ALGOL 6C+
Draft report by Peter Naur, Regnecentralen, Copenhagen,

Description of the reference language.
e 0) LANGI

As stated in the introduction, the algorithmic language has three
different kinds of representations - reference hardware, and publication
- and the development described in the sequel is in terms of the reference
representation. This means that all objects defined within the language
are represented by a given set of symbols -~ and it is only in the choice
of symbols that the other two representations may differ. Structure and
content must be the same for all representations.

The purpose of the algorithmic language is to describe computational
processes, The basic concept used for the description of calculating rules
is the well known arithmetic expression containing as constituents numbers,
variables, and functions. From such expressions are compounded, by applying
rules of arithmetic composition, selfcontained units of the language -
explicit formulae -~ called assignment statements,

To show the flow of computational processes, certain nonarithmetie
statements and statements clauses are added which may describe e.g.,
alternatives, or recursive repetitions of computing statements. Since
it is necessary for the function of these statements that one statement
refers to another, statements may be provided with labels. .- .

Stetements may be supported by declarations which are not themselves %
computing rules, but inform the translator of the existence and certain A
properties of objects appearing in statements, such as the class of numbers
teken on as values by a variable the dimension of an array of numbers or
even the set of rules defining a funetion. RS S e
{' Sequences of statements may be _combined into comgound staxements by E.
‘ins_:;icnwgf statement brackets./ The range of validity of a declaration
15 one statement (simpre or eompound.)

f A program is g selﬁéontained compound statement i.e. & compound
statementiwhich makes no use of ebﬁee%e-wheeh-axemne%m&efine&ﬁwé%h%p«}t&&kﬁ,.
é“ﬁ ~~~"In the sequel explicit rules - and associated interpretations - will ——

SRR

T

é~§ be given describing the syntax of the language. Any sequence of symtols

p—

Y to which these rules do not assign a specific interpretation will be considered

;/"tho be undefined, Specific translators may give such sequences different

interpretations.

1,1, Formalism for syntactic description,

The syntax will be described with the eid of metalinguistic formulee.
Their interpretation is best explained by an example:

<abd ::= (| [| <ab>(| <ab><a>
sequences of characters enclosed in the bracket < > represent metalinguistie
variables whose values are strings of symbols. The marks s:2= and ‘ (the latter
with the meaning of or) are metalinguistic connectives. Any mark in a
formula, which is not a variable or a connective, denotes itself (or the
class of marks which are similar to it). Juxtaposition of marks and/or
variables in a formula signifies juxtaposition of the strings denoted,
Thus the formula above gives a recursive rule for the formation of values
of the variable <ab>, It indicates that <ab)> may have the value (or

or that given some legitimate value of <ab)>, another may be formed by

following it with the character (or by following it with seme value of
the variable <d>. If the values of <d> are the decimal digits, some values
©of {ab) are:

ity

' -<d~1~g~1%>* T—mﬁ4}}uf5+ér? r8“l 9@

-

g(((1(37¢
123h5(

o

In the text-explaining the semantics any object whiech is denoted by a
designation, A say, which has been defined syntaectically as <A>, will be
identical with <A>. e . ; e

— ‘L’\ < L *s’q " 3 A= - gl
{ W/%m ‘r"«s == & < Sivewm
’ - iﬁg . '¥”°* ‘::fc by sl GA«J(ﬁaMﬂﬁ

The reference language is built up from the following basic symbols:
®Gasic symbold :i= (letterd| <digit)|<delimiter)

o
<
N <

J(lettzr;';%ggg?%%é1dl lfiglh[l*jlk]llmln|qjp]qlr] [tlulv|w|x|yle] -
SIF'G HIIlJlK}LlMlN]O]P[Q]R!S}T}UiVlexlylz i
Diglts !

{
£
i:"‘

2.3, Delimiters, ’
(dellmlter> H <operator>](separator)l(bracket)](declarator)

{xw-.
;r‘;, o e

<oberator> $1= <ar1thmetic operator>|(relatlona operator)f(loglcal operator)]

<{sequential o erator)
“<arithmetic operator) s:= + [- § 1\
{relational operator) s:= <

else

ﬂ;;eﬁ;ratoﬂ | :"‘l < = ' &l g' 10 l C@ —— N

| <’§raekew 3= (l s l] im | beain | end J 35

“(sequehtial operator> ::= zo‘toigﬁlgéiggﬁ

.'} =
f(declarator> 1= roced e!_;;gxl§gltgh!<type>[ggmmggt function|
f4q ¢ labglli nput égutputifo;mg ‘global

_Jhelimlters have a flxed meanlng Whlch for the most part is obv1ous or else
will be given at the appropriate place in the sequel.
Typographical features such as blank space or change to-a new line have
no significance in the reference language. They may, however, be used freely

for facilitating reading,
Strings of letters and figures enclosed by delimiters represent new
entities, However only two types of such strings are admissible:

) ek
X

G{A
[2.4, Unsigned integers. | g7 o
{unsigned integer) ::= <digit)|<unsigned integer>(digitd I
Examples: 8 '
1230
00217
0

Unsigned integers may represent the positive integers with the conventionsal
meaning, but have other applications as well.

Identifiers hav ?pherent¢gLan;gg.

