A MANUAL OF
THE DASK ALGOL LANGUAGE

A supplement to the ALGOL 60 report

Second edition

by

Jorn Jensen, Toke Jensen, Per Mondrup, Peter Naur

REGNECENTRALEN, COPENHAGEN

1961

oo W gt Gl

A MANUAL OF
THE DASK ALGOL LANGUAGE

A supplement to the ALGOL 60 report

Second edition

by

Jern Jensen, Toke Jensen, Per Mondrup, Peter Naur

REGNECENTRALEN, COPENHAGEN

1961

INTRODUCTION . & ¢ v v v v v v o o o o o o o o o o «

7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60 . .
Basic symbols . . &« ¢ ¢ 4 ¢ 4 4 4 e o o
Use of comment
. Identifiers, numbers . . . « ¢« 4 ¢« o ¢ «
Reserved identifiers « . ¢« « « . .
Alanms of standard functions
. Arithmetic expressions . . . + « « + ¢ o« &
. Boolean expressions . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o
Integers as labels . . ¢« ¢ ¢ 4 ¢ 4 e e . .
For statements

NN
on a»q Oun :wx m H

7 11, Order of declarations « & « « « &
7s12.0vm o 0 o o . .. e e e e e e e e
7.13. Procedure declarations e e e e e e e e

8. STANDARD QUTPUT PROCEDURES '« & v & v « & & & + &
.1. Control of typewriter and outpuc punch . .
Identifiers and main characteristics . . .
. Standard procedures: tryk, skrv
Standard procedures: tryktekst, skrvtekst

trykstop . + .+

9. STANDARD INPUT PROCEDURES + &« ¢ o o ¢ o « « o o
§.1. Identifiers and main characteristics . . .
3.2. Universal input mechenisms

Y

« s e .

. Procedure statements and function designators . .

e s e

. Standard procedures: trykml, skrvml, tryktom . . .
. Standard procedures: trykvr, skrvvr, tryktabI

.7. Standard procedures: trykende, trykslut trykklar, tryksum 18

9.3. Terminators, information symbols, and blind symbols . . . 21

9.k, Standard procedure: 18 . «
9.5. Standard procedure: lmsst
9.6. Standard procedures: lmsstreng, streng . .
9.7. Standard procedures: trykkopi, skrvkopi .

10. STORING BLOCKS AND VARIABLES ON THE MAGNETIC DRUM
10.1. Introduction PP

10.2. Machine characteristics and space requirements . .

10.3. Storing varisbles on drum . . e e e s e
10.4, Storing blocks on drum . . « + « & .« o o .

11. MACHINE REPRESENTATION OF PROGRAMS AND PARAMETERS
11.1. Notation ¢« . .+
11.2. The wired store & v ¢ ¢ ¢ o o o «

11.3., Use of machine registers and working locations .
11.4, Numbers, logical values, labels, and strings . .

11,5, EXpressions . « ¢ ¢ v ¢« « o o o o o o o o
11.6. Statements 4 e 0. .
11.7. Declarations . . . ¢« ¢« v ¢« v o o o o o«

. e e e ... 11
B i 1
e e e e e e .. 12
e s e e e e 12
“ e .. . 12
e e e e e 14
R N 4
e e e . 17
skrvtab,

. .. . 18
. . e e .. 19

e e e s . & . . 19
B
e e e e e e .. 21
e e e e e s . 25
e e e e e e .. 2k
C e e e e e .. 26
e e e e e . 27

. e e e e .. 27
e e e . 27

s e e e e e .. 28
P [0
s e e e s e . 32
R ¥4
e e e e e e . 33
e e e . 33

e e .. 33
B 1>
e e e .. . L6
e s s s e e e e 51
e ... 58

11.8. Parameters with fixed locations in the core store

12. OPERATING THE DASK ALGOL SYSTEM

« « In

preparation

INTRODUCTION. 5

INTRODUCTION.

DASK ALGOL is a hardware representation of the ALGOL 60 language,
sultable for the machine DASK of Regnecentralen, Copenhagen. Since DASK
ALGOL lies very close to the reference language it has been found practi-
cal to base the description of DASK ALGOL directly upon the ALGOL 60 re-
port as far as the basic characteristics are concerned. The exact speci-
fications of DASK ALGOL are then defined through the set of corrections
and extensions of the ALGOL 60 report given in the present Manual . Be-
cause of this intimate relation to the ALGOL 60 report the numbering of
sections within the present Manual has been chosen to be a direct conti-
nuation of the section numbers of the ALGOL 60 report.

The conventions and methods used in DASK ALGOL were developed over
the period February 1959 - August 1960. The great stimulus received at
the early stages of the work from the general advisors of the ALCOR
group, Professors F. L. Bauer and K. Samelson and Mr. M. Paul, Mainz, is
gratefully acknowledged. Discussions with Professor A. von Wijngaarden,
Dr. E, W. Dijkstra and Mr. J. A. Zonneveld of the Mathematical Centre,
Amsterdam, have also been a great stimulus to the work.

The actual work was done by

Jgrn Jensen JJ)
Toke Jensen TJ)
Per Mondrup (pM)
Peter Naur (pn)

The general conventlons are due to JJ, PM and PN. The actual coding was
done by JJ (block and parameter administration, .standard input procedu-
res), TJ (input of the ALGOL program), and PM (arithmetics, standard
functions, standard output procedures). Checking and debugging was done
by PN, who also worked out the present Manual.

The typing of the Manual was done by Kirsten Andersen.

The chapter 12 of the Manual is still in preparation at the present
moment.

6 6.

8-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD.

6.1. PRINTED SYMBOLS.

Lower Upper Code Lower Upper Code

case case case case
a A , 00 . 0, w W y O .00 ,
b B , 00 . 0, X X , 00 .000,
c o] , 000 . 00, y Y , ©0O0.
d D , 00 .0 z Z ¢ 0 0. 0,
e E , 000 .0 O, ® £ , 000 .
T F , 000 .00 , @ ') , 0 00. 00,
g G , 00 ,000, 0 A y 0 . \
h H , 00 O. ' 1 v . . 0,
i I , 0000. O, 2 x \ . 0,
J J 1 00 . o0, 3 / . 0 . 00,
k K , 00 « 0, b = , .0
1 L) . 00, 5 . o .0 0,
m M , 00 .0 6 , o .00 ,
n N) .0 0, 7 . .000,
o 0 , O .00 , 8 , 0.
hs) P , 0 0 .000, 9) , 00. O,
q Q , 0 00. \ ' 0 , 000. 00,
r R , 0 0. 0, . H , 00 0. 00,
s S , 00 . 0, - + , © .
t T , 0 . 00, < > , 00 . O,
u U ¢ 00 .0 l) 0.00 ,
v \'2 '

o .o o, The key for _| does not advance the carriage.

6.2. TYPOGRAPHICAL SYMBOLS. ’
LOWER CASE , oooo. o , UPPER CASE , oocoo.o0 , SPACE , o .
CAR RET , 0 . , TAB , ©000.00 ,
6.3. CONTROL SYMBOLS.
STOP CODE o. oo, TAPE FEED , 0000.000, PUNCH ADRES ,o . .
PUNCH OFF , o o.000, PUNCH ON , 0 o.c , AUX CODE , 0.0

PUNCH ADRES and AUX CODE insert their respective codes when depressed
simultaneously with any other key.

6.4. FLEXOWRITER KEYBOARD.
START STOP PUNCH AUX STOP TAPE
READ READ ADRES CODE CODE FEED
TAB PUNCH x / = 3 [1 () A v | puncH
OFF 2 3 i 5 6 7 8 9 0 1 ON
Q W E R T Y U I 0 P > CAR
qQ w e r t y u {1 o p <K RET
LOWER A S D F G H J K L £ ¢ LOWER
CASE a s d f g h k 1 ® ¢ CASE
UPPER Zz X c VvV B N M 0 : + UPPER
CASE z X c v b n nm . . - CASE

6.5. NUMERICAL REPRESENTATIONS. 7

6.5. NUMERICAL REPRESENTATIONS.

In the following table the characters have been arranged according to
the numerical equivalent of the hole combination (after removal of the pa-
rity check hole). The first column gives the decimal value of the charac-
ter, the second the sedecimal value, and the third and fourth columns give
the lower and upper case character, respectively.

LOWER UPPER LOWER UPPER
0 00 SPACE 32 20 - +
1 o1 1 v 33 21 J J
2 02 2 x 34 22 k K
3 03 3 / 35 23 1 L
L Ok N = 36 2k m M
5 05 5 37 25 n N
6 06 6 E 38 26 o 0
7 07 7 39 27 P P
8 08 8 (ko 28 q Q
9 09 9) b1 29 r R
10 OA (NOT USED) k2 2a (NOT USED)
11 0B STOP CODE 43 2B @ g
12 oc END CODE 4y 2¢ PUNCH ON
i3 OD {NOT USED 4s 2D $NOT USED)
ik OE _ 46 2E NOT USED)
15 OF (NOT USED) Y7 2oF (NOT USED)
16 10 0 A 48 30 ® £
17 11 < > kg 31 a A
18 12 s s 50 32 b B
19 13 t T 51 33 c c
20 1k u 18] 52 3L d D
21 15 v v 5 35 e E
22 16 v W 54 36 f F
25 17 X X 55 37 g G
2k 18 y Y 56 38 h H
25 19 Z Z 57 39 i I
26 1A (NOT USED) 58 3A LOWER CASE
27 1B . 0 59 3B . :
28 1C CLEAR CODE 60 3C UPPER CASE
29 1D (NOT USED) 61 3D SUM CODE
30 1E TAB 62 3E (NOT USED)
31 1F PUNCH OFF 63 3F TAPE FEED

64 Lo CAR RET

8 7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60.

7. THE RELATION BETWEEN DASK ALGOL AND ALGOL 60.
7.1. BASIC SYMBOLS.

7.1.1. Single character symbols.
T.1.1.1. Letters and digits. DASK ALGOL adds the letters

o kg
to the reference alphabet. The appearance of all letters and digits may
be seen from section 6.
7.1.1.2, Delimiters. As apparent from section 6 the following simple re-
ference langusge symbols are directly available in DASK ALGOL:

tox/<=>va, o33 ()]

T7.1.2. Compound symbols.

7.1.2.1. Underlined words. Underlined words are produced in DASK ALGOL by
depressing the underline (_) key immediately preceding each letter of the
word. The symbols are the following:

true false go to if then else for do step until while comment begin end
own boolean integer real array switch procedure string label value

Note: In DASK ALGOL boolean is spelled with small letter.

7.1.2.2. Compound symbols similar to reference language. The following
compound symbols, most of which are produced by combining the underline
() or stroke (|) with other characters, are similar to those of the re-
ference language:

$ 2 % = =

7.1.2.3. Compound symbols differing from reference language. The follow-
ing compound symbols show a noticable deviation from the reference lan-

guage:
Reference language 0 - o U
DASK ALGOL A - N {3

T7.1.3. Reference symbols omitted in DASK ALGOL.
The following symbols are not included: ¢+ 2

7.2. USE OF comment.

T7.2.1. Two special forms of ALGOL comments, viz. the forms
comment drum data

and

comment drum program
will be recognized by the DASK ALGOL translator and will influence the
storage allocation (cf. section 10). No other comments will be influenced
by this convention.

7.2.2. The third form of comment is permitted only in the form:
end <any sequence of diglits or letters>

7.5. IDENTIFIERS, NUMBERS. 9

7.3. IDENTIFIERS, NUMBERS.

7.53.1. Identifiers may have any length, but characters following the
first 6 will be ignored by the translator.
7.3.2. Variables declared to be integer must lie in the range
524288 < integer < 52L287
7.3.5. The range of non-zero real varisbles is
2.94,-39 < abs(real) £ 3.50,38

7.4. RESERVED IDENTIFIERS.

The complete list of reserved identifiers arranged alphabetically is
as follows:

Identifier Reference Identifiers Reference
abs 3.2.4 skrvvr 8.6
arctan 3.2.4 sqrt 3.2.4, 7.5
cos 3.2.4 streng 9.6
entier 3.2.5, 7.5 tryk 8.3

exp 3.2.4, 7.5 trykende 8.7

1n 3.2.4, 7.5 trykklar 8.7

1lms 9.4 trykkopi 9.7
lmsstreng 9.6 trykml 8.5

lmest 9.5 trykslut 8.7

sign 3.2.4 trykstop 8.6

sin 3,2.4 tryksum 8.7

skrv 8.3 tryktab 8.6
skrvkopi 9.7 tryktekst 8.4
skrvml 8.5 tryktom 8.5
skrvtab 8.6 trykvr 8.6
skrvtekst 8.4

7.5. ALARMS OF STANDARD FUNCTIONS.

Misuse of the standard functions will cause alarms during the run of
the ALGOL program as follows:

Identifier Cause of alarmm Typed indication

entier Argument exceeds the interval for spild entier
integers (cf. section 7.3.2)

exp The function value exceeds the spild exp
range for reals (cf. section 7.3.3)

1n The argument is non-positive spild In(-)

sqrt The argument is negative spild sqrt(-)

10 7.6. ARITHMETIC EXPRESSIONS.

7.€. ARITHMETIC EXPRESSIONS.
7.5.1. The operator + will not be accepted in the DASK ALGOL system.

