’ : L4
DANMARIME MO s w ADEMI
ELEKT UL UUGEN
ToLE e
. TELEFCN (C0) 136 395 22
BALDEHUSVEJ 1A
' 8000 AALBORG P

DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

INTRODUCTION
TO THE

REAL TIME OPERATING SYSTEM

ABSTRACT

This document provides an introduction to the
DGC Real Time Operating System (RTOS).

It also contains a basic description of the
concepts and terms found in other documen-
tation describing the use and structure of RTOS.

Copyright ©Data General Corporation, 1973 093-000093-00
All Rights Reserved. Printed in U, S. A.

Original Release - October 1973

PREFACE

The Real Time Operating System (RTOS) for the Nova family of computers and
peripherals consists of a small, core resident, general purpose multitask mon-
itor designed to control a wide variety of real time environments.

By using RTOS, user programs are relieved from the details of critical input/
output device timings, data buffering, priority handling, and task scheduling. In
addition, tasks are provided with a parallel processing capability plus intertask
communication and synchronization facilities. Since RTOS is highly modular and
reentrant, additional device handlers can be easily added to an RTOS system.

Communication with the RTOS executive takes place through a set of system and
task control commands. Calling sequences, mnemonics, and operation of RTOS
are identical to those in Data General's Real Time Disc Operating System (RDOS).
This allows software development and debugging to be carried out on an RDOS
system for lateruse in a core-only RTOS system.

TABLE OF CONTENTS

* How to Use This Manual

* Data General Operating Systems

* Real Time Systems
Organization and Core Configuration
System Generation ...

Task Environments
Task Calls

Task Timing Control
* Input/Output Control
Input/Output Command Modes ..
Buffer Control Package
Disc File Input/Output Control
Cassette/Maznetic Tape I/O Control
Interrupt Se1vicing Program
*User Interruot Processing
*Multiple Devices and Units
System Library
*Support Literature
Glossary of Terms

*Topics starred here and throughout the manual
can be read for a broad overview of RTOS.
Unstarred topics contain information in greater

detail about RTOS.

* HOW TO USE THIS MANUAL

This manual uses modular instruction techniques to present a complex subject,
the Real Time Operating System, in a simple, step-by-step fashion. FEach
topic is presented on a single page and is accompanied by a single-page
illustration. There is aloose logical progression in the presentation of topics,
yet each topic is truly self-contained. Thus there is no need to digest all the
material in a single sitting; you may indeed read the chapters selectively
according to your particular interests. If you would like a broad overview of
the operating system, note that you may read only those chapters whose titles
are starred,

No manual of this kind can present any topic in depth, and so after you have
finished this primer you should consult one or more of the publications listed
in the back of this manual following the glossary of terms. This list of
publications gives you the titles and numbers of all DGC manuals describing
RTOS and related utilities. Additionally, this list gives a précis describing
what you may expect to find in each of these publications.

RDOS
))
SINGLE MULTITASK
PROGRAM REAL-TIME
DEVELOPMENT APPLICATIONS
AND ‘
RUNTIME

SOS - — RTOS

NON-DISC
BASED
PROGRAM DEVELOPMENT

OPERATING SYSTEM COMPATIBILITY

*DATA GENERAL OPERATING SYSTEMS

The Nova family of computers is supported by a wide range of software designed
to provide the user with a system that will meet his most demanding requirements.
The first and possibly most important software package is the operating system,
which interfaces user programs with the computer hardware.

Data General provides the user with three operating systems to help meet his
application's needs in an economical and efficient manner. Thus, the user can
concentrate efforts on problem solving -- application programs -- rather than on
the intricacies of the hardware.

At the top of the operating system hierachy is the Real Time Disc Operating System
(RDOS), a powerful real-time multitasking disc based operating system that pro-
vides users with a system for interactive or batch program development and run-
time support for demanding real-time environments. RDOS fully supports single
processor configurations running in a single program, a partitioned memory
foreground/background, or a fully protected dual programmed environment.
Multiple processor configurations with shared discs or linked via a multiprocessor
communications adapter provide the reliability necessary for critical real time
applications.

For non-disc based applications or applications utilizing disc asa high speed bulk
storage device, Data General provides the Real Time Operating System (RTOS).
RTOS provides the user with a small and fast core resident, general purpose
multitask executive that is a compatible subset of RDOS. Calling sequences,
mnemonics, and operation are identical to those of RDOS so program development
and testing can be done under RDOS for later use with RTOS. This compatibility
also allows a user to develop programs for a non-disc system that can be easily
expanded with the later addition of a disc.

For non-real-time applications, the Stand Alone Operating System (SOS) provides

a program development and execution system that is also a compatible subset of
RDOS. SOS provides the non-disc based user with a system of editors, assemblers,
and loaders utilizing paper tape, cassette tapes, or magnetic tapes to speed user
program development.