{&&é"‘\\f *‘&i § : _ﬁ{s
(ﬁw) The pfbcesses which the algorithmie language is intended to describe, ¥

??’ Qieclmal fractiond i::= .(unsign~- 1

0
9 3 ‘ ’ng vaj}hbq 77

2,5 Identlflgrg, \\
<identif1er> = (letter)f(ldentlfler><le¥ter>|<identif1er>zg%gi
Examples: a };‘
’ Soup o
ViTa {kk ldl%éﬂév TR |
a3bkTMNs MWM (Lles ,SGircona Y- x%fug
MARILYN g \" n Y .

Ié&mg ’&um LA

¥ % 2 ﬁ'wt Wﬂ Wy :_:..",1» __‘ 2 ‘ & & ?
ppin. ‘*“3 dnole WHICST wd, ves, o

glven primarily by arithmetic and logical expressions., Constituents d%”‘
these expressions, except for certain delimiters, are|numbers, variables,
elementary arithmetic operators and relations, and other operators called
functions. Since the description of both variables and functions may contain
expressions, the definition of expressions, and their constituents, is 7]
necessarily recursive, P

Expressions fall in the following classes:
{genexal arithmetic expression) ::=
{axithmetic expre551on>}<cond1tional arithmetie expression) gf
{general Boolean expressiond ::=
‘express1on>l<cond1tional Boolean expression) ﬁfﬁf
{general designational expression} s:= 4
<{designatignal expressioni<conditional designat10q§$f;xpre851on>
{expressiond> ::= 4
{general arithmetic expres31on>]<general Boolegg'expression>)
¢ o, Aoy
The foﬁaow1ng arethe units from which eigyéfsions are constructed,

R

o gunsigneo 1ntegeg}¥¥<un51gned integer>L Cunsigned integer)

<exponent partd> s:= _ <& “dmted
{decimal number)> ::= <un51gned Ategs
Cunsigned 1ntege =<dec1mal fraction)

<un51gned number) ::= <decisal number)|<sxponent part)] "%_<_ 2 L—(l ?
5 < by <gg%1mal number><{expdyent part>
e 1.2 Examples. A 200,084 '085m'02 s o
i i 07.k3,8 ol
v 538k 9.3k, +10 ot

Vi 0873 -h ‘ o+

5-1'5. Se_ iecs.
Decid numbers have their conventional meaning. exponent part is a

sca actor expressed as an integral power of 10,

g £

LY
¥ 1 4

342 VARIABLES, - (A | PN
Je2sls Syntax, eg,f””ﬂ#p £
{simple variabled ::= <(identifier>

{subscript expression) ::= {generzl arithmetic expression)
(subscript list)> ::= <{subscript expre55}on>l<subscript list), (subscript expressiond
<array) ::= <{identifier) i

‘ (subscrlpted variable) ::= (arra}D[(subscrlpt list)]
\ <variable) ;::= <(gimple variable)l(subscripted varisble)

\ 1\uf§}{$<”?
: ¢

il

3.2+2+ Examples, epsilon) |
detA . v }? 'f{';ﬁiﬂiv‘d”ﬁ {on
{7 2] P
sin(nxpi/2), o[3, n, h]] /
3.2.3. Semantics., /

Vatables are designations for arbitrary scalar quantities, e,g,, numbers
as in elementary arithmetic, unless otherwise spec1fied. However, certain
declarations (cff. vdeclarations. section /) may specify them
to be of a special type. e.8.. integral, or Boglean. Boolean (or logical)
variables mey assume only the two values true and false.

oo O 1oy

3.2, Subscripts.
3.2.4,1, Subscripted variables esignate quantities whlcﬁx re components
of multidimensional arrays (cff. ions! sectioi).
Each .gerersY arithmetic expression of the subseript 1list occupies one
subscript position of the subscripted variable, and is called a ipt
The complete list of subscripts is enclosed in the subsecript bracgeéééf f
The array component referred to by a subscripted varlable is spec1fied
by the actusl numerical value of its subscripts (cfjﬁ arithmetic. expres
section 3.4,3).,)2}*
3 o2 o525 St seript ‘
sense (cfr.-seection #7273 Sy assumE”vaiues”Wifhln the subsey&pt -
/ bounds-of “the array (cf@. section ¥e
3.2.4.3, A subscripted variable is of the same type as the array of which

it is a component (efy. section) s
, i&%vé& ,‘\‘fﬁf% ; gr
, Beds N W O
05010 S aX e !f} ™ < dg
(funetionp/ ::= <{identifier) / s ' qig;eéik 9wst
~ Sprocedurep ::= <{identifierd>/ 10 A A”
nput parameter) ::= <array§l<procedureé <fuﬁct10n>}igﬁﬁéh@Z{érithmetlc
expression)

(input tigt> 2= <1nput parameter)‘(input list> , <input parameterd
<1nput part> so= >I(<1nput iist))
<{function value)> ::= Kfunctiond><input part)

3e3e2. Examples.,

i . mw:%“%
ﬁ L ; :
36334 Segzzﬁlcs. 7 o S, |
valueg are single nﬁmbexs

ich result through the application
of given sets of defined by a

(ten declaration (cfr. section
to fixed sets o »’arameters. arameters

e parameters fex.f : Gl
ton-deelarabions are thie same as admissible input parametefs of
procedures as llsted in section

3.3.4. Standard functions.
Fdentifiers-designating funetions may Fe chosen according to taste
Just.as-irthe-case-of- warzabiesa" "%ﬁ%*éaertain identifiers should be reserved

) Y- P % @’X%”§*5*J

sodulus (absolute value) of the valhe of the expression B
% sign(E) for the s:Lgn of the value of E (+1 for E>O, -1 for E(O)