7.6.2. Accuracy.
The accuracy of a real number will correspond to 31 sig@ificant bi-
nary digits, i.e. the relative accuracy 1s approximately 10 7.

7.6.3. Alarms.

If the range of real numbers is exceeded or an undefined operation
is attempted self explanatory alarm indications will be typed by the ma-
chine as follows:

spild +, spild -, spild x, spild /, spild 4, spild /0,

spild -4 ikke hel, spild Of-.

Subsequently error output of the values of all variables will be made on
the output punch (cf. section 12).

7.7. BOOLEAN EXPRESSIONS.

The operator > is not included in DASK ALGOL.

7.8. INTEGERS AS LABELS.

Integers cannot be used with the meaning of labels in DASK ALGOL.

7.9. FOR STATEMENTS.

In DASK ALGOL the controlled wvariable of a for clause must be a
simple variable, not a subscripted variable.

7.10. PROCEDURE STATEMENTS.

7.10.1. Recursive procedures.

Generally sveaking DASK ALGOL cannot handle procedures which call
themselves recursively. This means that the actual parameters must not
refer to the procedure itself, neither directly nor indirectly.

An exception is, however, made in case of procedures, which have on-
ly one formal parameter called by value. This class includes the standard
functions, abs, arctan, cos, entier, exp, 1ln, sign, sin, sqrt. Because of
this exception it is permissible to write, e.g.,

exp(exp(x)).

7.10.2. Handling of types.

The types integer and real will be handled according to the pre-
scriptions of section 4.7.3 except in the case that a formal parameter,
which is specified to be real and tc which assignments are made, in the
call corresponds to an integer declared variable. This special case will

be treated incorrectly in DASK ALGOL.

7.11. ORDER OF DECLARATIONS. 11

7.11. ORDER OF DECLARATIONS.

DASK ALGOL requires the declarations in each block head to be writ-
ten in the same order in which they appear in chapter 5, thus:

first: type declarations

second: array declarations

third: switch declarations

fourth: procedure declarations
For further rules concerning the writing of array declarations when it is
desired to store arrays on the drum, see section 10.3.

7.12. Own.

In DASK ALGOL own can only be used with type declarations, not with
array declarations.

7.15. PROCEDURE DECLARATIONS.

7.13.1. Recursive procedurcs.

As =zlreuzdy stated (cf. section 7.10.1) recursive procedures cannot
be handled. Thus within the procedure body no operation which directly or
indirectly may cause a call of the procedure itself may occur.

7.15.2. Arrays called by value.
DASK ALGOL cannot handle arrays called by value.

7.15.3. Specifications.
The specifications for formal parameters must be complete, i.e. each
parameter must occur just once in the specification part.

[
ro

3. STANDARD OUTPUT PROCEDURES.

8. STANDARD QUTPUT PROCEDURES.

Output of text and results
means of

without explicit declarations).

given 1in section 6.
will be used.

from a program will be
output procedures permanently available to the translator (i.e.
The output will be provided in the form
of 8-channel punch tape or printed copy.
8~-CHANNEL PUNCH TAPE CODE AND FLEXOWRITER KEYBOARD

controlled by

The symbols and 8-channel code

8.1. CONTROL OF TYPEWRITER AND OUTPUT PUNCH.

Half of
one controlling the

other controlling the on-line

the standard output procedures are
output punch (identifier beginning with tryk),
typewriter

available in two forms,
the
(identifier beginning with

skrv). However, the actual output produced by the machine also depends on

the position of 2 5 - way selector on
marked O, S + P,
whether output will be produced on the typewriter or the punch or
for all combinations of output procedure

having positions

the control panel of the machine
P, S, #+. The following table tells
both
identifier and position of se-

lector:
Typewriter Punch
Selector tryk skrv tryk skrv
0 no yes yes no
S+ P yes yes yes no
P no no yes yes
S yes yes no no
+ no no no no
8.2. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard output pro-

cedures are the following:

Identifier Example, reference
tryk tryk({+d, ddd}, af2)
skrv section é.ﬁ.
tryktekst skrv(4<q,=,})
skrvtekst section B.t.

Effect

Qutputs the values of an arbitrary
number of arithmetic expressions in
a specified layout. Other output
operations may also be inserted as
parameters,

Qutputs a specified
bols.

string of sym-

8.2. IDENTIFIERS AND MAIN CHARACTERISTICS. 13

trykml trykml{8-n) Qutputs a specified number of

skrvml section 8.5. SPACEs.

tryktom tryktom (100) Punches a specified number of TAPE
section 8.5. FEED symbols.

trykvr skrvvr Outputs ocne CAR RET symbol.

skrvvr section 8.€.

tryktab tryktab Outputs one TAB symbol.

skrvtab section 8.6.

trykstop trykstop Punches one STOP CODE symbel.
section 8.6.

trykende trykende Punches one END CODE symbol.
section 8.7.

trylkslut trykslut Punches one PUNCH ON symbol.
section 8.7.

trykklar trykklar Punches one CLEAR CODE symbol and
section 8.7. sets internal sum of punched symbols

to zero.

tryksum tryksum Punches a STOP CODE, a SUM CODE and

section 8.7. a code representing the sum of the

symbols punched since program read-
in, last trykklar or last tryksum.

tryXxkopi trykkopi (§</3}) Copies a section of the inpul tape to
skrvkopi section 9.7. the output, the section being speci-
fied through a parameter,

It rolds for all standard output procedures that each output opera-
tion will cause an addition to an internal variable of a number which is
equivalent to the character. This may be used for checking purposes by
means of the mechanisms described in sections &.7.2 and 9.2. It should be
noted, however, that for the checking to work correctly the output tape
must not include any character which has veen produced by a skrv - ope-
ration (cf. section 8.1).

1h 8.%. STANDARD PROCEDURES: tryk, skrv.

5.3. STANDARD PROCEDURES: tryk, skrv.

8.3.1. Syntax.

<sign> ::= <emoty>| - | + | =+

<exponent layout) ::= 10<si >d [<{exponent layout>d

{zeroes) ::= 0 |<zeroes>C | <zeroes>, G

<positions> ::= d |<{positions>d l {positions>,d

<O-posit’ m0> 13= <{positions> | <0-positions>0 | <O-positions>,C

<{decimal layouty ::= <O—positions>|<O—posihions>.<zeroes>|

<positions>.<O—positions>|.<O—positions>
{layout tail> ::= <{decimzal layout>|<decimal layouty><exponent layout>
lavout> ::= <sign><layout t=il>|<sign>n{layout tail>| .
<sign>n;<layout tail>

<formal layout>::= <formzl paremeter>|
<if clause)<formal parameter> else <formal layout>

{layout expression>::= {(layout>}|<fonnal layout> ’

<{tryk parameter>::= <{arithmetic expression)*(tryk statement)l
<tryktekst statement>|<tryiml statementd>|<tryktom statement)|
{tryxvr statement)|<tryktab statement>|<trykstop statement>|
{trykende statement>l<trykslut statement>|<trykklar statement>|
<iryksum statement>|<trykkopi statement)

<tryk parameter list>::= <{tryk parameter>t
{tryk parameter list>,<{tryk varameter>

tryk statement)::= tryk(<layout expression), {tryk parameter list>)|
skrv{<layout expression)>,{tryk parameter listd>)

8.3.2. Examples.

tryk(ddd.OO} P, trykvr, tryktekst ({<Q=}), w +s)
skrv ({-d,.-dd},epsilon/16)

tryk(4dd,dad},q, tryxmi (%), tryk({.ddd},q) W, t-3)
tryk(if s>C then 1 else £2, Sum)

t‘I'.‘J'k(ll p-q, s+t)

8.3.3. Semantics.

A call of the procedure tryk or skrv causes the following treatment
of the parsmeters specified in the tryk parameter list:

Arithmetic expression: the value will be printed in the layout sup-
plied in the first parameter of the call.

OQutput statement: the call of the statement will be executed.

8.3.4., The layout.

The layout expression will be evaluated once at the beginning of the
execution of the tryk or skrv statement. The evaluation will take place
in a way which is completely analogous to that of other expressions (etf.
section 3.3.3). The final value must always be of the form <layout>}.

The symbols of the layout give a symbolic representation of the di-
gits, spaces and symbols as they will appear in the printed number. In-
deed, the finally printed number will have exactly the same number of
printed characters as 1is present in the layout (except in case of alarm
printing, see section 8.3.0). The various symbols of the layout have the
following significance:

8.3. STANDARD PROCEDURES: tryk, skrv. 15

8.3.4.1. Sign. The four possible symbols in the sign position signify the
following:

8.3.4.1.1. Empty. The number is supposed to be positive. No sign will be
printed. If a negative number is encountered, an alarm printing will take
place (see section 8.3.6).

8.3.4.1.2. - . The sign will always be printed using SPACE for positive,
and - for negative numbers. It will, if possible, move to the right, ap-
pearing as the first or second symbol to the left of the first digit (a
layout SPACE may appear in between) or immediately in front of the deci-
mal point.

8.3.4,1.3, + . The sign will always be printed using + for positive and
-~ for negative numbers. It will, if possible, move to the right, as in
8.3.4.1.2 above.

8.3.4.1.k, + . The sign will always be printed, using + for positive and
- for negative numbers. It will be printed as the first symbol of the
number, before any SPACE or digit.

8.3.4.2. Digits. Letters d and n represent digits. Letter n may only ap-
pear as the first symbol following the sign. The total number of letters
d and n gives the maximum number of printed significant digits (ef. sec-
tion 8.3.8).

If n is used in the first digit position, proper decimal fractions
will be printed with a O in front of the decimal point. If d is used this
0 will be omitted.

8.3.4.3. Zeroes. Zeroes may appear at the end of a decimal layout. They
influence the representation of the number in the following manner: If m
zeroes are present at the end of the decimal layout the exponent printed
will be exactly divisible by m+l. For this to be possible at the same time
as the position of the decimal pcint within the complete layout is kept
fixed the significant digits of the number-are allowed to move to the
right, using the positions of the symbols O, depending on the magnitude
of the number. If no exponent layout is included the exponent O is under-
stood and the above rule holds unchanged.

8.3.4.4, Spaces. Spaces will be inserted in all positions where the symbol
1 appears. The symbol ; may within the layout be replaced by SPACE the ef-
fect of SPACE being the same,

8.5.4.5. Decimal point. The decimal point will always be printed in a fix-
ed position within the layout. If decimals are printed it will appear as
. otherwise as SPACE.

8.3.4.,6, Scale factor. The scale factor will be printed in the same way as
in the language. The symbol 0 will appear immediately in front of the sign
of the exponent. If the scale factor is 1 the symbols © and following will
appear as SPACEs. Note that it is not possible to print an exponent part
without a decimal part.

8.3.5. Round-off.
All numbers will be correctly rounded to the number of significant
digits printed.

16 8.3. STANDARD PROCEDURES: tryk, skrv.

8.3.6, Limitations.

The total number of symbols n and d in any decimal layout must be
< 15.
- The total number of symbols n, 4, and O, written to the left of the
decimal point must be £ 15.

The total number of symbols d and O written to the right of the de-
cimal point in a decimal layout must be £ 15.

The number of symbols d in any exponent layout must be £ 7.

The total number of the symbols ; and SPACE and . 1in any layout must
be < 7.

8.3.7. Alarm printing.

By alarm printing is meant +that the printing will consume more posi-
tions on the paper than are present in the layout. Alarm printing will oc-
cur as follows:
8.3.7.1. Negative number printed with layout having empty sign position.
The correct - will be inserted, consuming one extra position.
8.3.7.2. Number too large for layout. Whenever the number to be printed is
too large for the layout given, an actual layout is used which will acco-
modate the number by inserting an exponent layout, or by increasing the
number of exponent digits.

8.3.8. Small numbers.

Printing of small numbers will never give rise to alarm printing. In-
stead the number of printed significant digits will be smaller than the
maximum (section 8.3%.4.2).

8.3.9. Examples of printed numbers.
In order to indicate the exact number of characters printed, commas
are inserted immediately preceding and following each number.

Layout
n,dd,dd.do,0 +d,ddd.ddd,d —ddd.d00w+d idd.om-dd
Normal printing
\ 0.00 1, . +.001 2, , 1.235m-3. +12 m—h.
\ 0.01 2, . +.012 3, , 12.35 021 W+ 1.2 w—2,
. 0.12 3, \ +.123 5, V123,503, #1202,
' 1.23 5, ' +1.234 6, v 1.235 0, i+ 1.2 .
) 12.3L 6, v +12.345 7, v 1235 ' 1+12 '
o 123.45 7, .+ 123.1456 8, . 123.5 Vot 12 02,
, 12 34,57 +1 234,567 9, . 1.255m+3, +12 0 2,
,1 23 b5.7 \ , 12,35 w+5, v+ 1.2 0 b,
) -.001 2, v -1.235,-3, -120 -
l"1 23)“'-567 9| 1 -1-23510"’51 1‘12 10 2|

Alarm printing
-0.00 1,
-1 23 k5.7 3, -1 23L.567 9k,
v 123,45 7,05, 41 234,567 91011; . 123.5 ,#+15,

8.4, STANDARD PROCEDURES: tryktekst, skrvitexst. 17

8.4, STANDARD PROCEDURES: trykiekst, skrvtekst.

