METANIC COMAL-80

USER’'S MANUAL

Comovss

~ﬁol’qf0/lgmmmfly

COPYRIGHT AND TRADEMARK NOTICES PAGE 1-001

The METANIC COMAL-80 software package and documentation are copy-
righted by METANIC ApS, DENMARK.

It is against the law to copy any of the software in the COMAL-80
software package on cassette tape, disk or any other medium for any
purpose other than personal convenience.

It is against the law to give away or resell copies of any part of
the METANIC COMAL-80 software package. Any unauthorized distribu-
tion of this product or any part thereof deprives the authors of
their deserved royalties. METANIC ApS will take full legal resource
against violators.

If you have any questions on these copyrights, please contact:
METANIC APS
KONGEVEJEN 177 (c diE 5y
DK-2830 VIRUM / ¢ <
DENMARK
Copyright (C) METANIC ApS, 1981
All Rights Reserved
Printed in DENMARK
(TM) COMAL—-B80 is a trademark of METANIC RpS
(TM) SOFTCARD is a trademark of Microsoft.
(R) CP/M is a registered trademark of Digital Research, Inc.

(R) Z-80 is a registered trademark of Zilog, Inc.

COPYRIGHT (C) 19581 METANIC ApS DENMARK

PREFACE PAGE 1-002

ONE THING IS A SHIP TO COMMAND,
ANOTHER IS A CHART TO UNDERSTAND.

This proverb was said mary years ago, long before words like byte,
nanoseconds, computers, and interpreters entered our world.

Nevertheless, often during the time we worked on this manual these
words came into our wminds as we found it a difficult task to
describe in plain words how a complicated thing like a high level
language works.

However, this manual is a result of our combined efforts, and the
only way we can think of the next edition being even better is by
counting on you, the user, and your constructive criticism to reach
the point of perfection that we desire.

Consequently, we shall be pleased to receive any correction,
comment, suggestion or addition that you may have to this manual.

As the format of the manual is designed for easy updating, you may
well find your contribution materialized in the next edition. For
your convenience an error report is added at the end of the manual.

We have chosen to arrange all the key words in alphabetical order
because an important part of the philosophy behind COMAL-80 is to
make everything as easy as possible for persons not familiar with
high level languages and the different groups into which the key
words can be categori:zed.

We hope you will find working with COMAL-80 a must from now on, and
that the manual will help you spend many good hours in the company
of your computer.

THE AUTHORS.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

INTRODUCTION PAGE 1-003

METANIC COMAL-80, written for the Z-80 microprocessor, is the most
extensive interpreter available for microcomputers today and con-
tains, beside a full extended BASIC, a great number of structures
found in Pascal.

COMAL-B0 was originally specified following specific wishes from
the Danish educational field which wanted a language easy to learn,
with built—-in programming support and which facilitates a possible
transition to other structured languages.

This manual is divided into two parts plus a number of appendices.
Part 1 contains instructions for initialization of the different
COMAL-B0 versions and a general description of features which
affect several or all the COMAL-80 instructions, while part 2
contains the syntax and semantics of all commands, statements, and
functions in alphabetical order. The appendices contain the source
code for the screen driver, guidelines for changing this driver for
different systems, a list of error messages, demonstration programs
and a list of ASCII codes.

This manual is not intended as a tutorial on the COMAL-B80 language
but as a reference manual for the specific features of METANIC
COMAL -80.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

HEEATA LS R N v T S Wil S T T W e

e S AR AT W e T SRR

et e e s

OPERATION. PAGE 1-004

Each of the two different COMAL-B80 software packages contains two
versions of the COMAL-80 interpreter. The two versions have identi-
cal features, except that the overlayed version leaves more storage
to the user and uses a few seconds in the start and end of each
program execution for reading the overlay file.

The different files are named
7-digits precision:

Non-overlayed versiont COMAL-80.COM

Overlayed version: COMALBOS. COM

Overlay file: COMAL-80. 1
13-digits precision:

Non-overlayed version: COMALBOD. COM

Overlayed version? CMALBODS. CoM

Overlay file: COMALBOD. 1

Note that each package contains the files for only one of the two
possible precisions and that the CP/M operating system is not
placed on the distribution floppies.

It is advised that the COMAL-80 files are copied to a new floppy,
which also contains the CP/M operating system. Then remove the
priginal disk from the computer and keep it in a safe place as this
disk only, carries the warranty.

Now type the name of the version without the extension ’.COM’, and
COMAL-B80 will sign on. Note that the overlay versions will work
only if the disk is placed in the CP/M default drive.

COMAL—-80 being initialized the question is displayed on the ter-
minal whether error descriptions are wanted. The user must answer
this by 'Y’ for yes or N> for no.

COMAL-B80 is then ready for use which is shown by the prompt charac-
ter '#’ being displayed. Commands and program statements may be
keyed in.

Commands are recognized by not starting with a line number, this
indicates that the line is to be executed immediately following a
* RETURN’ .

As commands, both the special system commands, such as 'RUN’,
*LIST’, etc. as well as a great deal of the COMAL-80 statements
may be used enabling instant results of arithmetic and 1logical
operations to be displayed without having to make a program.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

LINE FORMAT PAGE 1-00S5
The statement lines within COMAL-80 have the following format:
wmnn COMAL-80 statement [// (comment)]

for which nnn is a line number within the interval of 1 to 9999.
Only one statement is allowed in each line, except that more
assignments may occur, separated by semicolons. For further details
see the 'LET’ and 'MAT’ statements.

All statements may optionally be followed by a comment (also see
"REM’ in chapter 2).

A COMAL-80 statement always starts with a line number, ends by
"RETURN’, and may contain up to 159 characters. On terminals having
a physical line length of less than this, the line, when filled,
automatically continues on the following physical line.

INPUT EDITING

If an error is made as a line is being typed, move the cursor back
to point at the error, and type the correct character(s). The new
character(s) will replace the old one(s). The character pointed at
by the cursor can be deleted by pressing the 'DEL’ key (user
defineable). At the same time, all characters on the right move one
position left.

New characters may be inserted between already typed characters by
moving the cursor back to the position where the new characters
should start. Then press the ’INS’ key (user defineable) and the
rest of the line (including the character pointed at by the cursor)
moves one position to the right leaving an empty space. This can be
repeated as often as necessary to create space for any number of
characters up to the maximum line length of 139 characters.

When the input is terminated by pressing the ’RETURN’ key, the
whole line shown on the screen is stored regardless of the cursor
position.

A line, which is in the process of being typed, may be deleted by
pressing the *ESC’ key (user defineable), but automatic generation
of line numbers is terminated too.

To correct program lines for a program which is currently in the
memory, re-type the line using the same 1line number or use the
*EDIT’ command.

To delete the entire program currently residing in memory use the
*NEW’ command.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

- 1 s v s w s a e e e emmem S

CHARACTER SET

PAGE 1-006

The COMAL-80 character set comprises the
numerical characters and special characters.

alphabetic characters,

The alphabetic characters are the
the alphabet including < + > [\ 3,
letters in some countries.

upper and lower case letters of
which are replaced by national

The numerical characters are the digits O through 9.
The following special characters are recognized by COMAL-80:
CHRRACTER NAME

Hlank

Equal sign or assignment symbol
Plus sign

Minus sign
Multiplication symbol
Slash or division symbol
Exponentiation symbol
Left parenthesis

Right parenthesis
Number sign

Dollar sign

Exclamation point

Comma

Period or decimal point
Double quotation marks
Semicolon

Colon

Ampersand

Less than

Greater than

Underscore

Stop and wait for input
Terminate input

Insert

Cursor left

Cursor right

Delete

Backspace

Cursor to start of line
Cursor to end of line
Cursor 8 step forward
Cursor 8 step backwards
Delete to end of line

T~ PNk 4+

.

o\ QO e ue

'ESC?

* RETURN?
Control-R
Control-\
Control-2
Control-S
Control-H
Control-U
Control-E
Control-I
Control-B
Control-K

x

* %k %k k & %k k %k %k X

may be changed by the user.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

S AR) O R

A A BT

€t T e e,

N e e e

T R A A ACPRAGT VY

R il

LT e e ——————————

CONSTANTS PAGE 1-007

Constants are the actual values which COMAL-80 uses during execu-
tion. There are two types of constants: string and arithmetic.

A string constant is a sequence of alphanumeric characters enclosed
in double quotation marks. The length of the string is limited by
the available space in the computer only.

A double quotation mark may be included in a string constant by
writing 2 double quotation marks ("") immediately following each
other.

Characters, which cannot be typed on the keyboard, can be included
in a string constant by typing the characters’ decimal ASCII codes
enclosed in double quotation marks.

EXAMPLES OF STRING CONSTANTS:
“COMAL-80"
*$10. 000"
"OPEN THAT DOOR"
'KEY " “S" " To STOp "
“ ENDII 13 "N

Arithmetic constants are positive and negative numbers. Arithmetic
constants in COMAL-80 cannot contain commas. There are two types of
arithmetic constants:

1. Integer Whole numbers in the range -32767 to 32767.
constants Integer constants do not have decimal points
2. Real Positive or negative real numbers, i.e. num-—
constants bers that contain decimal points and posi-

tive or negative numbers represented in
exponential form (similar to scientific no-—
tation). A real constant in exponential form
consists of an optionally signed integer or
fixed point number (the mantissa) followed
by the letter E* and an optionally signed
integer (the exponent). In addition, whole
numbers outside the range for integer con-
stants are considered real constants.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

KT R LT L S S

B L ae

R e RILL ol SRR

e~ ———— o 5

VARIABLES 2aGT 1008

Variables are names used to represent values that are used ir a
COMAL-B0 program. The value of a variable may be assigned explicit-
ly by the programmer, or it may be assigned as the result of calcu-
lations in the program. Before a variable is assigned a value, it
is undefined.

VARIABLE NAMES AND DECLARATION CHARACTERS

COMAL-80 variable names may be of any length up to 80 characters.
The characters allowed in a variable name are letters, digits and
underscore. The first character must be a letter. GSpecial type
declaration characters are also allowed. - See below.

A variable name may not be a reserved word unless the reserved word
is embedded. 1f a variable begins with FN’, it is ascumed to be a
call to a user—defined function. Reserved words include all
COMAL-80 commands, statements, function names, and operator names.

Variables may represent either an arithmetic value or a string.
string variable names are written with a dollar sign ($) as the
last character. Integer variable names are written with a number
sign (#) as the last character. The dollar sign and the number sign
are variable type declaration characters, i.e. they ’declare’ that
the variable will represent a string or an integer.

Examples of variable names:

A

A8

DISKNAMES
COUNTER#
VALUE_OF _CURRENT

COPYRIGHT (C) 1981 METANIC ApS DENMARK

\
P I TR S N TR R TN TP R T
|

BRI LW O T A 1 O MYl W e e - -

ARRAY VARIABLES PABE 1-009

fn array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an array
variable name that is subscripted with one arithmetic expression
for each dimension. An array variable name has as many subscripts
as there are dimensions in the array. When used as a parameter the
array can be referenced as a whole or as an ’array of arrays’ by
omitting some or all the subscripts. This is described in detail in
the chapter: PARAMETER SUBSTITUTION.

All arrays must be declared by a *DIM’ statement.

When an arithmetic array is declared, but before it is assigned
values, all its elements have the value O (zero).

When a string array is declared, but before it is assigned strings,
all its elements contain the string ™" (string of zero length).

SUBSTRINGS.

Apart from referencing a string variable as a whole, element by
element or as array of array, a part of a string variable element
may be referred to.

This is done by one of the following formats:

(name) (11,12 ...1In, (start) [, (end>])
(name) (I1,I2 ...In) ((start) s (end))

In the former case, it is initially checked how many dimensions the
variable (name) contains by means of the corresponding DIM’ state-
ment. If it has, say 'n’ dimensons, then the first 'n’ indices in
the parenthesis are used to specify the actual element. Further,
the parenthesis may contain one or two indices, i.e. (start) and
{end). (start) specifies in which character position the substring
starts, and <(end) specifies in which it ends. Omitting (end) the
substring consists of the character within the said (start) posi-
tion only.

In the latter case, the first parenthesis contains the necessary
number of indices, whereas the second parenthesis contains (start)
and (end) information as described in the former case. In thic case
the (end) specification must be present and a colon is used to
delimit it from the (start).

I1f (name) states a simple string variable the number of dimensions

is considered zero and the parenthesis contain (start) and (end)
only. In the latter format, the first parenthesis is omitted.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ARITHMETIC OPERRTORS PAGE 1-010

The arithmetic operators are:

Precedence Operator Operation Example
1 ~ Exponentiation X~y
2 / Division X/Y
2 * Multiplication X#Y
2 DIV Integer division X DIV Y
2 MOD Modulus X MOD Y
3 - Negation -X
4 + Addition X+Y
4 - Subtraction X-y

Precedence of operators means that from an expression containing
more than one, they are executed in the order decribed in the above
table. More operators of the same precedence are resolved from left
to right.

The precedence may be overruled by parentheses, as expressions
enclosed in parentheses are resolved first. When more operators
occur in the same set of parentheses the above table applies again.

Apart from negation the arithmetic operators may be used only be-
tween expressions giving arithmetic values. Negation may be used
only for expressions giving arithmetic values.

The arithmetic value of a logical expression being true is 1,
whereas the arithmetic value for a false logical expression is O.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o o w"‘" L e T T RIS T T A r’@'

OO N A T .. LRI,

RELATIONAL OPERATORS PAGE 1-011

Relational operators are used to compare two values. The result of
a such comparison may be either true (= 1) or false (= 0). This
result may then be used to influence the program run.

Whenever an arithmetic value is used as a logical value, the number
0 is interpreted as false, and numbers different from O are inter-
preted as true.

Operator Relation Example
= Equality X=Y
(9] Inequality X<V
) Greater than XY
(Less than) X4 4
)= Greater than or equal X) =Y
(= Less than or equal X (=Y

(= is also used to assign a value to a variable.)

Relational operators are used between two expressions both quing
an arithmetic value or two expressions both giving a string value.

Relational operators hold second precedence to arithmetic operators
meaning that within an expression containing both types all arith-
metic operators are resolved before the relational operators.

In the following examplet

X-2)T+3
the values of 'X-2' and *T+3’ are calculated prior to the compari-
son of the two values.

Comparison between 2 string expressions is done character by cha-
racter using the ASCII codes of each character. 'R’ is less than
*E’, as the ASCII code for 'A’ is 65 and for "E’ it is 69.

For two strings of different lengths, the short one being equal to
the begivming of the long one, the short one is the smallest.
Consequently, “BLACK" is smaller than "BLACKBIRD".

Comparing two strings all characters between the double quotation
marks are compared, including spaces. In this respect the aggre-
gates "" and ‘“number", each representing only one character when
found within a string value, count as one character only, namely
the character represented by the aggregate.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

O s T

T

o

-

FILENAMES PAGE 1-012

Filenames basically follow the CP/M naming conventions. This means
that only the first 8 characters are significant and that 1lower
case letters are converted to upper case.

Following a period, an extension of three characters may be speci-
fied. The extension can be freely chosen, except in connection with
'6AVE’ and 'LOAD’ commands, where the COMAL-B0 system automatically
provides the extension *.C8B’. It is therefore not allowed to
specify any extension in these commands.

If no extension is specified, it defaults to *.CML’ when the file
name is used in commection with the "ENTER’ and 'LIST’ commands, to
'.DAT’ in connection with the ’O0PEN’ command/statement, to '.CAT’
in connection wih the °'CAT’ command/statement and ¢to *.RAN’ for
random files.

The whole name, including the extension is used to specify a file.
This means that the two commands:

ENTER PROGRAM
ENTER PROGRAM.CML

reads the same file into memory, whereas this reads anothert
ENTER PROGRAM. LST

The disk drive name is optional but is treated as an integrated
part of the file name. If it is omitted, the current default disk
drive is used. If it is specified, it is written in front of the
file name. The disk drive name is the device name of the disk to be
used (see below).

Example:
ENTER DK1:PROGRAM. CML

Note that the disk drive names do not follow the CP/M naming
convention.

The disk drive name consists of the two letters DK’ (meaning disk)
and a unit number followed by a colon. Thus 'DKO:’ corresponds to
CP/M’s *At’, *DK1:’ corresponds to CP/M’s 'B:’, etc.

A similar scheme is used with the other peripheral devices, meaning

that these can be used as files and thereby be the source or desti-
nation for data, according to the nature of the specific device.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

. . T AL s L L

PROCEDURES PAGE 1-013

One of the distinct features of COMAL-B80 is the inclusion of genu-
ine procedures with parameters.

A procedure is a named program area placed between the keywords
*PROC (name)’ and ’*ENDPROC (name)’ and which is called by the use
of the keyword *EXEC (name)’.

They basically act like the subroutines known from BASIC, i.e.
they can be called from one or several places in a program and
when the procedure is finished the program execution continues in
the line following the calling line. But besides this, they have
other features which make them a very efficient programming tool.

Firstly, they are called by name, meaning that the programmer does
not have to care about the 1line number in which the procedure is
placed.

Secondly, the procedure is non-executable until it is called, mea-
ning that regardsless where the procedure is placed in the program
the lines inside it will be bypassed unless the procedure is actu-
ally called by an EXEC’ statement and this call can go both for-
wards and backwards in the program.

Thirdly, and very important, parameters can be passed on to the
procedure when it is called. This means that a procedure can react
differently and operate on different data each time it is called.

There are two types of procedures, called open and closed procedu-
res. The difference between the two is a question of how the pro-
edure sees the variables used in the rest of the program.

The variables used in an open procedure has the same status as
variables used in the main program which means ¢that if it is
assigned a new value inside the procedure, it keeps this value when
the procedure is terminated and program execution resumes from the
line following the calling line.

The closed procedure, however, acts in many ways like a separate
program. The closed procedure has its own set of variables, which
can be dimensioned and assigned values inside the procedure, but
they are never able to influence the variables used outside the
procedure unless some special action is taken (reference parameters
and the global statement). This makes it possible to write library
routines which can be used in any program without risking problems
with the same variable name being used both in the procedure and in
the rest of the program.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e..

PAGE 1-014

The difference between the two types of procedures can be illustra-
ted by the following two programs:

1 2z

10 A:=5 10 A:=5

20 EXEC TEST 20 EXEC TEST

30 PRINT A 30 PRINT A

40 PROC TEST 40 PROC TEST CLOSED
S50 A::=3 S0 =3

60 PRINT R 60 PRINT A

70 ENDPROC TEST 70 ENDPROC TEST

Running these 2 programs the first one will twice print the digit
'3’ because the assignment in line 50 will overrule the assignment
in line 10. The second example will print the digits '3° AND %
because the procedure is closed and thereby the variable in line SO
is not the same as the one in line 10 even though they have the
same name. Technically speaking, the variable "R’ in example 1 is
global to the procedure because the whole program can see and use
it, but a variable inside a closed procedure is local and can only
be used inside the procedure.

A local variable must alsoc be assigned (line 50) or dimensioned
inside the closed procedure before it is used for the first time.
This means that if line 50 is deleted in the second example, the
program execution will stop in line 60 with an error message tel-
ling that the variable is unknown.

Even though the separation of variable names is the basic idea
behind the closed procedures, it is often convenient to make a
variable name known to the main program as well as to the procedure

This can be done by the "GLOBAL’ statement as shown in the follo-
wing example:

10 A:=
20 EXEC TEST
30 PRINT A

40 PROC TEST CLOSED
50 GLOBAL A

60 A:=3%A

70 PRINT A

80 ENDPROC TEST

This program will twice print the digit *9°. Note that the *GLOBAL’
statement must be placed in the closed procedure and before the
part of the procedure actually wusing the variable for the first
time.

COYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 1-015

Closed procedures can be nested to any level that the memory allows
(each level uses minimum about S50 bytes, depending on the number of
variables), but the "GLOBAL' statement only works on the level
where it is actually placed. The following program will print the
digit 3" (in line 100) and then stop in line 60 with an error mes-
sage that the variable is unknown:

10 At=3
20 EXEC TEST1
30 PRINT A

40 PROC TEST1 CLOSED
50 EXEC TEST2

60 PRINT A

70 ENDPROC TEST1

80 PROC TEST2Z CLOSED
90 GLOBAL A

100 PRINT A

110 ENDPROC TEST2

Another way of moving a variable into and out of a closed procedure
is by means of a reference parameter. this is described in details
in the chapter *PARAMETER SUBSTITUTION’.

When a variable is dimensioned or assigned a value in a closed pro-
cedure the necessary memory is not allocated until the procedure
is actually called and this memory is again de-allocated when the
procedure is terminated.

Thus, no matter the number of times a procedure is called there
will be no error message ’out of storage’, if no such error message
occurs on the first call.

This ’clearing the blackboard® also makes it possible to dimension
a variable in a procedure which is called several times without
conflicting with the rule that a variable cannot be re-dimensioned,
and it is possible to overlay arrays and string variables used for
intermediate results and thereby economize on storage by dimensio-
ning and using these in different closed procedures.

Any procedure may call any procedure defined anywhere in the main
program and it may even call itself (recursion). Note, that also
recursion means nesting to a new level which uses memory and must
be carefully controlled.

