JAN FAGRAPAL

Data Entry System

P

SBE00)

introduction to the
FORNVIAT LANGUAGE

Format Language Guide

RC 3600 DATA ENTRY SYSTEM

INTRODUCTION TO

- —— —— - ———

THE FORMAT LANGUAGE

—— 0 = G0 2 S —— —— T —— — " = G S S -

The technical information in this
document, while correct at the time
of publication, 1is liable to change
without notice.

A/S Regnecentralen

Documentation Department

Titelblad

Revision 0
February 1975

Format Language Guide

CONTENTS

1.

2.

3.

L,

INTRODUCTION

Format and subformat

Field description

EXAMPLE OF A FORMAT

A format for input of an invoice

How the format is coded

Fig. 1. Format for input of an invoice
Coding of subformat 1

Coding of subformat 2

Coding of subformat 3

CHECKBOX PARAMETERS

Parameters

Normal, empty, and continue checkboxes
Default values

Kinds of field input

Automatic insertion

Automatic duplication

Automatic skipping

FORMAT LANGUAGE STATEMENTS

COMPUTE DISPLAY

MOVE ALARM

CONNECT DEFINE

SEARCH END and END SUBFORMAT
LIMIT NOTE

ALLOW and DISALLOW PERFORM

GOTO SKIP

SELECT IF THEN ELSE

Indhold-1

Format Language Guide

5. FORMAT LANGUAGE SYNTAX
Character set
Operands
Operators
Expressions
Types for operators
Reserved names
Statements
Unconditional statements
Conditional statement
Program
Semantics
Statements in procedures

An explanation of the notation used

Indhold-2

Format Language Guide 1-1

1. INTRODUCTION

Format and subformat

The initial keying of data fields, output of records to disc, rekeying
verification, and editing of the batch are all controlled by a specified

record format, as is the creation of new formats, subprograms, and tables.

A record format contains a number of subformats, each of which controls

the input and output of a specific type of record. The subformats may be
entered in random sequence, but a new subformat cannot be entered until

the current subformat is finished. New subformats can be selected by the

program or by the operator.

Each subformat consists of a number of sequentially entered field

descriptions, which together define the structure of the record in question.

Field description

Each field description in the subformat has two parts: the so-called

checkbox part and a_program part with statements in the Format Language.

The checkbox part, which contains a number of standard parameters, is used
for various functions including a basic validity check of the input data
and definition of the output format. One can also specify in the checkbox
part whether a keyed field is to be displayed and whether the field in
question must be rekeyed for verification. Finally, the name of a register

containing a constant or duplication value can be specified.

An explanation of the checkbox parameters is given in Section 3.

o e e o . > >t . e S e e

The program part of the field description is used to modify or supplement
the standard parameters of the checkbox part. Field programs can operate
on all of the keyed fields in the subformat as well as on a number of
registers associated with the individual keystations and used for the

transfer of data from one record to another.

Format Language Guide : 1-2

Other program features include the use of range sets, tables of legal

or illegal values, automatic insertion, automatic duplication, automatic
skipping, arithmetic operations, display of error and other operator
messages, and check digit verification.

The_use_of many of the Format Language statements is illustrated by the

example in Section 2, while a complete survey is given in Section k.

bl

Format Language Guide

2. EXAMPLE OF A FORMAT

A format for input of an invoice

Fig. 1 shows a format for the input of an invoice containing three
categories of information: (1) customer information, (2) information
on the articles shipped to him, and (3) the total price. The format

contains, accordingly, three subformats, one for each type of record.

Subformat 1 controls the keying of the customer data (head of the
invoice).

Subformat 2 controls the keying of the article data (one line in the
body of the invoice for each article).

Subformat 3 controls the keying of the total price, checking it against

the totalled up price (end of the invoice).

The keying is controlled by the current subformat until a new subformat
is selected. In this format, subformat 1 is automatically selected as
the first subformat. When subformat 1 is finished, the program automat-
ically selects subformat 2, which is repeated until there are no more
articles to be invoiced. The operator then selects subformat 3, ending

the format.

