REGNECENTRALEN ALGOL BULLETIN SUPPLEMENT no, 2.
Gl. Carlsbergvej 2

Valby, Denmark.
1.3.1560,

REPORT ON THE ALGORITHMIC LANGUAGE ALGOL 60,

Dedicated to the memory of

WILLIAM TURANSKI

by

J.W.Backus, F,L.Bauer,K J.Green, C.Katz, K J.McCarthy, P.Naur, A.J,Perlis,
H.Rutishauser, K.Samelson, B.Vauquois, J.H.Wegstein, A,van Wijngaarden,
M.Woodger

edited by

Peter Naur

INTRODUCTION

Backeround

After the publication1'2 of a preliminary report on the algorithmic
language ALGOL, as prepared at a conference in Ziirich in 1958, much interest
in the ALGOL language developed.

As 3 result of an informal meeting held at Mainz in November 1958
about forty interested persons from several European countries held an
ALGDL implementatlon conference in Copenhagen in February 1959, A “hardware
group” was formed for working cooperatively right down to the level of
the paper tape code. This conference also led to the publication by Regne-
centralen, Copenhagen, of an ALGOL Bulletin, edited by Peter Naur, which
served as a forum for further discussion, Durlng the June 1959 ICIP Con-
ference in Paris several meetings, both formal and informal ones, were
held, These meetings revealed some misunderstandings as to the intent
of the group which was primerily responsible for the formulation of the
language, but at the same time made it clear that there exists a wide
apprec1atlon of the effort involved. As a result of the discussions it was
decided to hold an international meeting in January 1960 for improving

1, Preliminary report - Internatlonal Algebraic Language, Comm,Assoc,
Comp,Mach, 1, No, 12 (1958),

2. Report on the Algorithmic Language ALGOL by the ACM Committee on

Programming Languages and the GAMM Committee on Programmlng, edited by

?. J. Perlis and K, Samelson, Numerische Mathematik Bd. 1, 8, 41 - 60
1959).

o

the ALGOL language and preparing a final report. At a European ALGOL
Conference in Paris in November 1959 which was attended by about fifty
people, seven European representatives were selected to attend the January
1960 Conference, and they represent the following organisations: Association
Francaise de Calcul, British Computer Society, Gesellschaft fur Angewandte
Mathematik und Mechanik, and Nederlands Rekenmachine Genootschap. The seven
representatives held a final preparatory meeting at Mainz in December 1959,
Meanwhile, in the United States, anyohe who wished to suggest changes
or corrections to ALGOL was requested to send his comments to the ACM
Tommunications where they were published: These comments then became the
vasis of consideration for changes in the ALGOL language s Both the SHARE
and USE organisations established ALGOL working groups and both organi-
sations were represented on the ACM Committee on Programming Languages.
The ACM Committee met in Washington in November 1959 and considered all
comments on ALGOL that had been sent to the ACM Commupications. Also,
seven representatives Were selected to attend the January 1960 international
conference. These seven repredentatives held a final Preparatory meeting
in Boston in Dedember 1959,

anuary 1960 Conferenc

The thirteen representatiVesl, from Denmerk, England, France, Germany,
Hollend, Switzerland, and the United States, conferred in Paris from
January 11 to 16, 1960,

Prior to this meeting a completely new draft report was worked out.
from the preliminary report and the recommendations of the preparatory
meetings by Peter Naur and the conference adopted this new form as the basis
for its report. The Conference then proceded to work for agreement on
each item of the report. The present report represents the unioh of the
Committee's concepts and the intersection of its agreements,

As with the preliminary ALGOL report, three different levels of
language are recognized, namely a Reference Language, a Publication
Language and several Hardware Representations,

Reference Language.

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual understanding and not
by any computer limitations, coders notation, or pure mathematical
notation,

TR MR e pewt e e e e e v W n s e a rees e e

L. William Turanski of the American group was killed by an automobile Just
ior to the January 1960 Conference.

-

It is the basic reference and guide for compiler builders,
It is the guide for all hardware representations.

o It 1s the guide for transliterating from publication language to any

locally appropriate hardware representations,
The main publications of the ALGOL language itself will use the
reference representation,

Publication Language.

The publication language admits variations of the reference language
according to usage of printing and handwriting (e.g., subscripts,
spaces, exponents, Greek letters),

It is used for stating and communicating processes.

The characters to be used may be different in different countries, but
univocal correspondence with reference representation must be secured,

Hardware Representations.

Fach one of these is a condensation of the reference language enforced
by the limited number of characters on standard input equipment.

Each one of these uses the character set of a particular computer and
is the language accepted by a translator for that computer.

Each one of these must be accompanied by a special set of rules for
transliterating from Publication or Reference language.

For transliteration between the reference language and a language

suitable for publications, among others, the following rules are recom-

mended.,

Reference language Publication language

Subscript bracket [] Lowering of the line between the
brackets and removal of the brackets.

Exponentation ¢ Raising of the exponent

Parentheses () Any form of parentheses, brackets,
braces.,

Basis of ten Raising of the ten and of the fol-

lowing integral number, inserting
of the intended multiplication sign.

i

DESCRIPTION OF THE REFERENCE LANGUAGE;

Was sich Uberhaupt sagen lésst, lisst

sich klar sageni und wovon man nicht

reden kann, darliber muss man schweigen.
Ludwig Wittgenstein.

1. STRUCTURE OF THE LANGUAGE:

As stated in the introduction, the algorithmic language has three
different kinds of representations - reference, hardware, and publication
- and the develcpment described in the sequel is in terms of the reference
representation, This means that all objects defined within the language
are represented by a given set of symbols - and it is only in the choice
of symbols that the other two representations may differ. Structure and
content must be the same for all representations:

The purpose of the algorithmic language is to describe computational
processes: The basic concept used for the description of calculating rules
is the well known arithmetic expression containing as constituents numbers,
variables, and functions. From such expressions are compounded, by applying
rules of arithmetic composition, self-contained units of the language -
explicit formulae - called assignment statements;

To show the flow of computatiohal processes, certain nonarithmetic
statements and statement clauses are added which may describe eig.,
elternatives, or iterative repetitions of computing statements: Since
it is necessary for the function of these statements that one statement
refers to another, statements may be provided with labels. Sequences of
statements may be combined into compound statements by insertion of
statement brackets,

Statements are supported by declarations which are not thHemselves
computing instructions, but inform the translator of the existence and certain
properties of objects appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an array of numbers or
even the set of rules defining a function, Each declaration is attached
to and valid for one compound statement. A compound statement which in-
cludes declarations is called a block.,

A program is a self-contained compound statement, i.e. a compound
statement which is not contained within another campound statement and
which makes no use of other compound statements not contained within it.

In the sequel the syntax and semantics of the language will be given.

1. Whenever the precision of arithmetic is stated as being in general not
specified, or the outcome of a certain process is said to be undefined,
this is to be interpreted in the sense that a program only fully defines

a computational process if the accompanying information specifies the
precision assumed, the kind of arithmetic assumed, and the course of action
to be taken in all such cases as may occur during the execution of the
computation,

-5

1.1. FORMALISM FOR SYNTACTIC DESCRIPTION.

The syntax will be described with the aid of metalinguistic formulae .
Thelr interpretation is best explained by an example'

<ab> 1= (| [] <ab>(| <aby<a>
Sequences of characters enclosed in the bracket < > represent metalinguistic
variables whose values are sefuences of symbols. The marks {¢= and | (the
latter with the meaning of or) are metalingulstlc connectives, Any mark in a
formula K which is not a variable or a connective, denotes itself (or the
class of marks which are similar to 1t). Juxtapos1tlon of marks and/or
variables in a formula signifies juxtaposition of the sequences denoted.
Thus the formula above gives a recursive rule for the formation of values
of the variable <ab>: It indicates that <ab> may have the value (or
[or that given some legitimate value of <ab)>, another may be formed by
following it with the character (or by following it with some value of
the variable <d>, If the values of <d> are the decimal digits, some values
of <abd> aret

g(((i (37(

123L5(

%((
86
In ordetr to facilitate the study the symbols used for distinguishing the
metalinguistic variables (i.e. the sequences of characters eppearing within
the brackets < > as ab in the above example) have been chosen to be words
describing approximately the nature of the corresponding variable, Where
words which have appeared in this manner are used elsewhere in the text
they will refer to the corresponding syntactic definition, In addition
some formulae have been given in more than one place.

Definition:
{empty> ::=
(i.e. the null string of symbols).

o e el e e T e T T i e i I T)

1. Cf, J.W.Backus, The syntax and semantics of the proposed international
algebraic language of the Zirich ACM-GAMM conference, ICIP Paris, June 1959.

s

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.
BASIC CONCEPTS.

