DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

National Physical Laboratory

TEDDINGTON * MIDDLESEX

Please reply to the DIRE CT O R and quote our reference Telegrams : Physics, Teddington Telephone : Molesey 1380, Ext.

OUR REP: Ma 8/29/01

YOUR REF:

25th January, 1960

Dear Peter,

1. I enclose a syntax of Algol 60 which is complete in as far as I understand
the agreements reached on Saturday, 16th January in Paris.

2, With regard to your proposed amendments, I have incorporated the distinc-
tion between functions and procedures and have restricted functions to require
at least one formal parameter, but I personally do not feel that either of
these amendments is essential to avoid ambiguity. I do not have strong feelings
either way, but your action is clearly consistent with having the fewest exten-
sions of the language incorporated in Algol 60,

3. The following is the semantics of procedure statements as I understand it,
based on my notes of 16th January.

Procedure statements
3.1 Parameter recognition,

An actual parameter appearing in a procedure statement may either be an
identifier, or an expression other than a simple varisble or label, This is
a syntactical distinction recognizable by the translator.

An identifier represents either a variable, anarray, a procedure or a
function. When the procedure statement is executed there will be a unique
quantity identified by each such identifier and therefore recognizable by the
translator.

An expression may be arithmetic. Boolean or designational, and as a
special case may be a subscripted variable, Since integer labels are not
identifiers they appear in the category of designational expressions (an anomaly,
but agreed!) and must be recognized by examination of the context of the
corresponding formal parameters in the procedure compound,

3.2 Execution

If the procedure compound is not 'code' (outside the language) the
procedure statement is exscuted as if it were replaced by the procedure com-
pound and the following changes made in it immediately prior to the execution:

(1) 1Identifiers local to the compound which happen to be identical with actual
parameters are systematically changed to avoid such conflicts,

(2) Actual parsmeters which are identifiers (including labels other than
unsigned integers) are substituted for the corresponding formal parameters
throughout the procedure compound. They are treated as global in the execution,
and thus may already have initial values assigned to them.

(3) Actual parameters which are designational expressions other then just
labels in the form of identifiers (but including integer labels) are evaluated
and their values (labels or switch values with constant subscripts) are

/substituted

Mr, Peter Naur,
Regnecentralen,
Gl. Carlsbergvej 2,
Valby, DENMARK.,

Mr, Peter Naur -2 - 25th January, 1960

substituted for the corresponding formal parameters throughout the procedure
compound, after first changing systematically any existing labels in the com-
pound which happen to be identical with these. These substituted values are
treated as global in the execution.,

(4) Actual parameters which are arithmetic or Boolean subscripted variables
have their subscript expressions evaluated, The subscripted variables with
constant subscripts so obtained are substituted for the corresponding formal
parameters throughout the procedure compound and are treated as global in the
execution,

(5) Actual parameters which are arithmetic or Boolean expressions other than
variables are evaluated and the values assigned to the corresponding formal
parameters which are then treated as local in the execution.

L. The above agrees with a decision of 8.20 p.m. on Saturday night, that "in
a procedure call the translator always transmits names", and accordingly makes
no use of a name list in the procedure heading. The only ambiguity that seems
to be possible is where the translator cannot tell from the formal context
whether an unsigned integer actual parameter is to be trsated as a (global)
label (3) or as an arithmetic expression (5) to be assigned to the formal
parameter as a (local) simple variable, A simple remedy would be to insist on
such a label being followed by a colon when an actual parameter. In the
example A (f) of your letter of 17th January case (2) applies and the function
f 1is evaluated repeatedly whenever it occurs within the procedure compound of
A. No notice need be taken by the translator at the time of the procedure
call of how many formal parameters f has. if any. That question only arises
when f is met within the procedure compound of A,

5. The semantics of function evaluation follows the same lines as above,
and in view of the common provision of "failure exits" from function subroutines

(so that they may involve labels as paremeters) I see no need for making any
distinction between functions and procedures. The syntax of the actual para-
meter list is the same in either case,

6. Concerning the syntax -

6.1 Apparently the procedure compound is not allowed to be a block
(document 27), Was this intended?

v 6.2 The syntax of the logical negation sign was incorrect in document 30,
/6.3 The syntax of 'designational expression' was incorrect in document 30,

v 6.4 The definition of 'compound tail' in document 30 was incomplete: it
omitted 'else' and it allowed strings containing one or other but not both of
';' and 'end’.