Each of the three categories of information contained in the invoice
consists of one or more items of information. Thus the first category

consists of the customer's number, discount percentage, name, street

2-1

address, postal number, and city. Similarly, the second category includes

six "article items,"

the total price.

while the third category has only one item, namely,

Each subformat consists, accordingly, of one or more field descriptions,

one for each field in the type of record concerned. Thus subformats 1, 2,

and 3 consist, respectively, of six, six, and one field description.

Format Language Guide

How the format is coded

The exact coding of the three subformats comprising the format program

just described is shown on the pages immediately following Fig. 1.

Each of the subformats has a subformat head containing the name of the

format, the name of the subformat, and a comment. This is followed by the

individual field descriptions, each of which begins with a specification

of the checkbox parameters and ends with one or more program statements.

- . o e e

ﬂ, (UOT3ISSUT OT3eWOINER) PISTI pPoAsY JOuU sajedTput ! !
oy bcem—a——— o4
PT2TF paAkay so3edTput
5 um&uogsmA g0Tdd TVIOL |
o
S z umauownswA AOTdd "NIJ .E,SoumHo 90Tdd LING [ALD FWYN ° LuY “ON " IdV
=] I At A A NS ottt [t ittt
s
o _— —_— — —_— J— —_— —_
-~
n — —— — — t—— —— ——
[}
“ — — — — — — —
(o} _ - . - - - -
5
= a um&uomnsmA @0Tdd - NIJ -m.mwdwwwm OTdd 1IN [ALO AWYN * TNV *ON *IdVY
e L
~
(o]
Y
) i) ALID °ON|
R
3 ~
0 0
v a SSEYAQy
g . T 3jewxojqns
=3 —
) TWYN
9 o
- Al e
b= . " INZO¥Ed BZDoumHo_ "ON dEWOLSNJ
a e o o o o n ——— ——————— - — -
£
M
(@]
e

.

—~
1
o ¢ IVWMOJENS ANZ
‘2 ILyWdoddns IoATAS
‘ITOITMV ONIHOMVIS ¥Od MALSIDAY JION ‘0T 60X INIJAA
‘0 = 40X ILNDWOD ‘JFOI¥d TVEOGL JION ST 70X INIJAQ
‘IOI¥d TYNIL JION “OT £0X IANIJAA
‘SUALSINAY HNILLISIY ¥Od ATAIL XAWWNA JION 0
‘ALID Qvi¥ JION T |9 NY|T |gT| ZXIID
‘0006 => QTIIL => 0001 SIIWIT HAION 0006 000T IIWIT
‘3A0D TVISOd avdy FION S N4 |t | 3a0dod
‘SeI¥aqy avay ALON T |4 NVl T |g2 | sayav
‘IWNVN avId FION T |E vlt 22| 3InwvN
‘10X = I90SIQ ILNAWOD
‘Q¥00dYy NI IOVINAOHAd INNOOSIA IMASNI JION N 2 Nlz |e | 1os1a
¢ NMONM ION MAGWNN HIWOILSND, WMVIV
NI IV TOX ONIAID T9VID NI ONSNO HOHVAS
‘2 TOX ANIJAA
‘II dWNd ANV IOVINIOYAd INNOJSIA
404 ATIVYI HAWOLSND NI HOMVIS - HAGWAN HIWOLSND avdy JION T T NVl g [2T | ONSnD
2T TTjot|{6|g L jo]l sinlc]z 1.
SINIWALVIS WVHOOHd | &1 S| | | 2| 2|e sl 9] =] | Twvn
Vo]] d ~AI~13 0 = 4+
81|25 |E| % (55| &8 Bl B s
ot wn| o =S Q
—~ [4] | > O wn l.m
Q [a]
.M [« m.
g £
A o JOIOANI 40 QVdH - T Ivwdoddns| T | dwvxa
© a 3 z| 1
Q
=16) &
g o INTWWOD| E | TWVN
& & S| wiod
3 g g
3 @
s
g
(o]
=

.

