RPart 1, Intreduction,

In 1955, as a result of the Darmstadt meeting on electronic compu~—
ters, the GAW (association for applied mathematics and mechanicsﬁg
Germany), set up a commitee on programming (Programmierungsausschuﬁ).
Later a subcommitee began to work on formula translation znd on the
construction of a traﬁslator, and a considerable amout of work was

done in this direction.

A conference attended by representatives of the USE, SHARE, and DUO
organisations and the Association for Computing Machinery (ACM) was
held in Los Angeles on May 9 and 1o, 1957 for the purpose of exami-
ning ways and means for facilitating exéhange of all types of com-
puting information. Amongother things, these conferees felt that

a single universal computer language would be very desirable. Indeed,

the successful exchange of programs within various orzanisstions

‘such as USE and SHARE had proved to be very valuable to computer in-

stallations. They accordingly recommended that the ACHM appoint g
commitdee to study and recommend action toward a universal program-

ming language. ' :

By October 1957 the GAMM group, aware of the existence of many pro-
gramming languages, concluded that rather than present still another
formula language, an effort should be made toward unification. Con-

sequently, on October 19, 1957, a letter was written to Prof. John

W.Carr III, pfesident of the ACM, The letter sugpsted that a joint

conference of representatives of the GAMM and ACM be held in order

to fix upon a common formula language in the form of a recommendation.

An ACIl Ad-Hoc commitee was then established by Dr. Carr, which repre-
sented computer users, computer manufacturers, and uvniversities.

This committee held three meetings starting on January 24, 1958 and
discussed many technical details of programming language. The langu-~
age that evolved from these meeting was oriented more toward problenm
Language than toward computer language and was based on several
existing programming systems. On April 18, 1958 the committee appoin-
ted a sub-committee to brepare a report giving the technical specifi-
cations of a proposed language.




e B

A comparison of the ACM committee proposal with a simila# proposal
prepared by the GAMM group (presented §§'the above-mentioned ACHM-
Ad-Hoc committee meeting of April 18, 1958) indicated many common
features. Furthermore, the GAMM group planned,on its own initiative,
to use English words wherever needed. The GAMM proposal represented
a great deal of work in its pdanning and the proposed language was
expected to find wide acceptance. The ACM proposal was based on ex-

berience with several successful, working, problem oriented language.

Both the GAMM and ACM committees felt that because of the similarities
of their proposals there was an excellent opportunity for srriving
at a unified language. They felt that a joint Working session would
be very profitable and accordingly arranged for a conference in Swit-
zerland to be atténded by four members from the GAMM group and four
members from the ACM committee. The meeting was held in Zurich,
Switzerland, from May 27 to June 2, 1958 and attended by F.L.Bauer,
H.Bottenbruch, H.Rutishauser and K. Samelson from the GAMM committee
and by J.Backus, C.Katz, A.J.Perlis and J.H. Wegstein from the ACHM

1)

Committee.

t was agreed that the contents of the two proposals should form
the agenda of the meeting, and the following objectives were agreed
upon:

& The new language should be as close as possible to standard
math@matical notation and be readable with little further ex-

planation.

IT It should be possible to use it for the description of computing

processes in publications.

IIT The new language should be mechanically translatable into machine

programs.

1) In addition to the members of the conference, the following people
participated in the preliminary work of these committees:

ACM (List of all who attended any of the three meetings)

GAMM  P.Graeff,RLauchli, M.Paul, Dr.f.Penzlin



s R

There are certain differences between the language used in publi-
catlions and a language directly usable by a computer. Indeed, there
ate many differences between the characters used by various compu-—
ters. Therefore, it was decided to focus attention on three different

levels of language, namely a Reference Language, a Publication

o . X
Language, and several Harware Representations.

Reference Language

1. It is the working language of this committee.
2. It is the defining language.

%3, 1t has only one unique set of characters.

4

. The characters are determined by ease of mutual understanding
and not by any computer limitations, coders notationjgf PUre matyg -

; . ) ; . S Maéieal sedaifan .,
It is the basic reference and guide for compiler builders.

Ul
°

4

6. It is the guide for all hardware representations.

Te It will not normally be used statine problems.

8. It is the guide for transliterating from publication
language to tape language.

9. The main publication of the common language itself will use the
reference representation. :

o o o
Publication Language (see Part %=Xc)

1. The dgscription of this language is in the form of permissible
variations of the reference language (e.g. subscripts, spaces,
exponents, @reek letters) gccording to usage of printing and
handwriting.

2., It is wused for stating and communicating problems.

3. The characters to be used may be different in different coun-
tries but univogue correspondence with reference representation
must be secured.

Hardware Representations

1. Bach one of these is a condensation of the reference language
enforced by the limited number of characters on standard input
equipment.

