tween the coroutines.

A semaphore may be either a simple semaphore or a chained semaphore.
A semaphore may be open, closed or neutral.

The contents of a semaphore depends on whether it is simple or chained, and
on whether it is open, closed or neutral according to fig. 2.2. The head of
the semaphore-queue is the description of the first coroutine in the queve.
The head of the operation=queue is the first operation in the queue.

An operation is a record of data in which word no. 0 may be used for the
link to the next operation (or the termination of the operation-queue).

simple chained

The count is inereased by 1 for One or more operations are linked
each call of SIGNAL (and de- to the semaphore after SIGNAL-

creased by 1 for each call of CHAINED
WAIT). SEM(0:14):COUNT (>0) SEM(0:14):Addr. of head of op .queug
SEM(15):1 - | SEM(15):1

The semaphore may be opened by The semaphore may be opened by
SIGNAL or closed by WAIT, SIGNAL-CHAINED or closed by
neutral WAIT-CHAINED "
SEM(0:14):0 SEM(0:14):0

SEM(15):1 SEM(15):1

One or more coroutines are linked One or more coroutines are linked
to the semaphore after call of to the semaphore after call of
WAIT WAIT-CHAINED

SEM(0:14):Addr. of head of sem.que| SEM(0:14):Addr. of head of sem.que]
SEM(15):0 SEM(15):0

closed

Fig. 2.2

2.5. CONSTANTS AND VARIABLES IN PAGE 0

Below are listed the locations in page 0 which are used by the coroutine-

monitors °
Name: Contents:
COROUT Address of the description of the current co-

routine (active coroutine) in current process.
(Contents equal the contents of CCOROUT.CUR).

COROUT may be omitted; it has been intro-
duced to save one instruction:

LDA 2, COROUT
instead of LDA 2, CUR

LDA 2, CCOROUT, 2
and it has complicated the MUS~Monitor which
must update COROUT, when changing from
one process to another. Furthermore COROUT
must be initialized from the coroutines,

PC . The program counter is used by COROUTINE-
WAIT-ANSWER.
CUR Address of the description of the current process. 1
RTIME (1:2) Real Time Clock.
EP of Coroutine-Delay: CDELAY
EP of Wait: WAITSEM
EP of Wait-Chained: WAITCHAINED
EP of Coroutine-Wait-Asnwer: CWANSWER
EP of Ctest: CTEST, ch. 8
EP of Cprint: CPRINT, ch. 8
EP of Ctout: CTOUT, ch. 8
EP of Signal: "SIGNAL
EP of Signal-Chained: " SIGCHAINED
EP of Coroutine-Pass: CPASS

EP = kg pondt

CHAPTER 3:

INITIALIZATION

Within a process one coroutine is born as the active coroutine, while the remaining
coroutine-descriptions usually are linked together in the active-queue. In these de-
scriptions the words CEXIT point at the initialization-code of the coroutines.

In each coroutine the initialization-code is terminated by a call of WAIT, WAIT-
CHAINED or COROUTINE-WAIT-ANSWER, so that at last every coroutine is linked
to the answer-queue or a semaphore-queue, and the process is waiting for an answer
from another process.

The description of the process is born with CCOROUT pointing at the description of
the abovementioned active coroutine; the “"program counter" must point at the ini-
tialization-code of this coroutine. HACTIV is pointing at the first description in the

active-queue mentioned above.

A semaphore may be born in a state one find appropriate.

PooCcrs OescRirTpoOL -

1.

CHAPTER 4:

COROUTINES AND QUEUES

The socalled active coroutine (or current coroutine) is that ‘coroutine within a
process, which at the moment (more precisely: When the process is "current

This coroutine remains being the active one until it arrives a waitingpoint,
i.e., it calls one of the following coroutine-monitor-procedures: WAIT or
WAIT-CHAINED (and the semaphore is not open), COROUTINE-WAIT-
ANSWER, COROUTINE-DELAY or COROUTINE-PASS; then it is linked upon
one of the queues: Semaphore-, answer-, delay-, or active-queue, respec-
tively, and the first coroutine in the active queue is linked off now being

If the active-queue is empty, when the active coroutine arrives its waiting-
point, the Coroutine-Monitor will let the process wait for either the arrival

of an answer for a coroutine in the answer-queue (this coroutine is then linked
off being the active one) or the run-out of the delay for one or more co-
routines in the delay-queue. These coroutines are then put into the active-queue.

The execution of instructions between two waitingpoints is done in an indivisible
way in the sense that it is not interrupted by other coroutines within the process.
But it should be emphasized that interrupt is not disabled, because the process
must share the time with other processes. But interrupt is mainly disabled in the
Coroutine-Monitor-procedures, because this monitor as the MUS-monitor is com-

In the Coroutine-Administration (chapter 5.10) which must be reentrant for all
processes due to the call of WAIT, interrupt is, however, enabled.