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS

RTOS HIGHLIGHTS

is a small, general purpose multitask real time operating
system.

is a compatible subset of RDOS allowing program development
and debugging to be performed under a disc operating system.

handles task scheduling and task priority,
provides parallel task processing capability.
provides for intertask communication and synchronization.

allows the execution of tasks to be monitored and controlled on
either a priority or a task I. D. basis.

allows user tasks to communicate with the executive through a
set of system and task commands.

controls and executes all input/output operations.

provides simple calling sequences to communicate with character,
word, and block oriented devices.

has handlers written for the console teletype, real time clock,
paper tape readers and punches, line printers, card readers,
plotters, cassettes and magnetic tape units, fixed and moving
head disks, multiple teletypes, and communication and process
I/O equipment.

provides all necessary entry points so user specified device
handlers can be easily added to the system.

is a highly modular and reentrant software system provided as a
relocatable package.

. : *REAL TIME SYSTEMS

A real time system is a hardware/software package that allows processing of
information or data in a sufficiently rapid and responsive manner that the results
of the processing are available in time to influence the process or environment

- being monitored or controlled.

RTOS is an executive system designed to interface with user programs that have
real-time requirements. The standard input/output communications sub-system,
together with the efficient scheduling and the interrupt processing features of the
executive system, provides an environment satisfactory for any real-time program.

RTOS allows the customer to get the computer operating on his application quickly
by:

a) relieving the user from writing standard
device input/output handlers,
b) providing a standard interrupt servicing program,
and c¢) providing the necessary executive functions
to schedule the usage of the computer and
peripherals efficiently.

BINARY OR CORE IMAGE LOADER

AVAILABLE MEMORY

RTOS AREA 3

USER TASKS
AND
DEVICE HANDLERS

RTOS AREA 2

USER PAGE
ZERO

RTOS CORE CONFIGURATION

ORGANIZATION AND CORE CONFIGURATION

The RTOS executive, composed of system and task control modules, constitutes
the main framework of the operating system. It provides routines to process
interrupts and dispatch them to device interrupt servicing modules, to process
system calls that initiate I/O functions, to define new interrupt processing routines
or get/change the time of day or date, and to process task calls that control the
flow of execution through user written tasks.

RTOS occupies three areas in memory. The lowest 20g memory locations are
used as a communications area for both interrupts and tasks wanting to access the
other two areas.

The second area begins at location 400g. It contains a User Status Table (UST)
that provides information describing the total program such as its size, starting
address, starting address of task queues, and whether the debugger is present.
Above the UST is the task status area followed by device and I/O channel control
tables.

User task and device drivers are loaded above the second RTOS area. Immedi-
ately above the user task area is the RTOS system and task control modules
followed by RTOS device handlers. These last modules are extracted from the
RTOS libraries to satisfy unresolved references made by user tasks. This area
contains only those task and device modules necessary to control theuser program
environment.

RTOS SYSTEM GENERATION

CORE STORAGE (IN K WORDS) 12

RTC FREQ (0=NONE, 1=10HZ, 2=100HZ, 3=1000HZ, 4=LINE) 4
LINE FREQ (0=50HZ, 1=60HZ) 1

TASKS(1-255) ? 10 .
CHANNELS(1-63) ? 8

RESPOND WITH NUMBER OF UNITS

DSK(0-1) ? 1
DISK STORAGE (IN K WORDS) 128

DISK FILE STRUCTURE
1ST BLOCK? 6
END BLOCK? 200
NAME? A
NAME? FILEA
1ST BLOCK? 201
END BLOCK? 506
NAME? FILEB
1ST BLOCK? 507
END BLOCK? 509
NAME? FILEC
1ST BLOCK? 510
END BLOCK? 511
NAME? FILED
DKP(0-4) ? 0
MTA(0-8) ? 0
CAS(0-8) ? 0
PTR(0-2) ? 1
PTP(0-2) ? 1
LPT(0-2) ? 1
COLUMN SIZE (80, 132) 80
CDR(0-2) ? 0
PLT(0-2) ? 0
QTY(0-64) ? 0
TTYS(1-3) ? 1

RESPOND WITH 0 FOR NO, 1 FOR YES
AUTO RESTART ? 1

HIGH PRIORITY INTERRUPTS? 0
USER SUPPLIED DRIVERS? 0

SUMMARY OF RTOS SYSGEN

CODE DCT NAME NAME
10 TTIDC $TTI
11 TTODC $TTO -
12 PTRDC $PTR
13 PTPDC $PTP
14 RTCDC i
17 LPTDC $LPT
20 DSKDC

SYSGEN OKAY? 1
OUTPUT: TTO(0), PTP(1), DISK(2) ? 1

SAMPLE RTOSGEN DIALOGUE

SYSTEM GENERATION

In real time environments, individual user requirements vary from installation
to installation either in the hardware configuration or in requirements inherent

in the application. These differences may take the form of different combinations
of standard DGC supplied hardware, special user constructed interfaces, core
memory sizes, system throughput and environment considerations.

Thus, each system must be tailored to the specific system function requirements
and input/output hardware configuration of the installation. This tailoring process
is defined as a system generation. The system generation program (RTOSGEN)

for RTOS can be executed as a stand-alone program or under control of RDOS.
RTOSGEN provides all facilities necessary for the creation of an RTOS system

that is composed of only those task and device modules necessary for the application
The end product of system generation is a relocatable binary module in the form

of a paper tape or disc file that withdraws modules from the RTOS libraries to
provide an efficient executive system for the specific machine configuration and
operational requirements.

The modular design and availability of numerous features and attachable units make
possible nurr erous RTOS configurations tailored to individual application require-
ments.

