Computer Family
Reference Manual

gl (@)|(@) (=)

L4

RC 8000 Computer Family
Reference Manual
First Edition
A/S REGNECENTRALEN June 1979
Information Department RCSL 42-i 1235

AUTHOR: Einar Mossin

KEYWORDS : RC 8000, Camputer, Reference Manual

ABSTRACT: This manual provides basic programming information
for programmers and users of the RC 8000 Camputer
Family.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1979
Printed by A/S Regnecentralen, Copenhagen

AR TN FERCE. SR e e o T TR T Al e

Table of Contents

PREFACE
1 RC 8000 SPECIFICATIONS

2 DESIGN FEATURES
2.1 Operand Length
2.2 Registers and Addressing
2.2.1 Registers Structure
2.2.2 Program Relocation
2.2.3 Address Calculation
3 Escape and Exception
.4 Monitor Control
2.4.1 Memory Protection
2.4.2 Privileged Instructions
2.4.3 Program Interruption
2.4.4 Monitor Calls
2.5 Input/Output System
2.5.1 Bus Control
2.5.2 Bus Communication

DATA FORMATS AND INSTRUCTION
3.1 Data Formats
3.2 Working Registers
3.3 Instruction Format
3.3.1 Notation of Examples
3.3.2 Address Modification in Next Instruction
3.4 Use of the Effective Address as an Operand
3.4.1 Load of Immediate Values
3.4.2 Skip instructions
3.4.3 shift instructions
3.5 Use of the Effective Address
to refer to Memory Locations
3.5.1 Process Area
3.5.2 Common Protected Area
3.5.3 Working Registers and Non-accessible Area
3.5.4 Memory Addressing. Example of user Program
3.6 Jump Instructions
3.6.1 Jump, Example 1
3.6.2 Junp, Example 2
3.6.3 Jump, Example 3
Register Transfer Instructions
Logical Operations
Skip if no protection

w W w
.
O 00 J

i B
Il B T G B - & I N Gl I Il I I B D D B B m B
W
.

S A e =

Page 11
12

14
14
14
14
17
17
17
18
18
18
18
19
19
20
20

21
21
21
22
23
25
26
26
27
28

28
29
30
30
31
32
33
33
34
34
36
37

4

INTEGER ARITHMETIC

4.1 Number Representation

4.2 Halfword Arithmetic

4.3 Word Arithmetic

4.4 Doubleword Arithmetic

4.5 Multiplication and Division

4.6 Overflow and Carry Indication
4.7 Exception Register Instructions

FLOATING-POINT ARITHMETIC

5.1 Number Representation

5.2 Arithmetic Operations

5.3 Normalization and Rounding

5.4 Underflow, Overflow and Non-normalized Operands
5.5 Floating Point Instruction

5.6 Number Conversion

5.7 Examples

MONITOR CQONTROL

6.1 System Table

.2 Entering the Monitor Program
.3 Reactivation of User Program
.4 Monitor Calls

.5 Interrupts

6.5.1 Internal Interrupt
6.5.2 Power Failure and Timer
6.5.3 External Interrupts
Disabling of Interrupts
Interrupt Response

Control of Monitor Registers

A O O OV

[«) e e
.
(oo IR I e]

EXCEPTIONS AND ESCAPE
7.1 Exception
7.1.1 Register Dump at Exception
7.1.2 Program Exception
7.1.3 Arithmetic Exceptions
7.1.4 Exception Routine
7.2 Escape
7.2.1 Escape in Indirect Address Calculation
7.2.2 Escape Mask and Escape Pattern
7.2.3 Escape Active
7.2.4 Register Dump at Escape
7.2.5 Escape Routine
7.2.6 Return from Escape
7.2.7 Examples and Hints

38
38
38
39
39
40
41
43

47
47
48
48
49
50
50
51

54
54
55
56
57
58
58
58
59
59
60
60

61
61
61
62
62
62
65
65
66
66
66
68
68
69

8.1
8.2

8.3

9 POWE
9.]
9.2

10.1
10.2

10.3

10.4

10.5
0.6

8 INPUT/OUTPUT SYSTEM

Main Characteristics

Input and Output Operations

8.2.1 Data In Instruction

8.2.2 Data Out Instruction

8.2.3 Exception Indication

8.2.4 Memory Addressing
Standardized Block-oriented Device Controllers
8.3.1 Device Address

8.3.2 Device Descriptions

8.3.3 Channel Program

8.3.4 Standard Status Information

R RESTART AND AUTOLOAD
Power Restart
Autoload

10 FORMAL DESCRIPTION

Introduction
Notation
10.2.1
10.2.2
10.2.3
10.2.4

Registers

Booleans

Integer Arithmetics
Memory Access

10.2.5 Bitpatterns

10.2.6 Abbreviations

Canmon routines

10.3.1 procedure getword;

10.3.2 procedure getdoublel;
10.3.3 procedure getdouble2;
10.3.4 procedure get nonprotected;
10.3.5 procedure get address;
10.3.6 procedure get instruction;
10.3.7 procedure store word;
10.3.8 procedure set bus exceptions;
10.3.9 normalize and round:
10.3.70 exit to program;
Instruction Control

10.4.1 next instruction:

Address Calculation

Instruction Execution

10.6.1 aa:

10.6.2 ac:

10.6.3 ad:

10.6.4 al:

74
74
74
74
75
76
76

77
78
78
80

82
82
83

86
86
87
87
88
88
88
89
89
90
90
91
92
92
93
93
94
95
95
2
97
98
100
101
101
102
102
103

10.6.5

10.6.6

10.6.7

10.6.8

10.6.9

10.6.10
10.6.11
10.6.12
10.6.13
10.6.14
10.6.15
10.6.16
10.6.17
10.6.18
10.6.19
10.6.20
10.6.21
10.6.22
10.6.23
10.6.24
10.6.25
10.6.26
10.6.27
10.6.28
10.6.29
10.6.30
10.6.31
10.6.32
10.6.33
10.6.34
10.6.35
10.6.36
10.6.37
10.6.38
10.6.39
10.6.40
10.6.41
10.6.42
10.6.43
10.6.44
10.6.45
10.6.46
10.6.47
10.6.48

ams
as:
cf:
ci:
di:
dl:
do:
ds:
ea:
el:
es:
fa:
fd:
fm:
fs:
gg:
gp:
hl:
hs:
jd:
je:
jl:
la:
1d:
lo:
1s:
1x:
nd:
ns:
re:
ri:
rl:
rs:
rX:
se:
sh:
sl:
sn:
SO:
sp:
SS:
SX:
Sz:
ul:

u60:

u30: u3l:

uebl:

ub2:

udbl:
ub3:

ub8: u5b9:

103
103
104
105
105
105
106
106
107
107
108
108
110
111
111
113
113
114
114
114
115
115
116
116
116
117
117
117
118
119
119
119
119
120
120
120
121
121
121
122
122
122
123

123

10.6.49 wa:
10.6.50 wd:
10.6.51 wm:
10.6.52 ws:
10.6.53 x1:
10.6.54 xs:
10.6.55 z1:

10.7 Monitor calls and interrupt
10.7.1 external interrupt:
10.7.2 fetch error:

10.7.3 operand error:
10.7.4 call:
10.7.5 ri algorithm:

10.8 Exception and escape
10.8.1 program exception:
10.8.2 1integer exception:
10.8.3 floating point exception:
10.8.4 escape:

10.8.5 re algorithm:

Al Appendix 1
Al.1 Instructions in Alphabetic Order by Mnemonics

A2 Appendix 2
A2,1 Instructions in Order of Numeric Code

A3 Appendix 3
A3.1 Instructions in Order of Escape Pattern

A4 Appendix 4

123
124
124
125
125
126
126
126
127
127
127
128
130
131
131
132
132
133
135

137
137

139
139

141
141

143

11

Preface

The RC 8000 Computer Family is a family of medium scale general
purpose camputers designed and manufactured by A/S Regnecentra-
len. The models in the family share a common architecture with an
asynchronous unified bus giving full compatibility with respect
to peripheral devices and allowing multi CPU configuration. The
common instruction set includes multiply/divide and floating
point arithmetic and support for mutually protected multiprogram-
ming. The models differ in CPU implementation and in physical
specification resulting in different sets of instruction execu-
tion times and different oconfiguration possibilities.

This manual provides the common basic programming information for
programmers and users of the RC 8000 Computers:

— Chapter 1 lists the common specifications.

- Chapter 2 contains a survey of design features and gives a
preliminary introduction to concepts used in chapters 3-9 in
an attempt to reduce the need for forward references during
the first sequential reading of these.

- Chapters 3-5 describe data formats, instruction format, memory
addressing and arithmetic.

~ Chapter 6 describes the multiprogrammming facilities.

- Chapter 7 describes the facilities for program error
diagnostis and debugging.

— Chapter 8 describes the input/output control.

- Chapter 9 describes the power restart and autoload facilities.

- Chapter 10 completes the picture with a formal algorithmic
description of the information in the preceeding chapters.

Although the manual contains hints and examples of efficient use
of the instruction set, no attempt is made to teach programming
techniques.

Instruction execution times and other model specific information
are given in the General Information Manual for each model.

The function of peripheral devices is described in separate
manuals.

12

RC 8000 Specifications

Implementation

Large-scale integrated circuits extensively used.

Campromise between hardwirad logic and microprogramming, balan-
cing flexibility and speed.

Bus Structure

Asynchronous unified bus.
Parallel data lines (24 bits + 3 parity bits) and address lines
(23 bits + 1 parity bit).

Primary Memory

Direct addressing of up to 4 194 304 words. Each word contains 24
data bits. Parity check or error recovery are supplied in all
models. Memory type and configuration depends on model.

Peripherals

Complete range of input/output devices, interfaced through peri-
pheral processors or programmable front end. Both processor types
are connected to the unified hbus.

Working Registers

Four 24-bit working registers, three of which also function as
index registers.

The registers are addressable as the first four words of the
primary memory.

Data Formats

12-bit halfwords and 24-bit words for integer arithmetic.
48-bit double words for integer and floating-point arithmetic.

Instruction Format

24-bit single-address instruction. Address modification includes
indexing, indirect addressing and relative addressing.

Dynamic relocation through use of mxdified base register tech-
nique.

Instructions

Comprise 64 function codes, each working on 4 registers, with 16
address calculation modifications and a 12-bit displacement.
Arithmetic includes add, subtract, multiply and divide.

Data manipulation aided by halfword operations and word compa-

rision.

13

Logical operations permit setting and testing af single bits.

Escape facility permits programmed actions on any or all instruc-

tions.
Exception concept permits programmed diagnostics on programming
errors.

Protection System

Privileged instructions and memory protection associated with a
monitor mode ensure complete monitor ocontrol.

Monitor mode is entered through monitor calls and interrupts.
Violation of protection system leads to exceptions.

Interruption System

Program interruption system with priority levels.

Assignment of levels and disabling of interrupts under program
control.

Power failure interrupt and power restart are standard.

Input/output System

All peripherals are connected to the unified hus.
Blockoriented controllers are standardized and perform all in-
put/output functions under the control of channel programs in
primary memory.

Data is transferred directly between the controllers and the
primary memory. An asynchronous, fully interlocked request/
acknowledge communication technique is employed.

CPU's have no special status on the hus.

Interrupts are achieved by addressing a CPU.

2.1

2.2

2.2.1

14

Design Features

Operand Length

Arithmetic and Logical Operands

The basic arithmetic or logical operand is a 24-bit word. Double-
length operands of 48 bits satisfy the requirements of engi-
neering computation and administrative data processing.

Halfword Handling
Direct addressing of 12-bit halfwords aids efficient packing of
data.

Registers and Addressing

Registers Structure

The 8 dynamic registers define the current state of a program.
They are dumped when control is transferred to the monitor
program or to the exception or escape service routines of the
program and are reloaded when the program is resumed. The dynamic
registers comprise:

The four working registers, "w0", "wl", "w2" and "w3", see 3.2.
Each instruction specifies one of these, see 3.3. The working
registers except for "w0" can function as index registers.

The status register, "status", contains the following
information. Bits are numbered 0-23 with 0 indicating the most

significant bit.

Bit no. Contents

0 monitor mode: privileged instructions allowed, see 6.
1 escape mode: escape facility active, see ch.7.
2 after address modify: address calculation in next

instruction starts from present contents of the
address register, see 3.3.2.

3 after escape: address calculation in next instruction
is skipped. The contents of the address register is
used as resulting address. If the "after address mo-
dify" bit is set too, the contents of the word pointed
out by the address register is used, see ch. 7.

4 integer exception active, see ch. 4.

15

5 floating point exception active, see ch. 5
6-11 escape mask, see ch. 7.

12-15 dump error count: used in connection with memory
errors in registerdump at interrupt or monitor
calls, see 10.7.4.

16-19 not used.

20 disable: disable level of interrupt limit register
active, see 6.6.

21-23 exception: contains status information after arithme-
tic and input/output operations. Accessible as the
exception register, ex, through special instructions,
see ch. 4, 5 and 8.

The instruction counter, "ic", is a 24-bit register. Bit 23 is
always zero. Bit 0 is ignored in instruction fetch, hbut the full
register is used as a 24 two's complement integer in relative
address calculation.

The cause register, "cause", indicates the cause of deviations
fraom normal program flow, i.e. interruptnumber, monitor call
number, exception cause and escape cause, see ch. 6 and 7.

The address register, "addr", is used internally as a working
register for address calculations. Dumped values of addr are used
in return from interrupt and escape, and are very useful in
connection with the exception and escape facilities.

The process definition registers define the relocation, memory
protection and interrupt disabling for the currently active pro-
gram. The contents of the registers is changed under monitor
control by interrupts and monitor calls and at return from these,
see ch. 6.

The process definition registers comprise:
register explanation
cpa the common protected area limit register de-
fines the upper limit of the nonrelocated,
read-only lower part of memory, see 3.5.
base the base register defines the displacement of

physical addresses compared to logical ad-
dresses, see 3.5.

lowlim

uplim

intlim

16

the lower limit register defines the physical
lower limit of the write accessible part of
memory, see 3.5.

the upper limit register defines the physical
upper limit of the write accessible part of
memory, se 3.5.

the interrupt limit register defines two le-
vels of interrupt disabling. The program
shifts between the levels, which may be equal
and describe no disabling, by execution of
the special jump instructions: "jump disable"
and "junp enable", that respectively sets and
clears the disable bit in "status", see 6.6.

The monitor registers (ch. 6) are used in connection with inter-
rupts and monitorcalls.

register explanation.

inf

size

montop

the system information register points to a
system table of 6 words. The table contains
register dump and entry addresses for inter-
rupt, monitor call, exception and escape. At
interrupt and monitor call inf is decreased
by 12. This allows specification of special
actions for the mentioned events during exe-
cution of the monitor program. At return from
interrupt, inf is increased by 12 again.

defines upper limit of memory. Size is used
for initialization of the upper limit regis-
ter when monitormode is entered at interrupt
or monitor calls.

defines the number of monitor calls. Monitor
calls are provoked by execution of the "jump
disable" instruction with a resulting address
fullfilling

-2048 < addr < - montop
The monitor call cause is given as addr +
2048 and is used for switching to the speci-
fied monitor function.

2.2.2

2.2.3

2.3

17

rtc The real time clock register is a 16 bit read
only register. Rtc is incremented by 1 every
0.1 milliseconds and counts modulo 65536. A
timer interrupt is generated every timer in-
terrupt period, 25.6 milliseconds in most mo-
dels.

Program Relocation
Efficient relocation requires that programs can be written in
such a way that their execution is independent of their location.

This is achieved in the RC 8000 in two ways:

First, the instruction format ocontains a bit that specifies rela-
tive addressing. It indicates that the address part of the in-
struction is to be interpreted relative to its current location
in the primary memory. This permits relocation of programs during
loading.

Second, the process definition registers define the current rela-
tion between the logical address as seen by the program and the
actual physical address, thereby ensuring that programs can use
saved address information after restarting in new memory areas.

Address Calculation

Besides relative addressing RC 8000 supplies indexing and indi-
rect addressing. The addressing modes can be used in any cambina-—
tion. The possibilities are enhanced by the fact that the 3 index
registers are also working registers and through the address mo-
dify instruction. The address modify instruction makes indirect
addressing in multiple levels, use of the contents of any memory-
word as index, multiple indexing and conditional address calcula-
tion possible.

Escape and Exception

The RC 8000 is provided with an escape facility, implemented by
means of an escape mode and an escape mask, which permits inde-
pendent supervision of instruction execution as well as program-
med emulation of virtual memory, instruction sets and the like.
The exception concept allows specification of a diagnostic rou-
tine, which will be called when programming errors such as ille-
gal instructions or addressing occurs. The concept may also be
used for trapping of arithmetic overflow and underflow and for
definition of breakpoints.

24

2.4.1

2.4.3

18

Monitor Control

In a multiprogramming system, where many concurrent tasks are
performed, it is vital that erroneous programs can be prevented
fram interfering destructively with other programs. The various
tasks are therefore co-ordinated by a monitor progyram that has
complete control of the system. Monitor control in the RC 8000 is
guaranteed by mewory protection, privileged instructions, program
interruption and monitor calls.

Memory protection

An erroneous program may attempt to destroy data or instructions
within other programs. Mutual memory protection is accomplished
in the RC 8000 through limit registers, so that a program can
only alter the contents of memory locations in its own area. The
remainder of the memory is divided into a read-accessible and a
read-protected part. The read-accessible part is addressed inde-
pendently of dynamic program relocation. Any attempt to violate
the protection system leads to a program exception.

Privileged Instructions

Further protection is achieved through privileged instructions
that can only be executed within the monitor program. These in-
structions include input/output functions as well as control of
the interruption system, memory protection and dynamic program
relocation. Attempts to execute privileged instructions in normal
mode leads to program exception.

Program Interruption

Multiprogrammed computers must respond quickly to exceptional
events. In the RC 8000 this is made possible by a program inter-
ruption system that can register a number of signals simulta-
neously. Any of these signals interrupts the current program im—
mediately and starts the monitor vrogram. Register dump and re-
gister initialization for fast switch to service routine are exe-
cuted by firmware. Return to program and restoring of registers
are carried out by a privileged instruction, return from inter-
rupt. Critical actions can be protected against interruption by
partial or total disabling.

2.4.4

2.5

19

Monitor Calls

To ensure the legal interaction between parallel programs and be-
tween programs and the input/output system, the monitor program
must supply a set of service functions. Activation of these take
place by execution of a monitor call instruction. The calling
program is interrupted and the monitor program is started as for
interrupts, but at a different entry address and with "cause" de-
fined by the monitor call instruction.

Input/Output System

The input/output system is based on a unified bus, i.e. a common
bus for communication between all devices and CPU's connected to
it, none of which has a special status. Besides permitting the
implementation of a wide range of systems, including multiproces-—
sing systems, the unified bus facilitates cammunication with
other systems and provides a basis for implementation of other
bus structures.

The connection of peripheral devices is standardized in such a
way that the central processors are unaware of the types of de-
vices attached to the bus. All peripheral devices except the pri-
mary memory are connected to the bus via standardized device con-
trollers (peripheral processors). Data transfers between the cen—
tral processor and the peripheral processors are handled by a
single input and a single output operation.

In order not to suspend program execution while an input or out-
put operation is in progress, the direct transfer of data between
processors is minimized; thus the peripheral processor, as soon
as it is started, will fetch its commands fram the channel pro-
gram in the primary memory and execute them without engaging the
central processor, which continues with its program.

When the central processor attempts to initiate an input or out-
put operation, the peripheral device may reject it. Information
about this as well as other exceptional events is made available
in the exception register, which can be tested by the program in
order to take appropriate action. Device status will be trans—
ferred to the memory and the central processor will be interrup-
ted when the channel program is terminated.

Peripheral devices may also be connected to the bus in a more
primitive manner, i.e. without the channel program concept. In

2.5.1

2'5.2

20

this case, the device controller will be regarded as a set of
registers, to which the central processor transfers control in-
formation, and from which it obtains device information by means
of the input and output instructions.

Bus Control

Since the bus is shared by numerous devices, only one may have
control of it at a time. This device is called the bus master and
the device which it addresses, is called the slave.

When a device that is capable of being a bus master (viz. a cen-
tral processor or peripheral processor) desires to obtain
control, it sends a request to the bus control unit.

The control unit responds with a select signal, which is daisy-
chained through all the devices on the bus. The first device ha-
ving sent a request, breaks the chain and returns an acknowledge-
ment, completing the selection procedure. If the control unit
does not receive an acknowledge signal, it generates a bus time-
out, after which the selection procedure may be repeated.

As soon as the current master completes its transfer and releases
the bus, the selected device becomes the new master and sends a
busy signal while using the bus. During this time the next hus
master is selected.

Bus Communication

To facilitate interfacing with other systems, an asyncronous ful-
ly interlocked technique is used for bus communication. This so-
called handshake technique, in which each request that is sent by
a master must be acknowledged by the slave to complete the trans-
fer, permits operations between devices having different response
times.

®
W

»
-

w
N

21

Data Formats and Instructions

Data Formats

The data structure of the RC 8000 is shown in the following
figure:

DOUBLEWORD >

[4¢————— FIRST WORD > SECOND WORD ————

l-«—— HALFWORD —4+—— HALFWORD —»je+——HALFWORD —»1<+——HALFWORD-—

INTEGER HALFWORD|{ INTEGER HALFWORD
0 11 12 23

INTEGER WORD

FRACTION EXPONENT
0 35 36 47

INTEGER DOUBLEWORD

The basic arithmetic or logical operand is an integer of 24 bits.
The 12-bit halfwords are directly addressable, and may be used as
signed numbers. Double words are used to represent integers of 48
bits and floating-point numbers with 36-bit fractions and 12-bit

exponents.

