- ' LRKS INGENIGRAKADEMI
' DANY\E/il..EKTF?OAFDELINGEN
) TELETEKNIK
TELEFON (08) 16 05 22
BADEHUSVEJ 1A
9000 AALBOBE O .

DATA GENERAL
CORPORATION

Southboro,

Massachusetts 01772
{617) 485-9100

. PROGRAM
User's Manual

NOVA ASSEMBLER
FOR THE IBM 360, CDC 6600, UNIVAC 1108

ABSTRACT

The Data General Assembler permits assembly of NOVA symbolic
source code into machine object code for Data General's NOVA
line of computers, using card input to the IBM 360, CDC 6600,

or UNIVAC 1108. Output can be in absolute or relocatable
assembly mode for Data General's binary or relocatable loaders.

Covvright (C) Data General Corporation, 1970 093-000034 -00
Frinted in U, S. A,

Data General Corporation is responsible for the
maintenance of the NOVA Assembler for the IBM
360, CDC 6600, and UNIVAC 1108, including cor-
rection of any bugs found in the program as itis
described in this manual. However, users of the
Assembler are solely responéible for writing and
debugging of any modifications to the program

necessary to tailor it to their specific software

configurations,

Chapter 1
Chapter 2

Chapter 3

Chapter 4

AVFFNDIX A
APFLTDIX B
APPENDIX C
APPENDIX D

APPENDIX E

CONTENTS
GENERAL DESCRIPTION
MACHINE REQUIREMENTS
INPUT

Option Card Format
Option Fields
File-Assignment Fields
Option Card Examples

Op-code Deck

Source Code Deck

Examples of Deck Setups
Normal Assembly
Assembly with New Op-codes
IBM 360-0S
CDC 6600
UNIVAC 1108

ouTPUT

Listing
Source Text Listing
Sample Source Text Listing
Cross Reference Table

Type of Assembly and Error List
Sample Cross Reference and Error Listings

Object Code

Program and Subroutine Description

Description of Common Blocks
Control Variable Values
Character Code Conversions

Error Codes

ii

w | %) —
1 1 L
ot - —

1 1 H] [|
[

LW WwWwww wwwwwww
]
IO U W

CHAPTER 1

GENERAL DESCRIPTION

The NOVA/SUPERNOVA relocatable assembler converts symbolic source code into machine
object code for the DATA GENERAL NOVA series mini-computers. The expanded features
of this assembler make it particularly attractive to the user who has access to any medium
or large scale computer system. In addition, his use of an offline assembler with punched
card input frees the user's NOVA/SUPERNOVA from the time-consuming tasks of assembl -
ing and editing paper tape, thus allowing more efficient use of the mini-computer during
program development.

FORTRAN 1V was chosen as the language for the assembler due to its almost universal im-
plementation on commercial computer systems. Use of FORTRAN also allows simpler
modification of the assembler to better suit individual user requirements.

The assembler output can be formatted for either the binary or the relocatable loader de-
pending on the source code and the user requirements. This object code file can then be
copied by a user-written program to a medium suitable for the desired loader.

An additional feature of the assembler is the option card. Through the use of this card the
user may specify an absolute or relocatable assembly mode, request the creation of an ob-
ject code output file, have local symbol blocks added to that file, or specify the file reference
numbers to be assigned for assembler I/O. The most significant feature of this card is the
"Load Op-codes" option. This allows the user the ability to modify permanent op-ccdes
peculiar to his installation, or add permanent symbols such as device codes., So that he
doesn't have to include this option with each assembly, a set of cards is written onto the
system punch file which can be incorporated into the assembler as the permanent op-codes.

The user will find that the utilization of this "offline" assembler with 2]l its added features
will increase the capabilities of his NOVA/SUPERNOVA installation.

1-1

CHAPTER 2

MACHINE REQUIREMENTS

Since the assembler is written in FORTRAN IV, it can be run on virtually any medium or
large scale commercial computer system with minimal modification. The only require -
ments in addition to FORTRAN capability are the input and output files which are described
in Chapter 3. Normally, a load medium such as paper tape is required. Due to the lack
of standardization in paper tape facilities, the user will have to write a program which will
copy the generated object code to the load medium.

The program is supplied on a magnetic tape in 9-track form for the IBM 360/370 and in
7-track forms for the UNIVAC 1108 and the CDC 6600. The tapes may be converted to
cards, etc., using standard utility programs. The 9-track tape is in ORG card format and
has been created using utility program DEBE. The 7-track tapes are in ORG card format
and have been created using an IBM 1401.

Actual job control cards or their equivalent may have to be changed to effect coinpilation as
a function of the machine configuration used.

2-1

CHAPTER 3

INPUT

This section describes input to the assembler. Input consists of the option card, a pos-
sible op-code deck, and the source code to be assembled.

OPTION CARD FORMAT
The first card read by the assembler is the option card, which specifies assembler options.
The option card must be read from file reference No. 5. A blank option card will cause all

default values (given under OPTION FIELDS and FILE -ASSIGNMENT FIELDS) to be assumed.

The option card has the format:

option-fields, field-assignment-fields

where: option-fields consists of one or more assembly options.

file-assignment-fields consists of one or more assignments
of files to file reference numbers.

The data fields of the option card may be given in any order. Each field is separated from
the previous field by a comma. The possible options and files to be assigned are:

{t?fsﬁ}’ LDOPS, LOCLS, NXREF, PTAPE, IN=n, OUT=n, PT=n, SCR=n

where: each n is an integer constant representing the reference number of a file.
‘ ABASM is the default assembly mode option (absolute assembly.)

Option Fields

4

[ABASM \
IRLASM

J

Both absolute and relocatable assemblies are available., If the user wants an absolute as-
sembly of a source code containing no relccation pseudo-op codes, he should specify
ABASM. The object code generated can then be read by the binary loader.

Assembly Mode:

If the user wants a relocatable assembly of source code, he should specify RLASM. The
object code generated can then be read by the relocatable loader.

3-1

Unless otherwise specified, an absolute assembly will be assumed.

Should an absolute assembly be specified when the code contains relocation op-codes, the
code will be assembled as relocatable.

Cross Reference Table: NXREF

The cross reference table is described in the output scction. If NXREF is not specified,
the cross reference table will be output, NXREF causcs suppression of the table,

Object File Output: PTAPE

Normally, the user wishes to load the generated object code into his NOVA or SUPLRNOVA.,
To do this, he must specify the creation of an object file which can then be copied to the
medium suitable fer loading (c.g., paper tape).

No object file will be written if PTAPE is not specificd.

Local Symbol Table: LOCLS

~~

If the uscr wants to utilize the Data General symbolic debugger, he must specify that a
lccal symbol table be included in the object file generated.

If LOCL.S is not specified, no local symbol table will be outnut,

T.oad New Op-codes: LDOPS

‘The set of permanent symbols maintained in the assembler can be replaced by the user. To
do this, he must prepare a deck of new op-codes. These will replace the op~codes supplied

during the execution of the assembler and write a set of DATA cards on the punch file. The

DATA cards may then replace those supplied in the BLOCK DATA subprogram., (The BLOCK
DATA subprogram supplies initial values to COMMON/SYMTB/.)