The reference language is built up from the following basic symbols:
<basic symbol> ::= <letter>|<digitd|<logical value)|<delimiter

2.1, LETTER
<letterd> ::= alblcidle!flg}hlllglkillmln(lplqlrlsltluIVIWIXIyl l

AlB]c{DlElFIG]H[1iJlKlL]M]NIO]PIQ}RISITfUIVlexiylz

This alphabet may arbitrarily be restricted, or extended with any other
distinctive character (1 e, character not c01n01d1ng with any digit, logical
value or delimiter).

Letters do not have individual meaning. They are used for forming
identifiers and strings™ (cf. sections 2.4, IDENTIFIERS, 2.6, STRINGS).

2.2,1. DIGITS.
<digit> ::= 0[1]2]3|4]516]7/8l9
Digits are used for forming numbers, identifiers, and strings.

2.2.2. LOGICAL VALUES,
<logical value> ::= truelfalse
The logical values have a fixed obvious meaning.

2,%. DELIMITERS.
delimiter) ::= <operator>]<separator>}<bracket>]<declarator>‘(spe01f1cator>
{operator) ::= <arithmetic operator>[<relatlonal operator>f<loglcal operator)l

{sequential operator)> o
<arithmetic operatord ::= + T N YVARE]
{relational operator)> ::= < | ‘ l > > ‘
{logical operator) ::= = }'g ‘ —
{sequential operator> ::= 1f n]else forl

| v

{separator> 1:= | , IIO f
<bracketd ::= (|) | [l [begin
<declarator> ::= qun] B lean nte er ! nealt array i syl&c ’ brocedure
{specificator> ::= trln label value

Delimiters have a fixed meaning which for the most part is cbvious, or
else will be given at the appropriate place in the sequel,

Typographical features such as blank space or change to a new line have
no significance in the reference language. They may, K however K be used freely
for facilitating reading.

g%gpuT until | while | comment

P s s e esn et st e e e i memm prem e wmem e pmasn

1. It should be particularly noted that throughout the reference language
underlining is used for defining independent basic symbols (see sections
2.2.2 and 2.3). These are understood to have no relation 4o the individual
letters of which they are composed. Within the present report underlining
will be used for no other purpose.

2. do 1s used in for statements. It has no relation whatsoever to the do of
the preliminary report, which is not included in ALGOL 60,

=T

For the purpose of including text among the symbols of a program
the following "comment” conventions hold:

The sequence of basic symbols: is egquivalent with
s comment <any sequence not containing ;>3 3
begin comment <any sequence not containing ;>3 begin
end <any sequence not containing end or ; or else> end

By equivalence is here meant that any of the three symbols shown in the
right hand column may, in any occurrence outside of strings, be replaced
by any sequence of symbols of the structure shown in the same line of the
left hand column without any effect on the action of the program,

2.4, IDENTIFIERS.
2,4.1, Syntax.
(identifier> 3:= <letter>|<identifierd<letter>|<identifier><digit>
2.4,2. Examples. q
Soup
ViTa
a 34k TMNs
MARTLYN
24,3, Semantics.

Tdentifiers have no inherent meaning, but serve for the identification of
simple variables, arrays, labels, switches, and procedures. They may be chosen
freely (cf., however section 3.2.4., STANDARD FUNCTIONS).

The same identifier cannot be used to denote two different quantities
except when these quantities have disjoint scopes as defined by the declarations
of the program (cf. section 2.7. QUANTITIES, KINDS AND SCOPES and section
5. DECLARATIONS).

2,5. NUMBERS,
2.5.1, Syntax.
{unsigned integer> ::= <digit>f<unsigned integer><digit>
{integer)> ::= <{unsigned integer>l+<unsigned integer>| -<unsigned integer>
{decimal fraction> ::= .{unsigned integer>
<exponent part)> ::= integer)>
<decimal number)> ::= {unsigned integer>]<decimal fraction>]
<unsigned integer><{decimal fraction)>
<unsigned number> ::= <decimal number)|<exponent part)l
{decimal number)><{exponent part>
<number)> ::= <unsigned number>| +<{unsigned number>l ~<{unsigned number)

2.5.2. Examples. 0 ~200,08k4 -.083,,-02
177 +07.43,,8 —o!

5384 9 .34 +10 o=

+0,7300 210—)-.}- +10+5

2-5050 Semantics.
Decimal numbers have their conventional meaning. The exponent part 1s a
scale factor expressed as an integral power of 10,

2.5.4, Types.
Integers are of type ilnteger. All other numbers are of type real (cf.
section 5.1, TYPE DECLARATIONS).

2.6, STRINGS.
£.6,1, Syntax, .
{proper string> ::= <{any sequence of basic symbols not containing ! or ' >l

<empty>
{open string)> ::= <{proper str1ng>l <{open string>' }<open string><open string>
{string> ::= Kopen string>®
2.6.2., Examples,
i, = [[[=/ 7
.. This is &, 'string"
2.6.,3. Semantics.,

In order to enable the language to handle arbitrary sequences of basic
symbols the string quotes / and ' are introduced. The symbol , denotes a
space. It has no significance outside strings.

Strings are used as actual parameters of procedures (cf, sections
3.2, FUNCTION DESIGNATORS and 4.,7. PROCEDURE STATEMENTS).,

2.7. QUANTITIES, KINDS AND SCOPES.

The following kinds of quantities are distinguished: simple variables,
arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements in which the decla-
ration for the identifier associated with that quantity is valid, or, for
labels, the set of statements which may have the statement in which the
label occurs as their successor,

2.8, VALUES® AND TYPES.

A value is an ordered set of numbers (special case: a single number),
an ordered set of logical values (special case: a single logical value)
or a label,

Certain of the syntactic units are said to possess values. These values
will in general change during the execution of the program. The values of
expressions and their constituents are defined in section 3, The value
of an array identifier 1s the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The various “types' (integer, real, Boolean) basically denote proper-
ties of values. The types associated with syntactic units refer to the
values of these units.

1. Some members of the conference (F.L.B. and K.S.) have doubts about the
usefulness of this concept and the way it is applied (cf. section L4,7.
PROCEDURE STATEMENTS) .

3. EXPRESSIONS.

In the language the primary constituents of the programs describing
algorithmic processes are arithmetic, Boolean, and desigrational, expressions,
Constituents of these expressions, except for certain delimiters, are logical
values, numbers, variables, function designators, and elementary arithmetic,
relational, logical, and sequential, operators. Since the syntactic definition
of both variables and function designators contains expressions, the definition
of expressions, and their constituents, is necessarily recursive.

{expression> ::= <{arithmetic expfeSsion>l<Boolean expression>t
<{designational expressiond

3.1, VARIABLES.
331:i1l, Syntax.
{variable identifier> ::= <{identifier)
{simple variabled> ii= <variable identifier)>
{subscript expressiond> ::= <arithmetic expression> :
<{subscript list)> ::= <subscript expression>|<subscript list)> <subscript expressior
{array identifier) s$:= <{identifier)
<subscripted variable> ::= <array identifier>[<subscript listd]
{variabled> ::= <simple variable>|<subscripted variable>

311.2, Examples., epsilon

detd

al?
Q%?. 2] .
x[sin(nxpif2), Q[3, n, 4]]

3.1.3. Semantics,

A varisble is a designation given to a single value. This value may be
used in expressions for forming other values and may be changed at will by
means of assignment statements (section 4,2). The type of the value of a
particular variable is defined in the declaration for the variable itself
(ef. section 5.1, TYPE DECLARATIONS) or for the corresponding array identifier
(ef. section 5.2, ARRAY DECLARATIONS).

3,1.4, Subseripts.

3.1,4.1. Subscripted variables designate values which are components of
multidimensional arrays (cf. section 5.2. ARRAY DECLARATIONS)., Each arithmetic
expression of the subscript list occupies one subscript position of the
subscripted variable, and 1s called a subscript. The complete list of subscripts
is enclosed in the subseript brackets []. The array component referred to by
a subscripted variable is specified by the actual numerical value of 1ts
subseripts (cf. section 3.3. ARITHMETIC EXPRESSIONS).

341.1t.2, BEach subscript position acts like a variable of type integer and the
evaluation of the subscript is understood to be equivalent to an assignment
to this fictitious variable (cf. section 4.2.4t), The value of the subscripted
variable is defined only i1f the value of the subscript expression is within
the subscript bounds of the array (cf. section 5.2. ARRAY DECLARATIONS).

o=

3.2, FUNCTION DESIGNATORS.