*‘ 1p3 i Lorthe—targest—inbeger-not-greater-than-the-values o B~
sqrt(E) for the square root of the value of E

sin(E) for the sine of the value of E =
cos(E) for the cosine of the velue of E @)
arctan{E) for ts—tangens—of the value of E
for the natural logarithm of the value of E

exp(E) for the exponential function of the value of E (e) Vﬁ}u’ﬁ'
icular representation these functions may be available without y
explicit-declarations{cf. ecd- O S DPeckansfioees)
% 162) %0,

S\ ARTTHMETIC FXPRESSIONS.
3.\.1 Syntax.
{factor> ::Mmgned number>|<functlon value)!(variableﬂ
(Karithmetic expression))]<factor> <arithmetic expression>
<termd> 3:= <factor) |<Eewmdx<factor |<term>/<factor>
<arithmetic expression) ::= +<tem>[—<term>l<arithme‘tic expression) +

&

: r fr lu
3.4,2, Examples. - A oloc a6, |
Alpha . o
a x sin (omega x t)
0.57,412 x a[¥ x (N - 1)/

(b : (A x arctan(y) + Z) ;" _W‘F}{RW}

3.\.3 Operational meaning, ; ‘

An arithmetic expression is a rule for computing ;aetf@h@r by -
executing the indicated arithmetic operations on the actual numerieal values
of the constituents of the expression. This value is obvious in the case of
numbers. For variables it is the current value (assigned last in the dynamlc L Py
sense), and for function values it is the value arising from the computin« 187
rules defining the function (cf#. function declarations section)‘~
when applied to the current values of the function parameters given in the

_expression, {These variables and functions must not be declared Boolean
cirs section 1. € M) -’< p"“-"{?‘f >

LA o il])
3,b.L, The operators. rs] ol
The operators +, -, x, / have the conventional meaning with the additional

rule that 7L is 1nterpreted as a multiplication by the re01procal of the

- oY \QAQ\,
i
AL/
%37 .]

denote%exponentlatlon where the leading factor
is the base and the expression enclosed in parentheses is the exponent,

Thus n

Z/PZTni& meansZ(z)

. 2 1 2)&1\ nib' means (22)n
()

3.4,5. Precedence of operators,

The sequence of operations within one expression is generally from
left to right, with the following additional rules:
L R Parentheseﬁaare evaluated separately.

s s o o e Lo

b
£

i

] %ﬁw& gmz@w e 5€

; v‘ulusaf rreccaanc &

first: /f , -

E.LS. 0 SSIONS.
]
3.5.1. Syntax. 4
{general arithm expr A> ::= <{general arithmetic expression)
{relation> St {general arithmetic expressiond><{relational operator> _é '
<general arithm e r A r h___..,“"‘“"
{Boolean term> ‘\" <relat10n > |<{function value)l(vamable)l M
Boolean expressmn))l -~ .<Boolean term> =
<{Boolean expr gs1on> : s=(Boolean termd|<Boolean expression)v<Boolean term> | 0
/e (Boolean_expression>A<Boolean term> | e

{Boolean expressiond=<(Boolean term>

N _— uAPAE))
~ I e M‘M/'/ —\7 %){: N2 ‘(\/M ,r/ .
34,2, Examples. i o : A
% 20 e e Al w‘*/,%,g@f “‘E i T | s
X0 v ‘ S0 \J ..;’ L ;oQ/E"“;\\" LA o~ T B A o
Y c 2 [DA/ e o erv A
\ Tongk v Xﬁ(LT { W e
R [v S oW 0 o)
3 .5\‘5 &M C gl =3 ! __,_~‘-——/// | (‘?‘&*/L fa“’t?{ g A ﬁikkﬂ"
E g S EEEES d (Lo~

W aralogous to arlthmetlc\expressmns. However,

the values of the constltuentsiare conflned to ‘the d;rutﬁ values rue and

false entedemsis v riedheek e kfalae b
“¥ariables and ons except those wh:.ch appear in relatlons mus’c be
~deetared Boolear (cff. section o, cimle pece | ...)

O f« ‘L"@“‘e e ol Qg
f;' The operators.

’-} Relations take on the (Gurrert).value true whenever the corresponding

relation is satisfied for the expressions involved. il

The meaning of the logical operators -, (not)," K A y and
= (equivalent) is given by the followmg function table, vhere%%&nds for
false and 1 -for—drue: huo) ;
B1 0 0 1 1 > [umpbies |)
B2 0 1 0 1 /
~, Bl 1 i 0 0
B Bl v B2 0 i il 1
Bl A B2 0 0 0 1
Bl = B?. 1 0 0 1
NUN ., geamsrcl & > a2 THS
3.&.6 Precedence of operators, ~ .~ & o 7 - . !
those of i L S
3.§.Z.1. The following rule of precedence heclds:
4 first: -
second: A -
third: v N>
fourth: =

-

A ;

Y

! = ‘?n
cﬁw u
(- .

3& W-
5. 01 $yn'bax.

<{label> 1= <identifier>‘(signed integerd
<{switchd ::=

— g o S

<switeh value> ::= <switc [(subscrlpt expres31on>]
designational expressiond ::= <labeld | <switch valued

)
3, § 2. Exarples.
5 7
P9 L yin e
A~ Choose[n - 1] %;:L"

3.@.5. Semantics.
The value of a designational expression is always finally a label of

a statement (cf¥. gggﬁ;on & STHTEN- -). In the case of a label this value

is given directly. A switch value refers to the corresponding switch decla-

ration (cf¥. section S. SWiTt&) and by the actual (current) numericel value

of its subscript expression selects one of the designational expressions

listed in the switch declaration by counting these from left to right.