2. Bach one of these uses the character set of a particular compu-~
ter and is the language acceptea by a compiler for that compiler.
guag y P



- 4 ~

5. Each one of these must be accompanied by a special set of rules
for transliterating from Publication language.

2. Summary of results

3. Acknowledgements

The members of the conference wish to express their appreciation
to the Association for Computing Machinery, the " Deutsche For-
schungsgemeinschaft!, and to the Swiss Federal Institute of Techno-

log for substantial help in making this conference possible.
tas bl £

Part II. Description of the reference language

1) Structure of the languace

As stated in the introduction, the algorithmic language will be
developed here in terms of the reference lapguage. This means that
all @bjects defined within the language are represented by a given
set of symbols. It is only in the use of symbols that the other
languages mentioned in the introduction (publication languages,
hardware language) may differ from the reference language, whereas

structure, and content should be the same for all ianguages.

The purpose of the algorithmic language is to describe computatio-
nal processes. The basic concept used for description of ecaleulating
rules is the well known arithmetic expressioh containing the equally
well known constituent numbers, variables, and functions. From
expréssions, the most simple, and most important, independent, and
self contained units of the language are built e in khe form of

expligit formulae. They are aalled arithmetic statements.



A

To show the flow of larger computational processes, certain non
arithmetic statements are added which may e.g. describe alternati-

i
ves, or recursive repftibns of cempuving statements.

Statements may be supported by declargtions which give no operating
rules, but inbform about certain properties of objects apperring
in statements, such as the class of numbers to be represented by

a variable, the dimension of an array of numbers,or even the
gset of rules definins a Tunebiong

Sequences of statements, and declarations are called programs.
However, whereas complete, and rigid formal rules for constructing
statements are described in the following, no such rules can be gi-
ven 1in the case of programs. Conseqﬁently, the notion of program
must be considered to be informal, and intuitive, and the question
whe¢ther a sequence of statements may be called a program should

be decided on the basis of operational meaning of the sequence,

2) Basic Hymbols

The reference language is built up from the basic symbols listed in

Part I111.a. These are

1) Letters A (the alphabets of small, and of capital letters)
2) figures (arabic numerals O ... 9)

3) delimiters § consisting of

a) operators (J:

arithmetic operators + — > /
>

relational operators <K= S

logirval operators ~ YA =
sequential operators go to do return stop
fop, 3%
b) separators o: * e 3 = o=l
c) brackets B (il & begin end
d) declarators ¢: procedure  array
switch tree

tvoe comment



U

Of these symbols, letters do not have individual meaning. Figures
and delimiters have a fixed, and unchangeable meaning which for
the most part is obvious, or else will be given at the appropriate

place.
Strings of letters, and figures enclosed by delimiters represent

new entities, However, only two types of such stringgare admissible:

1. strings consisting of figures}' only represent the(gositive}
integers & (including 0)

with the conventional meaning.

2. stringsbeginning with a letter A followed by arbitrary letters A

5 ’ 4
and|or figures § are called

identifiers T

They have no in herent meaning, and serve for identifying purpo-
L g :

ses only.

3) Expressions.

Arithmetic processes (in the most general sense) which the algo-
rithmic language is prima¥ily intended to describe, are given by
azithmetic expressions. Constituents of these expressions, except
for certain delimiters, are numbers, variables, and fuactions.

Since both variables and functions may themselves contain expres—
sions, definition of expressions, and their constituents is necessa—
rily recursive.

a) (positive ) Numbers N.

1o _

where each G is an integer as defined above.

Form: N as GG

G.G is a decimal number of convemtional form, the scale factor

+G is the power of ten given by ¥ G¢. The following constitu-

1o
ents of a number may be omitted:



R
The fractional part .00...0 of integer decimal numbers, the

integer 1 in front of a scale facto;}the + sign in the scale

factor, the scale factor 1o f ©,
Bxamples: 4711

' 137.06

1o
2.99997,

-12
o
-12

1
D16

b1) Simple Variables V

are designations for arbitray quantities (numbers) as in
elementary arithmetics.
Form: V~T.,

where I is an identifier as defined sbove,

Examples: » a
xT1
ALPHA

b2}Subscripted Variables V

designate quantities which are conmponents of mnultidimensionsl
g q .

arrays.

Form: LT [L] .

where L~E, B, ... , B is a list of arithmetic expressions

as defined below,

Bach expression E occupies one subscript position of the
subscripted variable, and is called a subscript. The comple-

te list of subscripts is enclogefl in the subscript brackets [ 1.

7#-
The array component referred to by a subscipted variable is
specified by the actual numerical value of its Subscripts(c{l
expressions),



c)

e -

Subscriptghowever, are intrimsically integer valued, and whenever
the value of a subscript expression is non integer, it is repla-

ced by the nearest integer (in the sense of proper round Gty .,

Variables (both simple and subscripted ones) designate arbitrary
real numbers uUnwless otherwise specified. However, certain decla-

C 2, . v 3
rations (eié. type declarations) may specify them to be of a spe-

cial type, e.g. integral, complex, and so on, or Boolean,

Finally, a special class of subschipted (logical) ¥ariables which
like Boolean variables may assume only the two Values ,, true"

and ,, false', are the so called,

tree-varisbles T~ I [1].