LDOPS inactivates all supplied op-codes.

If LDOPS is not specified, the assembler assumes that the deck following the option card is
the source deck to be assembled,

Preparation of the op-code deck is described later in this chapter.

3-2

FILE ~ASSIGNMENT FIELDS

Four files may be specified with the file reference numbers to be assigned to them:

IN - ‘ Source code file,
ouT - File on which the listing will be written,
SCR - The scratch file,
PT - . Object code file.

File assignments are of the form:

file=number

All files are used sequentially and can be ecither magnetic tape or direct access.

Default assignments of files are the following:
IN=5, OUT=6, SCR=8, PT=9

Option Card Examples

RLASM, IN=7, OUT=6, PT=12, PTAPE, SCR=3

The example specifies a relocatable assémbly with the source code on file reference No. 7,
the listing written on file reference No. 6, the object code written on file No. 12, and with
file reference No. 3 as the scratch file, The following example produces identical results:

PT=12, RLASM, OUT=6, PTAPE, SCR=3, IN=7

Note that in the example, the local symbol table will not be included in the output and that
the cross reference table will be included with the listing,

If the option card is blank, default options and file assignments will result, A blank option
card is equivalent to:

ABASM, IN=5, OUT=6, SCR=8, PT=9

. 3-3

OP-CODE DECK

The op-code deck has three fields separated by at least one blank column. The op-code deck
is terminated by a blank card. The deck follows the option card when the LDOPS option has
been specified.

The fields of the op-code deck are:

Symbol Field: The symbol must begin with a letter or period and may contain up to 5
characters. The characters permitted are alphanumerics and periods,

Value Field: The symbol value is an octal number which is used in processing the
symbol,

. Type Field: The symbol type is a decimal number that generally determines the way
a symbol will be interpreted and processed by the assembler. Symbols
added by LDOPS are permanent symbols and, as such, will have 32 ad-
ded to their type when the op-code deck is read.

Some examples of possible op-code cards are:

Symbol Value Type
LDA 020000 14
INTA . 061477 10
TTO 11 1

To add a symbol as a device code for a -CR'T display, one might usec:

Since the symbol is absolute, the type is 1.

CRT 31 1

SOURCE CODE DECK

It is assumed that the reader is familiar with the NOVA/SUPERNOVA assembly language as
described in Data General publications 093-000017 (Assembler) and 093 -000040 (Extended
Assembler). The format accepted by this assembler is identical to that described in the
manuals with the following qualifications:

1. The input medium is 80-column punched cards or punch card images on a storage
medium,

'

2, Each punch card contains what is punched on paper tape between two carriage returns.

3. The end of tape (. EOT) pseudo-op has no meaning, since the assembly input is one

. file.

3-4

o DECK SETUP EXAMPLES

NORMAL ASSEMBLY

(.NREL
RLASM, PTAPE, PT=11
‘ ’ SOURCE DECK

OPTION CARD

LOAD NEW OP-CODES

o 14 /

/ i

(__LDA 020000 14 SOURCE DECK
RLASM,LDOPS,PT=11,PTAPE BLANK CARD
__}/ OP-CODE DECK
OPTION CARD
3-5

DECK SETUP FOR IBM-360-0S

/x

(.NREL

/ DELIMETER

e

{_ LDA 020000 14 SOURCE DECK
RLASY, LNOPS ,PTAPE , PT=1] BLANK CARD

//GO.SYSIN DD *

0OP-CODE DECK

OPTION CARD
DD CARD

DECK SETUP FOR CDC-6600

(6789

e

/" NREL ' END OF FILE CARD

vd
{

d

{LDA 0200000 14
. g7 RLASM,LDOPS, PTAVE , PT=1] BLANK CARD
rd

7
89

SOURCE DECK

OP-CODE DECK
OPT10H CARD
END OF RECORD CARD

3-6

DECK SETUP FOR UNIVAC 1108

yd

(.NREL

C

e

{___LDA 020000 14

(RLASM,LDOPS , PTAPE PT=] 1
' XQT ASSEMB,

3-7

SOURCE CARD
BLANK CARD

OP-CODE DECK

OPTION CARD
EXECUTE CARD

CHAPTER 4

OUTPUT

LISTING

Source Text Listing

The listing is created in pass 2 in parallel to the object code output. The format of the list-
ing is similar to that described in Data General publications 093-000017 (Assembler) and
093-000040 (Extended Assembler).

Each source card generates one line in the listing, except for text statements that may
generate up to 40 lines,

.Each line of the listing has the following fields, moving from left to right across the page:

1. Card ordinal number,

2. Any errors found. The field may contain up to 10 characters, each of which
indicates an error found on the card. A list of error codes and their meanings
is given in Appendix E,

3. Storage location. The location field gives the octal core location at which the val-
uc will be loaded by the loader. If the assembly is relocatable, the relocation
symbol is appended; relocation symbols are:

a., Absolute (blank)
b. Page zcro rclocatable (~)
' ¢. Normally relocatable /')

4. Value. The value field has the octal representation of the 16 -bit word which will
be loaded at the storage location. If the value is relocatable, a relocation symbol
is appended. In addition to the relocation symbols defined above, the following
relocation symbols are legal for value:

a. Page zero byte relocatable (=)
b. Normally byte relocatable (")

5. Input card. The source input is reproduced in this field.

A sample source listing is reproduced on the following pag‘e..

. 4-1

Sample Source Text Listing

CARD
O RDINAL
NO.

NOVA/SUPERNOVA ASSEMBLER VERSION 1.01

ERRORS

POOAB~-
pepal-

PoeaT-
oa3717

00000 "
poooL’

20019~
boo11-

#3510
P3511

p3512

VovR6 "

VAL UE

ululatuloe)
P0BR27
02170
PRe113
PBRBT4
PoLB20
VPV~
Pe3510
0Berea "
PRRBGT-
PoVEoA
PBB377
alolalolor)
0oRBOD°
pez2ez27
B24030
o010~
B100B74
pegvll-
G260 6
23510
P24007-
383717
p@3512
10400
o0 6"
ps52027
L)aYul616Y0

INPUT CARD

e

+LOC 27

2% TABL
TABL+17

«LOC .+43
«BLK 20
+ZREL

SUBRT

MAIN

+LOC ++5

o :

+LOC ARGI-PNTR+3782
2 :

« NREL

LDA O, @A

LDA 1,B

+L.OC ARG1+1
ISZ TABL
+LOC PNTRI+Z
LDA ©Us ARGI-PNTR1
-LOC 35198
LDA 1, ARG1
LDA 2, ARG2
«-LOC 3500
ISZ SUBRT+2
«LOC MAIN+*6
STA 2,eA

« END

. Cross Reference Table

Unless an NXREF option is specified, a cross reference table will be produced following the
listing. The cross reference table is an alphabetized list of the symbols defined in the pre-
ceding assembly. The three fields in the table are:

1. Symbol name,

2. Location assigned to the symbol. If relocatable, the appropriate relocation symbol
is included.

3. The card ordinal numbers of cards on which the symbol is referenced.,

Type of Assembly and Error List

Below the cross reference table is a line indicating whether the assembly is absolute or re-
.locata.ble.