Working Registers

The register structure includes four 24-bit working registers,
one of which is specified in each instruction. Three of the
working registers also function as index registers. The current
index register is selected by the instruction format.

The working registers are addressable as the first eight half-
word (or four words) of the primary memory, (see 3.5).

Two adjacent working registers can be used to hold a double-

3.3

22

length operand of 48 bits. In double-length operations, the four
registers are connected cyclically as follows:

w3 concatenate with w0
w0 concatenate with wl
wl concatenate with w2
w2 concatenate with w3

These connections are established by specifying the second regis-
ter of the concatenation in the instruction format.
Instruction Format

The instruction format is divided into an operation halfword and
an address halfword, each containing 12 bits:

L F [w M} X] D l
0 56 789101112 23

Bits 0:5 F field. Contains the function code, specifying one of
sixty-four basic operations.

Bits 6:7 W field. Specifies one of four working registers as
the result register.

Bits 8:9 M field. Specifies one of four address modes, used to
control generation of the effective address (see be-
low).

Bits 10:11 X field. Selects the current index register. Only
working registers wl, w2, and w3 act as index
registers (X field = 0 indicates no indexing).

Bits 12:23 D field. Contains a truncated address, specifying a
displacement from -2048 to +2047 halfwords within the

program.

A full address of 24 bits is formed by means of the displacement,
D, in conjunction with the contents of an index register, X, and
the content of the instruction counter, "ic". The generation of
the effective address, "addr", is controlled by the address mode
field, M, as follows:

3.3.1

23

M= 00 addr = X + D

M = 0] addr = word (X + D)

M =10 addr = X + IC + D
M=1 addr = word (X + IC + D)

In the address calculation, the displacement is treated as a
12-bit signed integer that is extended towards the left to 24
bits before being added to the index register and the instruction
counter. In the final addition of X, IC, and D, overflow is
ignored.

The address modes 01 and 11 permit indirect addressing on one
level. The indirect address fetched from the memory is assumed to
be a full address of 24 bits.

The address modes 10 and 11 modify the indexed displacement with
the current load address of the instruction. This pemmits re-
location of programs during loading.

Notation of Examples
The examples in the remaining part of this manual is given in a
primitive pseudo assembly language. Basic instruction format is

<mn> <w> <d> ; <comments>

<mn> is the instruction memonic. Instructions and their
mnemonics are introduced before they are used in
examples. Survey of instruction by mmemonic is given in
Appendix 1, which also gives the reference to the de-
tailed instruction descriptions in chapter 10.

<w> specifying the working register as w0, wl, w2 or w3.
The <w> may be left out, specifying W-field = 0, but
this is only done, when the instruction does not use a
working register.

<d> specifies the displacement either as an integer or as
the name of a label in which case the displacement is
the address of the labelpoint. Labelpoints are given as
'<names>' in front of an instruction, a constant or the
name of a label.

<comment> may be any text, comments are terminated by new line.

24

The principles of the instruction memonics are:

- Each instruction has a full name describing the instruction as
well as possible. Word choice and structure is uniform for the
different instructions.

- A short name is defined by the first word and one other signi-
ficant word of the full name, indicated by underlining.

The short name is the normal reference to the instruction.

— The acronym derived from the short name defines the mnemonic.

To show the notation the "register:load" instruction is intro-

duced preliminarily. The "register:load" instruction, "rl", loads

the specified working register with the contents of the memory
word pointed out by the effective address.

constant: 2

addr: constant
rl wl constant ; wl = 2
rl w3 addr : w3 = address (constant)

Constant and addr must represent addresses that can be contained
in the D-field, i.e. less than 2048.

Relative addressing is indicated by a point after the instruction

mnemonic, while a point after the labelname in an instruction
means that the D-field of the instruction is the displacement
between the labelpoint and the instruction. Thus, with same da-
ta definitions as above:

2
address (constant)

rl. wl constant. ; wl
rl. w3 addr. s w3

Now the displacement between the data and the instructions must
be less than 2048 and greater than or equal to -2048.

Indexing is indicated by placing an index register specification
in front of the displacement. Thus, still keeping the data defi-
nitions:

25
. rl. w3 addr. ; w3 = address (constant)
rl wl x3+0 s wl =2
rl w2 x3+2 : w2 = address (constant)

rl. w0 xl+constant. ; w0 = address (constant)

Indirect addressing is indicated by placing the address part of
the instruction in parenteses. Thus, again with same data defini-

tions:
rl. wl (addr.) s wl = 2
rl. w3 (xl+constant.); w3 = 2
3.3.2 Address modification in next instruction

"address : modify that of next instruction", "am", sets the "after
"am" bit in the status register. This will modify the address cal-
culation in the next instruction as follows depending on the M-

field:
M = 00 addr = X + D + addr
M = 01 addr = word (X + D + addr)
M=10 addr = X + ic + D + addr
M= 11 addr = word (X + ic 4+ D + addr)

I.e. the effective address of the "am" instruction is added to the
displacement before it is used in the address calculation. The
"after am" bit is cleared, when it has had its effect.

The "am" instruction expands the addressing possibilities as
indicated in the following examples, the corresponding
datastructures are not shown.

Indirect addressing in two levels:

am. (addr.) ; addr points to the address of a
; value
rl wl (0) ; wl = value

Indexing by a memory word:

am. (addr.) ; contents of addr points to first
; word in table
rl wi 4 ; wl = third word in table

3.4

3.4.1

Double indexing:

rl. w2
aIn.
rl. w0

Conditional address calculation is possible through conditioning
of the execution of the "am" instruction (see 3.4.2).

26

relrecord.; relrecord contains relative
; position of record in block
(relfield.); relfield contains relative
; position of field in record
block points at blockstart
; w0 = fieldvalue

x2+block.

14

)
’

14

Use of the effective Address as an Operand

For some function codes, the effective address is used directly

as an operand. This is done in three different ways.

The effective address or its two's camplement can be assigned to

the addressed register.

The contents of the working register can be campared with the effec-
tive address (word comparison) in several ways, the result of the
comparison determining whether the following instruction is to be

executed or skipped.

The effective address can define a number of shifts to be per-

formed on the addressed register.

Load of immediate Values

The "address:load into register" instruction, "al", assigns the

effective address to the specified register.

cl: 4711
al w0
al. wl

al w2
al wl

The "address complemented:load into register" instruction, "ac",

10

cl.
x1-2
x1+10

assigns the two's complement of the effective address to the

specified register.

w0
wl
w2
wl

10

address (4711)
wl - 2

wl + 10

|
3 G & & i G & G G G G Ol G G G O G G B
i
|

3.4.2

27
ac wl x1+1 ; wl = w1 -1, the ocnes camplement
ac wO0 10 ; w0 = -10
ac. w2 (cl.) ; w2 = 4711
ac w3 x1-10 ; w3 =10 - wl

Complementation of the maximum negative number will produce an
overflow (see 4.4).

Skip Instructions

"Skip if register high", "sh", campares the value of the speci-
fied working register and the effective address interpreted as
integers in two's complement representation. If the register
value is greater than the effective address the following in-
struction is skipped.

sh wl -1 ; 1f wl < -1 then
al wl 0 ;wl =0

This piece of code ensures that the following instructions are
never entered with a negative value of wl. Note that the camment
illustrates another way of looking at the skip instruction. The
skip instruction and the following instruction is considered one
conditional instruction conditioned by the negated condition.

"Skip if register low", "sl", skips the following instruction if
the register value is less than the effective address.

sl wl 0 ; if wl >0

am -2 ; then w0 = 43 (iso character
; value of "+")

al w0 45 ; else w0 = 45 (iso character
; value of "-")

sh wl -1 ; if wl < -1 then

ac wl X} ; wl o= =wl

The character value of the sign of the number in wl is assigned
to w0 (an example of conditional address calculation). After that
wl is assigned the absolute value of the number.

"Skip if register equal", "se", skips the following instruction
if the register value and the effective address is equal.

"Skip if register nonequal", "sn", skips the following instruc-
tion if the register value and the effective address is not
equal.

3.4.3

3.5

28

Skip if selected register bits all ones", "so", uses the effec-
tive address as a masc to test selected bits in the working re-
gister. If all bits in the working register that correspond to
ones in the effective address are one, the following instruction

is skipped.
"Skip if selected register bits all zeros", "sz", is analog to
"so". If all bits in the working register that corresponds to
ones in the effective address are zero, the following instruction

is skipped.

sz wl] ; 1f wl is odd then
al wl x1-1 ; make it even.

Shift Instructions

"Logical shift of single register", "1ls", shifts the content of
the specified working register the number of places given by the
effective address. If the effective address is negative the shift
is a right shift with zeroes shifted in at the most significant
bits else it is a left shift with zeroes shifted in at the least
significant bits.

"Logical shift of double register", "1ld". As "ls" but the shift
is performed on the 48 bit double register specified.

"Arithmetic shift of single register”, "as". As "ls", but with
sign extension for right shifts. Left shifts may produce an over-

flow (see further 4.4).

"Aritmetic shift of double register", "ad". As "as", but the
shift is performed on the 48 bit double register.

Use of the effective Address to refer to Memory Locations

In instructions for register transfer, instructions for arithmetic

and logical operations and some other instructions the effective
address is used as a logical address pointing to a memory loca-
tion.

Memory addresses are always expressed as halfword addresses. The
halfword locations are numbered consecutively starting with zero.
In word operations, the right-most bit in the effective address

3.5.

1

29

is ignored; thus it is irrelevant whether a word operation refers
to the left or the right half of a word. In double-word opera-
tions, the right-most bit in the effective address is also ig-
nored; the word thus specified is the second word of the ope-

rand.

The working registers are addressable as the first four words of
memory. The programmer can therefore perform operations directly
between two registers by specifying a memory address between 0

and 7. It is also possible to execute instructions stored in the

working registers.

HALFWORD ADDRESS

0 24 BITS WORKING REGISTER 0 (w0)
2 24 BITS WORKING REGISTER 1 (wl)
4 24 BITS WORKING REGISTER 2 (w2)
6 24 BITS WORKING REGISTER 3 (w3)

The relation between logical addresses and physical addresses,
i.e. true locations in the memory, is defined by the contents of
the process definition registers base, cpa, lowlim and uplim.
These contents define the memory protection given by the division
of the logical address space in process area, cammon protected
area, working registers and nonaccessible area.

Control of the contents of the process definition registersis
described in chapter 6.

Process Area

The process area is defined by the value of the limit registers.
Inside the process area the effective address is increased by

the contents of the base register before it is used as a physical
address. The limit registers contain physical addresses, the pro-
cess area is therefore defined by

lowlim < addr + base < uplim

The process area must be contained in true memory, this means
that the condition

8 <lowlim < uplim < memory size

must be fulfilled at all times.

3.5.2

3.5.3

30

The logical process area should be kept constant throughout a
program's lifetime to ensure consistent program behaviour. This
means that the values "lowlim - base" and "uplim - base" should
be kept constant.

The process area allows read— and write access. Doubleword refe-
rence with effective address equal to "lowlim - base" will lead
to program exception.

Common Protected Area
Effective addresses outside the process area may refer to the
cammon protected area defined by

8 < addr < cpa

Inside the common protected area, the effective address is used
directly as a physical address and only read access is allowed.
The contents of the cpa limit register must fulfill the condition

8 < cpa < memory size

The common protected area may overlap the process area. Con-
sistent program behaviour is only fully ensured in this case if
base is kept constant. The overlap belongs to the process area.
Double word reference with effective address equal to 8 and write
access in the common protected area will lead to program excep-—
tion.

Working Registers and Nonaccessible Area

As described before effective addresses 0 through 7 refers to the
working registers. All other logical addresses ocutside the pro-
cess area and the common protected area are considered nonacces-—
sible and reference to them leads to program exception.

!

3.5.4

31

Memory Addressing. Example of User Program
The following figure shows the physical address as a function of
the logical address for a user program:

PHYSICAL ADDRESSES

A
upper common
limit | WA areas
inaccessible
rAitAtaer ddresses
lower
limit
base
LOGICAL
S u oy Sttt psem. BDDRESSES
d e

T~———--—-upper limit less base

lower limit less base
CPA limit

The division of the logical address space in this example is as
fcllows:

a. 0 < logical address < 8
The working registers. Full access.

b. 8 < logical address < cpa
Common protected area used for references to system
parameters. Read-access only. Physical address = logical

address.

Cc. c¢pa < logical addres < lower limit - base
Non—-accessible area.

3.6

32

d. lower limit - base < logical address < upper limit - base
Process area.

Relocatable (physical address = logical address + base).
Full access.

e. upper limit - base < logical address
Non-accessible area.

Jump Instructions

The jump instructions represent a special kind of memory referen-

ce, as they transfer program control to the instruction pointed
out by the effective address.

The effective address is treated as a logical address as des-
cribed above, and program execution is regarded as read access.
Reference to the non-accessible area leads to program exception.

Subroutine jumps are supported as follows: If the W field is dif-

ferent from zero, the logical address of the return point, i.e.

the instruction following the subroutine jump, is placed in the

specified working register. A jump is then made to the effective
address.

At the end of the subroutine, a return jump is made as a simple
jump, i.e. with W field equal to zero.

Conditional jumps are defined by use of the skip instructions.

The "jump with link in register" instruction, "jl", is the basic
jump instruction.

The "jump and select disable limit", "jd", and "jump and select

enable limit", "je", instructions work like "jl1", but have an

effect on the interrupt system. A subset of negative effective
addresses will, used in connection with the "jd" instruction,
define noni- tor calls. These features are described in chapter
6.

3.6.1

3.6.2

33
Jump, example 1
subs: - ; subroutine code that does
- ; not change the contents of w3
jl x3+0 ; return jump
- i
jl. w3 sub. ; subroutine call

- ; return point

The example sketches a simple subroutine structure. Parameters
are given in the remaining registers.

Jump, example 2

sub: - ; subroutine entry point
- ; code
rl wl x3+0 ; load of parameter 1
- ; code
sh w0 ~1 ; if result < 0
am -2 ; then error return
jl X3+6 ; else normal return
- ; code
jl. w3 sub. ; subroutine call with
47 ; parameter 1 : number
text ; parameter 2 : address of text
jl. error. ; error return point : goto error

normal return point
- ; code

-

This example sketches a little more sophisticated subroutine
structure. Parameters are given following the call and an error
return is supplied.

3.6.3

3.7

34

Jump, example 3

table: - ; table of records : key,
- ; value
; records
last: - ; last record : key,
- ; value
al. wil table. ; initialize pointer to first
- ; record
loop: sn w0 (x1+0) ; if w0 = key (record) then

jl. found. ; goto found

al wl x1+4 ; increase pointer to next .
record

sh. wl last. ; 1f table not exhausted then

jl. loop. goto loop

not found code

~e

~e wo o~

- ; found code

The example shows a simple loop. The contents of w0 is searched

in a table of double word records containing a key and a corres-—

ponding value. If w0 matches one of the keys, control is trans-

ferred to the found code which loads the value and proceeds. If

the table is exhausted without a match the not—found code after .
the loop is executed. The end of the loop shows a typical condi-

tional jump.

Register Transfer Instructions

The "register:load" instruction,"rl", loads the specified working
register with the contents of the memory word pointed out by the
effective address. If the effective address is 0 through 7, "rl
is a register to register transfer. Reference to the non-access-
ible area leads to program exception.

The "register:store" instruction, "rs", stores the contents of
the specified working register in the memory word pointed out b
the effective address. If the effective address is 0 through 7, '

found: rl w2 x1+2 ; load value .

35

"rs" is a register to register transfer. Other reference outsid
the process area leads to program exception.

The "register : exchange with word" instruction, "rx", exchanges
the contents of the specified working register and the memory
word pointed out by the effective address. If the effective ad-
dress is O through 7, "rx" exchanges the contents of two regis-
ters. Other reference outside the process area leads to program
exception.

The "zero—extended halfword : load into register" instruction,
"z1", loads the least significant 12 bits of the specified wor-
king register with the content of the halfword pointed out by the
effective address. The most significant 12 bits are cleared. If
the effective address is 0 through 7 "zl1" is a half register to
register transfer. Reference to the nonaccessible area leads to
program exception.

The "extended halfword : load into register" instruction, "el".
As "z1" but the most significant 12 bits will contain a sign
extension of the loaded halfword.

The "half register : load" instruction, "hl". As "zl1" but the
most significant 12 bits are left unchanged.

The "half register : store" instruction, "hs", stores the least
significant 12 bits of the specified working register in the
halfword pointed out by the effective address. If the effective
address is 0 through 7, "hs" is a register to half register
transfer. Other references cutside the process area leads to pro-
gram exception.

The "double register : load" instruction, "dl", loads the speci-
fied double register with the contents of the doubleword pointed
out by the effective adress. If the effective address is 0
through 7, "dl1" is a double register to double register transfer;
in this case it is important to note that the least significant
register is assigned before the most significant register is
transfered. Reference to the nonaccessible area and to the lower
limits of the process area (addr = lowlim - base) and the common
protected area (addr = 8) will lead to program exception.

The "double register : store" instruction, "ds", stores the con-
tents of the specified double register in the doubleword pointed
out by the effective address. If the effective address is 0

3.8

36

through 7, "ds" is a double register to double register transfer
(note as for "dl1"). Other references ocutside the process area and
reference to the lower limit of the process area will lead to
program exception.

Logical Operations

The instructions for logical operations cambine the contents of
the working register with the operand, i.e., the contents of the
word pointed out by the effective address, by a logical bit by
bit operation. If the effective address is 0 through 7, the re-
sult is a combination of two registers. Reference to the non-ac-
cessible area leads to program exception.

The "logical and : combine word with register" instruction, "la",
executes the logical and- operation defined by

register bit operand bit result bit
1 1 1

1 0 0

0 1 0

0 0 0
The "logical or : combine word with register" instruction, "lo",
executes the logical or-operation defined by

register bit operand bit result »bit
1 1 1

0 1
1 1
0 0

o o -

The "logical exclusive or : combine word with register" instruc-
tion, "1x", executes the logecal exclusive-or-operaton defined

by

register bit operand bit result bit
1 1 0
1 0 1
0 1 1
0 0 0

37
Skip if no protection

The "skip if word not protected" instruction, "sp", skips the
following instruction if the effective address of the instruction
points to the process area or to a register, i.e. if storing in
the word addressed is allowed.

4.1

4.2

38

Integer Arithmetic

Number Representation

The standard arithmetic operands are signed integers of 12, 24
and 48 bits:

0 11 HALFWORD INTEGER
[s]
0 23 WORD INTHGER
[s]
0 47 DOUBLE WORD INTEGER

Positive numbers are represented in true binary form with a zero
in the sign bit. Negative numbers are represented in two's com-
plement notation with a one in the sign bit. The two's complement
of a number may be obtained by inverting each bit in the number
and adding 1 to the right-most bit.

Halfword Arithmetic

A signed integer represented by a 12-bit halfword must be con-
fined to the following range:

—-2**]1]1 = -2048 < integer halfword < 2047 = 2**11-1

The instruction "extended halfword : load into register", “el"
(see 3.7) serves to extend a signed 12-bit halfword towards the
left to 24-bits, as it is placed in a working register.

The arithmetic instructions "extended halfword : add to regis-
ter", "ea", and "extended halfword : subtract fram register",
"es", adds or subtracts the contents of the halfword pointed out
by the effective address to or from the specified working regis-
ter after sign extension. If the effective address is 0 through 7
the operation is a register— halfregister operation. Reference to
non—-accessible area leads to program exception. Overflow and car-
ry is registered in the exception register and integer exception

4.3

44

39
may occur as described in 4.6.

The "half register : store" instruction, "hs", (see 3.7) .is used
for storing halfword results in memory.

The sign extension of halfword operands makes it posible to per-—
form integer arithmetic with mixed 12-bit and 24-bit operands.

Word Arithmetic

A signed integer represented by a 24 bit word or register is con-
fined to the following range

-2**23 = -8388608 < integer word < 8388607 = 2**23-1

The "word : add to register" instruction, "wa", and the "word :
subtract from register" instruction, "ws", adds or subtracts the
contents of the word pointed out by the effective address to or
fram the specified working register. If the effective address is
0 through 7 the operation is a register-register operation. Refe-
rence to non-accessible area leads to program exception. Overflow
and carry is registered in the exception register and integer ex-
ception may occur as described in 4.6.

Doubleword Arithmetic

A signed integer represented by a 48 bit doubleword or double-
register is confined to the following range

-2**47 < integer double word < 2**47-1

Note that bit 24 of the integer i.e. bit 0 of the least signifi-
cant word or register is not a sign bit, but contains a normal
significant digit.

The "add double word to double register" instruction, "aa", and
the "subtract double word fram double register" instruction,
"gs", adds or subtracts the contents of the doubleword pointed
out by the effective address to or fram the specified doublere-
gister. If the effective address is 0 through 7, the operation is
a doubleregister—doubleregister operation. In this case it is im-
portant to remember that the operation on the least significant
registers is completed before the operation on the most signifi-

4.5

40

cant registers and carry is executed. Reference to non-accessible
area and reference to the lower limits of process area (addr =
lowlim - base) and common protected area (addr = 8) leads to pro-
gram exception. Overflow and carry is registered in the exception
register and integer exception may occur as described in 4.6.