These also are defined by special declaration, The subscripts of
tree variables have the meaning of decimal classification, which
describes a certain .interdependence between 2ll tree variables

A 2 ‘9'(‘ #? it . R
named by the same identif,the tree (cyf. tree assignment statements).

If, for two such,tree variables with different numbers of of sub-
scripts, all existing subscripts are identical, the tree variable
with the smaller number of subscripts is called a " predecessor!
of the second one, which conversely, is a " successor'! of the

’ ona2
first =us,

If, however , for two such tree variables with the same number
of subscripts; all subscripts save the last are identical, the
one with the lower value of this subscript is called a " lower
neighbour!", of the second one, which in turnﬁa " higher neighbour™

of the first one.

Fonctions F

represent single numbers (function values), which result, by given

sets of rules, from fixed sets of parameters.

Form: B T (B2 )



=
where 1 is en identifier, apd P,P,..;P is the ordered list of
actual parameters specifying the parameter valuesfor which the

function is to be evaluated.

If the function is defined by a function declaration, admissible

actual parameters are expressions compatible with the type of
variables contained in the corresponding parameterg positions of

the function declaration heading (cf. fuaction declaration).
Admissible parameters for functions defined by procedure declarations
are the same as admissible input parameters of procedures as listed

in the section on procedure statements.

Identifiers designating functions may in general be chosen accor-
ding to taste as in the case of variables. However, certain iden-
tifiers should be reserved for the standard functions of analysis.,.
This reserved list should contain:

abs (E) for the modulus (absolute value) of the

Eni

value of the expression E
sign (E) for the sign of the value of E

for the largest integer not greater than
the value of B

for the square root of the value of E

for the sine of the value of E
and so on according to common mathemsg-—
tial notation.

d) Arithmetic expressions E

are defined as follows:
A number, a variable, which is not a Boolean, or tree variable,
or a function is an expression
E~N
a i
~ B,
Any expression E enclosed in (arithmetic) parentheses is an ex-~
Pression

E A~ (E),




- 10 =

Furthermore, expressions are defined recursively by the follo-

wing composition rules, where E' is any expression the first

symbol of which is neither " +'" pnor " -1
2. N -E'

Die ~ E+E!

4. ~  E-E!

D ~ - ExB!

6. A E

i ~ BlE)

The operators +,—,w,/éppearing in 1 through 6 have the conveniional
meaning,

The parentheses T¢ wused in 7 denote exponentation, where the
leading expression is the basis, the expression enclosed in pa~

rentheses is the exponent.

, n
Examples: 2421 ndd means 2<2 )
2 f2ytnd means (;\?)n

An arithmetic expression is a rule for computing one real number
by executing the arithmetic operations indicated with the actusl
numerical values of the constituents of the expression. This wvalue
is obvious in the case of numbers N. For variables V, it is the
value assigned last (in the dynamic sense), and for functions 7

it is the value arising, with the actual values of the function
parameters given in the expression, from the computing rules de-

fining the function ( @f, function declaratiom)., X)

=) The sequence of operations within one expression is generally
from left to right, with the following additional rules:
a) parentheses are evaluated separately :
b} for operators, the comventional rule of precedenef[;;rst: x /
second: + -

applies.,

X)’Obviouslj, the value of an expression is Wndefined whenever
a) some constituents have not been assigned a value
b) a constituent which is a divisow has been assigned the value o.
However, no formal rules are given to detect ‘these cases.



o e

However, in order to avoid misunderstandings, redundant parenthe-
ses should be used to express for example 3%? in the form (a«b)/b
or (a/b)xb rather than by axé/b, or a/¢~b, respectively, and to

avoid constructions such as a/%/b.

Examples: A
Alpha
Degree
Af1,1]
A (542, k]
A[mu[sﬂ
amsin(omega »t)

0.5ma[W=(N-1)/2, o]



e)

w T e

Boolean expressions B

¢ : 3 : ;
are defuned in a way analogous +to arithmetic expressions:

B A~ 0 (the truth value ! false!)
A~ (the truth value " right")
~ 7 (V being a Boolean variable by declaration)
A T (T being a tree variable by declaration)
A (B)
A (E<E
~ (E£E

b=
VAR
=

N N Pamay D i N P S T
k=] tﬁj
= e 3

N’ Mo p N p ——rs N’

¢ ¢ 2 ¢

€3]
v
=

Further_more, Boolean expressions are defined recursively by the

following composition rules

1. B o~y ot
2. ~B WV B o B2
5. ~B A B , and"
4. ~B = B it equivalent"

Boolean expressions, like a rithmetic expressions. are rules for com-—
} ') = 3
puting one truth value from the truth valuesof its constituents, by

means of the standard operations of Boolean algebra (propositional
calealus),

Interpretation will be from left to iight, and precedence must be
indicated by the use of parentheses.

Exemples: (=0)

(x>0)v(y<0)
(pA=q)v(xty)



— 1B -

4) Statements U,

CLosed/-and selfcontained rules of operations are called Statements 3 .
They are def#f%d recursively in the following way.

