(36 A A2
N oara]

~troduction to

S0

Mmusil text editor

INTRODUCTION TO MUSIL TEXT EDITOR

B. J. Rosenstein

INTRODUCTION

The MUSIL Text Editor can be used to modify, up-date, or even create MUSIL programs
while sitting at the operator’'s console of the RC 3600. The editing procedure can be carried
out on individual characters, on strings, or on program segments.

This manual is designed as a companion volume to Introduction to MUSIL. As such, it is
directed at the beginning MUSIL programmer. For this reason it describes Text Editor when
used by a single user, employing paper tape input and output, and working on a stand-
alone system. Text Editor is, however, not itself limited by any of these restraints.

The handiest device to use with Text Editor is the F 13 Alphanumeric Display/Keyboard,
because it is fast and quiet, and deletions and changes are easiest to observe when using
this device, but the F 12 KSR Teletype is also preferred by many because of the permanent
record it gives of the editing process. The F 14 Silent Printer/Keyboard combines quiet
operation with a permanent record.

The user can also take advantage of whatever peripherals are attached to his system. For
information on this, and on the specific features of operation of the operator device, please
consult the Operators Guide.

General Characteristics of Text Editor

The Text Editor commands described in this booklet will allow you to produce punched
paper tape versions of MUSIL programs. You may start with a paper tape that contains a
MUSIL program that is to be updated, corrected, or expanded, or you may simply create
a new MUSIL program by inputting your text to the console device’'s keyboard. Most
commonly, Text Editor is used to prepare programs already on paper tape for a new
compilation.

Text Editor can modify a program text either at the line or the character level. It does this
by searching either for a string of characters or for an implicit line number. Text Editor
provides these implicit line numbers, and also an implicit character pointer to the current
character.

There are three types of Text Editor commands: input commands that put the user program
- or a part of the user program - into the edit buffer, commands that modify the contents

of the edit buffer, and commands that output the modified contents of the edit buffer onto
punched paper tape.

At each point of the editing procedure there is a character pointer (CP) that points to the
position that currently is available for operating on.

Each line that is read into the edit buffer is assigned an implicit sequential line number,
beginning with 1, that is updated as the editing procedure progresses. Text Editor defines a
line as text ending with a carriage return. When the user requests a line number, Text Editor
calculates the line number by counting carriage returns from the beginning of the buffer.

All text is assumed to be in ASCII, and in even paritry.

The Logic of Text Editor

Text Editor views all input to it as a continuous stream of characters. This stream of
characters is considered to be segmented into pages. A “page” is defined as a stream

of characters up to a form feed character or to the end of input. Each page is segmented
into lines. A “line” is defined as a stream of characters up to and including a carriage
return.

The editing process takes place in three steps:

1. read a page into the edit buffer,

2. edit this page,

3. output this page, as modified.
When Text Editor has been loaded, it prints an * (asterix), and the user may begin editing.
If at any point the capacity of the edit buffer is exceeded, then the appropriate error
message will be printed.
The character pointer (CP) should be thought of as placed between two characters.

Inserted characters will, then, be placed between these characters. Operations on the current
character will occur on the character to the right of the CP.

The Use of Special Keys

The Escape Key, ESC, is used for two purposes:
1. Striking ESC twice initiates processing of the command(s) just typed.
2. Striking ESC once after the argument to a command code delimits
that argument from whatever may be typed after it.
When ESC is struck, a $ (dollar sign) is displayed.
Each command consists of one or two letters or a special graphic. This is the “command
code”. Some commands allow you to place a number in front of them. These numbers must
be decimal integers between zero and = 2047. Some command codes may be followed by
a string argument,
Each command, then, has the form
n code string $,

where $ represents the ESC key, and n and/or string may be absent, depending on the
specific case.

To initiate processing of this command, the ESC key is pressed once more, if the command
ends with a dollar sign, or twice if it does not.

Several commands may be written one after the other before processing is initiated. In this
case we have a string of commands, such as

n code string$n code string$............ .. $
To execute this command string, the ESC key must be struck once more. Remember, that

processing begins upon the reception of a sequence of two ESCs. An accidental third ESC
will have no ill effects.

Carriage Return, CR, will have no effect if struck within a command string, as long as it
struck only between commands, and not in the middle of a command. If CR is struck within
a string of characters, then Text Editor will assume that CR is part of this string.

RUBOUT is used to delete the last character input. On a teletype it is represented by a
back arrow. See the Operators Guide for its effect on other devices. Repeated RUBOUTs
delete as many characters as there are RUBOUTSs, from right to left, until a “terminator” is
reached. At that point Text Editor will issue an *. A “terminator” is any character whose
ASCII code is below octal 32, such as ESC, new line, tabulation, form feed, etc. In practice
the deletion process usually goes to the CR that signals the end of the preceeding line.