6.5 The definitions in document 30 permitted basic statements to be
labelled repeatedly but blocks and compounds only once., I understand that
repeated labelling is permitted,

V 6.6 A delimiter 'block' is used in document 30 but never elsewhere and
I do not remember admitting it. It is superfluous since it would in any case
be immediately followed by ‘begin <declarator>' which characterizes a block,

vV 6.7 Although I believe we agreed to admit Backus' Item 24 of document 6
(string quotes and space) I have omitted them from the syntax in absence of any
rules for their inclusion,

‘/ 6.8 I find I have no recérd of the details agreed (if any) with regsrd to
justaposition of declarators, so I have used common-sense (and 5.2.1 of document 5)
in drawing up the syntax items 11, 18, 25 in which <type> and 'own' appear in
combination with 'function' and 'array' and with each other,

/7.

Mr, Peter Naur -3 25th January, 1960

7. With regard to document 1001 Rut the procedure x defined by
procedure x(a,b,c) begin ¢ := a/b end

is evidently not restricted to integer parameters - that would be a matter
for a program which used x - and T see no hardship in being unable to so
regtrich it,

‘In the case of
procedure x(a,b,c,d)L : begin ... A(b,e,d,e) ... end x;

the agreements as I understand them imply that in a particular use of x

such as a call x(p,q + 1.r,s), the identifiers p,r,s are substituted for
a,c,d respectively throughout I and treated as global, i,e, their
signifiance as real, integer, arrays or what you will is defined by the
accompanying program and has no bearing on the translation of this call of

X. In this case the expression q + 1 1is evaluated (the type of arithmetic
depending on the type of q) and its current value assigned to the variable b,
which will be treated as local, The inner call thus becomes A(b,r,s,e), in
which all parameters are now simple identifiers and hence treated as global to
the procedure compound of A after substitution. It is still quite immaterial
that the signifiance of r and s is prescribed from outside the call of x,

With best wishes,

Yours sincerely,

¥. WOODGER
Copies to: Prof., Perlis : Prof, Bauer
Prof. McCarthy Prof, Rutishauser
Mr, Backus Prof, Samelson
Mr, Green Mr., VaMquois
Mr, Katz Prof, v, Wijngaarden

Mr.Wegstein:

Syntax of Algol 60

1.<procedure declarsation> ::= procedure<procedure heading>
<procedure compound>

2.<procedure compound> ;:= <compound statement>|<code>

3.<procedure heading> ::= <procedure identifier>
<formal parameter part>

L.<formal parameter part> ::= <empty>| (<formal parameter list>)

5.<formal perameter list> ::= <formal parameter>|
<formal parameter list><parameter delimiter><formal parameter>

6.<formal parameter> ::= <veriable identifier>|<array identifieﬁ>l
<function identifier>|<procedure identifier>|<label identifier>|
<switch identifier> :

7.<psrameter delimiter> ::= ,|)<letter string>:(

8.<procedure identificr> ::= <identifier>

9.<label identifier> ;:= <identifier>

10.<variable identifier> ::= <identifier>

11.<function declaration> ;:= function<function heading>
<function compound>[<type5funcfion<function heading>
<function compound>
12.<function compound> ::= <compound statement>|<code>
13.<function heading> ::= <function identifier>(<formal parameter 1list>)

14.<function identifier> ::= <identifier>

15.<switch declaration> ::= switch<switch identifier> := (<switch list>)

16.<switch list> ::= <designatiocnal e xpression>|
<switch list>,<designational expression>

17.<switch identifier> ::= <{identifier>

18.<array declaration> ::= array(<array li8t>)l
% : Type>array (Karray ist})L
own<type>array(<array list>)
19.<array list> ::= <array segment>|<arrasy list>,<larray segment>