Since the designational expression thus selected may again be a sw1tch.Vh£Zu?

th@s\evaluatlon is obv1ously a recursive process...

The subscript expression,
_ 'ﬁe subscript expression puet assumeSg)ﬁf positive integral values
1 2 3 .w»e , N, Where n is the nunber of entries in the switch declaration
llst.

3) re vali o
3.8,5. Unsigned integers as labels. A hans

Unsigned integers used as labels|are treated-as-numbers. Thus label
00217 15 not-different-fromlabel 217

AR

ON. SI0

3.7 .1. S}m . * ,ii‘ & /Y 3 ;;g s?‘: 7
{conditional arithmetic expressiond ;:= i 4 ~
olean expre531on> yieldg (arithmetlc expra§%10n>\

yields <arithmetic expressiond
<{conditional Boolean“expression} ::=
<general Boolean ression> yp ds <Boolean expre551on>]

-* <

{conditional designational e res51on> 105
<{general Boolean expressi xlel <de31gnational expr8351on>l
<conditional designational expressiond> glse <general Boolean expression)
vields <designational expres§i9n>

3ol <2, Examples. ’&Y;/JL
x>0 yields -x else #Fyields x

F

3.7.3. Semantics.
The value of 8 condltlonal expression igfound as follows: The Boolean
expressions prgeedlng the delimiters yields are. evaluated in sequence from

N

™,

w"

K//<f§::ﬁ<yxr\¥ciLLﬁkebke. 'S éﬁﬂfpl&zﬁi ,M‘MWEQW//

S,

~ e

left to right until one is foa-- i e~ Fren the value of the cond1~ 5

‘‘‘‘‘

- L, STATEMENTS,

The units of operation within the language are called statements. They
will normally be executed consecutively as written, However, this sequence
of operation may be broken by go to statements, which define their successor
explicitly, and bylbaxieus~%y?es—cﬁyconditional statements, which may cause
certain statements to be skipped.

In order to meke it possible to define a speclfic dynamic succession,
statements may be provided with labels.

Since sequences of statements may be grouped together into compound
statements, the definition of statement must necessarily be recursive., Also
since declarations described in section 5, enter fundamentally into the
syntactic structure the syntactic definition of statements must suppose
declarations to be already defined. ‘

r’_‘;& c:'i; &%-@-\ —-—\3 3-*\’\};

L,1. COMPOUND ST g %ec : ’
,’;—‘.

hel . DnSyrtax. -
/i <unlefl@S.pasicefatement> ::= <assi en;rﬁiatement>]<go to stat

"\

! <do stage ent>| (p1 #ocedure statement>, 2 iétaxgmggxgﬁ
e e D JU JOr 1 - AUORS, Y T e
<not epd’ ::= <any St 'fain1n~ the dellmltersmeﬁdA§ﬁﬁhsl elne. >

L

el)
<compBund statement)> ::étf' Ak ~
, 4 begin ¥deelareti tatement Alst> end <not end>
ifﬁwf(statement> te= <unlab1éﬁ%statement> <labé“i« %gunla Ted statement)
<unlap!1ed statement}"g'— <unlaffled basic statementy: compound sta&ement)}((yf od ‘»c.>
{statement list> ::= <statement>]<statement list)> ; <Sta%em@g&}“<Cgp“ibﬁbgyaj ’

Zvoibzk E?(a.m.p‘leso
Unlabled basic statements:
a =p+q) 3
go to Naples "
Compound statementf”')
if a >
begin nrb‘%fa}~,ﬂg§gég formet—string-end—Ffermat-y¥—y
g:FH-AA '= p x r ; qQutpub VEAA)-T
(AA > 10) 5 g £t0 Y3 x =% x cos(t) “ ¥ x 31n(t)
=y x cos(t) + x x 51n(t) Y: output V(r) end Here ends print cycle

ctaiewment >

<<

L4,1.3. Semantics. (Lt ‘fﬁ
Every eemgxmzm&*staﬁﬁm&u; (éefimed~by. the statement bracket-begin-end-

OP-by st fe-or-for-clause) automatically introduces a new level
V{Q of nomenclat . This is realized as follows: ARY- 4 identifier occurring

within theﬂgiﬁéﬁﬁxknmy'through a sy;t ble declaration (cfr. section 5)

be specified to be local to the eemgéﬁgﬁrin guestion. Thls means (a) that

the entity represented by this identifier inside the has no existence
outs1d?, it and (b) that any entity represented by this identifier outside
the.coﬁggﬁgé_ls completely inaccessible inside the compound. Ll

Identifiers (except those representing labels) occurring within a Frshas
Ppound—statement and not being declared local to this ecmpourd will be global
to this.compound, i.e. will represent the same entity inside theﬂaaﬁpewai
and in the level immediately outside it, The exception to this rule is

4

f s
o

| g\gor -

S ‘ Wi,

priss

/

] hwn-zj”f

et

™/ V < %
presented by labels which are local to the eempcuﬁw in whgch they occur,
Since a statement of a aempoundistatemsnt may again itself be a /

compound statement the concepts local and global to a.tempéuaé-must be
understood recursively. Thus an identifier, which is global to a compeund—

_A, may or may not be global to the B in which A is one statement,
The string of symbols entered between ar@gend and the following end or

' 1s of no meaning to the program. It may be used to enter explaning text.