SYSTEM CALLS T TASK CALLS

'

INTERRUPTS I/0 CALLS

PROGRAM EXECUTION FLOW

10

* PROGRAM EXECUTION FLOW

RTOS directs all activity in the real time application. It receives requests from
the user program and initiates suitable action to satisfy the user request. RTOS
also receives control when an interrupt occurs and passes control to the identified
device handler.

There are two principal ways a user program can signal RTOS to perform desired
actions for the program. These are called system and task calls and are issued
as program instructions. They activate program logic within either the system or
task modules.

System calls generally request RTOS to perform I/O operations; to return to the
user the value of system data such as the time of day, date, or the current
clock frequency; or to define user interrupt servicing routines,

Task calls perform user task management functions such as task initiation, sus-
pension, activation, and termination on an individual or group basis using task
priorities or other identifiers.

SYSTEM CALL SUMMARY

.DELAY Suspend a task for a specific time interval.

.GHRZ Get the real time clock frequency.

.GDAY Get the current date. .
.GTOD Get the time of day.

.SDAY . Set the current date.

.STOD Set the time of day.

.DUCLK Define a user clock routine,
.IDEF Identify a user interrupt device.
.IRMV Remeove a user interrupt device.
.RUCLK Remove a user clock.

.GCHAR Get a character from the keyboard.
. PCHAR Output a character to the teletypewriter.
.WCHAR Wait for a specific character to be input.

.INIT Initialize a magnetic tape or cassette unit.
. RLSE Release a magnetic tape or cassette unit.

.APPEND n Append to a device. .
.CLOSE n Close a file or device.
.MTDIO n Perform a free format [/O on a magnetic tape or cassette
unit.
.MTOPD n Open a magnetic tape or cassette unit for free format,
.OPEN n Open a device or file on a channel I/O number.
.RDB n Read one or more disc blocks.
.RDL n Read a line of ASCII characters.
.RDS n Read data in image format.

.RESET Close all opened devices and files.

.WRB n Write one or more disc blocks.
.WRL n Write a line of ASCII characters.
. WRS n Write data in image format.

.MEM Determine the amount of available memory.
.MEMI Change the top of available memory.

. ERTN Idle the system abnormally.
.RTN Idle the system normally.

12

SYSTEM CALLS

Users can communicate with RTOS by making system calls to RTOS subroutines
to perform such functions as input/output, obtaining or changing system infor-
mation like the time and date, and initializing devices. When an RTOS subroutine
is entered, control passes to the task monitor, which saves the task environment
before passing control to RTOS. Upon return from the system, the user's AC3 is
set to the User Stack Pointer (USP). The contents of AC3 can conveniently be
saved in the USP before a system call is made and restored automatically on
return.

System calls are made in either of two forms:

. SYSTM . SYSTM

command command n
exceptional return exceptional return
normal return normal return

The mnemonic . SYSTM, which must precede each command word, is recognized

by both extended and RDOS assemblers as a subroutine call. The specific system
command is assembled as the word following this mnemonic. In the first call
format above, the command appears alone as the second word in the calling
sequence. If the command requires arguments, they are passed in the accumulators
ACO, AC1, and/or AC2. In the second call format, n is a positive integer or
mnemonic equated to a positive integer representing an I/O channel number. (The
channel number is a logical link to an opened file or device.) Additional arguments,
if any, are passed in AC0, AC1, and/or AC2.

Any system command requiring a channel number need not specify it in the com-
mand itself. If an octal 77 (or the mnemonic CPU) is specified as the channel number
with the command, the system uses the channel number passed in AC2. This
facility provides a flexible runtime device selection method. In addition, passing
arguments through the accumulators, instead of inline, makes it possible to write
routines that can be shared by many tasks,

START

Y END

SINGLE TASK ENVIRONMENT

TASK 1 TASK 2 TASK 3

Task

Scheduler

MULTITASK ENVIRONMENT .

14

* MULTITASKING SYSTEMS

A task is a logically complete execution path through a user program demanding
the use of system resources such as CPU and I/0 device control. Single task
environments are already familiar to users of non-real time operating systems.
System utility programs such as assemblers, compilers, or relocatable loaders
are all examples of programs executing in a single task environment. In summary,
a single task environment is a program with a single unified path connecting all

its program logic, no matter how complex the logic branches.

In a single task environment, the processor idles when the program initiates an
I/O operation. The program is activated when the operation is complete. During
the time the I/0 operation is being performed, no useful user processing occurs.
It was the problem of efficiently performing seemingly unrelated functions in a
nonsequential manner to utilize the processor and I/O devices more fully that

led to the notion of multitask real time operating systems.

A single real time program can have from one to a virtually unlimited number of
logically distinct tasks. Each task performs a specified funtion asynchronously
and in real time. CPU control is allocated by the RTOS Task Scheduler to the
highest priority task that is ready to perform or continue performing its function.

Examples of multitask environments are process control operations; communi-
cations systems involving line control, message reception, queuing and switching;
and multiterminal data base systems. The individual tasks within a process
control system, for example, might be data collection, data alarming, control
operations, periodic and demand data logging, operator console control, and
control of line to supervisory computer.

TASK STATES

EXECUTING - The task has control of the central
processor unit (CPU).