Multiplication and Division

Integer multiplication of the contents of a working register with
the ocontents of a emory word produces a double-length product
that is placed in a double register of 48 bits with the sign bit
at the extreme left.

A double-length product will normally consist of a sign bit plus
at most 46 digits. In this case, bit 1 in the double register
will be identical with the sign bit.

The only exception to this occurs in the multiplication of two
maximum negative numbers:

(=2%%23)* (-2%*%23) = 2**4¢
This result will be represented as bit 1 = 1, all other bits = 0.

The contents of a double register can be divided by the contents
of a memory word. The dividend is then replaced by a 24-bit re-
mainder in the left-hand register and a 24-bit quotient in the
righthand register. A non-zero remainder satisfies the following
requirements:

(1) dividend = divisor * quotient + remainder

(2) 0 < abs (remainder) < abs (divisor)

(3) sign (remainder) = sign (dividend)

[S| SIGNIFICANT BI'TS OF DIVIDEND]
0 47

[S[SIGNIF. BITS OF REMAIND. [S[SIGNIF. BITS OF QUOTIENT]
0 23 0 23

The "word : multiply by register giving double register" instruc-
tion, "wm", multiplies the specified working register by the con-
tents of the word pointed out by the effective address. The re-
sult is placed in the corresponding double register. If the ef-

4.6

41

fective address is 0 through 7, the operation is a register-re-
gister operation. Reference to nonaccessible area leads to pro-
gram exception. Exception register is unchanged and integer ex-—
ception can not occur.

The "word : divide into double register" instruction, "wd", divides
the specified double register by the contents of the word pointed
out by the effective address. The quotient is placed in the least
significant register while the remainder is placed in the most sig-
nificant register. If the effective address is 0 through 7, the
operation is a double register-register operation. Reference of
nonaccesible area leads to program exception. Carry = 0 and over-
flow is registered in the exception register and integer exception
may occur as described in 4.6. At overflow the dividend is left
unchanged.

If the dividend is represented by an integer word, the sign must be
extended before division

rl, wl dividend. ;
al wo 0 ; sign extension of positive
; dividend
wd. wl divisor. ;
rl. w0 dividend. ;
ad wl =24 ; sign extension of any dividend
wd., wl divisor. ;
rl. wl dividend. ;
sl wl 0 ; sign extension of any dividend
am 1 ;
al wo -1 ; faster in most models
wd. wl divisor. ;

Overflow and Carry Indication

Arithmetic operations except integer multiplication indicate a
normal or an exceptional result by setting the right-most two
bits of the 3-bit exception register. Physically, the exception
register is the last three bits in the status register, but it is
treated by special instructions as a logically independent regis-
ter. See 4.7.

After a normal result, exception bit 22 is set to zero. An integer

42

overflow will set exception bit 22 to one, and will provoke an in-
teger exception if the "integer exception active" bit in the status
register is set, see further chapter 7.

An overflow condition is recognized in the following situations:

(1) The result of an addition, subtraction or division
exceeds the range or a 24-bit signed integer, viz.

—2**23 = -8 388 608 < integer word < 8 388 607 = 2**23-1

Or the result of doubleword addition or subtraction
exceeds the range of a 48 bit signed integer, viz.

-2%*47 < integer doubleword < 2**47-1 .

Note that multiplication can never produce overflow and
leaves the exception register unchanged.

(2) The instruction "address complemented : load into re-
gister", "ac", specifies complementation of the maxi-

mum negative number: l

—(-2%*23) = 2%%23

(3) One or nmore significant digits are lost during arithme-
tic shifts toward the left. (The shift instructions
test overflow conditions after each single-bit shift).

If overflow occurs in division, the dividend remains unchanged in .
the working register. All other arithmetic operations deliver the
result modulo 2**24 after an overflow.

Exception bit 23 is set, when addition or subtraction produces a
carry from bit 0. For addition this means, that a carry is pro-
duced when the sum of the ogperands interpreted as unsigned num-—
bers of 24 bits (or 48 bits) exceeds 2**24-1 (or 2**48-1). For
subtraction the carry is to be interpreted as not borrow, i.e. a
carry is produced when the register operand interpreted as an un-
signed number is greater than or equal to the "memory" operand
interpreted as an unsigned number.

The carry indication in the exception register can be used for
multiple length arithmetic and in connection with comparison of
unsigned numbers, see examples in 4.7. .

4.7

43

The exception register, then, has the following meaning after an
integer arithmetic operation:

Bit Meaning

21 (unchanged)

22 integer overflow
23 integer carry

Exception Register Instructions

The "skip if selected exception bits all zero" instruction, "sx",
uses the 3 least significant bits of the effective address to
test selected bits in the exception register. If all selected
bits, i.e. the bits oorresponding to 1's in the effective ad-
dress, are zero the following instruction is skipped.

The "sx" instruction may he used to test for overflow and carry.

- ; integer operation

SX 2 if overflow then
jl. overflow., ; goto overflow
- ; integer operation
SX 1 ; 1f carry then
jl. w3 carry. call carry action

~e w2

The "exception register : store in halfword" instruction, "xs",
stores the exception register in the 3 least significant bits of
the halfword pointed out by the effective aldress. The most sig-
nificant 9 bits are set to zero. If the effective address is 0
through 7, "

xs" 1s an exception register to halfregister trans-
fer. Other references outside the process area lead to program

exception.

The "exception register : load from halfword" instruction, "x1",

loads the exception register with the 3 least significant bits of
the halfword pointed out by the effective address. If the effec-

tive aldress is 0 through 7, "x1" is a halfregister to exception

register transfer. Reference to non-accessible area leads to pro-
gram exception,

Exarmple 1:

;camparison of unsigned integers

rl. wl int1. :

ws. wl int2. :

SX 2.01 ; 1f intl >= int2 then
jl. greq. ; goto greq;

rl. wl intl. :

ws. wl int2. ;

SX 2.01 ; 1f intl < int2 then
jl. 4 H

jl. less. : goto less;

Since the dataformats of RC 8000 is sufficient for nearly all
applications little attention has been paid to the ease of im—
plementation of multilength arithmetic. Thus no facility for di-
rect carry propagation is included. The causual reader may skip
the following example of the use of exception bit 23 in multi-
length addition.

Example 2:

;Routine for multilength addition

:The routine performs addition of multilength integers
;represented in consequtive doublewords.

;At call the registers must contain

; wO0: length of integers in halfwords:

: integral multiplum of 4, at least 8.

;7 wl: address of last word of first integer

; Ww2: address of last word of second integer

: w3: link

;At return the result will have overwritten the second integer.
;Return is made to link + 2, i.e. the second instruction after
;the call, except in case of total overflow, where return is to
s link.

0 H
dzero: 0 ; double length zero
done: 1 ; double length one
stop: 0 ; saved stop criteria
return: 0 ; saved return

.
G G = N N O AN D T O G BY B BT O O G e B N B

‘l’ 45
multiadd: ws w2 0 ; entry point:
al w2 x2+4 ; stop criteria;
ds. w3 return. ; save stop criteria and return;
al w2 x2-4 :
wa w2 0 ; restore second pointer;
x1. 0 ; clear ex;
next: dl w0 xI ; loop for addition of tail parts
SX 2,01 ; if ex(23) then
aa. wl done. ; add carry; X
XS. oldcarry.+1; save ex in displ. below X
aa w0 x2 ; add second tailpart X
ds w0 x2 ; save partial result
. oldcarry: al wO0 0-0-0 ; load saved ex fram carry

: addition
sz w0 2,01 ; if saved carry then
x1l. 1 ; ex(23):= 1;
al wl x1-4 ;
al w2 x2-4 ; decrease pointers;
sl. w2 (stop.) ; if more tail parts then
Jjl. next. ; loop;
SX 2.01 :
am done-zero ; if ex(23) then 3%
aa, wo dzero. ; add carry; note ex always

; assigned y
XS 3 ; wl:= oldex:= ex; y
aa X2 ; add head of second; Yy

&8

‘ ds x2 ; save result;
SX 2.01 ; if overflow then

al wl x1+2 ; oldex. overflow:=

; —, oldex. overflow;
rl. w3 return. ;
sz wl 2.01 ; 1f oldex. overflow then
return to link
else return to link + 2;

jl x3
jl x3+2

~e Ne N

The corresponding routine for multilength subtraction can be
obtained by changing instructions marked "x" by:

jl. 4 ; 1f -, carry then

ss. w0 done. ; subtract borrow;

XS. oldcarry.+1; save ex in displ. below;
ss wl x2 ; subtract tailpart;

' dl w0 x] ; load head of first

]

46

and instructions marked "y" by:

am dzero-done ; if -, carry then
ss. w0 done. ; subtract borrow;
XS 3 ; wl:= oldex:= ex;
ss w0 x2 ; subtract first doubleword;

47

Floating-point Arithmetic

Number Representation

A floating-point number F = fraction * 2 ** exponent is stored in
a double word or a pair of working registers:

FRACTION EXPONENT
S [s
0 23124 35 36 47
r——————FIRST WORD SECOND VWORD —~

The address of a floating-point number refers to the second word
of the memory operand. The working register field within a floa-
ting-point instruction refers to the second word of the register
operand.

The left-most 36 bits of a floating-point number represent a signed,
normalized fraction in two's complement notation. The right-most
12 bits are a signed exponent, also in the two's camplement form.

The range of floating-point numbers is the following:

=1*2**2047 <= F < —0.5%*2**(-2048) F negative
F = 0*2**(-2048) F zero
0.5*2**(-2048) <= F <1*2**2047 F positive
or approximately
10**(-616) < abs(F) < 10**616

The relative precision of a floating-point number is 2**(-35) /
abs(fraction) which lies between 2**(-35)=3*10**(-11) and
2**(-34)=6*10**(-11).

The left-most two bits of a normalized fraction are 01 and 10,
respectively for positive and negative numbers.

The floating-point zero is represented by the fraction 0 and the
exponent -2048.

Accordingly, the sign or zero value of a floating-point number

5.2

5.3

48

may be determined by examining its first word only. This can be
done by means of skip instructions.

The following instructions will load a floating-point number in
w0 and wl and test whether it is negative:

dl. wl float. o w0=1 = number float points to
second word

sh w0 -1 if number < 0 then

jl. negative.; goto negative

Arithmetic Operations

Addition and subtraction require an alignment of radix points.
This is done by shifting the fraction with the smaller exponent

to the right a number of positions equal to the difference in ex—~
ponents. After alignment, the addition or subtraction of the frac-
tions is performed, and the larger exponent is attached to the
result. The resulting fraction is normalized and rounded as de-
scribed below.

Multiplication is performed by addition of the exponents and mul-
tiplication of the fractions. The fraction product is formed by
repetition of an add-and-shift cycle. Normalization and rounding
of the resulting fraction proceeds as for addition and subtrac-
tion (see below).

Division is performed by subtraction of the exponents and divi-
sion of the fractions. The fraction quotient is formed by the
non-restoring division method. Rounding of the quotient is per-
formed as described below. The remainder is thrown away.

Normalization and Rounding

If the resulting fraction is zero, a floating-point zero with
exponent —2048 is delivered as the final result.

!

o1
>

49

A non-zero fraction is normalized either by left shifts to elimi-
nate leading sign bits or by a single right shift to correct for
overflow of the fraction. The exponent is decreased (increased)
by the number of left (right) shifts performed.

A non-zero, normalized fraction is rounded by adding 1 in bit 36.
After rounding, the fraction may require normalization once more
before the high-order 36 bits and the exponent are delivered as
the final result.

The maximum value of the rounding error is 0.5 in the least
significant position of the 36-bit fraction of the result.

Underflow, Overflow and Non-normalized Operands

Underflow and overflow occur when the exponent of the final re-
sult (after normalization, rounding and renormalization) is less
than -2048 or greater than 2047, respectively. This will be re-
gistered in the exception register as shown below and will lead
to a floating point exception if the "floating point exception
active" bit is set in the status register.

After underflow or overflow, the fraction is correct, while the
exponent is taken modulo 4096.

Division by zero leaves the register operand unchanged and is
defined as overflow even if zero is divided by zero. Considering
the range of floating point numbers, both underflow and overflow
will usually indicate a programming error.

No check is made of whether operands are correctly normalized
floating point numbers. Results of operations on non-normalized
numbers must be regarded as undefined, they may be non-normalized
and they may be different on different wversions of RC 8000. See
however the descriptions in chapter 10.

The exception register has the following meaning after a floating
point operation:

Bit Meaning

21 (unchanged)

22 floating point overflow
23 floating point underflow

55

5.6

50
Floating Point Instruction

The "floating point : add to double register" instruction, "fa",
adds the contents of the doubleword pointed out by the effective
address to the specified double register. If the effective ad-
dress is 0 through 7, the operation is a doubleregister — double-
register operation. Reference to non-accessible area and to the
lower limits of the process area (addr = lowlim - base) and the
common protected area (addr = 8) leads to program exception. Un-—
derflow and overflow conditions are indicated in the exception
register. If the "floating point exception active" bit is set in
the status register underflow and overflow will lead to a floa-
ting point exception. After underflow and overflow the fraction
of the result is correc while the exponent is taken modulo 4096.

The "floating point : subtract from double register" instruction,
"fs", subtracts the contents of the doubleword pointed out by the
effective address fram the specified double register. Otherwise
as "fa".

The "floating point : multiply by double register" instruction,
"fm", multiplies the specified double register with the contents
of the doubleword poin ted out by the effective address.
Otherwise as "fa".

The "floating point : divide into double register" instruction,
"fd", divides the specified double register with the contents of
the doubleword pointed out by the effective address. The quotient
is placed in the doubl register, the remainder is thrown away.
Otherwise as "fa".

Number Conversion

Mixed arithmetic is supported by number conversion instructions
and normalizing shift instruction. The normalize instructions may
of cause be used for other purposes.

The "convert integer to floating point" instruction, "ci", con-
verts the integer value of the specified register to a floating
point number and places the result in the corresponding double
register. The effective address is used for scaling, such that
the value of the result is two to the power of effective address
times the integer. Floating point overflow and underflow may oc-
cur through scaling and is handled as for the floating point in-
structions.

The "convert floating point to integer" instruction, "cf", con-

5.7

51

verts the floating point value of the specified double register
to an integer and places the result in the least significant re-
gister. The effective address is used for scaling, such that the
value of the result is two to the power of effective address
times the floating point number rounded to nearest integer. Carry
= 0 and integer overflow is registered in the exception register.
Integer overflow will lead to integer exception if the "integer
exception active" bit is set in the status register.

The "normalize single register" instruction, "ns", normalizes the
contents of the specified working register by shifting it to the
left until bit 0 and bit 1 have opposite values. The negative
number of shifts necessary is stored in the halfword pointed out by
the effective address. Normalization of zero will give zero and
store the value -2048.

Effective address 0 through 7 will cause the negative shift value
to be assigned to the corresponding half register. Other referen-
ces outside the process area will lead to program exception.

The "normalize double register" instruction, "nd", works as "ns"
but on the specified double register.

Examples

; variables and constants; addresses of doublewords point at second
; word

fhalf : 0.5 ; rounding of floating
; point

roundconst: d.1024 ; rounding double integer
; = bit 37

integerl : <24 bit integer value> ; variable

integer2 : <24 bit integer value> ;-

floatl » <floating point value> ; -

float?2 : <floating point value> R

dinteger : <48 bit integer value> ;-

52

;s mixed arithmetic

rl. wil integerl. ;

ci wl 0 :

rl. w3 integer2. :

ci wl 0 ;

fa wil 6 ;

ds. wl floatl. ; floatl = integerl/integer?
rl., wl integerl. ;

ci wl 0 ;

fa. wil floatl. H

cf wl 0 ;

rs. wl integer2. ; integer2 = integerl + floatl

; conversion of double register to floating point

dl., wil dinteger. ;
nd. wl 3 ; negative shifts are
; stored as displacement
; in next instruction
al w2 0-0-0 ; note notation for changed
; displacement
sn w2 -2048 ; 1f dinteger = 0 then
Jjl. assignexp.; goto assignexp; result
: = 0.0
al w2 x2+48 ; exponent = ~ shifts + 48
ad wl -1 ; prevent rounding overflow
aa. wl roundconst.; add bit 37 to round ‘
nd. wil 3 ; renormalize
al w2 x2+0-0-0 ; exponent = exponent
; =(1 or 0)
assignexp: hs w2 3 ; assign exponent
ds. wl floatl. ; floatl = dinteger

53

; 1f rounding of large double integers is not needed the code is
;s reduced to

dl. wl dinteger. ;
nd. wl 3 ;
al w2 ;
se w2 -2048 ;
al w2 x2+47 ;
hs w2 3 :
ds. wl floatl. ; floatl = dinteger

; conversion of floating point to double integer

dl. wl floatl. H

fa. wi fhalf. : round

el w2 3 ; load exponent

ad wl -12 ; remove exponent bits

ad wl x2-35 ; shift according to exponent
; overflow may occur

ds. wl dinteger. ; dinteger = floatl

Without giving examples it may be noted that correct integer
arithmetic with 35 significant bits can be simulated by the
floating point instructions.

6.1

54

Monitor Control

The RC 8000 is designed to operate a multiprogramming system
under the control of a monitor program, defining the specific
multiprogramming environment. Full monitor control is ensured by
the protection system, which consists of the memory protection
and the concept af privileged instructions. The memory protection
is described in chapter 3.

Privileged instructions are the i-o instructions and the instruc-
tions that may change the protection situation. These instruc-
tions may only he executed in monitormode.

The monitor program is entered through interrupts and monitor
calls. The current user program is suspended, registers and sta-
tus are dumped and the monitor program is entered according to
the cause with memory protection and program relocation disabled.
Dump and entry addresses are defined by a system table pointed
out by the system information register, "inf". This table and the
register must be set up by the monitor program according to moni-

torstructure and current system status. User programs are reac-
tivated through the privileged "return interrupt" instruction,
which restores the dumped registers and the protection situation.

System Table

The system table consists of 6 consequtive words with the
following contents.

inf-5 : monitor call service address
inf-3 : interrupt service address
inf-1 : status/intlim initialization
inf+1 : register dump address

inf+3 : exception service address
inf+5 : escape service address

The system information register, inf, points to the second half-
word of the status/intlim initialization.

The exception and escape service addresses define register dumps
and entry points for the current userprogram's use of the excep-
tion and escape facilities, see further 6.5.1 and chapter 7.

P

6.2

55

These addresses are logical addresses, the remaining addresses
are physical addresses in true memory.

Entering the Monitor Program

Entry of the monitor program proceeds in the same way for moni-
torcalls and interrupts except for the initial assignment of
cause and the final selection of service address.

The 8 dynamic registers are dumped starting at the register dump
address:

register dump address + 0 : w0
- + 2 : wl
- + 4 : w2
- + 6 : w3
- + 8 : status
- +10 : ic
- +12 : cause
- +14 : addr

The 12 most significant bits of the status register is assigned
the value of the most significant halfword of status/intlim ini-
tialization. The 12 least significant bits are cleared.

The enable limit in the intlim register is assigned the value of
the 12 least significant bits of status/intlim initialization,
the disable limit is set to zero, see further 6.6.

Status/intlim initialization:

0123456 1112 23
[1] o o] | escapemasc intlim initialization ;]

aritmetic exceptions active
after address nodify,after
escape, should be zero
escape mode

monitor mode, should be one

The remaining process definition registers are initialized as
follows:

6.3

56
base =0
lowlim = 8
uplim = size, the size register must contain memory

size

This initialization disables program relocation and memory pro-
tection.

The working registers are initialized thus:

w0 = unchanged user value

wl = register dump address + 16
w2 = cause

w3 = unchanged user value

After this the relevant service address is fetched fram the sys-
tem table. The inf register is decreased by 12 defining a new sy-
stem table and the monitor program is started at the service
address.

The definition of a new system table and the way status is ini-
tialized allows use of the exception and escape facilities in
connection with the monitor program and allows special handling
of not disabled interrupts during execution of the monitor pro-
gram. Total disabling is obtained by specifying an intlim ini-
tialization zero. Interrupts that can not be disabled, i.e. the
internal interrupts see 6.5.1, will halt the cpu if intlim is
Zero.

Errors during entering the monitor program will increase the dump
error count in status, decrease inf by 12 and repeat the action
with the new system table. For details see chapter 10.

Reactivation of User Program

Reactivation of the user program is done by execution of the "re-
turn from interrupt" instruction, "ri".

The "inf" register is increased by 12 reselecting the system
table valid at monitor entry. The monitor program selects the
user program by assigning values to this system table.

The 8 dynamic registers are restored from the register dump
pointed out by the register dump address in the systemtable.

6.4

57

The process definition registers are restored fram 5 consequtive
words pointed out by the sum of the register dump address and the
effective address of the ri instruction:

register dump addr + effective address + 0 : cpa
- + 2 : base

- + 4 : lowlim
- + 6 : uplim
- + 8 : intlim

The user program is entered at the dumped instruction counter.

"ri" is a privileged instruction.