The assembler outputs the number of cards on which errors occurred and lists the numbers
of the cards that contained errors.

Sample Cross Reference and Error Listings

Following is the cross reference table and error list for the source text listing shown on the
previous page.

CROSS REFERENCE TABLE

NAME LOC & TYPE CARD ORDINAL
NUMBER
A 000027 15 27 .
ARG1 00000 7- 12 17 20 22
ARG2 008377 23
®: 000030 16
MAIN 000000 * 9 26
PNTR 000000- 12
PNTR1 000001- 19 20
SUBRT 003510 g8 25
1ABL 0oBR7T4 3 4 18

* RELOCATABLE ASSEMBLY *

0 THERE WERE AT LEAST 2 ERRORS IN THIS ASSEMBLY

ERRORS OCCURRED ON CARDS 19 24 '

4-3

OBJECT CODE

The generated object code is written onto an external storage medium whose reference
number is set by the option card. The format of the object code is described in the fol-
lowing Data General publications:

Binary - 093-000017 (Assembler; Appendix F)

" Relocatable - 093-000040 (Extended Assembler; Appendix A)
093-000039 (Relocatable Loader; Appendices A-C)

The output format of this assembler is identical to those referenced except that no error
blocks are output if errors occur in an assembly.

The contents of the object code file are formatted so that they can be easily copied to a
suitable medium, usually paper tape, for loading.

Each word of the file contains one 8 -bit paper tape byte, right adjusted in the word, The
number of words in each record is variable. Thus, to copy the object code file to paper
tape, the program should punch one paper tape byte per word, ignoring end-of-record
marks. For example:

word & 23 24 31 byte w

f record

€ PO IR
.aioo.&\w(\)r-—‘

b\'t@ 1 ’3;"""5 t s e 3

¢ [& : ® ®»00 e o
946 ® o0 & ¢ 0 € ¢ o ®

@ & o0 o0 eo [X o0 ¢
!0.0'.‘D..t.{.v‘00.0....’..60.00.'....O'.0.0'.la
¥ (-] ® o o€ ¢éo []
¥ ¢oe & ¢ ee ® © @

[J @0 © @ o o6 o0
e o e e (4 ¢ () []
$c O o] E X 4 @ o8 ede

T
b'}

4-4

APPENDIX A

PROGRAM AND SUBROUTINE DESCRIPTION

This Appendix briefly describes each subprogram in the assembler and is intended for use in
conjunction with the listing as an aid to understanding the assembler.

PROGRAM MAIN

MAIN calls the card read program (NEXTCD), which reads the source file in pass one and
the scratch file in pass two, and performs a preliminary analysis of the statement type.
MAIN then calls the op-code processing routine (OPPROC), the object file output routine
(PTAPES), and the listing routine (LISTOT.) This loop is executed for each card on both pas-
ses. (A flowchart of MAIN is given at the end of this section.)

SUBROUTINES

ACNUM is called by the op-code processing subroutines to evaluate the accumulater expres -
sion field.

ADDREF creates and maintains a cross reference chain (CROSS) for each symbol referenced
in an assembly. The pointer to the beginning of the chain is stored in the corresponding sym -
bol type word (SYTYPE).

ADDRES calculates the addressing information portion of memory reference instructions.

It evaluates the source card displacement field and the index field. In the absence of the index
field, the appropriate index is determined and incorporated into the object instruction. A
flowchart of ADDRES is given at the end of this Appendix.)

ADDSYM adds symbols, their values, and wypes to the symbol tablc on pass one. On pass
two the table is checked for multiply -defined symbols and phase errors.

ADNBLK adds a word to the object code output block. If the location is not sequential or the
location type (IWTYPE) changes, the current output block is output and a new one started
before the current word is added. ADNBLK also calls the relocation bit routine (RELOCQC)
which enters the relocation bits into the output block.

ADSBLK adds a symbol name in radix 50 code and its value to the symbcl output block being
processed.

ATOM is called by the expression evaluation routine (EXPRES) to get the next atom of an ex-
pression from the card being processed. If the atom is a symbol, it calls the symbol table
lookup routine (LOOKUP) to determine its value and type. A number is evaluated (GETNUM)
and returned. If the atom is an operator, its mode is determined and returned.

BLOCK is called by OPPROC and processes .BLK pseudo-ops.. BLOCK increments the
location counter by the value of the expression field. A label, if any, is added to the symbol
table (ADDSYM).

CAREND is called when all required op-code fields have been processed, If anything but
blanks or a comment field are encountered, an error is flagged.

COMPCT is called at the beginning of each assembly to clean all non-permanent symbols
from the symbol table.

CONSS converts the internal code, symbol name character string (ILNX) into a single-word
symbol name for entry in the symbol table.

CONVRT converts the source card characters from the machine internal code to the assem-~
bler internal code. *

CONVS0 is called to convert a symbol table name (SYNAME) back to machine internal code
for printing in the cross reference table.

CGX converts a symbol table name (SYNAME) to a radix 50 code name for output in symbol
kic :is.

DisvICE is called by op-code processing routines to evaluate the device field of I/O op-codes.

ENDASM is called by MAIN at the end of pass two. The subroutine outputs any blocks in prog-
ro..s and outputs any symbol blocks required and start blocks. It then flushes the buffer,
Tie cross reference listing routine (XREF) is called and the error tables are listed,

-.. 7 is called by OPPROC and processes .END, .EOT, and . XPNG statements. If an . END
- encountered or generated as the first card of an assembly, the stop routine (FINASM)
1 .ulied which contains the normal stop statement.

LUV is called by OPPROC to process equivalence expressions. The expression field is
sve. “twed (EXPRESS), and the value is entered in the symbol table with the label.

mb TR sets the error flag (ERRFLG) true and enters the error identification symbol into
the w.ror listing array (NCERS).

.+ L {evaluates the number in the character string array (LNX) in the base defined by the
rauix,

EXPRT 5 evaluates expressions by evaluating each individual atom (ATOM) and performing the
indicoted operations (IOPER). EXPRES flags as an error any operator or operand out of
scyuence, All expressions with errors are evaluated as 0. All operations are examined to
muke suve the final result has a valid amount of relocation. (A flow chart is included at the
ane of this Appendix,)*

® A2

EXTERNL is called to process .ENT, . EXTN, .EXTD statements.

FINASM is called by ENDASM and contains the normal stop for the assembler,

FIND determines which of Uac options availablec is being processed on the option card.
FPFMT converts {loating point expressions into NOVA /SUPERNOV A floating point format, *

GETDEC is called to evaluate decimal rumbers by calling the fetch number string routine
(GETNS) and the number evaluation routine ' VALN) with a radix of 10.

