e o

REGNECENTRALEN
Gl. CarlsbqﬁVej 2
Valby, Copenhagen,
Denmark.

2. Jan. 1960,

Material related to the coming

INTERNATIONAL ALGOL CONFERENCE IN PaRIS,
January 11, - 16, 1960,

Enclosed I send you some material related to the subject of the coming
ALGOL conference. It is divided into sections as follows:

1) Notes and explanations concerning the proposals of the European
participants at the conference as expressed in the MAINZ REPORT from the
meeting of Dee, 1k. - 16, 1959, :

- 2) Suggestions in the form of drafts for certain sections of the final
report (to be prepared during the coming meeting).

It should be noted (A) that the opinions expressed and formulations
chosen are & mixture of my own and those of the other European participants,
(B) that where a draft for the final report on controversial guestions is
presented-it is not with the aim of stopping a fundamental discussion before
it starts, but only in order to help formulating the final report, and
(c) syntax has in a few places been expressed in the notation used by Backus
(Paris report June 1959), using the symbol ::= for Backus' := and l for
Backus' oOr. Elements not defined in my text are identical with the same
elements as defined by Backus.

g df £y ?{ rj\,&m(r

' Peter Naur.

Toe

John W. Backus, New York
F.L. Bauer, Mainz
McCarthy, Cambridge
Julien Green, New York

C. Katz, Philadelphia
Alan J. Perlis Pittsburgh
H. Rutishauser, Zurich

K. Samelson- Mainz

¥. Turanski, Philadelphia
B, Vauquoisy Grenoble

J. Wegstein, - Washington
ReAvWijngaarden, Am sterdam
M. Woodger, Teddington

P. Naur, Copenhagen

i

—fm
SUGGESTIONS AND CORRECTIONS TO MAINZ REPORT.

1. Retain -the delimiters for exponentiation (i.e., delete Mainz report
section 5, first line).

2. Write declarations governing a compound statement after begin, °
This in order to make procedure declarations, including their own
compound, appear in their most natural place. In addition the change
relative to the Zurich report becomes less pronounced.

3. Mainz report section 1, Declarations governing a Statement, add:
>>In the lower-upper-bound lists of array declarations only integer
valued expressions in varisbles, which are global to the statement
will occur. These expressions will be evalusted, and the array decla-
rations thus completed, upon entrance into the statement.

The formal variables of a procedure declaration must in this
connection be considered global to the compound of the declaration<<.

L, Mainz report page 3, add one line of text between lines 8 and 9
as printed, to read:

PPiA e A e e B E sy simew e v s w4 @iy SONEDUE DEremctors,
These are to be constructed in the following manner, The group Di
BRBL ZI¥e 5 & a0 vo0 swn & 5 w e SR,

5. Mainz report page 3, in list of possible types of informstion, add:
type axray (I, I, « « » X[dd], o o v v .)
vfbxge function (s o e o v ¢
10k (B@ 8, c0eidt), TA, 0 consl)i ~viaes)
outont £, 4, voui@), T d, cnei@), vise Ja

6.1. Treat the for-statement as a clause (cfr. Backus).

6.2, Permit declarators for type.

6.3. Treat expression list 1like the list of actual parameters in =
procedure statement,

7. The proposed constant declaration is not made obsolete by the
>>functions without parameters<<, since this does not cater for constant
arrays.

8. Confine the sppearance of arbitrary strings of symbols to format
declarations (i.e. disallow them as parameters for procedures).

THE SYNTACTICAL STRUCTURE PROPOSED BY THE EUROPEAN MEMBERS.

Some of the reasoning leading to the proposal of the European
members i1s the following:

1. If array declarations with subseript ranges depending on expressions
in running variables are to be permitted the concept >>dynamic declaration<<
must necessarily be cleared up syntactically.

2. It is realized that in principle a range-limiting by write-up or
time~-succession may be chosen at will. If array-declarations were governed
by the time-succession additional rules for the exact semantic meaning

of changing the dimension or subscript range of a given array become
necessary. In a range-limiting strictly by write-up, with the additional
rule that arrays may be either defined or cancelled, but never Just
changed, this difficulty is avoided. by

v

—

%, This ties in with the suggestion that the meaning of identifiers

in general should be limited by write-up (local-concept)i This idea
is already present in the procedures (internal varisbles). One is thus
led to the idea that the meaning of all declardations should be limited
by write-up.