4.1. THE ACTIVE COROUTINE
process") executes instructions.
the active coroutine.
mon to all processes.

4.2. THE ACTIVE-QUEUE

The active-queue is a queue of descriptions of the coroutines which are ready
for the execution of instructions.

When an active coroutine arrives a waitingpoint, the first coroutine-description
is linked off the active-queue being the active one.

Below are listed a number of situations, where a coroutine~description is linked
on the active-queuve. However, it must be pointed out that if.the priority of
the coroutine is high, it becomes the first one, and if the priority is low it
becomes the last one in the queue:

When a semaphore is signalled from another coroutine the first co-
routine is linked off the semaphore-queue.

When an answer arrives, the coroutine waiting for the answer is
linked off the answer-queue. In this situation the active-queve is
always empty, so the coroutine becomes the active one.

A coroutine waiting for the run-out of a delay is linked off the
delay-queue, when this happens.

When the active coroutine calls COROUTINE-PASS. If the priority
is high, however, the call is dummy, because the coroutine re-
mains the active one.

THE ANSWER-QUEUE

The answer-queue is a queue of descriptions of coroutines each waiting for an
answer described by the buffer address.

After having, called SEND-MESSAGE it is put into (the front of) the answer-
queue, when the coroutine calls COROUTINE-WAIT-ANSWER. Returning to
the coroutine this must call WAIT-ANSWER to get the answer, i.e., the co-
routine is made active, when the answer arrives.

It should be emphasized that the Coroutine~-monitor calls WAIT only when
the active-queue is empty. Contrary all coroutines should be delayed.

As WAIT-ANSWER may be called behind your back for example from the
BASIC 1/O (wait transfer) such procedures, when called from a coroutine,
first call COROUTINE-WAIT-ANSWER.

Also COROUTINE-WAIT-MESSAGE is implemented by calling COROUTINE-
WAIT-ANSWER (bufferaddr. = 0). But messages must only be received in one

coroutine, because messages are not identified, contrary an answer, (Cfr. ch.
5.10).

THE DELAY-QUEUE

The delay-queue is a queue of descriptions of the coroutines each waiting for
a delay. A description is put into (the front of) the delay-queue by the call
of COROUTINE-DELAY. It is linked off the delay-queue and on the active-
queve, when the time specified has gone.

The unit of the delay-interval is no. of (20 msec-) clock counts.

THE SEMAPHORE-QUEUES

A semaphore-queue is a queue of coroutine-descriptions linked on a (closed)
semaphore. They were linked on™ the queue, when WAIT or WAIT-CHAINED
was called and the semaphore was not open. A coroutine-description is
always linked behind the queue independently of the priority. The first de-
scription is linked off and on the active queue, when another coroutine
signals the semaphore by SIGNAL or SIGNAL-CHAINED, respectively.

THE OPERATION-QUEUES

An operation-queue is a queue of operations linked on an (open, chained)
semaphore .,

It was linked on the queue, when a coroutine called SIGNAL-CHAINED,
and it is linked off when a coroutine calls WAIT-CHAINED.

A
1

CHAPTER 5:

SYSTEM DIAGRAM AND FLOWCHARTS

5.1. THE COROUTINE-MONITOR (@
Lo [
[5 hY AV Wi
. . . . coroutine coroutine .
signal signal- wait wait- . coroutine
. . ~delay wait=
chained chained pass
2 Y " < answer ¢ 7
—y !
< common common
<cu -signal -wait

stration
) NP,
L i 2 L 4
insert=in
~active- set- coroutine
queue exit -break
-7

This system-diagram shows the hierarchical order of the procedures in the Coroutine-
Monitor. In the upper row are shown the 7 procedures which may be called from a
coroutine. The arrows indicate from where the remaining procedures are called.

SIGNAL AND SIGNAL-CHAINED

signal
(semaphore)
begin

closed

‘common
signal

Tink coroutine’
off the sema-
phore-queue

disoﬂé—inter—

rupt
set-exit

(acl, acd)

count + 1|

atest operation
:= operation

v

ignal-chained
semaphore,
operation)
egin

disable~inter-
Fupt
set-exit

(acl, ac3)

insert=in-ac-
tive-queue
(coroutine)

semaphore
?
open
neutral

link operation
on operation-
queue

WAIT AND WAIT-CHAINED

wait
(semaphore)
begin

Y

disable inter-
rupt
set-exit

(acl, ac3)

closed
neutral

wait-chained
(semaphore ;
operation)begi

semaphore
?

link corou-
tine on sema=-

phore queue

!

disable inter-
rupt
set-exit

(acl, ac3)

link operation
off operation-
queve

5.4.