8.4.1. Syntax.
{tryktekst parameter>::= {((proper string>}|<formal parameter>
{tryktekst parameter listo::= {Iryktekst parameter>
{tryktekst parameter 1list),{tryktekst parameter>
{tryktekst statement)::= tryktekst(<{tryktekst parameter list>)|
skrvtekst(<skrvtekst parameter list))

8.4.2. Examples.
tryktekst ({<Result is}, s, {<than expected})
skrvtekst({<Q,=,})

8.4.3. Semantics.

The execution of a tryktekst statement causes the strings of charac-
ters referred to in the parameters to be outputed, taking the varameters
in order from left to right. The characters outputed are given directly
in the form of a proper string if the parameter has the form

{(<{proper string>
Otherwise the formal parameter must refer to an actual parameter having
this form, and the formal prameter must call by name (cf. section

k.7.3.2).

8.4.3.1. The string quote.
Note the{difference between the string quotes used here
<
and those used in layout expressions (cf. section 8.3.1).

8.4.3.2. Treatement of SPACE and CAR RET.

All characters of the proper string, including SPACEs and CAR RETs
will be outputed. The symbol for space , will however be equivalent to
SPACE, i.e. it will be printed, not as it stands, but as a SPACE.

8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5.1. Syntax.

{trykml statement)::= trykml (<arithmetic expression>)|
skrvml (<arithmetic expression))

{tryktom statement>::= tryktom (<arithmetic expression))

8.5.2. Examples.
trykml(n + m - 7)
tryktom (75)
skrvml (1f p > O then > else b)

18 8.5. STANDARD PROCEDURES: trykml, skrvml, tryktom.

8.5.3. Semantiecs.

The execution of a trykml statement causes the number of SPACE sym-
bols (mellemrum) specified as actual parameter to be outputed.

A call of the procedure tryktom causes the number of TAPE FEED sym-
bols specified as actual parameter to be outputed.

The value of the.arithmetic expression will, if necessary, be roun-
ded to the nearest integer. If it assumes a non -~ positive value no sym-
bols will be outputed.

8.6, STANDARD PROCEDURES: trykvr, skrvvr, tryktab, skrvtab,
trykstop.

8.6.1. Syntax.

{trykvr statement>::= trykvrlskrvvr
{tryktab statement)>::= tryktab|skrvtab
{trykstop statement>::= trykstop

8.6.2. Semantics.

A trykvr statement causes a CAR RET symbol (vogn retur) to be out-
puted. Note that this will cause the combined operation of return of car-
riage and line feed to take place.

A tryktab statement causes output of a TAB symbol.

A trykstop statement causes the STOP CODE to be punched.

8.7. STANDARD PROCEDURES: trykende, trykslut, trykklar, tryksum.

8.7.1. Syntax.

{trykende statement)::= trykende
<trykslut statement>::= trykslut
{trykklar statementd::= trykklar
{tryksum statement)::= tryksum

8.7.2. Semantics.

The four output procedures described here =all serve to insert cha-
racters on the output tape with a view to a later use of this output tape
as input tape to an ALGOL program.

The trykende statement punches the END CODE. When later the tape is
read %nto the machine this will cause a stop of the machine (cf. section
9.2.6).

The trykslut statement punches the PUNCH ON symbol. This is inten-
ded to be used as a non - printing terminator for lzs and lmst (cf. sec-
tions 9.4 and 9.5).

The trykklar statement punches the CLEAR CODE and sets the internal
sum of the punched characters to zero. This prepares for the use of the
checksum mechanism (cf. section §.2.5).

The tryksum statement punches a STOP CODE, a SUM CODE and a charac-
ter representing the value of the internal sum of all punched characters
and sets this sum to zero. During input this combination will cause an
automatic sum check to take place %cf. section 9.2.5).

9. STANDARD INPUT PROCEDURES 19

9. STANDARD INPUT PROCEDURES.

Input of information from 8-channel punch tape may be carried out at
any stage of an ALGOL program through calls of standard input procedures
permanently available to the translator,

In order to provide flexibility several different xkinds of standard
input procedures are available. These differ both with respect to the in-
terpretation of the single symbols supplied on the inputl tape and the in-
ternal effect of the input operation.

9.1. IDENTIFIERS AND MAIN CHARACTERISTICS.

The identifiers and main characteristics of the standard input pro-
cedures and the associated procedure streng are the Following:

Identifier Example, reference Efrect

lms lms(a, b, ¢) Reads numbers and assigns to vari-
section 9.k, ables or arrays.

l=st p x lmst real procedure lmst has the next
section 2.5. number on the input tape as its va-

lue.

lesstreng lesstreng Reads a string of symbols to an in-

section 9.¢. ternzl variable for later comparison

by means of the

streng streng({(P}) boolean procedure streng.
section 9.6, The value of streng is true if the
string supplied as parameter agrees
with the string read by the last
call of lzsstreng.

tryxkopi trykkopi({</;}) Cause a copying of the characters on

skrvkopi section 9.7. the input stape to be output punch
(trykkopi) or the typewriter (skrv-
kopi).

9.2. UNIVERSAL INPUT MECHANISMS.

Certzin characters on the input tzpe +ill be handled in the same way
no matter which of the standard input procedures is controlling the input
operation. The universel mechanisms are the following:

9.2.1. Skipping between PUNCH OFF and PUNCH ON.
All characters between PUNCH OFF and the <first following PUNCH ON,
these two characters included, will be completely ignored during input.

20 9.2. UNIVERSAL INPUT MECHANISMS.

9.2.2. Ignoring of BLANK TAPE, TAPE FEED, and ALL HOLES.
The characters

. BLANK TAPE
0000,000 TAPE FEED
00000.000 ALL HOLES

will be ignored during input.

9.2.3. Standard error reaction.

Various kinds of errors may be detected during input (ef. sections
9.2.4, 9.4.3.6, 9.5.3). 1In each of these cases an error type indication
will immediately be typed on the output typewriter and then the machine
will execute the following standard error reaction: The following cha-
racters on the input <ape will be copied to the output punch. When two
lines have been copied the machine control is returned to the translator
system (cf. section 12).

9.2.4. Error combinations.
Outside the sections of the tape between PUNCH OFF and PUNCH ON
(cf. section 9.2.1) the reading of a hole combination with wrong parity,
or of any NOT USED code (including 63 symbols with decimal values from
65 to 127, not listed in section 4.5) will cause typing of
lms fejl
and the machine will do the standard error reaction (cf. section 9.2.3).

9.2.5. The checksum mechanism.

Wnen the standard input procedures read tapes which have been pre-
pared by the standard output procedures the checksums included on this
tape in consequence of calls of the tryksum procedure will automatically
be verified., If the check symbol does not check with the corresponding
symbol as formed during previous read-in the machine will print

lws fejl sum
and the machine will stop. If the START key is pressed the reading will
continue. The internal variable which holds the current sum of the sym-
bols which have been read in may be reset to zero by the inclusion of the
CLEAR CODE on the tape. This is the symbol produced by the trykklar pro-
cedure (cf. section 8.7.2). On the flexowriter use:
AUX CODE with O

g9,2.6, Stop produced by END CODE.

The reading will stop whenever the END CODE symbol appears. If the
START key is pressed the reading will continue. The END CODE may be pro-
duced by an ALGOL program by a call of the trykende procedure (cf. sec-
tion 8.7.2). On the flexowriter it is produced by depressing

AUX CODE with SPACE.

9.2.7. The effect of UPPER CASE and LOWER CASE.

For printed symbols (cf. section 6.1) the meaning and effect of a gi-
ven hole combination depends on the most recent CASE symbol on the tape
(UPPER CASE or LOWER CASE).

For typographical and control symbols (cf. sections 6.2 and 6.3) the
effect 1s usually independent of the case.

9.3. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS. 21

9.5. TERMINATORS, INFORMATION SYMBOLS, AND BLIND SYMBOLS.

The effect of the input characters which do not give rise to an ac-
tion of a universal input mechanism (cf. section 9.2) depends on the par-
ticular standard input procedure. In describing this effect it is conve-
nient to make use of the following concepts:

9.3.1. Terminators. A terminator is a symbol on the input tape which in-
dicates to the input procedure that the reading of a piece of information
(e.g. a number) has been completed.

9.5.2. Information symbols. An information symbol is a symbol on the in-
put tape supplying positive information which is transferred to the run-
ning ALGOL program by the input procedure.

9.5.3. Blind symbols. A blind symbol is a symbol on the input tape wnich
is ignored by the input procedure.

As explained more concisely in the following sections we have for
the procedures lms and lsst:

Terminators: <letter> all signs except +-
Information symbols: <digitd> -y

Blind symbols: SPACE _ STOP CODE

and for lmsstireng:

Terminators: all signs TAB PUNCH ON CAk RET

Information symbols: <{digit> <letter>

Blind symbol: SPACE _ STOP CODE

Each input operation will in general read three sections of the in-
put tape:

.o TAB PUNCH ON CAR RET

1. Any mixture of terminators and blind symbols.
2. A legal sequence of information symbols mixed with blind symbols.
3. One terminator.

9.4. STANDARD PROCEDURE: l=s.

9.k.1. Syntax.
{les parameterd::= <variable>|<array identifier>
{l®s parameter list>::= {l=s parameter)l
{lms parameter list)>,<{lms parameter)
{les statement>::= lms(<lms parsmeter list))

9.4.2, Examples,
lzs(P)

lws(A[i,j], V, MATA)
lms(x, B[1,k])

9.4.3. Semantics.

A call of the procedure 1ss will cause the values of numbers sup-
plied on the.input tape to be assigned to the variables and/or arrays of
subscripted variables specified as parameters. The assignments will in
detail be executed as follows:

22 9.4, STANDARD PROCEDURE: lms.

9.4.3.1. Order of assignment. The parameters will be taken in order from
left to right and the assignment will be completely finished for each pa-
rameter before the next is treated. Thus the statement lms(k, B[1,k])
will first assign a value from the input tape to k and this value of k
will then define the particular component of B to which the next number
on the tape will be assigned.

9.4.3.2. Assignment to array. If an array identifier is supplied as pa-
rameter an assignment to all the components of the array will take place.
The order of assignment may be described as follows: Denoting the lower
and upper subscript bounds of the array declaration by 11, 12, ... 1ln, ul
u2, ... un, the input operation is equivalent to

for il:= 11 step 1 until ul do

for 12:= 12 step 1 until u2 do

for in:= 1n step 1 until un do
Atil, i2, ... in]?= input number
vwhere i1, 12, ... in are internal varilables.

9.4.3.3, Input tape syntax. The characters appearing on the input tape
during the execution of lms must conform to the following syntactic
rules:
lms terminator>::= v|x|/|=|3|[|11(])|]|~l<|>},|TAB|PUNCH ON|:|CAR RET

{letter>
<lws information)>::= <digit>|.]
{lzs blind>::= SPACE|_|STOP cop®
{lms prelude>::= <empty>[<lms blind)l(lms terminator) |

<{lms prelude><lsms blind)l(las prelude><{l:s terminator)
<digit sequence>::= <digit>]<digit sequence><digit>|
{digit sequence><lsms blind>l<las blind><digit sequence>

<input integer>::= <{digit sequence>|+<digit sequence)l—(digit seyguence>
<input fraction>::= ,<{digit sequence>
<{input exponent>::= ,<input integer>
<input decimall::= <digit sequence)l(input fraction>|

{digit sequence><input fraction>
<unsigned real>::= <input decimal)l(input exponent)l

<input decimal><input exponent)
{input real>::= <unsigned real>l+<unsigned real>|-<unsigned real>
<input ditto>::= —|<input ditto>-|<input ditto><lms blind>
{tape integer>::= <{lms prelude><input integer><{lms terminator)l

{lms prelude>{input ditto>{lms terminator>
<tape real)>::= <lms prelude><input real><lss terminator|

<{lms prelude><{input ditto>{l®s terminator>

|+~

9.4.3.4, Examples of input tape for lms.

Tape integers: Tape reals:

17 283; wi= 3.85]. 992 <
i = +138, epsi= -,-14,
s[25] pi:= 3.141592 653
funktion(-12) Sat x = U,

p: -/ q: 1.384 11,

9.4, STANDARD PROCEDURE: lms. 23

6.4.3.5. Semantics of input tape. Depending on the type of the variable
each lms assignment will cause the reading of one tape real or tape inte-
ger. IT these contain digits they will be interpreted according to tne
usual ALGOL prescriptions (cf. sections 2.%.3 and 2.5.4), ignoring all
l®s blinds and les terminators. An input ditto, on the other hand, will
cause the lzs assignment to be skipped for the particular variable, thus
leaving its value unchanged.

9.4.3.6, Errors. The standard procedure lms checks that the syntactic
rules of section 9.4.3.3 are satisTied. In particular, while assigning to
a variable of type integer the symbols . and ,, must not occur. Errors of
this kind will cause typing of the error indication

les fejl
and the standard error reaction will take place (cf. section 2.2.3). 1In
addition a protest is made against numbers whose absolute value is grea-
ter than 3.hm58‘ In this case the error indication

lss spild
is typed before the standard error reaction is made.

