Procedure declarations . A procedure declaration declares a compound statement to be a closed unit (a procedure or a function) which may be regarded as a single compound operation (in the sense of a generalized function) depending on a certain fixed set of izwax parameters, yielding a fixed set of results, and having a fixed set of possible exits defining possible successors. The parameters the results, and the successors may be specified either through entities declared dexplicitly or implicitly to be global for the compound statement constituting the procedure, or may be specified through formal input and output parameters, which will be substituted by actual parameters according to the rules given under procedure statements.

Form: 1 (procedure)

procedure $I(P_i) =: (P_o)$; DzyzDzyDzyDzyDzyDz; D_1 ; D_2 ; D_3 ; D_n ; G_1 ; G_2 ; G_2 ; G_3 ; G_n ; Form 2 (function fine the form of a procedure).

function $I(P_i); D_1; D_2; \dots D_n;$

Here, I is the identifier of the procedure. Exempts P, represents an ordered identifier represents of the procedure. Either or both of the parameters, while P is the list of formal output parameters, which include any exits required by the procedure. Either or both of the parts and parameters, which include any exits required by the procedure. Either or both of the parts and parts and parts are parts of symbols in form similar to declarations. The D to D are declarations are declarations are declarations are declarations.

The D₁ to D_n are declarations compared to D_n are declarations are declarations information concerning the input and output parameters. These are to be constructed in the following manner. The group D_n should give xharatestaration for each formal variable which is not a family variable. If necessary the declarations identifies.

D₁ will use dummy variables konfibring the possible types of information will be of the form:

type (I)I,I, 222)

array (I, I, ... I[d:d], I, I, ... I [d:d],)

switch (I := (d,d,...d), I := (d,d,...d))

function (I(d,d,d,d), I(d,d,d,d))

procedure (I(d,d,d,d) =: (d,d,...d), I(d,d,...) =: (d,d,...d)) where \mathbf{z} the $\mathbf{d}^*\mathbf{s}$ are dummy residues. Again D₂ will provide ratar information

where it the d's are dummy in the same form as the information for D₂, etc.

The G1 is an optional declaration of the form

indicating that the identifiers entities referred to in the list of identifiers will be found in the compound statement to which the procedure declaration applies, and that these entities will be used in the compound statement constituting the procedure denoted by the same identifiers.

an optional group of symbols gives information in The G is a set of declarations for other variables within the compounds statement. The operational end of the procedure must be indicated by a return statement. The entry into the procedure is the first statement following begin. In

the compound statement for office form function) a value must be assigned within the precedure by an assignment statement "I := E", where I is the identifier

naming the procedures function.

global idutifiers A formal input parameters

formal autjust identifier may represent a) an ordinary variable b) a type declared " e) an among d) a label.