Numerische Mathematik Bd. 1, S. 41—60 (1959)

Report on the Algorithmic Language ALGOL

by
the ACM Committee on Programming Languages and the
GAMM Committee on Programming

edited by
A. J. PERLIS and K. SAMELSON

Editors’ Note. In the interest of immediate circulation of the results of the ACM-
GAMM committee work on an algebraic programming language, this preliminary
report is presented. The langnage described naturally enough represents a com-
promise — but one based more on differences of taste than off content or fundamental
ideas. Even so, it provides a natural and simple medium for the expression of a large
class of algorithms. This report has not been thoroughly examined for errors and
inconsistencies. It is anticipated that the committee will prepare a more complete
description of the language for later publication. -

For all scientific purposes reproduction of this report is explicitly permitted
without any charge.

Part 1. Introduction

In 1955, as a result of the Darmstadt meeting on electronic computers, the
GAMM (Gesellschaft fiir angewandte Mathemathik und Mechanik), Germany, set
up a committee on programming (Programmierungsausschufl). Later a sub-
committee began to work on formula translation and on the construction of a
translator, and a considerable amount of work was done in this direction.

A conference attended by representatives of the USE, SHARE, and DUO
organizations and the ACM (Association for Computing Machinery) was held in
Los Angeles on May 9 and 10, 1957 for the purpose of examining ways and means
for facilitating exchange of all types of computing information. Among other
things, these conferees felt that a single universal computer language would be

very desirable. Indeed, the successful exchange of programs within various’(@

organizations such as USE and SHARE had proved to be very valuable to
computer installations. They accordingly recommended that the ACM appoint
a committee to study and recommend action toward a universal programming
language.

By October 1957 the GAMM group, aware of the existence of many programm—]
ing langunages, concluded that rather than present still another formula language, i
an effort should be made toward unification. Consequently, on October 19, 1957,.“
a letter was written to Prof. Joun W. CarR III, president of the ACM. The letter
suggested that a joint conference of representatives of the GAMM and ACM be
held in order to fix upon a common formula language in the form of a recommen-
dation.

®©

42 A. J. Perris and K. SAMELSON:

An ACM Ad-Hoc committee was then established by Dr. Camm, which re-
presented computer users, computer manufacturers, and umive This
committee held three meetings starting on January 24, 1958 and discussed many
technical details of programming language. The language that ewolved from
these meetings was oriented more towards problem language than towards
computer language and was based on several existing programming systems. On
April 18, 1958 the committee appointed a sub-committee to prepare a report
giving the technical specifications of a proposed language.

A comparison of the ACM committee proposal with a similar proposal prepared
by the GAMM group (presented at the above-mentioned ACM-Ad-Hoc committee
meeting of April 18, 1958) indicated many common features. Indeed, the GAMM
group had planned on its own initiative to use English words wherever needed.
The GAMM proposal represented a great deal of work in its planning and the
proposed language was expected to find wide acceptance. On the other hand
the ACM proposal was based on experience with several successful, working problem
oriented languages.

Both the GAMM and ACM committees felt that because of the similarities
of their proposals there was an excellent opportunity for arriving at a unified
language. They felt that a joint working session would be very profitable and
accordingly arranged for a conference in Switzerland to be attended by four
members from the GAMM group and four members from the ACM committee.
The meeting was held in Zurich, Switzerland, from May 27 to June 2, 1958 and
attended by F.L.BAUER, H. BOTTENBRUCH, H. RuTisHAUSER and K. SAMEL-
soN from the GAMM committee and by J. Backus, C. Karz, A. J. PERLIS, and
J. H. WeGsTEIN for the ACM Committee*.

It was agreed that the contents of the two proposals should form the agenda
of the meeting, and the following objectives were agreed upon:

I. The new language should be as close as possible to standard mathematical
notation and be readable with little further explanation.

II. It should be possible to use it for the description of computing processes
in publications.

III. The new language should be mechanically translatable into machine
programs.

There are certain differences between the language used in publications
and a language directly usable by a computer. Indeed, there are many differ-
ences between the sets of characters usable by various computers. Therefore, it
was decided to focus attention on three different levels of language, namely a
Reference Language, a Publication Language and several Hardware Represen-
tations.

Reference Language

1. Tt is the working language of the committee.
2. It is the defining language.
3. It has only one unique set of characters.

* In addition to the members of the conference, the following people participated
in the preliminary work of these committees: GAMM : P.GRAEFF, P. LiucHLI, M. PAUL,
F. PENZLIN. — ACM: D. ArDEN, J.McCartrY, R.RICH, R. GoopmaN, W. TUR-
NANSKI, S. RosEN, P. DEsILETS, S. Gory, H. Huskey, A. OrDEN, D. C. EVANS.

Report on the Algorithmic Language ALGOL 43

4. The characters are determined by ease of mutual understanding and not

by any computer limitations, coders notation, or pure mathematical notation.

5. It is the basic reference and guide for compiler builders.

6. It is the guide for all hardware representations.

7. 1t will not normally be used stating problems.