4,2, ASSIGNMENT STATEMENTS. ¢ \3 =

First-deseription:no-simltareous-assigmmertsy

bWQ”T Syntax.

4,2.2% Examples.)
B, iy o ot TR
A = B/C = Vo~ @ > 3 ,rzi,} e

s[v, k2] := 3 - arctan(s x zeta) $¥C.»@fb?ﬁé¢%1‘
Vo= (B Y) AL whexe ot

L.2.3., Semantics.

Assignm statements serve for assigning the value of an expression to
a variables(This process must be understood as follows:

Nunmbers and variables must be interpreted in the sense of numerical
analy51s, i.e, as entities defined inherently with only a finite accuracy.
Similarly, the possibility of the occurrence of a finite deviation from
the mathematically defined result in any arithmetic expression is expli-
citly understood. No exactiarithmetic will be specified, however, an@ I%sq,f{?
is indeed understood that different hardware representations wi ge -
arithmetic expressions differently. The control of the possible consequences
of such differences must be carried out by the methods of numerical analyis,.

This control must be considered a'part of the process to be described, and
will therefore be expressed in terms of the language itself. |

By means of a type declaration (sectlon) a variable or .
function may be declared to belong to g certain class. . : An expressionf:conﬂ
taining variables or functions of different types must in general be assumed
to have tﬁeutype which mathematically speaklng will embrace it in all
cases,| In spe0131»cases however, the type 'of the expression may, for
mathematical reasons; “gnd in a given context’. be assumed to belong to
a more restricted type. If, and only if, this dis the case may an expression
be assigned to a variable of the more restricted type. Depending on the
characteristics of a specific hardWare representatlon such an assignment
may or may not give rise to special preeautlons, such as rounding, and
this z2gain may, in the particular representatlon cause that the assign-
ment statement will yie1ld a meaningful result éven if the expression is
not of the restricted type. It should be stressed, however, that this
must be considered as an entirely incidental circumstcneey which in no
way changes the above strict rule, that only mathematlcally«correct
assignments are in the language. [

i}

b2 A, Mmmmdmmﬁ&yef1&mm. YeA K
The relations of the types integer and Bogd€an must be understood as
follows:
-Boolean-declared-variables form-a subset -of - dnteger-declared onesv
Integer declared variables form a subset of . real declared on:s.

\\ P,

\/hlﬂxl. Syntax.
{leftwpartd> ::= <variable) :=

{left p&-‘ ligt) 1= {deft part>l<left part list><{left partd
<assignment, statement> ::= <left part list)ﬁexpression>‘

/

N

-

Rds

4.2,2, ExempleSs.]
8§ :=p[0] :=n_:=n+1+4S

/

10~

Alternative description, simultaneous assignmetts.

)
7

A := B/C - vaq %8

A\

L.2.3. Semsntics. As above.with trivial modifications.

L,2.k, Evaluation. P

The meaning of the multiple @ssignments is that the express{;-is

evaluated once and then assigned to akl the left part variables.

4.,2.5, Types.

All variables of a left part list must ﬁé‘Qi the same declared type,

4,2,6, The relations of types.

As above,

4,3, GO TO STATEMENT,

4,3,1, Syntax. 7
{go to statement> ::= go 1o <§9§§;él designational expressiond

4.3.2, Examples.

4.,3,3, Semantics,
A go to statement interrupts the normal sequence of operationc, defined

go to 8
go to exit[n + 1] _ ,)
310 Town][- -~ | Loty > 5 Lo , i

by the write-up of statements, by defining its successor explicitlgégfthe
value of a gefieral designational expression. Thus the next statement to be
executed will be the one having this value as its label.

A W - . : e
“] lead from outside into a coxpOMRE--SSEBSMENS, (1) wﬁﬁéfg\lb

s

L}’.u‘i. S . a Lul”é“
dinput elementy ::= <variable)|<arre

L., INPUT STATEMENTS.

; { Wa

{input statement™list> ::= <input element)!(input list> , <input element)
input format) ::= <identifier>
{input statement) ::= iﬁgg;m<input formatd(<input statement list)))

Moty y —t T “”}{? A t)
- s <LMAGQL{,(;O*QwAJKJ

b k.2, Examples. g

input Tape (p[n + %], v) Y

inmout V (Q[y, s-2], R[2]) ‘“wﬁ%m%
A ™
4. 4k,3, Semantics. VASSIALADN T,

An input statement serves to assign pubers expressed in an exterior

medium to variables. The exterior medium will be given by tﬁéaggput format
declaration (cfr. section) defining the meaning of the fﬁ@y@ format.

Th,3,k, Restriction. Since labels are inherently local, no_gésto statement may

11—

L bk, Tnput elements. :

The variables and arrays listed in the input statement list must correspond
tothe 1list of ‘formal identifiers given in the input format declaration in pre-
cisely the same manner as the procedure output parameters of a procedure
statement must correspond to the formal identifiers of the procedure decla-
ration (cfr. section kL, cases T.1, T+2 8).

4,5, OUTPUT STATEMENTS.

hefele Syntamx,
<output element)> ::= <expression>|<array>
<output statement listd ::= <output element> |
{output statement list> , <output element>
<output format)> ::= <{identifier>
{output statement> ::= output <output format>(<output statement listd)

4.5,2, Examples.
output Typewriter (s[1], s[2], v+q)
output drum (Q)

4,5,3, Semantics. ,

An output statement serves to transfer theivalues of expressions
to an exterior medium. The exterior medium will be given by the output
format declaration (cfr. section 5.) definiﬁg the meaning of the
output format. v

4.5k, Output elements.,

The expression and arrays listed in the output statement must
correspond to the list of formal identifiers given in the output
format declaration in precisely the same manner as the procedure
input parameters of a procedure statement must correspond to the
formal identifiers of the procedure declaration (cfr. section Wi
cages 1.1, 1,2, 1.3, 1.4, 1.5, g X}.