GETNUM evaluates numbers in expressions. The routine determines which type is being
encountered (i. e., single precision, double precision f1 oating point) and the applicable base.,
The number is cvaluated and put in the proper format.

. GETSTR transfers an alphanumeric plus period characier st ring from the card array to the
string array (1.NX), skipping preceding blanks and sctting no-load and indirect addressing
flags if encountered. Trailing blanks and transparent characters are skipped, with no-load
and indirect addressing flags sct if encountered.

GETSYM calls GETSTR to load a character string into the string array. If the first nontrans-
parent character is alphabetic or a period, the symbol is converted to a single word value
(CONSS) and the column pointer (ICH) is advanced. If the first character is not alphabetic

or a period, the column pointer is returned to its original position,

HEADR puts the heading on the top of the listing page.

IATNOL checks the column indicated by the column pointer (ICH) no-load, or indirect ad-
dressing symbol. The ne-load variable (INOLOD) is sct to 8 if # is found, and indirec
addressing variable INDRCT is set to 65536 if & is found. In both cases ICH is incremented
by one and checks the next character until neither is found,at which point it returns.

.IASC[I converts internal code to ASCIL. It is used in processing text statements,

IFS is called by OPPROC and processes conditional assembly statements . IFE, , IFN, and
ENDC. The routine sets and resets the "don't assemble” flag AKPFLG.

IOPEER performs the arithmetic and Jogical operations-roquired in evaluating expressions,
[PARTY returns IPARTY=1 if the number of bits on is odd and IPARTY=0 if it is cven,
LEADR outputs the requested number of blank frames.

LISTOT outputs the listing. .

A-3

LOAD reads a new set of permanent symbols into the symbol table when LDOPS is speci-
fied on the option card. The routine also punches a new set of data cards for the BLOCK
DATA subroutine,

LOCATS processes . LOC, .NREL, and . ZREL pseudo-ops, sets the assembly mode in-
dicator (IMODE), and sets the location counters (LOCS) if required.

LOOKUP looks the symbol up in the symbol table and returns the type and value. If the
symbol is an ALC type instruction, the symbol is checked for modifiers which are then
incorporated into the value.

LOSK performs binary search of the symbol table for the required symbol. If the symbol
is found, the array index is returned; if not, the position in the array where it should be is
returned,

NEXTCD reads the next card from the appropriate file into the card array (LN) and converts
the characters to internal code. The end-of-file flag is set if an end-file is encountered, A
read error stops the assembler, On pass-1 the input file is read; on pass-2 the scratch file
is read,

NEXTNM gets the next symbol from the source card. It is called in processing . EXTD,
. ENT, and .EXTN statements,

NONOLD is called to see if the no load symbol (#) has been encountered illegally.

NOTAT is called to see if the indirect addressing symbol (@) has been encountered illegally.

GCTL converts a number to an array which when printed (FORMAT (611)) gives the value
~f “he number in octal.

C:DEF is called by OPPROC and processes . DALC, .DIAC, .DIO, . DIOA, .DMR, .DMRA,
ard DUSR pseudo-ops by simulating the processing of the appropriate instruction type.

C°1.OOK is called to look up a symbol and sct the correct value into ITYPE,

OPFOC is called by the MAIN program to process the statement op-codes. The op-code has
alrezcy heen looked up (OPLOOK) and its type set. Based on this type the appropriate in-
struction processing routine is called.

OUTLOS adds the local symbol blocks to the intermediate buffer.

OUTNEX adds the normal external blocks to the intermediate buffer.

OUJTOLD adds absolute object code blocks to the intermediate buffer. The routine also

erters the word count and the checksum into the buffer. QUTOLD contains the ENTRY OUT -
LX.

PNBLK transfers the output from the intermediate buffer to the output buffer by calling the
object code output routine (PNCH),

PNCH breaks the low order 16 bits of the input word into two 8 bit bytes, right adjusted in
the object code buffer. The routine blocks the object code into 40 word records. PNCH
contains the ENTRY FLUSH which flushes the buffer.

PTAPES is called by the MAIN program to enter the processed object code into the inter -
mediate buffer.

PTAPET outputs a title block to the intermediate buffer then outputs the block to the object
code buffer (PUTBLK).,

PUTBLK calculates the checksum and word count of relocatable object code blocks, The
routine calls the block output subroutine PNBLK to enter the block into the object code buf-

. fer,

PUTOLD adds a word of absolute object code to the intermediate buffer.

RADX is called by OPPROC and processes . RDX pscudo-op code statements, evaluating
the expression field and entering this value in the assembly number evaluation base
(IRADFX).

RANGE determines if an expression value is within limits set by its mode (single precision,
double precision, floating point,).

RELOC adds the relocation bits of an object code word to the intermediate buffer in the
position indicated by the relocation bit pointers (IRELO, NRELO).

SETUP interprets the opiion card and sets the fla g and file reference numbers accordingly.

‘SKPBLK steps through blank or transparent characters in the input array and returns with
ICH set to the column in which it finds the first non-transparent character. IATNOL is
called for each column to check for a no-load or indirect addressing symbol,

STRBLK initializes a new relocatable output block by zeroing the intermediate buffer, re-
setting the word count, and setting the first word address and the relocation bit pointers.

STROLD initializes absolute output blocks by resctting the word count and zeroing the
intermediate buffer,

TEXTS is called by OPPROX to process , TXT, . TXTO, . TXTE, . TXTF, and . TXTM
pseudo-ops. The routine calls the ASCII conversion routine (IASCII) and assigns two
characters per word,cach character right adjusted in 8 bits with appropriate parity.

. A-5

TITLE is called by OPPROC to process . TITL pseudo-ops. The routine sets the common
title name variable (ITITLE).

TOP3 returns the low order 16 bits of the name variable (NAME).

TYPEI1 is called by OPPROX and OPDEF to process arithmetic and logical instructions.
The fields acceptable are (label) (opcode) (conditional).

TYPE2 is called by OPPROC and OPDEF to process instructions with ACs. The fields ac-
ceptable are (label) (opcode) (AC).

TYPES is called by OPPROC and OPDEF to process input/output instructions. The fields
acceptable are (label) (opcode) (device code).

‘TYPE4 is called by OPPROC and OPDEF to process input/output with AC instructions. The
ficlds acceptable are (label) (opcode) (AC) (device code).

TYPLES is called by OPPROC and OPDEF to process memory reference instructions. The
acceptable fields are (label) (opcode) (displacement or address) (index).

TYPLO is called by OPPROC and OPDET to process memory reference instructions with an
accumulator. The acceptable fields are (label) (opcode) (AC) (displacement or address)

(index).

TYPE7 is called by OPPROC and OPDEF to process a user instruction. The acceptable
ficlds are (label) (opcode).