READY - The task is ready and available for -
execution but cannot gain control of
the CPU until all higher priority
tasks existing in the READY or
EXECUTING state are completed
or go into a SUSPENDED state.

SUSPENDED - The task is awaiting the occurrence
or completion of some system call
or other real time operation.

DORMANT - The task has not been initiated
(made known to RTOS) or its
execution was completed and it
is now idle.

16

TASK STATES AND PRIORITIES

User multitask programs run under RTOS have one task initiated for them by
the initialization phase of RTOS. To create a multitask system, the first task
initiates the second and subsequent tasks by issuing the appropriate task monitor
calls.

When a multitask environment is established, the Task Scheduler must decide
which task should be executing. To enable the scheduler to function, each task
is assigned a priority at the time of initiation. RTOS permits 256 levels of task
priority in the range 0 through 255, with priority 0 being the highest. Several
tasks can exist at the same priority level.

The default task is initiated at the highest priority and since it is the only task
in the system, it receives control. When this task initiates the second and
subsequent tasks, the Task Scheduler is called upon to put the highest priority
task into execution. Other tasks that have been initiated but are of lower
priority are said to be ready to run.

The executing task becomes suspended when it makes a call to the operating
system to perform some function such as an I/O transfer or get time of day.

The task remains suspended until the operation is completed, at which time it
becomes readied.

Thus we have seen that tasks under the RTOS system can exist in either of four
states:

Tasks are in control of the CPU and are
EXECUTING their assigned instruction paths.
Tasks are READY and are waiting to become
the highest priority task available for execution,
Tasks are SUSPENDED waiting to be readied

in response to a system or I/O call being
completed.

Tasks are not known to the system and are in

a DORMANT state.

Word 0

w

10

11

12

TPC

TACO

TAC1

TAC2

TAC3

TPRST

TSYS

TLNK

TUSP

TELN

TID

Task's Program Counter & Carry Bit
Task's ACO

Task's AC1

Task's AC2

Task's AC3

Task Priority and Status bits

System Temporary

Link to next TCB in chain

User or FORTRAN Stack Pointer
Link to Extended Save Area

Task I.D. (1-255) or 0

TASK CONTROL BLOCK LAYOUT

18

TASK ENVIRONMENTS

As discussed in the previous section, a task within an RTOS system can be either
in an idle or active state. If the task is in the DORMANT state, the system has
no knowledge that it exists even though the code remains part of the program.
When a task is active (in the EXECUTING, READY, or SUSPENDED state) ,
certain status information must be maintained about each task to enable the
operating system to manage the environment and for the Task Scheduler to keep
the highest priority ready task in the EXECUTING state.

This status information about each active task is contained within an information
structure called a Task Control Block (TCB). There is one TCB for each task

in the active state (no TCB for an idle task), TCB's are used to store active
registers and other priority and status information when the task exists in either
the READY or SUSPENDED state. The TCB of the executing task is allocated to
the task but the TCB remains unused by the system until the task relinquishes
control of the CPU. If the task becomes readied or suspended, its TCB is then
used to store its status information. If, on the other hand, the rescheduling
resulted from the task terminating its own execution, its TCB is placed into a pool
of available TCBs.

The TCBs of ready and suspended tasks are linked together in chains. These
chains are organized in order of decreasing task priority. This means that the
Task Scheduler need only look at the top of the active chain to select the highest
priority task. Each TCB in the active chain is connected by its link word to the
next TCB in the chain. Among equal priority tasks, a round-robin scheduling of
system resources is performed. Whenever a task has its TCB entered in the

active chain, the task is assigned automatically the lowest priority within a priority
level. The last TCB in the chain has a link of -1.

Unused TCBs in the system are linked together to form an inactive chain of avail-
able TCBs. Except for the link words, these TCBs are empty until a task is
initiated; then, a free TCB is removed from this chain, filled with information
about the task, and placed on the active chain.

TASK CALL SUMMARY

. TASK Initiate a task.
.KILL Terminate the calling task.)
.AKILL Terminate all tasks of a specified priority.

. SUSP Suspend the calling task.

. ASUSP Suspend all tasks of a specified priority.
.ARDY Ready all tasks of a specified priority.

. PRI Change the calling task's priority.

. XMT Transmit a message.

cXMTW Transmit a message and wait for it to be received.
LIXMT Transmit a message from an interrupt routine.
.REC Receive a message.

.IDST Obtain task's status by L D.

. TIDK Terminate a task by L. D.

. TIDR Ready a task by L D.

. TIDS Suspend a task by I. D.

. TIDP Change a task's priority by I. D.

TASK CALLS

Unlike system calls, task calls consist of single word instructions; all arguments
for task calls are passed in the accumulators. Not all task calls have error returns
and those that do not have error returns, do not reserve error return locations.

The general form of a task call in a program is:

ACO, AC1, AC2 contain required input arguments.

TASK CALL MNEMONICS
error return
normal return

ACO, AC1, AC2 contain output values after call
processing; AC2 is set to the error code, if any.
AC3 contains the User Stack Pointer (USP).

Each task call has an associated modular package of relocatable binary code in
the RTOS library needed to perform the call processing. This feature -
‘modularity - enhances core utilization since only those modules selected by the
user occupy program space at load time.