L, 6, STOP STATEMENTS.

H.601, Syntax,
{stop statement) ::= stop

4,6.2, Semantics. .

A stop statement defines the operational end of a program. It
has no successor. -

If, in hardware representations, it is desired to define a
successor (to be activated in ease a suitable signal is provided)
this should be the following statement,

4.7. RETURN STATEMENTS.

4.7.1. SyntaXi— e
{return statement) “ri= return 7 o y g
- |
4,7.2. Semantics. s e ~
A return statement defines the operational end of a procedure.
Tts successor is theistatement following the proeedure statement being
executed. o

bo7.3. Océvﬁngpce.
Return statemén%sumgy only occur in the-eompowr
of” procedure -d.e.;:.}.aaa-‘bms and" “kong: function de&mbéem

B

P 5 L 45 o S bl
4 Ml Sy B .

L. ..Wm_L

u .' (] 1 * Synta)(L 2 ‘%5‘ . ""’
{Qummy statement)> ::= <b
4.3%.2 . Examples.

L{/ bggin e = e o 3§ John: end

h:ﬁ.}. Semantics. M),

A dummy statement executes no operation., It 9n1§6serv%ﬁ to place
a2 label.

IF syﬁmm FOR STATEMENT, ALTERNA/T/W% STATEMENT, DO sm){'mm
4

Description awaits the decision at Paris.

L. . PROCEDURE STATEMENTS,

b, .1, Syntax.

*(Qgﬁg or égwgﬁ&i@nkwféawébfaﬁﬁ>f<expression>

ﬁnggﬁlx open..expression Iisty-rr=
<open, or. expression>|<partly-open-expression-list> - <open-or-

S e

(a&&ay-gaxame&erymf?f’< RErTay Yy <rartly open eXprEssIon TR

{output parameter) ::= <var1ab1e>[<array [(general designational T
expression) v Rl

{output listd> ::= <output parameterd|<output listd> , <{output parameterd

Coutput partd ::= <(blank>| =: (<output listd)

{procedure statement) : := <{procedure><input partd><{output partd

N,,e;‘r»o—u&u«g R 1 MM%r}

:h. 2 Examples.
B(a/Q + v, b, M[k,]) =: (s[, n], &, 18)
SR(v[|, j, u-2, t)
Isyp =: (p, epsilon)
COMPILE

L, .3, Semantics. '

A procedure statement serves to initiate (call for) the execution of a
procedure compound (cfr. procedure declaration section }« The execution,
however, is effected as though all formal parameters listed in the formasl
part of the procedure declaration hemding were replaced, throughout the
procedure compound, by actual parameters derived from the parameters in the
corresponding positions in the procedure statement. In addition, the
procedure compound will in certain situations BgyZLpplemented by assignment
statements inserted before it. . ¥ » 4 4
b, 4, Actual-formal correspondence.

The correspondence between the actual parameters of the procedure
statement and the formal identifiers of the procedure heading is established
as follows: The Lapu%—@a@t~eu%putfpapt of the procedure statement must 9é

,; gh ,f“,x“s_ . .
ﬂjj i Lﬁﬁ

\

 §
§
H

Lompound [
““ﬁ?”‘&%'«“‘“’ ’ ———REorTip AL SN
¢ - = &

tderrtical THTorm-with-the—Ffeo sl-part-ofthe corresponding proéedure-—r;
declaretion. FmtNts—way there is defined a one-to-one correspondence Jlrze
between theMparemeters— i > the-progedure—statement
and the idéentifiers in the formal part of the procedure declaration, This i o
one—to-one‘ﬁorrespondence together with the input-cutput specifications faefi
given in the\procedure heading- (section) give complete information

concerning the admissibility of parameters employed in any procedure call, ;,

{ Aaalt

Rules covering all admitted cases are given in sectlons L, B and k. .9
together with the corresponding semantic rules.

L, ,5. Identity of parameters,,f/

If a formal output parameter is identical to a formal input parameter,
this identity must be prqﬁé%ved in the call. The corrﬁﬁonding actual parameter
as well as any other parémeter entered both as input and output parameter
in the procedure cai}/ﬁust obviously meet the requirements of both input

Se .

and output paramete
b, .6. Actual parameters. {2?;W1i§

All actual parameters must be defined in the eompund. statement-where
the procedure statement occurs. ' -

E%écifg
4, .7. Global parameters of the procedure eeapaé&d. ‘gfwéi '
Identifiers which are global to the procedure compeund’ and which have
been used there must not have been redefined (by declaration) in the , R

where the procedure statement occurse '€ Horrn 1ave

L, :X§ Tnput parsmeters. | [-e
Case 1.1. » AL I oy 47 La A AL
Formel specification: typeF (f). (Special case: no
Actual parameter: a. '

Declaration for actual parameter: typeF (a).
Formal identifier will be replaced by: a.
Execution: procedure compound

3

épecification for f).

Case 1.2,

Formal specification: typeF (f). (Special case: no specification for g P

Actual parameter: a.

Declaration for actual parameter: typed (a). Quantities of typeA must form &
subset of the quantities of typeF.

Formal identifier will be replaced by: g (a unigque identifier of typeF). .