‘LVvWdoJdnNS aNd
A ‘I0SIC - €0X + #OX = #0X HALNAWOD
NV $40I4d TVIOL dIvadn JION
49714
0 ION JOI¥d TVNIL, WIVIV
NIHL I0SId - £0X <> TYNIA JI
‘FOI¥d TILNIWOD LSNIVOV MOIHO ANV IDI¥d TYNIL avdd HIION 0 {4 |9 N[{T ot | TVNId
‘00T / (TOX % €0X) = IOSIQ IINdWOD “INNOJSIA IMISNI JION N S NjOT |oT | I0SIa
‘dLINN % XI® = £0X ZINIWOD
‘II dWNd ANV JOIMd ALNWOD — IDINd LINN aviyd JION 0 |4 |4 N|T |{OT] dIINN
‘XIIINVND aQvA¥ HION 0 |¥ |€ NIT |9 XId
¢ JHOIVW ION Od AWVN ONV HIGWAN TTOILHY, WHVIV
NIHL ONI¥Y <> G0X JI
¢ \NMONM ION AWVN ITOIINY, WHVIV
NI IV SO0X ONIAID T9VIV NI IWYN HOYYIS
‘IWVN ANV JIGWNN NIIMLIE NOILOANNOD
404 ITEVI TTOILHV NI HOMVAS - HIGWNN JTOIIMV Qvid JION 1 (2 NV|T |9T| IWVN
‘QIdId T dIMS
NIHL O = ONI¥V JAI ‘OTIHD WHOJMEd
‘(0T ON) NOILVOIJIMIA
LIDIA MOTHD WYOJHAd ANV HIGWNN TTOILMY aviId JION T N|oT |oT | oNI¥V
21 Ttjot|6fe L o]l s |n]l€ |z 1.
SINTWALVIS WY¥D0ud m .m .m m m m m.m Wmm m SMMMM
nl X o]] & L P =8| 8
o W a2 3'a 318
[T} A [e]
B o A,
3 :
d b dOI0ANI 40 XA0d9 NI ANIT ANO - 2 IvWdoddns| 2 | dwvxa
(6] 3
w
o “ £ 2 T
a o INTWWOD[E | FWVN
& & S| mdod
3 e 5
o 8 @
]
5
L

2-6

‘aNz

©0 aNE, XVIdSId
ST

M0 ION FDIMd TVIOL, WIVIV
NIHIL 70X <> IVIOL dI

‘do18d

dN @ATIVIOL ISNIVOV LI MOIHO QNV IOI¥d TVIOL Qvid FION 0|4 |T N|T |ST| TVIOL
2T TT|oT| 618 L |9 S |n]€E |2 T
SINIWILVIS WVHDOMd | & | Tl i >l |l |8 sl g] g5] 5| anvn
[1] [] ~]I~]3 0 =
sl dlal |2 7|58 5 B | o
oed [()] =} Q
(2] &0 o~ § > O un -4 .m
Q A [o]
m [2,
g £
A = AOIOANI 4O aNA - € Ivwdoddns| € | awvxa
© a 3 2 T
& o
g o INAWAOD| E | TWVN
& 19 o| mwgod
= .n .om
3 s 3
3 A
o
E
o]
fxo

.

Format Language Guide

3. CHECKBOX PARAMETERS

Parameters

A field description begins with the name of the field (1 to 5 characters)

and ends with one or more statements in the Format Language. Between the

FIELD NAME and the PROGRAM STATEMENTS, the following ten parameters are

specified:

Length

Min. length

Type

Output position

R/1

Fill

Verify

Display

The length of the output field and the maximum
length of the input field: 0 to 80 characters.

The minimum length of the input field: 0 to 80

characters.