L, Unless an arbitrarily large set of new brackets be introduced, the
range limiting must be attached to the existing brackets begin end.

5. In order to couple the different levels, defined by the begin-end
structure (begin increases the level, end decreases it) it is necessary
to allow that certain entities are retained across the begin-end
boundaries. For simplicity it is suggested that such quantities

which are global to a certain level (i.e. common to this level and

the next lower level), need not be declared at all, in agreement with
the Zurich report,

6. It seems highly desirable to limit the admissible Jumps from one
level to another, since an arbitrary jump will in general meke the
cancellation of the quantities from several levels and the simultaneous
definition of the quantities from several other levels necessary. The
restriction >>all labels are local<d< implies that dynamically an incr ase
of level must always happen by a passage through a begin. A decrease in
level, on the other hand, may pass through several levels at one time,

THE EUROPEAN PROPOSAL FOR PROCEDURES.

The Buropean proposal means a restriction of the Zurich language in
the following respects:

1, Only one procedure may be defined in any one procedure declaration,

2, Partly empty parameter positions in procedure statements are dis-
allowed,

On the other hand, the following advantages have been achieved:
3. The necessity for empty bracket skeletons has been removed,

L, A procedure heading will give complete information (including types
of parameters of formal input procedures) concerning the formal
parameters.

5. Functions and procedures without parameters become possible.

6. All functions are defined through fungtion declarations (of which
there are two types: short-hand and procedure-like).

7. Procedure declarations become very similar in structure to other
compound statements.

Some of the considerations leading to this result are the
following:

A, I 4, is to be achieved either a) an even more complicated
symbolism in the procedure heading than envisaged in the Zurich report
becomes necessary, or b) an entirely different notation must be invented.
Since the empty brackets were felt to be already too unwieldy the
possibility b) was explored, with the result described in our report.

-3

B. Since in this way the necessity for bracket skeletons is avoided
in procedure headings, the possibility of avoiding them in procedure
statements as well may be explored. The difficulty here is the possibility
of >>partly-open<< bracket structures envisaged in the Zurich report,
viz, partly functions and procedures and partly arrays with n (> x)
parameter positions, k of which are open. The first of these cases,
functions and procedures was felt to be no real problem, because with
the new convention that identifiers in procedures are normally global
it is very easy to define a new function with the correct number of open
parameter positions from one with a larger number of such positions.

This new function or procedure may then be used in the procedure statement.,

The problem is much more acute in the case of arrays. In fact, within
the Buropean proposal there is no direct way of taking, say, one column
of a matrix and use it as the actual input parameter to a procedure which
works on a vector. The indirect ways are of course nume-ous: a) Rewrite
the procedure in question in such a way that it takes in the complete
array, but processes only part of it. b) Reassignment of the part of
the array in question as a preparation for the procedure statement.

C. If bracket skeletons are omitted it becomes imperative that
identifiers identify completely. This ties in with the advantage 5. of
admitting funetions and procedures without parameters.

D. The restriction of procedure declarations to admit the definition
of only one procedure is based on three considerations:
D1, The desirability of defining several procedures in one declaration is
removed when global parameters in procedures are admitted.
D2, Normal compound statements may be entered only through begin,
Procedures should be similar,
D3. Since a function and a procedure cannot be mixed together in a single
declaration it becomes possible to use the declarator function when
declaring procedures of function-nature. Thus the concept function
becomes complete in itself,

Draft for final report:
SEMANTICS OF TYPES AND ASSIGNMENT STATEMENTS.

Numbers and variables must be interpreted in the sense of numerical
analysis, -i.e. as entities defined inherently with only a finite accuracy.
Similarly, the possibility of the occurrence of a finite deviation from
the mathematically defined result in any arithmetic expression is expli-
citly understood. No exact arithmetic will be specified, however, and it
is indeed understood that different hardware representations will realize
arithmetic expressions differently. The control of the possible consequences
of such differences must be carried out bé the methods of numerical analysis,
This control must be considered a part of the process to be descrited, and
will therefore be described in terms of the language itself.