COROUTINE-WAIT-ANSWER

5.5.

COROUTINE-DELAY

coroutine~
wait-answer

(buffer)
begin

Y

interrupt-
disable
set-exit

(acl, acd)

latest opera-
tion
:= buffer

v

link corou-
tine on

answer-queue

coroutine-
delay

(delay)
begic:\y

v

interrupt dis-
able

set-exit

(acl, ac3)

latest opera-
tion:= no. of
counts to next
scan

L i

link coroutine
on delay-
queue

5.6. COROUTINE-PASS

coroutine~
pass
begin

disable-
interrupt
set-exit
(acl, acd)

v

insert=in=-

active-queve

(current
coroutine)

5.7. INSERT-IN-ACTIVE-QUEUE

insert=in-
active-queuve

(coroutine)
begin

0

l priority

insert corou- insert corou-
tine as the tine as the
last one in first one in
the active the active
veue queue

5.8. SET-EXIT

sef-;xif
(acl, acl)
begin

v

cexit:= ac3
caclsave: =
acl

Y

end

5.9. COROUTINE-BREAK

coroutine-
break
begin

v

break (current
process, cause

6, link)

y

end

5.10. COROUTINE-ADMINISTRATION

tirst coroutin
in active queye
is now activ

acgd:=coroutirle
acgzzfafesf op.
acl

:=aclsav

‘

enable-
interrupt

wevent *
go to
buffer coroutine

=0

enable-
interrupt

answer wait (tscan
buffer)
answer message of - interrupt

buf:= save mes] [coroutine
answer bu buf. -break

make corou+
tine active

21.

CHAPTER 6:

CALL OF THE COROUTINE PROCEDURES

The assembler has been extended with the names of the procedures, so that they are
called in the way mentioned below,

It should be emphasized that ac0 is always destroyed, that acl is never changed, that
ac2 by return always contains CLATOP, COROUTINE, i.e., the address of the latest
operation except for the call of COROUTINE-WAIT-ANSWER (ac2 = buffer address)
and COROUTINE-DELAY (ac2 = no. of intervals), and that ac3 by return contains
the address of the description of the coroutine itself (cfr. chapter 7).

6.1. PROCEDURE SIGNAL (SEMAPHORE)

. call: return:
ac0 undefined
acl addr. of semaphore aoddr. of semaphore
ac2 addr. of latest operation
ac3 link addr. of coroutine-description

If the semaphore is not closed, its value is increased by one, Otherwise the 1
walting coroutine is inserted into the active-queue.

6.2. PROCEDURE SIGCHAINED (SEMAPHORE, OPERATION)

call: return;
; . ac0 undefined
acl addr. of semaphore addr. of semaphore
ac2 addr. of operation addr. of latest operation
ac3 link addr. of coroutine-description

If the semaphore is not closed, the operation is linked on its operation-queue.
Otherwise the waiting coroutine is inserted into the active-queue.

6.3. PROCEDURE WAITSEM (SEMAPHORE) ;

call: return:
ac0 undefined
acl addr. of semaphore oddr. of semaphore
ac2 addr. of latest operation
‘ ac3 link addr. of coroutine-description

If the semaphore is open, its value is decreased by one. Otherwise the
calling coroutine is linked on the semaphore-queue..

PROCEDURE WAITCHAINED (SEMAPHORE, OPERATION)

call: return:

-’

ac0 undefined

acl addr. of semaphore addr. of semaphore

ac2 operation

ac3 link . addr. of coroutine-description

If the semaphore is open, an operation is linked off its operative~queue.
Otherwise the calling coroutine is linked on the semaphore-queu‘e.

PROCEDURE CWANSWER (BUFFER)

call: return:

ac0 undefined

acl unchanged

ac2 addr. of buffer addr. of answer- or message-buffer
ac3 link addr, of coroutine-description

The coroutine is linked on the answer-queue.
If by call ac2 = 0 the procedure waits for a message instead of an answer.

It should be noticed that after COROUTINE-WAIT-ANSWER you must call
WAITANSWER.

PROCEDURE CDELAY (NO. OF INTERVALS)

call: return;
ac0 undefined
acl no. of intervals no. of intervals o4 20 m S,
ac2 undefined

ac3 link addr. of coroutine-description

The coroutine is linked on the delay-queve.

PROCEDURE CPASS

call: return;

ac0 undefined

acl unchanged

ac2 addr. of latest operation

ac3 link addr. of coroutine-description

The coroutine is again inserted in the active-queue.