The type of characters of which the input field

should consist: numeric (N), signed numeric (SN),

alphabetic, including punctuation (A), or

alphanumeric (AN). SME i Masi (05

The'position of the field in the output record:

field number from 1 up. (Dummy fields, where

"length" is equal to zero, are excluded). This
parameter can be used for reformatting in a form

more compatible with computer processing.

When the number of keyed characters is less than
"length," the justification of the characters in
the output field: right (R) or left (L).

When the number of keyed characters is less than
"length," the fill character to be used in the

output field: zero (0), asterisk (%), or space ().

Verification of the field in rekey mode: verify ()

or do not verify (N).

Display of a keyed field on the keystation display

screen: display (Y) or do not display (N).

Format Language Guide . 3=2

Kind The kind of field input required: keyed (),

not keyed (N), constant (C), semi-constant

(sC), duplication (D), or semi-duplication (SD).

Register A register containing a constant or duplication

value: register name (<digit><digit>).

Normal, empty, and continue checkboxes

In a normal checkbox, "length" is greater than zero. The parameters "min.

length," "type,'
below).

and "output position" may not have default values (see

In an empty checkbox (dummy field), "length" is equal to zero. All of the
p

other parameters must be blank (i.e. have default values). An empty checkbox

requires no keying, and the field program is always executed.

In a continue checkbox, "length" is blank (i.e. has a default value). All of

the other parameters must also be blank. A continue checkbox is used to

continue the program part of the last normal or empty checkbox.

Default values

FIELD NAME 'AAAAA' (%)
Length Yy x
Min. length YAA! *
Type TAA! *
Output position YAA! LS
R/1 R
Fill A)
Verify At
Display fr Y
Kind 'AY
Register VAA!

4 -~ blank.

% - must be specified, if "length' is greater than zero.

Format Language Guide

Kinds of field input

When a keyed field is specified, normal field input is required, i.e. the

operator should key the field.

When a pot keyed field is specified, field input is imposgible, i.e. the

operator should not do anything, as only the program statements are exe-

cuted.

input is required. This is explained below.

Automatic insertion

Automatic insertion of a constant in a field can be performed in several

ways.

Always insertion

1l. Field specification:

Program statement:

Operator action:

Effect:

2. Field specification:

Operator action:

Effect:

not keyed field (N)

COMPUTE field = 'constant'
MOVE 'constant' TO field

None.

The program statements are executed.

constant field (C)
register name (<digit><digit>)

The specified register is initialized

in a previous subformat.

Press the DUP key.

The constant in the specified
register is used as field input.

Format Language Guide

Semi-automatic insertion

3. Field specification:

Ny
Coiiiny - Operator action:

ViE£e
Effect:
cLLER

DHA LWy - v Operator action:

Effect:

Automatic duplication

Automatic duplication of a fie;d in the corresponding field in the next

semi-constant field (SC)
register name (<digit> <digit>)
min. length > 0

The specified register is initialized
in a previous subformat.

Press the DUP key.

The constant in the specified
register is used as field input.

Key <data>.
Press the ENTER key.

As for normal data entry input.

record can be performed as follows:

LV 1. Field specification:

I Reth o Operator action:

Qe Effect:

Operator action:
Effect:

Qurise Retenps

- e = I N I IR I B AR A A =N B S B B B s B e
&
5
e
[}
£
hel
]
.
0
o
e
o}
o]

duplication field (D)
register name (<digit> <digit>)

Key <data>,
Press the ENTER key.

In the first record, the input value

is placed in the specified register.
Not accepted in any other record.

Press the DUP key.

Not accepted in the first record. In
any other record, the constant in the
specified register is used as field
input.

- 3-h

Format Language Guide

Semi-automatic duplication

e 2. Field specification:

Operator action:
047tV ywe,

_ Effect:

CLLlb

Consimr- v+xp, Operator action:
Effect:

Automatic skipping

1. Field specification:
Program statement:
Operator action:

Effect:

Semi-automatic skipping

2. Field specification:

™
=2
=
}
2

para-gnTiy -t -, Operator action:

. Effect:
ELLEY

Operator action:
Effect:

Swae

-

semi-duplication field (SD)

Key <data>.
Press the ENTER key.