20.<array segment> ::= <array identifier>[<lower upper bound list>] |
<Larray identifier>,<array segment>

21.<lower upper bound list> ::= <lower bound>:<upperbound>|
<lower upperbound list>,<lower bound>:<lupper bound>

22.<lower bound> ::= <arithmetic expression>

23.<upper bound> ::= <arithmetic expression>

24.<array identifier> ::= <identifier>

25.<type declaration> ::= <type>(<type list>) | own<type>(<type 1ist>)

26.<type> ::= integer|Boolean

27.<type list> ::= <simple variable>|<type list>,<simple variable>
28.<own declaration> ::= own(<identifier list>)

29.<real declaration> ::= real(<identifier 1list>)

30.<identifier list> ::= <identifier>|<identifier list>,<identifier>

31.<declaration list> ::= <declaration>|< declaration list>;<declaration>

32.<declaration> ::= <real declaration>|<own declaration>|
<type declaration>l<arfay<iec1aration>|<switch declaration>|
<function declaration>|<procedure declaration>

33.<procedure statement> ::= <procedure identifier>
<actual paramcter part>

3h.<actual paramcter part> ::= <empty>K<actual parameter list>)

35.<actual parameter list> ::= <actual parameter>|
<actual paramectcr list> <parameter delimiter> <actual parameter>

36.<actual parasmeter> ::= <variable identifier>|<bxpression>|
<array identifier>|<procedure identifier>|
<function identifier>|<designational expression>

37.<dummy statement> ::= <empty>

38.<assignment statement> ::= <arith assignment statement>|
<boolean assignment statement>

39,<arith assignment statement> ::= <variable> := <arith.expression>|

<variable> := <arith assignment statement>
L0,<boolean assignment statement> ::= <variable> := <boolean expression>|
<variable> := <boolean assignment statement>

L1.<go to statement> ::= go to<designational e xpression>

Lh2.<for statement> ::= for<variable> := <arith expression list>do
<statement>

L3.<arith expression list> ::= <arith expr list elem>|
<arith expression list>,<arith expr list elem>

L. <arith expr 1list elem> ::= <srithmetic expressiomn>|
<arith expressiom>step<arith expressiorm>until<arith expressioﬁ>|
<arith expressiorn>while<boolean expressio

L5.<statement> ::= <conditional stat>|
<conditional stat>elseunconditional statement>|
<unconditional statement>

L6.<conditional stat> ::= <simple conditional stat>|
<conditional stat>else<simple conditional stat>

L47.<simple conditional stat> ::= if<boolean expression>then
<unconditional statement>

-3_

L48.<unconditional statement> ;:= <basic statement>|
<compound statement>|<block>

49.<block> ::= <unlabelled block>|<label>:<block>

50.<unlabelled block> ::= <for statement>|<simple block>
51.<simple block> ::= <block head> <compound tail>

52.<block head> ::= beginddeclaration>|<block head>;<declaratiom>

53.<compound statement> ::= <unlabelled compound>|
<label>;:;<compound statement>

5L.<unlabelled compound> ::= begincompound tail>

55.<compound tail> ::= <compound end>|
<compound end> <any string not containg ; or end or else>

56.<compound end> ::= <statement> end|<statement>;<compound end>

57.<basic statement> ::= <unlabelled basic statement>l
<label>:<basic statement>

58.<unlabelled basic statement> ::= <assignment statement>|
<go to statement>|<procedure statement>|<dummy statement>

59.<designational expression> ::= <conditional des expn>|
<conditional des expr>else<d prime>|<d prime>

60,<conditional des expr> ::= <simple con des expr>|<
<conditional des expr>clse<simple con des expr>

61.<simple con des expr> ::= if<boolean expression>then<d prime>
62.<d prime> ::= <label>|<switch value>

63.<label> ::= <identifier>|<unsigned integer>

6L4.<switech value> ::= <switch identifier>[<subscript expression>]