1) Basic statements Jare those described in this paragraph.

2) Strings of one or more statementsx) may be combined into a single
(compound) statement by enclosing them into the "statemenﬁ@aran-
thes@s!" begind and end. Single statements are separated by the .
statement separatioﬁ'(;).

<7 57

begin = Ly i ees 5 S end

'3) A statement may be made identifiable by attaching a label L,
which is an identifier I, or an integer G (with the meaning of

identifier). The label pr@cedes the statement labeled, and is

|

1

| separated from it by the separator colon (:). Labely and state-
l men@f corgtitute a statement called labeled statement’

| e I

In the case of labeled compound st_atements, the’closing paren-—
thesis end may be followed by the statement label (followed by
the statement separatfow) in order to show distinctly thae range

of the compound statement.

di- Bt WeEsn B A ess oo ond T

a) Assigsnment statements

serve for assigning the value of an expression to a variable.
Form a): L A Vi=E

If the expression on the right hand side of the assignment deli-
miter := is arithmetical, the variable V on the left hand side
must also be numerical i.e. it must not be either a Boolean, or

a tree variable,

X) Declarations which may Ve interspersed between statements,
have no operational (dynamic) meaning. Therefore, they may
in gneral be omitted in the definition of compound statements.



X)

.._ﬂ:’{)..'.

Generglly, the arithmetic type of the wvariable V is determined

by the constituents,. and operations, of the expression E. However,
V may be decfared to be of a special type provided this declaration
is compatible with the possible values of the expression E, and
serves only to eliminate errors in value resulting from computatio-

b : =y
nal limihations.

Form b) E A~V := B

If the expression on the right hand side of the assignment state-
ment is Boolean, V may be any variable but a tree variable. This
means that the truth values " right!", and " false" of the Beolean
expression may be interpreted arithmetically as integers " 1" and
"OY, which may be assigned to a numerical variable.

Tree assignment statements.

A Boolean expression B may be used to assign a value to a tree va-
£
riable T. The value actually assigned, however, is not gust the

value of B, but the value of -
BAvB'A“?B" e :’\-13(1’1)/\ %-/1 54 ,’\‘:5;

where BY, BY, ,..,=2604 ﬁ, ﬁ,.,., respectively, are the Boolean expres-

sions used to definé the " lower neighbours!, and the "predecessors™

of T respectively.

Furthermore, the following rules apply to the other components of
the tree:

If, for example, i and k are integers, by declaration, and
m = iwxk :
m may be declared to be an integer, in which case the product will

. "
be rounded to the nearest integer of necessary.
@®. the other hand, if i, k and m are declared to be integers,
m = ;/k
P 4 5 " . .
is contradictory, and there_fore inadseaissible.

In this case, the entier - function must be used, and if the nearest

integer is wanted, the correct statement reads

m = ent(i/k + 0,5).



o

)

& 15

1) If the value assigned, according to the rule stated above, to a
particular tree variable is the value " trae!, all " neighbours!
of this tree variable, and all " successors' of these neighbours,
are given the value " false'l.

2) If the value assigned is " false']l all " successors!, of the

tree variable concerned are given the value " false! too.

The logical interdependence of tree variables within a tree is
therefore isomorphic to decimal classificationg, where each tree
variable describes a case which is a subcase of its predecessors,

whereas all neighbours are mutually exclusive parallel cases.

The use of the tree variables therefore is equivalent to a decimal
classification of mutually exclusive cases and subcases which is
guite conventional, and can be understood without recourse to

formal assignment rules.

Go to statements

Normally, sequence of operations (described by the statement of a
program) coincides with the physical sequence of statements. This
normal sequence of execution may be interrupted by the use of 2o to

statements

an go to D

The designational expression D specifies the label of the statement

with which operation is to be resumed, It EE[; label L in which case
L is the label specified by Dlof‘a switch variable I[E] (cf. switch

declarations) where I is an identifier and E a subscript expression.
: D

In this case, the numerical value of E (or the integer nearest to
it, if necessary), gives the number of an element of the switch.
named I % } by deélaration. This element which is again a designa-—.
tional expression specifies the label to be used in the go to

statement. If there is no element corresponding to the number given

by B (this being foo small or too Large), no ltabel is specified



c)

a)

- 1 -

by the designational expression, and the go to statemant is void.
This label determination is obviously a recursive process, since

the elements of the switch may again be switch variables.

Examples:  go _to hell
go to exit [(if2}- yl2b+1)/2]
where exit refers to

switeh exid = [DT}DZ)M)DmI

IF - Statements

The execution of a statement may be made to depend upon a certain
condition, which is imposedby preceding the statement in question
by an if statement.

Form L~if B

where B is a Boolean expression.

If the value of Big' true!, the statement following the if statement
will be executed. Otherwise, it will be by,vassed, and operstions
will be resumed with the next following statement.