The input value is placed in
the specified register.

Press the DUP key.

Not accepted in the first record.
In any other record, the constant
in the specified register is used
as field input.

Automatic skipping of a field can be performed as follows:

not keyed field (N)
SKIP 'constant' FIELDS
None.

The program statement is executed.

keyed field (

)
min. length = 0

Key <data>.

Press the ENTER key.

As for normel data entry input.
Press the ENTER key.

The field is skipped.

Format Language Guide

L, FORMAT LANGUAGE STATEMENTS

Assignment statement

culevy FIELD
v mhum;—————w

Syntax: COMPUTE <variable> = <expression>

The destination variable must be the current field or a register. The
current field is allowed as the destination variable only if it is a
not keyed field. The expression is evaluated and the result is stored
in the destination variable.

Example: COMPUTE DISCT = (X03 3% XO01) / 100,
where X03 = 2000 and X0l = 3 causes DISCT = 60.

Move statement
Culeev, Freln
RN A RTNAN l

. R
Syntax: MOVE <varisble> TO <variable>

The destination variable must be the current field or a register. The
current field is allowed as the destination variable only if it is a
not keyed field. The variables must be alphanumeric in type. The first
variable is moved to the second variable.

Example: MOVE 'TEXT' TO XO02,
causes X02 = 'TEXT'.

Connect statement

Iy U G Iy &N ' . .

RIS R URWRIN S D) 24

S (X T ETTLN

-
Syntax: CONNECT <variable> TO <variable> GIVING <variable>

The destination variable must be the current field or a register. The
current field is allowed as the destination variable only if it is a
not keyed field. The two source variables and the destination variable
must be alphanumeric in type. The two source variables are catenated
and the result is stored in the destination variable.

Example: CONNECT A TO B GIVING XO1,
where A = 'ABC' and B = 'DEF' causes X0l = 'ABCDEF'.

- bl

Format Language Guide

Search statement

Syntax: SEARCH <variable> IN <table identifier> GIVING <variable>
AT END <unconditional statement>
This statement is used to search in a table for a spec1f1ed argument.

If the search is successful, the function of the argument is stored.
If the search is unsuccessful, the unconditional statement is performed.

The table must be double-entried. The source variable must be of the
same type as the table arguments, and the destination variable must be
equivalent to the table functions. The destination variable must be the
current field or a register. The current field is allowed as the
destination variable only if it is a not keyed field.

Example: SEARCH CUSNO IN CTABL GIVING X01 AT END
ALARM 'CUSTOMER NUMBER NOT KNOWN',

Limit statement

Syntax: LIMIT <number><number>

This statement is used to check the value of the current field against
two limits. The current field must be numeric in type and a normal keyed
field. If the check fails, the program is interrupted, and the operator
must either correct or bypass the field.

Example: LIMIT 1000 9000, NOTE LIMITS 1000 <= FIELD <= $000,

Allow and disallow statements

Syntax: ALLOW <list> | ALLOW <table identifier>
Syntax: DISALLOW <list> | DISALLOW <table identifier>

These statements are used to check the current field for specific values.
Tables may be single-entried or double-entried. The current field, which

must be alphanumeric in type, is checked against the table arguments, which

must also be alphanumeric. Errors are treated as for the limit statement.

Example: ALLOW 'HANSEN' 'JENSEN',
Example: ALLOW CTABL, NOTE CTABL IS A TABLE,

L-2

« "

Format Language Guide

Goto statement

Syntax: GOTO <label>

The label must be defined in the same field program. The execution of
the current field program is continued from the specified label.

Example: GOTO STOP,

STOP: DISPLAY 'END',

Select statement

Syntax: SELECT SUBFORMAT <subformat>

This statement may appear only in the last field program in a subformat,

The current subformat (record) is terminated and the specified subformat
is entered.