By means of a type declaration (section -) a variable or
function may be declared to belong to a certain class. Expressione con-
taining variables or functions of different types must in general be assumed
to have the type which -mathematically speaking will embrace it in all
cases, In speciégpases. however, the type of -the expression may, ‘or
mathematical reasons, and in a given context, be assumed to belon: to
a more restricted type. If, and only if, this is the case may an ->xpression
be assigned to a variable of the more restricted type. Depending on the

i

characteristics of a specific hardware representation such an assignment
may or may not give rise to special precautions, -such as rounding, and
this again may in the particular representation, cause that the assign-

X% ment satement will yield a meaningful result even if the expression is
not of ‘the restricted type. It should be stressed, however, that this
must be considered as an entirely incidental circumstance, which in no
way changes the above strict rule, that only mathematically correct
assignments are permitted in the language.

ﬁ

Draft for the final report: \

PROCEDURE STATEMENTS.,)

S

< General. A procedure statement igpvgé to initiate (call for) the
execution of a procedure, that is, a/closed, selfcontained process with
a fixed ordered set of input and output parameters, defined by a proce-
dure declaration (cfr. section) valid in the level where the
procedure statement occurs.
Syntactical rules.
<{proc out param)> ::= <identifier>}<subscr var)l(integer>
{output list)> ::= <proc out param)i<output listd, K <proc out param>
<output partd ::= <blank>|=:(<output list>)
<proc in param} ::= <identifier)|<exp> ~
<input list)> ::= <proc in param>|<input list> <{proc in param>
<input part> ::= <blank>|(<input list))
<name)> ::= <{identifier>
<{procedure statement)> ::= <name><{input partd{output part
<{procedure call> ::= <{procedure statement> '

Examples: :

B(a/Q + v, b) =: (C[s-i, m] 4, 18)
SR(v, u-z, t)

Isyp =: (p, epsilon, delta)
COMPILE

Here <name> is an identifier which is the name of some procedure, i.e.
it appears in the heading of some procedure declaration (cfr, section)
immediately following the delimiter procedurg.f?input 1list> and <output list)
are ordered lists ofdfntities gefnggk}%\ﬁge level where the procedure
statement occurs he o) the procedure statement must be jdentical
in form with thedpart of the corresponding procedure declarati5§d$5§§%3'
spPeare-Between—the—d Lmike 530 dure-and the-—-foite =N In this way
there is defined a one-to-one correspondence between the identifiers or

expressions in the input-output lists of the procedure statement and the
" formal identifiers in the-éﬁ§é§:5§¥§§;-i§§%§:é£ the procedure heading,.
‘ This one-to-one correspondence together with the input-output specifications
fﬂ% given in the procedure heading (cfr. section) give complete in-
{ formation concerning the admissibility of parameters em lqze@'in any procedure
L call, Rules covering all admitted cases are given inffggf%abie below together
with the corresponding semantic rules. Fn-addition—the—following-ruleg hold:
T If a formal output parameter is identical to a formal input parameter,
Yo $T§ this identity must be preserved in the call, The correponding actual parameter
) i as well as any other parameter entered both as input and output parameter
in the procedure call must obviously meet the requirements of both input
—and output parameters.

------ > = = oy DO o a¥e & CNT

/

/
S d
7

; N oD f n o) 7. 5 A TS A
N wavwm;ﬂﬂg wles e VA Pta A Sue - po-Coe et o ct—

)
!w‘!‘k‘b é..f%j-hw

-5

Semantic rules. A procedure statement causes execution of the statement
(usually compo;yd) which is part of the procedure declaration (cfr. section
o The execution, however, is effected as though all formal
r‘“EQ?EEEEE;ZNI%Eted.in th:ﬁ”?ﬁﬁgéﬁ?g ﬁiﬁﬁ%zation heading were replaced, through-
out thel cé“?ﬁ?ﬁi?égal parameters derived from the parameters in the
} corresponding positions in the procedure statement. In addition, the-statements
| ef-thelcompound -statement will in certainkgituations be supplemented by
i assignment statements inserted before “ «/The replacement
rules and the statements executed are shown for all admissible cases below,

INPUT PARAMETERS.

Case 1.1,

Formal specification: typeF (f). (Special case: no specification for f).
Actual parsmeter: a.

Declaration for actual parameter: typeF (a).

Formal identifier wil; be replaced by: a.

Emmﬁmn:&i P@}i%g Q%%%émi

Case 1.2,

Formal specification: typeF (f). (Special case: no specification for i)

Actual parameter: a.

Declaration for actual parameter: typeA (a). Quantities of typeA must form a
subset of the quantities of typeF.

Formal identifier will be replaced by: g (a unique identifier of %ypeF).