(a>0); ci=al2ls ufoy ;

(ac®); er=—alels bio) =

(a=0);, go_to bed

Examples:

I e i

for statements

Recursive processes may be initiatéed by use of a for statement,
which causes the statement following it to be executed several ti-—
mes, once for each of a series of values assigned to the recursive

variable contained in the for statement.

Form a) For Vo= 1
b) for V ;= B(B)R,..,E (B )E

where @ is a list of expressions, and Ei,ES,Ee are expressions,

none of which may contain the wvariable V.



...-’1‘?_.

In form a) the value of each expression of the list (expressions
taken in the order of listing) is assigned to the variable V,
and the statement follgang the for statement is executed immediately

after this assignment.

In form b), each group of expressions Ei(Es)Ee determines an
arithmetic progression. The value of Ei is the initiad value, ES
gives the value of the increment (step), and B, determines the

end value which is the last term of the progression containéd in the
closed interval EEi,Ee]. However/a progression is emgy, and specifies
no value, if the half open dntervals (Ei,Ei+@§1 and (Ei,Eé] do not
intersect, that is if the intervall (Ei,EeJ 4 and the terms of the

prograssion lie on opposite halves of the real line.

Bach ¥#alue of every pr@?@ssion (these again taken in the order of
listing from left to right) is assigned to the variable V, and the
statement following the for statement is executed immediately after—

wards.

After execution of the statement following the for statement for
the last value specified by the for statement, the next following

statement is executed.

As far as the wvariable V is concerned, the for statement is an
assignment statement, This means that V always has the value last
assigned to it by the for statement even if complete execution

of the for statement is prevented by a constituent of the statement

following it (which may contain conditiona® go to statements).




AR S s R Ay

s A8

i

L. = 404 0% nis ook A[I] .
gi= 1,3.5, 976§ woe 5 =15.79;

o
Y
ia

)
o]
=

amples:

»

Hh
(@]
I

|

Since the values of V ate completely determined by the for
statement,'the following statement may not contain V on the

left hand side of an assignment statement. Similarly, a jump

(by means of A go to statementg) to a constituent of this statement
bykpassing the‘prﬁceding for statement generally is iga?dmissible,
since this leaves unspecified the sequence of valuesto be assigned
to V,



-~ 189~

e) Do statements

A statement/or string of statements once wiitten down,may be en-—
tered again (in the sense of copying) in any place of the same
program by employing a do statement¢ whichatthe same time permits

the substitution of certain constituents of the statement reused.

Form} 2 ~Do L L, (B e S iy o o> 1)

1?
where L1 and L2 are labels, the S are strings of symbols not con-
taining the separator (->) and the I are identifiers, eflabels,

and the list enclosed by parentheses is a substitution list.

The do staftement operates on the string of statements from, and
including!the one labeled L1'through the one labeled Lg, which
statements constitute the range of the do statement, If L1 is
equal to L2, i.e. if the range is just the one statement L1, the
characters ‘ng"may be omitted.

The do statement causes itself to be replaced Ly a copy of the
string of statements constituting its range. However, all ¢denti-
fids or labels contained in these statements which are listed on
the right hand side of a separator (->) in the substitution list
of the do statement, are replaced by the corresponding strings

of symbols S on the left hand side of the separators (->). These
strings 8 may be chosen freely with the one restrictioﬁﬁ%%e sub-

stitutions produce formally correct statements.

Whenever a do statement contains, in its range,

another do statement, the cogﬁng& and substituting, process for this
second, innermost do will be executed first. Therefore the copy

of statements made on account of a do statement never contains

‘a do statement.



f)

g)

- 20 =

Examples: do 5, 12 (XEi]&y , black label -> red label,...

f(X, wi=3 o
do 124, ABC (xf2| + 3%y -> 4, ...)

The range of a do staftement should contain complete statements
only i.e. if the begin or end delimiter of a compound statement
lies in the range of the do, than the entire compound statement
should be contained in this range. If this rule is not complied

with the result of the do statement may not be the one desired.

Stop statements

Stop is a delimiter which indicates an operational (dynamik)

end of the programﬁ containing it. Operationally, it has no

successor statements,

Form: L ~stop

Return statements

Return is a delimiter which indicates an operational end of a
procedure., It may @ppear only in a procedure declaration, where

1 : . = S i
no operational suceessor is glven£(¥.mexdwu,wﬁuhavu,n)
- <
Form: : L~ return

Procedure statements

A procedure statement serves to initiate execution of a procedure,
that is a closed, selfcontained process with a fixed ordered set

of input, and output parameters, permanently defined by a proce-~

dure declaration (cf. procedure declaration).

Form: VI (Pi,Pi,...,Pi)zz(PO,PO,,..,PO:L,L,...,L)



S

Here I is an identifier which is the name of some procedure i.e.
it appears in the heading of some procedure declaration.(cf. procedu~
re declarations).
¢i’Pi”"Pi is the ordered list of actual input parameters
specifying the input quantities to be processed by the procedure.