Example: SELECT SUBFORMAT 2,

Display statement

Syntax: DISPLAY <string>

This statement displays the string on the second line (message part) of
the keystation display screen. It can be used for fill-in-the-blanks
keying.

Example: DISPLAY 'END OK',

Alarm statement

Syntax: ALARM <string>

This statement displays the string on the second line (message part) of
the keystation display screen. The field must then be corrected or by-
passed by the operator.

Example: ALARM 'FINAL PRICE NOT OK',

4-3

Format Language Guide

Define statement

Syntax: DEFINE <register> <unsigned number>

This statement is used to define the length of a register in characters.

The define statement may only be used before a register is used for the
first time, and all registers must be defined before they are used. The
next define statement pertaining to the same register may not change the
length.

Example: DEFINE X03 10,

End statement and end subformat statement

Syntax: END

Syntax: END SUBFORMAT

P Vet
The end statement terminates the whole format prograﬁﬁ It must occur in
the last field in the last subformat. The end subformat statement termi-
nates the current subformat. It must occur as the last statement in the

last field in the current subformat.

Example: END,

Example: END SUBFORMAT,

Note statement

Syntax: NOTE <characters>

This statement is used for comments. If quotation marks are used, they
must occur in pairs. As the note statement is terminated by a comma or
a semicolon, it may not be used as the last statement before ELSE (be-
cause <sentence> is not terminated by a comma or a semicolon; see below
under "Conditional statement'").

Example: NOTE READ NAME,

Procedure statement

Syntax: PERFORM <procedure identifier>

The procedure identifier must be the name of a translated subprogram
(see further in Section 5 under "Statements in procedures').

Example: PERFORM CHElO,

bl

Format Language Guide ‘ ‘ 4-5

Skip statement

Syntax: SKIP <unsigned number> FIELDS

The unsigned number must be greater than O and less than 256. The

execution of the format is continued <unsigned number> of fields

after the current field.,

Example: SKIP 1 FIELD,

Conditional statement

Syntax: IF <expression> THEN <sentence> |

IF <expression> THEN <sentence> ELSE <sentence>

The boolean expression following IF is evaluated. If the condition is
true, the sentence following THEN is executed. If the condition is
false, the sentence following THEN is skipped and the sentence follow-
ing ELSE is executed.

Example: IF TOTAL <> XOL THEN
ALARM 'TOTAL PRICE NOT OK'
ELSE
DISPLAY 'END OK',

Format Language Guide

[S—

B R BN EE BS O A B B N e e e

|
.

5-1

5. FORMAT LANGUAGE SYNTAX

Character set

<digit> zi= 0|1]2 |3]% ls16]T1]8| 9

<letter> ::= A[B|C|D|E|F|G|H|I|Y|K|L|M,|
NjoflP|lelR|s|T|u|Vv|Ww|x]|Y]|z

<space> tim <semicolon> 1=

<plus> 1=+ ., <quotation> HEL I

<minus> 1= - <left>]

]
v ~— o~

<asterisk> ::= % <right>

<stroke> ii= |/ <greater than> =

<equal> s = . <less than> = <

<comma> 1=, <colon> =

Operands

<alphanum> = <letter> | <digit>

<identifier> = <letter> | <letter> { <alphanum> } g

Reserved names (see below) may not be used as identifiers.

<register> = XO01 | X02 | +... | X99
<field> = «<identifier>
<variable> = <field> | <register> | <field> (<unsigned

number>) | <register> (<unsigned number>)

/¥ields are numeric or alphanumeric depending on their type as specified
in the checkbox part of the field description./A destination operand must
be a register or a current field. The current field is alloved as a des-
tination, only if it is of the not keyed kind (i.e. N).yAny fields before
the current field in the current record may be used as sources. The current
field is allowed as a source, only if it is not of the not keyed kind (i.e.
K, C, or D).

Registers are numeric or alphanumeric depending on their contents. Sub-

scripts are used to refer to individual characters within a register or
a field. A subscript is an unsigned number. Subscripts should be in the

range 1 - as the leftmost subscript - to the length of the register or
the field.