8. It is the guide for transliterating from publication language to any locally
appropriate hardware representations.

9. The main publications of the common language itself will use the reference
representation.
Publication Language (see Part I11c)

1. The description of this language is in the form of permissible variations of
the reference language (e.g., subscripts, spaces, exponents, Greek letters) according
to usage of printing and handwriting.

2. ITtis used for stating and communicating problems.

3. The characters to be used may be different in different countries but uni-
vocal correspondence with reference representation must be secured.

Hardware Representations

1. Each one of these is a condensation of the reference language enforced by
the limited number of characters on standard input equipment.

2. Each one of these uses the character set of a particular computer and is the
language accepted by a translater for that computer.

3. Each one of these must be accompanied by a special set of rules for trans-
literating from Publication language. '

Acknowledgements. The members of the conference wish to express their apprecia-
tion to the Association for Computing Machinery, the ““Deutsche Forschungsgemein-

schaft”, and to the < Eidgend&ssische Technische Hochschule Ziirich”’, for substantial
help in making this conference and resultant report possible.

Part II. Description of the reference language Kﬁ"!@: WW"{ AR

i

5 %
1. Structure of the language W W”(

As stated in the introduction, the algorithmic language has three different

kinds of representation — reference, hardware, and publication — and the
development described in the sequel is in terms of the reference representation.
This means that all objects defined within the language are represented by a
given set of symbols — and it is only in the choice of symbols that the other two
representations may differ. Structure and content must be the same for all
representations.
— The purpose of the algorithmic language is to describe computational processes.
The basic concept used for the description of calculating rules is the well known
arithmetic expression containing as constituents numbers, variables, and func-
tions. From such expressions are compounded, by applying rules of arithmetic
composition, selfcontained units of the language — explicit formulae — called
arithmetic statements.

To showy the flow of ‘largerj computational processes, certain nonarithmetic
statemen’ff(are added which may describe e.g., alternatives, or recursive repetitions

of computing statements. Su,ce Y '.S thews aeeero %_ ot

ove /{M V%’-’ﬂ—: aunetloar, L. S

-

.

7 -
{‘gﬂ% (_;e' P\,wh"t M (7 V2 ’J‘ o el

iy

, the oxislece @dw

A. J.Perus and K. SAMELSON:

computing rules, but inform the translator offcertain proper‘ab of (Jb][ECta appearing
in statements, such as the class of numbers taken on as values by a variable, the

__dimension of an array of numbers or even the set of rules definimg a function. N » 0

rams. However, whereas complete and rigid era)l nﬂeb for con-
structmg traﬁslg:cable statements are described in the following, mo such rules
can be given in the"sage of programs. Consequently, the notion of program must
be considered to be 1nformaLt§md intuitive, and the question whether a sequence

of statements may be called §f>'p;c§zim should be decided on the basis of the

- operational meaning of the sequenc

In the sequel explicit rules — and associated 1nterpretat1o:: — will be given
describing the syntax of the language. Any sequence of symbols to which these
rules do not assign a specific interpretation will be considered to be undefined.
Specific translators may give such sequences different interpretations.

2. Basic Symbols

{ié} TTreference language is built up from the basic symbols listed in Part I1Ta.
Th

€se are

1. Letters 2 (the standard alphabet of small and capital letters)
2. Figoyes § (arabic numerals 0, ..., 9)
3. Delimiters d consisting of

a) operé‘t@rs w:

arithmetic operators == X

IA |
v

relational operators = = = =
logical operators A VA=
sequential operators go fo du return stop
ror zr g if either or zr
b) separators 6: i : =
c) brackets {3: »,() [] il g”?(:': /{d
d) declarators ¢: procedure array g e
switqh W o el

type) comment W_

Of these symbols, letters do not have"}i‘rﬁividual meaning. Figures and deli-
miters have a fixed meaning which for the most part is obvious, or else will be
given at the appropriate place in the sequel.

Strings of letters and figures enclosed by delimiters represent new entities.
However, only two types of such strings are admissible: ’

il ings consisting of figures § only represent the
(including 0)with the conventional meaning.

2. Strings beginming with a letter 4 followed by arbitrary letters 4 and/or
figures § jore called Memzﬁe’rs SN

VThey have no inherent meaning, but serve for identifying purposes only.

——

;b.ositive) integers G

Report on the Algorithmic Language ALGOL 45

2~
3. Expressions //2’

Arithmetic and logical processes (in the most general sense) which the algorith- |
mic language is primarily intended to describe, are given by arithmetic and logical
expressions, respectively. Constituents of these expressions, except for certain
delimiters, are numbers, variables, elementary arithmetic operators and relations,
and other operators called functions. Since the description of both variables
and functions may contain expressions, the definition of expressions, and their
constituents, is necessarily recursive.

The following are the units from Which expressions are constwte.d.\

N¢

;J

i) @osmve) Numbers N. Form: N ~G .Gy -G
where eac is an integer as defined above
G.Gisa cnnal number of conventional form. The scale factor 4, 4 G is

the power of ten give en by L G. The following constituents of a number may be
omitted in any occurrence:

!
e

U2

Xad

The fractional part . 00 - of integer decimal numbers; 4
the integer I in front of a sc ctor; ‘ e
the 4 sign in the secale factor; ",‘
the scale factor ;4 = 0. l l’b
Examples: 4711
137.06
2.9997,610
10— 12
2.2.,%. 310—12
ii) Simple Variables I’ are designations for arbitrary scalar quantities ez,
numbers as in elementary arithmetic mwn ' ¥ C - $8 aresn J,{,W »{}
Form: =~ 3 V Pt “

where I is an identifier as defined above.