The Liét of actual out_put parameters Po’Po’°"Po’ specifies the
variables, to which the results of the procedure will be assigned,
The list of actual exits

CEJI;.:lﬁ”gg;eg‘fﬁeuzéﬂgls of statements with which operations may
be resumed after execution of the procedure (which may contain dif—

ferent exits depending on intermediate results).

The procedure declaration defining the procedure called contains,
in its heading, a string of symbols identical in form to the pro-
cedure statement. The formal parémeters therg/in occupying input,
and output parameter positions give complete information about

admissible actual parameters by the following replacement rules:




I R R e N e R P N R R R oy [ S R R

input parameters

output parameters

exits

If a parameter is

- DD

formal parameters
in procedure decla-
ration

single identifier
(formal wvariable)

array, i.e. subscripted
varigble with k(1)
empty parameter:positions

function with k empty
parameter positions

procedure with k empty pa-
rameter positions

identifier cocourrine in =2
procedure which is added
28 a primitive to language

single identifier
(formal wariable)
array (as above, input)

(formal) label

admissible parameters
in procedure statement

any expression
(compatible with the type
of the formal variable).

array with n(}k) parameter
positions k of which are
empty -

function with n(2k) parame-
ter positions k of which
are empiy

procedure with k empty
parameter positions

every string of symbols s,
which does not contain the
symbol 1!t gt [wMWMa)

sinple of subscripted
variable
array (as above, input)

label

at the same time input and output parameter, which may

be necessary in the case of some procedures, this parameter must obviously

meet requirements of both input and oubtput parameters.

T.

Within a program, a procedure statement causes execution of the procedure

called by the statement, and given by the corresponding procedure declara-—

tion, Initially, however, all formal parameters listed in the procedure

declaration hedding are replaced, throughout the procedure, by the actual

parameters listed, in the corresponding position, in the procedure state-

ment,




> S

This replacement may be considered to be a replacement of

every occurence within the procedure of the symbols, or sets

of symbols, listed as formal parameters, by the symbols, or
sets of symbols, listed as actual parameters in the correspond-
ing positions of the procedure statement, after enclosing in
parentheses every expression not enclosed completely in paren-
theses already.

Furthermore, all return statements are to be replaced by go to
statements referring, by its label, to the statement following
the procedure statement, which, if originally unlabeled, is
treated as having been assigned an intermediary label by the

replacement process.

The values assignable to, or computable by the actual input
parameters must be compatible with type declarations concerning
the corresponding formal parameters in the procedure declarstion

heading.

For actual output parameters, only type declarations dupli-
cating given type declarations for the corresponding formal
parameters may be made.

Array declarations concerning actual parameters must duplicate,
in corresponding subscript positions, array declarations re-
ferring to the corresponding formal parameters, after replace-
ment of formal parameters by actual parameters.




Ut

- 24 -

Declarations ﬂ2r4§

Declarations serve to state, once and for all with L in a given program

containing them, certain facts zbout entities referred +o with 1 in the

rogram. They have no o oratlonaL megning,
¥ b &8

a)

b)

Tvpe declarations A

Type declarations serve to declare certain variables, or functions.
to represent quantities of a given class, such as the class of in-—

tegers, of complex numbers, or Boolean values.
Form: Lﬁ*utzne (R )

where Lype is a symbolic representative of some t¥pe declarator
y B by

such as integer, complex, boolean, or tree, and the I are identi-

Hy

iers.

. , . g i§
The variables, o¥ functions named by the identifiers I are, throgh-

out the progragﬁf constrained to refer only +o quantities of the

type indicated by the declarator, However, this constraint must be
compatible with all values assignable (disregarding computational
limitations) to these variables, or functions on account of state-

ments of the program. (cf. arithmetical expressions for the case

of integers). At the other hand, all variables, or numbers known

to representia given type of quantitieé]onLy’must be so declared.
Variables, or functions not listed in s type declaration are auto-
matically assumed to represent arbitary real numbers.

Array declarations &

Array declaratloqs give the dimensions of multi dlmen31on91 arrays

of guantities.
Borms = A& A armay (I,T,.,.,T[Re0t], I,I,...,I[}:L'],..

where array is the array declarator, the I are identifiers, and the
1, and V' ate lLigts of expressions (separated by commds) each of

which is of one of the following forms:



c)

....25_

1. an integer
or, oenly df the array declaration is attached to

a program declared to be a procedure

2. an expression containing only numberq, and formal
variables which appear in the procedure declaration
heading.

Within each pair of bracKets, the numbers of positions of 1 must

be the same as the number of positions of 1!'.

Bach pair of lists enclosed in brackets [L:L'I indicates that the
identifiers contained in the list I,I,...,I immediately preceding
it are the names of arrayswith the following common properties:
a) the numberﬁ of positions of 1 is the number of dimensions of

every array.

b) the values represented by corresponding expressions of Eﬁ and
1' (which, in the case of expressions containing formal variables,
are all possible values obtainable by assigning admissible’values
to these variables) are the Lowepf and upper bounds of ggggiée
of the corresponding subscripts of every array. Only for subg—

Script values wit@uin the closed intervals given by these bounds,

array elements are defined
An array is defined only when all upper subscript bounds are
not smaller than the corresponding lower bounds.