9.5. STANDARD PROCEDURE: lmst.

9.5.1. Syntax.
{lms function designator>::= lasst

9.5.2. Examples.
wi= (lest + y)/q
B[lmst, Lest]:= lmst

9.5%.3. Semantics.

ry time it is called IE_;Iii—read the next tape real appearing on the in-
put tape (cf. section 9.4.3.3). This information on the input tape will
define its value according to the rules of section 9.4.3.5, except that
l®st will treat an input ditto as a syntactic error (cf. section

9.4.3.6).

9.5.3.1. Example of input tape for lmst. A reasonable input tape for the
second example of section 9.5.2 would be the following:

B[3,7]:= 3.847,

Note that the correct execution of this input operation is directly de-
pendent on the strict adherence to the rules of sections 4.2.3.1 -
4.2.3.3 for assignment statements.

24 9.6. STANDARD PROCEDURES: lmsstreng, streng.

9.6. STANDARD PROCEDURES: lmsstreng, streng.

9.6.1. Syntax.
{1lms streng statement)::= lmsstreng
{formal string)>::= <formal parameter) |

<if clause><formal parameter> else {formal string>
{string expression)>::= {<<proper string>}|<formal string>
{streng function designator)::= streng(<string expression>)

9.6.2. Examples.
l®s streng
if streng({<A}) then go to T

9.6.3. Semantics.

The standard procedures lmsstreng and streng serve to read identify-
ing information from the input tape and to compare this information with
information supplied by the program. The detailed operation is defined
below.

9.6.3.1. Input tape syntax. During execution of lmsstreng the characters
on the input tape are treated according to the following syntax:

<lmsstreng terminator>::= v|x|/|=]s|[| (1) |]|Al<]>],|,|TaB|-|+|PUNCH ON|
.| :|CAR RET

{lmsstreng information>::= <digitd>|<letter>

{lmsstreng blind>::= SPACE|_|STOP CODE

{lmsstreng prelude>::= <empty>|<lws streng blind>|
{lmsstreng terminator>|<lasstreng prelude><{lmsstreng blind>|
{lmsstreng prelude)><{lmsstreng terminator>

<{input string>::= {lmsstreng information>|<input string><{lssstreng blind>|
<input string>{lmsstreng information)>

{tape string>::= <{lmsstreng prelude)<input string><{lmsstreng terminator)

9.6.3.2. The internal string. BEach call of lmsstreng will read the first
following tape string from the input tape and assign the five first in-
formation symbols of the input string, which is a part of it, to a unique
internal variable. If the input string has 1less than five information
symbols it will be extended with the appropriate number of unique dummy
characters.

9.6.3.3. F amples of tape strings and internal strings.

Symbols on tape Internal string
b7. b7
(Matrix A) Matri
[x]:A and B; AandB
Lrue, true

9.6. STANDARD PROCEDURES: lmsstreng, streng. 25

9.6.3.4, Standard procedure streng. This is a boolean procedure, requi-
ring a string expression as parameter. It has the value true if =1l the
characters of the value of the string expression agree with the same num-
ber of characters of the internal string, assigned by the previous les-
streng, both strings taken in order from left to right, otherwise the va-
lue §§;§g. Note that the agreement of the two strings puts the following
restrictions on the string supplied as parameter to stireng:

9.6.3.4.1. It cannot contain more characters than the number of informa-
tion symbols in the internal string (never more than 5).

9.6.3.4.2. It can only contain digits and letters.

9.6.3.5. Example. The following table shows the value of streng for va-
rious input strings and parameters:

Parameter:
Input string A Alg ALGOL
ALGOL 60 true false true
A true false false
Blg false false false
Algol true true false

Algorithm true true false

26 9.7. STANDARD PROCEDURES: trykkopl, skrvkopi.

9.7. STANDARD PROCEDURES: trykkopi, skrvkopi.

9.7.1. Syntax.
{trykkopi statement)::= trykkopi(<string expression>)|
skrvkopi(<{string expression>)

9.7.2. Examples.

trykkopi ({<+/})

skrvkopi(if s>0 then w else y)
trykkopi(fs)

9.7.3. Semantics.

A call of a trykkopi statement causes a copying of characters from
the input tape to the output. The section of the input tape to be copied
is defined by the value of the string expression supplied as parameter.
This value must have the form

{< <proper string> }

where the proper string consists of one or two characters. If one charac-
ter is supplied the copying will take place from the actual position of
the input tape until the first occurrence of the character specified as
parameter. If two characters are supplied the copying will start from the
first character on the tape which is the same as the first of the two
characters supplied as parameters and will continue until the first oc-
currence of the second of these symbols on the tape. The characters indi-
cating the begin and end of the section of the input tape to be copied
will not themselves be copied.

The copying will include all legal characters except those associa-
ted with the universal input mechanisms (cf. section 9.2) and superfluous
case shifts,

9.7.3.1. Example of call, input tape, and output.
The call

trykkopi({<[1})

operating on the following input tape:

Heading:

5&ii’5§o&§€€'§s output:

Problem number:

10. STORING BLOCKS AND VARIABLES ON THE MAGNETIC DRUM. 27

10. STORING BLOCKS AND VARTABLES ON THE MAGNETIC DRUM.
10.1. INTRODUCTION.

ALGOL programs involving only a few hundred arithmetic operations
and/or variables may be handled direcly by the DASK ALGOL translator and
system. However, if problems exceeding a certain size are presented, the
translator or the system will refuse to accept the problem (cf. sections
10.4.3 and 12). What has happened is that the capacity of the directly a-
vailable internal store of the machine, the so-called core store, has
been exceeded.

This does not mean that the larger problems cannot be handled, since
there 1is available in the machine a storage capacity on tne so-called
magnetic drums of 8 times that of the core store. What it does mean, how-
ever, is firstly that the user must supply extra information to the ALGOL
translator system telling the system to place certain blocks or variables
on the drum and secondly that time will be spent transferring information
between the drum and the cores making the program less efficient. Now the
loss of efficiency of an ALGOL program which uses the drum may depend ve-
ry greatly on the manner in which the different parts of it are distribu-
ted between the core and the drum stores. Since this distribution is per-
formed on the basis of information given by the user, it means that in
order to make efficient use of the facilitles for storing blocks and va-
riables the user must know something about how an ALGOL program will be
stored and how the machine will handle it.

Preoccupation with this kind of consideretion admittedly lies very
far from the spirit of the universal language ALGOL, and it is clear that
the ideal ALGOL translator system would handle the storage problem auto-
matically. However, it is believed that the extra burden placed on the u-
ser, who must use the DASK ALGOL drum mechanisms will prove in practise
to be rather modest.

10.2. MACHINE CHARACTERISTCS AND SPACE REQUIREMENTS.

With a view to the descriptions of the following sections the pre-
sent section will give some information of the characteristics of DASK
and of the length of the translated program.

10.2.1. The core store.

For the machine to be able to execute an ALGOL statement directly
all the individual instructions and all the variables must be present in
the core store. The capacity of the core store is divided into 2048 half
cells, of which 6L4 are permanently reserved by the ALGOL system. The re-
maining 1984 half cells may be used for instructions or variables.

28 10.2. MACHINE CHARACTERISTICS AND SPACE REQUIREMENTS.

10.2.2. The drum store.

The drum store forms a reservoir of information for the core store.
The total capacity is 8 times that of the core store, i. e. 16384 half
cells, While the instructions and the variables of the core store are di-
rectly accessible, the information in the drum store must be transferred
to the core store before it can be used. This transfer can only be done
in lumps of 64 half cells at a time, so-called tracks, and is a compara-
tively slow process since the machine mey perform about 12 arithmetic o-
perations on real numbers in the time taken to transfer one track.

10.2.3. Storage requirements of ALGOL programs.

The exact storage requirements of an ALGOL program are given in de-
tail in section 11, For-a rough estimate the following rules may be used:

Declared variables, whether simple or subscripted, occupy one half
cell each if they are of type integer or boolean, and two half cells each
if of type real. Each formal parameter of a procedure occupies two half
cells.

To make an estimate of the storage occupied by the instructions make
a count of the symbols of +the program (omitting type declarations and
procedure headings) as follows:

Each occurrence of a number or an identifier counts as one.

Each occurrence of a delimiter, except for comma (,), semicolon (3)
and parentheses () counts as one.

To obtain the number of half cells occupied by instructions multiply
the count by a factor of from 1.2 to 1.5.

The total storage requirement will be that of the variables plus
that of the instructions.

10.3. STORING VARIABLES ON DRUM.

10.3.1. Syntax.

<{drum array declaration)::=
comment drum data [<bound pair listd]j<array declaration)l
<drum array declaration>j;<array declaration>

10.3.2. Examples.

comment drum data [1:p, 7:s-1];
array P, Q[1:p, -7:s-1, 3:8, viv];
integer array I, K[1:p, 7:s-1, 2:7]

comment drum data [2:7];
boolean array Boo 1, Boo 2[2:7, 1:n, 1:q]

10.3.5. Semantics.

A drum array declaration declares one or several identifiers to re-
present arrays, in exactly the manner explained in section 5.2, but, in
addition,* specifies one or more of the subscripts of these arrays to re-
fer to the drum. This means the followlng:

10.5. STORING VARIABLES ON DRUM. 29

10.5.3.1. The arrays declared in a drum array declaration will in the
normal way define the meaning of corresponding subscripted varilables.
Thus the fact that the arrays are stored on drum is visible only in the
declaration.

10.3.3.2. The number of subscripts referring to the drum and the bounds
for these subscripts are given in the initial’drum data comment. All fol-
lowing array declarations must have identicaly the same bound pairs in
their first subscript positions. The bound pairs in any remaining sub-
script positions will refer to the core store.

10.3.3.3. All arrays declared in one drum array declaration are referred
to as a drum array group. The array declarations belonging to one drum
array groups are all those which follow the initial drum data comment un-

til the first following drum data comment, switch declaratIBn, procedure
declaration or statement. Thus the rules for the writing of declarations
{cf. section 7.11) must be extended to read:

Array declarations must be written in the following order: First all
declarations for not-drum arrays (in any order), then drum array declara-
tions.
10.3.3.4. As far as the storing is concerned a drum array group is trea-
ted as one large (generally not rectangular) array. The complete set of
components of this array is stored on <the drum while in the core store
only a sub arrsy corresponding to one set of values of the subscripts re-
ferring to the drum is stored. Since this sub array occupies only a frac-
tion of the total storage of the drum arrays a considerable saving of
core store may be achieved.

10.3.4, Illustration.

The scheme for storing drum arrays may be further explained by a simp-
le example: let the declaration read
comment drum datal[1:3];
integer array I, K[1:3, L:5];
array R[1:3, 7:8, 9:10]
The components of these arrays will be stored on the drum in the follow-
ing order:
[1,4], 1[1,5], k[1,4], K[1,5], R[1,7.91. R[1,7,10], R[1,8,9], R[1,8,10
IF'L‘J' 1{2.5 . K[z.h , K{z.s | R{z.m | R{2.7.1o ' R{2.8.9 . R{2.8.1o
I[3,4%], 1{3,5] K[3,4], X{3,5], R 5.7.91‘ R[3,7.10], R[3,8,9], R{3,8,10
In the core store only one of these sections will be available at any one
time, for instance the -one having the first subscript equal to 3:
1[3,4], 1[3,5], k[3.4], k[5,5], R[3,7,9], R[3,7,10], R[3,8,9], R[3.,8,10]
As already stated (section 10.3.3.1 above) the components of drum arrays
will be used exactly like any other subscripted variables. However, it is
clear that since any reference to a component having its drum subscripts
different from those last referred to will cause several transfers of
tracks to and from the drum, the process may became very time consuming.
Thus the following statement:
R[2,7,10]):= I[l.Sﬁ + K[3,4]
will cause at least four, and perhaps six, track transfers to take place.
The rule for the ALGOL programmer to follow in order to avoid this is:

Frequent references to altered values of the drum subscripts of ar-

rays within one drum array group should be avoided.

30 10.4. STORING BLOCKS ON DRUM.

10.4. STORING BLOCKS ON DRUM.

10.4.1. The drum program comment.

Any block, whether a statement in the program or the body of a pro-
cedure declaration, may be specified to be stored on the drum. This is a-
chieved by adding the symbols:
comment drum programs
immediately following the begin of the block. In order to enable the AL-
GOL programmer to exploit this facility some information of the manner in
which an ALGOL program is stored in the core store will be given below.

10.4.2. Storage of instructions and variables.

t any -one stage of the run of a program one end of the core store,
the low end, will be occupied by instructions, constants, simple vari-
ables, and formal variables while the high end of the store, the so-call-
ed stack will contain the components of all those arrays, which are de-
fined at this stage, and any intermediate results of expressions in the
process of beeng evaluated.

10.4.2.1. Low end storage. Within the low end the order of storing of the
various blocks is as follows:

First segment: all such parts of the program vhich do not belong to
any drum block, including constants, but not including the storage for
simple variables of ordirary blocks of the program.

Second segment: im:.i1uctions and simple variables of all drum proce-
dure bodies, which will all share a certain section of the core store.
Thus this segment may at any one time store only one drum procedure body.

Third segment: the simple variables of ordinary blocks of the pro-
gram, sharing space with the instructions and simple variables of all
drum blocks of the program. This segment will thus at any one time con-
tain either the simple variables of an ordinary block or one complete
drum block.