Example:
start: FIRSTTTf

action: two RUBOUTs
result: FIRST?

The arrows indicate the position of the CP.

TABs are simulated with spaces, that is, they appear as spaces on the operator device.
On the output tape they appear as the TAB character followed by the RUBOUT character.
Predefined TAB positions occur at columns 1, 9, 17, 25, etc. TAB positions cannot be
redefined by the user. The judicious use of TABs makes your program attractive and easy
for you and others to read.

SHIFT key use will not always yield the expected result of inputting the character on the
upper half of the key. Please refer to the Operator’s Guide to learn the proper use of this key.

NULL and LINE FEED will be ignored on input, but a line feed will be provided for every CR
sent to the output device.

When the CTRL, Control Key, is pressed together with a character, then the ASCII result
of the combination is input. In some cases CTRL has the effect of inputting the character
displayed on the upper half of a key. Please consult the Operator's Guide for information on
this situation. CTRL used with a character, will result in the display of an up-arrow followed
by the character:

CTRL A is displayed as A

Parity Errors

Parity is always checked on input and even parity is assumed. If an input character contains
a parity error, then the following message will be delivered

PARITY ERROR IN LINE n
If the user then examines that line, the character in error will appearasa/ .

Beginning the Editing Procedure

Before editing can take place the machine must of course be in operation and the necessary
programs will have to be loaded. Consult the Operators Guide for loading procedures.

Specifically, before beginning editing
The operating system must have been autoloaded,
All necessary driver programs must have been loaded,
The MUSIL interpreter must be loaded,
Text Editor must be loaded, and
your MUSIL program (if any) must be ready for input.

After program loading Text Editor takes command, clears its buffers, and is in control.
This is indicated to you by the printing of an *.

Input Commands

Y read a page

The next page of the user program is read into the edit buffer. The form feed at the end ol
the page will be read, but not stored in the edit buffer. The CP will be positioned to just
before the first character in the edit buffer. If the edit buffer is exceeded, the following
message will be printed:

BUFFER IS FULL-Y OR A INPUT IS TERMINATED

If this message is received, then a part of the current page is in the edit buffer. To continue

the editing process, the user must either read out the buffer or delete something from it.
The rest of the page can then be read in.

A append a page

The present contents of the edit buffer are augmented with the next page. The CP will be
positioned just before the first character of this new page. If the buffer is full before the
command is given, then the following message will be printed:

BUFFER IS FULL-CANNOT DO A

If the edit buffer fills up while the command is being executed, then the message will be
BUFFER IS FULL-Y OR A INPUT IS TERMINATED

The situation is the same as for the Y command. When the next page is to be input from
the keyboard, then the insert command is used instead of the A command.

T display contents of edit buffer on console device

The CP is not affected. The entire contents of the edit buffer will apear on the display
device. If the user wants to see only a part of the contents of the edit buffer, then

nT display n lines of edit buffer

will display n lines of the edit buffer, starting from the current position of the CP, and
CP will not be moved.

Commands to the Character Pointer

B place CP at beginning of edit buffer

The CP is moved to just before the first character in the edit buffer. If an argument is used with

this command, then the argument will be ignored.

nJ jump CPtolinen
The CP will be moved to just before the first character of the n-th line of the edit buffer.

L move CP to beginning of line
Moves the CP to before the first character of the current line.

nL move CP n lines

The CP will move n lines from its current position and then place itself just before the first
character of the new line:
forn > 0, move forward past n carriage returns
forn < 0, move backwards pastInl + 1 carriage returns and forward
one character
forn = 0, place CP to just before the first character of the current line
(equivalent to L)
If n is so large that it is attempted to move the CP past the limits of the edit buffer contents,
then the command will result in the CP being placed after the last character of the buffer
(if n is positive), or before the first character of the buffer (if n is negative).

nM move CP in characters

This moves the CP with respect to individual characters.
forn > 0, CP is moved n character positions forward
forn < 0, CP is moved Inl character positions backwards
forn = 0, there is no effect on CP

Z move CP to end of edit buffer
CP ends up just after the last character of the edit buffer.