A closed procedure can also call an open procedure. The variables
inside these two procedures will then be common for these but can-
not be seen from the caller of the closed procedure.

The rules for variables in closed procedures are also applicable
for the other closed structuret The user-defined function.
COPYRIGHT (C) 1981 METANIC ApS DENMARK

PARAMETER SUBSTITUTION PAGE 1-016

An important part of the COMAL-80 definition is the inclusion of
procedures (and user-defined functions) with parameters, which
allow decomposition of a program into smaller, named routines.
These can be open (open procedures) or closed (closed procedures
and user defined functions).

To move data into and out of a such routine parameters are used,
i.e. list of variable names specified in the calling line (the ac-
tual parameters) and in the first line of the routine (the formal
parameters). The actual parameters are then inserted in the formal
parameters when the routine is called.

There are two types of parameters, namely ’call by value’ and 'call
by reference’.

‘call by value’ means that the actual value of the actual parameter
is assigned to the formal parameter. This type can only move data
into the routine as changes to the formal parameter do not affect
the actual parameter.

'call by reference’ means that the formal parameter is replaced by
the actual parameter. This type can move data both into and out of
a routine, and is specified by the keyword *REF’ in the formal
parameter list. The above mentioned replacement happens dynamically
i.e. when the routine is called and cannot be seen in program list-
ings, which always show the formal parameters.

The following examples show the difference:

1 2

10 A:= 10 R:=3

20 EXEC TEST(R) 20 EXEC TEST(R)

30 PRINT A 30 PRINT A

40 PROC TEST(X) 40 PROC TEST(REF X)
S50 X:=3#X S50 Xi=3a)

60 PRINT X 60 PRINT X

70 ENDPROC TEST 70 ENDPROC TEST

Here, in line 20 'R’ is the actual parameter and X’ in line 40 js
the formal parameter.

In the first example the value ’3 is assigned to *X* when the pro-
cedure 'TEST’ is called in line 20 and prints the digit 9’ in line
60. After the procedure is terminated the digit '3 is printed in
line 30 because the variable 'A’ is in no way affected.

The other example will twice print the digit *9° because the formal
parameter is replaced by the actual one and the change thereby re-
flected back.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e B e by

PAGE 1-017

Parameters are always local, meaning that changes which happen to
'call by value’ parameters in a routine carmot affect a variable
with the same name in the rest of the program. This is shown by the
following example:

10 At=3

20 Bt=2

30 EXEC TEST(A)
40 PRINT A, B
50 PROC TEST(A)
60 A:=3#A

70 B:i=3#B

80 PRINT A,B
90 ENDPROC TEST

For *A’ this program will print the digit 9’ in line 80 and then
the digit 3" in line 40. Both lines print the digit 6’ as the
value for *B’. In other words, the formal parameter A’ is local to
the procedure and another variable than the variable used in lines
10 and 40, whereas 'B’ is not a parameter (and the procedure is not
closed) so it is global to the procedure, and the same variable in
the whole program.

The parameter lists may contain as many parameters as the maximum
line length allows (159 characters), separated by commas, but there
must be the same number of parameters in both lists, and correspon-
ding parameters must conform to type and dimension. The only excep-
tion is that an integer actual parameter can be assigned to a real
formal parameter when ’call by value’ is used.

Constants and expressions can be used as actual parameters when
'call by value’ is used.

Example:
10 EXEC TEST (3#5, "ERROR")
20 PROC TEST(RA, Bs)
30 PRINT A
40 PRINT Bs
S50 ENDPROC TEST

Note, that a formal parameter cannot be dimensioned, as the call
itself carries the necessary information.

Arrays can be used as parameters either as a whole, as an array of

array or a single element, but they can only be used as reference
parameters in the former two cases.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 1-018

When a single element is used, the element is specified in the ac-
tual parameter list with the necessary number of indices and a
variable of the same type specified in the formal parameter list.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(1,1,1))

260 PROC TEST(B)

300 ENDPROC TEST

Note, that 'B’ does not need to be a referenced parameter as only a
single element is used.

An array of array is used by omitting one or several of the indices
from the right hand side in the actual parameter list and following
the formal parameter name with a parenthesis containing the same
number of commas as the number of omitted indices minus 1.

Example:
10 DIM A(3,5,2)

100 EXEC TEST(A(1,1))

200 PROC TEST(REF B())

300 ENDPROC TEST

In this example one should note that the parenthesis following the
formal parameter "B’ is empty because the number of omitted indices
is 1.

The omitted indices are then specified when the formal parameter is
used in the routine.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 1-019
The following example shows this:

10 DIM ARRAY_OF_VECTORS (3, 3)

20 FOR I:=1 TO 5

30 FOR J:=1 TO 3

40 ARRAY_OF _VECTORS (I, J) s=RND(1,5)

S50 NEXT J

60 NEXT I

70 EXEC CHANGE_SIGN(ARRRAY_OF _VECTORS(4))
80 PROC CHANGE_SIGN(REF VECTOR()) CLOSED
90 FOR I:={ TO 3

100 VECTOR(I) :=-VECTOR(I)

110 NEXT 1

120 ENDPROC CHANGE_SIGN

130 FOR I:={ TO S

140 FOR J:=1 TO 3

150 PRINT RRRAY_OF_VECTORS(I,J);

160 NEXT J

170 PRINT

180 NEXT I

It is also possible to use a whole array as a parameter. This is
done by removing all the indices in the actual parameter list and
following the formal parameter with a parenthesis containing the
same number of commas as the dimension of the array minus 1.

Example:
10 DIM A$(5,3,2) OF 25

100 EXEC TEST(RS$)

200 PROC TEST(REF B$¢(,,))

300 ENDPROC TEST

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ERROR HANDL ING PAGE 1-020

COMAL-80 actually consists of 3 main modules called:

Input Module
Prepass Module
Run Module

Each module has its own error routines handling different error ty-
pes as efficiently as possaible.

These routines have at their disposal a library of error messages
giving a short description of each of about 200 different types of
errors.

An error number is always given with the error message and in most
cases the actual 1line causing the error is displayed with t»-
cursor indicating the point of error.

To give instant error messages the library is an integrated part of
COMAL-80. As the library uses about 3K it is possible to delete
most of it when signing on COMAL-80, giving the user about 2.5K
extra storage.

Except for the messages missing, the rest of the error reporting
system works in the usual way and the error number makes it pos-
sible to find the text in Appendix C of this manual.

SYNTAX ERRORS

The input module consists in fact of two submodules: the editor and
the syntax control.

The editor is a line-oriented editor, which allows the user to key-
in a line and change it as appropriate. When the line is terminated
by pressing {(return> it is transferved to the syntax contrel, and
ctecked against the COMAL-80 specifications.

Tf no syntax ervors are found the line is executed if it is a com-—
mand, and trancslated and stored in memory if it is a statement.

If the line contains a syntax error, an error number and (if no*
deleted) ain error message is displayed followed by the actual line
with the cursor indicating the error location and control is retur-
nec te the editor. Now the user can correct the line and repeat the
sequence until the line is accepted.

COPYRIGHT (C) 1381 METANIC ApS DENMARK

DR Ll ‘-"»-" Chb o LB o e T T VTR

PAGE 1-021

Reading an AECII file via the ‘ENTER’ command each line is syntax
-hecked in the same way. If errors occur the reading temporarily
halts and resumes when the line is corrected.

It i« in no way possible to store a line containing a syntax error.

PREPASS ERRORS

when the user wants to execute a program and types ’RUN’ the pre-
pass, which is invisible to the user, goes into action. This module
extends the internal representation of the program by absolute
memory addresses and checks that all structures are properly ter-
minated and reference points exist.

1f no error is found the control is passed on to the run module.

I1f ore of the statements of a structure is missing (FOR...NEXT, RE-
PEAT....UNTIL, WHILE....ENDWHILE, a.s.o0.), the line number of the
corresponding statement is displayed on the screen with an error
number and possibly an error message. Line numbers with calls to
non-existing *LABEL’ statements are shown in the same way.

If a statement contains the ’EXIT' statement without the surroun-
ding *LOOP’ and "ENDLOOP’ statements, the line number of the *EXIT’
statement is returned.

A1l errors in the whole program are reported at the same time, and
control is then returned to the input module. Note, that it is not
possible to execute any part of a program if it contains a prepass
error.

RUN ERRORS

When the run module is called only errors of dynamic nature (i.e.
occurring when a line is actually executed) can exist. An error of
this type will normally stop COMAL-80. The line containing the
error will be shown on the screen with the cursor at the point
where the error occurred and the error number and possibly an error
mesage shown, too. Control is then returned to the editor in the
input module for easy correction of the error. However, a number of
errors are non-fatal because they can be bypassed in a well-defined
manner. An example of this is division by 0, where it is often
convenient to assign as the result the maximum value that COMAL-80
can handle.

To prevent program stop for non-fatal errors, two special state-
ments are implemented: *TRAP ERR-’ and ’'TRAP ERR+’.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 1-022

If a *TRAP ERR-’ statement has been executed a non—fatal error will
m.vw-m e T e o r,. not stop the program execution, but assign its error number to the

system variable ERR’. By testing this variable it is then possible
to influence program flow. This mode of operation continues until a
*TRAP ERR+’ statement is executed after which the system returns to
normal error handling.

The fatal errors always terminate program execution.

Note that the *TRAP ERR-’ mode is a question of having executed a
such statement. Its actual line number is of no importance.

The *RUN’ command always resets to normal error handling.

{ COPYRIGHT (C) 1981 METANIC ApS DENMARK

v‘ T T

COMALL-80 Commands and Statements. PAGE 2-001

RAll of the COMAL-80 commands, statements and functions are
described in this chapter. Each description is formatted as
follows?:

Type: States whether it is a command, a statement or a
function.

Purpose? States for what the instruction is used.

Syntaxt Shows the correct syntax for the instruction.
See below for syntax notation.

Executiont Describes how the instruction is executed.

Example:? Shows sample programs or program segments that

demonstrate the use of the instruction.

Comments? Describes in detail how the instruction is used.

Syntax Notation.

Wherever the syntax for a statement, a command or a function is
given, the following rules apply!

Items in capital letters must be input as shown, but both upper and
lower case letters are usable. The latter are by COMAL-80 converted
to upper case in listings.

Items in lower case letters enclosed in angle brackets (()) are
to be inserted by the user.

Items in square brackets (L J) are optional.

All punctuations except angle brackets and square brackets (i.e.
commas, parentheses, semicolons, colons, exclamation points, slash-
@8, number signs, plus signs, minus signs or equal signs) must be
included where shown.

All reserved words must be preceded by and/or followed by a space
if necessary to avoid multiple interpretations.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ABS PAGE 2-002

Type:
T, T R TN O R o rw Arithmetic function

Purpose:
To calculate the absolute value of an arithmetic expression

Syntaxt
ABS ((expression))

Execution:
Returns the absolute value of (expression).

Example:
10 PRINT ABS(3I#(-5))

(Commentst
1. (expression) being arithmetic is of real or integer type
The result will be of the same type.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

P e s oY I,

AND PAGE 2-003

Typet

Logical operator

Purposet
To create the logical "AND’ between 2 expressions.
Byntaxs
{(expressionl) AND (expression2)
Execution?
(expressionl) and (expression2) are evaluated and the logic
*AND’ created.
Example:

10 INPUT A%

20 INPUT B#

30 IF A#=35 AND B#=7 THEN

40 PRINT "THE PRODUCT IS 35"

S0 ELSE

60 PRINT “THE PRODUCT IS PERHAPS NOT 35"

70 ENDIF

Comments!?

i. The operator has the truth table
(expressionl) {(expression2) result
true true true
true false false
false true false
false false false

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o

ATN PAGE 2-004

Typet

‘“.mm.‘l'rww s ™ .n'
Purposet

Syntaxt

Arithmetic function

Returns the arctangent of an arithmetic expression.

ATN((expression))

Executiont
Returns the arctangent of (expression) in radians.

Example:
10 INPUT A
20 PRINT ATN(A)

(Comments:
1. {(expression) being arithmetic is of real or integer type
The result will always be real and in the interval -pi/2
to pi/2.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

SR TR

AUTO PRAGE 2-005

Typet
Command
Purposes
To automatically generate a new line number after each
*RETURN’ .
SByntaxt
AUTO [(start) [, (step)]]
Execution:
Following ®ach *RETURN’ a new line number is calculated by
the latest line number used (or the value initially stated)
plus the indicated step. The new number is placed in the
input-buffer and displayed on the screen.
The cursor is set in position 6 ready for a new input line.
Examples:
AUTO
AUTO 15
AUTO 10,5
Comments:

1. If the (start) value is omitted, default 10 is used.
2. If the (step) value is omitted, default 10 is used.
3. If an existing line number is generated, the naw line
replaces the former one.
4. The automatic generation of line numbers can be inter-
rupted at any time by pressing the *ESC’ key.
The line in which this is done, is not stored.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

BSTRs PAGE 2-006

Typet
Btring function

Purpose:
Converts an arithmetic expression to binary representation.

Syntaxt
BSTR$ ((expression))

Executiont
(expression) being arithmetic is calculated and rounded if
necessary. Then the value is converted to a binary text-
string of exactly 8 characters.

Example:
10 DIM A¢ OF 8
20 INPUT B
I0 A$:1=BSTRS (B)
40 PRINT As$

Comments:

1. (expression) being arithmetic must evaluate to a value
within the closed interval 0 to 2355.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

BVAL PABE 2-007

Type:
-—l—r.‘. PRCAT T s " Arithmetic function
Purpose!t
To convert a binary nusber from a string to an integer
value.
Syntaxt
BVAL ((string expression))
Executiont
. The binary number contained in a string of exactly 8
b - characters is converted to integer.
Example:
(10 DIM As OF 8
20 INPUT "WRITE A BINARY VALUE: “: AS
30 PRINT BVAL (RS$)
Commants:

1. If the string contains less or more than B8 digits or if
it contains anything else than binary digits, the
program execution is stopped with an error sessage.

 HNE 2 L A o W S AP e . -

COPYRIGHT (C) 1981 METANIC ApS DENMARK

CALL PAGE 2-008

Typet
Statement, command

Purposet?
By use of ’'CALL’ assembler programs for the 2ZI-80 aicro-
processor may be linked to a COMAL-80 program.

Syntaxt
CALL (expression)

Executiont
(expression) being arithmetic is calculated and rounded if
necessary. The CPU then stores all its registers and calls
the specified address where the program execution is
started.

Examples:
CALL 256
240 CALL 53248

Comments:

1. For further details on the Z-80 wmicroprocessor and its
assembler codes, please refer to the manufacturers’
manuals.

2. The user may use the CPU registers, however, the stack-
pointer and the 8 restart addresses in page zero are
used and must be re-established prior to returning to
COMAL -80.

3. COMAL-80 does not utilize the interrupt facilities of
the CPU. Consequently, the user may do this, also after
returning to COMRL-80.

4. Return to COMAL-80 is done by terminating the assembler
program using @ "RET’ command.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

CASE WHEN OTHERWISE ENDCASE PAGE 2-009
Types
Statement
Purpose:
The case structure is used when choosing among various
program sections on the basis of an expression value.
Syntaxt
CASE (expression) OF
WHEN (list of possibilities)
WHEN (list of possibilities)
WHEN (list of possibilities)
[OTHERWISE
«J
ENDCASE
Executiont
The (expression) is calculated and the °‘WHEN' statesents
are checked one by one to find whether one of the mentioned
possibilities matches the calculated value.
In the affirmative the lines from the ‘WHEN' statement in
question, up to the next corresponding *WHEN’, *OTHERWISE’
or 'ENDCASE’ statement, are executed, after which the pro-
gram continues after the *ENDCASE® statement, provided that
none of the executed lines have transferred the execution
to an other part of the program.
If none of the checked values fit the value of (expression)
The lines following *OTHERWISE® will be executed.
If °'OTHERWISE’ is omitted the program execution in this
case stops with an error message.
Example:

10 DIM As OF 1

20 INPUT "PRESS THE 'R’ OR THE ’B’ KEY":A$
30 CASE As$ OF

40 WHEN "A","a"

S50 PRINT "YOU HAVE PRESSED THE *A’ KEY"
60 WHEN “B", “b"

70 PRINT "YOU HAVE PRESSED THE *B’ KEY"
80 OTHERWISE

90 GOTD 20
100 ENDCASE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

LB, S0 G

CAT PAGE 2-010

Type:
Command

Purpose:
To display the catalog of a connected background storage
device.

Syntaxt
CAT [(file namel) [, (file name2)1]]
CAT (file name2)

Executiont
The operating system of the computer is called, stating
from which device the catalog is wanted.
The contents of the catalog for the actual files are then
transferred to the specified (file name2).

Examples:
CAT
CAT DKi:
CAT DK1i:K
CAT DK1:, DKO:ABC. DEF
CAT #.CML LP:
CAT DK1:C??727272.%,LP:
CAT LP:

Comments:

1. (file name2) is the name of the file to which the
catalog is output.

2. (file namel) specifies partly or wholly the name(s) of
the catalog entries which are to be output. A partial
specification may consist of a device nase only (in
which case the whole catalog of that device is output),
or a partial file name, where the characters *#° and
? are used following the specification of CP/M.

3. Omitting (file name2) the catalog is displayed on the
terminal.

4. Omitting (file namel) the whole catalog of the current
default device is displayed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

2 e --v'..w,. T

i

CAT PAGE 2-011

Type:
Statement

Purpose:
To write the catalog from a background storage device into
a file.

Syntaxs
CAT (file name), FILE (file No.)}

Executiont
The operating system of the computer is called, giving the
information as to which device and which file names are to
be written. Then the catalog is written in ASCII format in
the specified (file No.).

Examples:
100 CAT "DKi:", FILE 3
100 CAT "DKi:%.CML"”, FILE 2

Comments:

1. (file name) is a string expression.

2. (file name) specifies the files wanted from a catalog.

3. (file name) specifies partly or wholly the name(s) of
the catalog entries which are to be output. AR partial
specification may consist of a device name only (in
which case the whole catalog of that device is out-
put), or a partial file name, where the characters *#’
and *?' are used following the specification of CP/M.

4. (file name) being the empty string the whole catalog of
of the current default device is displayed.

5. Before meeting the "CAT’ statement, a file carrying the
stated (file No.) must be opened using the *0OPEN’ state-
ment.

6. The device on which the catalog is to be output is spe-
cified in the 'OPEN’ statement.

7. Following a closing and a re-opening, the created file
may be read by using the *INPUT FILE® statement.

8. During programming 'FILE® and ’*#’ are interchangeable.
In program listings *FILE’ is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

CHRIN PAGE 2-012

Type:
Statement

Purpose:
To 1load and start the execution of a program stored as
a memory—image file on the background storage.

Syntax:

CHAIN (file name)

Execution:
The memory of the computer is cleared; the program stated
by (file name) is loaded after which the execution resumes
from the lowest line number of this program.

Example:
10 // MAIN PROGRAM
20 DIM PROGRAMS OF 10
30 REPEAT
40 INPUT "WHICH PROGRAM IS WANTED? “: PROGRAMS
S0 UNTIL PROGRAM$="LIST" OR "UPDATE"
60 CHARIN PROGRAMS

Comments:

1. (file name) is a string expression.

2. This statement is typically used to organize a large
program in smaller independent parts which are loaded
and executed on the basis of user commands.

3. The program (file name) must be stored in a mEemOTYy—
image format by use of the 'SAVE' command.

4. Parameters can only be transferred to (file name) by
means of data files.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

CHRs PAGE 2-013

Types

. . R e SRR Tt (-.— String function

Purpose:
To convert an arithmetic expression into a single-character
string.

Byntax:
CHRS ((expression))

Execution:
{(expression) being arithmetic is calculated and rounded if
necessary. The value is converted into a string consisting
of a single character with that ASCII code.

(Examplet
10 INPUT R

20 PRINT CHR$(R)

Comments:
1. (expression) being arithmetic must be of a value within

the closed interval of O to 255.

s S THIT I ol TN & A T, W1, MRS R W

R e

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

N BT e Sy e e,

e o T ARP LT AL NI T S

CLEAR PAGE 2-014

Types
Statement, command

Purpose:
To clear the screen and place the cursor in the upper left
corner.

Syntax:
CLEAR

Execution:
The screen is cleared and the cursor is placed in the upper
left corner.

Examples:
10 CLEAR
CLERR

Comments:

1. This statement/command affects the screen only. The
memory is cleared using the 'NEW’ command.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

CLOSE PAGE 2-015

Type:
Statement, command

Purpose:!
To close one or more data files after use.

Syntax:
CLOSE (FILE (file No.)1l

Executiont
The data file carrying the specified (file No.) is closed.
(file No.) which is an arithmetic expression is calculated
and if necessary rounded prior to the closing.

Examples:
200 CLOSE
390 CLOSE FILE 3
540 CLOSE FILE A#*B
CLOSE

Cosments?

1. If ’FILE’ and (file No.) are omitted, all open data-
files are closed.

2. When 'CLOSE’ is executed, the stated connection between
(file name) and (file No.) is detached and the file may
be re-opened by the same or a new number.

3. Make sure that the 'CLOSE’ statement/command is executed
before the program execution is finished to avoid data
being left in the system buffers.