If drum blocks are written within drum blocks the outer drum block
will be stored in three segments in exactly the same manner as the com-
plete program, forming, so to speak, a microcosmos of its own.

Note particularly that since all drum procedures which are declared
in the same block head share the same place in the core store NO TWO DRUM
PROCEDURES WHICH ARE DECLARED IN THE SAME BLOCK HEAD MUST EVER CALL EACH
OTHER, NEITHER DIRECTLY OR INDIRECTLY.
10.4,2.2. Stack storage. The storing in the stack (the high end of the
core store) is arranged strictly according to the dynamic order in which
the varic .s blocks have been entered. Thus each time an entry into a
block is made the components of arrays declared in the block head will be
placed in order downwards from the last reserved cell of the stack. A-
gain, every time an exit from a block is made the part of the stack used
by this block is released and may thus be used by any other block.

10.k. STORING BLDCKS ON DRUM. 31

10.4.3. Dynamic storage control.

Since arrays of arbitrary size may be declared in any block head it
is necessary to keev a continuous check on the extent of the parts of the
store used by the low and high end sections, 1if disastrous overlaps be-
tween instructions and variables are to be avoided. This is performed as
follows: When a block is entered the amount of low end storage which must
be reserved while this block 1is working is calculated and compared with
the current limit of the stack. Again, every time a new item is added to
the stack a similar control is made. If the control detects that the two
parts of the store are about to overlap the error indication

ferritlager sprengt
will be typed and the machine will immediately proceed to output inrorma-
tion about the block causing the error.

Similarly, since any declaration of a drum array may use an arbitra-
ry amount of the drum storage, a check on the occupation of the drum will
be made every time a drum array is declared. An overlap will cause typing
of the error indication

tromlelager sprengt
to be followed by output as above.

10.4.4, Preservation of ordinary drum blocks.

The fiist time a drum block is entered it will automatically be
transferred to the core store. At the same time the administrative system
makes a note that this particular block is now available.

When a new entry is made into the same block the system will omit
the transfer from drum if it is certain that the part of the store occu-
pied by the block has not been disturbed since the last exit. The condi-
tions for this are 1) that no entry into (or exits from) any ordinary
block has been made, and 2) that the stack has not made use of the rele-
vant part of the store in the meantime. Note, however, that calls of pro-
cedures may well be executed, without disturbing an available drum block.

10.4.5. Preservation of procedure drum blocks.

The system for avolding unneccessary transfers from the drum store
in case of procedure drum blocks is similar to that of ordinary drum
blocks, but rather less economical. The rules are: That procedure drum
block into which an entry has last been made will be available without a
repeated transfer provided 1) the stack has not in the meantime made use
of the relevant part of the store and 2) no exit from the block, from
which the drum procedure was first called, has been made.

For more details of the storage allocation of DASK ALGOL see the ar-
ticle; J. Jensen, P. Mondrup, P. Naur: A Storage Allocation Scheme for
ALGOL 60, BIT vol. 1 no. 2 (1961).

32 11. MACHINE REPRESENTATION OF PROGRAMS AND PARAMETERS.

11. MACHINE REPRESENTATION OF PROGRAMS AND PARAMETERS.

In the present chapter the representation of all the possible con-
stituents of an ALGOL program within the machine will be given. This in-
formation is given mainly for the Dbenefit of those programmers who wish
to mix ALGOL language with machine language and those who wish to make
use of the programs of the wired store (ef. section 11.2).

11.1. NOTATION.

The notation of the present chapter necessarily deviates strongly
from that of all the previous chapters. Indeed we are concerned exclusi-
vely with specifications of mechine addresses and the contents of storage
locations.

11.1.1,. Machine addresses.

Machine addresses will be written either
a) as absolute addresses (integers in the range from O - 2047)
b) ALGOL identifiers. Addresses associated with definite classes of ALGOL
quantities will be distinguished through the first letter(s) of the iden-
tifier used, thus:

First letter(s) Associated ALGOL quentity
ni Integer
nr Nuuoer
1v Logical value
la Label
layout Layout
st String
r real variable -
i integer variable |Simple or formal by value
b boolean variable -
a Array
p Procedure
s Switeh
b Formal parameter, called by name
i Formal integer parameter, called by name
fr Formal real parameter, called by name

Symbols for machine addresses will be written in front of the correspon-
ding contents followed by colon, like ALGOL labels.

11.1.2. Contents of storage locations.

For convenience both an adapted NL 1 representation and the NL 4 re-
presentation will be given. The definition of NL 1 will be found in Lmre-
bog i Kodning for DASK, Regnecentralen 1958. The official description of
NL 4 is not yet published.

11.2. THE WIRED STORE. 33

11.2. THE WIRED STORE.

All the standard edministrative and arithmetic functions needed when
an ALGOL program is running have been permanently wired into the machine
in the form of a wired store. This has the same capacity as the core
store and relieves the core store of all standard mechanisms except for
the first 64 half cells which contain working 1locations for the wired
store and some universal parameters of the running ALGOL program (cf.
section 11.8). Entry into the wired store is made through 17-jumps, which
are otherwise similar to 16-jumps.

11.3. USE OF MACHINE REGISTERS AND WORKING LOCATIONS.

All the working registers of the machine are used by the standard
routines of the wired store, and thelr contents must therefore always be
expected to be changed by any Jumps into the wired store.

Input parameters to the wired store are always supplied in the index
registers IRB and IRD, and occasionally in IRC. By far the most important
parameter is the contents of IRB which defines the last used full word in
the stack (cf. section 10.4.2.2.). Since the stack is used as working
space by all wired routines the user must always put such an address into
IRB that the locations 2046B, 20LLB, and 2042B are at the disposal of the
wired routine.

11.4. NUMBERS, LOGICAL VALUES, LABELS, AND STRINGS.

11.4,1. Real number in stack.
The given number y is rewritten as
y=ylx 2+y2
vhere y2 is an integer and yl is a fraction rounded to have 31 binary
places with -1 < y1 < -24(-19)

or 0

or 2A(-19) < 1 - 24(-19).

Also -127 (y2 128

If yi =20 then y2 = 19

The number is packed into a full word in the stack as follows:
vy in stack = y1 + (128 - ¥2) x 2A(-39

The greatest number = (1 - 24h(-19 2@128 =3, u028 x 10438

The smallest normalized number = 21(128) = 2.9387 x 10A(-39)

o
IAIA | IN

11.4.2. Real number in store.

The representation of y is

y in store = y in stack - 109 x 2h(-39)
Thus if y = O the number zero is stored.

Note that if y2 > 20 a carry from the exponent part will change the
stored modulus.

11.4.3. Integer in stack.
The integer z is always represented as
z = z1 x 2419.

3l i1.4. NUMBERS, LOGICAL VALUES, LABELS AND STRINGS.

It is stacked exactly like a real number, i.e.

z in stack = z1 + 109 x 2A(-39) = z x 2M(-19) + 109 x 24(-39)
The greatest positive integer = 2419 - 1 = 524287
The greatest negative integer = -2419 = -524288

o

11.4 .4, Integer in store.
The integer z is stored as
z x 24(-19)
in a half cell. This representation is analogous to that of a real.

11.4.5. Logical values.
true is represented as any negative integer. false is represented as

any non-negative integer.

11.4,6, Labels.
The label pointing to the machine instruction la in block number bn
in the program is stored in a half cell as

la x 24(-11) + bn x 24(-19)

11.4,7, Layouts (ef. section 8.3.L4.).
A layout is stored in a full cell as ten sedecimal characters:
B bhdfs s bhdfs
B parst 8 parst
number of letters n and d in number part.
number of characters n, d, and O before decimal point in number part.
number of characteis d and O following the decimal point in number
part.
f =4 x fn + fe, where fn and fe represent the signs of the number and
the exponent according to the following table:
<{empty> = O, - =1, + = 2, + =3,
s = number of letters d in exponent + 8 x number of letter n.
p:qQ,r,8,t are the numbers of characters n, d, O in the consecutive digilt
groups, as separated by SPACE and decimal point.

Qo
Wonn

Examples:

Layout Sedecimal characters
n,dd, dd.do,0 65308 12221
+d,ddd.ddd, d 84480 13310
-ddd.doo,+d 43361 33000
+dd.0,-ad 221D2 21000

11.4.8. Strings.
Each character (following the left string bracket {(). together with
its case, is represented as an integer:
1 + numerical representation according to section 6.5 +
(1f LOWER then 128 else 0)
Each integer is represented as B binary digits, or equivalently 2 sedeci-
mal digits.
A string is represented as the string of binary digits followed by
the end mark, eight zeros. It is stored in consecutive full cells, the
first of which carries the address of the string, st.

Example: NL 1 representation
ALGOL 60. B 32243 B 82724 B 01879 B 1BCOO

11.5. EXPRESSIONE. 35

11.5. EXPRESSIONS.

11.5.1. General conventions.

During the evaluation of expressions the ALGOL system will make use
of the stack for storing any intermediate values and counting in IRB will
take place. However, when the evaluation is completed IRB will have re-
turned to its original value and the result will be present in the AR re-
glster., The form of the value in AR is that given in section 10.4, where
for numbers the store form (section 11.4.2) is used.

These same rules hold for the evaluation of the more complicated
primaries, subscripted variables, function designators, relations, and
switch designators which also make use of the stack, but deliver their
result in AR.

Expressions within parentheses, on the other hand, are not treated
as closed subexpressions. Instead the parentheses are taken into account
implicitely through the order of execution of operations.

11.5.2. Values, simple variables, function designators without parame-
ters, formal parameters.

The values of primaries, which are either themselves values, or in
the ALGOL program are represented by single identifiers, are brought to
the AR by means of the following instructions:

Integer ni A 60 O+H ni
Number nr A Lo O+ F nr
Logical value 1v A 60 O+ H 1v
Label la A 60 0+H la
Simple variable, integer 1460 O+H 1
Simple variable, real r ALo O+F r
Simple variable, boolean b A €0 O+H b
Function designator without

rameters, declared p A 16 SEK p
Function designator without pa-

rameters, standard p A 17 SKL P
Formal real parameter fr A 37 UDF fr
Formal integer parameter fi A 37 UDF fi

A formal integer must always be rounded before it is used.

The 1list of addresses of standard procedures without parameters is
as follows:

lmsstreng 1337
lest 1232
skrvtab 1736
skrvvr 1733
trykende 1727
trykklar 1723
trykslut 1731
trykstop 1729
tryksum 1712
tryktab 1737

trykvr 1734

36 11.5. EXPRESSIONS.

11.5.3. Subscripted variables.

The value of a subscripted variable is brought to AR through the
following steps: 1) The values of all subscript expressions are stacked.
2) The internal array identifier is brought to AR. 3) A wired subroutine
is called in. These three steps will be treated separately:

11.5.3.1. Stacking a subscript. Tnere are three cases, according to how
the value of the subscript expression has been evaluated:

Result of expression Bring to stack through
Integer in AR 595 A 17 SKL 595
Real or formal in AR 569 A 17 SKL 569
Real in stack 566 A 17 SKL 566

The subscripts must be stacked one by one in this way.

11.5.3.2. Array identifier to AR. There are two cases:
Array identifier is

Not formal a A Lo O+F a
Formal f A 37 UDF f
11.5.3.3. Subscripted variable to AR. This is done by
162 A 17 SKL 162
This also counts the stack back.
11.5.3.4, Example.
ali, rl, r2xr3, fi] will appear as i A €60 0O+H i
595 A 17 SKL 595
rl A Lo O+F ri
569 A 17 SKL 569
r2 A ko O+v r2
Sk A 17
3 A LO axv r3
330 A 17
566 A 17 SKL 566
fi A 37 UDF fi
569 A 17 SKL 569
a A bo 0O+F a
162 A 17 SKL 162

11.5.4. Function designators with parameters.

The value of a function designator is brought into AR by a call in-
struction followed by instructions representing the parameters. The in-
struction (or last instruction) of the last parameter is always marked
with the C - index mark.

11.5.4.1. The call instruction may be one of three things:

Declared procedure p A 16 SEK P
Formal procedure identifier f A 37 UDF f
Standard procedure pA17 SKL P

11.5. EXPRESSION.. . 37

The addresses of the available standard procedures, to be used in
p A 17 instructions, are the following:

Identifier Address Identifier Address
abs 1763 skrvvr 1733
arctan 1906 sqrt 1791
cos 1888 streng 1356
entier 1774 tryk 1401
exp 2020 trykende 1727
1n 1992 trykklar 1723
l=s 1197 trykkopi 1373
lmsstreng 1337 trykml 1745
lmst 12352 trykslut 1731
sign 1778 trykstop 1729
sin 1830 tryksum 1712
skrv 1402 tryktab 1737
skrvkopi 1372 tryktekst 1692
skrvml 1746 tryktom 1747
skrvtab 1736 trykvr 1734
skrvtekst 1691

Only some of these standard procedures define the values of function de-
signators. The complete list is given here for ease of reference.

11.5.4.2, Single identifier parameters. All parameters which in the ALGOL
program are values or single identifiers are represented by single in-
structions. For those of them which define values the representation is
exactly the instruction for bringing the value into AR as given in sec-
tion 11.5.2. The remaining cases are represented as follows:

Array identifier a A L4b 0+F a
Switch identifier s A 16 SEK s
Procedure identifier gdeclared) p A 16 SEK P
Procedure identifier (standard) p A 17 SKL P

Remember in all cases the C - index mark for the last parameter.