Execution: g := a j; procedure compound. The assignment g:=a must be permitted, |
ofr. semantics of assignment statements, section .

Case 1.3

Formal specification: typeF (f). (Special case: no specification for £}

Actusl parameter: a[EL, ... , BEn]. BE1, ... , En arc expressions defined in the
level where the procedure call 1s written. :

Declaration for actual parameter: typeF array (a[E, .e¢ B 2 E, oo | E].

Formal identifier will be replaced by: a[l, ... , k]o (1, ¢so | k are unique
identifiers of type integer).

Execution: i := Bl ; 3 k = En ; procedure compound., The assignments must be
permited ones, cfr. section .

~1h-

Case 1.4,
Formal specification: typeF {f). (Special case: no specification for f),..
Actual parameter: a[El, ... , En]. El, ... , En are expressions defined in the

level where the procedure call is wrltten.
Declaration for actual parameter: typeA arraey (a[E, see B : B, ¢us , E].
Quantities of typeA must form a subset of the quantities of typeF,
Formal identifier will be replaced by: g (a unique identifier of typeF).
Execution: g := a[El, ... , En] ; procedure compound,

Case 1.5,

Formal specification: tyoeF (f). (Special case: no specification for f£).

Actual parameter: E éan qxpre551on in variables defined in the level where
the proceduréﬂ3é1f s written).

Declaration for actual parameter: none.

Formal identifier will be replaced by: g (a unique identifier of typeF).

Execution: g := E;; procgdure compound.

Case 2,1, &
Formal specification: typeF array (£ld, eee @3 A, ese ,d]). (Special case:
apray (fld. ... d 2 d, .., ,d])).

Actual parameter: a, g
Declaration for actual parameter: typeF array ATHE TN, O B T E] The
number of subscripts and their bounds must be identical for f and a.
Formal identifier will be replaced by: a. f\Akﬁv§f,?’f': P L 3gﬂ‘)
Bxecution: procedure compound. -

Case 2.2, _
Formal specif%cation: typeF arrax-(ﬁ‘[dl vee ,d 4, oe. ,d]). (Special case:
(f d e e ld : dl e e .d))0
Actual parameters a[(partly open expression list>] The number of open subseript
positions must be the same as the number of subscript positions for o
These open positions must have the same bounds as the correpponding positions
of g .
Declaration for actual parameter: typeF array (a[E cis B2 E, oo, Ble
Formal identifier will be replaced by: a. Simultaneously the subscript lists-
i follow1ng £ will be replaced by the subseript” “I1st given in the procedure

» statement for a supplemgnzeﬁfiﬁ ail open positions by the original subscripts
zgpgsiﬁéedwfarWTWffEEn in the seme order.

Execution: procedure compound,

Case 3,

Formal specification: typeF function (£(d, ... , d)). Special cases function
(f(dx L d))'

Actual parameter: a,

Declaration for actual parameter: typeF function a(I, ... , I) sess This decla-

ration must agree with the formal specification with respect to the number
and nature of all parameters taken in the same order. If a uses global
identifiers these must also be global to .
Formal identifier will be replaced by: a.
Execution: procedure compound.

Case b,

Formal specification: procedure £(d, ... , d) =: (&, «.so , d).

Actual parameter: a.

Declaration for actual parameter: procedure & This declaration must agree
with the formal specification with respect to the number and nature of all

«15~

parameters taken in the same order, If a uses global identifiers these
must also be global to the procedure compound, ’

Formal identifier will be replaced by: a.)

Execution: procedure compound.

Case 5.

Formel specification: input (4, ... , d),

Aetual parameter: a.

Declaration for sctual parameter: format 2(..e..). This format declaration must
correspond to an input statement of the form given in the formal specificatlon.

Formal identifier will be replaced by: a.

Execution: procedure compound.

Case 6,

Formal specification: output f{(d, .. ,4).

Actual paraemeter: a,

Declaration for actual parameter: format a{.ee.s). This format declaration must
correspond to an input statement of the form given in the formal specification.

Formal identifier will be replaced by: a.

Execution: procedure compound.

b, J8.%output parametef. -

Case T,1.
Same rules as for case 1.1.

Case 7.2,
Same rules as for case 1.3.

Case 8,1,
Same rules as for case 2,1.

Case 8.,2.
Same rules as for case 2.2.

Case 9,

Formal specification: label (f).) T e e
Actual parameteri—e—or<unsigned-integer>- 02§ madional ot perton
Deeclaration for actual parameter: none, but a or the integer must be a label
accessible from the level of the procedure statement,

Formal identifier will be replaced by: a.

Executione procedure compound.

Case 10.

Formal specification: switch (f:=(d, ... d)).

Actual parameter: a.

Declaration for actual parameter: gwitch a := (D, 4., , D). The switch a must
have the same number of positions as f. Variables ocewrring in any of the
D's must be global to the procedure,

Formal identifier will be replaced bdby: a.

Execution: procedure compound.

k. 9. Return statements.
4 Aoy-returmstatenent: v@%h&nmthgggmmumhmmyemmp@uaéww&&&.bQMXEQlaced,hy a w

. Fi
f g 4 f!
o y 3.0 B It 4a o o
-}? F A, AN AN B T b b o
v #
. 2,
> 4

~16~
R
TR

e

go to statement referring,.by-1ts Tabel to the statement following the
procedure _“_ ot

program. A deelaratlon for an ide

compounds) . Outsmde this the particular identifier may be used
for other purposes.