XREFS is called by ENDASM to list the cross reference table,
‘L‘ITHT shifts right with zero fill the contents of a word by the number of bits indicated. *
LLEFT shifts left with zero fill the contents of a word by the number of bits indicated.

IAND performs the logical "and" of two words. *

IC | performs the logical "or" of two words. *

* These routines must be modified when changing from IBM to CDC or UNIVAC.,

rhe symbol table in the assembler has room for 1000 symbols. The user may want to
make this table either larger or smaller. Modification has two parts:

1. The labeled common SYMTB must be changed, e. g., from

COMMON/SYMTB/SYNAME (1000), SYVALU (1000) SYTYPE (1000), NSYM
to

COMMON/SYMTB/SYNAME (200), SYVALU (200) SYTYPE (200), NSYM

Note: The common specification must be changed in each subroutine having
a COMMON/SYMTB/

2. Change the NSYMX=1000 statement in the main program to the new
‘ specification.

The cross reference table may be altered similiarly by changing the specification of the
variable CROSS in blank COMMON and changing the value of NREFX, e. e

{rom: CROSS (1000, 3) and
NREFX=1000
to CROSS (200, 3) and

NREFX=200

Note: The second index in CROSS has a value of 3 which camnnot be changed.

. FLOWCHART OF THE MAIN PROGRAM

" INITIALIZE PROGRAM

VARIABLES
I

LOAD OP--CODES AND

READ OPTION CARD
I- _ TERMINATE THIS
b

SET ASSEXBLY AND ASSEMBLY

PASS 1 VARIABLES

: T

SET PASS 2
VARIABLES INIT,
OBJECT OUTPUT

[.SET_PASS VARIABLES]

[SET LOCATION COUNTER |

[READ NEXT CARD]

. [LGET LABEL]

(=)
EQUALS
STATEMEN

SYHBOL

5 IS
\\ LABFL
i T
‘ (P-CODE="=""] [GET OP~CODL] [OP-CODE LABLL |
T | - T |]
! b
LOOX UP GP=CODE
‘ IN SYMBOL TABLE

; { PROCESS 0P=CODE |
I

[WRITE LISTiNg }

[WRITE OBJECT TILE |

FLOWCHART OF SUDROULTNE ADDRES

@ . | (fﬁ ENTER :)

—— I
[EVALUATE HeXT EXPRESSLION |

SET DLSI',=0 DISP.
AND 1NDEX TO LEGITIMATE
PAGE ZERO

L

F

SET DISP.=0
AND INDEX TO
PAGE ZERO

ERROR

OR NOT T T
SINGLE :>——~{:::>
PECISION
| _
LOGICALLY OR THE l
ADDRESSING INFORMATION |
INTO THE IFSTRUCTION 1

rd
‘ RETURN)

OF DATA
03 CARD

. EVALUATE THE NEXT
EXPRESSICN FOR THE
| INDEX

9

EXPPESS LON
=EX1. DISP,

FFIRST
EXPRESSTON

LXT. DISP.

EXPRLESSTON
NOT ABS.
NREL ZREL .

[SET ADOLEGS TYPE

e s v e

JLLECAL
ADDRESSING

EXPRESSION
ABSOLUTL,

EXP. TYPEN,

. ‘ [SET IRDLX FOI vorh |
= ? I o .
\29?&5?; :> ZERO OR LOCATION
N COUNTIR RELATIVE

CURRENT
HODBE HOT
e e o |

ADSOLUTE AND /DDN Y v
) 18 NOT 1% PAi:////)
ADDR. EXP. ~l

SIT DIGP. =
ZERO
‘l. 1.0C, Cuth.

_FLOWCHART OF SUBROUTINE EXPRES

C_ ENTE{{ :)

INITIALIZE COUNTERS
AND FLAGS

[
ADVANCE COLUIMDY POINTER
TO FIRST NONTRANSPARENT
CHARACTER OF EXPRESSION

c : ‘]
O [GET NEXT ATOM |

INCREMENT ATOM COUNTLR
AND) SET LAST ATOM TYPEL

OPERATOR LAST OPERAND n
7 _ -4 B
' ATOn AN

OPERATOR
OPERAND
SEQULENCE
CORRECT

' | .
' | SET SEQULHCE TFLAG |
l

FLOWCUART OF SUBROUTINE EXPRES (Con't)

INCREHENT OPERAND COUNTER
AND SET MAXIMWUA MODE AND TYPE
SLT AMOUNT AND TYPE OF

RELOCATION IN LAST ATOM

+- AST */
. opﬁiijga,
&!

CALCULATE AMOUNT
OF RLSIDUAL
RELOCATION

OPERATOR
IS
yn

EXPRESSION
AND LAST
OPERAND ARE
ABS.

ERROT |

OF RELOC

PRECISE

AMT,

1S

////T LRRO}

T

2
\

EXP
IS ABS
AND OPERATOR N\, F
1S //fT
ll.’"" /

s

-

©

A-11

FLOWCHART OF SUBROUTINE EXPRES

(Con't)

PREVIOUS
ERROR

ABS,
OR MAX.

INST. OR
REL TYPE OF -~

WORSE

7 MAX.
MODE SINGL
PRECILSION

E

EXP. 1S :
BOTH NORM AND\. T

ZERO
RELOC

g

TYPE AND MODE

AMOUNT OF
RELOCATION
VALID

OPERAND

EXT.
DISP

F.

" [LSET MODE ARD TYPE |

(:f PFTURf hj)
K N

VALUE=0
TYPE=ABS
MODE=SINGLE PRECISION

‘<:7 RETURN :)

NREF

ICH

NLNX

IMODE

LOCCNT

LOCNXT

ICORE

IRADIX

LABEL

INDRCT

NLINE

IPAGE

NCER

NEREF

IOCLAS

APPENDIX B

DESCRIPTION OF COMMON BLOCKS

BLANK COMMON
Cross reference table pointer.

ICH points to the next column on the card being
processed,

NLNX indicates the number of characters transferred
from the card array (LN) to the symbol array (LNX).

IMODE indicates the mode (Absolute, Normal Relocatable,
Page Zero Relocatable) of the expression being

processed.

The value of the current location counter in the
mode being processed.

The value to which LOCCN'T is set when a new card
is begun.

The number of words of core in the NOVA/SUPERNOVA.

The radix of integers to be evaluated by the
assembler, '

If a statement has a label it is stored in LABEL,
When a @ is encountered, INDRCT is set to 65536.
The line of output last printed on the output page.
The page of output currently being printed.

The number of errors found on the card being
processed so far.

Number of cards having errors,

Indicates the format of the output to be used for
the card being processed.

B-1

ICARD

NWDS

IWTYPE

IRELO

NRELO

IWDCT

IADL

INOLOD

ITITLE

RELASM

XREF

PASS1

SKPFLG

IFMODE

EOFLG

TXTFLG

ERRFLG

ANYPCH

CODE

Source card counter,
Number of words generated by the instruction processed,
The type of relocation of the word being processed.

Shift counter used in generating the relocation bits
in output blocks.