11.5.4.3. Subscripted variable as parameter. A subscripted variable ap-
pearing as parameter is represented by a series of instruction having
four parts as follows:
11.5.4.,3.1. The instruction wATh D>P w
wherehw refers to the last instruction of the fourth part (see section
11.5.4.3.4),
11.5.4.3.2, Instructions for stacking the values of the subscripts, in
the same way as described in section 11.5.3.1.
11.5.4.3.3, Array identifier to AR. As described in section 11.5.3.2.
11.5.4.3. 4, Two fixed instructions: 150 A 17 SKL 150

w: OA/CTS N>D (,c)
The last of these 1s the one referred to in section 11.5.4.3.1. above. It
must be C - index marked if it is the last instruction of the complete
function designator.

38 11.5. EXPRESSICONS.

11.5.4.4, Other expressions. All other expressions, i.e. all such expres-
sions which are not values, single identifier expressions, or subscripted
variables, are represented by a series of instructions having three parts
as follows:
11.5.4.4k,1, The instruction wAT7h D>P w
similar to the one of section 11.5.4.3.1. w refers to the last instruc-
tion of the third part.
11.5.4.4.2, Any set of instructions bringing the value of the expression
into AR (store packed form). These instructions may make use of the stack
in the usual manner, but must of course return the value of IRB to its o-
riginal value. This will happen automatically if the instructions repre-
sent a proper ALGOL code.
11.5.4.4.3, Two fixed instructions: 147 A 17 SKL 147

w: 0A/CT5 N>D (,c)
cf. section 11.5.4.4.1 above. The C - index mark must be used if the ex-~
pression is the last parameter of the function designator.

11.5.4.5. Example.

p(r1, ali1], 12 - r2) will appear as p A 16 SEK)
rt A Lo O+F ri
wl A 7h D>P w1
i1 A 60 O+ H i1
595 A 17 SKL 595
a A Lo 0O+F a
150 A 17 SKL 150
wl: 0 A 7S N>D O
w2 A T4 D>P w2
i2 A 60 O+ H 12
59h A 17 0O+ v
r2 A 4o a-v 12
26k A 17
361 A 17 a>v
147 A 17 SKL 17
w2 0CTT5 N>D ,c

11.5.5. Relations.
The wvalue of a relation is brought to AR through a series of in-
structions having two parts:

11.5.5.1. Stacking the difference of the two arithmetic expressions. The
difference of the values of the first and second arithmetic expression is
brought to the stack, using real mode arithmetics (cf. section 11.5.7.3).
If the second expression consists of the constant O the subtraction will
be omitted.

11.5.5.2. Forming the logical value. The logical value is brought to AR
through the following instructions (the constant at minus: O C 00 A+F,
c. minus = 66):

11.5.5.2.1. Operator < (and >). 2 B 35 N>B 2,b

(minus A 20) (A + H minus)

11.5. EXPRESSIONS. 39

11.5.5.2.2. Operator > (and). 252 A 17 0-a
2 B 35 N>B 2,b
(minus A 20) (A + H minus)
11.5.5.2.3, Operator # (and =). w A 51 HP- k + 2
252 A 17 0 ~-a
w: 2 B 35 N>B 2,b
(minus A 20) (A + H minus)
11.5.5.3. Example.
i1 > i2 + i3 is represented: i1 A 60 0O+ H i1
504 A 17 0O+ v
i2 A 60 O+ H 12
ol A 17 0+ v
i3 A 60 0+ H i3
257 A 17 a+ v
261 A 17 8 - a
2 B 35 N>B 2b
minus A 20 A+ H minus

11.5.6. Switch designators.
The value of a switch designator is brought to AR through a series
of instructions having two parts:

11.5.6.1. Value of subscript as integer to AR. Form of instructions as
described in section 11.5.7.

11.5.6.2.'Call switch. There are two cases:

Declared switeh identifier s A 16 SEK s
Formal switch identifier T A 37 UDF f
11.5.6.3. Example.
s[1 + 1] is represented one A 60 0+ H one
iA20 A+H 1
s A 16 SEK 8

11.5.7. Simple arithmetic expressions.

11.5.7.1. Method of evaluation.

The evaluation of simple arithmetic expressions proceeds as follows:
The values of the primaries are found, taking them in order from left to
right. However, as soon as the value of a primary has been found as many
of the operations are performed as is permitted by the rules of prece-
dence. Thus, in between the evaluation of two primaries any number of o-
perations (zero included) may teke place. This method makes it possible
to store all intermediate results in the stack and to operate only on the
results stored in the top of the stack.

Complications arise, however, from the differences between real and
integer mode arithmetics. Thus while real mode arithmetics must alweys
have one operand 1n the stack, in integer mode it is sometimes possible
to operate between AR and the store. This will be further explained be-
low.

Lo 11.5. EXPRESSIONS.

11.5.7.2. The use of real and integer mode arithmetics. The choice of
mode is made primarily from the type of the variable (declared or inter-
nal) to which the value of the expression will be assigned, and seconda-
rily by the types of the constituents.

11.5.7.5. Real mode arithmetics. Expressions to be assigned to a real va-
riable, those of relations (cf. section 11.5.5.1) and actual parameters
of function designators and procedure statements, will be evaluated in
the real mode throughout, irrespective of the types of the constituents.
The instructions for bringing the values of primaries into AR have alrea-
dy been described (sections 11.5.2, 11.5.3, 11.5.4, and 11.5.5). Note
that since integers are represented like reals (cf. section 11.4.4) they
may enter into real mode operations without modification. The arithmetic
operators are represented by six kinds of instructions, which all require
the contents of AR to be represented in the store packed form (cf. sec-
tions 11.4.2 and 11.4.b):

11.5.7.3.1. Unpack AR to stack. There are three cases:

IRB:= IRB - 2; stack[IRB]:= AR 50U A 17 0+ vV
IRB:= IRB - 2; stack|[IRB]:= -AR 242 A 17 0-v
IRB:= IRB - 2; stack|{IRB|:= round (AR) 552 A 17 SKL 552

The variants including round-off are used in case of formal integer para-
meters {cf. section 11.5.2).

11.5.7.3.2. Rounding in AR. Two cases.

AR:= entier(AR + 0.5) 557 A 17 SKL 557
AR:= -entier{AR + 0.5) 559 A 17 SKL 559
11.5.7.3.3. Change sign in stack.

stack[IRB]:= -stack[IRB] 252 A 17 0-=8
11.5.7.3.4. Operate stack with AR, Five cases.

stack|IRB |:= stack|IRB| + AR 257 A 17 a+ v
stack|IRB |:= stack[IRB| - AR 264 A 17 a-v
stack|[IRB [:= stack|IRB| x AR 350 A 17 ax Vv
stack|IRB |:= stack|IRB| / AR 340 A 17 a/v
stack|IRB |:= stack|IRB 4 AR 368 A 17 a * v
11.5.7.3.5. Operate in stack. Five cases.

IRB:= IRB + 2;

stack[IRB]:= stack[IRB] + stack[IRB - 2] 254 A 17 s+ a
IRB:= IRB + 2;

stack[IRB]:= stack[IRB] - stack[IRB - 2] 261 A 17 s -a
IRB:= IRB + 23

stack[IRB]:= stack[IRB] x stack[IRB - 2] 327 A 17 s xa

IRB:= IRB + 23
stack[IRB]:= stack[IRB] / stack[IRB
IRB:= IRB + 2
stack[IRB]:= stack[IRB] 4 stack[IRB

2] 337 A 17

o]
~
o

ju

2] 365 A 17 s A

11.5.7.3.6. Pack stack to AR.
AR:= stack[IRB]; IRB:= IRB + 2 361 A 17 ad>v

11.5. EXPRESSIONS. lq

11.5.7.4. Examples of expressions in real mode arithmetics:

i + r - fr is represented: i A 60 O+H 1
594 A 17 0+ v
r A ko a+v r
257 A 17
fr A 37 UDF fr
264 A 17 a-v
361 A 17 a>v
i1 A 1l x r2 / r3 - i2 is represented: 11 A 60 0O+ H {11
504 A 17 O+ v
Tl A ko ajdv 1l
368 A 17
r2 A 4o axv re
330 A 17
r3 A Lo a/v r3
340 A 17
i2 A 60 O+ H i2
264 A 17 a-v
361 A 17 a>v
-rl+ fr [/ r2/ fi A i is represented: ri A ko 0-v rl
242 A 17
fr A 37 UDF fr
Sok A 17 0O+v
r2 A Lo a/ v r2
340 A 17

fi A 37 UDF fi
552 A 17 SKL 552
i

i A 60 0O+ H
368 A 17 a * v
337 A 17 s/ a
254 A 17 s+ a
361 A 17 a>v

g

fr

- (fr + 1 / r) x fi is represented: fr A 37

L2 11.5. EXPRESSIONS.

11.5.7.4. Integer mode expressions. Integer mode arithmetics will be used
for the evaluation of subscripts and the expressions of assignment state-
ments having left part variables of type integer. In integer mode expres-
sion the evaluation (proceeding from left to right) will be carried out
using the fixed-point arithmetic of the machine as long as possible, i.e.
as long as only variables and function designators of type 1integer and
the operators +, -, and x, are involved. If an operand of type real or
one of the operators / and A is encountered the rest of the expression
will be evaluated in real mode and the final result rounded.

In the following the notation ARi and stacki.will be used to denote
contents of AR and the stack known to be on integer form.
11.5.7.4.1. Round-off. Round-off to the nearest integer, and a conversion
to the integer representation (section 11.4.3), will be performed in two
kinds of cases: (1) when a formal name parameter specified to be an inte-
ger has been brought to AR (cf. section 11.5.2) and (2) before a result
of real arithmetics is used as a subscript or assigned to an integer. The
following operations are available:

ARi:= round (AR) 557 A 17 SKL 557
ARi:= -round (AR) 559 A 17 SKL. 559
ARi:= round (stack [IRB]); IRB:= IRB + 2 55k A 17 hel

ARi:= IRB + 2 546 A 17 SKL 546

ARi:= stack i [IRB] - round (AR); IRB:= IRB + 2 548 A 17 SKL Su8
ARi:= stack i [IRB| x round (AR); IRB:= IRB + 2 550 A 17 SKL 550
stack i [IRB]:= round (stack [IRB]) 566 A 17 SKL 566
IRB:= IRB - 2; stack i [IRB]:= round (AR) 552 A 17 SKL 552

stack 1 IRBJ + round (AR); IRB:

11.5.7.%.2. Integer mode operations. The result of an integer mode opera-
tion will always be placed in AR. However, the operands may have to be
taken from the store and AR or from AR and the stack, depending on the
circumstances. The operations are:

ARi:= - ARi 561 A 17 SKL 561
IRB:= IRB - 2; stack 1 [IRB]:= AR i 594 A 17 0+ v

One operand in store

ARi := 1 i A 60 O+ H i
ARi:= - 1 i A 61 0O-H 1
ARi:= AR + 1 i A20 A+H 1
ARi:= AR -~ i i A21 A-H 1
ARi:= ARi x 1 zero A 2b A+ H zero
1 A2A MxH 1
19 A ©OC VsK 19
One operand in stack
ARi:= stack i [IRB] + ARi; IRB:= IRB + 2 602 A 17 SKL 602
ARi:= stack 1 |{IRB] - ARi; IRB:= IRB + 2 600 A 17 SKL 600
ARi:= stack i |IRB| x ARij IRB:= IRB + 2 605 A 17 SKL 605

11.5. EXPRESSIONS.

5]

11.5.7.4.3. Examples of expressions in integer mode arithmetics (cf. sec-

tion 11.5.3.1.)

b[fi1 + 11, 12 - £12, 13 x(ik - 15)] £il A
557
i1
595
i2
594
£i2
548
595
i3
594
il
i5
605
595

e[-11 - 12 x 13] i1
594

i2

zero

i3

19

600

PrekErl PR EEpEPEE>rer

N
\O
W
=

37
17
20
17
€0
17
17
17
17
60
17
60
21
17
17

61
17
60

UDF
SKL
A +
SKL
0+
0 +
SKL
SKL
SKL
0 +
0+

js=l < JE i< -] <

sxJR=-T=- IR ==}

rit
557
i1
595
i2

£i2
548
595
i3
il
i5
605
595

i1

i2
zero

i3
19
600
595

L 11.5. EXPRESSIONS.

11.5.8. Simple Boolean expressions.

11.5.8.1. Method of evaluation. The evaluation of Boolean expressions is
based on the following system: Before the operation the first operand
must be placed in the stack while the second must be placed in the AR.
The result of the operation, on the other hand, may be placed either in
AR or in the stack, depending on the need.