3.2,1, Syntax.
{procedure identifierd> ::= {identifier)>
actual parameterd> ::= <string>|<expression>l<array identifier>l

{switch identifier) |<{procedure identifier)>
{letter stringd ::= {letter>|<letter stringd<letterd
<parameter delimiter)> ::= A |)<{letter string> :(
<actual parameter listd> ::= <actual parameter>t

{actual parameter listd<{parameter delimiterd<actual parameterd

<actual parameter part> ::= <empty>|(<actual parameter list))
{function designator)> ::= <procedure identifierd<actual parameter part>

3.2.24 Examples,
gin (a - b)
J(v + s, n)
R
S(s - 5) Temperature: (T)Pressure (P)
Compile(':= ')Stack:(Q)

3.2.3., Semantics,

Function designators define single numerical or logical values, which
result through the application of given sets of rules defined by a procedure
declaration (ef. section 5.4, PROCEDURE DECLARATIONS) to fixed sets of
actual parameters. The rules governing specification of actual parameters
are given in section 4.7. PROCEDURE STATEMENTS, Not every procedure
declaration defines the value of a function designator,

3.2.4, Standard functions.
Certain identifiers should be reserved for the standard functions of
anaiysis, which will be expressed as procedures. It is recommended that
this reserved list should contain:
abs(E) for the modulus (absolute value) of the value of the expression B
sign(E) for the sign of the value of E (+1 for EdO, O for E=0, -1 for EXO
sqrt(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos(E) for the cosine of the value of E

arctan(E) for the principal value of the arctangent of the value of E
In(E) for the natural logarithm . of the valueof E
exp(E) for the exponential function of the value of E (e”),

These functions are all understood to operate indifferently on arguments both

of type real and integer. They will all yield values of type regl, except

for sign(E) which will have values of type integer. In a particular representatio
these functions may be available without explicit declaratlons

(ef, section 5. DECLARATIONS). ,

34245+ Transfer functions.

It is understood that transfer functions between any pair of auantities
and expressions may be defined. Among the standard functions it is recommended
that there be one, namely '

entier(E), ‘
which transfers‘ an expression of real type to one of integer type, and
assigns to it the value which is the largest integer not greater than the
value of E,

Al

%3.3. ARITHMETIC EXPRESSIONS.
34+3il. Syntax.
<adding operator> ::= + l -
<multiplying operatord si= x | / | +
primaryd> :i:= {unsigned number>]<variable>!<function designator>|
(<arithmetic expression)
{factor> ::= <primary>]<factor> {primary>
{termd ss= <factor>l(term}(multiplying operator><{factor>
{simple arithmetic expressiond> ::= <term>t<adding operator><term>‘
{simple arithmetic expressiond><{adding operator><{term>
<if claused> ::= if <Boolean expression)d then
{arithmetic expressiond> ::= <{simple arithmetic expression>]
if claused<simple arithmetic expressiond>glsedarithmetic expression)

3+3%.2. Examples,
Primaries:

7.39k,,-8
sum

wli+2 8]
cos(y+zx3
(a-3/y+vu|8)

Factors:
omega
sun{cos(y+zx3)

7 39k~ W[i+2,8]¢(a—5/y+vuT8)

Terms:
U

omegaxsumTcos(y+2x3)/7.59um—8®w[i+2,8]¢(a~3/y+vd?8)

Simple arjithmetic expression:

UéYu+omegaxsum~cos(y+Zx5)/7.59hm~'Tw[i+2,8]T(a—3/y+vd?8)

Arithmetic expressions:
wxu - Q(S+Cu)|2
if q>O then S+3xQ/A eglse 2xS+3xq
if a<0 then U+V else if axb>17 then U/V else if k=y then V/U else O
a x sin (omega x t)
0.5712 x a[N x (N = 1)/2, O]
(A x arctan(y) + Z)¢(7 + Q)
if q then n-1 else n
if a<0 then A/B glse if b=0 then B/A else z

3.3+, Semantics,

An arithmetic expression is a rule for computing a numerical value. In
case of simple arithmetic expressions this value is obtained by executing the
indicated arithmetic operations on the actual numerical values of the primaries
of the expression, as explained in detail in section 3.3.4 below. The actual
numerical value of a primary is ocbvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense)‘ and for function
designators it is the value arising from the computing rules defining the proced
(cf. section 5.4. PROCEDURE DECLARATIONS) when applied to the current values

—12-

of the procedure parameters given in the expression. Finally K for arithmetic
expressions enclosed in parentheses the value must through a recursive analysis
be expressed in terms of the values of primaries of the other three kinds.

In the more general arithmetic expressions, which include if clauses, one
out of several simple arithmetic expressions is selected on the basis of the
actual values of the Boolean expressions (ef. section 3.4, BOOLEAN EXPRESSIONS).
This selection is made as follows: The Boolean expressions of the if clauses
are evaluated one by one in sequence from left to right until one having the
value true is found, The value of the arithmetic expression is then the value
of the first arithmetic expression following this Boolean (the largest
arithmetic expression found in this position is understood). The construction:

else <simple arithmetic expression}
is equivalent to the construction:

else if true then <simple arithmetic expression)

3.3.4, Operators and types.

Apart from the Boolean expressions of if clauses, the constituents of
simple arithmetic expressions must be of types real or integer (cf. section
5.1, TYPE DECLARATIONS). The meaning of the basic operators and the types
of the expressions to which they lead are given by the following rules:

3.3.4:1; The operators +, -, and x have the conventional meaning (addition, sub-
traction, and multiplication). The type of the expression will be integer
if both of the operands are of integer type, otherwise real.

3.3.4.2, The operations <termd/<factor> and <termp:<{factor> both dencte division,
to be understood as a multiplication of the term by the reciprocal of the factor
with due regard to the rules of precedence (cf. section 3.3.5). Thus for
example

a/b x 7/(p - q) x v/s

((((a x (1) x 7) x (0 - @)™) xv) x (s7H)
The operator / is defined for all four combinations of types real and integer
and will yield results of real type in any case. The operator ¢+ is defined
only for two operands both of type integer and will yield a result of type
integer defined as follows:

a +b = sign{a/b) x entier(abs(a/b))
(cf. sections 3.2.4 and 3.2.5).

means

3.3.4.3, The operation <factor5T<primary> denotes exponentiation, where the
factor is the base and the primary is the exponent. Thus for example

2 ?‘n.T k eans (Zn)k

m
2T(n T m) means 2(n)
Writing i for a number of integer type, r for a number of real type, and
a for a number of either integer or real type, the result is given by the
following rules:
ali If i>0, axax, . « xa (i times), of the same type as a.
If i=0, if a40, 1, of the same type as a.
if a=0, undefined.
If i<0, if a40, 1/(axax. . . xa) (the denominator has
-1 factors), of type real.
if a=0, undefined.

while

~13-

If a=0, if r>0, 0.0, of type real.
if r<0, undefined.
If a<0, always undefined.

dTr If a>0, exp(r x 1n(a)), of type real.

3.3.5., Precedence of operators.

The sequence of operations within one expression is generally from left
to right, with the following additional rules:
3.3.5.1. According to the syntax given in section 3.3.1 the following rules
of precedence hold:

first:

second: x / =

third: + -
3¢3.5.2, The expression between a left parenthesis and the matching right
parenthesis is evaluated by itself and this value is used in subsequent
calculations. Consequently the desired order of execution of operations within
an expression can always be arranged by appropriate positioning of parentheses,

3.3.6, Arithmetics of real quantities.

Numbers and variables of type real must be interpreted in the sense of
numerical analysis, i.e. as entities defined inherently with only a finite
accuracy. Similarly, the possibility of the occurrence of a finite deviation
from the mathematically defined result in any arithmetic expression is
explicitly understood. No exact arithmetic will be specified, however,
and it is indeed understoocd that different hardware representations may
evaluate arithmetic expressions differently. The control of the possible
consequences of such differences must be carried out by the methods of
numerical analysis., This control must be considered a part of the process
t0 be described, and will therefore be expressed in terms of the language
itself,

3.4, BOOLEAN EXPRESSIONS.
3.4.1. Syntax,
<{relational operator) ::= < l <= | > | > | +
{relation) ::= <arithmetic expressiond><relational operatord><arithmetic expression>
{Boolean primary> ::= <{logical value>l<variable>](function designator>‘
<relation)|(<Boolean expression>)
{Boolean secondary> ::= <Boolean primary>l ~;<Boolean primary>
{Boolean factord ::= <Boolean secondary>|<Boolean factor>A<Boolean secondary
<Boolean term) ::= <Boolean factor>l<Boolean termpv<Boolean factor)
<implication> ::= <Boolean term)|<implication>m <Boolean term>
{simple Boolean) ::= <implicationd|<simple Boolean> = <implication>
{Boolean expression) ::= <{simple Boolean)l
<if claused<simple Boolean> else <Boolean expression>

3.,4,2, Examples, x = -2
YOV v z<g
ath > -5 A z-d > d]2
pAQ V XFY
g = —anbA- cvdven — T
if k<1 then s>w else h<c
if if if a then b else ¢ then d else T then g else h<k

3.4,3, Semantics.,

A Boolean expression is a rule for computing a logical value. The
principles of evaluation are entirely analogous to those given for
arithmetic expressions in section 3.3,3.