65.<subscript expression> ::= <arithmetic expression>

66.<boolean expressiorn> ::= <conditionsal booleaﬁ>|_
<conditional boolear>else<minor boolean>|<minor boolean>

67.<conditional boolcan> ::= <simple con boolean>|
<conditional boolean>else<simple con boolean>

68.<simple con boolcan> ::= if<boolean expression>thendminor boolecan>

69.<minor boolearn> ::= <implication boolear> |
<minor boolean> = <implication boolcan>

70.<implication boolcarm> ::= <b term>|<implication boolecan> ><b term>
71.<b term> ::= <b factor>|<b term> Vv <b factor>
72.<b factor> ::= <b prime>|<b factor> A <b prime>

73.<b prime> ::= (<boolean expressiom>)|<logical value>|<relation>|
<varisble>|<function value>L°€LFb prime>

\
U 3

..)_!__

74.<logical value> ::= true|false

75.<relatior> ::= <prime expr> <relational operator> <prime expr>
76.<relational operator> ::= <||=|2|>]%

77.<expression> ::= <arithmetic expression>|<boolean expression>

78.<arithmetic expression> ::= <conditional arith expr>|
<conditional arith expr>else<term sum>|<term sum>

79.<conditional arith expr> ::= <simple con arith>L
<conditional arith expr>else<simple con arith>

80.<simple con arith> :;= if<boolean expression>then<term sum>
81.<term sum> ::= <term>|<add op> <term>|<term sum> <add op> <term>
ga2.<term> ;::= <factor>|<term> <muit op> <factor>

83.<factor> ::= <prime expr>|<factor>t <prime expr>

8L.<prime expr> ::= (<arithmetic expressiomn>)|<unsigned number>|
<variable>|< function value>

85.<add op> ::= +|-
86.<mult op> ::= x|/|¢

87.<function value> ::= <function identifier>(<actual parameter list>)
88.<variable> ::= <simple variable>|<subscripted variable>
89.<subscripted varisble> ::= <array identifier>[<subscript list>]

90.<subscript list> ::= <subscript expression>|
<subscript list>,<subscript expression>

91.<simple variable> :;:= <identifier>

92.<mmber> ::= <unsigned number>|<ada op> <unsigned number>

93.<unsigned number> ::= <decimal number>|<exponent part>|
<decimal number> <exponent part>

94.<decimal number> ::= <unsigned integer>|<decimel fraction>|
<unsigned integer> <decimal fractiom>

95.<exponent part> ::= ,,<lnteger>
96.<decimal fraction> ::= Lunsigned integer>

97.<integer> ::= <unsigned integer>|<add op> <unsigned integer>

98.<letter string> ::= <letter>|<letter string> <letter>
99.<identifier> ::= <letter>|<identifier> <letter>|<identifier> <digit>

100.<unsigned integer> ::= <digit>|<unsigned integer> <digit>

-5 358

101 .<basic symbol> ::= <letter>|<digit>|<logical value>|<delimiter>

102.<letter> ::= alblc nlilj r's tlulv
&|B|C H|I|J r|s|T|U|v

1
103.<digit> ::= 0|1]|2]|3|4|5|6]|7]|8]|9
104.<delimiter> ::= <operator>|<separator>|<bracket>|<declarator>

njo
N’O

k|1l
K|L

d
D

?| g

-
.L;l

G

e

1

m
I

qu WXy Zl
P{Q wiX|Ylz

105.<coperator> ::= <arithmetic operator>l<re1ational operatoﬁ>|
<logical operator>|<sequential operator>

106.<arithmetic operator> ::= <add op>|<mult op>|t

107.<logical operator> ::= = |Aly|=]=

108.<sequential operator> ::= go|to|for|step|until|while|do|if|then|else

109.<separator> ::= ,|;|:|:=|4o |comment
110.<bracket> ::= (|)|[|]|vegin|end

111.<declarator> ::= procedure |function|array|switch|<type>|own|real

112.<empty> ::= <the null string of symbols>

113.; 1is syntacticelly equivalent to
comment<any string not containing ;>;

25th January, 1960

MW/PL (15)