Counts the number of relocation bit words generated.
Output block word counter.

A location counter used to check for consecutively
stored words,

INOLOD is set to 8 if a # (no load) character is
encountered.

Hold the program title generated by the . TITL
pseudo ~op.

Set true for relative assemblies and false for
absolute assemblies.

Set true if the cross reference table is to be output,

Fh

Set true on the first pass of the assembler,
Set by .IFE, .IFN, and . ENDC statements.

Used to test for illegal . IFE, .IFN, and . ENDC
statements,

Set by an END OF FILE on the source file,
Indicates continuation of text. (not used)

Set true when an error is found on a card.
Used for header and trailer blank paper tape.

Set true by the first non - (. EXT, .ENT, .EXTN,
.EXTD, .TITL.) statement.

B-2

LOCALS -- Indicates whether a local symbol block is to be
punched.

CROSS -- Cross reference table.

LN -- Source card array,

LNX -- Symbol array,

ISOUR -- Source card array used for listing,

NEREFS -- Error, card number array.

NCERS -- NCERS holds the error symbols for a source card.
.IWORD -~ IWORD holds the object code to be formatted and put

into the buffer,
IBL - IBL is the intermediate output buffer,

LOCS -- LOCS holds the absolute, normal relocatable and page zero
locatable location counters,

COMMON/CDS/
INFILE -- Source file,
IOFILE ~ -- Output listing print file.
‘lPFILE -- Paper tape output file.
ISCR -- Scratch file.
ICLAS -- Holds the relocation symbols.

The rest of the common has the values of certain characters in the assembler internal code.

COMMON/LIMITS/
NSYMX -- Maximunm number of symbols,
NREFX -- Maximum number of cross reference entries,

o B-3

NLINEX
NCEREX

NEREFX

SYNAME

SYTYPE

SYVALU

‘SYM

Maximum number of lines on a page.
Maximum number of errors per card that can be listed.

Maximum number of card numbers that can be output
locating errors,

COMMON/SYMTB/
Symbol name table,
Symbol type table,

Symbol value table,

Numnber of symbols in the symbol table.

APPENDIX C

CONTROL VARIABLE VALUES

SYMBOL TYPE
Absolute
Normally relocatable
Page zero relocatable
Normal byte relocatable
Page zero byte relocatable
External displacement
UNUSED
Expressions

Arithmetic and logical instructions (ADD, COM, etc.)

Instructions that use one accumulator (READS, INTA, etc.)

I1/0 instructions that may have a device code and no accumulator
(NIO, HALT. etc.)

1/0 instructions that have an accumulator and a device code
(DIB, INTA, etc.)

Memory reference instructions which use a displacement and may
use an address register (JMP, DS7Z, etc.)

Memory reference instruction which uses an accumulator, dis-
placement, and may use an addressing register (LDA, STA, etc.)

USER instructions.

Arithmetic and logical instruction modifiers.

17,
18.
19.
20.
21,
22,
23,
Q.-
25.
26.

27.

UNUSED

Pseudo ops. (. LOC, .DIO, etc,)
Normal external whose last reference was absolute,
Normal external whose last reference was normally relocatable,

Normal external whose last reference was page zero relocatable,

All permanent symbols have the above values plus 32,

SYMBOL MCDE

Mode can refer to an entire expression or to an individual atom.

Single precision fixed pt.
Double precision fixed pt,
Floating point.

+ (Addition)

- (Subtraction)

* (Multiplication)

/ (Division)

& (Logical and)

. (Logical or)

IWTYPE
IWTYPE is the relocation type of words to be loaded, -
Absolute.
Normally relocatable.
Page zero rclocatable.
Normally byte relocatable.
Page zero byte relocatable.

External displacement.

IOCLAS

IOCLAS is the output format to be used in the listing for this instructicn.

Address and instruction (eg: LDA)
Address and instruction (eg: JSR)
Value (eg: . LOC, .BLK)

(eg: . ENT, . EXTD)

All formats list any errors and the card itself,

g~9 qL ‘ 19 £9 =
S+9=0 19 79 s < 6-0 61 06 92 PA
g4 =21 2y 09 s > 8-0 ! 68 ¥4 A
$~C 7 g uS : L0 ! 88 ve X
e--9=TT- 715 65 6Y : 90 93 (8 €2 M
g-€ al S¢ 8" # $=0 Gal 98 A A
8-y oL %9 LYy B} 7=0 7 68 12 n
wlh A7l .NM Gc " MlC € qm 0¢ L
g -£=0 49 Ly oy) Z~0 rAct €8 6T S
- oy 43 Yy 2 6-T1 6d 78 81 P
g~¢-1T VS €€ €n i 8-~T% 8a 18 LT o)
Zr 0S g€ Y 3 L-TT L 08 91 d
-0 19 LY 1Y / 9-Tf 9 6L ST 0
S-4--11 26 ¢y oY 3% G~TT < 8t Va1 N
1§ 39 Sn 133 - y-11 v it €1 I8
8=9-C 1 ot £y YE + -1 €d 9L Zt 1
6 6 L5 L€ 6 7-110 Zd L GL It N
3 sl 46 g€ 3 T~11 (4 YL 0T r
o’ /.1 5S 49 L 6-2I 6 €L 6 1 "
9 gl v6 e 9 REYAS 82 A 8 i a
S G.i £s €€ S L~21 L0 1L L 9
Vi y.i ¢S A Vi 9-¢1 90 0L 9 d
£ €4 16 1€ € S-21 (o0) 69 S ¢
ré 4 (0} o€ [4 V-21 %0 89 Vi a
1 Ta 6Y 6¢ 1 YAl €0 L9 € 9
G 0. 8Y 3 0 YA 20 99 rA 4
g-¢-Z1 qvy 9% LT) 1-21 10 <9 1 v
ST DI S CIDHA) = (v oday S EHIvEViD T T T s T = (viloud - CAIond) = CIVRIDEA) = darlovuvid
HOXOd =-1IXH) 1108V e{e(ole HONOd -IXdi) 1108V 100D
620 21a04d TVIAILLNT 620 210093 Y NUAINT
RO War U (5SS el 1l YA ILIISSY
SHACY

sapo) xa10eIey) NGI

CDC Character Codes

CODRES
CDC
DATA ~ ASSEMBLER CONSQOLE IDt
GENERAL INTERNAL cne DISPLAY 029 IBM
ASSEMBLER CODE ASCII PRINT CODE PUNCH 029
CHARACTER (DECIMAL) (DECIMAL) CHARACTER (DECTMAL) SET ° CHARACTER
A 1 65 ' A 1 12-1 A
B 2 66 B 2 12-2 B
[c 3 67 C 3 12-3 c
D 4 68 D 4 12-4 D
E 5 69 E 5 12-5 E
F 6 70 F 6 12-6 ¥
G 7 R G 7 12-7 o
H 8 72 1 8 12-8 1
I 9 73 I 9 12-9 I
J 10 74 J 10 11-1 J
K 11 75 K 11 11-2 K
L 12 76 L 12 11-2 L
13 3 77 : M 13 11-4 Mo
N 14 78 N 14 11-5 N
0 15 79 0 15 11-6 0
P 16 80 P 16 11-7 P
Q 17 81 Q 17 . 11-8 Q
R 18 82 R 18 11~9 R
S 19 83 S 19 0-2 s
T 20 84 | T 20, 0-3 T
v 21 85 U 21 0-4 U
v 22 86 1 22 0-5 \
W 23 87 W 23 0-6 W ,
X 24 88 X 24 0-7
Y 25 89 Y 25 0-8 Y
z 26 90 z 26 0-9