Upon returning from processing a task call, RTOS gives program control to the
Task Scheduler so that it can maintain the highest priority READY task in the
EXECUTING state.

An example of part of a program that uses task calls follows.

.

LDA 0 TPRI ; LOAD TASK I.D./PRIORITY
LDA 1 TADDR ; PICKUP TASK ADDRESS

. TASK :

JSR ERROR ; PROCESS ERROR

LDA 0 MESAD ; PICKUP MESSAGE ADDRESS
LDA 1 MESS ; GET MESSAGE

XMTW ; TRANSMIT IT TO CALLER
JSR ERROR ; PROCESS ERROR

RTOS

SYSTEM CALLS

ALL .XMTW/, REC -
SYSTEM .SUSP/. ASUSP

TASK TASK . TIDS

CALLS SCHEDULER

REAL
. TASK TIME
EVENT OR
SYSTEM CALL
COMPLETION

. TIDK
. AKILL

TASK STATE TRANSITIONS

22

*TASK EXECUTION CONTROL

When an RTOS program is initiated, it gives control to a single user task after
initializing the RTOS status tables. It could be viewed as taking the first task
from the DORMANT state directly to the EXECUTING state. This task must
initiate other tasks to set up the desired multitask environment. Additional tasks
as they are initiated are put into the READY state.

To insure that the highest priority READY task is always the task in the EXECU-
TING state, task calls cause the issuing task to move from the EXECUTING
state to the READY state. READY tasks await their turn in a READY queue
organized by priority. The Task Scheduler takes the first task in this queue and
puts it in the EXECUTING state. '

SUSPENDED tasks are those that were once in the READY or EXECUTING state.
A task may become suspended for one of the following reasons:

. It issued a suspend call, .SUSP, .ASUSP, or .TIDS.

. It suspended itself for a specified time delay, . DELAY.
. It is waiting a message from another task, .REC.

. It has issued a transmit-and-wait call, .XMTW.

. It is waiting the completion of a .SYSTM call.

Just as a number of different events may suspend a task, several events and task
calls can cause a SUSPENDED task to be put into the READY state.

1. The completion of a . SYSTM call (such as a request for
I/0 or the expiration of a time delay).

2. The posting of a message for a task awaiting its receipt,
«XMT, .XMTW or .IXMT.

3. The request for a message previously sent and being
waited for, .REC.

4. The readying of a task by task calls, . ARDY or . TIDR.

Tasks enter the DORMANT state by any of the following:
1. The calling task terminated itself, .KILL.

2. A task with a given [. D. was terminated, . TIDK.
3. All tasks of a given priority level were terminated, . AKILL.

If all tasks are terminated either individually or on a group basis, the entire
system is placed into an idle state, essentially halting the activity of the systemni.

Task A Task B
. XMT < # , REC

Task A sends message and goes into the READY state. Task B is SUSPENDED
until the message is received.

INTERTASK COMMUNICATION

Task D

Y 4’.

Neither task proceeds until the message is passed from Task C to Task D.

TASK SYNCHRONIZATION

Task F
.REC
Task G
.REC
Task E
. XMTW ' Task H
or .XMT — L ».REC

Task J
.REC

GROUP TASK CONTROL

24

INTER TASK COMMUNICA TION/SYNCHRONIZATION

Even though tasks operate asynchronously, it is often desirable for one task to be
capable of "talking" to another task. Tasks communicate with ohe another under
RTOS by sending and receiving one-word messages in agreed-upon core locations
(message address), One-word messages can, of course, be pointers to larger
messages if the tasks agree beforehand on the use of such a technique.

A transmitting task can simply deposit the message in an agreed-upon location

(. XMT), or the caller can deposit the message and wait until it is received
(.XMTW). To receive such a message, another task issues a .REC task call. If the
transmitting task has not yet sent the message when the .REC call is issued, the
receiving task is SUSPENDED until the message is sent. If the message has
already been sent, the receiving task accepts the message and is put into the
READY state.

If the message was sent via the . XMTW task call, both the receiving and trans-
mitting tasks are put into the READY state.

It is also possible to transmit a message directly from an interrupt servicing
routine to a user task via the .IXMT call. This call is very useful for activating
tasks based on the occurrence of external events indicated by interrupts.

More than cne task can wait for the same message by issuing . REC calls using
the same message address. The tasks are put into the READY state by another
task issuing either a . XMT or .XMTW call.

\

.SYSTM Suspend task for a specified
.DELAY time interval.

|
\

.SYSTM Obtain time of day for use
.GTOD in task scheduling.

RTC Interrupt

Servicing
I

| /
JSR USCLK ‘

User-defined clock

] . routine receiving
| control at user-defined
| ——— intervals

JMP 0O, 3

TASK TIMING CONTROL

26

TASK TIMING CONTROL

RTOS offers several facilities for user tasks to perform time-related functions.
For example, users can implement their own time-slicing or round-robin alloca-
tion of CPU control. By issuing the system call . DELAY, a task can suspend
itself for a specified time period that is a multiple of the real time clock fre-
quency. (The frequency of the real time clock can be determined by the system
call .GHRZ.)

RTOS also maintains a system clock and calendar for tasks that should be
scheduled on a time-of-day basis. Tasks can obtain or set the date orthe correct
time in seconds, minutes, and hours. By periodically monitoring the time-of-
day clock, tasks can be scheduled for such funtions as performing hourly scans
or printing shift reports.