Example of Commands to the CP

A represents a blank space
(n) represents the implicit line number
represents Carriage Return
In the edit buffer originally is
(1)TABLEA = A #25/56/43 (2)54/\97/,\56'/(3)OO/A\SS/\Q'/"/

cpP
Subsequently:
Command Result
BSS * (1)TABLEA =1 #25/56/\43/ (2)54.97/ 56/(3)00 55" 97/
cpP
3J$$ ()TABLEA =/ #25/56/\43//(2)54."97/ 56,/(3)00 " 55. 97/
o]
-1L$$ (1) TABLE\ =."#25"56/143/ (2)54 " 97.56/(3)00 ' 55 97/
cP
Z$$ ()TABLEA =/ #25"56/\43/ (2)54..97.56/(3)00 " 55 ‘97/
fcp
-15M$$ (1) TABLEA =\ #25/66/143 / (2)54." 97 £,56,(3)00 * 5597/
cP
L$$ (1) TABLEL =/ #25..5643 / (2)54 f.97/:-.5§/(3)oo,‘ 5597/
cpP
2J%% (1) TABLEA =/ #25..56,43/ (2)54.797/.56/(3)00 " 55 97/
fcp
50M$$ (1) TABLEA = /. #25.°.56/,43/ (2)54.97..56/(3)00 ° 557.97/?
cpP

The same effect can be obtained by writing the
commands as a single command string, thus:
B$3J$ — 1LZ — 15ML2J$50M$$

Text Modification Commands

These commands often contain arguments. Each argument is delimited by $. Thus, commands
with arguments end with one $, as shown below, and to initiate execution only one more $
is needed, for a sum of $$.

Cstrings$string,$ search for and replace string

Will cause Text Editor to search forward (only) for (only) the first occurence of stringy and
replace it with string,. If the end of the edit buffer is reached before the string is found, then

STR NOT FOUND

will be displayed and the CP will be placed before the first character of the edit buffer,
allowing the user to search the rest of the buffer for the string by repeating the command. If the
string is found, then the CP is placed just after the last character of string,.

To simply delete a string, the C command can be used with an empty string,, that is, we type

Cstring$ delete string
The CP will be placed at the point of the deletion.

Istring$ insert string

The string is inserted at the current position of the CP. The CP is then moved to just after the
inserted string.

nD delete characters
This command has the following effect

forn > 0, delete n characters to the right of CP
forn < 0, delete Inl characters to the left of CP
forn = 0, ignore command.

The CP is not moved.

nK delete n lines
n lines are deleted from the edit buffer, thus:

forn > 0. delete n lines forward from the CP

forn < 0, deletelnf+1 lines backwards from the CP

forn = 0. delete everything before the CP, until a carriage return is
reached

After command execution, the CP will be placed just after the last deleted character.

Sstring$ search for string

The editor searches forward until the first occurence of the string, and positions CP to just after
this first occurence. If the end of the edit buffer is reached before the string is found, then

STR NOT FOUND

is displayed and CP will be placed just before the first character of the edit buffer, enabling
the rest of the buffer to be searched by a repetition of the command.

Nstring$ search, punch, and read

This command causes Text Editor to search forward in the edit buffer for the string. If the end
of the buffer is rearched before the string is found, then Text Editor reads in the next page

of the input until the buffer is filled again, having punched out the first buffer contents.

This process continues until the first occurence of the string is found. If the end of the input is
reached before then, then

STR NOT FOUND

is displayed. CP is placed just before an empty edit buffer, and all input is transferred to an
output file.

Qstring$ search and read
The Q command is identical to the N command, except that no output punching takes place.

Example of Text Modification Commands

A represents a blank
(n) represents the implicit line number
represents a Carriage Return

In the edit buffer originally is
(1)BEGIN/(Z)AAA&IFAIN.ZMODE: OATHEM&OPEN(INJ);/

CcpP

Subsequently:

Command Result
CTHEMS$THENS$$ (1)BEGIN/(Z)AAAAIFAIN.ZMODE:OQTHEN;\OPEN(INJ);/
CP
CIN,1$$ (1)BEGIN’/(Z)AAAAIFK\IN.ZMODE:OATHENQOPEN()i/
cP
HNN.1$$ (1)BEGIN'/(Z)AAAAIFAIN.ZMODE:OQ\THEN/COPEN(INNJ);/
CP
~-3M$$ (1)BEGIN'/(Q)AAAAIFAIN.ZMODE:OzL\THEN:f,.OPEN(lNNJ);/
CcP
3D$$ (1)BEGIN/(Q)AA/_\AIFAIN.ZMODE:O.r“.THEN."\OPEN(IN);/
cp
B2M$$ (1)BEGIl\y(Z)A/_\AAIFZ\IN.ZMODE:OﬁTHENA’OPEN(IN);/
cpP
1K$$ (1)BEAAAAIFAIN.ZMODE = O/\.THEN"\OPEN(IN);/
fep
0K$$ (NANAANIFAIN.ZMODE =0/ THEN “ OPEN(IN) W/
CP
2M$$ (1)/‘x/\[_\/\IF/\IN.ZMODE:0/\THEN‘/\OPEN(IN);,/
CP
~1K$$ (1)/\AIF/\IN.ZMODE:0/\THEN./\OPEN(IN);/
CP

IBEGIN$$ (1)BEGINAAIFAIN.ZMODE = 0/ THENAOPEN(IN) 3/

Output Commands

F form feed

This command outputs a form feed character to the output tape, along with 10 zeroes before
and after the form feed character, so as to make it visible. These zeroes will be ignored when
the tape is later read. When the output tape is later read, and if it is to be used with a printer,
then the occurence of the form feed character will cause the printer to begin a new page.

nF n inches of leader output

The Editor will output n inches of leader, up to 100 inches. If n is greater than 100, then

100 inches will be output. In the case of paper tape this means that n inches of blank tape will
be punched. OF$$ causes the same effect as F$$. Neither the F nor the nF command has any
effect on the CP.