Monitor Calls

Programmed activation of the monitor program fram a user program
is executed as a special case of the "jump and select disable
limit" instruction, "jd", see 6.6. If the effective address of
the "jd" instruction fullfill the condition:

-2048 < addr < -2048 + function limit
where

function limit = 2048 - montop
a monitor call is executed. The montop register must have been
initialized by the monitor program. The address space used for
definition of monitor calls would otherwise have lead to program
exception, since it is contained in the non-accessible area.

After the common interrupt and monitor call action described in
6.2, the monitor program is entered at the monitor call service
address specified in the system table. The cause is defined as
function number equal to effective address plus 2048. If the
least significant bit of the function number is ignored a fast
selection of the monitor function is obtained in the monitor

program by

call entry : jl. (x2 + functiontable.) ; switch to function
functiontable: function 0 ; address of code for function 0
function 2 2

- r'4

~e Ne 0~

6.5

6.5.1

6.5.2

58

Parameters and results may be exchanged between the user program
and monitor program via the register dump. Return is through the
" instruction.

ri

Interrupts

RC 8000 has a program interrupt system with priority levels. The
interrupt levels are described by levelnumbers, lowest numbers
having highest priority.

Internal Interrupt

The level numbers 0 through S are assigned to program events de-—
fined as internal interrupts. These interrupts can not be dis-
abled.

Level no. meaning

program interrupt

integer interrupt

floating point interrupt

system table error, see chapter 10
buserror in operand reference
buserror in instruction fetch

s w N — O

Program interrupt is defined when a program exception occurs and
the exception service address in the system table is zero or when
an escape takes place with escape service address zero.

Integer and floating point interrupt ire analogous to program
interrupt, but refer to arithmetic exceptions.

Buserror interrupts are usually triggered by memory faults. See
further 8.2,

Power Failure and Timer

Level 6 is assigned to powerfailure interrupt. The power failure

interrupt leaves at least 1 millisecond to prepare the power re-

start and force a halt. Level 6 should only be disabled in excep-
tional situations and only for wery short periods.

Level 7 is assigned to timer interrupt. RC 8000 is supplied with
a 16 bit real time clock register, rtc, which is increased by one
every 0.1 millisecond. A timer interrupt is generated every timer
interrupt period, 25.6 milliseconds in most of the RC 8000 mo-
dels.

6.5.3

6.6

59

External Interrupts

The remaining levels are used for exteral events. External inter-
rupts are defined by the processors on the unified bus by addres-
sing the cpu and transferring the levelnumber as data. The number
of levels available depends on model. Assignment of external lev-—
els is under program control, see further chapter 8.

Disabling of Interrupts

Interrupt request are registered in the interrupt register "int-
reg", one bit for each level. "Intreg" is oontinously scanned.
When a bit equal one is found an interrupt flag is set and the
corresponding level number is saved in the current level register
"curlev", and the scan is stopped. Disabling is implemented by
restricting the scan to level numbers lower than or equal to a
limit defined by the interrupt limit register and the disable bit
in the status register.

Interrupt limit register:

| disable level I enable level]
0 1112 23

When the "disable" bit in "status" is one, the scan limit is
defined as the disable limit and when it is zero as the enable
limit.

The "disable" bit is ocontrolled by the special jump
instructions:

The "jump and select enable limit" instruction, "je", sets the
"disable" bit to zero and proceeds as a "jl" instruction.

The "jump and select disable limit" instruction, "jd", tests the
effective address against the monitor call definition, 6.3, if it
is not a monitor call the "disable" bit is set to one and the
"j1" actions are executed.

A normal user program will have "disable level" equal to "enable
level” equal to maximum level number, this means no disabling and
"je" and "jd" reduced to normal jumps except for the monitor call
function of "jd".

The monitor program is entered with disable bit zero, disable
level zero and enable level initialized from the systemtable,
usually to 6, disabling all levels but power failure.

60

6.7 Interrupt Response

The interrupt flag is examined at the completion of every in-
struction. If the flag is set, the cause is defined as two times
the saved levelnumber in "curlev" and the corresponding bit in
"intreg" is cleared. After the common interrupt and monitor call
action the monitor is entered at the interrupt service address
defined in the system table, with the interruptflag cleared and
the interruptscan restarted according to the new value of "int-
lim",

6.8 Control of Monitor Registers

The "general put into processor register" instruction, "gp",
transfers the contents of the specified working register to the
register pointed out hy the effective address. "gp" is a privi-
leged instruction.

Effective addres Effect

26 inf = working register

30 size = working register

32 montop = working register

94 the contents of the working register

is interpreted as an interrupt level
and the corresponding bit in "intreg"
is cleared. Only used at power restart
and in testprograms.

other depends on model, may be destructive,
used for technical testprograms.

The "general get from processor register" instruction, "gg",
transfers the contents of the register pointed out by the
effective address to the specfied working register.

Effective address Effect

26 working register = inf

30 working register = size
32 working register = montop
100 working register = rtc

The contents of the 16 bit real time clock
register is transferred to the 16 least
significant bits of the working register.
Remaining bits are cleared. rtc is
unchanged.

other depends on model. Used for technical
testprograms.

1

|
~

7.1

61

Exceptions and Escape

An exception occurs, when the protection system is violated, when
execution of an unassigned instruction code is attempted and, if
wanted, when results of arithmetic operations are outside the
range of number representation. These events are caused by pro-
gramming errors. As an aid in finding these errors the exception
concept offers the possibility of register and statusdump com-—
bined with activation of a programmed exception routine. A large
part of programming errors will result in exceptions, but in many
cases the original cause is obscured. The escape facility pro-
vides a tool for tracking down these and other errors and for
gathering information on program flow and data usage to aid in
program tuning.

Exception

When an exception occurs the exception service address is fetched
from the system table. If the address is zero, the monitor pro-
gram is called through an internal interrupt. If the address is
nonzero, the 8 dynamic registers are dumped and the program is
restarted at the address following the dump.

Register Dump at Exception

address contents after exception
exc., service addr. + 0: wl

- + 2: wl

- + 4: w2

- + 6: w3

- + 8. status

- +10;: ic

- +12: cause

- +14: addr

- +16: <entry point for

routine>

The register dump must be inside the process area defined by the
limit registers. The registers are dumped with the values they
had when the exception occurred. Exact interpretation may require
knowledge of the details in instruction excecution given in chap-
ter 10, but in most cases the following general principles are
sufficient for the analysis.

7.1.2

7.1.3

7.

1.4

62

The cause register gives the cause of the exception

i
(e

cause : program exception i.e. protection viola-
tion or unassigned instruction code

cause = 2 : integer exception i.e. overflow

cause : floating point exception i.e. over- or

underf low

i
>

The instructon counter points to the word after the instruction
causing the exception.

Program Exception

Exception caused by attempts to execute privileged or unassigned
instruction codes leaves working registers and status unchanged

but the address calculation has been carried out before the ex-

ception is recognized and the result is given in the dumped addr
register.

At memory protection violation the addr register contains the lo-
gical address causing the violation. In multiword instructions
this address may point to any of the addressed words. Early steps
in the instruction may have changed the contents of the specified
working register(s). Violation in indirect address calculation
will leave the intermediate address in the addr register and set
the after am bit in the dumped status register, this bit is zero
at all other exceptions. This indication of exception in indirect
addressing is not implemented on RC 8000/45.

Arithmetic Exceptions

At arithmetic exceptions the exception part of the status regis-—
ter expand the cause. For memory referring arithmetic instruc-
tions the addr register contains the logical address of the ope-
rand, (for doubleword instructions the logical address of the
preoperand) .

Exception Routine
Before entering the exception routine the registers are initia-
lized thus:

wO: dumped instruction counter
wl: w-field of cause instruction
w2: dumped addr register

w3: cause

ex: dumped exception register

Protection, relocation, escapemode, escapemask, "integer exception

63
active" and "floating point exception active" are unchanged.
What the exception routine does is up to the programmer.

A primitive exception routine regards any exception as an error,
the register dump is output for analysis by the program
maintenance staff and the program is aborted after dumping of
program and variables.

An advanced exception routine classifies the exceptions as non-
repairable, repairable and intentional.

Non-repairable exceptions may be handled as above. Repairable
exceptions trigger a corrective action after which return is made
to the instruction pointed out by the dumped instruction

counter.

64

Example: repairing of floating point exception:

exaddr:
w01:

w23:

ic:

entry:

float:

underflow:

fzero:

neg:

pos

0

0

0

0

0

0

0

0

sn w3 4

jl. float.
1s wl 1

al w2 x1-2

sh w2 -]

al w2 6

SX 2.1
jl. underflow.

rl. w0 x2+exaddr.

sl w0 0

am pos-neg
am neg-fzero
dl. w0 fzero.

rs. w3 x2+exaddr.
rs. w0 xl+exaddr.

dl. wl wO7l.
dl. w3 w23.
jl. (ic.)
0.0

-1.6x10**616

1.6x10**616

~e

~e

replaced by dump of
w0

wl

w2

w3

status

ic

cause

addr

if cause = 4 then
goto float

code for non-repairable error

wl=2*w1, wl=rel addr of reg in
dump
w2=wl-2

if w2 < 0 then
w2=6, w2= rel addr of rey pre
in dump

if underflow then
goto underflow
w0= first part of result,
prepare last sign of result

if result > 0
then w3-0 = maxpos
else w3-0 = macneg

underflow : w3-0=zero
overwrite dumped result
with corrected result in w3-0
restore w0-1 contents
restore w2-3 contents
continue with instruction after
exception.

floating point zero, double-
word, addr points to second
word.

maximum negative floating
point number

maximum positive floating
point number

!

7.2

7.2.1

The coding of this example aims to illustrate practical use of
the facilities in address calculation f.ex. the am—construction
loading the corrected result. Floating point exceptions are re-
paired by substituting the result with zero in case of underflow
and a maximum number with correct sign in case of overflow.

Intentional exceptions may be produced by inserting illegal in-
structions as breakpoint to trigger testoutput or similar action.
A more sophisticated use is to program in such a way that rare
conditions automatically will result in an exception f.ex.
through a table lookup that in all normal cases gives a legal
address, but in special cases gives an illegal address. This may
give a speed-up of a program by eliminating the need for in-line
testing for special cases.

Exception routines can as shown return to the program through a
normal jump. It is however in some cases useful to consider to
return by means of the "return from escape" instruction, see
further 7.2.,5 and 7.2.6.

Escape

The escape facility is controlled by the escape mode bit and the
escape mask in the status register. If the escape mode bit is ze-
ro the escape facility is inactive. If it is one the escape faci-
lity is active, which means that every instruction execution in-
clude an escapetest which may lead to an escape depending on the
result of a logical comparison between the escape masc and an
escape pattern defining the properties of the instruction.

Escape in Indirect Address Calculation

The escape action is triggered after the completion of the add-
ress calculation and before any instructon execution has taken
place. Information is set up for fast analysis and for resuming
the execution. There is one exception, if the escape mask speci-
fies escape on memory load, statusbit 10, an escape is triggered
by the memory load in indirect address calculation. In this case
preparation is made for resuming the address calculation with the
load of the effective address, after which a normal instruction
escape may take place, see further below.

7.2‘2

7.2.3

7.2.4

66

Escape Mask and Escape Pattern

As described in 2.2.1 the escape mask occupies bit 6-11 of the
status register. The meaning of the bits are given below. If a
bit in the escape mask is one and escapemode is active the es-
capeaction will be triggered for all instructions having the
corresponding property. The instruction properties are described
by their escape patterns.

status-

bit property

6 privileged,jd,je, unassigned

7 may modify ic,jumps, skips, ri and re

8 multiword operand, doubleword instructions,

ri and re.

9 stores in memory
10 loads from memory
11 auxiliary bit

The auxiliary bit is used in the escape patterns to ensure that
an all one escapemask trigger on all instructions. Escape pat-
terns are given in the instruction tables Appendix 1 to 3.

Escape Action

When the escape action is triggered the escape service address is
fetched from the system table. If the address is zero, the moni-
tor program is called through an internal interrupt. If the ad-
dress is nonzero, the 8 dynamic registers are dumped and the
program is restarted at the address following the dump.

Register Dump at Escape
address content after escape
escape service addr + 0 : w0
- + 2 : Wl
- + 4 : W2

- + 6 : w3

- + 8 : status

- +10 : ic

- +12 : cause

- +14 : addr

- +16 : <entry point for routine>

67

The working registers are dumped with the values they had at can-
pletion of the previous instruction.

The status register is dumped in the same way, except that the
"after escape" bit is one, and that the "after address modify"
bit is zero for a normal escape and one for an escape in indirect
address calculation.

Status register

012345686 11 20 21 23
L4111 1 l [1]
exception register
L _disable
escapemask

aritm, except active
after escape = 1
after address modify
escape mode = 1
monitor mode

The dumped instruction counter points to the instruction causing
the escape.

The dumped cause register specifies the cause by the F-field and
the escape pattern of the instruction.

Cause register at normal escape:

0 11 12 17 23

L

F-field [pattern AJ

o

Cause register at escape in indirect address calculation:

0 10 11 12 17 18 23
[0 [1JooooooJooooi1o]

The dumped addr reyister contains the effective address of the
instruction except at escape in indirect address calculation
where it contains the logical address pointing to the effective
address.

7.2.5

7.2.6

Escape Routine

68

Before entering the escape routine the working registers are

intialized thus:

w0 : dunmped instruction counter
wl F-field and W-field of instruction
16 21 22 23
[0 [Ffield | W |
or at escape in indirect address calculation
15 16 21 22 23
[0 [T0000000 | W |
w2 dumped address register
w3 : escape pattern

18 23

0 pattern

or at escape in indirect address calculaton

18 23

0 loooo10

Monitomode, disable and exception register are left unchanged,
escapemode, escapemask and arithmetic exceptions active are
cleared in the status register.

What the exception routine does is up to the programmer. A few
examples and hints are given later in this chapter.

Return from Escape

The register dump is prepared for return to the instruction exe-
cution through the "return from escape" instruction. If the dump
is not modified the instruction is completed as if the escape had

not taken place at all.

The "return from escape" instruction, "re", restores the working

register, status, ic, cause and addr from 8 consecutive logical
addresses starting at the effective address of the instruction.

Each of the logical addresses must be either in the process area
or in the common protected area or a program exception will take

1

7.2.7

69

place. The address calculation in the instruction pointed out by
the restored ic will be modified according to the value of the
"after address modify" and "after escape" bits in the restored
status register as follows:

after address after meaning
modify escape
0 0 normal address calculation
0 1 no address calculation
addr is used directly
1 0 as after an "am" instruction
1 1 addr = word (addr)

In the last case another escape may be triggered by the same in-
struction depending on escapemode, escapemask and escape pattern.
After address calculation the execution of next instruction
proceeds normally.

Modification of the register dump or selection of a simulted
register dump is possible. This means that the "re" instruction
may be looked upon as a combined jump and register initializa-
tion. Note however that attempts to switch to monitor mode is
ignored, i.e. the monitor mode bit can not be changed fram zero
to one, but it may be changed from one to zero.

Exanmples and Hints

The first example shows a simple jump tracing with a window. The
aim is to trace the program flow leading to an exception, the
cause of which can not be found from the exception information.
The exception triggers a program dump for further analysis, so
the tracing need only generate memory information. Escape mode,

escape serviceaddress and an escape mask only containing "may
modify ic" ("status" bit 7) are supposed to have been set up by a
monitor call.

escaddr:

entry:

pointer:

first:

top:

Skips are ignored since the escape pattern for skips contain the
auxiliary bit. For each true jump the position and the effective
address is stored cyclically in the buffer. The programdump
triggered by the exception will have the n latest jump leading to

C OO0 OO0 O o o

re.

rl.

al
sl.
al.
rs.
rs
rs
re.

top

70

w3 2.070000
escaddr.

wi pointer.

wl x1+4

wl top.

wl first,

wl pointer.

wl X1

w2 x1+2
escaddr.

~e

~e ~e

~e

~e ws =

-

-e

e we we Ne we

contents at entry of escape

routine
w0

wl

w2

w3
status
ic
cause
addr

if not true jump then
return, skips etc are
ignored

load pointer

increase pointer

cyclically

save increased pointer
save from addr

save to address

return

initial value ensures
correct start

first word in cyclical buffer
of double words for storing

of trace information

last doubleword

the exception displayed in the buffer.

Next example supposes following situation. A programming error is
found to be caused by a wrong contents of a memory word with the
address, memaddr. Study of the programtext does not reveal the

71

illegal updating. The escaperoutine of the example identifies all
store references to the memory word, but does not include the
explicit action on a hit. The escape mask is "stores in memory".

~s wa

escaddr: 0 ;
0 ;
0 ;
0 ;
0 ;
0 ;
0 ;
0 ;

entry: sz w2 1 ;
al w2 x2-1 :
sn. w2 (critical.);
jl. hit. ;
so w3 2.001000 ;
re. escaddr.
al w2 x2-2 ;
se. w2 (critical.);
re. escaddr. ;

hit: - ;
re. escaddr.

~e we ~»

critical: memaddr

These simple examples illustrates

content at entry of escape
routine

w0

wl

w2

w3

status

ic

cause

addr

make effective address even

if effective addr = critical
addr

then goto hit

if escape pattern does not
contain multiword bit then
return

next test is thus only executed
for "ds"

if effective adress of pre-
operand <

critical address then return

code for a hit

return
address of critical word

the use of the escape facility

as a debugging tool. Another use of the facility is study of pro-
gram behaviour with escape routines generating various kinds of

statistical information.

The escape facility should not be

used as a direct programming

tool mainly because of the overhead involved. This argument does
not cover use for theoretical studies.

72

It is tempting but not recommended to use the "re" instruction
for initialization of registers and return fram subroutines. The
catch is the implicit assignment of the status register, which,
unless one is very carefull, will eliminate independant use of
the escape facility and independant control of the arithmetic
exceptions.

There is one important exception to this rule. The "re" instruc-
tion is very well suited to return fram exception routines. In
this case the status register can be assigned based on the dumped
status which takes care of above argument. The following example
shows the structure of an exception routine handling pagefaults
in a paging system programmed in such a way, that a pagefault
shows up as a negative effective address in the instruction re-
ferring the page. After adjustment of the pagesituation the in-
struction is repeated with correct effective address.

73

contents at entry of exception
routine

w0

wl

; w2

w3

; status

; ic

; cause

;s addr

excaddr:

~e we No o~

~e

status:
ic:

O oo Q0 o oo

addr:

n
—

w2 0 ; 1f not pagefault then
error. ; goto error

entry:

.
b=

. w3 getpage. ; call getpage

; returns with referred page

; in memory, updated pagetable
and w2 pointing to referred
word on page

J
=

overwrite dumped addr with
; corrected

dl. w2 ic. ;

lo. wl aftesc. ; set after escape in dumped
; status

al w2 x2-2 ; dumped ic = dumped ic-2
ds. w2 ic. ;

re. excaddr. ; return

rs. w2 addr.

aftesc: 2.0001 0000 0000 0000 0000 0000 ; after escape bit.

In this simple example programming errors leading to negative
effective addresses is handled as pagefaults. Further checks are
supposed to take place in the getpage routine.

-

8.1

8.2

8.2.1

74

Input/Output System

Main Characteristics

The input/output system is based on a common bus for communica-
tion between all central units, primary memories and peripheral
device controllers, none of which has a special hus status.

UNIFIED BUS UNIFIED BUS
Y []
{ ,
CENTRAL PRIMARY DISC GENERAL
UNIT MEMORY PROCESSOR DEVICE .
PROCESSOR

Input/output devices on the bus are regarded as sets of regis-—
ters. The only way to communicate with a device is to transfer
data to and from these registers.

Device control functions are performed hy addressing a device re-
gister and transferring the appropriate bit pattern to it. Device
status is checked by addressing the status register of the device
and transferring the contents to the central processor. The cur-

rent bus master (see 2,5.1) may interrupt a central processor on

the bus by addressing and transferring the level number to a spe-
cific register in that processor.

Input and Output Operations

All input and output operations are handled by two privileged in-
structions, "data in", "di" and "data out", "do", which have the
standard instruction format (see chapter 3). Here, the W field
selects the working register to be connected to the hus, while
the effective address of the instruction is used to address the
device register (see below). The basic bus cammunication tech-
nique used in these operations is described in chapter 2.

Data In Instruction

This instruction is used for input operations, i.e. whenever data
is to be received from a device address on the bus. The contents
of the addressed device register is transferred to the specified
working register.

8‘2.2

75

The CPU clears bit 21-23 in the status register (i.e. the excep—
tion register) and addresses the device register. If the aldress
is ocorrect, the device places the data on the bus and sends an
acknowledge signal. The CPU receives the data and this signal,
and checks the data for parity completing the transfer by placing
the received data in the specified working register.

If the received data contains a parity error, the parity error
status bit is set in the exception register.

If the device accepts the addressing, but is unable to handle the
request, it sends a not-acknowledge signal, rejecting the opera-
tion. If this signal is received, the cammunication error status
bit is set in the exception register.

If no signal whatsoever is received by the CPU inside a maximum
responsetime, the timeout status bit is set in the exception re-
gister. Since parity check is carried out independantly on the
undefined data, parity error is usually set too. Timeout is
caused by no one recognizing the address, i.e. noneexisting de-
vice, devicefailure or error in address.

Data Out Instruction

This instruction is used for output operations, i.e. whenever da-
ta is to be sent to a device address on the bus. The contents of
the specified working register is transferred to the addressed
device register.

The CPU clears the exception register, addresses the device re-
gister and places the data in the specified working register on
the bus. If the address is correct, the device checks the recei-
ved data for parity error and sends an acknowledge signal comple-
ting the transfer.