3.4 .4, Types.,

Variables and function designators entered as Boolean primaries must
be declared Boolean (cf. section 5.1. TYPE DECLARATIONS and section 5.4.4,
VALUES OF FUNCTION DESIGNATORS).

3,4,5, The operators,

Relations take on the value true whenever the corresponding relation
is satisfied for the expressions involved, otherwise false.

The meaning of the logical operators -, (not), A (and), v (or),
> (implies), and = (equivalent), is given by the following function
table,

bl false false Ltrue true
b2 false true false ZLrue
- bl true true false false
bl A b2 false false false true
bl v b2 false rue true true

bl b2 true
true

true false true
bl = b2 rue i ru

alse false Ltrue

3,4,6, Precedence of operators.

The sequence of operations within one expression is generally from
left to right, with the following additional rules:
3.4,6,1. According to the syntax given in section 3.4,1 the following rules
of precedence hold:

first: arithmetic expressions according to section 3.3.5.

gecond: < < = > >
third: -
fourth: A
fifth: \Y
sixths =3
seventh: =

3,4.6.2, The use of parentheses will be interpreted in the sense given
in section 3.3.5.2.

15~

%.5. DESIGNATIONAL EXPRESSIONS,
3,5.1. Syntax.
<labeld ::= <identifier)|<unsigned integer>
{gwitch identifier) ::= <identifier>
{switch designator)> ::= <{switch identifier>[<subscript expression)]
{simple designational expression) ::= <label>l<switch designator)]
(<designational expressiond)
{designational expression)> ::= <{simple designational expression>]
{if claused><simple designational expression) glse <designational expression)

3.5.2, Examples. 17

Choose[n - 1]

Tom[if y<O then N else N+1]

if Ab<c then 17 elge q[if w<O then 2 else n]
3,55, Semantics.

A designational expression i1s a rule for obtaining a lebel of a
statement {cf., section k. STATEMENTS). Again the principle of the
evaluation is entirely analogous to that of arithmetic expressions
(section 3.3.3), In the general case the Boolean expressions of the
if clauses will select a simple designational expression. If this is
a label the desired result is already found. A switch designator refers
to the corresponding switch declaration (cf. section 5.3, SWITCH
DECLARATIONS) and by the actual numerical value of its subscript
expression selects one of the designational expressions listed in the
switch declaration by counting these from left to right., Since the
designetional expression thus selected may again be a switch designator
this evaluation is obviously a recursive process.

3.5.4., The subscript expression.

The evaluation of the subscript expression is analogous to that of
subscripted variables (of. section 3.1.4.2). The value of a switch
designator is defined only if the subscript expression assumes one of
the positive velues 1, 2, 3, ... , n, where n is the number of entries
in the switch list,

3.5.5. Ungigned integers as labels.

Unsigned integers used as labels have the property that leading
zeroes do not affect their meaning, e.g. 00217 denotes the same label
as 21i7.

~16-

L, STATEMENTS.

The units of operation within the language are called statements., They
will normally be executed consecutively as written, However, this sequence
of operations may be broken by go to statements, which define their successor
explicitly, and shortened by conditional statements, which may cause certain
statements to be skipped.

In order to make it possible to define a specific dynamic succession,
statements may be provided with labels,

Since sequences of statements may be grouped together into compound
statements and blocks the definition of statement must necessarily be recursive.
Also since declarations, described in section 5, enter fundamentally into the
syntactic structure, the syntactic definition of statements must suppose
declarations to be already defined.

L.1, COMPQUND STATEMENTS AND BLOCKS.

L.1.1, Syntax.
<unlabelled basic statement)> ::= <{assignment statement>l<go to statement>l
<dummy statement>]<procedure statement)>
<basic statement> ::= <{unlabelled basic statement>{<label>:<basic statement)>
<unconditional statement> ::= <basic statement)|<for statement>'
{compound statement>{<block>
{statement> ::= {unconditional statement>]<conditional statement>
{compound taild> ::= <{statement> end '(statement> s <compound tail)
<block head> ::= beginddeclaration>|<block head> ;3 <declaration>
<unlabelled compound) ::= begin <compound tail)
<{unlabelled block> ::= <block head> ; <compound tail>
{compound statement)> ::= <unlabelled compound>]<label>:<compound statement)>
<block> ::= <unlabelled block>|<label> : <block>

This syntax may be illustrated as follows: Denoting arbitrary statements,
declarations, and labels, by the letters S, D, and L, respectively, the
basic syntactic units take the forms:
Compound statement:

L: L: « ¢« o begin 8 3§ 83 « s+ « S 3 S end
Block:

Lanls e begin DE SRR S Den SEsESEe ol S elSE end
It should be kept in mind that each of the statements S may again be a
complete compound statement or block,

4,1.2. Examples.
Basic statements:
a =p+g
go to Naples
START: CONTINUE: W := 7.993
Compound statement:
begin x:=0 ; for y:= 1 step 1 until n do x:= x + Aly] ;
if x>q then go to STOP else if x>w-2 then g0 to S
Aw: St: W := x + bob end

-17-

Block:
Q: begin integer i,k ; real w ;
for i:= 1 step 1 until m do
for ke= i+l gtep 1 until m
begin w:= A[i k]
Al1 k] := Afk,i] ;
k,ij = w end for i and k

o

A
end block Q

4.,1.3, Semantics.

Every block automatically introduces a new level of nomenclature.
This is realized as follows: Any identifier occurring within the block
may through a suitable declaration (cf. section 5. DECLARATIONS) be
specified to be local to the block in question. This means (a) that
the entity represented by this identifier inside the block has no existence
outside it and (b) that any entity represented by this identifier outside
the block is completely inaccessible inside the block.,

Identifiers (except those representing labels) occurring within a
block and not being declared to this block will be non-local to it, i.e.
will represent the same entity inside the block and in the level immediately
outside it. The exception to this rule is presented by labels, which are
local to the block in which they occur.

Since a statement of a block may again itself be a block the
concepts local and non-local to a block must be understood recursively.
Thus an identifier which is non-local to a block A, may or may not be
non-local to the block B in which A is one statement.

L.2, ASSIGNMENT STATEMENTS.

L.,2.1, syntax.

{left part) ::= <variable>:=

<left part listd ::= deft part>]<left part list><{left part> A

{assignment statement)> ::= <left part list><arithmetic expression>]
<{left part list><Boolean expressiond

4,2,2. Examples.
8 :=p[0] t=n:=n+1+s
n:=mn+1l
A:=B/C~v ~-qx§
s[v, k+2] := 3 - arctan(s x zeta)
Vei=Q>YAZ

B

4,2,3, Semantics,

Assignment statements serve for assigning the value of an expression
to one or several variables. The process will in the general case be under-
stood to take place in three steps as follows:
L,2,3.1, Any subscript expressions occurring in the left part variables are
evaluated in sequence from left to right.
L.2.3.2, The expression of the statement is evaluated.
4,2.3,3, The value of the expression is assigned to all the left part varia-
bles, with any subscript expressions having values as evaluated in step 4.2.3.1,

-18-

L.2.k, Types.

All variables of a left part list must be of the same declared type.
If the variables are Boolean the expression must likewise be Boolean,
If the variables are of type real or integer the expression must be
arithmetic, If the type of the arithmetic expression differs from that
of the variables, appropriate transfer functions are understood to be
automatically invoked., For transfer from real to integer type the
transfer function is understocd to yield a result equivalent to

entier(E + 0.5)
where E is the value of the expression.

4,3, G0 TO STATEMENTS.

4.3,1, Syntax.
{go to statement> ::= go to <designational expression)

4,3,2. Examples.,
g0 to 8

g0 to exit[n + 1]
20 1o Town|[if y<O then N else N+1]

20 to if Ab<c then 17 else q[if w<O then 2 else n]

L,3.3., Semantics.

A go to statement interrupts the normal sequence of operations, defined
by the write-up of statements, by defining its successor explicitly by the
value of a designational expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4, Restriction.
Since labels are inherently local, no go to statement can lead from
ocutside into a block,

L,3.5. Go to an undefined switch designator.
A go to statement is equivalent to a dummy statement if the designational
expression is a switch designator whose value i1s undefined.

4.4, DUMMY STATEMENTS.

bhh,1, syntax.
{dummy statement)> ¢:= <{empty>

4h,h,2. Examples.
e
begin « + » + 3 John: end

4,4,3, Semantics,
A dummy statement executes no operation., It may serve to place
a label,

[oot IR

35

4.5, CONDITIONAL STATEMENTS.