Switch declarations &

Switch declarations specify the set of désignational expressions

represented by a switch variable which, in a go to statement, iﬁfiijf
called by the go to statement (cf. go to statement) : Qgﬁf?ha’
ew

Form: A~ switeh I := (D1,D2,...,Dn)
where switch is the switch declarator, I is an identifier, and the

D are designational expressions (cf. go to statements).

The list D1, D2, wosy Dn is, by the switch declaration, declared

: = it . A s .
to be a symbolic vectur (the switch!) the designational expression



! D

Dk being the k th component.

Reference may be made to the switch by the switch variable I[EJ
where I is the identifier following the switch delimiter, and E

is a subscript expréssion. The switch variable may be uded only

in go to statements, and specifies, by the actual value of its
subscript, the component of the swiﬁch determining the label called

for by the go to statement.

Function declarations 43

A function declaration declares a given expression to be a function
of certain of its variables. Thereby, the declaration gives (for
certain simple functions) the computing rule for assigning values
to the function (cf. functions) whenever this function appears in

an expression,

Form: A ~ 1 E

I

il eo )

where the I are identifiers and E is an expression which, among
its constituents, may contain simple variables named by identi-

fiers appearing in the parentheses.

Tthe idemiifier IN is the function name, the identifiers in paran-—-

theses designate the formal parameters of the function.

Whenever the function lN(P,P,...,P) appears in an expression, the
value assigned to the function in actual computation is the value
of the expression E, For evabu%ation, every variable V which is
listed as a parameter I in the declaration, is assigned the actual
value of the actual parameter P in the corresponding position of
the parameter list of the function. The (formal) variables V in

E which are listed as parameters bear no relationship to variables
named by the same identifier¥, but appearing otherwhere in the

o

program. To all other variables appearing in E, and not listed as

parameters, values must be assigned in the program.



e)

i DT

Procedure declarations [&

A procedure declaration declares a program to be a closed unit
(a procedure) which may be regarded to be a single compound
operation (in the sense of a generalized function) depending
on a oertain'fixed set of input parameters, yielding a fixed
set of results designated by output parameters, and having a
fixed set of possible exits (which may depend on intermediate
results) leading to different possible successors.

Execution of the procedure operation is initiated by a procedure
statement which furnishes values for the input parameters,
assigns the results to certain variables as output parameters,
and assigns labels of existing statements to the exits.

Forms:

A~ procedure I (Pi) =3 (PO:L), I(Pi) =1 (PO:L),,.,I(Pi):: @%:L)v

45;43;...;;5;
beginz ;i;...;i; end

Here, .the I are identifiers giving the names of the different

procedures contained in the procedure declaration. Each Pi re~
presents an ordered list of formal input parameters, each Po

a list of formal output parameters and each L a list of formal
labels, the exits of the&orresponding procedures.

Some of the strings " =i(PO:L)"defining outputs and exits may
be missing in which cagse the corresponding symbols "I(Pi)”
define a function (which isispecial procedure).

The Asin front of the delimiter begin are declarations concer-—
ning only input and output parameters. The entire string of
symbols from the declarator procedure (inclusive) up to the
delimiter begin (exclusive) is the procedure heading.

Among the statements enclosed by the parentheses begin and
end there must be, for each identifier I listed in the heading
as a procedure name, exactly one statement labeled by this

identifier as a label.




Por each fu

assigned wi

nction I(Pi) listed in the heading, a value must be

thin the procedure by an assignment statement

" = B", where I is the identifier giving bthe name. of the

funetion.

To each pro
statement m
return stat
cedures 1lis

For any 4o
giving the
statements
do must be
ment may ca
A formal in
a
an
su

a
pa
a
ra
an
as

A formal ou

a

an
A formal (e

An identifi
only if the

cedure listed in the heading, at least one return
ust correspond within the procedure. Some of these
ements may however be identical for different pro-
ted in the heading.

statement occurring within a procedure, the labels
range of the do statements must be labels of
contained in the procedure, i.e. the range of the
completely contained in the procedure. No do state-
11 for statements given outside the procedure.

put parameter may be

single identifier I (formal variable),

aveay I [ o AR e j‘Nith k (k=1,2,...) empty
bscript position@,

Fgnetdom £ [ 5 yesoy) w12, ..) cuphby

rameter positions,

pracedure B { 5 ,es.) with k (k=1,2,...) enpty
rameter positions,

identifier occurring in a procedure which is added
a primitive to the language.
tput parameter may be

single identifier (formal variable)

array with k (k=1,2,...) empty subscript positions.
xit) label may only be a label.

er or array is an admissible formal input parameter
corresponding simple or subscripted variable within

the program appears only in expressions. No value may be

assigned to

it by an assignment statement, unless the identifier

Oor array in question is also listed as a formal output parameter

J




. -

which must be assigned a value by an assignment statement
at least once.