Examples:

%ubscripted Variables V designate quantities which are components of
multidimensional a,rfays
Form: aﬁ \:g“uigii\"d / Ve~1I [l]
~where I ~ B, E;7:+ | E is a list of arithmetic expressions as defined
expression E/occupies one subscript position of the subscripted variable, and is
called a subscript. The complete list of subscripts is enclosed in the subscript
(. brackets []. _
5‘3 ‘C" The array component referred to by a subscripted variable is specified by the
actual numerical value of its subscripts (cf. arithmetic expressions). e
ripts, however, are intrinsically integer valued, and whenever the value // ‘
of a subscript & ion is not integral, it is replaced by the nearest integer (in | l (-S
the sense of proper roun

)

‘;‘3'

)
s —

: ir 3 /] (%4 SN D)
;‘u {'-{\e oS Munaf el s x

1

A
w’

.4

46 A. J. PErLis and K. SAMELSON:

Variables (both simple and subscripted ones) designate arbitrary real numbers

| unless otherwise specified. However, certain declarations (cf. #ype declarations)

' may specify them to be of a special type, e.g., integral, or Boolean. Boolean (or
| logical) varlables may assume only the two values ““‘true’” and “false”.

e

ﬁrg 3@ Functxons F represent single numbers (function values), which result

through the application of given sets of rulesyto fixed sets 9 parameters i
: F~T(P, ,P)

______NW Goco

q,;

: where I is an identifier, and P, P P-is-the. Qrdered list of actual parameters
specrfymg the parameter values for wh1ch the function is to be eval J A
syntactlc definition of parameters is given in the sections on fusnction declarations

(and procedure declumtzonﬁ If the function is defined ?a function declaration, the

kparameters employed in any use of the function are €xpressio Gom.patrble with

e type of variables contained in the correspondmg arameter positions in the
function declaration headi %ctwn declaya dmissible parameters
for functions defined by ?Mﬂeclﬂmtwm re the same as a ible input
parameters of procedures as listed in the sectmnYon procedure statements.
Identrflers designating functions, just as in the case of variables, may be
Hosen according to taste. However, certain identifiers should be reserved for
the standard functions of analysis. This reserved list should contain:

abs (E) for the modulus (absolute value) of the value of the expression E
sign (E) for the sign of the value of E
entier (B) for the largest integer not greater than the value of E
sqré (E) for the square root of the value of E
sin (E) for the sine of the value of E
%ﬁ_ﬁi%“% oglif 2 c%nbrilgg ’Eﬂhe tlcal no; ’etwn ‘_H ? :':i,‘y_ o Lo
Arithmetic expressions E are deﬁned as follous. “ },L', Ar e { 7

E~N
~V
~F sy bty

If E, and E, are expressions, the first(of which are neither “ -4 nor “— 7,

then the following are express gs:
1. \EJ\\’ =5 E1
3. = 1\4{E2
4. =2 E]_ o
5. ~E; X E,
6. ~E,E, \\'\
7 ~ El 1‘ Ez \L \\\
8. ~ (Ey) A

!r:»The operators +, —, X, appearing in 1 through 6 have the conventional meaning;
m’ The parentheses % J, used in 7 denote exponentation, where the leading ex-
pressmn is the base and the expression enclosed in parentheses is the exponent.

&5 Or v G P
.

)

i

Report on the Algorithmic Language ALGOL 47

\ e
%(Examples: 24 24m || means 22" \f
! 2

j 2224y means (22)"*

r The proper interpretation of expressions can always be arranged by appro-

| priate positioning of parentheses

)/T An arithmetic expression is a rule for computing one real number by l‘? ko
executing the indicated arithmetic operations on the actual numerical values

of the constituents of the expression. This value is obvious in the case of

numbers N. For variables ¥, it is the current value (assigned last in the |
dynamic sense), and for functions F it is the value arising from the computing |

rules defining the function (cf. function declamtion‘bwhen apphed to,the current *~ /E .

i

|__Vvalues of the function parameters given in the exptession: /A A
The sequence of operations within one expression is generally fro
rlght with the following additional rules: k“W

parentheses are evaluated separately
) for operators, the conventional rule of precedence applies:

‘ - ¥ first: %/ / 1; }/ 7

\— ~ second :
— -

Y 3T
In ordm&u'w\ni\mdings redundant parentheses should be used
e a

to express, for example, the«fm:g_be)J¢ or (afc) xb rather than by
a Xble, or ajcx b respectivi el5 and to avoid construchons*sueh_is;a_c