The *RELEARSE’ command will indicate whether this is the
case.

4. During programming °‘FILE’ and *#' are interchangeable.
In program listings *FILE’ is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

TSIy g ST ag e

CON PRGE 2-016

Type:
Command

Purpose:
To resume the program execution after a stop.

Syntax:
CON [(line No.)]

Executiont
The program execution is continued weither in the specified
(line No.) or, if a such is missing, at the point of the
previous stop.

Examples:
CON
CON 220

Comments:

1. A new value wmay be assigned to a variable prior to
resuming the program execution.

2. The program execution may be resumed after a stop
created by a *STOP’ or ’END’ statement, after pressing
the 'ESC’ key, or after a non-fatal error.

3. If the program was stopped because of an error, the pro-
gram execution is resumed starting with the statement in
error. In all other cases the program execution is star-
ted in the statement after the last statement executed.

4. If program editing has taken place the program execution
cannot always be resumed.

5. If the program execution is interrupted by the "ESC® key
while the computer is waiting in an *INPUT’ statement, a
value will not be assigned to the variable in question.
In a such case the program execution should be resumed
by 'CON (line No.}’ for which (line No.) was displayed
on the screen immediately after pressing the 'ESC’ key.

COPYRIGHT (C) 13981 METANIC ApS DENMARK

cos PAGE 2-017

Type:

Trigonometrical function.
Purpose:

To calculate the cosine of an expression.
Syntax:

COS ((expression))

Execution:
Cosine of <(expression), for which (expression) is
radians, is calculated. ’

Example?
10 INPUT A
20 PRINT COS(AR)

Comments:

1. (expression) is an arithmetic expression of a real
integer type. The result will always be real.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

in

or

e

CURSOR

Type:

Purpose:

Syntax:

PAGE 2-018

Statement, command

To place the cursor in the desired position on the screen.

CURSOR (expressioni), {(expression2)

Execution:

(expressionl) and (expression2), both of which must be
arithmetic expressions, are calculated and rounded. The
cursor is then moved to the character position, expressed
by (expressionl) and the line number expressed by (expres-—
sion2).

Examples:®

100 CURSOR 8,12
220 CURSOR CHARACTER#, LINE#
300 CURSOR 3%2,S5+4

CURSOR 10, 15

Comments:

1. (expressionl) is counted as positives from left to right
and (expression2) is counted as positives from the top
down. The upper left corner therefore has the coordi-
nates 1,1.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

:""’.‘""-'"“‘&‘?"" ? ¥ e D oA SRR i]

C

{

DATA PAGE 2-019

Type:
Statement

Purpose:
To define constants in the form of a data list to be read
by the *READ’ statement.

Syntaxt
DATA (constantl), (constant2),....., (constantn)

Execution:
At the start of program execution, a search is made for
*DATA’ statements after which they are chained into a data
list. During a run, an internal pointer keeps pointing out
the next constant in the list.

Example:
10 DIM FIRST_NAMES OF 10
20 DIM FAMILY_NAMES OF 15
30 DATR "JOHN", "DOE"
40 READ FIRST_NAMES
50 READ FAMILY_NAMES
60 PRINT FIRST_NAMES$+" “+FAMILY_NAMES
70 DATA 35
80 READ RAGE
90 PRINT AGE; "YEAR"

Comments:

1. "DATA’ statements are non-executable and are skipped
during program execution.

2. Any number of °’DATA’ statements may be placed anywhere
in the program.

3. A 'DATA’ statement may contain as many constants (sepa-
rated by commas) as allowed by the maximum length of
input lines (=159 characters).

4. The 'READ’ statement reads the ’'DATA’ statements in
order of line numbers.

5. The types of constants may be mixed but must match those
of the corresponding °'READ® statements. Otherwise the
execution results in an error message.

Arithmetic expressions are not allowed in a ’'DATRA’
statement, and string constants wmust be enclosed in
double quotation marks.

6. The constants may be re-read, partly or wholly, by means
*RESTORE’, *RESTORE (line number)’, or ’RESTORE (name)’
statements.

7. When the last constant is read the system variable ’EOD’
is assigned the value of true (= 1),

COPYRIGHT (C) 1981 METANIC ApS DENMARK

DEF

Typet

Purpose:

Syntaxs

ENDDEF PAGE 2-020

Statement
To define and name a user-created function.
DEF FN(name)[(formal parameter list)]

éNDDEF FN (name)

Execution:

When finding a ’DEF’ statement during a program execution,
COMAL-80 skips this part of the program up to and including
the corresponding ’ENDDEF’ statement after which execution
is resumed from the following line.

When the function is called, by the function name (if
desired then followed by an actual parameter list), in an
expression, the function is calculated and the value is
inserted in the expression, after which the calculation is
completed.

Examples:
10 DEF FNAB(X,Y) 10 X:=2
20 FNAB:i=X~3/Y~2 20 Yi=3
30 ENDDEF FNAB 30 DEF FNAB
. 40 I:=2 40 BLOBAL X,Y
50 J:i=3 50 FNABI=X~3/Y~2
60 OLE:=FNAB(I,J) 60 ENDDEF FNAB
70 PRINT OLE 70 OLE:=FNAB
80 PRINT OLE

‘ Comments:
|
-

C

1. (name) must be a legal variable name.
(formal parameter list) is a list of the variable names
of the function definition which are replaced by the
actual parameter values when this function is called.
2. Variables used in a function definition are local and
are used only to define the function.
Therefore, these names may be used in other parts of the
program. This independence may, however, be removed for
one or more variables by a *GLOBAL®’ statement.
3. Variable names in <(formal parameter list) represent one
by one the variable names or values as stated in the
actual parameter list at the point of the call.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

DEL

Type:

ey e I -

Purpose:?

PAGE 2-021

- ‘M' Command

To delete one or more lines from the program.

Syntax:
DEL
DEL
DEL

Execution:
The

Examples:
(T DEL
DEL
DEL
DEL

Comments:?
1.

(start lin@)(, (end line)]
, {end line)
(start line),

specified line(s) is/are deleted from the program.

25,100
, 220
9s,

40

If only (start line) is specified this line alone gets
deleted.

If (start line) immediately followed by a comma is
specified, this line and the rest of the program is
deleted.

I1f a comma followed by a line number only is specified,
the program is deleted up to and including this line.
Specifying (start line) comma (end line) the program is
deleted between the former and the latter, including
both.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

DELETE

Typet

O A o . a5 e e A— . s e o ‘N.
. Purpose:

PAGE 2-022

Statement, command

To delete file(s) on the background storage.

Syntaxt

DELETE (file name)

Executiont

The

operating system is called with information on the

the file(s) to be deleted.

m— Examplest

100 DELETE "TEST.CML"
220 DELETE “DK1:DATA.DAT"
(300 DELETE "DKO:iD??7?2?77.#"

Comments:
1.
2.

3.

. 4.

DELETE PROGRAM.CML
DELETE DK1:Cx.CML

In statements (file name) is a string expression.

(file name) specifies partly or wholly the name(s) which
is/are to be deleted where the characters *#* and/or *?’
can be used following the specification of CP/M.

The whole file name, including any extension, must be
specified.

In case (filename) is non-existing an error message is
given for commands, but not for statements.

{ COPYRIBHT (C) 1981 METANIC ApS DENMARK

B N A R s T PP

DIM (for arithmetic variables) PAGE 2-023

Type:

I Statement

Purpose:
To

allocate memory space for arrays and set the index

limits.

Syntax:

DIM (list of indexed variables)

Execution:

Considering the type of variable the necessary memory is
calculated and allocated.

Examples:
10
10
10
10

Comments:

1.
2.

3.

S.
6.

DIM MONKEY (5)

DIM NUMBER(7,3), COUNT(7) // SEE NOTE S
DIM CARSH#(-5:15,3:8)
DIM A$(3:2), B(D) // SEE NOTE 6

Arrays must be dimensioned.
An array may have arbitrarily many dimensions, limited
only by the memory available and the maximum length of
the input line (139 characters.)
Each of the elements in (list of indexed variables) are
specified using the syntax:

(variable name) ({list of index limits))
where (variable name) optionally includes the declara-
tion character *#°.
The elements are separated using comma.
(list of index limits) contains for each dimension the
lower and upper limits for that dimension following the
syntax?

[{lower limit):l< upper limit)
The dimensions are separated by commas.
If no lower limit is given it defaults to 1.
The *DIM’ statement assigns the value O to each element.
More variables can be dimensioned in the same line.
Arithmetic and string variables can be dimensioned on
the same line.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

DIM (for string variables) PRGE 2-024

Type:

—-—w'.“ : ’ : r..- Statement
Purpose:

To allocate memory space for strings and arrays of strings
and set the index limits.

Syntax:
DIM (list of indexed variables)

Execution:
Considering the dimension and length of the variable, the
necessary memory is allocated.

e
Examples:
(10 DIM A$ OF 80 // SEE NOTE 9
10 DIM A$(3) OF 10 // SEE NOTE 7
10 DIM B$(0:1,3) OF 25 // SEE NOTE 8
10 DIM A$(3:2) OF 10, Bs$(S) OF 25 // SEE NDTE S
10 DIM A$(S) OF 15, C(3) // SEE NOTE 6
Comments:
1. Arrays and string variables must always be dimensioned.
2. An array may have arbitrarily many dimensions, limited
only by the memory available and the maximum length of
the input line (159 characters.)
3. Each of the elements in (list of indexed variables) are
. specified using the syntax:
(variable name)[((list of index limits))] OF (length)
where (variable name) includes the declaration character
‘e,
The elements are separated using comma.
For arrays (list of index 1limits) contains for each
dimension the lower and upper limits for that dimension
following the syntax:
l [{lower limit) :]) {upper limit)
(The dimensions are separated by commas.
If no lower limit is given it defaults to 1.
{length) indicates the maximum length of the string
variable or of each of the elements in the string array.
The actual value of a string variable/element may have
. a length varying from zero characters (the empty string)
up to and including the stated (length).
4. The 'DIM’ statement assigns the value "" (empty string)
to each element.
5. More variables can be dimensioned in the same line.
6. Arithmetic and string variables can be dimensioned in
the same line.
R e R R I S S

COPYRIGHT (C) 1981 METANIC ApS DENMARK

P R B . P e e a e e e mem————— i s W ipas smem e e e - e P - .

DIV PABE 2-025

, Type:
> L T 'P! Arithmetic operator
Purpose:?
To carry out an integer division between two arithmetic
eXpPressions.
Syntax?
(expressionl) DIV (expression2)
Execution:
(expressionl) is divided by (expression2) and the result is
En—— rounded to integer.

Examples:
(100 A#:=B DIV C
100 NUMBER:=17 DIV NUM

Comments:
1. The result N is defined by the integer value of N which
makes the expression
(expressionl) — N # (expression2)
assume its lowest possible non-negative value.
2. The calculation is carried out by executing a normal

real division upon which the result is converted to
integer. The type of the result depends upon the type
of (expressionl) and (expression2) in the following way:

(expressionl) DIV (expression2) result
real real real
real int real
int real real
int int int

3. Also see the *MOD’ operator.

{ COPYRIGHT (C) 1981 METANIC ApS DENMARK

LG

¢

WAL EN oG CN L it s M 4 OO INTG A B s L e .

EDIT PAGE 2-026
Type:
Command
Purpose?
To make correcting easier in programs already in the
computer working storage.
Syntaxs
EDIT [(start)1[, (end)]
EDIT [(start),]
Execution:
The specified program area is called from the working
storage and displayed on the screen line by line. The
cursor is placed immediately after the last character and
can be moved back and forwards on the line using the two
control keys cursor left and cursor right respectively.
Place the cursor on the character to be corrected, key in
the correction and the cursor wmoves one position to the
right.
Having completed the corrections, press 'RETURN’ upon which
the line undergoes the syntax control and when accepted it
is stored. The next line is displayed and the sequence
repeats until (end) is reached.
Examples:
EDIT
EDIT 100
EDIT 100,
EDIT ,100
EDIT 100,200
Comments: .
1. If (start) is omitted, the editing starts at the first
program line.
2. 1f (end) is omitted, the editing continues until the end
of the program.
3. Dmitting both limits, the editing starts in the first
program line and continues until the end of the program
{or until the ESC’ key is pressed).
4. Stating only (start), without the coema, the editing
covers this particular line only.
S. All the correction facilities described in INPUT EDITING

in chapter 1 are available.

COPYRIBHT (C) 1981 METANIC ApS DENMARK

< ki s e e s W e 1m v i e R e e e e v

—

gl + 0L I

R Y S PRIy <L e A R ey S

U U S T

END PABE 2-027

Type:
Statement

Purpose!?
To stop the execution of a program

Syntaxt
END

Executiont
Program execution is terminated and the prompt character
s’ ;g displayed to show that the COMAL-80 interpreter is

ready to accept new input.

Example:

10 K:=0

20 IF K)>100 THEN
30 END

40 ELSE

SO0 GOTO JOHN
60 ENDIF

70 LABEL JOHN
80 PRINT K," ",
90 Ki+l

100 GOTO 20

Comments:

i. The END’ statement does not give any information as to
where the program execution was interrupted, as is the
the case when using the *STOP’ statement.

2. The use of the *END’ statement is optional, as COMAL-80
adds a such (invisible) statement at the end of each
program.

Reaching this statement it automatically inforast:

Program execution finished

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ENTER PAGE 2-028

Type:
Command

Purpose:
To transfer a file from the background storage, stored as a
string of ASCII characters, and place it in the working
storage. .

Syntax:
ENTER (file name)

Execution: :
The specified file is opened and transferred character
by character.
Following each *RETURN’ the line is syntax—checked and the
formed line, if accepted, is placed in the working storage.
In case of error the loading is temporarily halted upon
which the line is displayed along with an error message.
Using the normal editing facilities the user may enter
corrections, and after 'RETURN’ another syntax—check takes
place. When the 1line is accepted it is placed in the
working storage after which the loading of the file
continues.

Examples:
ENTER DKO:PROGRAM
ENTER POLYNO

Comments:

1. Only files stored in ASCII format, wusing the *LIST’
command, can be read by the *ENTER’ command.

2. The working storage is not cleared prior to the file
being entered. However, new lines having a line number
already existing in the working storage replace the old
lines. This overriding takes place on a line-basis, with
no consideration of the different lengths of lines, so
that a short line can totally replace a long one. Making
sure that there are no overlapping line numbers this may
be used for combining two or more programs.

In any other case, the working storage should always be
cleared by using the *NEW’ command before reading a file
by the ’*ENTER’ command.

3. ASCII files may be read by all versions of COMAL-80 why
this format is recommended for storing files for a
longer period of time.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

EOD PAGE 2-029

. —— Typet
"'“"m‘ e T ("' System variable
Purpose:
To determine whether all data from the 'DATA’ statements in
the program have been read.
Syntax:

EOD

Execution:
EOD has the value of false (= 0) as long as data from the

- " —— "DATA’ statements of the program are to be read. Having
read the last set of data, the 'ECD’ is assigned the value
of true (= 1). Then executing a ’RESTORE' statement,

(YEOD® again is assigned the value of false.
Example:
10 WHILE NOT EOD DO
20 READ R
30 PRINT A

40 ENDWHILE
50 DATA 55, 2, -15, 35

TP REPRRE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

[N

>

-

EOF PAGE 2-030

Type:
System variable

Purpose:
To determine whether all data in a data file have been read

Syntax:
EOF ((file No.?})

Execution:
At the execution of an *OPEN FILE’ statement or command of
the type of ’READ’, the corresponding ‘EOF ((file No.))’
system variable is assigned the value of false (= 0).
Having read the last value of the file, it is assigned the
value of true (= 1).

Example:
10 OPEN FILE O, "TEST", RERD
20 REPERAT
30 READ FILE 0: A
40 UNTIL EOF(0)

Comments:
1. (file No.) is an arithmetic expression.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ERR PAGE 2-031

Type?
- .-« T T ; - r‘ System variable

Purpose:
To remember whether a non-fatal error has occurred during
a program execution.

Syntax:
ERR

| Executiont

| o R During a normal program execution, any error will stop the

> wwplnrasrmesadorbinie ——— g program and create an error message. However, a number of
errors can be bypassed in a well-defined manner.
In such cases a program interruption may be avoided by the

(use of a *TRAP ERR-’ statement, before the error arises. In
these cases, the system variable will be assigned a value
equal to the error number, which in all tests will be
considered true because it is different from O. The program
execution will then continue.

Example:
10 INIT *", FILENAMES
20 TRAP ERR-

) ' 30 OPEN FILE O, "XPLOCOMM" 6 READ
40 TRAP ERR+
’ 50 IF NOT ERR THEN
60 INPUT FILE 0: DEFAULT_FILENAMES
70 ELSE
80 DEFAULT_FILENAMES:="XPLOPROG"
R) 90 ENDIF
100 CLOSE
Comments?
1. The execution of a program starts by assigning the value
of false (= 0) to the system variable "ERR’.
(When a ’TRAP ERR-' statement has been executed, a non-

fatal error assigns its error number to *ERR’ and it

retains this value until its status is checked. Immedi-

ately after a such check, ERR’ is assigned the value of

false.

Normally, COMAL-BO sets a variable true by assigning it

the value of 1, but in this case the error number is

used.

The error numbers are further described in appendix C.
2. By executing a 'TRAP ERR+’ statement, the system returns

to normal error handling.

P BOLL Tt NN e T L RGN ORI W

(COPYRIBHT (C) 1981 METANIC ApS DENMARK

ERRTEXTS PAGE 2-032

Types
String function
Purposet
To give access to error descriptions in the COMAL-80 system
Syntaxt
ERRTEXTS ((expression))
Executiont
{expression) being arithmetic is calculated and rounded if
necessary. The corresponding error description is then
raturned.
Examplet
10 FOR I=3 TO 295
20 PRINT ERRTEXTS$(I)
30 NEXT I
Comments:

1. This function is only valid when error descriptions are
not deleted at the start-up of COMAL-80. If they are
deleted the result will be that the function returns an
empty string.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ESC PAGE 2-033

Type:
System variable

Purpose!
To remember whether the 'ESC’ key has been pressed.

Syntaxt
ESC

Execution:
During normal program execution it is checked, before each
statement, whether the 'ESC’ key has been pressed. In the
affirmative the program execution is stopped.
If a *TRAP ESC-’ statement has been executed, this function
is blocked and the system variable ’ESBC’ is instead assig-
ned the value of true (= 1) when *ESC’ is pressed.

Example:
10 TRAP ESC-
20 REPERT
30 PRINT "THE "ESC’ KEY IS NOT PRESSED"
40 UNTIL ESC
S0 TRAP ESC+
€0 PRINT "THE ’*ESC’ KEY WARS PRESSED"

Comments:

1. Starting program execution the system variable 'ESC’ is
assigned the value of false (=0). If a 'TRAP ESC-’
statement is executed and the 'ESC’ key pressed after
that, the program execution continues but the system
variable ’ESC’ is assigned the value of true (= 1) and
keeps this value until its status is checked.
Immediately after the value is used, 'ESC' is again
assigned the value of false (= 0).

2. The system returns to normal handling of the "ESC’ key
when a "TRAP ESC+’ statement is executed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e s s e e . - P - i e,

| o

i

EXEC PAGE 2-034

Typet
Statement

Purpose?
To call a named sub—program and after this is finished, to
return to the line following.

Syntax:
EXEC {(procedure namse)[({actual parameter list))]

Executiont
The procedure specified by <(procedure name) is called, as
(actual parameter list) replaces the formal parameter list
in the procedure heading.
Meeting the ’ENDPROC® statement, the program execution is
resumed from the first executeable 1line following the
TEXEC®' statement.

Examples?
100 EXEC TEST
100 EXEC FATAL_ERROR("ERROR IN X-PL/O-COMPILER")
100 EXEC ERROR(30)
100 EXEC ENTER_(CONSTANT#,LEV#S,K TX#, DX#)
100 EXEC EXPRESSION (FNINCLUDE (FSYS, RPAREN#) , LEV#, TX#)

Comments:

1. The number of actual parameters must be the same as the
number of formal parameters in the ’PROC’ statement.
Further, each parameter must conform to dimension and
type.

2. If the formal parameter is specified by °'REF’, a
variable (possibly indexed) wmust be inserted as an
actual parameter.

3. If the formal parameter is not specified by REF’ the
actual parameter must be an expression of a correspon-
ding type, possibly just a variable name.

Actual integer parameters may, however, be inserted in a
formal real paraseter.

4. The actual parameters must be defined before the ’*EXEC’
statement.

3. See the section ’'PARAMETER SUBSTITUTION® in chapter 1
for more information.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

R R o C SR USSR AR

EXP

Type:

PAGE 2-035

Arithmetic function

Purpose:

Returns @ to the power of an arithmetic expression.

Syntaxi

EXP({(expression))

Executiont

The base of the natural logarithm e (=2.718282) is raised
to a power specified by (expression).

Example:
10 INPUT A
20 PRINT EXP(R)
Comments:
1. (expression) is an arithmetic expression of real or
integer type. The result will always be real.
2. The value of (expression) must be less than or equal to

88.02968 by use of the COMAL-B80 7-digits version and
292.4283068102 by the 13-digit version; otherwise COMAL~-
80 stops the program execution and creates an error
message.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

FALSE PAGE 2-036

Type:

wmumqllr. L p e - 'mw
Purpose:

Syntax?
FALSE

System constant

Mainly to assign a boolean variable the value of false.