L.5.1. Syntax.
<if claused ::= if {Boolean expression)> then
{unconditional statement> ::= <basic statement>l<for statement>
{compound statement>|<block>
{if statement)> ::= <if clause><{unconditional statement>l
{label> ¢ <if statement)>
{conditional statement> ::= <if statement>}<if statement)> else <{statement)>

4.,5.2. Examples.
if x>0 then n := n+l
if v>u then V: q:=n+m else g0 to R
if s<OVP<Q then AA: begin if q<v then a:=v/s else y:=2xa end
else if v>s then a:=v-q eglse if vD>s-1 then go to S

4,5,3, Semantics.
Conditional statements cause certain statements to be executed or
skipped depending on the running values of specified Boolean expressions,

4,5,3,1, If statement.

The unconditional statement of an if statement will be executed if the
Boolean expression of the if clause is true. Otherwise it will be skipped
and the operation will be continued with the next statement.

4.,5,3.,2, Conditional statement.
According to the syntax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then Si else if B2 then S2 else 53 ; sk

and

if Bl then S1 else if B2 then S2 else if B3 then S3 ; Sk
Here Bl to B3 are Boolean expressions, while S1 to S3 are unconditional
statements, Sk is the statement following the complete conditional state-
ment .

The execution of a conditional statement may be described as follows:
The Boolean expression of the if clauses are evaluated one after the other
in sequence from left to right until one yielding the value true is found.
Then the unconditional statement following this Boolean is executed.
Unless this statement defines its successor explicitly the next statement
to be executed will be Sk, i.e. the statement following the complete conditional
statement, Thus the effect of the delimiter glse may be described by saying
that it defines the successor of the statement it follows to be the state-
ment following the complete conditional statement.

The construction

else <unconditional statement)>
is equivalent to
else if true then <unconditional statement>

If none of the Boolean expressions of the if clauses 1s true, the
effect of the whole conditional statement will be equivalent to that of
a dummy statement.

For further explanation the following picture may be useful:

—20-

F T T I

1 51 then S1 else if 32 then S2 else S3 3 &b
B Ei_fgige—'~ -BE ?éiég e

4,5.4, Go to into a conditional statement,
The effect of a go to statement leading into a conditional state-
ment follows directly from the above explanation of the effect of glse.

L.,6. FOR STATEMENTS.

4.6,1. syntax.
Kfor list element)> ::= <arithmetic expression>l
Karithmetic expression)d gtep <arithmetic expression)> until
{arithmetic expression)>
{arithmetic expression) while <Boolean expression)>
{for list)> ::= <{for list element)](for listd> , <for list element>
{for claused> ::= for <variable) := <{for list> do
{for statement> ::= <for clause><statement>l
{label> : <for statement>

4,6,2. Examples,
for q := 1 step s until n do Afq] := Blq]
for k := 1, V1 x 2 while V1 < N do
:= I + G, L, 1 step 1 until N, C + D do Afk,j] = Blk,J3]

Lo J

4,6,3. Semantics.,

A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a seguence of assign-
ments to its controlled variable. The process may be visualized by means
of the following picture:

bon s mm e tmmn s een ewem bemm et Rt

Initialize ; test ; statement S ; advance ; successor

e mae e e pe mem e pma e e e ema e evn et e

for list exhausted

In this picture the word initialize means: perform the first assignment
of the for clause., Advance means: perform the next assignment of the for
clause. Test determines if the last assignment has been done. If s0

the execution continues with the successor of the for statement. If not
the statement following the for clause is executed.

L4,6.4, The for list elements.

The for list gives a rule for obtaining the values which are con-
secutively assigned to the controlled variable. This sequence of values
is obtained from the for list elements by teking these one by one in the
order in which they are written. The sequence of values generated by each
of the three species of for list elements and the corresponding execution
of the statement S are given by the following rules:

Ot

L,6.4,1, Arithmetic expression., This element gives rise to one value,
namely the value of the given arithmetic expression as calculated imme-
diately before the corresponding execution of the statement S.

L.6.4,2, Step-until-element. An element for the form A step B until C,
where A, B, and C, are arithmetic expressions, gives rise to an execution
which may be described most concisely in terms of additional ALGOL state-
ments as follows:

V=43

Tisif (v - C)x sign(B) > O then g0 £o Element exhausted;

Statement S

Ve=V + Bg

g0 to L1
where V is the controlled variable of the for clause and Element exhausted
points to the evaluation according to the next element in the for list,
or if the step-until-element is the last of the list, to the next statement
in the program.

L,6.4,3, While-element, The execution governed by a for list element of
the form E while F, where E is an arithmetic and F a Boolean expression,
is most concisely described in terms of additional ALGOL statements as
follows:
L3V =

if —1 F then go to Element exhausted;

Statement S;

go to L3
where the notation is the same as in 4.6.4.2 above.

4.6.5, The value of the controlled variable upon exit.

Upon exit out of the statement S (supposed to be compound) through
a go to statement the value of the controlled variable will be the same
as 1t was immediately preceding the execution of the go to statement,

If the exit is due to exhaustion of the for list, on the other hand,
the value of the controlled variable is undefined after the exit.

L,6.6, Go to statements leading out of and into a for statement.

The statement following a for clause may be complex and may contain
go to statements leading to some statement outside the for statement
itself, At this point in computation time the for clause is not yet
exhausted and for the time being its state remains unchanged, Then:

1. If the computation progresses to a new go to statement which
leads back into the statement S of the for clause, the for statement
is continued just as if no interruption had taken place.

2. If the computation leads back to the beginning of the for
statement it is re-initialized and executed again,

3. If the computation does not lead back to the for statement
(either to its interior or its beginning) then the for statement com-
putation remains incomplete.

On the other hand, if a go to statement leading into a for state-
ment is encountered either before any execution of the for statement
has taken place, or after a completion of the for statement through
exhaustion of the for list, the effect is undefined.

o

4,7. PROCEDURE STATEMENTS.

4,7.1. Syntax.
{actual parameter> ::= <string>|<expression>l<array identifier)l
<{switch identifier)|<procedure identifier>
{etter stringd ::= <{letter)|<letter stringd>letter>
<parameter delimiter> ::= , |)<letter stringd:
{actual parameter list) ::= <actual parameter)>
{actual parameter listd><parameter delimiter)><actual parameter>
{actual parameter partd ::= <empty>'(<actual parameter listd)
{procedure statementd ::= <procedure identifier><actual parameter partd

4.,7.2, Examples.,
Spur (A)Order:(7)Result to:(V)
Transpose (W, v+1)
Absmex (A, N M, Yy, I, K)
Tnnerproduct{A[t P u], B[P], 10, P, ¥)
These examples correspond to examples given in section B2,

4,7.3, Semantics.

A procedure statement serves to invoke (call for) the execution of
s procedure body (cf. section 5.4t. PROCEDURE DECLARATIONS). Where the
procedure body is a statement written in ALGOL the effect of this
execution will be equivalent to the effect of performing the following
operations on the program:
4,7.3.1, Value assignment (call by value).

A1l formal parameters quoted in the value part of the procedure
declaration heading are assigned the values (cf, section 2.8, VALUES
AND TYPES) of the corresponding actual parameters, these assignments
being considered as being performed explicitly before entering the
procedure body. These formal parameters will subsequently be treated
as .local to the procedure body.

%,7.3.,2, Name replacement (call by name),

Any formal parameter not quoted in the value list is replaced,
throughout the procedure body, by the corresponding actual parameter,
after enclosing this latter in parentheses wherever syntactically
possible. Possible conflicts between identifiers inserted through
this process and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the formal
or local identifiers involved.
4,7.3.%3. Body replacement and execution,

Finally the procedure body, mcdified as above, is inserted in
place of the procedure statement and executed.

4,7,4, Actual-formal correspondence,

The correspondence between the actual parameters of the procedure
statement and the formal parameters of the procedure heading is
established as follows: The actual parameter list of the procedure
statement must have the same number of entries as the formal parameter
list of the procedure declaration heading. The correspcndence is ob-
tained by taking the entries of these two lists in the same order.

07

4,7.5. Restrictions.,

For a procedurc statement to be defined it is evidently neces-
sary that the operations on the procedure body defined in sections
L,7.3.1 and 4.7.3.2 lead to a correct ALGOL statement.

This poses the restriction on any procedure statement that
the kind and type of each actual parameter be compatible with the kind
and type of the corresponding formal parameter. Scme important parti-
cular cases of this general rule are the following:

L,7.5,1. Strings cannot occur as actual parameters in procedure state-
ments calling procedure declarations having ALGOL 60 statements as
their bodies (cf, section 4.7.8).

L,7.5.2, A formal parameter which occurs as a left part variable

in an assignment statement within the procedure body and which is not
called by value can only correspond to an actual parameter which is
a variable (special case of expression).

4,7.5.3. A formal parameter which is used within the procedure body
as an array identifier can only correspond to an actual parameter
which is an array identifier of an array of the same dimensions.