Examples: 3-5.2. A 'M
Alpha / = X Reel

Degree
AR
A A b =k k]
A [mu[s]]
a X sin (omega X 1)
0.5 X a[Nx(N—1)/2, 0]
3.6
vi) Boolean expressions B are defined analogously to arithmetic expressions:
a) A truth value, a variable (Boolean by declaration), or a function (Boolean

by declaration) is an expression. e B
Form: B ~0 (the truth value “false”) (\(? s
~ 1 (the truth value ““true”) S o
~V
~F o~
b) If B, and E, are arithmetic expressions then the following arithmetic/ 9‘? »
relatlonaje.\pressmns ; b
B~ (E, <E) g a8
" Boskas ~ (B, < E) (17 b/
~ (E, + E,) RRETL
~ (B, = E,) 0 v 2 od
~ (B, > E,) 24 Yy
ol (El =E 2) \ W i

PR 48 ‘ A. J. PErL1s and K. SAMELSON:
267 koA O
Such—expressions take on the (current) value “true” whenever the cor-
responding relation is satisfied for the expressions involved, otherwise ““false”.

¢) IfB, and B, are expressions, the following are expressions:
B~"B,
~B,V B,
~B; A B2
~B, =B
B .
The operators 71, V, A, = have the interpretations ‘“not”, “or”, “and”,
and “equivalent”.
Interpretation of the binary operators will be from left to right. The scope of
“9”" is the first expression to its right. Any other desired precedence must be
indicated by the use of parentheses.

a.(- 2. Examples: (x = o)
(X>0)V(y>0
@A@V@#ﬁ

I ——

45S mtemem‘s =

Closed any selfcontained rules of operations are called Statements Z. They are
defined recursively in the following way:

a) Basic statements X are those described in this section.

b) Strings of dne or more statements* may be combined into a single (com-
pound) statement enclosing them within the “statement parentheses” begm

)

and md Single statements are separated by the statement separator

\
\

Form: ENbegm Z?;Z‘,--';Eemi

c) A statement may be ‘made identifiable by attaching to it a label L, which
is an identifier I;~or an integer G (with the meaning of identifier). The label

'S precedes the attached statement being labeled, and is separated from it by the
<L9 separator colon (:). Label and- statement together constitute a statement called
o labeled statement” //, >'-\\M~____%f_., -/’/
Form: L ENL: 2 o i I

;‘i@ l) A labeled statement may not itself be labeled. In the case of labeled compound

) o statements, the closing parentheses end may be followed by the statement label .
X E (followed by the statement separator) in order to indicate the range of the com-

N pound statement:
Form: X~ L :begin Z; 25+ ; Dend L;
i) Assignment statements serve for assigning the value of an expression to a
variable.
Form i): 2~V :=Eg \
,’"‘;‘»; PN
U'Z) * Declavations which may be interspersed between statements have no operational
4 (dynamic) meaning. Therefore, they have no significance in the definition of compound
statements.

Report on the Algorithmic Language ALGOL 49

If the expxession on the right hand side of the assignment delimiter := is
arithmetical, the\yamable ¥ on the left hand side must also be numerical, i.e.,
it must not be Boolsan. e

Generally, the arithapetic type of the expression E is determined by the con- f ,L(;?
stituents and operations Of the expression E. However ¥ may be declared to be \ __—_~~
of a special type provided tiss declaration is compatible with the possible values
of the expression E. - ‘

Form ii):
If the expression on the right hand side“of the assignment statement is Boolean, o
V may be any variable. This means that the truth values “true”’, and “false” [/ \

of the Boolean expression may be interpreted’arithmetically as integers “1”’ and @ y
““0”’, which may them be assigned to a numericalN\gariable. r

ii) ‘Go to’ statements. Nofwally, the sequence of operations (described by the ZS."
statement of a program) comecides with the physical sequence of statements. This /
normal sequence of execniion may Deanterrupted by the use of go fo statements.

Form: X ~goio

D is a designational expression specifying the labe he statement next to be
executed. It is either a label L or a switch variable I [E] (Chswitch declaration),
where Fis am identifier and E a subscript expression. In the latter casg} the numeri-
cal value of E (the value of the subscript) is an ordinal which identifies the com-
ponent of the switch I (named by declaration). This element which is again a
designational expression specifies the label to be used in the go fo statement.
This label determination is obviously a recursive process, since the elements of
the switch may again be switch variables.

Examples: go to hell
goto exit [(i1 24 —712 + 1)[2] 2

where exit refers to the declaration
switch exit := Dy, D,, ", D,,]

R

iii) ‘If" Statements. The execution of 2 statement may be made to depend
upon a certain condition which is imposed by preceding the statement in question
by an if statement.

=)

Form: 2 ~ifB

-

“"‘—ﬂf

I

i

where B is a Boolean expression. E

If the value of B is “‘true”, the statement following the ¢/ statement will be |

executed. Otherwise, it will be bypassed, and operation will be resumed with i]
the next statement following.

Example: In the sequence of statements { i \ @
if (@>0); c:=at2}+0b12); =
g0 c:=at2y +B24;
if (@a=0); goto bed *

one and only one of the three statements rightmost in each line will be executed.
Numer. Math. Bd. 1 4

i
——t

5D

a >
""*&»,\x
[o)
9
;
|
U
-

N

50 A. J. PErLIS and K. SAMELSON:

iv) ‘For’ statements. Recursive processes may be initiated by use of a for
statement, which causes the following statement to be executed several times, once
for each of a series of values assigned to the recursing variable contained in the
for statement.