Execution:
Returns the value O.

Example!t

' 10 // PRIME

20 77
(30 DIM FLAGS#(0:8190)

40 SIZE11=8190
50 //
60 COUNT:=0
70 MAT FLAGS#:=TRUE
80 7/
90 FOR I1:=0 TO SIZE1 DO
100 IF FLAGS#(I) THEN
110 PRIME:=I+I+3

- - 120 K:=I+PRIME
130 WHILE K(=SIZE1 DO
140 FLAGS# (K) :=FALSE

. 150 Ki1+PRIME
160 ENDWHILE
170 COUNTi+1
e 180 ENDIF

190 NEXT 1
200 PRINT "TOTAL NUMBER OF PRIMES: *, COUNT

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o e A o s i i g0 L A - . [e emte ey N T

AR R A R T WA A - B R N AN BT ry

FOR TO DOWNTO STEP NEXT PAGE 2-037
Typet

',g Statement
Purpose:

To delimit a program section and define the number of times

it

Byntax:

is to be executed.

FOR (variable) t= (start) TO {(end) [STEP (step)]

NEXT (variable)

(Execution:

Meeting the 'FOR' statement, (variable):=(start) is assig-
ned and it is calculated whether the inequality

is

({(end)-(variable))#SGN ({(step)))= O
met. If this is not the case, the 'FOR...NEXT’ structure

including this program section is bypassed and the execu-
tion continues from the first executable line following the
NEXT statement.

In

case the inequality does hold, the program continues

through the program section until meeting the *NEXT’ state-
ment, then it jumps back to the line following FDR’ adding
(step) to (variable) and checks the inequality again using
the new value of (variable).

This repeats until the inequality does not hold any longer.

Example:
10
20
30
40

r Comments:

1.
2.
3.

4.

FOR I=1 TO 100 STEP 5
PRINT I, " ",

NEXT I

sTOP

Omitting *STEP (step)’ the (step) value is set to 1.

If "DOWNTO’ is used in stead of 'TO", (step) is negated.
Following a "FOR...NEXT' execution, the (variable) has
the value not fulfilling the above inequality.

Up to 5 'FOR...NEXT' statements may be nested, each of
them having their separate (variable).

Each subroutine level is assigned a °'FOR...NEXT' depth
of S giving the option of any depth by means of the
'6G0SUB’ statement or by use of procedures.

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

;

Intentionally left blank.

COPYRIGHT (L)

1981 METRANIC ApS DENMARK

PAGE 2-038

FRAC PAGE 2-029

Type:
Arithmetic function

Purpose:
To extract the decimal part of a real number.

Syntax?
FRAC((expression))

Execution:
The result is calculated according to the expression:?

{(expression)—INT((expression))

Example:
10 INPUT A
20 PRINT FRAC{(R)
30 PRINT FRAC(S.72)
40 PRINT FRAC(-5.72)

Comments:
1. (expression) being arithmetic must be of real type. The

result will be of real type.
1. (expression) being positive the result is calculated by

cancelling the digits before the decimal point.
If (expression) is negative the result is 1 minus the
decimals of (expression).

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o e e sy

BETUNIT PRGE 2-040

Type:
Statement, command

Purpose:
To inform which background storage device is the present
default device.

Syntax?
BETUNIT [(variable)]

Execution:
The name of the current default device is assigned to
(variable) in the form of a 3-character code, two letters
and one figure, followed by a colon.

Examples:
100 GETUNIT DISKS$
BGETUNIT
Comments:

1. Using °'BGETUNIT’ as a command the (variable) must be
omitted, after which the result is displayed on the
terminal.

In statements the (variable) must be specified.

2. The two letters indicate the type of device, for which
'DK’ means floppy disk. The digit indicates the unit
number.

3. (variable) is a string variable.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

Mm s e 3 e . ——

6LOBAL PAGE 2-041

Type:
Statement
Purpose:
To make variables in the main program accessible within a
*PROC’ or 'DEF’ structure.
Syntaxt
GLOBAL (list of variable names)
Executiont
The variables of the main program mentioned in (list of
variable names) are made accessible within the *PROC’ or
'DEF’ structure containing the *GLOBAL’ statement. '
Example:
10 PROC ERROR(N#) CLOSED
20 GLOBAL CC#, ERR_, ERRORS#
30 PRINT "#xxex"3; SPCE(CCH-9); "~"; N#
40 ERR_:=FNINCLUDE(ERR_,N#+1); ERRORS#:+1
50 ENDPROC ERROR
Comments:

1. The variable names in (list of variable names) are sepa-
rated by comma. Array variable names cannot be followed
by any indices.

2. This statement may be used within closed procedures and
*DEF’ structures only.

3. The variables are transferred from the main program even
if the *PROC’ or ’'DEF’ structure containing the *GLOBAL’
statement is called from an other such structure.

4. The execution of the 'GLOBAL’ statement does not affect
the accessibility of the mentioned variables in any
other part of the program than the 'PROC*® or °’DEF’
structure containing the "GLOBAL’ statement.

%. Rll operations allowed on the variables in the main pro-
gram are also allowed within the ’'PROC’ or *DEF’ struc-
ture containing the 'GLOBAL’ statement.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

G0OSUB RETURN PRAGE 2-042

Type:

Trm“* AL MR L e e A e r
Purpose:

Statement

To call a subroutine, possibly from more locations in the
same program, and return to the line following the call.

Syntaxt
GOSUB (line number)

{line number) .

(Executions
Meeting a ’GOSUB’ statement the program continues from the

{l1ine number) stated until meeting the ’*RETURN’ statement,
upon which the program is resumed from the line following
the calling *GOSUB’ statement.

Examplet
10 PRINT "I START IN THE MAIN PROGRAM"
20 GOSUB 30
l 30 PRINT "I AM BACK IN THE MAIN PROGRAM"
40 STOP

S0 PRINT "I AM IN THE SUBROUTINE"

. 60 RETURN

Comments:
1. A subroutine may be called any number of times.
2. Subroutines may be called from other subroutines, and
such nestings are limited by the available memory only.
X. Following the *RETURN’ statement the program is resumed
from the line immediately following the latest *GOSUB’

: executed.

(4. A subroutine may include more than one °’RETURN' state-
ment.

%, Subroutines may be placed anywhere in the program, but
clear identification from the main program is recommen—
ded.

6. To prevent any inadvertant execution of a subroutine it
is recommended to place a *STOP’, *GOTO’, or an ‘END’
statement in the line immediately before the subroutine.

7. Meeting a 'RETURN’ statement during an execution with-
out having executed a *GOSUB’ statement, the program
stops the execution and creates an error message.

M, P S AN e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e e P S o T

L A el AR IR W 105 it O Fea s o e

g e e e e 4 s s

PAGE 2-043

sequential program execution and

GOTO
Typet
("‘ Statement
Purposes
To interrupt the normal
continue from the stated line.
Syntax?
BGOTO (line number)
BOTO (name)
Execution:

The execution continues in the stated line or, if not exe-
cutable, from the first executable line to follow.

(Examples:
10 PRINT "JO",

20 GOTO 40
30 STOP

40 PRINT "HN"
50 GOTO 30

Comments:
1. Statements like
executable.

10
20
30
40
30
60
70

*LABEL’

PRINT "JO",
GOTO REST
LABEL FINISH
STOP

LABEL REST
PRINT "HN"
60TO FINISH

and *'REM’ are among those not

COPYRIGHT (C) 13981 METANIC ApS DENMARK

——

IF THEN PAGE 2-044

Type:
Statement

Purpose!
To execute or skip a statement depending on a logical
expression being true or false.

Syntaxs

IF (logical expression) [THEN) (statement)}

Executiont
Only when (logical expression) is true (O 0), (state-

mant) is executed.

Example?
10 INPUT "PRINT A NUMBER: “: A

20 IF A THEN PRINT "R (O"
30 IF AR(O THEN PRINT "A<O"
40 IF A=0 THEN PRINT "R=0"
50 IF A=1 THEN PRINT "R=1"
60 IF A=2 THEN PRINT "A=2"
70 IF AY2 THEN PRINT "R)2"

Comments:
i. Following an ’IF...THEN’ statement the following state—

ments may be used:
cALL, CAT, CHRIN, CLEAR, CLOSE, CURSOR, DELETE, END,
EXEC, EXIT, FORMAT, GETUNIT, 80SUB, 60TO, INIT, INPUT,
LET, MAT, ON, OPEN, OUT, PAGE, POKE, PRINT, QUIT,
RANDOM, READ, RELEASE, RENAME, RESTORE, RETURN, SELECT,
STOP, TRAP, UNIT, and WRITE.
Further, a naw ’IF...THEN’ statement is allowed.

2. During programming 'THEN® may be omitted as COMAL-80
automatically adds it to program listings.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

consdes s HFLL S e

o o o e g £ he

1F THEN ENDIF PAGE 2-045

Type:
Statement

Purpose? .
To execute a program section if a logical expression is
true; otherwise the section is skipped.

Syntaxs

1IF (logical expression) [THEN]

ENDIF

Execution:
If the <(logical expression) is true ((O) the program
section within 'IF...ENDIF’ is executed. The (logical
expression) being false (= 0) the program is resumed from
the first executable line following the *ENDIF’ statement.

Example:s
10 IF MEMBER#(1 OR MEMBER#)31 THEN
20 EXEC FATALERROR("ERROR IN X-PL/O0-COMPILER")

30 ENDIF

Comments:
1. During programming °THEN' may be omitted, as COMAL-80.

automatically adds it to program listings.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

IF

Typeat

C

i Pk] AT e R L 4 a1 T s A -

PO

N

C

THEN ELSE ENDIF PRGE 2-046

Statement

To execute one of two program sections depending on a
logical expression being true or false.

Syntaxt
IF (logical expression) [THEN]
ELSE
ENDIF
Executions
If the (logical expression) is true (O O) the program
section surrounded by ’IF......ELSE’ is executed. The
{logical expression} being false (=0) the program
section surrounded by ’ELSE...ENDIF’ is executed.
Example:
10 INPUT "GUESS A NUMBER BETWEEN 1 AND 5"t A
20 Bi1=RND(1,5)
30 IF A=B THEN
40 PRINT "CORRECT"
S0 ELSE
60 PRINT "WRONG. THE NUMBER WRS: “; B
70 ENDIF
80 STOP
Comments:

1. During programming 'THEN' wmay be omitted as COMAL-80
automatically adds it to program listings.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

[P ——

&

| C

O L R ¥ T g R I L N

IF THEN ELIF ELSE ENDIF PAGE 2-047

Type?
Statement

Purposet
To execute one of several program sections depending
on one of several logical expressions being true.

on

Syntaxs
IF (logical expression 1) [THEN]

ELIF (logical expression 2) [THEN)

ELIF (logical expession n) L[THEN]

LELSE
.1
ENDIF

Executiont

Every (logical expression n) is checked one by one. If one
is true (() 0) the following program section is executed
until meeting the corresponding "ELIF’, "ELSE’, or 'ENDIF’
statement, upon which the program resumes from the first
executable line following the ENDIF’ statement.
When all (logical expressions) are false (= 0)
gram section surrounded by ‘ELSE...ENDIF’ is
upon which the program is resumed from the first
line following the ENDIF’ statement.

the pro-
executed,
executable

Example:?
10
20
30
40
S0
&0
70
80
90
100

INPUT "PRESS ONE OF THE DIGITS 1,
IF A=1 THEN
PRINT "THE DIGIT WAS 1"
ELIF A=2 THEN
PRINT “THE DIGIT WAS 2"
ELIF A=3 THEN
PRINT "THE DIGIT WAS 3"
ELSE _
PRINT "I ASKED FOR ONE OF THE DIGITS 1, 2, OR 3!'*
ENDIF

2, OR 3t “: A,

COPYRIGHT (C) 1981 METANIC ApS DENMARK

(,

1

IN

Typet

8tring operator

Purpose!

PRGE 2-048

To check whether a text string is contained in another.

Syntaxs

(expressionl} IN (expression2)

Executiont

It is checked whether (expressionl)

(expression2). If it is, the logical value is true (=1).

is contained in

If it is not, the logical value is false (= 0).

Example?

10 DIM As OF 15
20 DIM B¢ OF 135

30 INPUT
40 INPUT

"WRITE A TEXT: "1 AS
"WRITE ANOTHER TEXT: B¢

S0 IF B$ IN As THEN
60 PRINT

70 ELSE

80 PRINT
90 ENDIF

"SECOND TEXT 1S PART OF FIRST TEXT"

“SECOND TEXT IS NOT PART OF FIRST TEXT"

COPYRIGHT (C) 1981 METANIC ApS DENMARK

Al A I8 o o o o ad

INIT PAGE 2-049

Type:
Statement, command

Purpose!
To prepare a formatted diskette, placed in the
use.

Syntaxs
INIT [(device)]

Executiont
The stated (device) is initialized.

Examples?
100 INIT "DKO:"
INIT
INIT DK1i:
Comments?

1. Under CP/M all disk drives are initialized

drive for

and the

(device) indication is not used, but if it is given, it
must be the name of a disk drive. No disk files may be

open when this statement/command is executed.

COPYRIBHT (C) 1981 METANIC ApS DENMARK

PG ol Sl s i, T <1

INP PAGE 2-050

Type:
Machine code function

Purpose:
To read the value of one of the Z-80 microprocessor input

ports.

Syntax?
INP((@xpression))

Execution:t
The input port, defined by (expression) is read.

Examplet
10 PRINT INP(17)

(Comments:

(

1. (expression) must be of a value greater than or equal to
0 and less than or equal to 25G.

2. (expression) is considered a decimal value which is
rounded to integer if necessary.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

T et p——— i v T r————ow

INPUT ' PAGE 2-051

Type?
Statement
"POTREIO '-n
‘ Purpose?
To read and assign to variables the values received from
the terminal, during program execution.
Syntax?

INPUT [(text)t) {(variable list)

Execution:
When meeting the °'INPUT’ statement the program execution
pauses after a possible (text) is displayed. As the user
— — keys in values, they are assigned to the stated variables
in (variable list) from left to right. Having inserted the
i last value the user presses 'RETURN', upon which the
(program execution continues.

Examples:
100 INPUT MONKEY, JOHN#, NAMES
100 INPUT "WRITE 3 DIGITS: *t A, B, C

Comments:
1. If the ’INPUT® statement contains a (text), this is

. displayed exactly as described, whereas only '?° is

displayed when there is no (text), indicating that the

computer expects some input. .

2. If (variable list) ends by a comma the following output

. appears in the print-zone following. The width of the
print-zones are set by using 'TAB’.

3. If (variable list) ends by a semicolon the following
output appears immediately following the latest value
presented from the keyboard.

4. More values may be entered as long as they are separated
by a character which cannct be part of a numerical value
such as space or comma.

- (5. String constants must be entered as a sequence of RASCII

characters. It is only possible to insert values
following a string constant if the "RETURN® key is used
to terminate each such. ’
When a string constant follows an arithmetic constant
COMAL-80 considers the first character, which cannot be
part of the artihmetic constant, a delimiter, and starts
the string constant with the next character.

6. The type of values keyed in must conform with the types
stated in the ' INPUT’ statement.

R R a0 e e T T

COPYRIBHT (C) 1981 METANIC ApS DENMARK

- s ks e A e i e e+ e e) e e s s v o r o ea —— O U U U U]

v o AT AR, TP NI s e, St

INPUT FILE PAGE 2-052

Type?
Statement

Purpose:
To read data from an ASCII data-file written by the °*PRINT
(USING) FILE’® statement.

Syntax:
INPUT FILE (file No.) [, {(rec. No.)lt(variable list)

Executiont
The values of the variables in (variable list) are read

from the file contained in (file No.).

Examples:
100 INPUT FILE 3: RAs$
100 INPUT FILE O: B#, C

Comments:

1. Before meeting the *INPUT FILE® statement a file must
be opened and the connection established between the
stated file name and the used (file No.) of the *INPUT
FILE’ statement. This is done by the *OPEN FILE’ state-
ment or command, and type ®READ’ or ’RANDOM’.

2. The (rec. No.) is used only in "RANDOM’ files and is an
arithmetic expression which is rounded to integer if
necessary.

3. (file No.) is an arithmetic expression.

4. {(variable list) may contain all variable types but
arrays must be properly indexed and substrings may not
be used.

5. The elements of (variable list) are separated by commas.

6. During programming *FILE’ and °'#' are interchangeable.
In program listings *FILE’ is used.

7. Comments 4, 5, and 6 to the ’INPUT’ statement apply
equally well here.

COPYRIGHT (C) 1881 METANIC ApS DENMARK

#s LRIk D2 Y WS AT Al TV A, STRI SN A T w8 A o .

o AL 2 PR TR g T At v

S PR VA P YT N7 A5t S

INT PAGE 2-053

Type:
Arithmetic function

Purpose:
Returns the largest integer, equal to or less than a speca-

fied expression.

Syntax:
INT ({expression))

Execution:
The largest integer less than or equal to

calculated.

(expression) is

Example:
10 INPUT A
20 B:=INT(A)
30 PRINT B
40 PRINT INT(S.72)
50 PRINT INT(~5.72)

Comments:
1. (expression) is of real type. The

of real type.
2. RAlso see the *ROUND’ and *TRUNC’ functions.

result is an integer

COPYRIGHT (C) 1981 METANIC ApS DENMARK

IVAL PAGE 2-054

Type:

——‘-mm rm Arithmetic function

Purpose:
To convert an integer, existing as a string, to an integer
of integer type.

Syntax:
IVAL ({(string expression))

Executiont
- The characters in (string expression), which must form an
dovle integer number, are converted to integer.

Example?
(10 DIM AS$ OF &
20 INPUT AS$

30 PRINT IVAL(AS)
40 PRINT IVAL("3215")

Comments:

1. If the string in (string expression) contains other
characters than digits including a possible sign, the
program execution is stopped and an error message is

‘ displayed.
2. Also see the VAL’ function.

e Y 9 s L W

COPYRIGHT (C) 1981 METANIC ApS DENMARK

L2ae i . o XTI

2

R e I R A i T T

LABEL PABGE 2-055
Type:

r Statement

Purpose:

To name a point in a COMAL-80 program for reference to the
'B0TO’ and 'RESTORE® statements.

Syntaxt
LABEL (name)

Execution:

The *LABEL’ statement is non-executable and serves only to
mark a point in the program.

. Examples
(10 LABEL START

20 INPUT "WRITE A NUMBER: "t NUMBER
30 PRINT NUMBER
40 GOTO START

COPYRIGHT (C) 1981 METANIC ApS DENMARK

—o

LEN PAGE 2-056

Type:
. l Arithmetic function.
Purpose:?
Returns the actual length of a string variable.
Syntax:

T—— TN e
(
L.._i
o
e
A

LEN({(variable})

Executiont
The actual number of characters in {(variable) is counted.

Example:
10 DIM A$(1:10) OF 15
20 INPUT A$(S)
30 B#:=LEN(A$(5))
40 PRINT As$(3)
SO0 PRINT B#

Comments?
1. It is the actual contents of the (variable) that is used
to determine its length. The dimensioned length is only
of importance by being the maximum value of the result.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

it O TV ey A————— 1 e WS T vy e C e w u L e s see el megmomeaiea s eeees s e o wi L e Cee——. e mw - ——

LET PAGE 2-057

Type:
Statement

Purpose:
To assign the value of an expression to a variable.

Syntax:
[LET) {(variable) = (expression)

Executiont
{expression) is calculated and the result is stored in the
memory space allocated for (variable)

Example:
10 LET A
20 LET B ¢
30 LET SumM
40 A:+B
S50 DIFFERENCE := RA-B
€0 PRINT SumM
70 PRINT A
80 PRINT DIFFERENCE

= 5
=3
=

A+B

Comments:

1. The use of the word 'LET’ is optional, i.e. it may be
omitted as shown in line 40 of the example. In program
listings *LET’ is omitted.

2. During programming "=’ and ’:= are interchangeable. In
program listings ’:=" is used.

3. (variable) := (variable) + (expression) may in short be
written as (variable) i+ (expression).

(variable) = (variable) - (expression) may be expressed
{variable) :— (expression), though the latter may not be
used for string variables.

4. The type used for (expression) and <(variable) wmust be
equal, though integer values can be assigned to a real
variable.

5. For string variables having <{(expression} longer than
(variable), (expression) will be shortened from the
right. :

6. For string variables having (expression) shorter than
(variable), (variable) gets the actual length only.

7. Assigning to substrings, (expression) and (variable)
must be of the same length.

8. More assignments may be done on a single line, separated
by semicolon, but the keyword ’LET’ (which is optional)
must only appear before the first assignment.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

s o e m iy e e e s it 8o 2 8 e e i - 4

' o) Q- Purpose:

LIST PAGE 2-058

Type:
Command

To list the working storage of the computer, partly or
wholly, as a string of ASCII characters.

Syntax:
LIST [(start)][, (end)][{file name)]
LIST [(start),ll(file name)]

Execution:
The specified part of of the program, being in the internal

format, is converted into a string of ASCII characters and
listed on the specified file.