CHAPTER 7:

REENTRANT COROUTINES

The main characteristics of reentrant code are a) variables are extracted from the
code and b) variables are repeated as many times the code should be reentrant.

A n-time reentrant coroutine is consequently designed as shown in fig. 7.1, i.e.,
variables and coroutine-descriptions are repeated n times. \
After return from a coroutine-monitor-procedure ac3 contains the address of the de-
scription of the coroutine itself. The reason is that in this way the addressing of
the variables is more easily coded.

coroutine

n times reentrant

coroutine~description

Ist incarnation

variables

coroutine-description

2nd incarnation

variables

A

coroutine-description

n‘th incarnation

variables

Fig. 7.1: REENTRANT COROUTINE,
DESCRIPTIONS AND VARIABLES

CHAPTER 8:

THE TEST PROCESS

8.1. STRUCTURE

test=adm

R

{

Ye

M

i

process

description

ctout

Fig. 8.1:

THE COROUTINE MONITOR EXTENDED

coroutine

monitor

WITH THE TEST PROCESS AND THE TEST PROCEDURES

The Coroutine-Monitor may be extended with the Test-Procedures:

CPRINT
CTEST
CTour

and the Test-Process:

The Test-Process and the Test-Procedures exist in two versions:

TEST-ADMINISTRATION
PROCESS~-DESCRIPTION

One version which dumps records in a memory area (TMEDIUM = 0), and
another which dumps on magnetic tape (TMEDIUM <> 0).

Each Coroutine-Monitor-Procedure mentioned in chapter 6 calls CTOUT, which

may be called, too, by calling CPRINT or CTEST. These two procedures call
SET-EXIT.

Every time CTOUT is called, it generates a testrecord (fig. 8.2) if:

dataswitch (0) = 1 and

-testoutput is wanted, when that coroutine calls that

Coroutine~Monitor-Procedure, i.e. (cfr. ch. 2.3)

if CIDENT (1:7) .CCOROUT A INHIBIT .PROCEDURE = true

In other words: You may get testrecords when some coroutines call some
procedures and when other coroutines call some other procedures etc.

By a message from CTOUT to TEST-ADM the testrecords are transferred to
the zone for magnetic tape.

Address (in octal): Name: Contents:

Testrecord + TKIND long, inhibit, kind (from call)
’ TPROC process~-description addr.

TIDENT ident of coroutine
TTIME time (0)
TTIM] time (1)
TACO ac0 or ref (7) (cprint)
TACI acl or ref (8) (cprint)
TAC2 ac2 or ref (9) (cprint)
TAC3 ac3 or ref (10) (cprint)
TOPT1 ref (1)
TOPT2 ref (2)
TOPT3 ref (3)
TOPT4 ref (4)
TOPT5 ref (5)
TOPTé ref (6)

Fig. 8.2: TEST RECORD

When the testrecords are dumped in core, the TEST-ADM transmits the core-
dump when it receives a message from another program (called TESTPRINT).

The parameter LONG is information to the TESTPRINT-program whether the
6 last words of the testrecord should be printed (LONG = true) or not
(LONG = false). KIND is information about the procedure called.

It should be emphasized that the Coroutine-Monitor should not be used by
more than one process, when testoutput is produced. The error is that inter-
rupt is enabled in CTOUT, and it should be corrected by ensuring that
CTOUT is not called directly from the coroutines.

PROCEDURE: INHIBIT: KIND:

64
32
16
16

signal-chained

signal

wait-chained

wait
coroutine-=wait-answer
coroutine-pass

exit

coroutine-delay

ctest

cprint

—_——_—" — 0 o o n —
OCVONOOGAEWN —

—

Fig. 8.3: LONG, INHIBIT AND KIND
FOR THE COROUTINE-MONITO&PROCEDURE

CPRINT

cprint
(vef)
begin

|

disable-
interrupt
seft-exit

v

ctout

(ref, long,
8, 10)

v

return:

undefined
undefined
addr, of ref.-1 undefined
link addr. of coroutine-description

‘. 8.3. CTEST
ac0
acl
ac?
ac3

call:

ctest

(ref)
begin

.

disable-
interrupt
set-exit

|

ctout
(ref, long,
8, 9

!

end

return:

unchanged
unchanged

addr. of ref.-1 unchanged
addr. of coroutine-description

link

27,

8.4. CTOUT

-

ctout

(ll;eif\a)inhib“'
begin

witch 0\ 0
?

1

build
testrecord

buffer:= 1
testrecord '

‘ enable-

interrupt
R
end
call: return:
ac0 unchanged
acl unchanged
ac2 addr. of ref.-1 unchanged
ac3 link addr. of coroutine-description
. link long < 15 + inhibit
<8 +kind