Form: 2~ a) for V:=1

b) fol’ V:=E, (E)E,, E; (E,)E,,
where I is a list of % expressions E;, E,,, E,; and E{i, ES]_, E, are expressions.

In Form a) the intent is to assign to ¥ in succession the value of each expression
of the list (expressions taken in order of listing) and the statement following the

> for statement is executed immediately following each such assignment.

In Form b) each group of expressions E; (E,) E, determines an arithmetic
progression. The value of E; is the initial value, E, gives the value of the increment
(step), and E, determines the end value which is the last term of the progression
contained in the interval [E;, E,]. The intent is to assign to ¥ each value of
every progression (these again taken in the order of listing from left to right),
and the statement following the for statement is executed immediately follow-
ing each such assignment.

The effect of a for statement may be precisely described in terms of “more
elementary’’ statement forms. Thus the form (a) is precisely equivalent to

V=B > e ey — . 2
where X is the statement following the for statement.
The form (b) is precisely equivalent to

V:=E,;L : X*; T::E;VJFESI; ife (W = EB,)* 5 goidonli;

i7::E~ b 702 r::,qnysk; i (E=8)); goio L;

1 2

where X is the statement following the for statement.

Examples: a) feEnk - —E(On, gD Xy AL
b) fora:—1,3, o906, 315
befigs——— = =

v) Alternative statements. An alternative statement is one which has the
effect of selecting execution for one from a set of given statements in accordance
with certain conditions which exist when the statement is encountered.

Form: if either By; Z,; orif By;...; orif By 2 end

where X, is any statement jother than a quantifier, i.e., #f, for, or o7 if, and B, is
any Boolean expression. 57

. 5

* If ¥ is a labeled statement L, is that label. If not the effect is as though it

" had a (unique) label L, .

*% This relational form obtains if the progression is increasing; if decreasing, the
relation = is understood to be employed.

Report on the Algorithmic Language ALGOL 51

The effect of an alternative statement may be precisely described in terms of
“more elementary” statement forms. Thus the above form is precisely equi-
valent to the sequence of statements:

z";f B,; begin X ; go to next end; zf B,; begin X, ; go to mext end; 1]‘ B,; =, where

“mexi” is the label of the statement following the alternative statement. |
|
Example: ifeither (a> 0);y :=a+2; orif (a<0); y:=af2; orif(a=0); [

= 0.57 end.

~
vi) ‘Do’ Statements. A statement, or string of statements, once written down, /)
may be entered again (in the sense of copying) in any place of the program by | (e
employing a do statement which during copying permits substitution for certain™
constituents of the statement reused.

Form: ENJOLI,L.Z(SA—>I,...,SQ%I)

where L, and L, are labels, the S _ are strings of symbols not containing the)
separator — and the I are identifiers, or labels, and the list enclosed by paren-”
theses is a substitution list.

The do statement operates on the string of statements from, and including, 7,
the one labeled I, through the one labeled L,, which statements constitute the Joyaia@-77
range of the do statement. If L, is equal to L, i.e., if the range is just the one ‘
statement I, the characters “, L,” may be omitted.

The do statement causes itself to be replaced by a copy of the string of state-
ments constituting its range. However, in this copy all identifiers or labels,
listed on the righthand side of a separator “—" in the substitution list of the do
statement, (and which are utilized in these statements) are replaced by the
corresponding strings of symbols S_, on the left hand side of the separators “—".

These strings S_. may be chosen freely with the one restriction that the sub-
stitutions produce formally correct statements in the copy*.

Whenever a do statement contains in its range another do statement, the
copying, and substituting process for this second innermost do will be executed
first.

Therefore the (actual) copy induced from a do statement never contains a
do statement.

Declarations within the range of a do statement are not reproduced in the
copy

Examples: do 5,12 (x[i] =y, black label —ved label, -+~ ,f(x,y) —g)
Wao A ABC (x 42§ + 3ly=—4,)

The range of a do statement should contain complete statements only i.e., if
the begin (end) delimiter of a compound statement lies in the range of the do, then

so should Ematching end (begin). If this rule is not complied with the result

of the do statement may not be the one desired.

* Thus, in the copy produced any designational expression whose range is a ‘
statement within the range of the do statement must be transformed so that its range
refers to the copy produced.

Numer. Math. Bd. 1 4a

52 A. J. PErLIS and K. SAMELSON:

vii) Stop statements. Stop is a delimiter which indicates an operational

(dynamic) end of the program containing it. Operationally, it has no successor
statement.

Form: 2~ stop

viii) Return statements. Refurn is a delimiter which indicates an operational

end of a procedure. It may appear only in a procedure declaration (cf. procedure
declaration).