(Examples:
LIST

LIST 10
LIST 10, 100

LIST , 100

LIST 100,

LIST TEST

LIST 10,100 TEST
LIST ,100 DK1:TEST

LIST LPO:

Comments:

1. Omitting (file name) all listings are presented on the
terminal carrying the device name of *DSO:’,
If the specified 1listing contains more lines than this
device is able to show in one picture, only the first
page is shown and the COMAL-80 interpreter awaits that
the ’SPACE BAR’ is pressed to display the next page, or
the RETURN’ key for displaying the next line. Pressing
the ESC’ key will terminate the listing.

(‘ 2, Omitting both (start line) and <(end line) the total
program is listed. Omitting only (start line), the
listing starts at the firet program line. Leaving (end
line) out the listing continues until the end of the
program. Specifying only (start 1line), without the
comma, only the specified line is listed.

3. The *LIST’ command considers all listings being a trans-
fer of characters from the memory to a file.
Consequently, a listing on a connected printer is ob-
tained by stating LP:* for a (file name), possibly fol-
lowed by the unit number of the printer. When no unit

R it W . VR T a5

number is speciified it defaults to LPO:.,

RYRPL S 2

{ COPYRIGHT (C) 1981 METANIC ApS DENMARK

e et € LS —— P e iy - ey s s ooy v o s S —— ¢ o ¢ —————. ym 4

o tbalt Wy R AT AT MR R Vi R LA A St LM et

LOAD PAGE 2-0539

Type:
Command

Purpose:?
To read a binary file from the background storage.

Syntax?

LOAD (file name)
Execution: N
The working storage of the computer is deleted and the
operating system is called, upon which the file is read.

Examples:
LOAD TEST
LOAD DK1 : PROGRAM

Comments:
1. Only binary files can be read by the *LOAD’ command,
i.e. files stored by the 'SAVE’' command. In catalog
listings these files may be identified by the extension
of the name by *.CSB’.
2. The extension '.CSB’ is always supplied by the COMAL-80
system and cannot be stated by the user.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

LOG PAGE 2-060

Type:

Arithmetic function
Purpose:

Returns the natural logarithm of an arithmetic expression.
Syntaxt

LOG((expression))

Execution:
The natural logarithm of (expression) is calculated.

Examples:
10 INPUT A
20 PRINT LOG(R)

Comments:
1. (expression) is an arithmetic expression of real or in-
teger type. The result will always be real.
2. If (expression) is less than or equal te O the program
execution is stopped and followed by an error msessage.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e e 2 ¢ = e e 1t . Dae e sema gt h is i s maasn s A L s imewe e o SN T e e = o % a4 S T 4 T g

LOOP EXIT ENDLOOP PAGE 2-061

Type:
Statement

XTI N o= - r‘
‘ Purpose:?

To repeat the execution of a program section until an
internal condition is fulfilled.

Syntax:
LooP

‘ i ENDLOOP

- Executiont
(The program section enclosed by *LOOP....ENDLOOP’ is
repeatedly executed until meeting an ’'EXIT® statement in
the program.

Then the program execution resumes from the first exe-
cutable line following the 'ENDLOOP® statement.

Example:
10 NUMBER:=0
20 LOOP
30 NUMBER:+1
40 PRINT NUMBER

S50 IF NUMBER=8 THEN EXIT
60 ENDLOOP
Comments:

1. The execution of the *LOOP...ENDLOOP’ section may also
be interrupted by a *GOTO’ statement.

2. 1f *LOOP...ENDLDOP’ statements are nested, execution of
an "EXIT’ statement will abandon execution of the inner-
most ’LOOP...ENDLOOP’ statement containing the *EXIT’

(' statement only.

R b A 6 A 5 sy o i e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE 2-062

assign values to each element in an array.

MAT (variable) i={expression)

R R i S o S

DIM ARRAY (50)
MAT ARRAY:=J

(variable) and (expression) must be of the same type.
However, an integer expression may be assigned to the
elements in a real array.

During programming =" and ':=" are interchangeable. In
program listings ':=" is used.

For string variables having <(expression) longer than
(variable), (expression) will be shortened from the
right.

For string variables having (expression) shorter than
(variable), (variable) gets the actual length only.

More assignments may be done on a single line, separated
by semicolon, but the keyword ’MAT’ must only appear
before the first assignment.

MAT
Type:
e r., Statement

Purpose:
To

Syntax:

Example:
10
20

Comments:
1.
2.
3.
4.
S.

/ COPYRIGHT (C) 1981 METANIC ApS DENMARK

mop PRGE 2-063

Type:
) I ‘ Arithmetic operator
. Purpose:
To return the remainder following an integer division.
Syntaxt

(expressionl) MOD (expression2)

Execution:
(expressionl) is integer divided by (expression2) and the
remainder being (expressioni) wminus the result multiplied

by {(expression2) is found.

Example:t
. 10 INPUT A
(20 B:=A MOD 7
30 PRINT B

Comments:

The result N is defined by the lowest non-negative value
which the expression:

(expressionl) — N # (expression?)
can assume for integer N.
2. The type of the result depends upon the type of (expres-
sioni) and (expression2) in the following way:

{(expressioni) MOD (expression2) result
‘ real real real
real int real
int real real
int int int

3. Also see the DIV’ operator.

L3 et e T mablet 0, 7 R L NTUALT I et b R T ..»i T de

COPYRIBGHT (C) 1981 METANIC ApS DENMARK

o L e T R

yom e A e S ey

NEW PAGE 2-064

Typet
Command

Purpose:
To clear the working storage of the computer and prepare
the COMAL-80 system for a new program.

Syntax:
NEW

Executions
The internal pointers are initialized, except the system
variable *TAB’.

Example:
NEW

Comments:
1. The 'NEW’ command should always be used before making a
new program.
2. Also see note 2 to the 'ENTER’ command.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e s e 2 e et vm s s ey 1oon o ne < e s S i ier o anee v e

NOT
Type:
. Logic operator.
uyuun1llFnuunnﬂm-nanu-uunn--wnv—wv (n?
Purpose:
To negate a logic value

Syntax:
NOT (expression)

Executiont
The logical value of (expression) is negated.

A S I PSR Example?
100 IF NOT ERR THEN EXEC READ_OK

(Comments:
1. The operator has the following truth table

{(expression) result
t rue false
false true

T L T 5 B B ARt 8 i b sl

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o g s o m i et e e e e g T g Wb S Tt o e g e T A < et © S 8 L A by gty aom A g i <o e Semn @

PABE 2-065

AR AL G T TN BT 1 RN ASBISINSA n Si ON RN 2

ON GOTO ON GOSuB PAGE 2-066

Type:
Statement

Purpose:
From the value of an arithmetic expression to choose one
line number out of many.

Syntaxt

ON (expression) GOTO (list of line numbers)
ON (expression) GOSUB (list of line numbers)

Execution:

{expression) is calculated and rounded to integer
necessary. Within (list of line numbers) the corresponding
line number is chosen. {(expression)=1 corresponds to
first line number from the left: (expression)=2 corre-

sponds to the second line number from the left, estc.

Example:

10 INPUT "WRITE A NUMBER BETWEEN 1 AND 3 INCL: ": NUMBER

20 ON NUMBER GOTO 40,60,80
30 GOTD 10

40 PRINT "YOU WROTE 1*

S0 GOTO FINISH

60 PRINT "YOU WROTE 2"

70 GOTO FINISH

80 PRINT "YOU WROTE 3"

90 LABEL FINISH

Comments:

1. Contradictive to the *GOTO’ statement, names may not

used in the ON...GO0TO’ statement.

2. 1f the rounded value of (expression) does not fulfil the

inequality of:

1 (= (expression) (= jtems in (list of line numbers)
the statement is skipped and the program is resumed from

the next executable statement.

3. For ’ON...GOSUB’ statements each line number in (list of
line numbers) must be the first statement in a subrouti-

ne ended by a *RETURN’ statement.

Meeting this, the program execution resumes in the first

executable line after the *'GOSUB" statemant.
See also the *GOSUB’ statement.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

OPEN FILE PAGE 2-067

Type:
Statement, command

Purpose:®
To open a2 data file on the background storage.

Syntax:
OPEN FILE (file No.), (file name), (type) [, (record size)]

Execution:
For all ’'WRITE’ files it is checked whether the specified

(file name) is already on the background storage, in which
case the program execution is stopped followed by an error
message; otherwise the file is opened.

For ’READ’ and ’RANDOM® files it is checked whether the
(file name) is already on the back-up storage.

If not so, ’READ’ gives an error message, whereas at
*RANDOM’ the file is created. Then (file name) and (file
number) are coupled so that all references to (file name)
is done by (file number) until the file is closed by a
*CLOSE’ statement or command.

Examples:
100 DOPEN FILE 2, “TEST",WRITE
100 OPEN FILE 0O, "DK1:DARTA. RAN", RANDOM, 40

Comments:

1. {(file number) is an arithmetic expression which must
meet one of the following values O, 1, 2, 3, 4, 5, 6, 7,
8, or 9, after a possible rounding.

2. (file name) is a string expression. Please note that not
all operating systems allow that many characters in file
names. For example, CP/M allows only 8 characters, being
the reason why only B8 characters are transferred to the
diskette.

3. (type) specifies how the file is used. Following possi-—
bilities are at hand:

RERD Reads sequentially from the file
WRITE Writes sequentially in the file
RANDOM Reads and writes the file

COPYRIGHT (C) 1981 METANIC ApS DENMARK

et e e et S ot oAb o el

OR PAGE 2-068

Type:

5 ‘F, Logical operator.

Purpose:
Returns the logic 'OR’ between two expressions.

Syntax?
(expressionl) OR (expression2)

Executions

{(expressionl) and (expression2) are evaluated and if equal

to zero considered false, else true. The logic
then created.

Example?
(’ 100 IF END_DATA1 OR END_DATA2 THEN EXEC END_DATA
Comments?
1. The operator has the following truth table:
{expressionl) {(expression2) result
t rue true true
true false true
false true true
false false false

SN PRGOS TV WISl w4 | Wl

o gt e e s [U

COPYRIGHT (C) 1981 METANIC ApS DENMARK

*0OR?

is

Lot

B

ORD PAGE 2-069

Type:
Arithmetic function

Purpose:
To convert the first character in a string into its ASCII
number.

Syntax:

ORD((string expression})

Execution:
Returns the ASCII value of the first character in (string
expression).

Example:
10 DIM A% OF 1
20 INPUT As
I0 PRINT ORD(AS)

Comments:

1. The result is an integer and will be greater than or
equal to O and less than or equal to 2355.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e e e b R m st et e IS Vg S e T A

——

ouT

Typet

Purpose:

Syntax:

PAGE 2-070

Machine language function

To send a byte to a machine output port.

OUT (expressionl), {(expression2)

Execution:

The value of (expressionl) and (expression?) are evaluated
and rounded if necessary. The value of (expression2)
is send to the machine output port corresponding to
(expressionl).

(“ Example:
10 INPUT A

b

SN & i

s s

et A A S o

20 OUT 15,A

Comments:

1. The value of (expressionl) and (expression2) must be a
real or integer number greater than or equal to O and
less than or equal to 255.

2. Rlso see ’INP’,

COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE PAGE 2-071
Type:

mr_““ S— r., Statement, command
Purpose:

To advance the paper on a connected line printer to the top
of the next page.

Syntax:
PAGE

Execution:t
The line feed character (DAH) is transmitted to the line
printer until reaching the top of the next page.

e)
Examples:
(100 PAGE
PAGE
Comments:?

1. Page shift is controlled by a counter within COMAL-80.
Therefore, it is important that the paper is inserted
correctly in the printer, and is not fed manually.

2. This statement/command only works for the printer with
the device name *LPO:’ (or 'LP2’).

U RVIMSHCES A T R 0 e RS R kiR e, v 0 W s T bl

COPYRIGHT (C) 1981 METANIC ApS DENMARK

g e Tt e g e sy O by g e rdv s e ae - m el e m e mmwen s s s e en i Sp el n e meen et G w1 T e T T e T s St 17

PEEK

Type:

PAGE 2-072

Machine language function

Purpose:

Syntax:

Execution:

(‘ Example:

The value of
necessary. The value of the corresponding memory address is
returned.

To determine the value of a memory position determined by
an arithmetic expression.

PEEK((expression))

(expression) is evaluated and rounded if

10 DIM Bs OF 1

20 TRAP ESC-
30 EXEC GET_CHR_ESC (B$)

40 PRINT Bs

50 PROC GET_CHR_ESC(REF A$)

60
70
80
90
100
110
120
130
140
150

Comments:
1.

The value of

// GET KEYBOARD INPUT WITHOUT ECHO ON THE SCREEN
// THE *ESC’ KEY IS TREATED LIKE ANY OTHER
// CHARACTER,
// THE *TRAP ESC-’ STATEMENT MUST BE EXECUTED BEFORE
// THIS PROCEDURE 1S CALLED.
POKE 256, 255
REPEAT
IF ESC THEN POKE 256, 27
UNTIL PEEK(256) ()255
A% :=CHR$ (PEEK (256))

160 ENDPROC GET_CHR_ESC

{(expression) must be a real or integer

number greater than or equal to 0 and less than or equal

| C

R LT SUTE S 2 SR R e W

to 65535. The result will be of integer type and greater
than or equal to O and less than or equal to 255.
Also see ’POKE’

COPYRIGHT (C) 1981 METANIC ApS DENMARK

v T g T AT PP TS EO T mian = A1 ey st 41

POKE PAGE 2-073

Type:
r- Machine language function

' " Purpose:

To set the contents of a memory position determined by an
arithmetic expression.

Syntax:
POKE (expressioni), (expression2)

Execution:t
The value of (expressionl) and (expression2) is evaluated
and rounded if necessary. The contents of the memory
‘ R —— address corresponding to (expressionl) is set to the value

of (expression2).

(Example:

10 DIM Bs OF 1
20 EXEC GET_CHARACTER(EB$)

30 PRINT B$

10 PROC GET_CHARACTER(REF A$)

20 // GET KEYBOARD INPUT WITHOUT ECHO ON THE SCREEN
30 // THE *ESC’ KEY WORKS IN THE NORMAL WAY

40 POKE 256, 255

50 REPEAT

60 UNTIL PEEK(256) () 255

70 A$:=CHR$ (PEEK (256))

. 80 ENDPROC GET_CHARACTER

Comments:

1. The value of (expressionl) must be a real or integer
number greater than or equal to O and less than or equal
to 65535 and the value of (expression2) must be a real
or integer number greater than or equal to 0 and less
than or equal to 255.

2. Rlso see 'PEEK’.,

s i i i ot . s e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

POS PAGE 2-074

Types
Arithmetic function
Purpose!?
To determine whether one string is contained in another
and if so0, where it is placed.
Syntax?
POS((string expressionl), (string expression2))
Execution:
It is checked, character by character, whether (string ex-
pressionl) is contained in (string expression2). If it is,
the result of the function is an integer, stating in which
character position of (string expression2) that (string
(T* expressionl) starts.
Example:?
10 DIM As OF 25
20 DIM Bs OF 25
30 INPUT "FIRST STRING: “:As$
40 INPUT “SECOND STRING: “:B$
50 C#:=POS{A$, BS)
60 PRINT C#
Comments:

1. If (string expressionl) is an empty string, the function

returns the result 1.

2. If (string expressionl) is not contained in (string ex-

pression2), the function returns the result O.
3. The result of the function is always of integer type.

(' COPYRIGHT (C) 1981 METANIC ApS DENMARK

PRINT PAGE 2-073

Type:
' "~ Purpose:

Syntaxt

Statement, command

To display data on an output device.

PRINT [(list of expressions)]

Executiont
The (list of expressions) consists of variables, constants
and literals the values of which are output to the default
output device.

Examples:
100 PRINT “THE RESULT IS8: *:; A
(100 PRINT TAB(15); A, B

Comments:

1. The single elements of (list of expressions) are
separated by commas or semicolons. If two elements are
separated by a semicolon, the second element is printed
immediately after the first one, while a space is
inserted after an arithmetic expression. Separating two
elements by a comma the second element is printed at the
start of the next print-zone.

When loading COMAL-80 the width of the print-zones is

‘ set to O characters.

The width of the print—-zones may be changed by ’TAB:=
(arithmetic expression)’ executed as a statement or a
command for which (arithmetic expression) is rounded to
integer greater than or equal to O.
The rules for semicolon and comma also are valid after
the last element in (list of expressions), as the impact
is carried onto the first element of the next 'PRINT’

_ statement.
(When (list of expressions) ends without a comma or semi-
colon, the execution of the statement ends by a change

to a new line.
This also happens if (list of expressions) is omitted.
2. If the remaining space on the actual line is too short
to contain the next print element, it is printed from
~ the start of the following line.

- s (e U RS AR 2, el S

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o . - o ¥ N . e e e mite SRS A SR8 S e —e L K A o T S T A

PRINT FILE PRINT FILE USING PAGE 2-076

Type:

g Statement
. ryrronye » Qr-
' Purpose:

To write data in the ASCII format into a cata €ile.

Syntax:
PRINT FILE (file No.>', (rec. No.)>l:(list of expressions)

Execution:
The values of the expressions in (list of expressions) are
written in the file indicated by (file No.).

T SRS YR S=a Examples:
100 PRINT FILE O,RECND: A%, B, C+D

(100 DIM A% OF S
110 AS:="§#4, 44"
120 PRINT FILE T: USING "##.##": A, B, C~2
- 130 PRINT FILE 4: USING Ps$: D
~ s
Comments:

1. Before wmeeting the ’PRINT FILE (USING)’ statement, a
file must be opermed and connection between (file name)
and the (file No.) wused in the '"PRINT FILE (USING)’
statement must be establishked by the use of the ’®OPEN
FILE® statement or command, and <type *WRITE® or

* RANDOM™” .,
. 2. (rec. No.) is only stated for *RANDOM’ files and is an
: arithmetic expression which may be roundec %o integer if
necessary and which designates the number of the logical
record of the file, which is to be utilized.

3. (file No.} is an arithmetic expression.

4. The elements in (list of expressions) are separated by
commas or semicolons, similar to the syntax of *PRINT’
and ’PRINT USING’.

. r S. "PRINT FILE® and ’PRINT FILE USING' perform similar to

: 'PRINT’ and *PRINT USING’ the only difference being the
destination of the output.
The syntax for *PRINT FILE USING’ is obtained by substi-
tuting (list of expressions) in the above syntax with:
USING (string expression):(list of expressions)

6. During programming *FILE’ and °'#’ are interchangeable.
In program listings *FILE’ is used.

7. During programming ’*PRINT’ may be substituted by 3. In
program listings *PRINT’ is used.

AP R X TP ICPE S+ b A TP PRI TR DRI PR RV

COPYRIGHT (C) 1981 METANIC ApS DENMARK

A vy - —— A L o - v = —

" ' | r Purpose:

PRINT USING PRGE 2-077

Type:
Statement

To print text strings and/or numbers by use of a specified
format

Syntax:
PRINT USING (string expression):(list of expressions)

Execution?
The text string specified in (string expression} is trans—
ferred character by character onto the output device, as

D o string expressions and/or arithmetic expressions from (list

of expressions) are inserted where marked ’'#°.

(Examples:

100 PRINT USING "THE RESULT IS ###.##": A

10 DIM A$ OF 6
20 ASI="H#HE. 4"
30 PRINT USING As$: B

Comments:
1. The individual characters in (string expression) have

the following impact:

*#’ character position and sign.

'.” decimal point if surrounded by '#°.

'+’ preceding plus, when *#° follows immediately after.
=’ preceding minus, when ’#’ follows immediately after,
All other characters are transferred unchanged.

2. A format starting with *+’ will assign space for signs
and the sign will be printed for both negative and
positive values.

3. A format starting with "=’ will assign space for signs
but it will be printed for negative values only.

(4. For text strings a preceding *+’ or "=’ will be equal
to *#°,

S. If an arithmetic value contains too many digits to be
printed in the specified format, the position is filled
with *#’, If an arithmetic value contains more decimals
than specified in the format, a rounding is automati-

cally done.

6. Text strings always start at the very left within the
format. If a string is too long, the necessary nusber
of characters is deleted from the right. When a text
string is too short, the rest of the format is filled

with spaces.

PPIPIRAT, RS AT SRR L, B ot R

COPYRIGHT (C) 1981 METANIC ApS DENMARK

i

PROC ENDPROC CLOSED PAGE 2-078

Type:
——t—;—ﬁm—vv r- Statement

Purpose:
To define a sub-program (a procedure)

Syntax?
PROC (name) [[(REF) (variable) [{(dim)1] C[CLOSED]
ENDPROC {(name)

PSR TR
- Execution:
Meeting a 'PROC’ statement the program section is skipped
(up to and including the corresponding *ENDPROC’ statement,

and will be executed when the procedure is called by
a connected 'EXEC® statement, only.