11.5.8.2. Operations. The notation ARb and stack b will be used to denote
boolean values placed in the AR and the stack.

ARb:= b b A 60 0+H b
IRB:= IRB - 2; stack b [IRB]:= ARb 595 A 17 SKL 595
ARb:= stack b [IRB]; IRB:= IRB + 2 362 A 57 0SK 362
ARb:= -, ARb minus A 20 A + H minus
ARb:= stack b [IRB] A ARb; IRB:= IRB + 2 wA 11 HP+ v
0 B 60 0O+H 0,b
W 2 B 35 N>B 2,b
ARb:= stack b [IRB] v ARb; IRB:= IRB + 2 w A 51 HP- W
0B 60 0+H 0,b
wi 2B 35 N>B 2,b
ARb:= stack [IRB] = ARb; IRB:= IRB + 2 vl A 11 HP+ wi
w2 A 50 CHP w2
wl: minus A 60 0 + H minus
w2: 362 A 17 SKL. 362
stack b [IRB] := stack [IRB] A ARb v A 51 HP- w
0B 28 A>H 0,b
we
stack b [IRB]:= stack b [IRB] v ARb wA 11 HP+ v
0B 28 A>H 0,b
W
stack b [IRB]:= stack b [IRB] = ARb v A 51 HP- W
minus A 60 0 + H minus
0B 26 H+A 0,b
we
11.5.8.3. Examples of Boolean expressions.
bl v (b2 = b3) bl A €0 O+ H bl
595 A 17 SKL. 595
b2 A 60 0+H b2
595 A 17 SKL 595
b3 A €0 0+ H b3
wl A 11 HP+ wl
w2 A 50 CHP w2
wl: minus A €0 0 + H minus
w2: 362 A 17 SKL 362
w3 A 51 HP- W
0B 60 0O+ H 0,b
Wi 2 B 35 N>B 2,b

11.5. EXPRESSIONS. 45

r>0Ar<i r ALO O+v r
(cf. section 11.5.5.) 59k A 17
252 A 17 0 -a
2 B35 N>B 2,b
595 A 17 SKL 595
r Ak 0O+vVv r
Sob A 17
one A 60 0+ H one
26L A 17 a-v
2 B 35 N>B 2,b
wA 1l HP+ w
0B 60 0+H 0,b
VH 2 B 35 N>B 2,b

11.5.9. If clauses and else.

If clauses, whether they occur in expressions or in statements, are
always represented alike. They have two parts.

11.5.9.1. Instructions for bringing the value of the Boolean expression
to AR, according to section 11.5.2, 11.5.3, 11.5.4, 11.5.5, or 11.5.8.

11.5.9.2. The conditional instruction wA 1l HP+ w
where w 1s the point to be reached if the expression is false.

11.5.9.3. The delimiter else is represented by the unconditional instrue-
tion w A 10 HOP w

11.5.9.4. Example of conditional expression.

i1f r1 < O then r2 else r3 + rh rl A Lo 0O+v rl
594 A 17
2 B 35 N>B 2,b
wli A 11 HP+ wl
r2 A ko O+ F r2
w2 A 10 HOP w2
wil: r3 A Lo O+v 13
594 A 17
i A 4O O+F rh
257 A 17 SKL 257
361 A 17 a>v

Lé 11.6. STATEMENTS.

11.6. STATEMENTS.

11.6.1. Block begin.

There are four kinds of blocks: 1) Core block, 2) Core procedure
body, 3) Drum block, L) Drum procedure body. The representation of any
block begin involves the followlng parameters:

store limit This is the address of the highest point of the

store used by the block.
block number An identifylng integer obtained by counting the
block begin s from the begin of the program.
In addition, for drum blocks the following parameters must be supplied:

drum track Drum track address of first track.
first order The address of the first order in the core store (e-
* ven).
last order The address of the last order (odd).
Using this notation the representation is as follows:
Core block begin 722 A 17 SKL 722
store 1limit A block no.
Core procedure body begin 726 A 17 SKL 726
store limit A block no.
‘Drum block begin 755 A 17 SKL 755
store 1limit A block no.
drum track A 1C SEL drum track
first order A 55 N)C first order
last order A 00 A+F last order
Drum procedure body begin 762 A 17 SKL 762

A
store limit A block no.

drum track A 1C SEL drum track

first order A 55 N)C first order
last order A 00 A+F last order

It holds generally that the different parts of an ALGOL program are
stored in exactly the order in which they appear in the ALGOL program it-
self. This order is, however, broken by each appearance of a drum block.
Drum blocks are in thelr entirety removed from their original place in
the program. Only the drum block begin as shown above will appear in the
original place while the remaining parts are stored in the section defin-
ed by the parameters: first order, and last order. The drum block begin
administration will both perform a transfer from drum (if necessarys and
Jump to first order. Again, drum block end will cause a return to the in-
struction following the parameter: last order, while drum procedure body
end will return to the place from where the procedure was called.

11.6. STATEMENIC. b7

11.6.1.1. Block parameters in stack. Upon entry into a block various pa-
rameters belonging to the previous level are placed in the stack and new
values are placed in certain fixed locations (cf. section 11.8.1). These
latter include in location 48 the address of the latest block entry in
the stack, the stack reference SR. The block entry consists of two full
words as follows:

SR: ss A ba

SR+1: For current block = core block 0D 55 N>C 0,4
For current block # core block exit A 55 N > C exit

SR+2: sr A tb

SR+3: g A fk

The meaning of the parameters is the following:

ss The normal value of IRB in current block. If there are arrays de-
clared in the current block it will be the address of the last full
word used for these, Otherwise SR = ss.

ba The block number of the current block.

exit exit + 1 is the address to which control must be transferred after
end of the current block.

sr The stack reference (SR) belonging to the previous block.

tb The block number of an available drum block in the previous level
(cf. section 11.8.1 location 5i).

g Store 1limit of previous block (cf. location 49).

fk last drum track used by previous block (cf. location 55).

The meaning of some of the parameters at a given moment may be illustra-

ted by the following picture of the central part of the core store:

g: Program

Current store limit:

arrow: Free store

IRB: Parts of expressions, subscripts, etc. in
current block.

883 Subscripted variables in current block.

SR: ss A ba Block entry

sr: Block entry.

L8 11.6. STATEMENTS.

11.6.2. Block end. There are two cases:

11.6.2.1. End of procedure body defining the value of a function designa-
tor: pl A 4o O+F p1
797 A 17 SKL 797

11.6.2.2. All other block end s: 797 A 17 SKL 797
11.6.3. Assignment statements. The representation has three parts:

11.6.3.1. The left part list. Taking the 1left part variables in order
from left to right instructions are compiled as following:
11.6.3.1.1. Simple variables and formal varisbles called by value: Noth-
ing is compiled.
11.6.3.1,2, Formal variables called by name: £ AT oup £
11.6.3.1.3. Subscripted variables. There are three sections:
.1. The values of subscripts are stacked. See section 11.5.3.1.

. Array identifier to AR. See section 11.5.3.2.
. Array identifier to stack. One instruction:

595 A 17 SKL 595

3.1
11.6.3.1.3
11.6.3.1.3.2
11.6.3.1.3.3

11.6,3.2. The value of the expression to AR. For arithmetic expressions
the type of the 1left part variables will determine whether this evalua-
tion will be done in real or integer mode arithmetics (cf. the complete
section 11.5).

11.6.3.3. Assignment. Taking the left part variables in the reverse order
(from right to left) the assignment will be represented by:
11.6.3.3.1. Simple, and formal value, variables,

type real: r/fr A 08 A>F rffr
type integer or boolean i/fi A 28 A>H iffi
11.6.3.3.2. Formal variables called by name: f+1 A 37 UDF f+1
11.6.3.3.3. Subscripted variables: 158 A 17 SKL 158
11.6.3.4. Example of assignment statement.
fri= f1[1i]:= ri:= 12 - 3 fr A 77 oD fr
i A 60 O+ H 1
595 A 17 SKL 595
f1 A 37 UDF f1
595 A 17 SKL 595
r2 A ko O+v r2
594 A 17
r3 A 4o a-v r3
26k A 17
361 A 17 a>v rl
ri A 08

158 A 17 SKL 158
fr+l A 37 UDF fr+l

11.6, STATEMENTS. b9

11.6.4. Go to statements. There are two cases:
11.6.4.1. Go to local label. Representation: la A 10 HOP la

11.6.4.2. Go to non-local or computed label. There are two sections:
11,.6.4.2.1. Label to AR. See sections 11.4.6, 11.5.6, 11.5.9.

11.6.4.2.2. Go to administration: 811 A 17 SKL 811
11.6.4.3. Example of go to statement.
go_to if bl then s[il - i2] else la b1l A 60 0+H bl
wl A 11 HP+ wl
i1 A 60 0+H i1
2 421 A-H i2
s A 16 SEK s
w2 A 10 HOP w2
wl: lal A 60 O+ H 1la
w2: 811 A 17 SKL 811

lal must contain la A block no.

11.6.5. For statement.
The three kinds of for list elements and the controlled statement
are represented as follows (where w refers to section 11.6.5.4.):

11.6.5.1. Arithmetic expression. Two sections (1) Assign the value to the
controlled variable, as in sections 11.5.3.2. and 11.6.3.3. (2) The in-
struction w A 16 SEK w
leading to the first instruction representing the controlled statement
(section 11.6.5.4k.).

11.6.5.2. Step-until-element. The representation depends on the type of
the controllied variable.
Integer: for i/fi:= a step b until c
Instructions for
iffi:= a
1009 A 75 N > D 1009
wl A 74 D>Pwl
w2: Instructions for
ARi:= b
sol A 17 0O+v
Instructions for
ARi:= c
1B 28 A>H 1,b
wi: (0) A 17 SEK
i/fi A 60/37 O+H/UDF i/fi
wAl SEK w

w2 A 10 HOP w2

50 11.6. STATEMENTS.

Instructions for
r/fr:= a
1034 A 75 N > D 1034
wi A 74 D>Pwl
w2; Instructions for
IRB:= IRB - 2 ; stack [IRB]:= b
Instructions for
IRB:= IRB - 2 ; stack [IRB]:= c
wi: (0) A 17 SKL (0)
r/fr A 40/37 O+F/UDF r/fr
wAl SEK W
w2 A 10 HOP w2

11.6.5.3. While-element. The element E while F is represented:
wl: Instructions for assigning
E to the controlled variable;
Instructions for ARb:= Fj

w2 A 11 HP+ w2
w A 16 SEK w
wl A 10 HOP w1l
w2
11.6.5.4, The controlled statement: w3 A 10 HP w3

w: wh A Th D>Pwh
Instructions representing
the controlled statement action
wh: (0) A 75 N > D (0)

1D 10 HOP 1,4
Wi
11.6.,5.5. Example of for statement.
for fii= 11 step 12 wntil 13 do
i1 A &0 O+ HIi1
fi+l A 37 UDF fi+1
1009 A 75 N > D 1009
wli A 74 D>Pwl
w2: 12 A 60 0+ Hi2
59k A 17 O+ v
i3 A 60 0+ H i3
iB 28 A>H1,Db
wls (0) A 17 SKL (0)
fi A 37 UDF fi
w A 16 SEK w
w2 A 10 HOP w2
w3 A 10 HOP w5
w: Wk A 7L D>Pwh
wi: (0) A 75 N > D (0)
1D 10 HOP 1,4
w3

11.6.6. Procedure statement.
The representation of procedure statements follows exactly the same
rules as those of function designators, see sections 11.5.2. and 11.5.4.

11.7. DECLARATIONS. 51

11.7. DECLARATIONS.

11.7.1. Type declarations.
These only influence the storage allocation, but do not give rise to
instructions in the running program.

11.7.2. Array declarations.

In the running program an array declaration disposes of three diffe-
rent parts of the store:

(1) Instructions representing essentially the subscript bound ex-
pressions. These must be executed every time an entry into the block is
made.

(2) The coefficients in the storage mapping function. These are cal-
culated once at each block entry by the instructions of part (1). Subse-
quently they are used every time a reference to a subscripted variable is
made, They occupy a fixed amount of storage space depending only on the
number and dimensions of the arrays, but not on the subscript bounds.

(3) The values of the components. These use a variable amount of
storage space, depending on the values of the subscript bounds which have
been calculated last. Therefore they are placed in the stack. ’

11.7.2.1. Structure and subscript bounds. All array declarations of a
block head are represented by one call of an administrative subroutine,
the subscript bounds and structure of the declarations being represented
by parameters of this call. This subroutine call is built up from the
following constituents and parasmeters:

Call and first parameter. a is the 847 A 17 SKL 847
even address of the first array i- a A 08 AD>F a
dentifier (cf. section 11.7.2.3).

The next parameter must Dbe

2xn A (type) or O A 06.

Begin subscript bounds for n core 2xn A (type)

arrays, or the core bounds for n

drum arrays. (type) = O1 for inte-

ger or boolean, = 02 for real.

The next parameters must represent

bound expression.

Begin subscript bounds for drum. 0 A 06 F+A O

Next parameters: bound expres-

sions.

Lower and upper bound expressions Same representation as that

of expressions as parame-
ters of function designa-
tors (cf. sections
11.5.4.2, 11.5.4.3,

11.5.k.4.).,
Final termination of declarations 0 A OA MxF O
not involving drum.
Termination of one complete set of 0 A 07 M>A O
drum array parameters, start a new
group. Next parameters: bound ex-
pressions.
Final end of declaration involving O A OB A/F O

drum array.

52 11.7. DECLARATIONS.