If the data contains a parity error, the device sends a not-ac-
knowledge signal rejecting the operation.

If the device is unable to handle the request, it also sends a
not-acknowledge signal. In both cases the cause is indicated in
the device status register according to device specifications.
Communication error and timeout is indicated in the exception re-
gister as for Data In. Parity error is not possible.

8.2.3

8.2.4

8.3

76

Exception Indication
The exception bits of the status register have the following
meaning after an operation:

Bit Input Output
21 bus parity error 0
22 bus timeout bus timeout
23 bus communication bus communication
error (device dependent) error (device dependent)

Memory Addressing

It is inherent in the wnified bus concept that addressing of de-
vice registers in no way differs from the addressing of memory
words. Therefore the data in and data out instructions may be
used for memory reference in monitor mode. Bus ocanmunication er-
ror during input will signal memory error in the addressed word.
I/0 reference of memory may be used for memory test and for test
of memory size and relieves the programmer fram handling busin-—
terrupts.

The memory references in instruction fetch and operand references
follow the same pattern, hut the assignment of the exception re-
gister is only carried out in case of errors and is accampanied

by generation of an internal interrupt as described in chapter 6.
The Data In and Data Out instructions differ fram this in always
assigning the exception register and never generating interrupts.

Standardized Block-oriented Device Controllers

Standardized block-oriented controllers, such as the disc proces-
sor and the general device processor, are started by means of an
output operation, which addresses the controller as described
below. Here, the contents of the working reyister is irrelevant.

Once started, the controller fetches its commands from a channel
program in the primary memory and executes them without engaging
the central processor.

Data to be read from or written to a device is transferred di-
rectly between the device controller and the primary memory.
The channel program is normally terminated by a STOP command,
which transfers the standard status information to the primary
memory and interrupts the controlling central processor.

77

8.3.1 Device Address

Device addresses have the following format:

L 1]

il
01
Bit 0

Bits 1:20

Bits 21:22

Bit 23

20212223
Logical 1, indicating I/O address.

Device number. Bits 1:20 are also used to calculate
the device description address (see below). In the
case of multi device controllers, the address is
divided into a main device number and a sub-device
number. In a disc storage system, for example, bits
1:18 may contain the binary number of the addressed
disc processsor, preceded by zeros, while bits 19:20
contains the logical number of one of the four disc
drives.

The function of direct controller cammands is de-
fined by the effective address; the data transferred
by the instruction is irrelevant in case of stan-—
dardized blockoriented devices.

Device function. Bits 21:22 have the following mea-
ning:

00 START CHANNEL PROGRAM
01 RESET DEVICE

10 (reserved)

11 {reserved)

START CHANNEL PROGRAM causes the address controller
to start the channel program pointed out by the
first word of the device description (see below).
During program execution the controller will not
accept further START CHANNEL PROGRAM commands.

RESET DEVICE causes the addressed controller to
enter an idle and unassigned state, in which it

awalts addressing and can generate no interrupts.

Irrelevant.

8.3.2 Device Descriptions

The address of the device description is calculated using the de-
vice number (bits 1:20) as follows:

device base + device number x 8

The device base, which is common to all devices, is the contents
of word 8 in the primary memory.

The device description contains the following:

1st word:

2nd word:

3rd word:

4th word:

8.3.3 Channel

Start of channel program. Address of the first
channel program cammand.

Status address. First address of the area in the

primary memory to which the standard status informa-
tion is to be transferred at the termination of the
channel program.

Interrupt destination. I/O address of the central

processor to be interrupted at the termination of
the channel program. The format is a device address.
In single CPU-systems the CPU will usually have
device number 0. In special cases interrupt destina-
tion may be a memory address.

Interrupt level. Interrupt level to be transferred

to the central processor when delivering the inter-
rupt, see 6.5.3..

Program

Channel
each of
cammand

programs consist of sequences of three-word cammands,
which contains a channel command and two parameters. The
proper (the first word) has the following format:

! [| |

Bits O:
Bits 12:

Bit 16
Bit 17

Bits 18:

Command

11
15

23

Field

11 12 15 16 17 18 23

Irrelevant.

Command field. Contains the function ocode.

D field. Indicates data chaining.

S field. Indicates skipping.

Modifier field. Used to change the effect of
the basic command.

The basic commands can be divided into three groups according to
parameter structure: some require two parameters, others only

79

one, still others none whatsoever. I.e. while two parameter words
are required, the contents may bhe irrellevant.

The parameter FIRST CHAR ADDRESS specifies the start address of
the memory area to or from which characters (i.e. 8 bit units)
are to be transferred or fetched.

The parameter CHAR QOUNT specifies the maximum number of charac-
ters to be transferred.

The parameters DATA 1 and DATA 2, will be interpreted in a device
dependent way.

For some device controllers, only three bits of the command field
are interpreted, in which case the bit pattern x111 indicates
STOP.

Bits Basic
12:15 Command Parameter 1 Parameter 2

0000 SENSE FIRST CHAR ADDRESS CHAR (QOUNT
0001 READ " "

0010 CQONTROL " "

oomn WRITE " "

0100 WAIT (irrelevant) (irrelevant)
0101 (unassigned)
0110 CONTROL: NO PARAM " "
o1 (unassigned)

1000 (unassigned) DATA 1 (irrelevant)
1001 " " "

1010 " " "

1011 " " "

1100 (unassigned) DATA 1 DATA 2

1101 " " "

1110 " " "

1111 STOP (irrelevant) (irrelevant)

SENSE transfers data from the internal registers or memory of the
controller,

READ transfers data from the external data medium.

CONTROL transfers data to the internal registers or memory of the
controller.

WRITE transfers data to the external data medium.

8'3.4

80

WAIT permits the controller to generate an interrupt on certain
events, such as power low or intervention. The controller enters
a semi-idle state, in which it can accept a new START CHANNEL
PROGRAM command (see section 8.3.1).

For devices used for autoloading, CONTROL NO PARAM with modifica-
tion 0 performs either an initializing function or no function at
all.

STOP terminates the channel program.

Other Fields
Other fields in the command word are not necessarily inter-
preted; if they are, they have the following meanings:

The D field indicates data chaining and is used to link the cur-
rent command to the next command, so that a connected data trans-
fer may take place to or from a non-connected memory area, indi-
cated by a sequence of FIRST CHAR ADDRESS and CHAR OQOUNT parame-—
ters.

The S field means "skip data transfer" and is used for check
reading and in conjunction with data chaining to transfer
portions of connected data.

The meaning of the modifier field is device dependent, but modi-
fication 0 always indicates normal use of the device.

Standard Status Information

Standard status information is transferred as 4 words to the pri-
mary memory starting from the status address, contained in the
second word of the device description, either on normal termina-
tion of the channel program by the STOP camnmand or on abnormal
termination by a device error.

The standard status information includes the following:

1st word: Channel program address. Indicates the command follow—
ing the current command.

2nd word:

3rd word:

4th word:

81

Remaining character count. Refers to the latest read or
write command or chain of such commands; in the latter
case, the ocount will be the total count for the chain.
The count may be modified or left undefined by other
commands. The stop command will leave it unchanged.

Current status. Reflects the status of the device at

the termination of the program.

Event status. Contains information about events that

have occurred since the last sensing of the event sta-
tus register,

The four standard status words are transferred as the first 12
characters by an unmodified sense cammand.

9.1

82

Power Restart and Autoload

Power restart and autoload are external signals that activate the
corresponding actions immediately. Only features cammon to all
models are described here.

Power Restart

RC 8000 is supplied with a power supervising logic that detects
power failure and generates a restart signal on return of power.
Built-in delays ensures against the effects of rapid oscillation
of power.

A power failure will generate a power failure interrupt while the
system still has at least one millisecond of operable time left.
On systems with non-volatible primary memory this leaves time to
prepare a power restart by saving the inf register or camparable
action and force a halt, preventing undefined actions during the
failure.

The power restart signal will activate the system at the power
restart address, the contents of the word with address = 10. The

following register initializations are performed:

register initialization

status monitormode, all other bits cleared

base 0, no relocation

lowlim 8 ".
uplim 2047 x 4096, no memory protection

intlim 0, totally disabling

inf 1, non disable events leads to halt

The power restart code must reinitialize the registers montop,
size and inf and must clear all bits in the interrupt memory.
Further power restart actions are system dependant, but should
include triggering of power restart actions in all device
handlers and in the system clock routine.

After the specified power restart actions, return to the
interrupted action is obtained by the return interrupt
instruction.

©
N

83

Autoload

Autoload triggers the load of one block of program and data from
a standard block oriented device. After loading control is trans-—
ferred to the loaded program, which then continues loading and
initialization.

RC 8000 has 2 autoload signals. The first is connected to an
operators panel and triggers autoload from device number 4, which
usually is a magnetic disc storage. The other triggers autoload
from device 2. Device 2 is usually the input channel of a
Frontend Processor interface. In this case the second autoload
signal is connected to the interface and is activated from the
Frontend after local selection of the load medium and preparation
of the first block transfer. This connection is reciprocal, such
that RC 8000 also can perform an autoload of the Frontend.

The autoload action starts by issuing a system reset signal on
the unified bus. After that memory is initialized as described
below, and the device corresponding to the autoload signal is
activated.

address initialization interpretation
8 12-8 * device no. device base
10 -4096 + 1536 power restart address
12 10
14 20 device description, 12-18
16 256 channel program, 10-20
18 22
20 768
532 jl. 0 end-less loop

The device base value makes the device select the device descrip-
tion starting in address 12 regardless of device number.

The device description selects the channel program starting in
address 10. Standard status will be delivered in words 20-24, and
the interrupt level 22 will be delivered in memory word address
256, and not as an interrupt, see 8.3.2.

The channel program contains an init device command, cammand
value 6 (parameters are irrelevant), and a read cammand with
first address 22 and a character count of 768 defining load of
256 words to addresses 22-532. The first words of the load will

84

be interpreted as a continuation of the channel program, while
the last word will overwrite the jl. 0 instruction and liberate
the cpu from the end-less loop. Note that words 22-26 and 256 of
the load will be overwritten when a stop cammand is reached in
the continuation of the channelprogranm.

Before the device is started and control is transferred to the
end-less loop the following register initializations are per-
formed:

register initialization meaning

status 0 user mode

base 0 no relocation

lowlim 534 all memory

uplim 534 writeprotected

cpa 534 only load read accessible

intlim 0 total disable, interrupts
cause halt

size 2047x4096 nearly maximum

montop 2047 only monitor call 0
allowed

inf 525 a system table must be

loaded just before the
instruction overwriting
the end-less loop

The initial underprivileged state, which can only be left through
a monitor call 0 gives a very high assurance against destructive
effects from erroneous autoloads. All errors during the autoload
sequence leads to a halt.

If the autoload device is not activated (rejected or bus time
out), device number is decreased by 1, device base is adjusted
and the new device is activated. In this case the cpu will halt
to await a new autoload signal.

Device number 1 is usually unassigned, such that unsuccesfull
autoload from device 2 leads to halt.

Devicenumber 3 is usually the output channel of the Frontend

interface. In this case the init command value 6 will trigger a
Frontend autoload. This allows the operator to perform a system
load from a Frontend device by disconnecting device 4 and press

85

the autoload button on the RC 8000 operator's panel, since the
Front Fnd autoload will end by activating the second autoload
signal of RC 8000.

The following example gives a rough idea of how an autoload block
may be structured (nummeric labels indicate resulting addresses
in memory):

22: 15*256 ; stop conmand, will be overwritten
0 ; by the 3 last words of the stan-
0 ; dard status
check: <value> ; checksum of load block adjusted
; for correct value of overwrite
start: rl w0 check ; entry after load
o al w2 22 ;
next: ws w0 x2 ; code for check of load
al w2 x2+42 ;
sh w2 532 ;
jl next ;
se w0 0 ; if checksum error then force
3l -1 ; halt
; enter monitor mode at init

init: - ; code for further initialization
; and loading

; overwritten by interrupt
level = 22

256: 22

[
~e we Se o

more code

0 ; rudimentary system table:
0 ; exception and monitorcalls
0 ; lead to half after jd - 2048
init ; system table: mon call address
0 : interrupt address
2048*4096 : mon mode/0
534 ; reg. dump address
0 ; exc address
0 ; esc address

532 jl start ; overwrites end-less loop

; goto start

l id ~2048

10

10.1

86

Formal Description

Introduction

In this chapter the descriptions in the preceeding chapters are
suplemented by a more formal description of the instructions and
other functions. The information is given in an algorithmic form.

The presentation aims to give the user an understanding of the
functional aspects of the cpu necessary for the full use of the
systems facilities.

The presentation does not display actual microprogram structure,
which varies from model to model by facilities for parallel ele-
mentary operations and by the amount of dedicated logic for spe-
cial functions.

The algorithms will however reproduce the resulting states rele-
vant to the user in programming, debugging and error diagnosis,
except for the indicated deviations in handling of buserrors.

The indication of these and other deviations is given by cam-
ments. The format is usually

comment or:
<alternative algorithm>;

The reader may ignore the alternative algorithms, since they are
relevant only in extremely rare cases.

Arithmetic operations are not shown in full detail, the reader is
referred to the general descriptions in chapters 4 and 5.

The descriptions of power restart and autoload are not repeated
in algorithmic form, since they are considered sufficiently
described in chapter 9.

The chapter is structured as follows:

Section 10.2 gives an explanation of the algorithmic
notation.

Section 10.3 describes the operand access actions as
procedures to be called from the algo-
rithms. A few other common routines and

Section 10.4

Section 10.5

Section 10.6

Section 10.7

Section 10.8

10.2 Notation

understandable to most

Registers

is ex(22).
The bitnumber notation
equal to n.

The register structure

87

exits are also described here.

describes the instruction sequencing and
the control of address calculation, escape
facility and instruction execution.
describes the address calculation action
except for the special cases covered in
section 10.4.

describes the instructions in alfabetical
order by memonics. Exception and internal
interrupts are shown as jumps to the fol-
lowing sections.

describes the interrupt and monitor call
actions and the "return from interrupt"
instruction.

describes the escape and exception actions
and the "return from escape" instruction.

The algorithms in the following sections are given in a high
level language. The language is similar to Algol, and should be

programmers.,

The global declarations are given here together with a descrip-
tion of the ad hoc concepts. It is hoped that the meaning of the
other language elements can be derived from the context and a
general knowledge of high level languages.

The variables of the language are registers and subfields of re-
gisters. Registers are declared by specification of the first
and the last bitnumber, which define the length of the register
and the numbering of bits in the register, e.g. with the decla-
ration ex(21:23) the second bit in the 3 bit exception register

">n", e.g. ">15", which is used a few

times means a fixed model dependent bit number greater than or

is chosen for convenience in description

and does not follow an actual implementation. Registers intro-—
duced in the preceeding chapters are:

10.2.2

10.2.3

10.2.4

88

register w0, wl, w2, w3, status, ic, cause, addr,
cpu, base, lowlim, uplim, intlim, montop,
size, inf (0:23);

register rtc (8:23);

Additional special registers are:

register curlev (12:23);
intreg (6:15); camment see 6.6;
register pic (1:23),

instruction (0:23),
F (0:5), W, X, M (0:1), D (0:23),
instrmask (0:23); camment see 10.4;

Auxiliary registers are used when convenient without explicit
declaration. The implied declaration is usually auxq (0:23).
Other declarations are indicated. Names of auxiliary registers
end in a "g".

Subfields of registers are specified by first and last bitnumber,
for onebit subfields only one number is given. The numbers refer
to the declared numbering of the register.

Booleans

One-bit subfields may be used as booleans and booleans as one bit
registers, they are true, if the bit is one, and false, if the
bit is zero. The boolean "interruptflag" is introduced in section
6.6. Auxiliary booleans are used without declaration. The boo-
leans used in connection with integer arithmetic and memory ac—
cess are described below.

Integer arithmetics

Integer addition and subtraction are performed as two's comple-

ment operations. They are described by the normal operators "+"

and "-". Assignments of the booleans overflow and carry are in-

plicit in each operation. Note however that composite gperations
described in one sentence are regarded as one operation with re-—
spect to overflow and carry, e.g.:

regpre:= regpre + oplg + carry;

The result of comparision as in "if addr < ¢pa then ..." is ocor-
rect even if the implied subtraction would have caused overflow.

Memory access

Memory access is described by the notation word(address). The

89

notation implies an assignment of the booleans "bus parity
error", "bus time out", "bus communication error" and "buserror",
where "buserror" is the logical sum of the other booleans. The
generality of the unified bus is illustrated by the use of the
same notation in the "data in" and "data out" instructions to
describe the access of device registers.

10.2.5 Bitpatterns
Bitpatterns can be built by concatination of registers, subfields

and literals. The terms in a concatination are separated by the
operator "con". The length of a concatination is the sum of the
length of the terms. The number of bits in a literal is usually
implicit, but it may be defined by f.ex. -2048(12) giving a li-
teral of 12 bits with the value -2048. Assignment and other ope-
rations are performed between bitpatterns of equal length inde-~
pendent of bitnumbering in the aperands. Remaining bits are un-
changed, e.g. regw(12:23):= opq(1:11) leaves regw(0:11) unchan-
ged. The operator "signextend" extends a bitpattern to the left
with the first bit in the pattern until the required length is
obtained. The length is defined by the other operands. Subfields
with a negative bitlength are empty, they occur in a few algo-
rithms. Signextension of an empty subfield reproduces the bit de-
fined by first bitnumber. If a subfield specifies bitnumbers out-
side a register the corresponding bits are defined as zeros, e.q.

10.2.6

regw(12:35)== regw(12:23) con 0(12).

Abbreviations
Following abreviations are used. The "==" notation means "equiva-
lent to".

References to working registers:

regw == case W of (w0, wl, w2, w3)
regpre == case W of (w3, w0, wl, w2)
regx == case X of (0, wl, w2, w3)
dregw == regpre con regw

References to subfields of status:
monmode == gstatus (0)
escmode == status (1)
after am == status (2)
after esc == status (3)
integer exception active == gtatus (4)
floating point exception active == status (5)
escapemask (0:5) == gtatus (6:11)
dumperrorcount (0:3) == status (12:15)
ex (21:23) == gtatus (21:23)

10.3

10.3.1

90

A register array notation is used in the operand access procedu-
res in section 10.3 and in the algorithms for dump and restore of
registers in sections 10.7 and 10.8.

reg (addr) == case addr // 2 of
(w0, wl, w2, w3, status, ic, cause, addr,
cpa, base, lowlim, uplim, intlim)

Common Routines

The procedures in this section describe the fetching of cperands
fram the various areas in logical address space and the storing
of results. A few other common actions are described at the end
of the section.

All operand procedures will activate the program exception ac-
tion, section 10.8, on protection violation. The contents of the
resulting register dump may be reproduced by following the algo-
rithm leading to the call of the action. This is usually but not
necessarily true if the internal interrupt implicit in the "ope-
rand error" action, section 10.7, is activated. Minor deviations
may occur, because the strict sequential description used in this
chapter do not allow for parallel or look-ahead fetching of cpe-—
rands in the faster models. Buserrors at instruction fetch in
jumps are classified as gperand errors or fetcherrors depending
on which classification gives the most efficient implementation
of the normal case.

procedure getword;

comment :
This procedure assigns the contents of the word pointed out by
the logical address in the "addr" register to the auxiliary
register "opg". If the address is non-accessible control is
transferred to the "program exception" action, section 10.8.