Finally, RTOS provides a pair of system commands permitting the definition and
removal of a user clock, driven by the system clock. This user clock receives
control at user-defined intervals. Thus, the user program can execute a short
routine at the real time clock interrupt level. The routine can perform time-out
control for other device drivers or allow task control based on milliseconds
instead of seconds.

Single Task Operating System

Task #1 CDR READ

Task #2 TTO PRINT

TTO PRINT

Task #3

- ELAPSED TIME >

NOTE: One task at a time executes.
CPU stays idle when tasks wait for 1/0.

Multitask Operating System .

Task #1 CDR READ |

Task #2

Task #3 TTO PRINT

< ELAPSED TIME

NOTE: One task at a time executes.
CPU time is given to lower priority task when
task waits for 1,0.

SAME THROUGHPUT IN SHORTER ELAPSED TIME

28

* INPUT/OUTPUT CONTROL

An important function of any real time operating system is the efficient handling
of input/output operations. Optimum usage of machine devices and central pro-
cessor time in the accomplishment of tasks is the real reason for designing and
implementing a multitask system.

Since 1/0 devices are slow compared to the internal speed of the computer, they
must be programmed to overlap their operations with computations, when possible,
in order to:

Increase usable CPU time
Greatly increase efficiency of 1/0O operations
Provide more throughput of data

The responsibility of RTOS I/0 control routines is to react during normal program
execution to the structuring of I/O requests, making assignments of requests to
machine devices when they are idle, and queuing requests for devices that are busy.
Through the queuing facility, RTOS achieves maximum and continuous overlap of
multitasks without direct intervention by the tasks themselves.

All input and output of data via RTOS-supported devices must be through system
I/0 commands. Although the system does not reject any user 1/O command, the
issuance of such commands by a user would be both risky and unnecessary since
a full complement of system I/O commands is provided within RTOS.

System I/O commands require a channel number to be given in the second field of
the command word. This channel number is associated with a particular device
or file when the device or file is first opened by the system command . OPEN.
Once this association is made, all subsequent I/O commands pertaining to the file
or device require only the channel number.

TYPE

INPUT/OUTPUT COMMAND MODES

QUANTITY

CALL DATA
.GCHAR/. PCHAR ASCII
.WCHAR

.RDL/.WRL ASCII
.RDL/.WRS BINARY
.RDB/.WRB BINARY
. MTDIO BINARY

30

SINGLE CHARACTER

FIELD TERMINATED
BY CARRIAGE RETURN,
FORM FEED, NULL, OR
132 CHARACTERS

FIELD SIZE CON - .
TROLLED BY BYTE
COUNT

MULTIPLE 256 WORD
DATA BLOCKS

WORD COUNT (2-4096)

INPUT/OUTPUT COMMAND MODES

RTOS provides five basic modes for reading and writing data: character, line,
sequential, direct block, and free format.

In CHARACTER MODE, a single character is transferred between the console
teletype and ACO. The character received is stored right adjusted in ACO with
bits 0-8 cleared. The send character call transfers a character in ACO, bits 9-15,
to the console. The third character call, . WCHAR, allows a task to be suspended
until it receives a single, specific character from a teletype keyboard.

In LINE MODE, data read or written is assumed to consist of ASCII character
strings, terminated by a carriage return, form feed, or null. Reading or writing
continues until one of these three characters is detected. RTOS handles all device-
dependent editing at the device driver level. For example, line feeds are ignored
on character input devices and are supplied after carriage returns on all character
output devices unless checking is suppressed. Furthermore, neither reading nor
writing requires a byte count, since reading continues until a terminator is detected
and writing proceeds until a terminator is written.

SEQUENTIAL MODE provides unedited data transfers. In this mode, no assumption
is made by the system as to the nature of the information. Thus this mode is always
used for processing binary data and can also be used for processing ASCII data
(provided no editing of this data is required). Sequential mode transfers require
specific byte counts to satisfy read or write requests. All character-oriented
devices can be used in sequential data transfers.

In DIRECT BLOCK MODE, binary data is transferred directly between a disc file
and a user core buffer. This mode allows single or multiple block transfers to or
from contiguous files on fixed or moving head discs. This transfer takes advan-
tage of the multiple block read/write capability of the hardware to process data
transfers quickly.

In the FREE FORMAT MODE, the operation of magnetic tape and cassette units

can be controlled directly from the user program. This mode permits reading or
writing of data in 2- to 4096- word records, spacing of the unit forward or backward
1 to 4095 data records or to an end-of-file, writing of an end-of-file , initiating of

a rewind operation, or reading of the unit status. Free format mode allows tapes

to be easily formatted for IBM, CDC, UNIVAC, or other computer systems.

BFPKG

Buffer 1

Buffer 2

Buffer 3

rinter

User Tasks

BUFFER CONTROL PACKAGE, BFPKG

-

I/\/

Magnetic Tape
Cassettes

DISC FILE AND TAPE 1I/O CONTROL

BUFFER CONTROL PACKAGE

The RTOS system library provides a module which permits buffered line and
sequential I/O transfers. The Buffer Control Package utilizes tasking concepts

in addition to standard system I1/0 calls to fill or empty two or more buffers asyn-
chronously and, therefore, provide a constant supply of input or output data.