11.7.2.2. Example of structure and subscript bound representation.
integer array A, B [i1 : i2 + 13, ik : i5]

comment drum data [i6 : 17, 18 : 19];

real array C [i6 : 17, 18 : i9, i10 : i11);

integer array D [16 : 17, 18 : 19];

integer array E, F [i6 : i7, 18 : 19, 112 : i13]

is represented:

847 A 17 SKL 8u7
a A 08 A>F a
4 ao1 A-F 4
il A 60 O+ H i1
wA Tk D>P w
i2 A 60 0O+ H i2
i3 A 20 A+ H i3
147 A 17 SKL 147

w: (0)ATS N>D (0)
il A 60 0+ H ik
i5 A 60 0+ H il

0 A 06 F+A O
i6 A 60 0+ H i6
i7 A 60 0O+ H i7
i8 A €0 O+ H i8
i9 A 60 0O+ H {19
2 A02 A+ ¥ 2
i10 A 60 0+ H 110
i11 A 60 0+ H i11
2 AO1 A-F 2
L Ao01 A-F 4
i12 A 60 0+ H {12
i13 A 60 0+ H i13
0O A OB A/ F O

11.7. DECLARATICNS. 53

11.7.2.3. Representation of array identifiers. The address associated
vith an array identifier (cf. section 11.1.1.) gives access to the coef-
ficients of the storage function. Note that all arrays having the same
subscrépt bounds will refer to the same set of coefficients, and also
that all arrays having the same drum subscript bounds will use the same
drum coefficients even when the core bounds differ.

Consider the array a, of core dimension p and drum dimension q (p or
q may be zero), with the core subscript bounds Le[i] : Uc[i] (L = 1, ...
p) and the drum subscript bounds Ld[iﬁ ud[i] (i =1, ... q). Further
form the following coefficients:

celp]:= if type is real then 2 else 13

sc:= O

for i:= step - 1 until 1 do

begin ccfi - 1] (UeTi] - Te[i] + 1) x celils

sci= cc[i] x Lc[i] + s end;

dc[q]:= 2 x (number of drum tracks per core section of the complete drum
array group);

for i:= q step - 1 until 2 do
acli - 1]:= (Ua[i] - rafi] + 1) x de[1];

Then the array identifier and coefficients are represented as follows:

a0: address of first element of array. a: a0 C 4o/60 O+F/O+H a0,c

Lo for real 60 for integer and boolean. al A 55 N>C al
Core coefficients: al: scx24(-11)
celp 2*(12)

(-12)
(-12)
ce[0]x24(- 12)+(1f q+O then -1/2 else -1)
If q % O: AS55 N>C ki

Drum coefficients: kl: kOO A 1C k00

-defqIx2p(- 12)

—dc[Z]x (-12)

-dc (-12)

(k) A iC SEL (x)
First A nl
Last A n2

kOO is the track address corresponding to all drum indices = O.

(k) is the variable track address of the section of the drum array
which 1s currently in the core store.

2xnl 1is the track address of the first track in the array.

n2 is the total number of drum tracks in the array.
First is the even first address reserved in the core store for the drum
array group.

Last 1s the odd last address reserved in the core store.

sk 11.7. DECLARATIONS.

11.7.2.4. Example of array identifiers. For the sake of clarity it is as-
sumed that when the following arrays were declared IRB had the value 1536
and the location 55 the value 384 x 2J(-20) indicating 384 to be the last
drum track used (cf. section 11.8.1).

integer array A, B [2 : b, -1 : L];

comment drum data [-4 : -3, -1 : 0);

real array C [-4 : -3, -1 : 0, -12 : 9, 0 : 9];

integer array D [-4 : -3, -1 : 0];

integer array E, F [-4 : -3, -1 : 0, 1 : 3];
is represented:= A: 1524 ¢ 60 0+ H 1524,c
Al A 55 N>cC A1
= B: 1512 C 60 0+ H 1512,c
Bl A 55 N>C B1
Al: Bi: 9 A 00 A+F 9
0B 00 A+F O,b
2 A 0O A+F 2
6 C 00 A+F 6,¢c
k1: kol A 1C SEL Lok
2046 C 00 A+ F 2046,c
2044 ¢ 00 A+ F 20kh4,c
368 A 1C SEL 368
koL B 38 38 1424 b
1511 A 08 A>F 1511
=C: 1432 ¢ 4o 0+ F 1U432,¢
Cc1 A S5 N>cC C1
= C1: 1808 ¢ 00 A+ F 1808,c
1A 00 A+F 1
10 A 00 A+ F 10
1064 C 00 A+ F 106h4,c
ki A 55 N>C ki
A
= D 1431 C 60 0O+ H 1431,c
ki A 55 N>C ki
= E: 1428 ¢ 60 0+ H 1428,¢
E1 A 55 N>C E1
= F: 1425 ¢ 60 0+ H 1hko5,c
Fi1 A 55 N>C Ft
El: F1: 1 A 00 A+F 1
0 B 0C A+F 0,b
1025 D 00 A+ F 1025,4
k1l A 55 N>C ki

11.7. DECLARATICFS. 55

11.7.3. Switch declarations.
A switch declaration is generally vrepresented by a set of instruc-
tions having three parts, as follows:

11.7.3.1. Pass-by jump. The first switch declaration of a block head will
start with an unconditional jump instruction

w A 10 HOP w
leading past all other switch and procedure declarations of the block
head.

11.7.3.2. Call switch administration. Two fixed instructions:
s: 0 D 55 N>C 0,4
824 A 17 SKL 824

11.7.3.3. The switch list. The designational expressions of the switch
list are represented in exactly the same manner as the parameters of a
function designator (cf. sections 11.5.4.2, and 11.5.4.4). The very last
instruction of those representing the 1list must be C-index marked.

11.7.3.4. Example of switch declaration.

switch sl:= lal, if b then la2 else la3, s2[i], f
{vi A 10) (HOP wi1)

si: 0D 55 N>C 0,4
824 A 17 SKL 824
1a10 A 60 0+ H 1lal0l
w2 ATk D>P w2
b A 60 O+H b
w3 A 11 HP+ w3
1820 A 60 0+ H 1a20
wi A 10 HOP wht
w3 1a30 A 60 0+ H 1a30
whs 147 A 17 SKL 147
w2 (0) A 75 N>D (0)
w5 A T4 D>P w5
i A 60 O+H 1
s2 A 16 SEK s2
147 A 17 SKL 147
w5 (0) A 75 N>D (0)
£C37 UDF f,c

where the labels must be available in the store as follows:
1a10: lal A {block no.)
1a20: 1a2 A (block no.)
1a30: 1a3 A (block no.)

56 11.7. DECLARATIONS,

11.7.4. Procedure declarations.
The first procedure declaration of a block head will begin with a
pass-by jump, unless a switch declaration has come before (cf. section

11.7.3.1).

11.7.4.1. Procedure heading. If the procedure has no parameters the nea-
ding is represented by two fixed instructions:
0D 55 N>cCc 0,4
660 A 17 SKL 660
If there are parameters the heading will appear as:
0 D 55 N>C 0,4
00 A 08 A > F f00
660 A 17 SKL 660
Value and type code
Here fOO is the even address of the first formal location. The value and
type code will consist of one or more half-words constructed from the spe-
cifications as follows:
1) The first bit of each word is zero.
2) The following 16 bits of each word contain codes for the formel parame-
ters, each parameter using 2 bits as follows:

Parameter is called by name 10
Parameter is called by value, not integer 01
Parameter is called by value, integer 11

3) The last half word is <illed up with zeroes to the right, at least 3
of them. All other hal“ w-rds must end with the bits 001.

It is seen that one h.._..-word will accomodate up to 8 parameters, two

half-words up to 16, etc.

11.7.4.2. Procedure body. The procedure body will always be translated as
a block, 1i.e. begin and end will if necessary be inserted by the transla-
tor. The representation of procedure block begin and end is given in sec-
tion 11.6.1. and 11.6.2. All the rest of the procedure body is represen-
ted according to the general rules for declarations and statements. If
the procedure defines a value this value will be stored in the full word
immediately preceding the first formal location (i.e. in address f00 - 2).

11.7. DECLARATIOK .

11.7.4.2. Example of procedure declaration.
procedure Imnerproduct (a, b) Order: (k, p) Result:(y) ;

value k; integer k, p ; real y, a, b 3
begin real r

r:= 0 3
for p:= 1 step 1 until k dori=7T +a x D j
yi=r
end
is represented (formal locations from O AF = F):
0D 55 N>C 0,4
0 AF 08 A>F F
660 A 17 SKL 660
B 57400 s 57400
726 A 17 SKL 726
store limit A (block no.)
rA 48 O>F r
one A €0 0O+ H one
7 AF 37 UDF F+ 7
1009 A 75 N > D 1009
wi A T4 D>P wi
w2: one A 60 O+ H one
5oLk A 17 0+ v
L4 AF 60 0O+H F+ b
1B 28 A>H 1,b
wlt (o) A 17 SKL (0)
& AF 37 UDF F+6
w3 A 16 SEK w3
w2 A 10 HOP w2
wh A 10 HOP wht
Wi w5 A 7h D>P w
rA Lo O+v r
59k A 17
0 AF 37 UDF F
5ol A 17 0+ v
2 AF 37 UDF F+2
330 A 17 axv
254 A 17 s + a
361 A 17
rA 08 a>v r
w51 (o)A 75 N >D (o)
1D 10 HOP 1.4
wit: 8 AF 77 ouD F+8
raA Lo O+F r
9 AF 37 UDF F+9
797 A 17 SKL 797

£8 11,8, PARAMETERS WITH FIXED LOCATIONS IN THE CORE STORE.

11.8. PARAMETERS WITH FIXED LOCATIONS IN THE CORE STORE.

As already mentioned (cf. section 11.2) some of the core locations
0 - 63 reserved for the use of the wired store contain the current values
of certain universal parameters. Grouped according to the program with
which they are associated they are the following:

11.8.1. Universal block parameters {cf. section 11.6.1.1).

Location 29. Arrow (stack warning 1limit). This is an address used for
checking whether the stack runs into the program. It will always take a
value somewhere in the interval between the current store limit (the
highest address used by the program, cf. location 49) and the top of the
stack (defined by IRB). The value of arrow will only be changed when ne-
cessary to keep it in the above mentioned interval. The need for changing
it is a warning that the stack and the program may be about to overlap.
The contents of 29:
(2048 - arrow) B 55

Location UL, First free drum track. The contents of Lk is

20(-20) x address of first free drum track.
This is the last drum track which may be used by drum arrays (these are
stored from the high address end of the drum). Cf. section 10.4.3.

Location 48. Stack referrnce, SR. SR is the even address of the current
block information in tue stack (cf. section 11.6.1.1). Contents of 48:
SR A 35 N >B SR

Location 49, Current store limit. The highest address reserved by the
current block. This defines the absolute lower limit to the part of the
store available to the stack. Contents of 4g:

Current store limit A 00

Location 52. Drum procedure depth. This is used to determine whether upon
exit from a block it is necessary to cancel the drum procedure quoted in
location 53 (if any). Using the letter g, the value is given as follows:
Upon entry into drum procedure q:= -3
Upon entry into other block q:=qgq - 2
Upen exit from any block
4:=q + 2 3 1f g > O then begin g:= 0 ;
cancel drum procedure end
Contents of location 52:
2A(-11) x drum procedure depth.

Location 55. Available drum procedure. This gives the block number of the
last drum procedure which has been called, unless an exit from the block
from where this call took place has been made in the meantime (cf. loca-
tion 52). Contents of location 53:

2A(-19) x drum procedure block number

11.8. PARAMETERS WITH FIXED LOCATIONS IN THE CORE STORE. 59

Location 54. Available drum block. This gives the block number of a drum
block accessible from the current block without having to be transferred
from the drum. Contents of location 5&:

2A(-19) x drum block number.

Location 55. Last drum track used. This gives the smallest drum track ad-
dress used for drum arrays. This cannot be smaller than first free drum
track (cf. location L&4). Contents of location 55:

(-20) x address of last drum track used.

11.8.2. Input procedure parameters.

Location 50,51. Input string. These locations hold the string last Inpu-
ted by means of l®s streng (cf. section 9.6.3.2). The form is the normal
string form {cf. section 11.4.8).

Location 57. Input sum., This holds the sum of the symbols read from the
input tape since the last CLEAR CODE (cf. section 9.2.5).

Location 58. Input case. The case last read from the input tape. Form:
Upper case: 0 A 00 A+F O
Lower case: 0 A Lo O+F O

11.8.3. Output procedure parameters.

Location 18. Last case symbol for the medium (typewriter or punch) not in
use (ef. location 62). Form:

No case: 0 A 13 TOM 0
Upper case: 20 A 11 HP+ 20
Lower case: 20 A 51 HP- 20

Location 19. Sum of output symbols Tor medium not in use (cf. location
57).

Location 56. Medium changer. This is used while determining the output
medium, Except for very brief periods while changing to typewriter its
value should be in the interval 2*(-11) to 1. The medium may however be
forced to be either punch or typewriter by inserting an irregular value
into 56 as follows:

Type writer 0C 01 A-F O0,c

Punch 0 AOL A-F O

Location 60,61. Medium and output instruction. Normal values:

Punch (tryk) 60 20 A 51 HP- 20
61 OAT7A PAB 0
Typewriter (skrv) 60 20 A 11 HP+ 20

61 O A DA TA8 0

Location 62,65. Case and sum for medium in use. Form as locations 18,19.