Dynamically th lies the following: At the time of a dynamical
entrance into a (through the begin of=the-eompownd, since the

labels inside are 1 ah nd therefore unaccessible from outside) all identifiers
declared for the QM assume the significance implied by the nature
of the declarations glven. “If these identifiers had already been defined
> by other declarations outsui?e they are giyen g new significance. Iden./
= tifiers which are not declared: for the colisouns
their old meaning. RASR
At the time of an exit from a{ciRie
a go to statement) all identifiers Wiichla -eonpound 7 _
their significance completely, i.e. a{:a new entrance 1nto the compound 3’“"" E@%
the values of local variables are not deﬁ;:ned. L pp——
All identifiers of a program,must b; a@clar mg‘gy,,w et ¢
7 w‘“ﬁ""“““" / Ly
The syntax of declarations is as follows-" A
<declaration> ::= <type declara.tmn)l(array decla@fion)l(switch declaration |
{function declarationd> l<procedure declaration> f(coment declaration) .
{declaration 1listd ::= <blank> |<declaration) ‘(dechmﬁ;on list};(declaration)‘@/w A

~ No identifier may be declared more then once in any ‘one declaratioh _

lz'?:
] C\Ay‘”v %
(¢ 5.1, TYPE DECLARATION.

1.1, Syntax.

ype list)> ::= <{simple variable)l(smxple variabled, <type list>
{(ype> ::= realhnte 2 ~ v
“{type declara‘cion> 2= <typed(<type 1ist>)

5.1¢2. Examples,

integer (p, q, s) ' W’b { brcat " >
Boolean (Acryl, n) s ’

Bk o5l Semantics.
Type declarations serve to declare certain simple variables to/
represent quantities of a given class. Real declared variables may/assume _ M
"2y positive or negative value / including zero. Integer declared variables may ®assume
all positive and negative integral values, including zero. Boolean declared
varisbles may assume the values §Mtrucy and @ folsef.

O ot s dne K PrAEVED

I
oo

wunteger declared variables M,éform a subset of . ¥e8l declared ones.

£
o 4 .~ v & »
LY papree A # o & Podm
\, AT AR g e ,{? p

v .} fa ,j ' .~
o { e . L A)
Layl 2° -(Ut A ARG hNARAN)
i
-~

H n .) . J ~ - 8 ™
° ‘ ;’ z .
ihle] -

L arithmetic express:tenk
arithmetic expression>\>
WMH
<&ewer7b9und>mw<%ewerﬂup§é!wbvmlism +Lupper bound)
{array segminw 1= <arrayp[<tower—upper bound list)]l
<arrayp , <array segment) (/uf') e _
{array 1list)> ::= <array segment)](array list)> , <array segment)
<array declarationd ::= array f<array list>}|<type> array farrsy list>}

«

5 2,2, Examples.

_ngxéﬁa b, c[7,2:,m], -2:10]§§ .
& 1g:sgg:r§A[c<o y;g;gg 2 else 1 yields 1 : 20]¥
ay@iy N

Belels Semantlcs.

An array declaration declares one or severtll {dentifiers to represent
multidimensional arrays of subseripted varisbles and gives the dimensions
of the arrgys, th houndf of the subscrlpts and the t.ypes of the variables.

;%rva 3 ma NPT ga) tire ,(éum‘ QA '“; x: Ly “Rp{w ;
5¢243.1,/ Subscript bounds., f‘wwi G A DA \; B -

The subscript bounds for any array are given in the ‘first lsubscript | Lo o
bracket following this array in the form of a }ewer-upper bound\list, ; ; f
Each 4f these-contains—two 115ts of artthmetiv expression=—separeted (LD fAta th-
Jy-the-dedimiter :. Thesmmﬁmﬁmmmm&yw bt BT
baunds for- aﬂri’?ﬁﬁ"scnp‘ﬁ' Likpn in order from left to % . ff £
(The gf&m ff oy it o, f,:’“wgmmim" aklf Svdrcipiy

5.2.5.2. Dimensions, Eae:

% “ 1y The dimensiong are given as-asXt the Mnu%er of entries in the
{1 bmmpper bo lists,
_ RoaYT

5.2.3.3. Types. '

All arrays declared in one declaration are of the same quoted types

If no type declarator is given the type real is understood.

5.2.4, Lower upper bound expressions, s / ,‘:,‘iﬂ,f:,;.f

5,2.4,1, The expressions must be &Wmmmféﬁ‘se
ion 4.2.3). sefe

5.2 4.2, The expressions::can only depend on variables and functions which

are global to the for which the array declaration is valid,——

5.2.4,3, An array is defined only when all upper subscript bounds are not

smaller than the corresponding lower bounds, o

5.2k, 'I'he expressions will be evalua'ted at each entrance into the

4.?
3

T e
¥ s

i/ £~ n e)
(. of ek §.51)

\

-18-.

ROC, EC O
Syntax. Elements of the complete description,
<{procedure declaration}> ::= procedure <procedured<{formal partd
{formal specification partd<{global specifieation part)
<{procedure compound) :
{formal part) ::= <formal input part><formal output part)
{formal specification part> ::= <{specification list)|<{specification list) 3
, {formal specification part) i
{specification list)> ::= <{specification)|<specificationd<{specification list>
<{specificationd> ::= <{type specification}|<array ecification>l
- {label specification>l<switch specification} |{function specifica&ion)l
22 <procedure specification) | <Cunput Speeitcation > |<oubpat specif cabion> NS
<{global specification part> ::= <blank>lg;gbal:<formal specification part)

s,