Execution: g :=a ;3 7 . . The assigmment g:=a must be permitted, ofr, semantic
of assignment statements, section .

Case 1.3,

Formal specification: typeF (f). (Special case: no specification for e
Actual parameter: a[Fl, ... , En]. - ~ -
Declaration for actual paremeter: typeF array (a[B, ... ,E : E, .. | E].

Formal identifier will be replaced by: a[i, eese , K]o (i, ves , k are unique
identifiers of type integer).

Execution: 1 := Bl 5 3 k :=Fn ; ... , The assignments must be
permitted ones, cfr. section .
Case 1.4,

»

Actual parameter: a[El, ... , En]. &{-~§u¢ﬂwnthﬁﬂ%?*“m~

Declaration for actual parameter: typeA array (a[E, ... E : E, ... , E].\\\
i
g

Formal specification: typeF (f). (Special case: no specification for 1,

Quantities of typeA must form a subset of the quantities of typeF,
Formal identifier will be replaced bv: g (a unique identifier of typeF).
Execution: g := a[Bl, ... , En] ; =,

Case 1,5,

Formal specification: typeF (f). (S} ~ial case: no specification for Yo /

Actual parameter: E (an expression i. variables defined in the level WHETE ™
the procedure call is written). Mwﬂwmmqj

Declaration for actual parameter: no .e. & i

Formal identifier will be replaced bv: g (2 unique identifier of wypeF),

Execution: g :=E ; ¥

Hromer Frd °
k]

e TP P] -

Z6

Case 2., : -

Formal specification: typeF -array - (IL& ces 1@ 2 A, ses ,d]). (Special case:
arra! (f[d se 0 d & d oo e d]))

Actual parameter: a. - - az

Declaration for actual parameter: typeF array (a[BE,E ¢ B, ... , E]. The
number of subscripts and thelr bounds must be identical for f and a.

Formal identifier will be replaced by: a.

Eb(ecution = .ﬂfv. iéd\ ""}’\CA‘ «YL% P’{ i.ﬂ f M ?){Q{LW‘

Car L. (/i)

Case %. W a' :,»"._ { 'ﬁm&’ “‘)"i‘fv’"’ & Y myAfi A’:&’ B

Formal specification: typeF function (f(d, ..o . d)). Special case: functlon
$17 RPEPEES R

Actual parameter' e = -

Declaration for actual parameter: typeF function a(I see + I) eoes This decla-
ration must agree with the formal spec1flcation with respect to the number
and nature of all parameters taken in the same order, If a uses global
identifiers these must also be global to Z Boe

Formal identifier will be replaced by: a.

Execution: Z

Case 4, - ~
Formal specification: procedur f(d cii o B) = {8, sue - d)s
Actual parameter: a.
Declaration for actual parameter: procedure a ..s:ss This declaration must agree
with the formal specification with respect to the number and nature of all
- . parameters/ taken in the same order., If a uses global identifiers these
///;j§ must also be gh\obal to Lp .
Formal identifier will be replaced by: a.
\\ Execution: Z ¢
Case 5,
Formal specification: input f(d won @ G)e
Actual parameter: a.
Declaration for actual parameter: format 2(.....). This format declaration must
correspond to an input statement of the form given in the formal specificati
Formal identifier will be replaced by: a.
Execution: Eig

Case 6, .

Formal specification: output f(d ese 1d),

Actual parameter: a. '

Declaration for actual parameter: format 8{eeses)e This format declaration must
correspond to an input statement of the form given in the formal specificati

Formal identifier will be replaced by: a&a.

Execution: Efg

OUTPUT PARAMETERS.
Case To.l.
Same rules as for case 1.1,

Case T.2,
Same rules as for case 1.3

Case 8,
Same rules as for case 2,

Case 9.1

Formal specification: label (f).

Actual parameter: %a o {wnry andk_ A W >

Declaration for actual parameter: none, but a must be a label accessible from
the level of the procedure statement.

Formal identifier will be replaced by: a.

Executions E:Q

;: Case 10, Lunananig oand oa‘-«@u. 5
Np&

Formal specification: switch (f:=(d, ... a)).

Actual parameter: a. = -

Declaration for actual parameter: switch a := (S MR D). The switch a must
have the same number of positions as f. Variables occurring in any of the
D's must be global to the procedure.

Formal identifier will be replaced by: a.

Execution: 2 P

§

Redorn sodernsto