Form: 2 ~return

ix) Procedure statements. A procedure statement serves to initiate (call for)
the execution of a procedure, that is, a closed, selfcontained process with a fixed
ordered set of input and output parameters, permanently defined by a procedure

dgclamtigy*(cf. procedure declaration)

Form: D (P PP B (P P s P
Here I is an identifier which is the name of some procedure i.e., it appears in the
heading of some procedure declaration (cf. procedure declaration), P;, P;, -*-, P;

is the ordered list of actual input parameters specifying the input quantities to
be processed by the procedure.

The list of actual output parameters P,, P, ..., P,, specifies the variables
to which the results of the procedure will be assigned, and alternate exits if any.
The procedure declaration defining the procedure called contains in its heading
a string of symbols identical in form to the procedure statement, and the formal
parameters occupying input and output parameter positions there give complete
information concerning the admissibility of parameters employed in any procedure
call shown by the following replacement rules:

formal parameters in procedure admissible parameters in procedure
declaration statement

input parameters
single identifier (formal variable) any expression (compatible with the
type of the formal variable)

array, i.e., subscripted variable with array with #{=%) parameter posi-

k (= 1) empty parameter positions tions-k of which-are empty

function with £ empty parameter function with # (= &) parameter posi-

positions tions % of which are empty

procedure with & empty parameter procedure with £ empty parameter

positions positions

parameter occurring in a procedure every string of symbols S, which

(added as a primitive to the language)* does not contain the symbol “,”
(comma

* Within a program certain procedures may be called which are themselves not
defined by procedure declarations in the program, e.g., input — output procedures.
These procedures may require as parameters quantities oufside the language, e.g., a
string of characters providing input — output format information.

Report on the Algorithmic Language ALGOL 53

output parameters
sungle sdentifier (formal variable) simple or subscripted variable

array (as above for input parameters) array (as above for input parameters)
(formal) Iabel label

If a parameter is at the same time an input and output parameter this para-
meter must obviously meet the requirements of both input and output parameters.

Within a program, a procedure statement causes execution of the procedure
called by the statement. The execution, however, is effected as though all formal
parameters listed in the procedure declaration heading were replaced, throughout
the procedure, by the actual parameters listed, in the corresponding position, in
the procedure statement.

This replacement may be considered to be a replacement of every occurence
within the procedure of the symbols, or sets of symbols, listed as formal para-
meters, by the symbols, or sets of symbols, listed as actual parameters in the
corresponding positions of the procedure statement, after enclosing in paren-
theses every expression not enclosed completely in parentheses already.

Furthermore, any refurn statement is to be replaced by:a go to statement
referring, by its lIabel, to the statement following the procedure statement, which,
if originally unlabeled, is treated as having been assigned a (unique) label during
the replacement process.

The values assignable to, or computable by, the actual input parameters must
be compatible with type declarations concerning the corresponding formal para-
meters which appear in the procedure.

For actual output parameters, only type declarations duplicating given type
declarations for the corresponding formal parameters may be made.

Array declarations concerning actual parameters must duplicate, in corre-
sponding subscript positions, array declarations referring to the corresponding
formal parameters.

5. Declarations A
Declarations serve to state certain facts about entities referred to within the

2 A
program. They have no operational meaning and within a given program their (\ [L)‘/\

order of appearance is immaterial. They pertain to the entire program (or proce-
dure) in which they occur, and their effect is not alterable by the running history
of the program. _’D{CW‘g«m e

oL X ﬁ&Q M' Lete YZ"/Y_ x4
i) Type declarations” 4. Type declarations serve t6 declare certain variables,
or functions, to represent quantities of a given class, such as the class of integers,

or class of Boolean values. /
%

Form - JNtype(I,I,"'I,I[],"'I[,],'“I[,,],“') {

P

LRt FhRfenlanY

where fype is a symbolic representative of some type declarator such as infeger

or booleam and the I are identifiers.

Throughout the program, the variables, or functions named by the identifiers I,
are constrained to refer only to quantities of the type indicated by the declaration.
On the other hand, all variables, or functions which are to represent other than
arbifrary real numbers must be so declared.

N

SIS

/] '#N\\\l

.

54 A. J. PerLis and K. SAMELSON:

ii) Array declarations 4. Array declarations give the dimensions of multi-
dimensional arrays of quantities.

Form: A~arvay (IL--1[0:V], LI, I[L:T])

| where array is the array declarator, the I are identifiers, and the “1”, and “U”

are lists of integers separated by commas.

Within each: pair of brackets, the number of positions of 7 must be the same
as the number of positions of I'.

Each pair of lists enclosed in brackets [1:1'] indicates that the identifiers
contained in the list I, I, ..., I immediately preceding it are the names of arrays
with the following common properties:

a) the number of positions of I is the number of dimensions of every array.

b) the values of 1, and U are the lower and upper bounds of values of the
corresponding subscripts of every array.

An array is defined only when all upper subscript bounds are not smaller
than the corresponding lower bounds.

iii) Switch declarations 4. A switch declaration specifies the set of designa-
tional expressions represented by a switch variable. If used in a go /o statement,
its value specifies the label of the statement called by the go /o statement {cf.
go to statements)

Form: A~ switch I:=(Dy, D5, , D)

where switch is the switch declarator, I is an identifier, and the D, are designa-
tional expressions (cf. go fo statement).