Examples:
10 PROC ERROR(N#) CLOSED
20 GLOBAL CC#, ERR_, ERRORS#%
30 PRINT "##xxx"35PCS (CCH-9) ;""" :1N#
40 ERR_:=FNINCLUDE(ERR_,N#+1):; ERRORS#:+1
S0 ENDPROC ERROR
PROCEDURE HEADINGS ONLY:

. 1 10 PROC XYZ(A,B,REF C$) CLOSED

10 PROC ZYX(REF A#(,,), REF C(), D%)
10 PROC YZIX(REF D$(,,), REF E#, REF C) CLOSED

Comments:

1. The 'PROC’ statement may not be used within the follow-
ing statements:

- Conditional statements

'CASE’ statements

Repeating statements

'PROC’ statements

Function declarations

2. A procedure may call other procedures, and even itself
{recursion).

3. {variable) contains the names of the formal paramseters
which, when called by the procedure, will receive values
from the actual parameters in the corresponding ’EXEC’
statement.

C

L R R R aras -

COPYRIGHT (C) 1381 METANIC ApS DENMARK

o gy o e e P ST oo

E

&i’.’.‘w&ur{"z'n.. .

o

QuIT PAGE 2-079

Typet
Statement, command

Purpose:
To stop the COMAL-B0 interpreter and return to the environ-
ment which called it.

Syntax:?
QuIT

Execution:
Under CP/M, a warm boot is performed, thus transferring
control to the CCP.

Examples:
100 QUIT
QUIT

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e .o e . [—

RANDOM RANDOMIZE PAGE 2-080

Type:

' « Purpose:

Syntax?

Statement, command
To set a random startpoint for the *>RND* functon.

RANDOM
RANDOMIZE

Execution:
A Z-80 CPU has a built-in counter which is read and the
found value is used as the seed for the algorithm presen-
" ting a random value at the call of the *RND” function.

Examples:
100 RANDOM
RANDOM

Comments:

1. *RANDOM’ and ®*RANDOMIZE® are interchangable. In program

listings *RANDOM’ is used.
2. The counter works constantly when the the CPU is active.
Its clock frequency is around S00 KHz when the CPU

. clock frequency is 2.5MHz.
3. If RANDOM’ is not found in a program calling the ’RND’
function, any execution of the program will give the

. same sequence of random numbers.

("' COPYRIGHT (C) 1981 METANIC ApS DENMARK

e vy = b e sy e e S e - . e e e e m simLe e ———————_ s AR s .

R R aE

P e

RERD PAGE 2-081

Type:
Statement

Purpose:
To assign values from the data list to variables.

Syntax:
READ (variable list)

Execution:
The single elements of (variable list) are assigned values

from the data list. This is done in sequence from left to
right.

Examples:
10 DIM FIRST_NAMES OF 10
20 DIM FAMILY_NAMES OF 10
30 DATA "JOHN", "DOE», 10
40 READ FIRST_NAMES, FAMILY_NAMES
S0 PRINT FIRST_NAMES$+" "+FAMILY_NAMES$
60 READ AGE
70 PRINT AGE: "YEAR"

Comments:
1. If the type of value does not correspond to that of the

stated variable or if the data list is empty, the pro-
gram execution is stopped followed by an error message.
2. Assigning values to a string variable, follows the same
rules as given for 'LET’ statements.
3. Also see the 'DATA’ statement.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e

0o 8 2 TE R e I

READ FILE PAGE 2-082

Type:
Statement

Purpose:
To read data from a binary datafile written by the *WRITE
FILE® statement.

Syntax:
READ FILE (file No.) [, (rec No.)>):(variable list)

Execution:
The values of the variables in (variable list) are read
from the file contained in (file No.).

Examples:
100 READ FILE S, REC_NO: A
100 READ FILE 3: A, B, C

Comments:

1. Before meeting the °’READ FILE’ statement a file must be
opened and the comnection established between the stated
file name and the used (file No.) of the 'READ FILE’
statement. This is done by the *OPEN FILE’ statement or
command and type *READ’ or *RANDOM’.

2. The (rec No.) is only used in ’RANDOM’ files and is an
arithmetic expression which is rounded to integer if
necessary.

3. (file No.)> is an arithmetic expression.

4. (variable list) may contain all variable types. Arrays
are read in total if no indices are stated.

5. The elements of (variable list) are separated by commas.

6. During programming *FILE’ and '#° are interchangeable.
In program listings FILE’ is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e e e s e e ————— 1 ———

y el AR g NTCPE b f Tl AT L ke

RELEARSE PAGE 2-083

Type:
Statement, command

Purpose:
To check that all disk files are closed.

Byntax:
RELEASE [(device)l

Execution:
It is checked whether all disk files are closed.

Examples:
100 RELEARSE ""
100 RELERSE "DK1:"
100 RELEASE "DK"+DISK$+":"
RELERSE
RELEASE DK1:

Comments:
1. Under CP/M, the (device) indication is not used, but if
it is given, it must be the name of a disk drive.
2. If a disk file is open the execution is terminated and
an error message displayed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

REM a4 ! PAGE Z-084

Type:
Statement

Purpose:
To allow for insertion of explaining text in a COMAL-80

program.

Syntax:
//
REM
)

Execution:
The ’'REM’ statement is skipped during program execution.

Examples:
10 //PROGRAM TO CALCULATE

20 REM POLYNOMIAL

30 ! 30/10/1980
40 OPEN FILE 4,6 "TEST”,READ //OPEN DATA FILE

Comments:
1. During programming ’'REM’, °//°, and '!’ are inter-
changeable. In program listings ’*//’ is used.
2. All statements can be followed by a comment.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

4 I P RN L SR PR

T LTI o s 1

RENAME PAGZ 2-08%

Type:

Statement, command
Purpose:

To change the name of a file on the background storage.
Syntax:

RENAME (old file name), (new file name)

Execution:
The operating system of the computer is called and parame-

ters for 'old name’ and 'new name’ are used.

Examples:
220 RENAME "DK1:FIL.CML", “DK1:FIL.BAK"

RENAME DK1:FIL.CML,DK1:FIL.BAK
RENAME FIL.CML,FIL.EAK

Comments:
1. {(old file name) must be one existing on the stated

device.
2. If no device is stated the statement/command is carried

out on the current default device.

3. If the (new file name) is alreacy present, this is
reported and the statement/command is terminated.

4. 1f a device description is contained in one of the names
the same device indication wmust be part of the other

name.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

ey e A ee e am ympe e O Cp———T—— = o Yy st s,

RENUM RENUMERER PAGE 2--GB6

Type:
Command

Purpose:
To renumber program lines and move areas of programs.

Syntax:
RENUM [[(start line):(end line),l(start) [, (step’]]

Execution:
I1f only an area of a program is to be renumbered it is
checked whether there is sufficient room between the two
line numbers before and after the place of the new numbers.

If not, the execution is stopped followed by an error mes—

sage.
g If there is room enough, the new line numbers are calcu-
lated and stored. The program is checked and all referen-

ces (*GOTD’, *GOSUE’, etc.) are updated.
Finally, the old line numbers are celeted.

Examples:
RENUM
RENUM 15
RENUM 15,3

- RENUM Z0:90, 310, 1

Comments:

1. If (step) is not stated, default 10 is used.

2. If (start) is not stated, default 10 is used.

3. (start line) and {end line) are used when only a section
of a program is renumbered and specifies the first and
last line number to renumber. In this case (start} spe-
cifies the first new line number and (step) the new step
between line numbers. In this way a program section op-
tionally can be moved to any place in a program, if
there are enough free line numbers, starting in (start)

‘r> and using the indicated (step), before the next original
line number, to contain the program section. No overwri-
ting and no mixing can take place.
4. If (start line):{endline), is not stated the total pro-
gram is renumbered.

I RS e T il

COPYRIGHT (C) 1981 METANIC ApS DENMARK

! REPEAT UNTIL PAGE 2-087

Type:

e " pers ; 2
. r Purpose:

Statement

To repeat the execution of a program section until the
condition contained in the "UNTIL’ statement is fulfilled.

Syntax:
REPEAT

UNTIL (logical expression)

TR IR
Execution:
) Meeting the *UNTIL’ statement the value of the (logical
(expression) is calculated. If this is true, execution
resumes from the first executable statement following the
PUNTIL’ statement. If the (logical expression) is false the
program continues from the first executable statement
following the ’'REPEART® statement.
Example:
10 DIM A$ OF 1
— 20 DIM B$ OF 25
30 PRINT "THE PROGRAM IS STOPPED BY"
40 PRINT "PRESSING THE *ESC® KEY"
S0 TRAP ESC-
. 60 REPERT
70 INPUT "WRITE A LETTER: ": fS,
e BO B$:i=BS+As
- R ' 90 UNTIL ESC
o 100 PRINT "YOU WROTE: "; B¢
,‘; Comments:
R 1. A program section surrounded by ’REPEAT... UNTIL' is
~ (executed at least once.
AN (i . Wdhh s R S b — P DL

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

Nl R L WA gt A i

o U T A b e o P

RESTORE PAGE 2-088

Type:
Statement

Purpose:
To move the pointer of the data list, enabling a total or
partial re-reading of the data list.

Syntax:

RESTORE (line number)
RESTORE (name)
RESTORE

Execution?
The pointer of the data list is set on the first constant
in the stated line, or the first constant at all if no line
is specified.

Example:

10 LABEL AGAIN
20 RESTORE DATRZ
30 READ X

40 PRINT X

S0 DATA 47

60 RESTORE S0
70 READ X

80 PRINT X

90 GOTD AGAIN
100 LABEL DATAZ2
110 DATA -47

Comments:

1. If the *RESTORE’® statement contains a line number, the
corresponding line must contain a *DATA’ statement.

2. If the "RESTORE® statement contains a name, the state-
ment immediately following the label statement defining
that label must contain a *DATA’ statement.

3. If the °'RESTORE’® statement contains neither a line
number nor a name, the pointer is set on the first
constant of the first 'DATA’ statement.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

i e i e e i N S T A § 52 R oy g TP AL AR e SRR S e peRn 1 07 e g s e v—

e USRI NAGT ae fler

RND PRGE 2-089

Typet

Arithmetic function.
Purpose:

To create a pseudo-random number.
Syntax:

RNDIL ((expressionl), (expression2))]

Execution:
Based on the seed (which can be changed by the ’RANDOM’
statement /command) or the latest random number, a new is
generated.

Example:
100 A:=RND
100 B:=RND(-5,17)

Comments:

1. Any execution of a program will give the same sequence
of random figures unless a *RANDOM’ statement has been
executed earlier in the program.

2. Dmitting the two limits {(expressionl) and (expression2)
a random real figure is created in the open interval of
0 to 1

3. If (expressioni) and/or (expression2) is not an integer,
rounding is done.

4. If limits are stated, the result will always be an inte-
ger in the closed interval from {(expressionl) to
{expression2).

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e e S i S B TR g e+ e b 15 ey g g L e e o v——— v =, v A - e A - A et —

PAGE 2-090

To convert an expression of real type to integer type.

ROUND
Type:
Arithmetic function
Purpose:
7 Syntax:

ROUND ({@expression))

Execution:
{(expression) being arithmetic is
converted to integer type.

P e

S

COPYRIGHT (C) 1981 METANIC ApS DENMARK

rounded

The

and the result

integer. If the nusber

functions.

e w Example:®
10 INPUT A
20 B#:=ROUND (A)
(30 C:=ROUND(R)
40 PRINT B#, C
S50 PRINT ROUND(S.72)
60 PRINT ROUND(-5.72)
Comments:
1. Rounding is done to the nearest
has the same distance to two integers, the
- highest absolute value is chosen.
2. (expression) is of real type.
type. Note that an integer can be
variable.
. 3. Also see the *INT® and ’TRUNC’
AL 2 S R T vt TR AR e i MY Wty e e e

assigned

one with the

result is of integer
to a real

© v e e — - erg—~

RUN PAGE 2-091
I Type:
_ " —_— (“, Command
‘“) Purpose:
To start the execution of a program.
Syntaxs
RUN [(line number)]
Executions
COMAL-B0 is brought to a well-defined start position which
among others, closes all files left open from a possible
previous execution and initializes the variable area.
' Thereafter, a special prepass checks whether the program
contains structures (FOR...NEXT, LOOP...ENDLOOP, etc.) and
‘r- references (EXEC, LABEL, etc.) and the internal representa-
tion of such statements is extended by information increa-
sing the working speed.
Finally, the program execution is started at the stated
line number.
Examples:
RUN
RUN 230
-r
Comments:

Vi RN e A S N s kL N Bt i s A

i. Omitting (line number) the program starts at the lowest
line number.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

. .
- e e £ g -t e A M - B B A e

SAVE PAGE 2-092

Type:

r' Command
s Purpose:

To store programs on the background storage in the internal
(binary) format as that of ¢the program in the working
storage of the computer.

Syntaxt
SAVE (file name)

Execution:
The operating system of the computer is called giving
information on (file name) and the area of the storage to
be transferred.

(Examples:
SAVE TEST

SAVE DK1:TEST

Comments:
1. Enabling a program to be called by the *CHRIN' state-
ment it must be stored by the 'SAVE’ command.
2. Programs stored by the °'SAVE' command may be re-read
" - by the *LOAD’ command.
3. The internal format wmay be different on the various
versions of COMAL-80. Consequently, a program cannot
. always be stored by the *SAVE’ command in one version
and read by the 'LOAD’ command in an other version.
Programs to be exchanged or stored for longer periods of
e e e e e i i e time should therefore be stored by the *LIST’ command.
4. 1f (file name) is already on the device in question this
is reported and the user receives the option to continue
and have the old file deleted, or stop (’RETURN/ESC’).
5. The extension '.CSB’ is always supplied by the COMAL-80
system and cannot be stated by the user.

ot oS AR e L3 ENN A DA S i, i 1 o

COPYRIGHT (C) 1981 METANIC ApS DENMARK

Y S o

SELECT OUTPUT PASE 2-093

Type:
Statement, command
Purpose?
To specify a new default device/file for printout from the
*PRINT® and 'PRINT USING’ statements.
Syntaxi
SELECT OUTPUT (string expression)
Execution?
Internal pointers in the COMAL-80 system switch to select
the specified printout device/file.
Examples: :
220 SELECT OUTPUT *LPO:"
220 SELECT OUTPUT “DK1:TEKST"
220 SELECT OUTPUT "TEKST"
220 SELECT OUTPUT "DS:"
SELECT OUTPUT *“LPs™
Comments:

i. Every time the program execution is started by the
RUN’ command the console is chosen as default output
file.

During program execution a new default file may be cho-
sen by specifying the name of the peripheral or a file
by (string expression).

When program execution is terminated, either because it
is stopped by pressing the "ESC’ key, or because it is
finished, the terminal is again chosen as default output
file.

COPYRIGHT (C) 1981 METANIC RpS DENMARK

e R Y

SGN PAGE 2-094

Type:

Arithmetic function
Purpose:

Returns the sign of an arithmetic expression.
Syntax:

8GN ((expression))

Execution:
{(expression) being arithmetic is calculated. If the result
is greater than O the function returns the value 1. If the
result equals O, O is returned, and if the result is less
than 0, -1 is returned.

Examples?
10 INPUT "WRITE A NUMBER: ": A
20 ON SGN(A)+2 GOTD 30, 50,70
30 PRINT "A(O"
40 STOP
50 PRINT "A=0"
60 STOP
70 PRINT "A}O"
80 STOP

COPYRIGHT (C) 1981 METANIC ApS DENMARK

.
l. -
S
.
Lot
. . .7 ’
R ,
. U 4 Gl
BN
. . .)
PR N
N
"
.
oo
AR X T T L e G A5 Tt T e T) B e

USRSV SR

i

SIN PAGE 2-095

Type:
Trigonometric function

Purpose?
Returns the sine of an expression.

Syntax?
SIN((expression))

EXECUTION:
The sine of (expression) for which (expression) is in radi-
ans is calculated.

Examples:
10 INPUT A
20 PRINT SIN(A)

Comments:
1. (expression) is an arithmetic expression of real or
integer type. The result will always be real.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

s i A - ——— e — ———

SR s Y Mol YRN N el g LA

SIZE PAGE 2-096
Type:
Command
Purpose:
To display the size of the used area of the working storage
of the computer.
Syntax:

S1ZE

Execution:
The amount of working storage used is displayed on the
terminal as well as how much space is left, and how much is
used for variables.

Example:

S812E

Comments:

1. The figures displayed indicate the number of bytes.

2. The space consumption for variables is not valid before
program execution, and is stated only for variables
dimensioned or in use during the latest execution.

3. The size of COMAL-B80 is not displayed.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e
.)

P el

"

:

m—

T N R R IREE.

AT g R o ¢

SPCs PAGE 2-097

Type:

r.‘ String function

Purpose:
To create a string consisting of spaces, the number of
which is stated by an arithmetic expression.

Byntaxt
8PCS ((expression))

Execution?
{expression) being arithmetic is calculated and rounded
if necessary. Then a string containing that number of
spaces is created.

Examples
10 INPUT A
20 PRINT SPC$(3#5),A

Comments?
1. {(expression) must be greater than or equal to O.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

S o - ey A oA Yt s e T ———n vy~

3 S

(

SGR PRAGE 2-098

Type:
Arithmetic function

Purpose:?
To calculate the square root of an arithmetic expression.

Syntaxt
SQR((expression})

Executiont
The square root of (expression) being greater than or equal

0O is calculated.

Example:
10 INPUT A
20 PRINT SQER(A)

Comments:

1. {(expression) being arithmetic is of real or integer
type. The result will always be real.

2. 1f (expression) is less than O the execution is stopped
followed by an error message. If these are inhibited by
the *TRAP ERR-’ statement the system variable 'ERR’ is
set true (not equal to O0) and the square root is calcu-
lated from the expression:

SQR(ABS ((expression})

COPYRIGHT (C) 1981 METANIC ApS DENMARK

§TOP PAGE 2-099

Type:

w, . e rp Statement
Purpose?

To stop the execution of a program.

Syntax:
sTOP

Executiont
The program execution stops and the following is displayed
on the screent

STOP IN LINE nnnn

(in which nmnn states the line number of the °*STOP’ state-
ment.

Example:
540 STOP

Comments:
1. The 'STOP’ statement is normally used to stop the
execution of a program in other lines than the last.

2. The program execution may be resumed by using the *CON’
command.

i COPYRIGHT (C) 1981 METANIC ApS DENMARK

g 4 e - S - . Y 12 1 e S O AT <

i b (K

STR$

Type:
8tring function

Purpose!

PAGE 2-100

To convert an arithmetic expression into a string.

Syntax?
STR$ ((expression))

Executiont

The arithmetic expression is calculated
string containing the characters which would be

the value were printed by a ®PRINT’

Examplet
10 DIM Bs OF 7
20 INPUT "WRITE A NUMBER": A
30 B$:= STRE(A#1.5)
40 PRINT B$

COPYRIGHT (C) 1981 METANIC ApS DENMARK

statement.

and converted to a

output if

D e

| ' o | r! Purpose:

TAB PAGE 2-101

Type:
Command, statement, (system variable)

To establish a nrnew print-zone width by assigning this
value to the system variable *TAB’.

Syntax:
TABt=(arithmetic expression)

Executiont
The system variable 'TAB' is assigned the value of
{(arithmetic expression) which is rounded if necessary.

NN W
Examples:?
(100 TAB:=8
100 TAB=X#Y+3
TAB=12
Comments:®
i. Loading COMAL-B80, 'TAB’ is assigned the value of 0. This
value can be changed only by the use of a "TAB’ state-
ment or command.
2. It is not possible to read the value of *TAB’.
3. The *NEW’ command does not change the value of the
system variable *TABR’.
4. See ’PRINT’
5. During programming =" and =" are interchangeable. In
program listings *:=" is used.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e s T oo o o < 1% 5 i3 ot cmie % e s g% e et e mee emeames e san e e sy A A . . - -

TRE PAGE 2-102

Types

S -~ (n- Print function
3 Purpose:

In commection with a *PRINT’ statement to tabulate to the
character position before the next printout.

Syntax:?
TAB({expression))

Execution:
The arithmetic expression is calculated and if necessary
rounded. The result defines the start position of the next
printout.

> Example:
100 PRINT TARE(10), "THE RESULT IS: ", RESULT

Comments:
1. TAB((expression)) can be used in connection with 'PRINT’
statements only.
2. {(expression) it an absolute value counted from the left
side margin of the output unit.
3. If the last printout before the 'TAB((expression))' has

passed the specified position, the program execution is
stopped by an error message.

4. (expression) being arithmetic must evaluate to a value
greater than or equal to 1 and less than or equal to the
maximum number of characters allowed in the width of the
output device.

o o s A

COPYRIGHT (C) 1981 METANIC ApS DENMARK

rro— - . . B R . - e - P —

R

TAN PAGE 2-103
Type:

Trigonometric function

To calculate the tangent of an arithmetic expression.

Syntax:
TAN({(expression))

Execution:s
The tangent of (expression) which is in radians is calcu-

lated.

e e e e ExampllS

10 INPUT A
20 PRINT TAN(R)

Comments:
1. (expression) being arithmetic is of real or integer

type. The result will always be real.

PR T R L R WC By v | B Tl il

- COPYRIGHT (C) 1981 METANIC ApS DENMARK

FAA A ol 1 WAL s e P AL b L e e N e e,

C

TRAP ERR

TYPE:

Purpose?

PABGE 2-104

Statement, command

To change the normal system action on a non-fatal error.