If a memory or buserror occurs, "operand error”" interrupt is
invoced, section 10.7;

91

begin
if lowlim <= addr + base < uplim then
begin
opqg:= word (addr + base);
if buserror then goto operanderror
end
else
if 8 <= addr <cpa then
begin
opg:= word (addr);
if huserror then goto operanderror
end
else
1f 0 <= addr < 8 then opg:= reg (addr)
else goto program exception
end;

10.3.2 procedure getdoublel;
canmment:
This procedure fetches the least significant word of a double
word operand and assigns the contents to the auxiliary register
"opq" just like "getword". In addition it prepares the tests in
"getdouble2" which ensures that the whole doubleword is in one
subarea of the address space, see "getdouble2" below;

begin
if lowlim <= addr + base < uplim then
begin
opq:= word (addr + base)
if huserror then goto operand error;
procareaq:= true
end
else
if 8 <= addr <cpa then
begin
opg:= word (addr);
if buserror then goto operand error;
cpaareaq:= true
end
else
if 0 <= addr < 8 then
begin opg:= reg (addr); regareaq:= true end
else goto program exception
end;

92

10.3.3 procedure getdouble2;
comment

This procedure fetches the preoperand i.e. the most significant
word of a doubleword cperand and assigns the contents to the
auxiliary register "oplg". The preoperand must be in the same
area as the least significant word, else control is transferred
to the program exception action, section 10.8. Note that the
"addr" register points to the preoperand at exit;

begin
addr:= addr-2;
if procareaqg then
begin
procareaq:= false;
if addr + base <lowlim then
goto program exception;
oplg:= word (addr+ base);
if buserror the goto operand error
end;
if cpaareaqg then
begin
cpaareaq:= false;
if addr < 8 then goto program exception;
oplg:= word (addr);
if huserror then goto operand error
end;
if regareaq then
begin
regareaq:= false;
if addr < 0 then addr:= 6;
canment or the equivalent : addr:= addr + 8;
oplg:= reg (addr)
end;
end;

10.3.4 procedure get nonprotected;
canment:
This procedure is used to fetch operands in instructions, which
store the result at the same address. Reference cutside the
process area and the register area transfers control to the
program exception action, section 10.8;

93

begin
if lowlim <= addr + base < uplim then
begin
opg:= word (addr + base);
if huserror then goto operand error
end
else
if 0 <= addr < 8 then opqg:= reg(addr)
else goto program exception
end;

10.3.5 procedure get address;
camment
This procedure is used in indirect address calculation. It
performs the escape test and may activate "escape", section
10.8. The address is fetched by a call of "get word". Note the
assignments of the "after am" bit in the status register and
the special case for model RC 8000/45;

begin
after am:= true; comment not in RC 8000/45;
if escmode then
begin
comment after am:= true in RC 8000/45;
instrmask:= 0 con 2.1000000000010;
if instrmask and (0 con escapemask) < 0 then
goto escape
end;
comment after am:= false in RC 8000/45;
getword;
addr:= opq;
after am:= false
end;

10.3.6 procedure get instruction;
caonment:
This procedure is used in jumps. It is analogous to "get word",
but it has some additional actions in connection with the con-
trol of instruction flow, section 10.4.

begin
if addr(23)=1 then addr:= addr-1;
if lowlim <= addr + base < uplim then
begin
aq:= addr + base;
goto ifetch
end;

94

if 8 <= addr < cpa then
begin
aq:= addr;
goto ifetch
end;
if 0 <= addr < 8 then
begin
instruction:= reg (addr);
pic:= addr (1:23);
goto after ifetch
end
else goto program exception;

ifetch:
instruction:= word (aq);
if buserror then goto operand error;
canment or:
begin
if W<> 0 then rewg:= ic;
ic:= addr;
goto fetcherror
end;
pic:= aq (1:23);
after ifetch:
fetchedqg:= true
end;

10.3.7 procedure store word;
comment :
This procedure stores the contents of the auxiliary register
"opg" in the word pointed out by the logical address in the
"addr" register. Reference outside the process area and the
register area will transfer control to the "program exception"
action section 10.8;

begin
if lowlim <= addr + base < uplim then
begin
word (addr + base):= opqg;
if huserror then goto operand error
end
else
if 0 <= addr < 8 then reg(addr):= opq
else goto program exception
end;

10.3.8

10.3.9

95

procedure set bus exceptions;

comment:
This procedure assigns "ex", the exception register, according
to busstatus. It is called after a buserror and from the "data
in" and "data out" instructions;

begin

ex(21:23):= 0;

if bus parity error then ex(21):= 1;

if hus time out then ex(22):= 1;

if bus communication error then ex(23):= 1
end;

normalize and round;

conment :
This common exit from the floating point instructions re-
ceives the result as a mantissa in the auxiliary register
"mantq(0:<38)" and an exponent in the auxiliary register
"expq". It performs a normalization followed by an addition of
a bit in position 36 to round the result. After a possible
renormalization the result is packed into the double register
specified by the W-field. Exponent overflow is indicated in

ex", the exception register, and "floating point exception",
section 10.8, may be activated. Normal continuation is at "next
instruction", section 4;

ex(22:23):= 0;
if mantg (0:>38)= 0 then
begin
dregw:= 0 con -2048 (12);
goto next instruction
end;
while mantq (0) = mantg (1) do
begin
mantg (0:>38):=
expq:= expq — |1
end;

mantq (1:>38) con 0;

sq:= mantqg (0);
mantg (0:>38):
mantqg (0:>38):
expq:= expxy + 1;
while mantq(0) = mantq(1) do
begin

mantq (0:>38):= mantqg (1:>38) con 0;

expq:= expxy — 1
end;

mantg (0:>38) + 0(36) con 1(1) con 0;
sgq con mantg (0:>38-1);

10.3.10

96

dregw:= mantq (0:35) con exp (12:23);
if exp (0:11) < signextend expq (12) then
begin
if expg > 0 then ex(22):= 1 else ex (23):= 1;
if floating point exception active then
goto floating point exception
end;
goto next instruction;

exit to program:

canmment:
This algorithm describes the common exit fram the "escape" and
"exception" actions and the "return from interrupt" and "return
fram escape" instructions, sections 10.7 and 10.8. The instruc-
tion pointed out by the logical address in "ic" is fetched and
control is transferred to "next instruction", section 10.4,
with "fetchedq = true". "Program exception" or "fetcherror"/
"operand error" may be activated;

if ic(23) = 1 then ic:= ic - 1;
if lowlim <= ic + base < uplim then

begin
iq:= ic + base;
goto exitf
end;
if 8 <= ic < ¢pa then
begin
ig:= ic;
goto exitf
end;
if 0 <= ic < 8 then .
begin

instruction:= reg (ic);
pic:= ic (1:23);
goto after exitf

end

else begin ic:= oldicqg; goto program exception end;

exitf:
instruction:= word (iq);
if buserror then goto fetcherror;
canment or:
begin
ic:= oldicg;
addr:= aqg;
goto operand error
end;

10.4

97

pic:= iqg (1:23);
after exitf:
fetchedq:= true;

goto next instruction;

Instruction Control

The normal sequential instruction flow is controlled by the phy-
sical instruction counter, "pic". "Pic" is a 23 bit register con-
taining a positive physical address. "Pic" is increased by 2 for
each instruction. "Ic", the logical instruction counter is in-
creased by 2 at the end of address calculation.

Active skips cause an additional increase of "pic" and "ic". All
other deviations from the sequential flow i.e. jumps, monitor
calls, interrupts, exceptions, escapes, "return from interrupt"
and "return from escape" assigns both "pic" and "ic" and perform
relocation and test for protection violation.

This means that sequential programs including skips may cross the
upper limits of subareas in the address space undetected. However
if return to the sequence after a deviation in proyram flow is
performed in this case, the situation will he recognized and may
result in relocation or vrogram exception. The inconvenience to
the user in diagnosis of this wvery special class of programming
errors is justified by the speed up of instruction flow and
skips.

After test of the "interrupt flag", see section 6.6, which may
lead to the activation of the external interrupt action, section
10.7, the instruction control proceeds as follows:

If the instruction is not already fetched by a preceeding action,
pic is increased by 2 and the instruction is fetched. A buserror
in fetch activates the "fetcherror" action, section 10.7.

After fetch the instruction is unpacked and the address calcula-
tion is performed, either by the special "after escape" action,
or as one of the normal address calculation actions in section
10.5. The action is selected by the values of "after am" and the
M-field of the instruction. All address calculation actions in-
crease ic by 2 and transfer control to the execute action. Indi-
rect addressing may however activate "escape", "program excep-
tion" and "operand error" actions.

10.4.1

98

The "execute" action tests whether the "escape" action, section
10.8, should be activated. If this is not the case, one of the
instruction actions in section 10.6 is selected by the F-field.
These actions may result in activation of "exception",
"monitorcall" or "“operand error" actions.

next instruction:
if interrupt flag then goto external interrupt;
if fetchedq then fetchedq:= false
else
begin
pic:= pic + 2;
if 0 <= pic < 8 then instruction:= reg (pic)
else
begin
instruction:= word (pic);
if buserror then goto fetcherror
end
end;

F:= instruction (0:5);
W:= instruction (6:7);
M:= instruction (8:9);
X:= instruction (10:11);
D:= signextend instruction (12:23);

if after esc then
begin
if after am then
begin
after esc:= false;
camment in RC 8000/45: after am:= false;
get word;
addr:= opqg;
after am:= false
end
else if -, escmode then after esc:= false;
ic:= ic + 2;
goto execute
end;

end
end;

goto case F of

if instrmask and 0 con escapemask <>
goto escape

0 then

929
. aswitchq:= after am ocon M;
goto case aswitchqg of
(direct, indirect, relative, relative indirect,
amdirect, amindirect, amrelative, amrelative indirect);
execute:
if escmode then
begin if after esc then after esc:= false end
else
begin
instrmask:= F con case F of
(2.100000, 2.100001, 2.000010, 2.000010,
2.000010, 2.000010, 2.000010, 2.000010,
2.000010, 2.000001, 2.000010, 2.000001,
. 2.111010, 2.010000, 2.110000, 2.110000,
2.000010, 2.000010, 2.0000710, 2.000010,
2.000010, 2.010001, 2.011010, 2.000100,
2.000010, 2.000110, 2.000100, 2,000100,
2.000001, 2.100001, 2.100000, 2.100000,
2.000001, 2.000001, 2.000100, 2.0001700,
2.000001, 2.000001, 2.000001, 2.000001,
2.010001, 2.010001, 2.010001, 2.01000T1,
2.0100071, 2.010001, 2.010001, 2.100001,
2.001010, 2.001010, 2.001010, 2.100000,
2.001010, 2.000001, 2.001010, 2.001100,
2.001010, 2.001010, 2.100000, 2.100000,
2,100000, 2.100000, 2.100000, 2.100000);

canment the escape patterns are also given for each instruction
in section 10.6 and in appendix 1-3;

(uo,
wS,
x1,
wd,
ci,

el, hl,
wn, al,
ea, z1,
hs, xs,
ns, nd,

lo,
jl,
S
di,

1x, wa,

jd, Je,

re, rs,

u30, u3l,

ac, as, ad, 1ls, 1d,

sl, se, sn, so, sz, sX, gp,

fs, fm, u51, fd, cf, 41, ds,

ss, u58, u59, ued, wel, ue2, uel3);

do, la,
am,
es,

X,

ri,
rl,
99,

sh,
fa,
aa,

100

10.5 Address Calculation

This section describes the normal address calculation actions.
The actions are entered fram the instruction control in section
10.4 and return to the "execute" action.

"Operand error", "escape" and "program exception", sections 10.7
and 10.8, may be activated by the indirect addressing actions
through the call of "get address", section 10.3.

direct:
addr:= regx + D;
ic:= ic + 2;
goto execute;

indirect:
addr:= regx + D;
ic:= ic + 2;
get address;
goto execute;

relative:
addr:= ic + regx + D;
ic:= ic + 2;
goto execute;

relative indirect:
addr:= ic + regx + D;
ice= ic + 2;
get address;
goto execute;

am direct:
addr:= addr + regx + D;
after am:= false;
ic:= ic + 2;
goto execute;

am indirect:
addr:= addr + regx + D;
ic:= ic + 2;
get address;
goto execute;

'

10.6

10.6.1

101

am relative:
addr:= addr + ic + regx + D;
after am:= false;
ic:= ic + 2;
goto execute;

am relative indirect:
addr:= addr + ic + regx + D;
ic:s= ic + 2;
get address;
goto execute;

Instruction Execution

The instruction actions are entered from section 10.4, after
address calculation, section 10.5, has been performed. Normal
return is to "next instruction", section 10.4, but "operand
error", "monitor call" and "exception", sections 10.7 and 10.8,
may be activated.

The instructions are described in alphabetical order by memo-
nics. The return from interrupt, ri, and return from escape, re,
instructions are described in section 10.7 and 10.8 respectively.
Floating point instructions return to "next instruction" through
the common exit, "normalize and round", in section 10.3.

aas
comment :
"Add double word to double register",
adds the contents of the doubleword pointed out ly the effec-
tive address to the specified doubleregister. If the effective
address is 0 throgh 7, the operation is a double register-
double register operation. In this case it is important to
remember that the operation on the least significant registers
is completed before the operation on the most significant
registers and carry is executed. Reference to non-accessible
area and reference to the lower limits of process area (addr =
lowlim - base) and camwn protected area (addr = 8) leads to
program exception. Overflow and carry is registered in the
exception register and integer exception may occur.
Numeric code: 56
Escape pattern: 2.001010;

10.6.2
10.6.3
\

102

get doublel;
regw:= regw + oOpq;
get double2; comment does not change carry;
regpre:= regpre + oplg + carry;
ex(22):= overflow;
ex(23):= carry;
if overflow and integer exception active then
goto integer exception; comment "addr" points to preoperand;
goto next instruction;

ac:

comment :
"Address complemented: load into register", assigns the two's
complement of the effective address to the specified register.
Camplementation of the maximum negative number will produce
overflow. Camplementation of a non-zero number produces a
carry.
Numeric ocode: 33
Escape pattern: 2.000007;

regw:= 0 — addr;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then
goto integer exception;

goto next instruction;

ad:

conmment:
"Arithmetic shift of double register", shifts the contents of
the specified double register the number of places given by the
effective address. If the effective address is negative the
shift is a right shift with signextension, else it is a left
shift with zeros shifted in at the least significant places.
Left shifts produce integer overflow if one or more significant
bits are lost.
Numeric oode: 37
Escape pattern: 2.000001;

ex(22:23):= 0;

if abs(addr) > 48 then addr:= sign(addr) * 48;

if addr = 0 then goto next instruction;

if addr < 0 then
dregw:= signextend dregw (0:47+addr);

10.6.4

10.6.5

10.6.6

103

else
begin
if dregw (0:addr) < signextend dregw (addr) then
ex(22):=1;
dregw:= dregw (addr: 47 + addr);
addr:= -addr
end;
if ex(22) and integer exception active then
goto integer exception;
goto next instruction;

al:
comment :
"Address : load into register", assigns the effective address to
the specified register.
Numeric code: 11
Escape pattern: 2.000001;
regw:= addr;
goto next instruction;

am:
comment ¢
"Address : modify that of next instruction", sets the "after am"
bit in the "status" register. The effect is described in sec-
tions 10.4 and 10.5.
Numeric code: 9
Escape pattern: 2.000001;
after am:= true;
goto next instruction;

as:

comment :
"Arithmetic shift of single register", shifts the contents of
the specified register the number of places given by the effec-
tive address. If the effective address is negative the shift is
a right shift with signextension, else it is a left shift with
zeros shifted in at the least significant places. Left shifts
produce overflow if one or more significant digits are lost.
Nureric code: 36
Escape pattern: 2.000001;

ex(22:23):= 0;

if abs(addr) > 48 then addr:= sign(addr) * 48;

if addr = 0 then goto next instruction;

if aldr < 0 then
regw:= signextend regw (0 : 23 + addr);

10.6.7

104

else
begin
if regw (0:addr) < signextend regw (addr) then
ex(22):= 1;
regw:= regw (addr : 23 + addr);
addr:= -addr
end;
if ex(22) and integer exception active then
goto integer exception;
goto next instruction;

cf:
comment :
"Convert floating point to integer", converts the floating point
value of the specified double register to an integer and places
the result in the least significant register. The effective ad-
dress is used for scaling, such that the value of the result is
two to the power of effective aldress times the floating point
number rounded to nearest integer. Carry = 0 and integer over-
flow is registered in the exception register. Integer overflow
may lead to integer exception.
Numeric oode: 53
Escape pattern: 2.000007;
ex(22:23):= 0;
expq:= signextend dregw (36:47) + addr;
if expg < 0 then
begin
dregw (24:47):= 0;
goto next instruction
end;
if expg > 23 then
begin comment non-normalize numbers may be considered zero;
if dreg (0 : > 1) = 0 then
dregw (24:47) =0
else
begin
ex(22):= 1;
if integer exception active then
goto integer exception
end;
goto next instruction
end;
roundq:= dregw (24);
dregw (24:47):= dregw (0:23);
for expa:= expq —-23 step 1 until -1 do

1

10.6.8

1006.9

10.6.10

105

begin
roundq:= dregw (47);
dregw (24:47):= dregw (24) con dregw (24:46)
end;
dregw (24:47):= dregw (24:47) + 0 con roundq;
ex(22):= overflow;
if overflow and integer exception active then
goto integer exception;
goto next instruction;

ci:

canment:
"Convert integer to floating point", converts the integer value
of the specified register to a floating point number and places
the result in the corresponding double register. The effective
address is used for scaling, such that the value of the result
is two to the power of effective aldress times the integer.
Floating point overflow and underflow may occur through scaling
and is handled as for the floating point instructions by norma-
lize and round, section 10.3.9.
Numeric ocode: 32
Escape pattern: 2,000001;

expq:= addr + 23;

mantq (0 : > 38):= regw (0 : > 38);

goto normalize and round;

di:

comment :
"Data in", receives data from a device address on the unified
bus in the specified register. See furher section 8.2. "Di" is
a privileged instruction.
Numeric ocode: 29
Escape pattern: 2.1000071;

if -, monmode then goto program exception;

regw:= word (addr);

set hus exceptions; comment section 10.3.8;

goto next instruction;

dl:

comment :
"Double register: load", loads the specified double register
with the contents of the doubleword pointed cut by the effec-
tive address. If the effective address is 0 throgh 7, "dl" is
a double register to double register transfer; in this case it
is important to note that the least significant register is

10.6.11

10.6.12

106

assigned before the most significant register is transferred.
Reference to the nonaccessible area and to the lower limits of
the process area (addr = lowlim - base) and the common protec-
ted area (addr = 8) will lead to program exception.
Numeric code: 54
Escape pattern: 2.001010;

getdoublel;

regw:= opq;

getdouble2;

regpre: oplqg;

goto next instruction;

do:

comment :
"Data out", transfers the contents of the specified register to
a device address on the unified bus. See further section 8.2.
"Do" is a privileged instruction.
Numeric ocode: 1
Escape pattern: 2.100001;

if -, monmode then goto program exception;

word (addr):= regw;

set hus exceptions; comment section 10.3.8;

goto next instruction;

ds:
comment :
"Double register : store", stores the contents of the specified
double register in the doubleword pointed out by the effective
address. If the effective address is 0 through 7, "ds" is a
double register to double register transfer; note that the
least significant register is assigned before the most signifi-
cant register is transferred. Other references outside the pro-
cess area and reference to the lower limit of the process area
will lead to program exception.,
Numeric ocode: 55
Escape pattern: 2.001100;
if lowlim <= addr + base < uplim then
begin
word (addr + base):= regw;
if huserror then goto operand error;
addr:= addr - 2;
if addr + base < lowlim then
goto program exception;
word (addr + base):= regpre;
if buserror then goto operand error;

!

10.6.13

10.6.14

107

goto next instruction
end;
if 0 <= addr < 8 then
begin
reg (addr):= regw;
addr:= addr - 2;
if addr < 0 then addr:= 6;
reg (addr):= regpre
end
else goto program exception;
goto next instruction;

ea:

comment :
"Extended halfword: add to register", adds the contents of the
halfword pointed out by the effective address to the specified
register after sign extension. If the effective address is 0
through 7 the operation is a regyister-halfregister operation.
Reference to non-accessible area leads to program exception.
Overflow and carry is registered in the exception register and
integer exception may occur.
Numeric oode: 18
Escape pattern: 2.000010;

getword;

if addr(23) = 0 then
opq:= signextend opg (0:11)

else
opq:= signextend opg (12:23);

regw:= regw + opqg;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then

goto integer exception;
goto next instruction;

el:

comment:
"Extended halfword: load into register", loads the least signi-
ficant 12 bits of the specified register with the contents of
the halfword pointed out by the effective address. The nost
significant 12 bits will contain a signextension. If the effec-
tive address is 0 throgh 7, "el" is a half register to register
transfer. Reference to non-accessible area leads to program ex-
ception.

10.6.15
|
i

10.6.16

108

Numeric code: 2

Escape pattern: 2.000010;
get word;
if addr(23)= 0 then

regw:= signextend opq (0:11)
else

regw:= signextend opq(12:23);
goto next instruction;

es:

comment :
"Extended halfword: subtract from register", subtracts the con-
tents of the halfword pointed out hy the effective address fram
the specified register after sign extension. If the effective
address is 0 throgh 7 the operation is a register-halfregister
operation. Reference to non-accessible area leads to program
exception. Overflow and carry is registered in the exception
register and integer exception may occur.
Numeric ocode: 17
Escape pattern: 2.000010;

get word;

if addr(23)= 0 then
opg:= signextend opq(0:11)

else
opqg:= signextend opq(12:23);

regw:= regw — opd;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then
goto integer exception;

goto next instruction;

fa:

comment s
"Floating point: add to double register", adds the contents of
the doubleword pointed out by the effective address to the spe-
cified double register. If the effective address is 0 through
7, the operation is a double register-double register opera-—
tion. Reference to non-accessible area and to the lower limits
of the process area (addr = lowlim - base) and the common pro-—
tected area (addr = 8) leads to program exception. Underflow
and overflow conditions are indicated in the exception regis-
ter. If the "floating point exception active" bit is set in the
"status" register, underflow and overflow will lead to a floa-
ting point exception. After underflow and overflow the fraction
of the result is correct while the exponent is taken modulo
4096.

!