CDC Character Codes (Continued)

CONES

Sr—

che
DATA ASSEIBLER CONGOLE In
CENERAL INTERS CHe DISPLAY 029 B
ASSEMBLER CODE ASCIY PRINT CODE PLCH 029
CHARACTLR (DECTMAL) (DECTMAL) CHARACTER (DECIMAL) SLT CUARACTER

27
28
29
30
31
32
33

/

None
Hone

No Punch
’

bo(B)

a

‘ UNIVAC Character Codes

CODES

DATA ASSTMBLER UNIVAC UNIVAC I
GENERAL LNTERNAL 1004 1108 N29 LBM
ASSE{BLER] CODE ASCII PRINT INTERNAL PINCH 229

CHARACTER (DECI™AL) (DECIMAL) CHARACTER .CODE SET CHARACTER

A 1 65 A 6 12-1 © A
B 2 66 B 7 12-2 B
c 3 67 C 8 12-3 C
D 4 63 D 9 12-4 D
‘E 5 69 E 10 12~5 E
F 6 70 F 11 12-6 F
G 7 71 G 12 12-7 G
H 8 72)3 13 12-8 H
I 9 73 I 14 12-9 I
J 10 74 : J 15 11-1 T
K 11 75 K 16 11-2 K
L 12 76 L 17 11-3 L
M 13 77 M 18 11-4 M
14 78 N 19 11-5 N
15 79 0 20 11-56 0

16 80 P 21 11-7

17 81 Q 22 11-8
R 18 82 R 23 11-9 R
S 19 83 S 24 0-2 S
T 20 84 T 25 0-3 T
U 21 85 U 26 0-4 U

v 22 86 v 27 0-5
W 23 87 W 28 0~6 v
24 88 X 29 0-7 X

Y 25 89 Y 30 0-8

26 90 z 31 0-9

CDC Character Codes (Continued)

CONES
ChC
DATA ASSENIDLER CONGOLE HES

CENERAL INTEDRNAL coc DISPLAY 029 In4
ASSEMELER CODIL ASCII PRINT CODE PUICH 029

CHARACTER (DECIMAL) (DIECL‘IAL) CHARACTER (DECIMAL) SLET CUANACTER
. 27 46 . 47 12-3-8 .
0 28 48 0 27 0 0
1 29 49 1 28 1 1
o 30 50 2 29 2 2
3 31 51 3 30 3 3
4 32 52 4 31 4 4
5 33 53 5 32 5 5
6 34 54 6 33 6 6
7 35 55 7 34 7 7
8 36 56 8 35 8 8
9 37 57 9 36 9 9
+ 38 43 + 37 12 &
- 39 45 ~ 38 11 -
40 42 39 11-4-8
41 47 / 40 0-1 Y

42 38 < 53 12-0 None

43 33 v 54 11-0 None

Blank ‘ 44 32 Blank 45 —eae No Punch

. 45 44 , 46 8-3 ;

" 46 34 < 50 8-5 Yo
@ 47 64 # 51 84 @
48 35 : 52 8~2 :

; 49 59 ; 63 12-8-7)
50 58 $ 43 11-3-8 $
< 51 60 (41 0-4~8 %
> 52 62) 42 12~4~8 <
= 63 61 = 44 3-8 #

UNIVAC Character Codes

cones
DATA ASSEBLER UNTVAC UNIVAC 31
JENERAL INTERNAL 1004 1108 N29 1BM
ASSEIBLER CODE ASCII PRINT INTERNAL PIN_CH 029
CUARACTER - (DECI*AL) (DECIMAL) CUARACTER (}v.’)DE SET CHARACTER
A 1 65 A 6 12~1 © A
B 2 66 B 7 12-2 B
C 3 67 c 8 12-3 C
D 4 68 D 9 12-4 D
. E 5 69 E 10 12-5 E
F 6 70 r 11 12-6 F
G 7 71 G 12 12-7 G
H 8 72 1 13 12-8 H
I 9 73 14 12-9 I
10 74 : J 15 11-1
K 11 75 16 11-2 K
12 76 17 11-3 L
M - 13 77 M 18 11-4 Y
N 14 | 78 N 19 11-5 N
15 79 0 20 11~6 0
P 16 80 P 21 11-7 P
.Q 17 81 Q 22 11-8 Q
R 18 82 R 23 11-9 R
S . 19 83 S 24 0-2
T 20 84 T 25 0-3
U 21 85 U 26 0-4
v 22 86 v 27 0-5
W 23 87 W 28 0~6 1t
X 24 88 X 29 0-7 3
Y 25 89 Y 30 0-38 Y
26 90 31 0-9

UNIVAC Character Codes (Continued)

DATA ASSEHDLER UJIVAC UHIVAC I
CENERAL INTERNAL 1004 1103 029 Ine
ASSLHBLER CODE ASCII RIN INTETCIAL PULCI n29
CIARACTER (DECIMAL) (RECTIAL) CIIATNACTER CODE SET CHARACTER
. 27 46 . 61 12-3-3 .
0 28 45 0 48 0 0
1 29 49 1 49 1]
.2 30 50 2 50 2 2
3 31 51 3 51 3 3
4 32 52 4 52 4 4
5 33 53 5 53 5 5
6 34 54 6 5¢4 6 6
7 35 55 7 55 7 7
8 36 56 8 56 8 8
9 37 57 9 57 9 9
+ 38 43 + 34 12 &
- 39 45 - 33 11 -
‘ 40 42 ‘ 40 11-4=3
41 47 / 60 0-1 /
@- 42 38 44 12-0 None
43 33 ! 45 11-0 None
44 32 Blank 5 - — No Punch
, : 45 b4 , 46 3-3 ,
" 46 34 : 43 8-5 YD
@ 47 64 ' 58 84 Q
i 43 35 & 33 8-2 :
; 49 59 # 3 12-8-7 [(v
: 50 58 $ 39 11-3~8 $
< 51 60 (41 0-4-3 VA '
> 52 62) 32 12-4-8 <
= 63 61 = 36 3-8 #

APPENDIX E

ERROR CODES

ERROR TYPE

EXAMPL_ES AND COMMENTS

Address Error

LDA
ISZ

0, 400
.+317

;ADDRESS OUTSIDE RANGE., RANGE
;sMAY BE FOR ABSOLUTE ZERO RE-
;JLOCATABLE, OR NORMAL RELOCATABLE.,

Bad Character

LASL: LDA 1,23 ;$ NOT PERMITTED,

Colon Error

A+2: ;NG EXPRESSION PERMITTED BEFORE

;COLON,

Radix Error

.RDX 12 ;RADIX 12 NOT PERMITTED.