Constants can be either unsigned numbers or character strings. Strings
are always enclosed in quotation marks, and must not be interrupted by
a continue checkbox.

DatenT

’
4

Y

-

S

Format Language Guide

<sign> | +

<unsigned number> := <digit> | <digit><unsigned number>

<number> ::= <sign><unsigned number> | <unsigned number>
. 8

<string> 1i= '{<character>}70'

<constant> ::= <string> | <unsigned number>

<label> t:= <identifier>

Labels must be defined within the field program that contains the reference

to the label, and may not refer to labels in other field programs.

<subformat> ::= <alphanum>
<list> ::= <string> | <string><list>
<procedure identifier> ::= <identifier>

A procedure is a subprogram that is called by a format program.

<table identifier> ::= <identifier>

A table is either single-entried or double-entried. All arguments in a table

must be of the same length and type. All functions in a double-entried table

must be of the same type.

Operators

<relational operator> = > | < | =] >= | <=

> means greater than, < less than, = equal to, >= greater than or equal

to, and <= less than or equal to.

<table operator> ~ = IN

IN is an operator for searching in a table.

<adding operator> ::= + | - | OR

+ means addition, - subtraction, and OR logical ‘or'.

<multiplying operator> ::= % | / | AND

% means multiplication, / division, and AND logical 'and'.

<negating operator> ::= NOT

NOT means logical 'not'.

Format Language Guide 5=3

ressions

- aclh cw an o s m us e o

<expression> ::= <simple expression> |
<gsimple expression><relational operator><simple expression>

<simple expression><table operator><table identifier>

<simple expression> ::= <term> | <adding operator><term> |
<simple expression><adding operator><term>
<term> ::= <factor> | <term><multiplying operator><factor>
<factor> ::= <constant> | <variable> | (<expression>) |
<negating operator><factor>
An expression is evaluated with respect to the following precedence of operators:
(1) negating operator, (2) multiplying operator, (3) adding operator, and (k)

relational operator / table operator. Sequences of operators having the same
precedence are executed from left to right.

Examples
Factors: 15
X01
CUSNO
X05 (10)
(X03 % X01) ‘
NOT ((A > B) AND (CUSNO IN CTABL))
Terms: X02
X03 % X01

X03 # X01 / 100
(A > B) AND ((X03 % 2) > 10)

Simple expressions: X03
- CUSNO
AX*B +C#%D

Expressions: Xob
X05 = '"TEXT'
X06 IN TAB
(A+B)>3

Types for operators

checkbox part of the field description is numeric (N) or signed numeric (SN),

and alphanumeric, if the type specified is alphabetic (A) or alphanumeric (AN).

.

Format Language Guide : 5-4

Registers are numeric or alphanumeric, depending on their contents.

and alphanumeric, if the item is <string>.

Table elements are numeric, if the type specified in the table head

is numeric (N), and alphanumeric, if the type specified in the table

head is alphanumeric (AN).

Relational operators require operands of the numeric or alphanumeric

type. The operands must be identical in type. The result of a relation

is boolean in type.

The table operator expects the first operand to be a simple one, i.e.

a variable or a constant, and the second operand to be a table, either
single-entried or double-entried. The type of the first operand must match

the type of the arguments in the table. The type of the result is boolean.

Operator Operation Type of operands Type of result
+ addition numeric! numeric
- subtraction numericl numeric
OR logical 'or' boolean boolean

1 When used as operators with only one operand, + denotes the
identity operation and - denotes sign inversion.

Multiplying operators

Operator Operation Type of operands Type of result
* multiplication numeric numeric
/ division numeric numeric
AND logical 'and' boolean boolean

The negating operator requires one operand of the boolean type. The

negation is of the boolean type.