109

Same rules concerning the result of operations on non-nor-
malized numbers may be extracted fram the algorithm.
Numeric code: 48
Escape pattern: 2.001010;
getdoublel;
getdouble2; comment "addr" now points to precperand;
mantg (0 : > 38):= dregw (0:35) ocon 0;
expq:= signextend dregw (36:47);
mantlg (0 ¢« > 38):= oplg con opq(0:11) con 0;
explg:= signextend opq(12:23);
expq:= expy - explqg;
if expq <= =38 then
begin camment register operand irrelevant;
mantg:= 0;
expq:= explq;
goto add
end;
comment or:
begin
ex(22:23):= 0;
dregw:= mantlqg (0:35) con explg (12:23);
goto next instruction
end;
if expg >= 38 then
begin coamment "memory"” operand irrelevant;
mantlg:= 0;
expq:= signextend dregw (36:47);
goto add
end;
comment or:
begin
ex(22:23):= 0;
goto next instruction
end;
if expg < 0 then
begin
mantg (0 : > 38):= signextend mantg (0 : > 33 + expq);
expy:= explqg
end
else
begin
mantlg (0 : > 38):= signextend mantlqg (0 : > 38 - expq);
expd:= signextend dregw (36:47)
end;

10.6.17

110

add:

mantq:= mantg + mantlqg;

sq:= if overflow then -, mantq(0) else mantq(0);
mantg:= sq con mantq (0 : > 38-1);

expq:= expq + 1;

goto normalize and round; comment section 10.3.9;

fd:
camment:
"Floating point: divide into double register", divides the spe-
cified double register with the contents of the double word
pointed out by the effective address. If the effective address
is 0 through 7, the operation is a double register—-double re-
gister operation. Reference to non-accessible area and to the
lower limits of the process area (addr = lowlim - base) and the
common protected area (addr = 8) leads to program exception.
Underflow and overflow conditions are indicated in the excep—
tion register. If the "floating point esception active" bit is
set in the status register, underflow and overflow will lead to
a floating point exception. After underflow and overflow the
fraction of the result is correct while the exponent is taken
modulo 4096. The result of operation on non-normalize operands
must be regarded as undefined.
Numeric code: 52
Escape pattern: 2.001010;
getdoublel;
getdouble2; comment "addr" now points to preoperand;
mantg (0 : > 38):= dregw (0:35) con 0;
expq:= signextend dregw (36:47);
mantlg (0 : > 38):= oplq con opg (0:11) con 0;
explg:= signextend opg (12:23);
if mantlg (0 : > 1) = 0 then
begin camment zero divisor, the zero check may be true for
various non-normalized numbers;
ex(22):= 1;
ex(23):= 0;
if floating point exception active then
goto floating point exception;
goto next instruction
end;
if mantqg (0 : > 1) = 0 then
begin comment zero dividend;
ex(22:23):= 0;
dregw:= 0(36) con -2048(12);
goto next instruction
end;

10.6.18

10.6.19

111

expq: expq — explg;

mantqg:= mantqg divided by mantliq;

adjust expq;

coment details are model and option dependent;
goto nommalize and round; camment section 10.3.9;

fm:

comment :
"Floating point: multiply by double register", multiplies the
specified double register by the contents of the double word
pointed out by the effective address. If the effective address
is 0 through 7, the aperation is a double register-double re-
gister operation. Reference to non-accessible area and to the
lower limits of the process area (addr = lowlim - base) and the
common protected area (addr = 8) leads to program exception.
Underflow and overflow conditions are indicated in the excep—
tion register. If the "floating point exception active" bit is
set in the status register, underflow and overflow will lead to
a floating point exception. After underflow and overflow the
fraction of the result is correct while the exponent is taken
modulo 4096. The result of operation on non-normalized operands
must be regarded as undefined.
Numeric code: 50
Escape pattern: 2.001010;

getdoublel;

getdouble2; comment addr now points to preoperand;

mantg (0 : > 38>= dregw (0:35) con 0;

expq:= signextend dregw (36:47);

mantlg (0 : > 38):= oplg con opq (0:11) con 0;

explq:= signextend opg (12:23);

expq:= expq + explq;

mantg:= mantq multiplied by mantlqg;

adjust expq;

comment details are model and option dependent;

goto normalize and round; comment section 10.3.9;

fs:

comment

"Floating point: subtract from double register", subtracts the
contents of the doubleword pointed out by the effective address
from the specified double register. If the effective address is
0 through 7, the operation is a double register-double register
operation. Reference to the non-accessible area and to the
lower limits of the process area (addr = lowlim - base) and the

112

cammon protected area (addr = 8) leads to program exception.
Underflow and overflow conditions are indicated in the excep-
tion register. If the "floating point exception active" bit is
set in the status register, underflow and overflow will lead to
a floating point exception. After underflow and overflow the
fraction of the result is correct while the exponent is taken
modulo 4096. Same rules concerning the results of cgperations on
non-normalized numbers imay be extracted fram the algorithm.
Numeric code: 49
Escape pattern: 2.001010;
getdoublel;
getdouble2; comment addr now points to preoperand;
mantg (0 : > 38):= dregw (0:35) con 0;
expq:= signextend dregw (36:47);
mantlg (0 : > 38):= oplg con opq (0:11) con 0;
explg:= signextend opg (12:23);
expq:= expq - explq;
if expq <= =38 then
begin comment register operand irrelevant;
mantqg:= 0;
expq:= explq;
goto sub
end;
if expg >= 38 then
begin comment "memory" operand irrelevant;
mantliqg:= 0;
expq:= signextend dregw (36:47);
goto sub
end;
comment or:
begin
ex(22:23):= 0;
goto next instruction
end;
if expg < 0 then
begin
mantg (0 : > 38):= signextend mantg (0 : > 38 + expq);
expq:= explg;
end
else
begin
mantlg (0 : > 38):= signextend mantlg (0 : > 38 - expq);
expq:= signextend dregw (36:47)
end;

10.6.20

10.6.21

sub:

113

mantq:= mantq - mantlq;

sq:= if overflow then -, mantq(0) else mantq(0);
mantq:= sq con mantq (0 : > 38 - 1);

expq:= expq + 1;

goto normalize and round; camment section 10.3.9;

99z

comment :

"General get from processor register", assigns the contents of
the processor register pointed out by the effective address to
the specified register. "gg" gives access to the monitor regis—
ters "inf", "size", "montop" and "rtc". Further effective ad-
dresses may give access to other registers in specific models.
If the effective address do not point to a processor register
"gg" is a dummy instruction.

Numeric code: 28

Escape patter: 2.000001;

if addr = 26 then regw:= inf;

if addr = 30 then regw:= size;

if addr = 32 then regw:= montop;

if addr = 100 then regw:= 0 con rtc;

if addr = "other" then regw:= "other register";
goto next instruction;

gp:

comment :

"General put into processor register", assigns the contents of
the specified register to the processor register pointed out by
the effective address. "gp" gives access to the monitor regis-
ters "inf", "size" and "montop" and allows the clearing of bits
in the interrupt register "intreg". Further effective addresses
may give access to other registers in specific models. If the
effective address do not point to a processor register "gp" is

a dumy instruction. "gp" is a privileged instruction.

Numeric code: 47
Escape pattern: 2.100001;

if -, monmode then goto program exception;

if addr = 26 then inf:= reqgw;
if addr = 30 then size:= regw;
if addr = 32 then wontop:= regw;
if addr = 94 then intreq (regw):= 0;
canment only used in special cases as after
power restart. Normal clearing of interrupt bits is performed

by the interrupt logic.
The addressing of bits is modulo a model dependent power of

two;

10.6.22

10.6.23

10.6.24

114

if addr = "other" then "other register":= regw;
goto next instruction;

hl:

conment :
"Half register: load", loads the 12 least significant bits of
the specified register with the contents of the halfword poin-
ted out by the effective address. If the effective address is 0
through 7 "hl" is a half register to register transfer. Refe-
rence to the non-accessible area leads to program exception.
Numeric code: 3
Escape patterm: 2.000010;

getword;

if addr(23) = 0 then
regw:= regw (0:11) con opg (0:11)

else
regw:= regw (0:11) oon apg (12:23);

goto next instruction;

hs:

comment :
"Half register: store", stores the least significant 12 bits of
the specified register in the halfword pointed out by the ef-
fective address. If the effective address is 0 through 7, "hs"
is a register to half register transfer. Other references out-
side the process area leads to program exception.
Numeric ocode: 26
Escape pattern: 2.000100;

get nonprotected;

if addr(23) = 0 then
opg (0:11):= regw (12:23)

else
opqg (12:23):= regw (12:23);

store word;

goto next instruction;

jds

comment :
"Jump and select disable limit", sets the "disable" bit in the
status register to one, and transfers control to the instruc-
tion pointed out by the effective address. If the W-field is
non-zero the link, i.e. the logical address of the next in-
struction, is assigned to the specified register. Reference to
the non-accessible area leads to program exception, unless the
effective address is between -2048 and -"montop". In this case

10.6.25

10.6.26

115

"4d" is a monitor call with cause = addr + 2048.
Numeric oode: 14
Escape pattern: 2.110000 (in RC 8000/45: 2.100000);
if -2048 <= addr < -montop then
begin
cause:= addr + 2048;
goto call; camment section 10.7.4
end;
comment in RC 8000/45: disable:= true;
get instruction;
disable:= true;
if W<> 0 then regw:= ic;
ic:= addr;
goto next instruction;

Je:

camment s
"Jump and select enable limit", sets the "enable" bit in the
"status" register to zero, and transfers control to the in-
struction pointed out by the effective address. If the W-field
is non-zero the link, i.e. the logical address of the next in-
struction, is assigned to the specified register. Reference to
the non-accessible area leads to program exception.
Numeric oode: 15
Escape pattern: 2.110000 (in RC 8000/45: 2.100000);

camment in RC 8000/45: disable:= false;

get instruction;

disable:= false;

if W <> 0 then regw:= ic;

ic:= addr;

goto next instruction;

Jls

camment:
"Jump with link in register", transfers control to the instruc-
tion pointed out by the effective address. If the W-field is
non—-zero the link, i.e. the logical address of the next in—
struction, is assigned to the specified register. Reference to
the non-accessible area leads to program exception.
Numeric code: 13
Escape pattern: 2.010000;

get instruction;

if W <> 0 then regw:= ic;

ic:= addr;

goto next instruction;

10.6.27

10.6.28

10.6.29

116

la:

camment :
"Logical and: cambine word with register", cambines the con-
tents of the word pointed cut by the effective address with
the contents of the specified register by a logical and opera-
tion. The result is assigned to the specified register. If the
effective address is 0 through 7 the result is a combinition of
two registers. Reference to the non-accessible area leads to
program exception.
Numeric ocode: 4
Escape pattern: 2.000010;

getword;

regw:= regw and opqg;

goto next instruction;

1d:

camment :
"Logical shift of double register", shifts the contents of the
specified double register the number of places given by the ef-
fective address. If the effective address is negative the shift
is a right shift with zeros shifted in at the most significant
bits, else it is a left shift with zeros shifted in at the
least significant bits.
Numeric oodes: 39
Escape pattern: 2.0000071;

if abs{addr) > 48 then
begin camment fast clear of a double register;

dregw:= 0;
goto next instruction
end;

dregw:= dregw (addr: 47 + addr);
goto next instruction;

lo:

comment :
"Logical or: cambine word with register”, cambines the contents
of the word pointed ocut by the effective address with the con-
tents of the specified register by a logical or operation. The
result is assigned to the specified register. If the effective
address is 0 through 7 the result is a cambinition of two re-
gisters. Reference to the non-accessible area leads to program
exception.
Numeric code: 5
Escape pattern: 2.000010;

[

10.6.30

10.6.31

10.6.32

117

getword;

regw:= regw or pd;
goto next instruction;

1s:

comment :
"Logical shift of single register", shifts the contents of the
specified register the number of places given by the effective
address. If the effective address is negative the shift is a
right shift with zeros shifted in at the nost significant bits,
else it is a left shift with zeros shifted in at the least sig-
nificant bits.
Numeric ocode: 38
Escape pattern: 2.000007;

if abs(addr) > 48 then addr:= sign(addr) * 48;

regw:= regw (addr: 23 + addr);

goto next instruction;

1x:

comment
"Logical exclusive or: cambine word with register", cambines
the contents of the word pointed out by the effective address
with the contents of the specified register by a logical exclu-
sive or operation. The result is assigned to the specified re-
gister. If the effective address is 0 through 7 the result is a
combinition of two registers. Reference to the non-accessible
area leads to program exception.
Numeric oode: 6
Escape pattern: 2.000010;

getword;

regw:= regw exclusive or opqg;

goto next instruction;

nd:

camment ;
"Normalize double register", normalizes the contents of the
specified double register by shifting it to the left until bit
0 and bit 1 have opposite values. The negative number of shifts
necessary is stored in the halfword pointed cut by the effec-
tive address. Normalization of zero will give zero and store
the value -2048. Effective address 0 through 7 will cause the
negative shift value to be assigned to the corresponding half
register. Other references outside the process area will lead
to program exception.

10.6.33

118

Numeric code: 35
Escape pattern: 2.000100;
if dregw = 0 then

shg:= -2048
else
begin
shq:= 0;
while dregw(0) = dregw(1) do
begin
dregw:= dregw (1:47) con 0;
shg:= shq -1
end
end;

get nonprotected;
if addr(23) = 0 then

opd (0:11):= shq (12:23)
else

opq (12:23):= shg (12:23);
store word;
goto next instruction;

ns:
comment :
"Normalize single register", normalizes the contents of the
specified register by shifting it to the left until bit 0 and
bit 1 have opposite values. The negative number of shifts ne-
cessary is stored in the halfword pointed out by the effective
address. Normalization of zero will give zero and store the
value -2048. Effective address 0 through 7 will cause the ne-
gative shift value to be assigned to the corresponding half
register. Other references outside the process area will lead
to program exception.
Numeric code: 34
Escape pattern: 2.000100;
if regw = 0 then
shq:= -2048
else
begin
shq:= 0;
while regw(0) = regw(1) do
begin
regw:= regw (1:23) con 0;
shg:= shq - 1
end
end;

119

get nonprotected;
if addr (23) = 0 then

opq (0:11):= shg (12:23)
else

opg (12:23):= shg (12:23);
store word;
goto next instruction;

10.6.34 re:
comment :
"Return from escape", is described in section 10.8.5;
goto re algorithm;

10.6.35 ri:
comment : :
"Return from interrupt", is described in section 10.7.5;
goto ri algorithm;

10.6.36 rl:

comment:
"Register : load", loads the specified register with the con-
tents of the memory word pointed out by the effective address.
If the effective address is 0 through 7, "rl" is a register to
register transfer. Reference to the non-accessible area leads
to program exception.
Numeric code: 20
Escape pattern: 2.000010;

getword;

regw:= opq;

goto next instruction;

10.6.37 rs:

comment
"Register : store", stores the contents of the specified regis-
ter in the memory word pointed out by the effective address. If
the effective address is 0 through 7, "rs" is a register to re-
gister transfer. Other reference outside the process area leads
to program exception.
Numeric ocode: 23
Escape pattern: 2.000100;

opd:= reygw;

store word;

goto next instruction;

10.6.38

10.6.39

10.6.40

120

X:

camment :
"Register : exchange with word", exchanges the contents of the
specified register and the memory word pointed out by the ef-
fective address. If the effective address is 0 through 7, "rx"
exchanges the contents of two registers. Other reference out-
side the process area leads to program exception.
Numeric oode: 25
Escape pattern: 2.000110;

get nonprotected;

oplg:= opq;

opgd:= regw;

store word;

regw:= oplq;

goto next instruction;

se:
comment:
"Skip if register equal", skips the next instruction if the
contents of the specified register is equal to the effective
address.
Numeric code: 42
Escape pattern: 2.010001;
if regw = addr then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

conment :
"Skip if register high", campares the contents of the specified
register and the effective address as signed integers. If the
register value is greater than the effective address the next
instruction is skipped.
Numeric oode: 40
Escape pattern: 2.010001;
if regw > addr then
begin
pic:= pic + 2;
ics= ic + 2
end;
goto next instruction;

10.6.41

10.6.42

10.6.43

121

sl:
comment :
"Skip if register low", campares the contents of the specified
register and the effective address as signed integers. If the
register value is less than the effective address the next in-
struction is skipped.
Numeric code: 41
Escape pattern: 2.010007;
if regw < addr then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

sn:
comment :
"Skip if register nonequal", skips the next instruction if the
contents of the specified register and the effective address
are not equal.
Numeric code: 43
Escape pattern: 2.010007;
if regw <> addr then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

SO:
comment :
"Skip if selected register bits all ones", uses the effective
address as a mask to test selected bits in the specified regis-
ter. If all bits in the register that correspond to ones in the
effective address are one, the next instruction is skipped.
Numeric ocode: 44
Escape pattern: 2.0100071;
if regw = regw or addr then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

10.6.44

10.6.45

10.6.46

SX:

122

sp:
coament :
"Skip if word not protected", skips the next instruction if the
effective address points to the process area or to a register,
i.e, if storing in the word addressed is allowed.
Numeric ocode: 44
Escape pattern: 2.010001;
if lowlim <= addr + base < uplim
or 0 <= addr < 8 then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

sSt

comment :
"Subtract double word fram double register", subtracts the con-
tents of the doubleword pointed out by the effective address
fron the specified double register. If the effective address is
0 through 7, the operation is a double register—double register
operation. In this case it is important to remember that the
operation on the least significant registers is completed be-
fore the operation on the most significant registers and carry
is executed. Reference to non-accessible area and reference to
the lower limits of process area (addr = lowlim - base) and
camon protected area (addr = 8) leads to program exception,
Overflow and carry is registered in the exception register and
integer exception may occur.
Numeric oode: 57
Escape pattern: 2.001010;

get doublel;

regw:= reqgw — Opd;

get double2; comment does not change carry;

regpre:= regpre — oplg - 1 + carry;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then
goto integer exception;

goto next instruction;

comment :
"Skip if selected exception bits all zeros", uses the 3 least
significant bits of the effective address as a mask to test se-

10.6.47

10.6.48

10.6.49

123

lected bits in the exception register. If all selected bits,
i.e. the bits corresponding to ones in the effective address,
are zero the next instruction is skipped.
Numeric code: 46
Escape pattern: 2.010001;
if ex and addr (21:23) = 0 then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

sZ:
camment :
"Skip if selected register bits all zeros", uses the effec-
tive address as a mask to test selected bits in the specified
register. If all bits in the register, that correspond to ones
in the effective address are zero, the next instruction is
skipped.
Numeric code: 45
Escape pattern: 2.0700071;
if regw and addr = 0 then
begin
pic:= pic + 2;
ic:= ic + 2
end;
goto next instruction;

u0: u30: u3l: u51: u58: u59: u60: ubl: ub2: u63:

canrent :
"Unassigned instruction codes", provoke a program exception.
They are reserved for implementation of further instructions as
options or in later models.
Numeric oodes: 0, 30, 31, 51, 58, 59, 60, 61, 62, 63
Escape pattern: 2.100000;

goto program exception;

was

canmment :
"Word : add to register", adds the contents of the word pointed
out iy the effective address to the specified register. If the
effective address is 0 through 7 the operation is a register-
register operation. Reference to non-accessible area leads to
program exception. Overflow and carry is registered in the ex-
ception register and integer exception may occur.

10.6.50

10.6.51

124

Numeric ocode: 7
Escape pattern: 2.000010;

get word;

regw:= regw + opq;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then
goto integer exception;

goto next instruction;

wd:

comment :
"Word: divide into double register", divides the specified
double register by the contents of the word pointed out by the
effective address. The quotient is placed in the least signifi-
cant register while the remainder is placed in the most signi-
ficant register. If the effective address is 0 through 7, the
operation is a double reyister-register operation. Reference to
the non-accessible area leads to program exception. Carry = 0
and overflow is registered in the exception register and inte-
ger exception may occur. At overflow the dividend is left un-
changed. Implementation details of the division differ from
model to model and are not shown.
Numeric oode: 24
Escape pattern: 2.000010;

ex(22:23):= 0;

getword;

if opg = 0 then goto set overflow;

quotq:= dregw//opq;

if overflow then goto set overflow;

regpre:= dregw mod opq;

regw:= quotq;

goto next instruction;

set overflow:

ex(22):= 1;

if integer exception active then
goto integer exception;

goto next instruction;

wm:
commnent :
"Word : multiply by register giving double register", multi-
plies the contents of the specified register by the contents of
the word pointed out by the effective address. The result is

placed in the corresponding double register. If the effective

10.6.52

10.6.53

125

address is 0 through 7, the operation is a register-register
operation. Reference to non-accessible area leads to program
exception. Exception register is unchanged and integer excep—
tion can not occur. Implementation details of the multiplica-
tion differ from model to model and are not shown.
Numeric code: 10
Escape pattern: 2.000010;

get word;

dregw:= regw * opq;

goto next instruction;

wS:

comment :
"Word : subtract from register", subtracts the contents of the
word pointed out by the effective address from the specified
register. If the effective address is 0 through 7 the operation
is a register- register operation. Reference to non-accessible
area leads to program exception. Overflow and carry is regis—
tered in the exception register and integer exception may
occur.
Numeric code: 8
Escape pattern: 2.000010;

get word;

regw:= regw — OpJ;

ex(22):= overflow;

ex(23):= carry;

if overflow and integer exception active then
goto integer exception;

goto next instruction;

x1:

comment :
"Exception register : load from halfword", loads the exception
register with the 3 least significant bits of the halfword
pointed out by the effective address. If the effective address
is 0 through 7, "x1" is a halfregister to exception register
transfer. Reference to non—accessible area leads to program
exception.
Numeric code: 16
Escape pattern: 2.000010;

get word;

if addr(23) = 0 then
ex(21:23):= opq(9:11)

else

ex(21:23):= opq(21:23);
goto next instruction;

10.6.54

10.6.55

10.7

126

XSt

camment :
"Exception register: store in halfword", stores the exception
register in the 3 least significant bits of the halfword poin-
ted out by the effective address. The most significant 9 bits
are set to zero. If the effective address is 0 through 7, "xs"
is an exception register to halfregister transfer. Other refe-
rences cutside the process area leads to program exception.
Numeric ocode: 27
Escape pattern: 2.000100;

get nonprotected;

if addr(23) = 0 then
opq(0:11):= 0 con ex(21:23)

else
opg(12:23):= 0 con ex(21:23);

store word;

goto next instruction;

zl:

comment :
"Zero—extended halfword: load into register", loads the least
significant 12 bits of the specified register with the contents
of the halfword pointed out by the effective address. The most
significant 12 bits are cleared. If the effective address is 0
through 7, "zl" is a half register to register transfer. Refe-
rence to the non-accessible area leads to program exception.
Numeric ocode: 19
Escape pattern: 2.000010;

get word;

if addr(23) = 0 then
regw:= 0 con opqg(0:11)

else
regw:= 0 con opq(12:23);

goto next instruction;

Monitor Calls and Interrupt

This section describes the actions on monitor calls and inter-
rupts and the "return from interrupt" instruction. The actions
are based on the contents of the system table pointed out by

the information register "inf". The contents of "inf" must be
odd to support the selection of the correct service address. The
memory addresses involved in reading fram the system table and in
access of the registerdump are physical addresses. They are as-
sumed to be addresses in true memory, if not the result is usual-

10.7.1
o

10.7.2
®

10.7.3

127

ly a buserror leading to an internal interrupt in the monitor
program. The cause will be defined as "operand error" (cause = 2
* 4) or "system table error" (cause = 2 * 3) depending on the mo-
del facilities for checking the physical address before access
without delaying the action. The casual reader is however advised
to ignore the error cases of the algorithms, since these are of
interest to monitor programmers and maintenance staff only.

external interrupt:

cannent:
This action is entered fram "next instruction", 10.4.1, if the
"interrupt flag" is set. The "cause" register is set to two
times the interrupt level, i.e. at least 12, and the correspon-
ding interrupt bit is cleared. The action continues at "ser-
vice" the common action for entry of the ronitor program. The
entry address will he the interrupt service address in the
systemtable;

cause:= 2 * curlev;

intreg (curlev):= 0;

goto service;

fetch error:

comment:
This internal interrupt action is entered fram "next instruc-—
tion", 10.4.1, or in some cases from jump actions, when the
instruction fetch results in a buserror. The "cause" register
is set to two times the interrupt level i.e. 10. The exception
register will describe the error.