DISC FILE INPUT/OUTPUT CONTROL

RTOS supports contiguously organized disc files that are completely compatible
with those available under RDOS. RDOS compatibility allows an RTOS system
to collect data for later processing under a disc operating system. Names and
sizes of these files are specified at system generation time.

CASSETTE/MAGNETIC TAPE 1/0 CONTROL

A method of free format input/output permits the reading or writing of data on a
word-by-word basis to a cassette or magnetic tape unit. This mode provides
users with the means of accessing data in variable size records (from 2 to 4096
words in length) within tape files.

Free format I/O commands also permit a tape reel to be spaced forward or
backward 1 to 4096 records or to the start a new data file, and allow the reading
of the transport status word.

User Program

Interrupt

ITBL
INTD
INTD
—_—— -
DISMIS DCT
SAVE
MASK
/> INTS
INTS: 8-Word State
Save Area
JMP —_
DISMIS
Interrupt
Service
Routine

FLOW OF CONTROL DURING INTERRUPT SERVICING

34

INTERRUPT SERVICING PROGRAM

When an interrupt is detected by the hardware, the currently executing program is
suspended and control goes to an interrupt dispatch program, INTD, an integral
portion of RTOS. INTD directs control to the correct servicing routine by using
the device code as an index into an interrupt branch table (ITBL). The entry in
this table is the address of a device control table (DCT) associated with the
servicing routine.

The first three entries of the DCT are as follows:

Word Mnemonic Contents

0 DCTSV Address of 8-word state save
area
DCTMS Interrupt service mask
DCTIS Device Interrupt Service
Routine Address

* USER INTERRUPT PROCESSING

In addition ‘o providing interrupt servicing for standard devices, RTOS provides

a simple software interface for non-standard devices. This interface is provided
through an abbreviated DCT (the first three entries of a standard DCT) which
supplies the address of an 8-word state save area, the hardware interrupt mask
to be set while servicing the user interrupt, and the address of the interrupt
servicing routine. The system stores the program counter, accumulators, carry,
current hardware mask, etc. in the state save area before transferring control

to the interrupt service routine. The interrupt service routine is written by the
user, and contains all program code necessary for processing the interrupt.

A system call, .IDEF, is used to insert pointers to user DCTs into the interrupt
vector table, identifying the device to the system. To remove these entries from
the table, the system call .IRMV is issued with the device code passed as a
parameter. It is also possible to specify new device drivers at system generation
time for both standard and high priority devices.

User-written drivers can activate user tasks from an interrupt servicing routine.
This is done by transferring a nonzero message from the interrupt servicing
routine to a user task via the .IXMT task call. If ,REC has not been issued, the
.IXMT call simply posts the message and a later .REC call retrieves the message.

NOVADISCS DISC CARTRIDGE 7 OR 9 TRACK
OR PACK SYSTEM MAGNETIC TAPE
PLOTTERS Novlf
NOVA FAMILY CASSETTES
L COMPUTER
2] .
M - REAL TIME CLOCK [$
LI INTERS
— - POWER FAIL/AUTO SYNCHRONOUS COMMUNICATION
7 RESTART \ LINES
CARD READERS $
ASYNCHRONOUS COMMUNICATION
LINES
PAPER T
READER/PUNCHES .
TELETYPES
OR PROCESS I/0 IBM CHANNEL
CRT'S EQUIPMENT INTERFACE

RTOS HARDWARE CONFIGURATION -

36

* MULTIPLE DEVICES AND UNITS

The Real Time Operating System (RTOS) is capable of supporting multiple
character-and block-oriented devices. Among the standard peripherals and
controllers currently supported by RTOS on a single system are:

Novadiscs up to two million words

Moving Head Discs up to four units: Diablo cartridge
or Century 111 or 114 disc packs

Magnetic Tapes up to eight units on a single
controller

Cassettes up to eight units on a single
controller

Synchronous Lines either single (4074) or multiple
(407 3) synchronous communication
lines

Asynchronous Lines up to 64 lines with 4060 multiplexor

and the large TYPE 4100 Asynchronous
Multiplexor

Process 1/0 analog to digital converters
digital to analog converters
digital input/output

Teletypes up to three

Paper Tape Readers up to two

Paper Tape Punches up to two

Card Readers up to two

Line Printers up to two (80 or 120 column)

Plotters up to two

Multiprocessor Communications Adapter

Power Fail /Automatic Restart

./V
/,

/x

H =2~ Z /.

/,

DFBUGGER

RTOS SYSTEM LIBRARIES

38

SYSTEM LIBRARY

The system libraries RTOS1.LB and RTOS2. LB are a collection of program modules
that support user programs run under RTOS. These modules can be likened to
volumes on a library shelf. Each user program needing one or more of these
modules selects them from the library, leaving behind those of no current use.
Because system modules are placed in the library, user program core require-
ments are greatly reduced.

The Relocatable Loader acts as the system '"librarian, " extracting modules from
the library. The Loader removes only those modules named in external pseudo-
ops in the relocatable binary file created at system generation or in user-written
tasks. This procedure ensures that, except for the Task Scheduler, only those
task modules required for program operation are loaded and results in a net
savings in total core used. All modules taken from the library are loaded after
user-written tasks; thus, loading proceeds from low to high core.