The switch declaration declares the list D;, Ds, ... D, to be a symbolic vector
(the “switch”), the designational expression D being the %k* component.
Reference is made to the switch by the switch variable I [E], where I is the switch
identifier and E is a subscript expression. The switch variable when used in
go to statements selects, by the actual value of its subseript, that component of
the switch determining the label called for by the go fo statement. A switch variable
being a designational expression, may appear as a component of a switch.

iv) Function declarations 4. A function declaration declares a given expression
to be a function of certain of its variables. Thereby, the declaration gives (for
certain simple functions) the computing rule for assigning values to the function
(cf. functions) whenever this function appears in an expression.

Form: A~IL; (LI... . T) =K

where the I are identifiers and E is an expression which, among its constituents,
may contain simple variables named by identifiers appearing in the parentheses.
The identifier I is the function name. The identifiers in parentheses designate
the formal parameters of the function.
Whenever the function Iy (P, P, ..., P) appears in an expression (a function
call) the value assigned to the function in actual computation is the computed
value of the defining expression E. For the evalution, every variable V which

Report on the Algorithmic Language ALGOL 55

is listed as a parameter I in the function declaration, is assigned the current value
of the actmal parameter P in the corresponding position of the parameter list
of the fanction in the function call. The (formal) variables ¥ in E which are
listed as parameters in the declaration bear no relationship to variables possessing
the same identifier, but appearing elsewhere in the program. All variables other
than parameters appearing in E have values as currently assigned in the program.

Example : I1(Z):=Z4+3xy

alpha :=q +1I (b +9 x mu)
In the statement assigning a value to alpha the computation is:

alpha :=q + (b +9 X mu) +38 X y)

v) Comment declarations 4. Comment declarations are used to add to a
program informal comments, possibly in a natural language, which have no
meaning whatsoever in the algorithmic language, and no effect on the program, =
and are intended only as additional information for the reader.

Form: A ~ comment S §

where comment is the comment declarator, and S, is any string of symbols not
containing the symbol ;™.

wi) Procedure declarations 4. A procedure declaration declares a program | \/7 4.? p
to be a closed unit (a procedure) which may be regarded as a single compound \ ¥ °
operation (in the sense of a generalized function) depending on a certain fixed
set of imput parameters, yielding a fixed set of results designated by output
parameters, and having a fixed set of possible exits defining possible successors.
Execution of the procedure operation is initiated by a procedure statement
which furnishes values for the input parameters, assigns the results to certain— g,

wvariables as output parameters, and assigns labels to the exits.) /,f 70
Form: A~ procedure I (P;) =: (Py), I (P;) =: (Py), ~ , I (P;) =:(Py) o o
A=A B B B A B ey

Here, the I are identifiers giving the names of the different procedures contained
in the procedure declaration. Each P, represents an ordered list of formal input
parameters, each P, a list of formal output parameters which include any exits
reguired by the corresponding procedures.

Some of the strings “=: (P,)” defining outputs and exits, may be missing

m which case corresponding symbols “I (P;)” define a procedure that may be (2\

called within expressions. \ﬁjﬁ——mmﬂ- . -»M \ o)
The A in front of the delimiter begin are declarations concerning only input ‘e

and output parameters. The entire stﬁgg of symbols from the declarator procedure (\ X

(inclusive) up to the delimiter begin (exclusive) is the procedure heading. Among

the statements enclosed by the parentheses begin and end there must be, for each

identifier I listed in the heading as a procedure name, exactly one statement

527

N —

56 A. J. PErRLIs and K. SAMELSON:

labeled with this identifier, which then serves as the entry to the procedure. For
each “‘single output” procedure I (P,) listed in the heading, a value must be assigned
within the procedure by an assignment statement “I‘= E”, where I is the
identifier naming that procedure.

To each procedure listed in the heading, at least one return statement must
correspond within the procedure. Some of these refurn statements may however
be identical for different procedures listed in the heading.

Since a procedure is a self-contained program (except for parameters), the
defining rules for statements and declarations within procedures are those already
given. A formal input parameter may be

e

a) a single identifier I (formal variable),

b) an array I'[,,:,] with 2 (=1, 2, ...) empty subscript positions,
c)a function'l (; i) with 2 (k=1, 2, ...) empty parameter positions,
d) a procedure P (, , - ~,) with & (8 =1, 2, ...) empty parameter positions,

e) an identifier occurring ; ina procedure whrch is added as a primitive to the

language.

A formal output parameter may be

a) a single identifier (formal variable)
b) an array with & (=1, 2, ...) empty subscript positions

A formal (exit) label may only be a label.[t CW

A label is an admissible formal exit label if, within the procedure, it appears
in go fo statements or switch declarations.

An array declaration contained in the heading of the procedure declaration

1. numbers
2. formal input variables, arrays, and functions.

All identifiers and all labels contained in the procedure have identity only
within the procedure, and have no relationship to identical identifiers or labels
outside the procedure, with the exception of the labels identical to the different
procedure names contained in the heading.