P punch buffer

The entire edit buffer is punched out, followed by a form feed preceded and followed by
ten zeroes.

nP punch n lines

Starting from the CP, n lines are punched, plus a form feed, as above. If the end of the text in
the buffer is reached before n lines are punched, then punchting is terminated, and with
a form feed.

PW punch buffer, no form feed
The entire edit buffer is punched and no form feed is inserted.

nPW punch n lines, no form feed

Starting from the CP, n lines are punched, but no form feed. If n is too big, punching stops
when the end of text in the edit buffer is reached.

The punch commands have no effect on the CP. In counting the number of lines punched,
the part of the current line after the CP is counted as the first line.

E punch buffer and remaining input

The current contents of the edit buffer plus the remaining input contained in the input device
will be punched out.

R output and read page
One page of the edit buffer is output and the next page is read in. This command is equivalent
to writing PY.

nR coutput and read

The equivalent of a combination of P and Y commands, written n(PY), n pages are output
and n pages are read into the edit buffer. OR and 1R are equivalent.

Special Commands

print number of lines
CP line number
= print number of characters

CTRL insert tabulation

attractive appearance.

Error Messages

BUFFER CAPACITY EXCEEDED DURING
COMMAND INPUT, COMMAND IS
TERMINATED AND BEING EXECUTED
BUFFER IS FULL — CANNOT DO A
BUFFER IS FULL - Y OR A INPUT IS
TERMINATED

PARITY ERROR IN LINE n

STR NOT FOUND

?? comand string

The number of lines that are in the edit buffer will be displayed.
The number of the line the CP is pointing to will be displayed.
The number of characters that are in the edit buffer will be dispayed.

Insert a tabulation c_hara_cter in the output tape, allowing the tape to be shorter by compressing
spaces. The tape will print as though the spaces were present, giving a printout with an

Command string exceeds the capacity of edit
buffer.

Attempting to append a page when the buffer
is full.

During a read, buffer capacity is exceeded.
Part of a page has been read in.

During a read, a parity error occurred in line n.
When examined, the character in error will be
replacedbya /

unsuccessful string search.

Editor cannot understand the command.

It displays the command it cannot understand
plus the commands that follow it in the
command string.

laquinu aul| Jusuns ay} Aejdsiq

18ynq }1pa Ui saul| 4o Jaqwnu Ae|dsiq
1844nqg 11pa Ul s18joeiRYD jO Jaqunu Aedsiq
i8jjnq }ipd JO pua je 40 9de|d

abed e peay

18}jnq HUpa }Jo saulj u Aeidsig

1844nq 1P o sjuauoo Aeidsig

Buiis 10} youess

sabed u ui peas pue sabed u jndinQ

abed 1xau ul peal pue Jayng ips indinQ
indui ybnouiyy Asessadau i ‘Buiys 10) Yyoiess
saui| u ndinQ

Jayng ypa indinQ

paa) wioj snid sauij u indinQ

pas) wioj snid 1ayng Hpa ndinQ

yound pue jndui ybnouyy Aressadau i ‘Buuis 10 yoseas
suoljisod 1a)oeiByd U 40 SAON

uollisod JuaLINd woly sdull U 49 SA0N

aul| Juauno jo bujuuibaq 01 4D aAo

saulj u 8918

u aul| 0} 4o dwnp

uolle|nqe} Jasu|

Bulis pesu|

Japes| JO $ayoul u yound

paa} wJoj e yound

adej 1ndul jo Japulewas pue Jayng indinQ
sJ91oBIBYD U 819|9Q

(suone|ap Buuis 10} pasn os|e) buis yum 11 soejdas pue bulis 104 youess

layng 1p@ jo Buluuibaq e 4o 9de|d
abed e puaddy

Buiueapy

u

>N

$buss
Hu

d
$bunsp
Mdu

Md
du

d
$BunIsN
Wu
qu

1
Mu
ru
[1410
$B6unys|
4u

d

E|
qu
$zbuLsgtbuis)
g

\4
1ewlo4

p4
A
1
S
d
O

s
a

—_——-oYXa 220

<OO0O0wuw

puBWWO)

SpuewW WO IO}PT 1Xa] [ISNIA JO 1SIT 90UdIdJ8Y