Equal Error

REG= 3+B ;B IS UNDEFINED,.

Format Error

ADD 2 ;NEED AT LEAST TWO OPERANDS.

Symbol Dec-
laration
Error

. EXTN S5 ;95 NOT DEFINED AS . ENT IN SOME

;OTHER PROGRAM.

Input Error

;PARITY CHECKED ON INPUT AND
;SOME CHARACTER WAS IN ERROR.

Conditional
Assembly
Error

;o IFE/. IFN PSEUDO-OP EXPRESSION

;NOT EVALUABLE IN PASS 1 OR

;. IFE/. IFN NESTED WITH PREVIOUS

;CONDITION ASSEMBLY STATEMENT,

.LOC Error

;BIT 0 SET.

Multiply -
defined
Symbol

;SYMBOL MAY APPEAR ONLY ONCE IN
;LABEL FIELD.

Number Error

;NO LETTERS PERMITTED IN A NUMBER.

Field Over-
flow

;NOC REGISTER 4,

ERROR TYPE

EXAMPLES AND COMMENTS

Phase Error

;VALUE OF A SYMBOL IN PASS 1 DIF-
;FERS FROM THAT OF PASS 2.

Questionable
Line

Expression
Error

;UNCANCELED MIX OF PAGE ZERO AND
;NREL SYMBOLS.

Symbol Table
Overflow

sMEMORY CAPACITY FOR A GIVEN
sMACHINE HAS BEEN REACHED,

Error in Ta-
ble Pseudo-op

14+, XPNG ;NO EXPRESSION BEFORE A TABLE
;PSEUDO-0P,

Undefined
Symbol

;A SYMBOL IN OPERAND FIELD WAS
;NEVER DEFINED,

Text Exror

LET:"C3 ;ONLY ONE CHARACTER IN " ATOM.
3+. TXT ;PSEUDO-OP,

Illegal Sym -
bol in
Expression

STA 2,6D+3 ;DOUBLE PRECISION NO, USED IN
; EXPRESSION.

INDEX
ABASM option 3-1 ERROR
code meanings E-1, E-2
ABSOLUTE assembly codes in listing 4-1
loading output 1-1 list with card numbers 4-3
option 3-1
FILE
ASCII code App. D assignment 3-3
IN 3-1, 3-3
ASSEMBLER of option card 3-1,
common blocks App. B ouT 3-1, 3-3
control variable values App. C PT 3-1, 3-3
programs of App. A SCR 3-1, 3-3
relation to other DGC
. assemblers 3-5 FLOWCHART
written in FORTRAN 1-1 ADDRES A-9
EXPRES A-10
ASSEMBLY MAIN A-8
card input deck Chapt. 3
features 1-1 FORTRAN 1-1
language 3-4
tape of 2-1 IBM 360-0S
conversion codes D-1
CDC 6600 input deck 3-6
assembler routine modification A-6 program tape for 2-1
conversion codes D-2, D-3
input deck for 3-6 IN file 3-1, 3-3
program tape 2-1
INPUT
CODE conversion CDC 6600 deck 3-6
. CDC D-2, D-3 file 3-3
IBM D-1 IBM 360-0S deck 3-6
punches App. D medium for 3-4
UNIVAC D-4, D-5 normal assembly deck 3-4, 3-5
op-code change aeck 3-4, 3-5
COMMON blocks App. B option cards for 3-1
source code deck 3-4
CONTROL variables App. B UNIVAC 1108 deck 3-7
CROSS reference table JOB control cards 2-1
changing size of A-7
format 4-3 LDOPS option 3-2
suppression of 3-2
.EOT pseudo-op 3-4 '
I-1

LISTING
errors 4-3
source text 4-1, 4-2
symbol cross reference 4-3

LOADING output 4-4
LOCAL symbol table 3-2
LOCLS option 3-2
MACHINE requirements 2-1
NXREF option 3-2

@:ziEcT code
copy for loading 2-1, 4-4
file 3-3
format 4-4
suppression of 3-2

OP-CODES
deck format 3-4
modification of 1-1, 3-2

OPTION card
default 3-1, 3-3
examples 3-3
file for 3-1
file-assignment field 3-3
format 3-1

. general content 1-1

‘ option field 3-1

OPTIONS
ABASM 3-1
LDOPS 3-2
LOCLS 3-2
NXREF 3-2
PTAPE 3-2
RLASM 3-1

OUT file 3-1, 3-3

I-2

OUTPUT
listing
errors 4-1, 4-3
file 3-3
source text 4-1, 4-2
symbol cross reference 4-3
object code
copying 2-1, 4-4
file for 3-3

format 4-4
PAPER tape output 4-4
PROGRAM units of assembler App. A
PT file 3-1, 3-3
PTAPE option 3-2
PUNCH codes App. D
RELOCATABLE assembly
loading output 1-1
option 3-1
RELOCATION symbols 4-1
RLASM option 3-1
SCR (scratch) file 3-1, 3-3
SOURCE code
deck 3-4, 3-5
text listing 4-1, 4-2
SUBROUTINES of assembler App. A
SYMBOL
cross reference table 4-3
local symbol table 3-2
permanent 3-2

replacement of permanent 3-2
table size modification A-7

@ uvvvac 1108
assembler routine modifications A-6
conversion codes D-4, D-5
input deck 3-7
program tape for 2-1

[-3

The programs for the Assembler for the
IBM 360, CDC 6600, and UNIVAC 1108
are offered on an "as is" basis. Data
Geéneral Corporation assumes no respon-

sibility for maintenance of the program

as it is described, for any necessary

changes to tailor it to a particular software
or hardware configuration, or for prepara-
tion of Job Control cards or other control
information necessary for execution on a
particular configuration. Since the pro-
grams are written in FORTRAN IV, any
user alteration should be comparatively

simple,

Chapter 1
Chapter 2

Chapter 3

Chapter 4

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX I

CONTENTS

GENEERAL DESCRIPTION

MACIHINE REQUIREMENTS

INPUT

Option Card Format
Option Fields
File-Assignment Fields
Option Card Examples

Op-code Deck

Source Code Deck

Examples of Deck Setups
Normal Assembly
Asscembly with New Op-codes
IBM 360-0S
CDC 6600
UNIVAC 1108

ouTrPuT
Listing
Source Text Listing
Sample Source Text Listing
Cross Reference Table
Type of Assembly and Error List
Sample Cross Reference and Error Listings
Object Cede
Program and Subroutine Description
Description of Common Blocks
Control Variable Values

Character Code Conversions

Error Codes

il

w N bt
] 1 1
— — poet

| SRR B | LI |
Go

W W WWwWwwWwWwwwwww
[
NN W

1

[1>N
]
—t