A label is an admiésible formal exit label if, within the
procedure, it appears only in gg&g statements or switech decla-
ration. It must not be the label of a statement within the
procedure.

Functions are admissibleé formal input parameters only, if
not covered by a function declaration, contained in the proce-
dure. )

An array declaration contained in the heading of the procedure
declaration, and referring to a formal parameter, may contain
expressions in its lists defining subscript ranges. These ex-—
pressions may contain

1= numbers, :
2 formal input variables, arrays, and functions.

All identifiers and labels contained in the procedure are iden-—
tifiable only within the procedure, and have no relationship

to identical idetifiers or labels outside the procedure, with
the exception of the labels identical to the different procedure
names contained in the heading. Each of these entrance labels
indicates the initial statement (in the dynamic sense) of the
corresponding procedure, with which operations begin upon a
call by a corresponding procedure statement. '

A procedure declaration, once made, is permanent, and the

only constituents of the declaration identifiable from the
outside are the procedure declaration heading, and the entrance
labels. All rules of operationg/ and declarations contained
within the procedure may be considered to be in a language
different from the algorithmic language. For this reason, a
procedure may even initially be composed of statements given
in a language other than the algorithmic language, preferably
a natural, or a machine language.

Thus, by using procedure declarations, new primitive elements
may be added to the algorithmic language at will.



£ B

Comment declarations 4\

Comment declarations are used to add to a program informal
comments, preferably in a natural language which have no
meaning whatsoever in the algorithmic language, and no effect
on the program, and are intended only as additional information
for the reader.

Form:
13 A comment ,S;

where comment is the comment declarator, and Sé is any string
of symbols not containing the symbol ";".




Part IIla

1) Basic symbolsg

delimitors J

operators W)

arithmetic: relational logical sequential
+ < e go %o
- & v do
a = A return
4 > = stop
> for
+ bl
separators o brackeets § declarators o
. (3 procedure
10 [1] switch
) T"L’ type =
5 begin end - array
tree
i comment

non - delimiters u

letters

A~ A through Z

a through z

figures

%fw 0 through 9

% :
) Representgnt



Papt LIL-D

Svntactic skeleton

2) Basic constituents

intege

G~ §§.§ o o §

T AN B e o« e i

number ! g -

e T T e e
x - i . may be emplty

lis®t : =

o E R SRR

2

simple variable

Var T

subscripted variable

€5}
—a

s Bl T e e

tree varisble

p~ETn. B

b
-

)

, L] * L 3 ,
function
F MI ( P 9 P y @ ® L b P )

expression and Boolean expression

B 4 i,
g For the composition rules see the appropriate sections in Part II

label

Q-

a4
)

[oF

esignational expression

[=]

varameters

(e B w!
2 ¢
i

P for the composition ruleg see the appropriate sections in Part II




o

string of symbols

54 ™~ XY s o= 9 § where 3{/\}.' (f, d is a particular delimiter

2) Statements 2

compound statement

. et | o I 250
Z Nbe,@ll’l ZJ 9 ) y e s e 3 éj) .?_r.]:g:.
A,

2t least one

labeled statement

P T

sssisnment statement

anV = B
&V 2= B

tree assignment statement

Lml 2= B

g0 to-statement

Zewgo to D

IF-statement

L~ if B

for-statement

ua~for Voi= 4 _
MExVi=E(B)B;B(E)B, ... ,E(B)E

do-statement

ZNQQL,L(é-wI,S_;M,...,s_;aL)

W-—-J g™
may be emptly may be empty

stop—- and return-statementy

Zﬁw stop
mIeturn

prrocedure statement

LT AR J = (R where BaP P o i g B



4) Declarations A

type declargtion

AM 'tT‘JQe ( I 3 I 3 e o0y I )

array declaration

e e e B S | e e T R TR

switch declaration

A switeh I := E

function declaratio

e}

o R L

Ao F IR ) =8

procedure declaration

A~ procedure I (R V=2 B L ENOE = W LT e EE )
may bve empty may Be eﬁfty may De empLy

AES ST
L SR

may be empty

begzin %; ;

23w . b0 end

where R~ (P

b

comment declaration

’
; e <«
at least one 2

P

A A comment S, ;
5

7 P ) L] ° e 9 P ) P)



Part. Ilke

Publication language

As stated in the introduction, the reference langwage is a link
between hardware languages and handwritten, typed or printed docu-
mentation. For transliteration betwean the reference language and a
language suitable for publications, and for the use in lectures on
Numerical Analgsis the fodlowing

transliterations rules

may be used

reference_language publication language

subscript brackets [1 lowering of the line betwean
the brackets

exponentation parentheses T L raising of the lins between
the parentheses

parentheses & any form of parentheses, brackets
braces

basig of ten reising of the ten and of the

A8 following integral number, in-

serting of the multiplication
sign .

statement separator ; line convention: any statement

in a new line

Furthermore, if line convention is obeyed, the following

changes may be made simultaneously

multiplication cross oy multiplication dot .
decimal point . decimal comma 5

separation mark ’ any common separation mark.

}