In addition if the formal parameter is called by value the local
array created during the call will have the same subscript bounds as
the actual array.

M.7.5.h. A formal parameter which is called by value cannot in gene-
ral correspond to a switch identifier or a procedure identificy
because these latter do not possess values (the exception is the
procedure identifier of a procedure declaration which has an empty
formal parameter part (cf. section 5,4.1) and which defines the value
of a function designator (cf. section 5.4.4), This procedure iden-
tifier is in itself a complete expression).

L.7.5.5. Any formal parameter may have restrictions on the type of
the corresponding actual parameter associated with it (these restric-
tions may, or may not, be given through specifications in the proce-
dure heading). In the procedure statement such restrictions must
evidently be observed.,

L.7.6. Non-local quantities of the body,
A procedure statement written outside the scope of any non-local
quantity of the procedure body is undefined.

L,7.7. Parameter delimiters.

All parameter delimiters are understood to be equivalent, No
correspondence between the parameter delimiters used in a procedure
statement and those used in the procedure heading is expected beyond
their number being the same. Thus the information conveyed by using
the elaborate ones is entirely optional,

L,7.8., Procedure body expressed in code.

The restrictions imposed on a procedure statement calling a
procedure having its body expressed in non-ALGOL code evidently can
only be derived from the characteristics of the code used and the
intent of the user and thus fall outside the scope of the reference
language,

A

5. DECLARATIONS.

Declarations serve to define certain properties of the identifiers of
the program. A declaration for an identifier is valid for one block. Out-
side this block the particular identifier may be used for other purposes
(cf. section L4.1.3),

Dynamically this implies the following: at the time of an entry
into a block (through the begin K since the labels inside are local
and therefore inaccessible from outside) all identifiers declared for
the block assume the significance implied by the nature of the declarations
given. If these identifiers had already been defined by other declarations
outside they are for the time being given a new significance. Identifiers
which are not declared for the block, on the other hand, retain their old
meaning.

At the time of an exit from a block (through end, or by a go to state-
ment) all identifiers which are declared for the block lose their sig-
nificance again.

A declaration may be marked with the additional declarator gwn. This
has the following effect: upon a reentry into the block, the values
of own quantities will be unchanged from their values at the last exit,
while the values of declared variables which are not marked as own are
undefined. All identifiers of a program, apart from labels and with the
possible exception of those for standard functions (cf. sections 3.2.b
and %.2.5) must be declared, No identifier may be declared more than once
in any one block head.

Syntax.,

{declaration> ::= <{type declaration>l<array declaration>‘
{switch declaration>!<procedure declaration>

5.1. TYPE DECLARATIONS.

5.1.1, Syntax.,

type list) ::= <{simple variable>l<simple variable) <{type list)
<typed> ::= real|integer|Boolean

{local or own typed> ::= <type>i own <type>

<type declarationd ::= <{local or own type><type listd>

5.1.2, Examples,

integer p, q, s
twn Boolean Acryl, n

5:1+3. Semantics.,
Type declarations serve to declare certain identifiers to represent
simple variables of a given type. Real declared variables may only
asgume positive or negative values including zero., Integer declared variables
may only assume positive and negative integral values including zero,
Boolean declared variables may only assume the values true and false.,
In arithmetic expressions any position which can be occupied by
a real declared variable may be occupied by an integer declared variable,
For the semantics of own, see the fourth paragraph of section 5
above,

~25-~

5.2. ARRAY DECLARATIONS.

b.2.1% 8yntax.
{lower boundd :i= <{arithmetic expression>
upper bound)> ::= <arithmetic expression>
<bound pair) ::= <lower bound> : <upper bound>
<bound pair listd> ::= <bound pair>l<bound pair 1listd> |, <bound pair>
{array segment> ::= Larray identifier>[<bound pair list)]

{array identifierd> , <array segment)
{array list) ::= <array segment>l<array list> |, <array segment>
array declaration> ::= grray <array list>}

{local or own type> array <array listd>

5¢2.2, Examples,
srray &, b, c¢[7:n,2:m], s [-2:10]
own integer array A[if ¢<O then 2 glse 1 : 20]
real srray a[-7 : -1

5.2.3. Semantics,

An array declaration declares one or several identifiers to represent
multidimensional arrays of subscripted variables and gives the dimensions
of the arrays, the bounds of the subscripts and the types of the variables.

5.2.3.1. Subscript bounds,

The subscript bounds for any array are given in the first subscript
bracket following the identifier of this array in the form of a bound pair
list., Eech item of this list gives the lower and upper bound of a subscript
in the form of two arithmetic expressions separated by the delimiter :

The bound pair list gives the bounds of all subscripts taken in order from
left to right.

5e2e3.2, Dimensions.
The dimensions are given as the number of entries in the bound pair
lists.

5¢243.3, Types.

All arrays declared in one declaration are of the same quoted type.
If no type declarator is given the type real is understood.

5¢2,4. Lower upper bound expressions.

5.2.4,1. The expressions will be evaluated in the same way as subscript
expressions (ef. section 3.1.4.2),

5.,2.14,2, The expressions can only depend on variables and procedures which
are non-local to the block for which the array declaration is valid. Conse-
quently in the outermost block of a program only array declarations with
constant bounds may be declared.

5.2.4,3, An array is defined only when the values of all upper subscript
bounds are not smaller than those of the corresponding lower bounds.,
5.2,4.Lk, The expressions will be evaluated once at each entrance into the
block.

w26

5.2 5. The identity of subscripted variables

The identity of a subscripted variable is not related to the sub-
script bounds given in the array declaration., However K even if an array
is declared cun the values of the corresponding subscripted variables
will, at any time, be defined only for those of these variables which
have subscripts within the most recently calculated subscript boundsl

5.3, SWITCH DECLARATIONS.

Diadete Synbax,
(switch 1listd> ::= <designational expression)|

{switch list) , <designaticnal express1on>
<{switch declarationd ::= gwitch <switch identifier)i=<switch list)

5¢3.2, Examples,
switch S := 81, S2, Q[m], if v>-5 then S3 else sk
switch Q = pl, w

n

53.3, Semantics,

A switch declaration defines the values corresponding to a switch
identifier, These values are given one by one as the values of the
designational expressions entered in the switch list. With each of
these designational expressions there is associated a positive integer,
i, 2, +.. , Obtained by counting the items in the list from left to
rlght The value of the switch designator corresponding to a given value
of the subscript expression (cf. section 3.5. DESIGNATIONAL EXPRESSIONS)
is the value of the designational expression in the switch list having
this given value as its associated integer.

5.3.4, Evaluation of expressions in the switch list.

An expression in the switch list will be evaluated every time
the item of the list in which the expression occurs is referred to,
using the current values of all variablesinvolved.

5¢3.5, Influence of scopes.

Any reference to a switch value from outside the scope of any
quantity entering into the designational expression for this particular
value is undefined.

=2

5.4. PROCEDURE DECLARATIONS.

5.t,1. Syntax.
<formel parameter) ::= J{identifier)>
<formal parameter listd> ::= <formal parameter|
{formal parameter list)><{parameter delimiter><{formal parameter)
{formal paremeter part> ::= <empty>|(<formal parameter list)>)
{ddentifier listd> :i= <identifier>l<identifier list> |, <identifier)
<value part> ::= value <identifier listd ; |<emptyd
{specifier> ::= gtring|<typed>|array|<type> array ¥ label | switch |
procedure <{typed> edure
<{specification partd> ::= <{empty>
{specifierd<identifier list)> ;
{specification part><{specifierd><identifier list)> 3
<{procedure heading> ::= <procedure identifier><{formal parameter partd;
{value part)(specification art>
{procedure body> ::= <statementd|<coded
{procedure declaratlon> ti=
procedure <procedure heading><procedure bcdy>l
<type> procedure <procedure heading)><procedure body>

5.4.2, Examples (see also the examples at the end of the report).
procedure Spur(a)Order:(n)Result:(s) ; value n

array a 3 integer n ; real s ;

begin integer k

s =0 ;
for k := 1 gtep 1 until ndo s := s + alk k]
end

procedure Transpose(a)Order:(n) ; value n
array a j; integer n
begin real w ; integer i, k j
for i := 1 gtep 1 until n do
for k := 1+i step 1 until n do
begin w := ali k] ;
ali k] := alk,i] 3
a k,i =W

end
end Transpose

integer procedure Step(u) ; real u j
Step := 1f OKvwwul then 1 else O

procedure Absmex(a)size:(n m)Result:(y)Subscripts:(i k) ;

comment, The absolute greatest element of the matrix a, of size n by m
1s transferred to y, and the subscripts of this element to 1 and k 3
array a s integer n, m, i, k ; real ¥

begin integer p, q
y =03

forp =135 p 1 until n do for q :=1

if abs(a[p,] y then begin y:=abs(a[p,q]); i:=p; ki:=q end end Absmax

28~

procedure Innerproduct(a,b)Drder:(k,p)Result:(y) ; value k ;
integer k,p 3 real yv,2,b 3
begln real s y
=0 3
p s= 1 gtep 1 until k dos 1 =s +a xb ;
s
d Innerproduct

m%’]l—bm

5.4.3. Semantics.

A procedure declaration serves to define the procedure asso-
clated with a procedure identifier. The principal constituent of a
procedure declaration is a statement or a piece of ccde, the procedure
body, which through the use of procedure statements and/or function
designators may be activated from other parts of the block in the head
of which the procedure declaration appears. Associated with the body
is a heading, which specifies certain identifiers occurring within the
body to represent formal parameters., Formal parameters in the procedure
body will, whenever the procedure is activated (cf. section 3.2. FUNC-
TION DESIGNATDRS and section 4.7. PROCEDURE STATEMENTS) be assigned
the values of or replaced by actual paremeters. Identifiers in the
procedure body which are not formal will be either local or non-local
to the body depending on whether they are declared within the body or
not. Those of them which are non-local to the body may well be local
to the block in the head of which the procedure declaration appears.