A procedure declaration, once made, is permanent, and the only identifiable
constituents of the declaration are the procedure declaration heading, and the
entrance labels. All rules of operations and declarations contained within the
procedure may be considered to be in a language different from the algorithmic
language. For this reason, a procedure may even initially be composed of state-
ments given in a language other than the algorithmic language, e.g., a machine
language may be required for expressing input-output procedures.

A tagging system may be required to identify the language form in which
procedures are expressed. The specific nature of such a system is not in the
scope of this report.

Thus by using procedure declarations, new primitive elements may be added
to the algorithmic language at will.

Report on the A%ﬁrithmic Language ALGOL 57

Part III
a) Basic symbols
delimiters 6: '
Operators Separators Brackets Declarators
@~ L goto 0 ~, B~ @ ~ procedure
- do) switch
% return ; [array
stop S = 1 type*
5 W = i comment
\ 1]‘— — {;
A orif k- begin
= 13}‘71‘1161 - end
=
=
=
=
Reliite -
lettiers digits
d~4 through Z §~ 0 through 9 S‘S
@ through =z =
b) Syntactic skeleton
Syllables
list
I~EE, - E
simple variable
V~I

subscripied variable
V~IE.E, E]
fumction
Fi(P.P, - P)
expression and Boolean expression
g } For the composition rules see the appropriate sections in Part II.
statement label
L~1

G

* Representant

e

58 A. J. PErRLIs and K. SAMELSON:

designational expression
D~L
IE]
parameters
P TFor the composition rules see the appropriate sections in Part IT
identifier
I~dppp:u
integer

G~EEE§

number
£ may be empty

NG Grg ot G
Prmied — may be empty

string of symbols
S~ xxx - xx where & is not @, and «a is a particular delimiter

Statements X=:

asstgnment statement
2~V:=E
V:=B

compound statement
X ~begin X ; 2 ; Zend

at least one 2

labelled statement
2~L:X where Xisunlabeled.

go to — statement
X ~gotoD

do — statement
X ~doL ,L (S,—=LS. . —1I- 8, —I

——
may be empty may be empty

quantifier statements
2 ~ifB
]57 el
f_o_rV::E(E)E,E(E)E, -, E(E)E
alternative statement
2 ~ifeither By, X5 0rif By Zy; 005 orif By, 2, end

stop- and return-statement
2 ~ stop

return

Report on the Algorithmic Language ALGOL

procedure statement

X~I(R)=:(R) where R~P,P....P

Declarations 4:
Function declaration
A~I(R) :=E
Procedure declaration

A~ procedure I (R) =: (R),I (R),

= (R),... I(R)=":(R)

may be empty may be empty may be empty
A A bogin 2 3 A v X ond

where R~ B B P, PP

Switch declaration
A ~switchl .= (D, D, -, D)

Array declaration

A~array (LT I{1:1,1, ",

Symbol classification declaration
ANtyge (LT C N)

Comment declaration

A ~ comment él) 3
e b

I, 1)

¢) Publication language

As stated in the introduction, the reference language is a link between hardware

languages and handwritten, typed

or printed documentation.

For transliteration between the reference language and a language suitable

for publications*, the following

transiiteration rules
may be used

reference language

subscript brackets [
exponentiation parentheses 4 |
parentheses (@)
basis of ten 10

statement separator

publication language

lowering of the line between the brackets
raising of the line between the arrows

any form of parentheses, brackets, braces
raising of the ten and of the following integral
number, inserting of the intended multiplica-
tion sign

line comvention: each statement on a separate
line may be used

Furthermore, if line convention is used, the following changes may be simul-

taneously used:
multiplication cross X
decimal point

separation mark

multiplication dot

decimal comma .

any common separation mark that will not
be ambiguous

* For example, for lectures in numerical analysis.

wn
0

60 A. J. PErrLis and K. SAMELSoN: Report on the Algorithmic Language ALGOL

Example

Integration of a function I (x) by Simpson’s Rule. The values of F(x) are
supplied by an assumed existent function routine. The mesh size is halved until
two successive Simson sums agree to within a prescribed error. During the mesh
reduction F (x) is evaluated at most once for any x. A value V' greater than the
maximum absolute value attained by the function on the interval is required for

initializing.

abs (absolve value) is the name of a standard procedure always available
to the programmer so that it need not be supplied as an input parameter.
procedure Stmps (F (), a, b, delta, V)

comment a, b are the min. and max. resp. of the points def. interval of integ.
T F() is the function to be integrated.
delta is the permissible difference between two successive Simpson sums.
V is greater than the maximum absolute value of I on a, b;

begin
Stmps: ITbar =V X (b —a)
We—
hi=(b—a)l
J:=h x (F(a) +F)
Ji: Se—
for R :=11)n
e

StF(a+(@xk—1) xh
o e s
if (delta < abs (I — Ibar))

begin Ibar =1

Ji={+D/t
n =82 Xmn;kh:=hn2
goto JI
1355 7 T3
return

integer (k, n)
end Stmps

Computation Laboratory Carnegie Institute of Technology
Pittsburgh, Pennsylvania
and
Mathematisches Institut der Universitdt Mainz

(Recetved October 20, 1958)

Druck der Universititsdruckerei H. Stiirtz A G., Wiirzburg