Syntax:
TRAP ERR-
TRAP ERR+
Executiont
During a normal program execution, any error will stop the
program and create an error message. However, a number of
errors can be bypassed in a well-defined mammer.
In such cases a program interruption may be avoided by the
use of a *TRAP ERR-’ statement, before the error arises. In
this case, the system variable *ERR’ will be assigned a
value equal to the error number, which in all tests will be
considered true because it is different from O. The program
execution will then continue.
Example:
10 INIT "", FILENAMES
20 TRAP ERR-
30 OPEN FILE O, "XPLOCOMM", READ
40 TRA? ERR+
S0 IF NOT ERR THEN
€0 INPUT FILE O: DEFAULT_FILENARMES
70 ELSE
80 DEFAULT_FILENAMES:="XPLOPROG"
90 ENDIF
100 CLOSE
Comments:

1. The execution of a program starts by assigning the value
of false (= 0) to the system variable ‘ERR’. Whan a
'TRAP ERR~’ statement has been executed, a non-fatal
error assigns its error number to "ERR’ and it retains
this value until its status is checked. Immediately
after a such check, ’'ERR’ is assigned the value of
false.

Normally COMAL-80 sets a variable true by assigning it
the value of 1, but in this case the error number is
used.

The error numbers are further described in appendix C.

2. By executing a *TRAP ERR+’ statement, the system returns
to normal error handling.

(” COPYRIGHT (C) 1981 METANIC ApS DENMARK

UG It

ORI A SR bbb

TRAP ESC PABE 2-105

TYPE:
Statement, command

Purpose?
To change the system action to a press on the "ESC’ key.

Syntax:
TRAP ESC-
TRAP ESC+

Execution:
During normal program execution it is checked, before each
statement, whether the *ESC’ key has been pressed. In the
affirmative the program execution is stopped.
If a "TRAP ESC-’ statement has been executed, this function
is blocked and the system variable *ESC’ is instead assig-
ned the value of true (= 1) when "ESC’ is pressed.

Example:
10 TRAP ESC-
20 REPEAT
30 PRINT "THE *ESC® KEY 1S NOT PRESSED"
40 UNTIL ESC
S0 TRAP ESC+
60 PRINT "THE *ESC’ KEY WARS PRESSED"

Comments:

1. Starting program execution the system variable ‘ESC’ is
assigned the value of false (=0). 1If a ’TRAP ESC-’
statement is executed and the ’ESC’ key pressed after
that, the program execution continues but the system
variable "ESC® is assigned the value of true (= 1) and
keeps this value until its status is checked.
Immediately after the value is wused, ’ESC’ is again
assigned the value of false (= 0).

2. The system returns to normal handling of the ESC’ key
when a "TRAP ESC+’ statement is executed.

COPYRIGHT (C) 1581 METANIC ApS DENMARK

- — o e R0 AR AR o2 R e e ——

TRUE PAGE 2-106

Typet
System constant

Purpose!?
Mainly to assign a boolean variable the value of true.

Syntaxt
TRUE

Execution?
Returns the value 1.

Example?

10 // PRIME
20 7/

30 DIM FLAGS#(0:8190)
40 SIZE1:t=8190

S50 /7

60 COUNT:=0

70 MAT FLAGS#:=TRUE

80 //

90 FOR 1:=0 TO SIZE1 DO
100 1IF FLAGS#(I) THEN
110 PRIME:=I+I+3
120 Ki:=I+PRIME
130 WHILE K(=SIZE1 DO
140 FLAGS# (K) t=FALSE
150 K:+PRIME
160 ENDWHILE
170 COUNT 1+
180 ENDIF
190 NEXT 1
200 PRINT "TOTAL NUMBER DF PRIMES: ", COUNT

CORPYRIGHT (C) 1981 METANIC ApS DENMARK

——

) o e AN AR 0 DL AP ol

C

TRUNC PAGZ 2-107

Type:
Arithmetic function

Aurpose: .
To convert an expression of real type to an integer.

Syntax:
TRUNC ({(expression))

Execution:
(expression) being arithmetic is evaluated and the result

converted to integer type while disregarding any decimals.

Examples:
100 A=TRUNC(S5.72)
100 A:=TRUNC(A/R)

Comments:
1. (expression) is of real type.
The result is of integer type.

2. Also see the "ROUND’ and *INT’ functions.

COPYRIGHT (C) 13981 METANIC ApS DENMARK

e e e A A Pt e = e ———————p—

VX il i B KR, A S T P e e

soreme e v, . e

UNIT PAGE 2-108
Type:
Command
Purpose:
To assign the background storage device which will be con-
sidered the default device.
Syntax:

UNIT (device)

Execution: .

The internal pointers are updated to point at the stated

device.

Examples:
100 UNIT “DKi:"
UNIT DK1i:
Comments:

1. {(device) is stated as 2 letters, describing the type of
background storage device, followed by the unit number
and a colon.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

R —— -

e i ak

VAL PAGE 2-109

Type:
String function.

Purpose:
To convert a real number of string type to a number of real

type.

Syntax!
VAL ({(string expression})

Execution:
The real number in (string expression) is converted to a
number of real type.

Example:
10 DIM As OF S
20 A$:="32.34"
30 PRINT VAL (AS)

Comments:

1. 1f (string expression) does not contain a well-formed
real or integer number, the program execution is stopped
with an error message.

2. Also see the *IVAL’ function.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

C

("

VARPTR PRBGE 2-110

Type:
Machine code function.

Purpose:
To find the absolute address in the memory at which a
variable is stored.

Syntax:
VARPTR ({(variable))

Execution:
The decimal, absolute address in the memory, in which the
first byte af the variable (variable) is stored, is found.

Example:
10 INPUT A
20 PRINT VARPTR(A)

Comments:

1. The result states where the first byte of the variable
is stored. The remainder of the bytes are on the
locations following.

Integers take 2 bytes of which the lower part of the
number is first.

Real numbers take 4 bytes in the 7-digits version.

Real numbers take 8 bytes in the 13-digits version.

For string variables the first 2 bytes state the length
and the string is then stored consecutively.

2. The result is of real type.

3. The variable may be an array with or without indices. If
no indices are stated, the address of the first element
of the array is delivered.

4. WARNING: In one situation a variable is moved after it
has been allocated storage, thus changing its address.
This occurs upon exit from a non-closed procedure to
all variables that have been encountered and allocated
storage for the first time during the current call of
the procedure.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

o,

——

|
et Bhlcan ISR Ol S RS SRS L DR AR S s e

WHILE ENDWHILE PAGE 2-111

Type:
Statement
Purpose:
To repeat the execution of a program section until the
condition contained in the WHILE® statement is fulfilled.
Syntax?

WHILE <(logical expression)

ENDWHILE

Execution?
Meeting the "WHILE® statement the value of the (logical
expression) is calculated. If ¢this is true, execution
resumes from the first executable statement following the
'WHILE® statement. If the (logical expression) is false the
program continues from the first executable statement
following the *ENDWHILE’ statement.

Example:
10 OPEN FILE O, "DATA", READ
20 WHILE NOT EOF(0) DO
30 READ FILE O: INDEX, NUMBER#, TEXTS$
40 ENDWHILE

COPYRIGHT (C) 1981 METANIC ApS DENMARK

WRITE FILE PAGE 2-112

Type:

r Statement

Purpose:

To write data in the binary format into a data file.

Syntax?
WRITE FILE (file No.) [, (rec. No.)l: (variable list)

Executiont
The values of the variables in {(variable list) are written

in the file contained in (file No.).

L R
Examples:
. 100 WRITE FILE 7,REC_NO: A, B, C
(100 WRITE FILE 3: As, B#, C
Comments:
1. Before meeting the *WRITE FILE' statement, a file must
be opened and conmection between (file name) and the
(file No.) used in the ’WRITE FILE’ statement must be
established by the use of the 'OPEN FILE’ statement or
command, and type *WRITE’ or *RANDOM’.

w— 2. (rec. No.) is only stated at ’RANDOM’ files and is an
arithmetic expression which may be rounded to integer if
necessary.

. 3. (file No.) is an arithmetic expression.
4. (variable list) may contain all variable types. If an
array variable is stated without indices, the whole
e o array is written.
S. The elements in (variable list) are separated by commas.
6. During programming "FILE® and '#° are interchangeable.
In program listings *FILE’ is used.
o L n AT N i I Y e BN T e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e S 1 Y 430 LB 2SSy e s 65 e
. e g st s e e e e i s E [

APPENDIX A PAGE R-001

MODIFYING COMAL.-80

" ' o T v r‘ COMAL-80 is a very interactive program in the way that it tries to
help the user to a correct program by displaying error messages and
moving the cursor to points, where there are problems. It is there-
fore necessary that the connected terminal supports functions like
*erase to end of line’, ’erase to end of screen’, cursor addressing
and a few more.

Unfortunately, the specifications for CP/M do not include a de-
scription of how these functions should be implemented and many
different methods are used.

L S ST S d To overcome this problem, the source code for the screen driver is
shown in appendix B, and it will normally be possible tc change
(- this driver, so that most CRT-terminals can be used.
1t is not recommended to use printing terminals like teletypes.

The necessary changes normally are very easy to do in a few minutes
by replacing contrcl characters in a table with the actual ones.

STEP BY STEP GUIDE.

' 1. Make a copy of the received disk, remove this disk from the
computer and store it in a safe place. Remember, that your
warranty is carried by this disk only.

. 2. Read the source code for the screen driver and this guide care-
fully.

X. Read the manual for the actual terminal and check whether it
supports the functions mentioned in the table defining the con-
trol characters.

If it does, you are in for an easy job. Carry on.

(If it does not, go to step 13.

4., Go to your computer and use DDT to make the necessary changes.
Depending on which version you want to change, enter

DDT COMAL-80.COM or
DDT COMALBO0S. COM or
DDT COMALBOD.COM or

DDT CMALBODS. COM

and remember which version you are working on.

A i N R ok B0, BTSN s L e L AR i

COPYRIGHT (C) 1981 METANIC ApS DENMARK

> e ¢ AP 7B B 1 e i 4 TARLA AT TN S e e et e SO R 2 AN 7 e e e e . e e o e g U e e

PAGE A-002

Check whether the actual control characters the terminal wante,
are the same as those shown in the control-character table
placed in the hexadecimal addresses 1SC7H to 15DZH.

If they are, go to step 6.
If not, replace the old ones by the new ones.

Place in address 15D3H the hexadecimal number of characters per
line and in address 1SD4H the hexadecimal number of lines on
the screen. The original values in those two places are 284 and
18H.

Check, that the cursor address routine called 'GOTOXY' and
placed in adresses 174FH to 1768H works in a way, that the
actual terminal wants.

*GOTOXY’ firstly sends an *ESC’ character, then a ’=", then the
line number and last the character number adding hexadecimal
Z0H to the latter two.

If the terminal needs something else, change ’'GOTOXY' as neces-
sary. If the new routine is larger than the old one, place the
rest (or the whole routine) in the free space starting in
address 17EZH.

COMAL-80 expects that the terminal is eguipped with an "ESC’

key sending the hexadecimal code '1BH’., If this is not the cacse

with the actual terminal, change the following two places:
1894H and 1AC3H

to the new code or the code for a suitable key. This key is

very important as it stops everything and it is best to use a

key, which is easy to find without looking at the keyboard.

Ten other keys can be redefined. These are:

FUNCTION . ORIGINARL VALUE ORIGINAL CHARACTER
CURSOR RIGHT 1DH control)
CURSOR LEFT iCH control \
INSERT O1H control A
DELETE 13H control §
BACKSPACE O8H control H
CURSOR TO START OF LINE 15H control U
CURSOR TO END OF LINE OSH control E
CURSOR 8 STEP FORWARD O9H control 1
CURSOR 8 STEP BACKWARD 0ZH control E
DELETE TO END OF LINE OEH control K

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e oy + e 7 ey AT A B oo 3 AT i+ S 0 A A 9, 4 PO e < gy e e e san

..
s

ALADN, 1 At

‘ru

10.

11.

12.

C.

PRGE A-003

These functions can be related to new keys simply by inserting
the new code in the following addresses:

CURSOR RIGHT 1897H
CURSOR LEFT 1881H
INSERT 18ECH
DELETE 18B1H
BACKSPACE 192DH
CURSOR TO START OF LINE 195CH
CURSOR TO END OF LINE 1976H
CURSOR 8 STEP FORWARD 198EH
CURSDR 8 STEP BACKWARD 19BARH
DELETE TO END OF LINE 19E7H

These changes affect only the transmission from the keyboard to
the computer and have no influence on the transmission from the
computer to the screen.

If the terminal has more than 64 characters per line, the ’*CAT’
command should be changed to 1list four files per line by
changing addresses 142FH and 1464H to 04 instead of 02,

The last thing to do is to tell COMAL-80 how many disk drives
are connected to the computer. Do this by inserting the number
of diske minus one in address 145H. The original value in this
address is OiH which means that COMAL-B80 is prepared for 2
disks.

Press control-C and when CP/M has re—-initialized enter:

SAVE 155 COMAL-80.COM or
SAVE 110 COMALBOS. COM or
SAVE 156 COMALBOD. COM or

SAVE 111 CMALBODS. COM
depending on which version you worked on.

Terminals, which do not support cursor addressing or other
functions which COMAL-80 needs are a bit more complicated, as
some assembler programming will be necessary.

Do not try to do these changes unless you have a relatively
good knowledge of this special art.

Unfortunately, due to big differences in the way the various
terminals work, it is not possible to tell exactly how the
screen driver should be changed but it is possible to give sowme
guidelines.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

st or

0006

0001 3333553558533538533533333388885333533583383333383383333
0002 ;
0003 ; BCREEN DRIVER FOR COMAL-80 V 1.8
("‘ 0004 ; COPYRIGHT (C) 1981 METANIC ApS DENMARK
‘ ~ 0005 $333337555535535533553833533388335533535558388383383333%

0007

0008 ; .
0009 : ASCI1 NUMBERS OF SOME CONTROL CHARACTERS
0010 ; THESE CHARACTERS ARE USED INSIDE COMAL-B80 AND MUST NOT
0011 : BE CHANBED. THE ACTUAL KEYBOARD CHARACTERS DO NOT
0012 ; AFFECT THIS TRABLE.
0013 3535333333383 ssssssasssssssassssssissssisassissssssiss
0014 PSECT ABS
1582 0015 ORG 15B2H : VERSION 1.8 ONLY
0016 ;
e e et 001B 0017 ESC EQU 1BH : ESCAPE CHARACTER
000D 0018 CR EQU ODH s CARRIAGE RETURN
0008 0019 CLEFT EQU O8H : CURSOR:LEFT
(‘ 000C 0020 CRIGHT EQU OoCH : CURSOR RIGHT
000B 0021 CUP EQU OBH s CURSOR ‘UP
000A 0022 CDOWN EQU OAH : CURSOR DOWN
001E 0023 CHOME EQU 1EH : CURSOR HOME
O01F 0024 CLRLINE EQU 1FH : CLEAR REST OF LINE
001D 0025 CLRDISP EQU 1DH : CLEAR REST OF DISPLAY
001B 0026 LEADIN EQU 1BH : LEAD IN CHARACTER
0027
0028 ; VARIABLE ADDRESSES - THESE VARIABLES ARE PLACES IN THE
0029 ; SAME ADDRESSES AS THE INITIALISATION CODE.
0030]
‘ 0108 0031 CURSOR E@GU 108H : LOGICAL CURSOR ADDRESS
0032 + RELATIVE TO HOME POS.
0033 :
0034 1 ALWAYS = CHARND +
. 0035 s #CHRL IN#L INENO
010A 0036 CHARND EQU 10AH : X ADDRESS OF CURSOR POS.
0037 s IN RANGE O..#CHRLIN-1
T T 0108 0038 LINEND EQU 10BH s Y ADDRESS OF CURSOR POS.
0039 s IN RANGE O..#LINES-1.
0040 : HOME PDS. HAS LINEND=0O
0041
010C 0042 LASTWASPRINTABLE EQU 10CH : FLAG THAT TELLS IF THE
0043 s+ LAST OPERATION ON THE
0044 : DISPLAY WAS OUTPUTTING
(004% s A PRINTABLE CHARACTER.
0046 : CALLS OF ®MOVECURSOR’
0047 : ARE BLIND IN THIS
0048 : RESPECT.
010D 0049 LASTW1 EQU 10DH : TEMPORARY FOR .
0050 : 'LASTWASPRINTABLE’
0051
1CS5 0052 OPENMO EQU 1CSSH s VERSION 1.8 ONLY
184E 0053 CRTIN EQU 184EH : VERSION 1.8 ONLY
0005 0054 XBDOS EQU OSH
0055
0056

COPYRIGHT (C) 1981 METANIC ApS DENMARK

15B2
15BS
15B8
15BR
15BE
15C1
15C4

C3D5S15
C3D615
C3D715
C3EZ1T
Cl6917
C37R17
C3AR17

15C7
15C9
15CB
15CD

000C
000B
000A
001E

15CF
15D1
15D3
15D4

1B54
1B59
28
18

1305 C9

B

(" COPYRIGHT

0057
oosa
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0030
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

L R R R R R N
AR R R R R R R R R R R R R E R R A R R R R R R]

: THIS TABLE ESTABLISHES THE CONNECTION BETWEEN COMAL-80
: AND THE SCREEN_DRIVER.

1 IF THE SCREEN_DRIVER 1S CHANGED, THIS TABLE MUST BE

; CHANGED TOO, BUT THE REST OF COMAL-80 IS UNGFFECTED.

D

T3TIIIIIIIIIIIINIIINIIIIIIIINININIIIItIIIIIIIIIiiiia:
SETART k[XDSSTART

DSEND P XDSEND

CLRSCREEN Jp XCLRSCRE

CRTOUT P XCRTOUT

CHARIN) XCHARIN

MOVECURSOR JP XMOVECURSOR

PLACECURSOR K[XPLACECURSOR
TIIIIIIIIIIIIIIIIIIIIIIISIINIIIINIIIIItIIIIIIiIiiiiints
: THIS TRBLE DEFINES THE CONTROLCHARACTERS FOR THE SCREEN
: AS WELL AS THE SCREEN FORMAT.

:
33TITIIIIIIIIINII0505505055550535383585335535583333333
CORIGHT DEFB ' 00, CRIGHT : "CURSOR RIGHT

CUUP DEFB 00.CUP :+ CURSOR UP

CUDOWN DEFB 0O, CDOWN : CURSOR DOWN

CUHOME DEFB 0O, CHOME : CURSOR HOME

CLEAR DEFB LEADIN,’T’ : CLEAR REST OF LINE
CLEARD DEFB LEADIN.'Y’ : CLEAR REST OF DISPLAY
#CHRLIN DEFB 40 : CHARACTERS PR LINE
#LINES DEFB 24 : LINES PR PABE
TIIIIIIIIIIIIIIIIININIIITTSISIIIIIIIIiIiNiiiiainiss
: PROCEDURE DSSTART INITIALISATION PROCEDURE

: ND INPUT, NO OUTPUT

: FUNCTION:

: INITIALISATION FOR THE CRT DRIVER.

; USED AT START-UP TIME ONLY

:
TIIISIIIIIIIINIIINIIINIIIINITIIIIIIIItItIIIIIIINIIIsiIee
XDSSTART! RET

(C) 1981 METANIC ApS DENMARK

PAGE B-003

FINALISATION PROCEDURE

PROCEDURE DSEND

LT R YTy

: NO INPUT, NO OUTPUT

C

FINARLIZATION FOR THE CRT DRIVER

FUNCTION:

USED IN CLOSING DOWN THE COMAL SYSTEM.

0121

RET

0122 XDSEND:

15p6 C9

" CLEAR SCREEN

PROCEDURE CLRSCREEN

NO OUTPUT

NO INPUT,

FUNCTION:

CLEARS THE DATR SCREEN AND SETS THE CURSOR IN THE

UPPER LEFT HAND CORNER.

LR RN TN T TS

0138

CLRDISP

s WRITE CHOME,

o
o
@ £
5B
DnpE
m&c

ax

Zoao

MLLJ

Q

@

«

]

D

»

NOwN

mag <

4 oy v -y

©000
ngn
ONN
wey

-y

Nw=Q

~NRTA

gaag

nno

-l ot v ey

0143

CHOME, CLRDISP

0144 CLRS90: DEFB

0145
0146
0147

1E1D

15E0

'Nkwmm; e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

. ey s s

) T IR

B T

R L i

15E2
15E2
15E3
135€4
15ES
13E6
13E9
15EA
15EC
1SED
15EE
15EF
15F1
15Fa
15F6
15F8
15F9
15FC
15FD
15FE
1600
1603
1604
1607
160A
160B
160C
160E
1611
1614
1615
1618

COPYRIGHT (C) 1981 METANIC ARpS DENMARK

7A
B3
cs

AF
320D01
7E
CBBF
23

iB

D9
FE20
D20B17
FEOD
2023
a7
3A0A01
SF

B7
2007
3R0OCO1
B7
C22817
2R0801
AF

57
ED52
220801
320A01
78
CD3217
C3B816

0148
0149
0150
0151
0152
0153
0154
0135
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
o181
0182
0183
0184
0185
0186
0187
o188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

:
i
2

e
..
-
.
.o
e
we
.
-
.
e
-e
.
..
v
..
e
e
e
..
..
e
.o
e
.o
e
e
-
e
.o
-
.
e
e
.o
e
..
we
e
..
e
e
e
..
'
.
e
.
e
ve
..
.o
.
e

PROCEDURE CRTOUT OUTPUT TO CRT
INPUT: HL 3 PTR TO R TEXT
DE : THE NUMBER OF CHRRACTERS IN THE TEXT

NO OuTPUT

FUNCTION:
THE TEXT I8 OUTPUT AT THE CURRENT CURSOR POSITION
ON THE CRT. THE CURSOR POSITION IS UPDATED. SCROLL
1S IMPLEMENTED. THE CONTROL CHARACTERS THAT ARE
RECOGNISED ARE MENTIONED IN THE CONSTANTS SECTION
IN THE BEGINNING OF THIS FILE.