5.4.4, Values of function designators.

For a procedure declaration to define the value of a function desig-
nator there must, within the procedure body, occur an assignment of a
value to the procedure identifier, and in addition the type of this value
must be declared through the appearance of a type declarator as the
very first symbol of the procedure declaration.

Any other occurrence of the procedure ldentifier within the procedure
body denoctes activation of the procedure.

5.4,5. Specifications.,

In the heading a specification part, g1v1ng information about
the kinds and types of the formal parameteréby means of an obvious
notation, may be included. In this part no formal parameter may occur
more than once and formal parameters called by name (cf. section 4,7.3.2)
may be omitted altogether.

5.4.6. Code as procedure body.

It is understood that the procedure body may be expressed in
non-ALGOL language. Since it i1s intended that the use of this feature
should be entirely a question of hardware representation, no further
rules concerning this code language can be given within the reference
language.,

~29-

EXAMPLES OF PROCEDURE DECLARATIONS.
Example 1.

procedure euler (fct, sum, eps, tim) ; value eps, tim ; integer tim ;
real procedure fet ;3 real sum, eps
comment euler coamputes the sum of fet(i) for i from zero up to infinity
by means of a suitably refined euler transformation. The summation is
stopped as soon as tim times in succession the absolute value of the
terms of the transformed series are found to be less than eps., Hence,
cone should provide a function fct with one integer argument, an upper
bound eps, and an integer tim. The output is the sum sum. euler is
particularly efficient in the case of a slowly convergent or divergent
alternating series ;
begin integer i, k, n s array m[0:15] ; real mn, mp, ds ;
it=n:=1:=0;m j := fet(0) 3 sum := m[0]/2 ;
nextterm: i := i+l ; m = fct(i)
or k := 0 step 1 upkil
begin mp := (mn+m§k]
))
H

)

do

s

$
0
){ s m[k] := mn j; m := mp end means ;
A

- B

n<15) then

if (abs(mn) < abs(m[n
= n+l 3 m{n] := mn end accept

begin ds := mn/2
elgse ds :=mn
sum ;= sum + ds 3
if abs(ds) < eps then t:=t+l else t := O ;
if t<tim then go to nextterm
end euler

BExample 21.

n

procedure RK(x,y n FKT eps, eta xE yE fi) 3 value x|y ; integer n ;
Boolean fi ; real x €PS, eta xE $ array vy, yE Eggggggzg FKT ;
comment : RK integrates the system g = fk(x Yy Vpieee Yy) (k=12 ,.n)}

of differential equations with the method of Runge-Kutta with automatic
search for appropriate length of integration step. Parameters are:

The initial values x and y[k] for x and the unknown functions y, (x).
The order n of the system., The procedure FKT(x,y,n,z) which represents
the system to be integrated, i.e. the set of functions f, . The tole-
rance values eps and eta which govern the accuracy of the numerical
integration, The end of the integration interval xE, The output para-
meter yE which represents the solution at x=xBE, The Boolean variable
fi, which must always be given the value true for an isolated or first
entry into RK. If however the functions y must be available at several
meshpoints x X% then the procedure must be called repeatedly

X LR IR 3
O 1 1 n'
(with x=x,, XB = x ., for k=0, 1, ... n-1) and then the later calls

B i e T T e T T T T T S

1, This RK-program contains some new ideas which are related to ideas of
S. Gill, A process for the step by step integration of differential
equations in an sutomatic computing machine. Proc, Camb, Phil, Soc,

Vol. 47 (1951) p. 96, and E, Frodberg, On the solution of ordinary dif-
ferential equations with digital computing machines, Fysiograf., Sdllsk.
Lund, Forhd . 20 Nr. 11 (1950) p. 136-152, It must be clear however

that with respect to computing time and round-off errors it may not

be optimal, nor has it actually been tested on a computer,

-3~

may occur with fi = false which saves computing time. The input para-
meters of FKT must be x ,y,n, the output parameter 7z represents the set
of derivatives z[k] = fk(x v[1], y[2], ..., y[n]) for x and the actual
v's. A procedure comp enters as a non«local identifier
begin
array z y1,y2 y3[1in] ; zeal x1 x2 x3,H ; Boolean out ;
integer k,J 3 oun real s Hs ;
procedure RK1ST(x,y h xe ye) ; real x h Xe ; array y,ye ;
comment ¢ RK1ST integrates one single RUNGE-KUTTA step with
initial values x,ylk] which yields the output parameters
xe = x+h and ye[k} the latter being the solution at xe,
IMPORTANT: the parameters n, FKT, z enter RKI1ST as non-local
entities j

xe 1= x + alj] ;
for k s= 1 step 1 until n do
in
wik] := y[k% +al3] x z[k] ;
ve[k] = ye[k] + a[g+1] x ztk]/B
end %
end J
end RKIST
BEGIN OF PROGRAM:
if fi then begin H:=xE-x 3§ s := O gnd elgse H := Hs 3
out := false 3
AA: if (x+2 JLO1xH-xE>0) = (H>O) then
begin Hs := H ; out := true s H := (xB-x)/2 end if ;
RK1ST(x,y, 2xH, - 1)
BB: RK1ST(x,y H, %2 y2) s RK1ST(x2,y2,H, x3,¥3) ;
for k := 1 gpgg 1 until n do
if comp(yi[k] y3[k],eta) > eps then go to CC ;
comment comp(a,blc) is a function designator, the value of which
is the absolute value of the difference of the mantissae of a and b,
after the exponents of these quantities have been made equal to the
largest of the exponents of the originally given parameters a b,c 3
1= X3 3 1f out then go to ID 3
or k := 1 step 1 until » do y[k} = y3[x] 3

if s=5 then begin s: —O ; H := 2xH _gg if
s =5 +1 3 go to

CC: H := O.5xH 3 out '= false ;s x1 1= x2 3
for k := 1 step 1 until n do yl[k] yQ[k]

ID: for k := 1 step 1 until n do yE[k] := y3[k]

451w
ATPHABETIC INDEX OF DEFINITIONS
OF CONCEPTS AND SYNTACTIC UNITS.

All references are glven through section numbers. The references
are given in three groups:

def Following the abbreviation ‘def' reference to the syntactic definition
(if any) is given.

synt Followlng the abbreviation' synt references to the occurrences in
metalinguistic formulae are given, References already quoted in
the def-group are not repeated.

text Following the word "text' the references to definitions given in
the text are given.,

The basic symbols represented by signs other than underlined words
have been collected at the beginning., The examples have been ignored in
compiling the index,

see: plus

see:minus

see: multiply

+, see: divide

see: exponentiation

<, =, 2 >, k see: <relational operator)

s - hl/\-ﬁ?\x 1+

, D, Vv, A, -, see: <logical operator>
, See: comms
, see: decimal point

gee: ten

s

see: colon
see: semicolon
, See: colon equal
, See: space
(), see: parentheses
, 8ee: subscript bracket
(Y, see: string quote

ee 08 pu
il -

<actual parsmeter>, def 3.2,1, 4.7.1
<actual parameter list), def 3.2,1, 4,7.1
<actual parameter part), def 3.2,1, L4.7.1

<{adding operator), def 3.3,1

alphabet, text 2.1

arithmetic, text 3.3.6

arithmetic expressiond>, def 3.3.1 synt 3, 3.

LBt 5.0, t 5

arithmetic cperator),6 def 2.3 text Bl
array, synt 2.3, 521 5.4,1

array, text 3.l.4.1

array declaration>, def 5.2.1 synt 5 text 5.2.3

{array identifierd>, def 3.1.1 synt 3.2.1, 4,7.1, 5.2.1 text 2.8

{array list)>, def 5 2n 1

{array segment> def 5.2.,1

<assignment statement) def 4,2,1 synt 4,1,1 text 1, L.2.3

3.3:1, Bb.1, 5.2.1,

.

