Decisions to be made at Paris November 12-14.

- Program 1. Accept begin (AB 7.42) and end - philosophy as proposed by F.L.Bauer
 - 2. Accept for and if statements as in ALGOL-report.
 - 3. Accept the redefinition of array declarations as follows (see AB 7.16)

Time of $\Delta_a \sim \underline{\text{array}}(I, ..., I[l:l'], I, ..., I[l:l'],)$ where Δ may occur only in the following combination:

 $\sum_{c} \sim \underline{\text{begin }} \Delta_{a}; \sum_{i}, \dots; \sum_{end}$

with the meaning that Δ_a is valid only within \sum_c and may contain expressions with any variables to which no value is assigned within \sum_{c} nor in the <u>for</u> - statement (if any) immediately preceeding \sum_{c} .

- 4. As 3. but if and only if \sum_{c} is a full program.
- 5. As 3. but if and only if the end of \sum_{c} is followed only by end's of other compound statements.
- 6. (Extension of 3). Any declaration Δ may occur only in the combination

$$\sum_{c} \sim \underline{\text{begin }} \Delta; \Delta; \Delta; \sum_{\text{only }} \Sigma; \sum_{\text{soly }} \underline{\sum}; \sum_{\text{soly }} \underline{\sum}; \underline{\underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\sum}; \underline{\underline{\sum}; \underline{\sum}; \underline{\sum}$$

- 7. Same as 6 but if and only if \sum_{i} is a full program.
- 8. Same as 6 but analogeous to 5.
- 9. (Alternative to 2,3,4,5,6,7,8): Introduce the prefices as proposed by K. Samelson (see AB 7.22 and AB 7.26) and F.L. Bauer (see AB 7.41).
 - \square \sim \triangle where \triangle is any declaration in the sense of the ALGOL - report.

Separators after if B then where B is a Boolean variable, the prefix have been omitted in $\mathbb{N} \sim \text{for } \mathbb{V} := \mathbb{I} \text{ exec}$ where \mathbb{I} is a list. the sequel; it must

- 10. An abbreviated list is defined as in the ALGOL report: $l \sim E_1(E_2)E_3$; the general list beeing defined as in AB 7.18.
- 11. (Alternative to 10): An abbreviated list is defined as $l \sim E_1 \underline{\text{step}} E_2 \underline{\text{until}} E_3$ (see AB 7.41.2) may be empty the general list beeing defined as in AB 7.18.

12. (Only if 9 is accepted) A prefixed statement is defined as follows:

 $\Sigma \sim 11 \Sigma$ where 11 is a prefix.

Remark: Thus if $\overline{\mathbb{N}}$ is an <u>array</u> - declaration, it stands in in front of the compound statement for which it is valid (contrary to 3), but otherwise is subject to the same conditions: In $\triangle_a \sum$ the <u>array</u> - declaration \triangle_a is valid throughout \sum and may contain expressions in any variable to which no value is assigned within \sum .

13. Several prefices to the same statement are allowed. The operational meaning of

$$\sum_{s} \sim \overline{\Pi}_{s} \overline{\Pi}_{s-1} \cdots \overline{\Pi}_{2} \overline{\Pi}_{1} \sum_{s} \overline{\Pi}_{s} \overline$$

$$\Sigma_{\rm s} \sim \mathbb{T}_{\rm s} \Sigma_{\rm s-1}$$
,

where $\sum_{s-1} \sim \prod_{s-1} \prod_{s-2} \cdots \prod_{1} \sum_{s-2} is$ considered as an independent statement.

Remark: The definition 13 takes care of situations like

$$k := \dots;$$

$$if(k \neq 5) \quad then \quad for \quad k := 1(1)10 \quad exec \sum;$$

as well as

- 14. Alternative definitions to 13.
- 15. If $\sum_{1} \sim 11_{2} L 11_{1} \sum_{1}$, then go to L causes the execution of only the part $11_{1} \sum_{1} = 1$ of $\sum_{1} = 1$ (and all successors of $\sum_{1} = 1$). This has been indicated by K. Samelson in AB 7.22 for the case that $11_{2} = 1$ is an array declaration.
- 16. We allow constructions like $\overline{\mathbb{I}}_3$ $\overline{\mathbb{I}}_3$ $\overline{\mathbb{I}}_2$ $\overline{\mathbb{I}}_1$ $\overline{\mathbb{I}}_1$
- 17. (Alternative to 16): We allow only one label between the prefices of one statement.
- 18. We keep the alternative statement according to the ALGOL report.

- 19. Same as 18, but we allow the appendix <u>else</u> \sum_{e} with the obvious meaning that none of the Boolean expressions occurring in the alternative statement is "true", then \sum_{e} is executed. In addition some of the worddelimiters within the alternative statement are changed.
- 20. (Alternative to 18 and 19) (only if we accept 9). We adopt the extension of the <u>if</u> prefix according to the proposal of K. Samelson (AB 7.25). This replaces the alternative statement of the ALGOL report. It must be clear however, that under the new rule the "alternative statement"

 $\theta \sim \frac{\text{if}}{B_1} \frac{B_1}{B_2} \frac{\text{then}}{B_2} \frac{\sum_{i=1}^{n} B_i}{B_i} \frac{\text{then}}{B_i} \frac{\sum_{i=1}^{n} B_i}{B_i} \frac{\sum_{i=1}^{n} B_i}{B_i} \frac{\text{then}}{B_i} \frac{\sum_{i=1}^{n} B_i}{B_i} \frac{\text{then}}{B_i} \frac{\sum_{i=1}^{n}$

in place of \sum_{e} in the definition of θ in place of \sum_{e} in the definition of \sum_{e} (compound) (this list must be completed),

but only as $\sum \sim \underline{\text{begin}} \quad \Theta \quad \underline{\text{end}} \quad \text{in all other definitions.}$

21. Same as 20 with the extension that a "common factor may be put in front of the bracket", i.e. we allow

 $V := \underline{if} \ B_1 \underline{then} \ E_1 \underline{else} \underline{if} \ B_2 \underline{then} \ E_2 \cdots \underline{else} \ E_e;$ as an abbreviation of

22. In analogy we allow

go to if B₁ then L₁ else if B₂ then L₂ else if .. else L_e;

- 23. Decisions about jumps into compound statements: Forbidden in any case.
- 24. Jump into compound statement allowed if there is no prefix, i.e.

go to L;

begin

L

. . .

end

is allowed if and only if the compound statement (from $\underline{\text{begin}}$ to end) has no prefix.

25. Abolish $\underline{\text{do}}$ L₁,L₂ in order to avoid syntactical and operational difficulties in cases like

$$\Pi L_1 \Pi \Sigma_1; \Sigma; \Sigma; \Pi L_2 \Pi \Sigma_2;$$

where II are prefices. Same trouble for

begin L₁ end L₂

- 26. Allow do L_1, L_2 , but give clear rules for cases like these above.
- 27. Colon is a part of the label in all definitions (as already applied above).