Format Language Guide

v

Reserved names

ALARM
ALLOW
AND

AT
COMPUTE
CONNECT
DEFINE
DISALLOW
DISPLAY
ELSE
END
FIELD
GIVING
GOTO

IF

IN
LIMIT

>-5

MOVE
NOT
NOTE

OR
PERFORM
SEARCH
SELECT
SKIP
SUBFORMAT
THEN

TO

X00

X0l

Xo2

X99

Only the five leading characters are significant. Thus PERFORM

is equivalent to PERFO, for example, and PERFO is equivalent to
PERFORMANCE, but IN is not equivalent to INCORRECT.

Statements

Unconditional statements

<unconditional statement>

<assignment statement>

<assignment statement> | <move statement> |
<connect statement> | <search statement> |
<limit statement> | <allow statement> |
<disallow statement> | <goto statement> |
<select statement> | <display statement> |
<alarm statement> | <define statement> |

<end statement> | <end subformat statement> |
<note statement> | <procedure statement> |
<skip statement>

COMPUTE <variable> = <expression>

Format Language Guide 5-6
¢« <move statement> ::= MOVE <variable> TO <variable>
v <connect statement> ::= CONNECT <variable> TO <variable>
v <gearch statement> ::= SEARCH <variable> IN <table identifier>

GIVING <variable> AT END

<unconditional statement>

» «1imit statement> ::= LIMIT <number><number>
<allow statement> ::= ALLOW <list> | ALLOW <table identifier>
- <disallow statement> ::= DISALLOW <list> | DISALLOW <table identfier>
v <goto statement> 1:= GOTO <label>
<select statement> ::= SELECT SUBFORMAT <subformat>
<display statement> ::= DISPLAY <string>
¢ <alarm statement> ::= ALARM <string>
+ <define statement> ::= DEFINE <register><unsigned number>
v <end statement> ::= END

<end subformat statement> 1= END SUBFORMAT

« <note statement> ::= NOTE <string>
<procedure statement> ::= PERFORM <procedure identifier>
v <skip statement> ::= SKIP <unsigned number> FIELDS

Conditional statement

<conditional statement> ::= IF <expression> THEN <sentence>
IF <expression> THEN <sentence>
ELSE <sentence>
<sentence> ::= <label> : <sentence> | <unconditional statement>

<unconditional statement> ; <sentence>

Program
<program> 1= <empty> l <statement> | <program><statement>
<statement> ::= <label> : <statement> | <unconditional statement>,

<conditional statement>,

Format Language Guide 5-7

Semantics

See Section k.

Statements in procedures

All of the statements except the select statement and the end subformat

statement may be used in procedures.

Only registers are allowed as variables in procedures.

A procedure must be terminated by an end statement.

An explanation of the notation used

The following examples illustrate the principles on which

the notation used to describe the Format Language is based.

<digit> ::= 0|1 |2 |3 |4 |5 |6]|]T]|8]9
This means that a "digit" is defined as 0

orlor2or 3orborSor6orTor8ordH.

<variable> ::= <field> | <register> |
<field> (<unsigned number>) |

<register> (<unsigned number>)
This means that a "variable" is defined as a "field" or a "register"
or a "field" followed by an "unsigned number" enclosed in parentheses
or a "register" followed by an "unsigned number" enclosed in parentheses.
<unsigned number> ::= <digit> | <digit><unsigned number>
This means that an "unsigned number" is defined as a "digit"
or a "digit" followed by an "unsigned number" (i.e. a number of "digits").
. , 78,
<string> ::= '{<character>} 0

This means that a "string" is defined as
0 to 78 "characters" enclosed in quotation marks.

Format Language Guide ' 5-8

<gkip statement> ::= SKIP <unsigned number> FIELDS

This means that & "skip statement" is defined as
SKIP followed by an "unsigned number" followed by FIELDS.

<sentence> ::= <label> : <sentence> |
<unconditional statement> |

<unconditional statement> ; <sentence>

This means that a "sentence" is defined as

a "label" followed by a colon followed by a "sentence"
or an "unconditional statement"

or an "unconditional statement" followed by a semicolon
followed by a "sentence",