<vasic statement), def 4,1,1 synt L.,5.1

<basic symbol), def 2

begin, synt 2.3, L.1.1

<block> def 4.1.1 synt 4.5.1 text 1, L.1.3, 5
<block head> def 4.1,1

Boolean, synt 27, Delad tegt 5105

<Boolean expre851on> def 3.4.1 synt 3, 3.3.1, k.2.1, k5.1, L,6.1 text 3.k.3
{Boolean factor), def 34,1
<Boolean pr1mary> def 3.4.1
<{Boolean secondary) def B.t.1
<Boolean term>, def 3.k,1
<bound pair>, def 5.2.1

<bound pair list)>, def 5.2.1
<{bracket),6 def 2 5

{code>, synt 5.4,1 text 4.7.8, 5.4.6

colon Csynt 2,3, 3.2.1, b,1,1, b,5.1 L.6.1 L.7.1 5.2.1

colon equal := , synt 2.3, 4.2,1, L.,6,1 5.3.1

comma, , , synt 2.3, 3.1.1, 3.2.1 Lh6.1l ool Salad, 5.2.1, 5.5,1, Geli,d

comment, synt 2.3

comment conventlon text 2.3

<compound statement> def b,1.1 synt 4.5.1 text 1

{compound. tail>, def 11

<{conditional statement} def 4.5.1 synt 4.1.1 text 4.5.3

{decimal fraction>, def 2.5.1

{decimal number>, def 2.5.4 text 2.5.5

decimal point . , synt 2.3, 2.5.1

<declaration>, def 5 synt 4.1.1 text 1, 5 (complete section)
{declarator>,6 def 2.3

{delimiter), def 2.5 synth 2

<des1gnatlonal expression), def 3.5.1 synt 3, k.3, L. 5.5.1 text 5.5.0
<digity>, def 2.2.1 synt 2, 2.4.1, 2.5.1

dimen51on text 5e2a5.2

divide / *, synt 2.3, 3.3.1 text 3.3.4.2

do, synt 2.3, L.,6.1

<dummy statement> def 4.4,.1 synt L.1.1 text b.bL.3

else synt 2.3, 3.3, 1, 3.4.1 3.5.1, L.,5.1 text 4.5.3.2

<empty> def 1.1 synt 2.6. 1, 3 2.1 bk, 1, b.7.1, 5.k.1

end synt 2.3, L,1.1

entler text 3 2.5

exponentlatlon T synt 2.3, 3.3.1 text 3.3.4.3

{exponent partd>, def 2.5,1 text 2 5

<{expression>, def 3 synt 3.2.1, 4.7.1
<Factor). def SaEnit

false synt i ol

for, synt 2.3, 4.6.1

(For clause>, def b.6.1 text 4.6.3
<{for list>, def 4.6.1 text L4.6.4
<for list element>‘ def 4.6.1 text 4.6.,4.1 L.6.k.2, L.6.L,3

<formal parameter>, def 5.k.1 text 5.4.3

{formal parameter list)>, def 5.k.1

{formal parameter part)>, def 5.4.1

{for statement)>,6 def k. o synt k.1,1, L.5.1 text 4.6 (complete section)
<{function de81gnator> def 3.2.1 synt 3 3.1, 34,1 text 3.2.3, 5.4.4

text 3 (complete section)

33~

20 to, synt 2,3, 4,3.1

{go to statement> def b.,3.1 synt b.1.1 text L.3.3

<identifierd, def 2.1,1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2,4.3
{identifier llst> def 5.4.1

Af synt 2.3, 351 L.,5.1

Gr claused, def 3.3.1, 4,5.1 synt 3.4.1, 3.5.1 text 3.3.3, k,5.3.2
iy statement> def b.5.1 text L.5.3.1

<implication>, def 3.k.1

integer, synt 245, Dalel Text Helo7

<1nteger> def 2.5.1 text 2.5.k4

label synt 2.3, 5.4.1

<label> def 3.5.1 synt 4.1.1, b4.,5.1, Lk,6.1 text 1 4.1,3

{left part> def .21

<left part list)>, def L4,2.1
{letter>, def 2, 1 synt 2, 2.4,
{letter str1ng> defan 1 b,
local, text kL, 1 .3

<local or own type>, def 5.1.1 synt 5.2.1
<logical cperator>, def 2.3 synt 3.L4.1 text 3.4.5
<{logical value), def 2.2.2 synt 2,).h 1
<{lower bound), def 5.2.1 text 5.2. L

non-local, text 4.1, 3

minus - , synt 2.3, 2.,5.1, 3.3.1 text 3.3.L4.1
multiply x , synt 5 3, 3.3.1 text 3.3.4.1
<multiplying operator>,6 def 3.3.1

<number>, def 2.5.1 text 2.5.3, 2.5.k4
{open str1ng> def 2.6.1
{operator), def 2.3

own, synt 2,3 5.1.1 text 5, 5.2.5

<parameter dellmlter> def 3.2 u.7.1 synt 5.4.1 text L.7
parentheses (), synt 2.3 3.2.1, 3.3.1, 3.1, 3.5.1, b7

GeXt DD eTel

plus + , synt 2.3, 2.5.1, 3.3.1 text 3,3.4.1
<primary>,6 def 3.3.1

procedgre synt 2.3, 5.4.1

{procedure body>, def 54,1

1, 3.2.1, &,7.1
7.1

o7
01, 5.)"'01

<{procedure declaration>‘ def 5.4,1 synt 5 text 5.4.3

<procedure heading>,6 def 5.4.1 text 5.4.3

{procedure 1dent1fler> def 3.2.1 synt 3.2.1, b.7.1, 5.4.1 text 4.7.5.h
<procedure statementd> 6 def 4.7.1 synt b.1,1 text 4.7.3

program, text 1

<{proper string>l def 2,6.1

quantity, text 2.7

real, synt 2,3, 5.1.1 text 5.1.3

<relatlon> def 3.4.1 text 3.b4.5

<relational operatord>, def 2.3, 3.4.1

scope, text 2.7

semicolon s synt 2.3, b,1,1, 5.h.1

{separator>, def 2.3
{sequential operator)> 6 def 2.3
{simple arithmetic expression)>, def 3.3.1 text 3.3.3
<simple Boolean>, def 3.h.1
<simple de31gnatlonal expressiony, def 3.,5.1
{simple variable>, def 3.1.1 synt 5.1.1 text 2.L4.3

Sl

space ., synt 2.3 text 2.3, 2.6.3
Zgnecification part> def 5.b.1 text 5.4.5
<specificator>,K6 def 2.3
{specifier>, def 5.4.1

standard function, text 3.2.4 3.,2.5
{statement>, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text b (complete section)

statement bracket, see: begin end
sten, synt 2.3, L.6.1 text 4,6,4.2
string, synt 2.3, 5.4.1 .

{string>, def 2.6.1 synt 5.2.1 B.T.1 text 2.6.3
string quotes |) | synt 2,3, 2.6.1, text 2.6.3
subscript, text 3.1.4.1

subscript bound, text 5. 2.5.

subscript bracket [1. sgmt 2.3, 3.0ed, 3.5, 5.2:4
{subscripted variable), def 2o b Beet =0 T
{subscript expression>, SISEE Hiodladl S BnSiod

{subscript list)>, def 3.1,1
successor, text !

switch, synt 2.3, Baded, 5.k,1

{switch declaratlon> def 5.5.L synt 5 text 5.3.7
{switch designator>, def 3.5.1 text 3.5.3

{aswitch identifier>, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1

{switch list},6 def 5 el

{term>, def 3.5.1

Ben ., syt 2.3, 2.5,1

then, synt 2.3, 3.3.1, k.5.1

transfer function, text 3.2.5

true synt 2.2 2
ybe> def 5.1.1 synt 5.k.1 text 2.8

<type declaratlon> def 5.1,1 synt 5 text 5.1.3

{type list)>,6 def 5. 1 1

{unconditional statement>, def b.1.1 L.5.1

<{unlabelled basic statement> def h.1.1

<unlabelled block>, def 4,1, i

{unlabelled compound> def L4,1.1

{unsigned integerd, def A L

{unsigned number) 6 def 2.5.1 synt Sodigit

unbil. synt 2.3, L.6,1 text L,6.4,2

<UQper bound>, def 5.2.1 text 5.2.4

value, synt 2 5. St

value, text 2.8, Sie960)

<value part>, def 5.4.1 text

{variable>, def 3.1.1 synt

5 .00, 201 6.1 text 3.1.3
{variable identifier> def 3.
t

vhile, synt 2.3, 4,6,1 tex

END OF THE R7ZPCRT.