The RTOS system library contains the multitask and single task schedulers, TCBMON
and TMIN; command processing modules for each task and system call type; the
buffered 1/O package, BFPKG, which performs buffered asynchronous line and
sequential data transfers; and drivers for each device supported by RTOS.

* Support Literature

17-000001, Synchronous Communications Package. This application note
describes in depth a general purpose software package that can be used to control
the Synchronous Line Adapter.

17-000003, Buffered 1/0 Package in RDOS/RTOS. This application note describes
BFPKG, a module in RTOS1. LB that provides asynchronous data buffering in main
memory for user programs. BFPKG can be used by both RTOS and RDOS.

17-000004, Remote Synchronous Terminal Control Program. This application
note describes how the Remote Synchronous Terminal Control Program, RSTCP,
allows a Nova line computer with peripherals to be operated as a remote intelligent
data terminal. RSTCP is supported by both RTOS and RDOS.

17-000005, Multiline Asynchronous Controller Software Package. This appli-
cation pnote describes a general purpose subroutine package used to control the
operation of a multiline asynchronous multiplexor. This multiplexor can be used
with one or more Nova computers to control up to 64 lines. The subroutine package
can be run under RTOS or RDOS.

17-000006, User Device Driver Implementation in RTOS. This application
note describes in depth the techniques required to add a device driver to RTOS on
a user level or system level.

93-000018, Symbolic Text Editor Manual. This manual describes the use and
operation of the symbolic text string editor under RDOS. This editor is needed to
produce and correct source files for assembly, compilation, etc.

93-000040, Extended Assembler Manual. This user manual describes the use
and operation of the Extended Relocatable Assembler under RDOS.

93-000044, Debug III User's Manual. This document explains the use of the
symbolic debugger with RTOS; this debugger disables interrupts allowing the user
to look at a dynamic real-time environment. ‘

93-000053, FORTRAN IV User's Manual. This document describes DGC
FORTRAN IV, including an exposition of its real time extensions.

93-000056, Real Time Operating System User's Manual. This manual is the
primary document to be consulted by users of RTOS,

40

93-000068, FORTRAN IV Run Time Library User's Manual. This document
describes the FORTRAN IV run time library routines in defail as well as
methods for interfacing these routines to asscmbler iuuguage programs,

93-000074, Library l'ile Editor Manual,

93-000075, Real Time Disc Operatiag System User's Manual, This is the
e

primary document to he consulted by users of the Real Tiiue Disc Operating
System. It describes relationships between RPOS and [0S,

93-000080, Extended Relocatable IL.oaders Manual.

93-000081, Macro Assembler Manual. This wanual descrives the RDOS
Macro Assembler. This assembler’'s functions are a compatible superset of those
provided by the Extended Relocatable Assembler.,

93-000083, Introduction to the Keal Time Disc Opciiiiing System.

93-000084, Octal Editor Manual. This manual describes an RDOS utility used
to examine r modify RDOS disc file space.

93-000185, FORTRAN 5 User's Manual.

93-000092, Stand-alone Disc Editor Manual. This manual describes the use
of a disc editor that can be used to examine or modify all disc space. A large
portion of this manual is devoted to a discussion of directory structures of RDOS.

93-000096, FORTRAN 5 Run Time Library User's Manual, This manual

describes the FORTRAN 5 run time library routines as well as methods for
interfacing thesce routines to assembler language programs,

Glossary of Terms

Bootstrap is a technique for loading the first few instructions of a routine into
storage, then using these instructions to bring in the rest of the routine.

Device is a hardware component of the system with unique operational
characteristics.

Device independence is the ability of a task tc communicate with a device
independent of the device's uniqueness.

Dormant state describes a task that has not been initiated (made known to
RTOS) or whose execution was terminated or completed.

Executing state describes a ready task that has the highest priority and
control of the central processor unit.

File is a collection of related data (such as a disc or magnetic tape file) treated
as a unit and addressable by an alphanumeric identifier.

Multitasking is the ability to support more than one task active within an
address space.

Program is the contents of a complete address space.
Ready state describes a task that is ready and available for execution but
awaiting execution of one or more higher priority tasks before it can gain control

of the CPU.

Suspended state describes a task awaiting the occurrence or completion of a
system or task call or some other real-time event.

Sysgen is a procedurc used to customize the RTOS system to the available
hardware and the expected user application.

System calls are requests to the operating system for use of system resources.
Task is a unique execution path within an address space.

Task calls are requests to the Task Monitor to effect task state changes and
task rescheduling.

Task Monitor is a collection of subroutine modules that schedule and manage
calls from user tasks.

Glossary of Terms (Continued)

Task state describes the status of a task in the RTOS environment. A task
can exist in one of four states: dormant, ready, suspended, or executing.

TCB (Task Control Block) is a block of memory containing the task's
state variable and control information about the task.

USP (User Stack Pointer) is a page zero location that is always preserved
when changing tasks or task states. It is, therefore, useful when multiple tasks
share common routines.

UST (User Status Table) is a 30-word area (starting at location 400) that
records all information pertinent to the execution of the entire RTOS program.

43

DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