The instruction counter "ic" will contain the logical address
of the instruction. The action continues at "service" the comn-
mon action for entry of the monitor program. The entry address
will be the interrupt service address in the "system table". If
"intlim" is zero, defining total disable, the CPU will halt;

cause:= 2 * 5;

set busexceptions;

if intlim = 0 then halt;

goto service;

operand error:

camment :
This internal interrupt action is entered fram instructions and
indirect address calculation when a memory reference results in
a buserror. The cause register is set to two times the inter-

10.7.4

128

rupt level i.e. 8. "Ex", the exception register will describe
the error. The address register "addr" will contain the logical
address of the memory reference. The action continues at "ser-
vice" the common action for entry of the monitor program. The
entry address will be the interrupt service address in the "sy-
stem table". If "intlim" is zero, defining total disable, the
CPU will halt;

cause:= 2 * 4;

set bus exceptions;

if intlim = 0 then halt;

goto service;

call:

comment :
This action is entered fram the special monitor call case of
the "jd" instruction, 10.6.24. The "cause" register contains
the function number i.e. the effective address plus 2048. The
action continues at "service" the cammon action for entry of
the monitor program. The entry address will be the monitor call
address in the system table;

inf:= inf - 1;

comment: the least significant bit of "inf" is used as a flag
to control the selection of service address;

service:

comment :
This common action for entry of the monitor program dumps the
eight dynamic registers, at the "registerdump address" in the
"system table" and initializes the dynamic registers for fast
monitor action. For details, see 6.2 or follow the algorithm.
Buserrors during the action will activate the "dumpfault"
action, see below;

base:= 0;

lowlim:= 8;

uplim:= size;

initg:= word (inf);

if buserror then halt;

comment if the status/intlim initialization cannot be accessed a
total disable situation must be assumed. Inf must point to a
system table in true memory or must be initialized to gquaranty
a buserror as after autoload and power restart;

intlim:= 0 con initq(12:23);

camnment the interruptflag is cleared and the interrupt scan is
resured as a function of this assignment;

129

regdumpaddrg:= word (inf + 2);
if buserror then goto dumpfault;
for ig:= 0 step 2 until 14 do
begin
word (regdumpaddrg + iq):= reqg(iq);
if buserror then goto dumpfault;
canment the "register dump address" in the systemtable must
point to eight consequtive words in true wenory;
end;
ic:= word (inf - 3);
if buserror then goto dumpfault;
cannent the entry address is either the "monitor call service
address" or "interrupt service address" in the "system table"
depending on the flag in the least significant bit in "inf";
wl:= regdumpaddrg + 16;
w2:= cause;
if dumperrorcount <> 0 then
begin canment see dumpfault below;
w2:= 4
end;
status:= initqg (0:11) con 0;
inf:= inf - 12;
inf:= inf (0:22) con 1;
camment the new "system table" is selected and the flag for
selection of service address is reinitialized;
pic:= ic;
instruction:= word (pic);
if hbuserror then goto fetcherror;
fetched:= true;
goto next instruction;

dumpfault:

comment :
This action is called if an interrupt or monitor call cannot be
handled according to the aurrent "system table" because of a
buserror. A new "system table " is selected and "dump error
count" is increased by one. After that the action continues at
"service" simulating an internal interrupt in the monitor pro-
gram. The register dump will be as for the original event ex-
cept for the increase in "dump error count". The "w2" initiali-
zation will be changed to 4 under the assumption, that a moni-
tor program will never provoke a floating point interrupt;

inf:= inf - 12;

inf:= inf (0:22) con 1;

dumperrorcount: dumperrorcount + 1;

10.7.5

130

if dumperrorcount = 0 then halt;

cament halt on "dump error count" overflow, i.e. the incredible
situation where 16 system table levels can not handle the
event;

if intlim = 0 then halt;

goto service;

ri algorithm:

comment :

"Return from interrupt" is mainly used by the monitor program to
reactivate user programs after interrupts and monitor calls.
Besides that it is used in systeminitialization, to start new
user programs and to enforce breaks in user program execution.
For details, see 6.3 or follow the algorithm.

Buserrors during the restoring of registers will be handled
analogous to operand errors except for the possibility of cause
=2 %* 3 i.e, "system table error".

Exit to the user program is performed by "exit to program"
10.2.70. This action is entered with the auxiliary registers
"oldicqg" pointing after the "ri" instruction and "agq" pointing
after the 5 words defining the reinitialization of the "process
definition registers". "ri" is a privileged instruction.
Numeric code: 12
Escape pattern: 2.111010;
if -, monitor mode then goto program exception;
inf:= inf + 12; comment select new system table;
displg:= addr;
oldicqg:= ic;
regdumpaddrg:= word (inf + 2);
if buserror then
begin
addr:= inf;
goto ri error
end;
for ig:= 0 step 2 until 14 do
begin comment assignment of w0, wl, w2, w3,
status, ic, cause, addr;
reg(iqg):= word (regdumpaddrg + iq);
if buserror then
begin
addr:= regdumpaddr + iq + 2;
goto ri error
end
end;

131

regdumpaddrg:= regdumpaddrg + displg;
for ig:= 0 step 2 until 8 do
begin comment assignment of cpa,
base, lowlim, uplim, intlim;
reg (ig + 16):= word (regdumpaddrqg + iq);
if huserror then
begin
addr:= regdumpaddrq + iq + 2;
goto ri error
end
end;
aq:= regdumpaddrq + 10;
dumperrorcount:= 0;
goto exit to program;

ri error:

comment analogous to "operand error", but "addr" do not point
directly to the error;

cause:= 2 * 4; camment or: cause:= 2 * 3, "ex" undefined;

set busexceptions;

ic:= oldicqg;

inf:= inf - 12; coment reselect old system table;

if intlim = 0 then halt;

goto service;

10.8 Exception and Escape

This section describes the actions for handling exceptions and
escapes and the "return froa escape" instruction. The exception

and escape actions access the "system table" for the logical ser-
vice addresses. Concerning these accesses, see the introduction
to 10.7.

10.8.1 program exception:
conment :
This action is called in the following cases:

- The memory protection is violated, "addr" contains the logi-
cal xddress of the operand or of the preoperand.

- Execution of an wnassigned instructioncode, "addr" contains
the effective address.

- Execution of a privileged instruction without monitor mode.
"addr" contains the effective address.

In all cases "ic" contains the logical address of the next in-

10.8.2

10.8.3

132

struction. The "cause" register is set to zero and the action
continues at "exception" below;

cause:= 0;

goto exception;

integer exception:

camment :
This action is called when an integer operation or an arithme-
tic shift results in an overflow and the "integer exception ac-
tive" bit in the "status" register is set, see 4.6 which also
describes the setting of bits in the exception register. For
memory referring instructions "addr" will contain the logical
address of the operand, for doubleword instructions the precpe-
rand. "ic" contains the logical address of the next instruc-
tion.
The "cause" register is set to 2 and the action continues at
"exception" below;

cause:= 2;

goto exception;

floating point exception:

camment:
This action is called when a floating point operation results
in overflow or underflow and the "floating point exception ac-
tive" bit is set in the "status" register, see 5.4 which also
describes the setting of bits in the exception register. "addr"
contains the logical address of the preoperand (for "ci" the
scaling factor). "ic" contains the logical address of the next
instruction.
The "cause" register is set to 4 and the action continues at
"exception" below;

cause:= 4;

exception:

camment :
The "exception service address" is read fram the "system
table". The "status" assignment following the register dump is
prepared. The action continues at "dump registers" below;

statg:= status;

statqg (2:3):= 0; comment "after an" and "after esc" will be
cleared before exit to the exception routine;

regdumpaddr:= word (inf + 4);

if buserror then goto service address error;

goto dump registers;

133

escape:

camment :
This action is called after the address calculation, when "es-—
capemode", "escapemask" and "escapepattern" defines an escape.
"addr" contains the effective addr. "instrmask" contains the
concatination of the F-field and the "escapepattern" of the in-
struction. For the special case of escape in indirect address
calculation see 10.3.5. "Ic" is decreased by 2 such that it
contains the logical address of the instruction. "After escape"
is set to true. The "escape service address" is read fram the
"system table". The "status" and "cause" assignments following
the register dump is prepared. The action continues at "dumnp
registers" below;

ic:= ic - 2;

after esc:= true;

statq:= status;

statq(l1:11):= 0; coment "escape mode",
"after am", "after escape", "integer exception active",
"floating point exception active" and "escape mask" will be
cleared before exit to the escape routine;

cause:= instrmask;

regdumpaddrg:= word (inf + 6);

if buserror then goto service address error;

goto dump registers;

service aldress error:

camment the effect is analogous to the effect of an "operand
error” in the "monitor" program. "addr" will point to the
"system table";

addr:= inf;

cause:= 2 * 4; comment or: cause:= 2 * 3, "ex" undefined;

set busexceptions;

inf:= inf - 12; comnment select the "monitor" system table;

if intlim = 0 then halt;

goto service; camment 10.7.4;

dump registers:

comment s
This common action for exceptions and escapes dumps the 8 dy-
namic registers in 8 consequtive words starting at the service
address, and initializes the dynamic registers for fast action
on the event. For details, see 7.1.4 and 7.2.4 or follow the
algorithm. If the service address is zero the event is trans-
formed to an internal interrupt, for exceptions with unchanged
"cause", for escapes with "cause = 0", i.e., "program interrupt".

134

If the register dump is ocutside the process area an internal
interrupt with "cause = 2 * 3", i.e. "system table error" is
activated. Exit to the program at "service address + 16" is
performed by "exit to program", 10.3.10. This action is entered
with the auxiliary register "oldicq" pointing to the cause and
"ag" = service address + 16;
if regdumpaddrg = 0 then
begin
if cause > 4 then cause:= 0;
camment the cause is always greater
than 4 for escapes;
if intlim = 0 then halt;
goto service; comment 10.7.4

end; .
for ig:= 0 step 2 until 14 do
begin
if lowlim <= regdumpaddrg + ig + base < uplim then
begin
word (regdumpaddrg + ig + base):= reg (iq);
if buserror then
begin
canment analogous to "operand error" but "addr" will
contain the logical address of the error increased
by 2;
addr:= regdumpaddrg + iq + 2;
cause:= 2 * 4;
set busexceptions;
if intlim = 0 then halt;
goto service; camment 10.7.4;
end
end
else

begin comment system table error;
addr:= regdumpaddrg + ig + 2;
cause:= 2 * 3;
if intlim = 0 then halt;
goto service; comment 10.7.4;
end
end;
w0:= ic;
wli:= 0 (4) con cause (0:17) con W;
cament exceptions: wl:= W, escapes: wl:= F con W;
w2:= addr;
cause:= 0 con cause (18:23);

10.8.5

135

camment exceptions: cause unchanged
escapes: cause:= escape pattern;
w3:= cause;
oldicq:= ic;
aqg:= regdumpaddry + 16;
ic:= aq;
status:= statq; comment subfields of "status" are cleared as
prepared at entry;
goto exit to program;

re algorithm:
comment :
"Return from escape" initializes the 8 dynamic registers fram 8
consequtive logical addresses starting at the effective ad-
dress., Each of the logical addresses must be either in the pro-
cess area or in the common protected area or a "program excep-
tion" will take place. For further details, see 7.2.5 or follow
the algorithm. Exit to the program at the new contents of “ic"
is performed by "exit to program", 10.3.10. This action is en-
tered with the auxiliary registers "oldicq" pointing after the
"re" instruction and "ag" equal the effective address increased
by 16;
regdumpaddrg:= addr;
oldicq:= ic;
monmg:= monitor mode; comment used to prevent illegal setting of
"monitor mode";
for ig:= 0 step 2 until 14 do
begin
if lowlim <= regdumpaddrg + ig + base < uplim then
begin
reg(iq):= word (regdumpiq + iq + base);
if buserror then goto re error
end
else
if 8 <= regdumpaddrg + ig < cpa then
begin
reg(iq):= word (regdumpaddrg + iq);
if buserror then goto re error
end
else
begin
ic:= oldicq;
goto program exception;
camment "addr" still contains the original effective
address;
end;

136

if -, monmg then monmode:= false;

dumperrorcount:= 0; commnent prevents erronous "w2:= 4" in
later interrupts or monitor calls;

goto exit to program;

re error:

ic:= oldicq;

addr := regdumpaddrg + iq + 2;
cause:= 2 * 4;

set busexceptions;

if intlim = 0 then goto halt;
goto service; camment 10.7.4;

°
i

A1l.1

137

Appendix 1

Instructions in Alphabetic Order by Mnemonics

MN

aa
ac
ad
al

as

cf
ci

di
dl
do
ds

ea
el
es

fa
fd
fm
fs

99
gp

hl
hs

jd

je
jl

NC

56
33
37
11

9
36

53
32

29
54

1
55

18
2
17

48

52

50

49

28

47

26

14

15
13

NAME

add double word to double register
address complemented: load into register
arithmetic shift of double register
address: load into register

address: modify that of next instruction
arithmetic shift of single register

convert floating point to integer
convert integer to floating point

data in
double register: load
data out

double register: store

extended halfword: add to register
extended halfword: load into register
extended halfword: subtract from register

floating point: add to double register

floating point: divide into double register
floating point: multiply by double register
floating point: subtract fram double register

general get from processor register
general put into processor register

half register: load
half register: store

jump and select disable limit

Jump and select enable limit
Jump with link in register

*) In mxdel RC 8000/45: 2.10000

EP

2.001010
2.000001
2.000001
2.000001
2.000001
2.000001

2.000001
2.000001

2.100001
2.001010
2.100001
2.001100

2.000010
2.000010
2.000070

2.001010
2.001010
2.001010
2.001010

2.000001
2.100001

2.000010
2.000100

2.110000

2.110000
2.010000

la
14
lo
1ls
1x

nd
ns

re
ri
rl
rs
rx

se
sh
sl
sn
SO
sp
ss
SX
Sz

wa

wd

ws

x1
SX

zl

39

38

35
34

22
12
20
23
25

42
40
41
43
44
21
57
46
45

24
10

16
27

19

NAME

logical and: combine word with register
logical shift of double register
logical or: combine word with register
logical shift of single register
logical exclusive or: cambine word with
register

normalize double register
normalize single register

return from escape

return fron interrupt
register: load

register: store

register: exchange with word

skip if register equal

skip if register high

skip if register low

skip if register nonequal

skip if selected register bits all ones
skip if word not protected

subtract double word fram double register
skip if selected exception bits all zeros
skip if selected register bits all zeros

word: add to register

word: divide into double register

word: multiply by register giving double
register

word: subtract from register

exception register: load fram halfword
exception register: store in halfword

zero—extended halfword: load into register

EP

2.000010
2.000001
2.000010
2.000001

2.000010

2.000100
2.000700

2.011010
2.111010
2.000010
2.000100
2,000110

2.010001
2.010001
2.010001
2.070001
2.010001
2.010001
2.001010
2.010001
2,010001

2.000010
2.000010

2.000010
2.000010

2.000010
2.000100

2.000010

w
.
~J

L]
N NN

W = bW wwwww
L]

LN I Ve B S - =S
L]

3
[\

>
L]
Ul W

s
.
w U

[N
L]
~N

[
>
R

A2.1

Appendix 2

Instructions in Order of Numeric Code

NC

0 O U W —~O

Wi W W wwwwlhhDNDDNNDRNRNR DR 4 o ed g b g et
\]O’\tﬂbwl\)—‘O\OOO\JC\UTBVJI\)-—‘O\DG)\IO'\U'IJ;WM—‘O\D

S

S N W N =

11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

MN

do
el
hl
la
lo
1x
wa

B5 8

ri
31
jd
je
x1
es
ea
zl
rl
sp
re
rs
wd
rX
hs
XS

g9
di

ci
ac

nd
as
ad

EP

100000
100001
000010
000010
000010
000010
000010
000010
000010
000001
000010
000001
111010
010000
1 0000
1 0000
noooto
000010
000010
000010
000010
010001
011010
000100
000010
000110
000100
000100
000001
100001
100000
100000
000001
000001
000100
000100
000001
000001

kX

[[N I

0 n oo n e | N N o e e o e o

H o< DN oH M

NC

38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63

(64

EX:

oC

46
47
50
51

52
53
54
55
56
57
60
61

62
63
64
65
66
67
70
71

72
73
74
75
76
77

100

Potential

reference
exception
reference
exception
may cause
may cause

1s
1d
sh
sl
se
sn

SZ
SX

fa
fs
fm

fd
cf
dl
ds
aa
ss

indir

exceptins; notation means:

140

EP =X

000001
000001
010001
010001
010001
010001
010001
010001
010001
100001
001010
001010
001010
100000
001010
000001
001010
001100
001010
001010
100000
100000
100000
100000
100000
100000

[o A v
]

T

[N S

000010)

to "non accessible area" leads to program

autside "process area" leads to program

integer exception
floating point exception

use with ronitomode false leads to program exception.

—
G O N I A A GE B B G B D G BN aGE AN G B B Em B

®
>
w

EP NC

000001 9
11

28
32
33
36
37
38
39
53

000010

~N Oy O s W

16
17
18
19
20
24
(64

1

000100 23
26
27
34
35

000110 25

Appendix 3

MN

am
al
99
ci
ac
as
ad
1s
14
cft

el
hl
la
lo
1x
wa
ws
W
x1
es
ea
zl
rl
wd
indirect)

rs
hs
XS
ns
nd

rx

EP

001010

001100

010000

010001

011010

100000

A3.1 Instructions in Order of Escape Pattern

49
50
52
54
56
57

21
40
41
42
43
44
45
46

22

30
31
51
58
59
60
61
62
63

fa
fs

fd
dl
aa
ss

ds
jl
sp
sh
sl
se

sn

Sz
SX

re

142

EP NC MN EP NC MN
100001 1 do

29 di

47 gp
110000 *) 14 jd

15 je
111010 12 ri

*) In RC 8000/45 "jd" and "je" has the escape pattern 100000

o
>
D

143

Appendix 4

Memory locations supporting firmware facilities.

Fixed addresses:

0: w0 ; The working registers are addressable
2: wl ; as the first locations of memory
4: w2 ; see 3,2
6: w3 H
8: device hase ; Points to the device descriptions, see
; 3.3.2
10: power restart address; Points to the power restart action,
; see 9.1

Systemtable, see 6.1, pointed out by the contents of the "inf"
register:

inf-5: monitor call service address ; see 6.4
inf-3: interrupt service address ; see 6.7
inf-1: status/intlim initialization ; see 6.2
inf+1: register dump address ; see 6.2
inf+3: exception service address ; see 7.1
inf+5: escape service address ; see 7.2,3 ff.

RETURN LETTER

Title: RC 8000 Computer Family, Reference Manual ~ RCSL. No.: 42-i 1235

A/S Regnecentralen maintains a continual effort to improve the quality and use-
fulness of its publications. To do this effectively we need user feedback, your criti-
cal evaluation of this manual.

Please comment on this nwnual’s completeness, aceuracy, organization, usability,
and readability:

Name: e Title:r
Company:
Address:

Date: B

Thank you

.................

8 REGNECENTRALEN
Information Department
Falkoner Alle 1
DK-2000 Copenhagen F.
Denmark

Affix
postage
here