WP Y6 UE WE YU UC E YE UP WS UGS 4P NE wS US we wE we *s

.
.e
.
s
wa
P
-
e
.
-
-

-
e
e
e

MODIFIES AF, DE, HL, BC', DE’,

e
s
..
e
'
e
..
e
va
ws
ve

.e
e
ve
..
.

e

HL®

e
e
e
.o
ve
..
e
.
.o
..
1
-
e
..
e
e
e
-
s
e
.o
e
e
'
..

XCRTOUT:
CRTOOS: LD A,D : WHILE DE O O DO
OR E
RET z
XOR A
LD (LASTW1) A : LASTW1 = FALSE
LD A, (HL) ;1 A 1= (ML) BITS 06
RES 7.A :
INC HL s HL e 1
DEC DE s+ DE -1
EXX 1 (ALTERNATE BANK)
cp v : IFA (' ' THEN
Jp NC, CRTO7S
cp CR : IF A = CR THEN
JR NZ, CRT020
LD A
LD A, (CHARND) : IF CHARND () ©
LD E.A
OR A
JR NZ,CRTO10
LD A, (LASTWASPRINTABLE) ; OR NOT
OR A s LASTWASPRINTABLE
Jp NZ, CRTOBS : THEN
CRTO10: LD HL, (CURSOR) CURSOR t— CHARNO
XOR A
LD D.A
SBC HL, DE
LD (CURSOR) , HL
LD (CHARND) , A s CHARND 1= O
LD A,B
CALL CRTO72 : NORMALWRITE (A)
Jp CRTOS1 : GOTO CURSOR_DOWN

s

161B
161D
161F
R ; 'r" 1622

. 1625

1626

1629

162B

162D

1630

1631

1632

1634

1637

163A

163D

_ L . 1640
1642

1644

(f 1647

1648

164B

164C

164F

1652
1654
1656
1659
. 165C
165C
165F
1660

1663
‘ 1666
1667

166A

e e e 1668

166E

1670

1673

1674

1677

" 1678
(167B

- 167C

167F

1682

1683

1685

: 1686
1688

168B

168E
1690
1692
| 1695

AL AT TG un L T VG B e e ik T

FEOB
2033
CD3217
2A0801
2B
220801
CB7C
2810
3AD315
3D

6F
2600
220801
320R01%
Cc32817
3A0AR01L
C6FF
3808
210BO1
35
3AD31S
3D
320A01
C32817

FEOC
2038
21C715
CD3D17

2A0801
23
220801
210A01
34
SAD315
BE

c22817
3600
210B01
34
3AD41S
BE
Cc22817
33

2R0801
3AD315
SF
1600
R7
ED52
220801
C32817

FEOB
2022
21C915
CD3D17

0200 CRTO20: CP
R

0201
0202
0203
0204
0203
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
02585
0256
0257
0258

CRTO25:

CRTO28:

CRTO30:

CRTO32:

CRTD40:

CALL
LD
DEC
LD
BIT
JR
LD
DEC
LD
LD
LD
LD
Jp
LD
ADD
JR
LD
DEC
LD
DEC
LD
Jp

ce
JR
LD
cAaLL

LD
INC
LD
LD
INC
LD
cp
JpP
LD
LD
INC
LD
cpP
Jp
DEC
LD
LD
LD
LD
AND
SBC
LD
Jp

cp
JR
LD
CALL

CLEFT
NZ, CRTO30
CRTO72

H_, (CURSDR)
HL
(CURSOR) , HL
7.H

7, CRTO2S

A, (ACHRLIN)
A

LA
H, 0
(CURSDR) , HL
(CHARND) , A
CRTO8S

A, (CHARND)
A, -1

C, CRT028
HL, LINENO
(HL)

A, (RCHRLIN)
A

(CHARND) , A
CRTO85

CRIGHT
NZ,CRTD4O
HL, CURIGHT
CONWRI

HL, (CURSOR)
HL

(CURSOR) , HL
HL, CHARNO
(HL)

A, (WCHRLIN)
(HL)

NZ, CRTOBS
(HL), 0

HL, LINENO
(HL)

A, (#LINES)
(HL)

NZ, CRTO8S
(HL)

HL, (CURSOR)
A, (ACHRLIN)
E,A

D, 0

A

HL, DE
(CURSOR) , HL
CRTDBS

cup
NZ, CRTOSO
HL, CUUP
CONWRI

COPYRIGHT (C) 1981 METANIC ApS DENMARK

e A e 4 AR Y At 7T Sty s e wr v

“s 98 ve 98 we v

4o YO NS uE U ue 98w e we

TR

40 98 98 we ve

e

.. “e ve

PrTy

PAGE B-00S
ELIF A = CLEFT THEN

NORMALWRITE (R)
CURSOR - 1

IF CURSOR ¢ O
THEN
CURSOR =
#CHRLIN-1
CHARNO t=
#CHRLIN-1

ELSE
CHARND -~ 1
IF CHARNO (O
THEN
LINENO :- 1
CHARND t=
#CHRLIN-1
ENDIF
ENDIF

ELIF A = CRIGHT THEN

CONTROLMWRITE (
CURIGHT)
CURSOR_RIGHT:
CURSOR t+ 1

CHARND =+ 1
IF CHARNO=#CHRLIN

THEN
CHARND = O
LINENO 2+ 1

IF LINENO =
WLINES
THEN
LINEND - 1
CURSOR :-
#CHRLIN

ENDIF
ENDIF

ELIF R = CUP THEN

CONTROLWRITE(
cuum

PAGE PB-006

1698 0259 CRT042: 3 CURSOR_UP:
1698 3A0OBO1 0260 LD A, (LINENOD)
— 1698 B7 0261 OR A H IF LINEND > O
T ' 169C 2813 0262 JR Z,CRTD4S H THEN
169 3D 0263 DEC A
169F 320BO1 0264 LD (LINEND) , A H LINEND - 1
16R2 3AD315 0265 LD R, (#CHRLIN)
16RS SF 0266 LD E,R
16R6 1600 0267 LD D, 0
16A8 2R0801 0268 LD HL, (CURSOR) H CURSOR :-
16AB A7 0269 AND A H #CHRLIN
16RC EDS2 0270 SBC HL, DE .
16AE 220801 0271 LD (CURSOR) , HL
16B1 C32817 0272 CRTO4S JP CRTO8S : ENDIF
0273
16B4 FEOR 0274 CRTOS50: CP CDOWN H ELIF A = CDOWN THEN
emdaa i 16B6 2021 0275 JR NZ,CRTO60C
16B8 3EOA 0276 CRTOS1 LD A, CDOWN 3+ CURSOR_DOWN:
- 16BA CD3217 0277 CALL CRYO72 s NORMALWRITE (CDOWN)
(16BD 3A0BO1 0278 LD A, (LINEND)
16CO0 3C 0279 INC A
16C1 21D41S 0280 LD HL, #LINES H IF LINEND (
16C4 BE 0281 cp (HL) H #LINES-1
16CS 2810 0282 JR Z,CRTOSS H THEN
16C7 320B0O1 0283 LD (LINENOD), A H LINENO 1+ 1
16CA 2R0801 0284 LD KL, (CURSOR) s CURSOR t+
16CD 3AD315 0285 LD A, (#CHRLIN) H #CHRLIN
16D0 SF 0286 LD E,.RA
16D1 1600 0287 LD D,0
16D3 19 0288 ADD KL, DE
16D4 220801 0289 LD (CURSOR) , HL
16D7 184F 0290 CRYOSS5: JR CRTO8S H ENDIF
0291
16D9 FEI1E 0292 CRTD&0O: CP CHOME H ELIF A = CHOME THEN
16DB 2015 0293 JR NZ,CRTO6S
16DD 21CDi15 0294 LD HL., CUHOME 3 CONTROLWRITE (
16E0 CD3D17 0295 CALL CONWRI H CUHOME)
16E3 210000 0296 LD HL,O
16E6 220801 0297 LD (CURSOR) , HL H CURSOR 1= O
16E9 AF 0298 XOR R
16EA 320A01 0299 LD (CHARNO) , A H CHARNO t= O
16ED 320B01 0300 LD (LINEND), A H LINENO t= O
16F0 1836 0301 JR CRTOBS
0302
16F2 FEIF 0303 CRTOES: CP CLRLINE H ELIF A = CLRLINE
" 16F4 2008 0304 JR NZ,CRTO70 H THEN
16F6 21CF15 0305 LD HL, CLERR
16F9 CD3D17 0306 CALL CONWRI H CONTROLWRITE (
16FC 182R 0307 JR CRTOAS H CLEAR)
0308
16FE FEI1D 0309 CRTO70: CP CLRDISP H ELIF A = CLRDISP
1700 C22817 0310 JP NZ,CRTO8S H THEN
1703 21D115 0311 LD HL, CLERRD
1706 CD3D17 0312 CALL CONWRI H CONTROLWRITE (¢
1709 181D 0313 JR CRTO08S 3 CLEARD)
0314 H ELSE
0315 H NOTHING
0316 H ENDIF
Cnedein ks
. COPYRIGHT (C) 1981 METANIC ApS DENMARK
*

PAGE B-007

170B 0317 CRTD7S: ;s ELSE
0318 : IF AOOFFH THEN
— 170B FEFF 0319 cp OFFH
e v i (® 170D 280B 0320 JR Z,CRT080
. 170F CD3217 0321 cALL CRTO72 : NORMALWRITE (A)
1712 3EO1 0322 LD A1
1714 320DO1 0323 LD (LASTW1),A 3 LASTWI t=TRUE
1717 C35C16 0324 Jp CRTD32 : GOTO CURSOR_RIGHT
171A SF 0325 CRTOBO LD E,A ELSE
171B OEO2 0326 LD c,02
171D CDCC17 0327 cALL BDOS : BDOS. WRITE (A)
1720 3E01 0328 LD A1 . LASTW! := TRUE
1722 320001 0329 LD (LASTW1),A
1725 C35C16 0330 Jp CRTO32 : BOTO CURSOR_RIGHT
0331 s ENDIF
1728 0332 CRYD8S: s ENDIF
s 0333
1728 3A0DO1 0334 LD A, (LASTW1) : LASTWASPRINTABLE 1=
. 172B 320C01 0335 LD (LASTWASPRINTABLE) ,A; LASTW!
(‘ 172E D9 0336 EXX : (MAIN BANK)
172F C3E215 0337 Jp CRTOOS s ENDWHILE
0338
0339
RS 0340
AN 0341 ;
* 0342 ; PROCEDURE NORMALWRITE
0343 ;
- 0344 ;3 INPUT: A CHARACTER
0345 ;
- 0346 ; NO OUTPUT
0347
0348 : FUNCTION: DUTPUTS A ON THE CRT. ASSUMES THAT A IS A
0349 ; FRINTABLE CHRRACTER, CR, CURSOR_LEFT OR
0350 3 CURSOR_DOWN (L INEFEED)
0351 3
0352 : MODIFIES AF, BC, DE, HL
0353 3
PSS o s 1732 ES 0354 CRTD72 PUSH HL
1733 DS 0355 PUSH DE
1734 SF 0356 LD E,R
1735 OEO06 0357 LD c,6
1737 CDCC17 0358 cALL BDOS
1737 D1 0359 PoP DE
' 1738 EI 0360 POP HL
(173C C€9 0361 RET
0362

TR T WON R b Rt AR

(TOPYRIGHT (C) 1981 METANIC RpS DENMARK

o . S R g e s o v e s o B e e —— - e ¢ e it e e e e s e ———

PAGE E-008

0363 ;
0364 ; PROCEDURE CONTROLWRITE
0365 ;
c‘ 0366 ; INPUT: HL POINTS OUT EN ENTRY IN THE TRANSLATION TABLE
0367 ; THAT STARTS A LAEEL CURIGHT. THIS ENTRY CONSISTS
0368 3 OF TWO BYTES. IF THE FIRST RYTE IS) O, IT IS
0369 WRITTEN OUT. THE SECOND BYTE 1S ALWAYS WRITTEN
0370 3 ouT.
0371
0372 ; NO DUTPUT
0373 ;
0374
173D 0375 CONWRI:
173D 7€ 0376 LD A, (HL) ;s BET FIRST
173 B7 0377 OR A s SET FLAGS
173F Ca4s17 0378 CALL NZ,CONW10O s IF NOT ZERO
1742 23 0379 INC HL : INC POINTER
1743 7E 0380 LD A, (HL) s GET SECOND
. 1744 ES 0381 CONW10s PUSH HL 3 SAVE HL
~ 1745 DS 0382 PUSH DE s SAVE DE
1746 5SF 0383 LD E,A s MAKE READY FOR CP/M
1747 OEO6 0384 LD C,6
1749 CDCC17 0385 CALL BDOS s CALL CP/M
174C D1 0386 POP DE : RESTORE DE
174D E1 0387 POP HL 3 RESTORE HL
174E €9 0388 RET s RETURN
0389
0390
0391
(A A R A A A R A A A A A A R R R A A R R R R R F R R R A A S R R R S
0383
0394 ; PROCEDURE GOTOXY POSITION CURSOR
0395 ;
0396 3 NO REGISTER INPUT OR QUTPUT
0397
0398 ; FUNCTION:
0399 THE CURSOR IS POSITIONED AT THE X, Y CDORDINATES
ST s e 0400 3 FOUND IN THE VARIABLES CHARND AND LINENO.
0401 3
et A I A R R R F R R S R A]
0403
174F 0404 GOTOXY:
174F 3JEIB 0405 LD A, ESC
1751 CD3217 0406 CALL CRTO72 : NORMALWRITE (ESC)
(1754 3E3D 0407 LD A, ="
1756 CD3217 0408 CALL CRTO72 s NORMALWRITE(*=")
1759 3A0BO1 0409 LD A, (LINEND)
175C €620 0410 ADD A, 32 s OFFSEY USED BY MANY TER-
0411 s NALS
17SE CD3217 0412 CALL CRTO72 s NORMALWRITE (LINEND)
1761 3ROAO1 0413 LD A, (CHARNOD)
1764 C620 0414 ADD A, 32 s OFFSET USED BY MANY TER-
0415 : MINALS
1766 C33217 0416 JP CRTO72 3 NORMALWRITE (CHARND)
0417
0418

EERATET TR ST RN B S 4
COPYRIGHT (C) 1981 METANIC ApS DENMARK

PP U P po— [T ——————

PRSI S

1769
1769
176R
176B
176C
176E
1770
1773
1774
1776
1777
1778
1779

177R
177A
177B
177E
177F
1781
1782
1785
1786
1788

3AD315
SF
1600
3A0BO1

0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433

0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
04354
0453
0456
0457
04358
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474

e
we
e
-
.
.o
e
.o
.o
e
..
e
e
e
e
..
-
e
-
e
e
-s
.
.o
s
.o
..
ve
e

PROCEDURE CHARIN INPUT CHARACTER

: NO INPUT
: DUTPUT: A 1 CHARACTER
+ FUNCTIONt
: READS A CHARACTER FROM THE KEYBDARD,
: MODIFIES AF
TIIIIIIIIIIINININININIIIIIiiasniiatatatatataisisisisis
XCHARIN:

PUSH HL

PUSK DE

PUSH BC
XCHA10t LD c, 06

LD E. OFFH

CALL BDOS

OR A

RES 7,A

pOP BC

poP DE

POP HL

RET

ve
..
e
..
'
.o
e
-
-
-
.o
.
e
.
.
..
we
.s
.
.e
..
..
..
e
.
e
we
e
we
e
.
e
e
we
e
e
e
.o
ve
e
e
e
'
e
'
s
e
s
ve
we
e
e
.
e
e
e

s

PROCEDURE MOVECURSOR

INPUT: HL ' NUMBER OF CHARACTERS TD MOVE THE CURSOR
{SIGNED: + FORWARDS, - BRCKWARDS)

NO OUTPUT

FUNCTION:®

MOVES THE CURSOR UNDER THE ASSUMPTION THAT NO
SCROLLING IS NECESSRARY.

€8 G0 UE WO UG W ¥R WO O UE ¥ Ve us s

-
..
-
.
..
e
e
-
.
e
we
e
..
e
e
e
'
-e
e
e
s
s
e
e
e
e
e
e
e
e
e
e
'
e
e
e
e
-
e
e
e
'
..
'
e
s
e
.o
e
e
.
e
-
ve
e
e
e

COPYRIGHT (C) 1981 METANIC ApS DENMARK

XMOVECURSOR 1
PUSH HL
LD A, (CHARND) + CHARND t+ WL
LD E,A
LD D,0
ADD HL., DE
LD A, (WCHRLIN)
LD E,A
LD D,0
LD A, (LINEND)
oY .

PAGE B-010

178B A7 0475 MOVE10: AND A : REPEAT
178C 3C 0476 INC A ;s LINEND :+ 3
v ~~ 178D EDS2 0477 $BC HL, DE : CHARND :- 80
(r 1768F F28B17 0478 Jp P, MOVE10 : UNTIL CHARND ¢ O
1792 A7 0479 MOVE20t AND A 3 REPEAT
1793 3D 0480 DEC A : LINEND 1- 1
1794 EDSA o481 ADC HL, DE : CHARND :+ 80
1796 FR9217 0482 Jp M, MOVE20 $ UNTIL CHARNO)= O
1799 320B01 0483 LD (LINENO), R
179C 7D 0484 LD AL
179D 320A01 0483 LD (CHARND) , A
1700 D1 0486 pOP DE
17R1 2R0B01 0487 LD HL, (CURSOR) s CURSOR 1+ HL
i17p4 19 0488 ADD HL, DE
17A5 220801 0489 LD (CURSOR) , HL
178 C34F17 0490 Jp BOTOXY 3 OUTCURSOR
s A R A A R R R R R R R R R R E R E R R R R R R R R R S
\ 0493 ;
‘r 0494 ; PROCEDURE PLACECURSOR
0495
0496 ; INPUT t A t X-COORDINRTE
0697 B t Y-COORDINATE
0498
0493 ;3 NO OUTPUT
v 0500 3
0501 ; FUNCTIONt
0502 3 THE CURSOR IS MOVED TO THE INDICATED POSITION AND
0503 THE *LASTWASPRINTABLE’ FLAG 1S RESET.
0504
A R A R R R R A R R R R R R R E R R R R R S E R R S SRS RS R S
0506
17AB 0507 XPLACECURSOR:
17AB 320A01 0508 LD (CHARND) , A s CHARND t= A
17RE 6F 0509 LD L,A
17AF 2600 0510 LD H,0
17B1 78 05114 LD A, B
17B2 320BO1 0512 LD (LINEND) A : LINENO 1= B
17B5 3AD31S5 0513 LD A, (#CHRLIN) : CURSOR t= CHARNO +
17B8 SF 0514 LD E,A s LINENO##CHRLIN
17B9 1600 0515 LD D,0
17BB 78 0516 LD A, B
17BC B7 0517 OR A
17BD 2803 0518 JR Z,PLAC1O
. 17BF 19 0519 PLACOSt ADD HL, DE
17C0 10FD 0520 DINZ PLACOS
17Cc2 0521 PLAC1O
17C2 220801 0522 LD (CURSOR) , HL
17CS AF 0523 XOR A 3 LASTWASPRINTABLE t=
17C6 320C01 0524 LD (LARSTWASPRINTABLE) ,A; FALSE
17C9 C34F17 0525 Jp 6OTOXY s OUTCURSOR
0526
(COPYRIGHT (C) 1981 METANIC RpS DENMARK

e
e
e
.o
-
.o
-
e
-
.
e
e
we
e
.
e
.
.
-
e
e
.e
-
)
..
e
.o
.
s
e
-
.e
.o
.o

PROCEDURE BDOS

STORES ALTERNATIVE REGISTER SET, IX AND 1Y
THE NECESSARY MAIN REGISTERS ARE STORED INSIDE

Q) 4o vo v0 90 v vo wo o o

CoMAL-80
S IIIIIIIININIIIIIIIIILIIIIIIIIIIITIIIIIIIIIIIINIS
DOS: EXX
17CD €5 0537 PUSH HL
17CE DS 0538 PUSH DE
417CF €S 0539 PUSH BC
17D0 DDES 0540 PUSH Ix
17D2 FDES 0541 PUSH 1Y
17D4 D9 0542 EXX
PR —— 17D% CDOS00 0543 CALL XBDOS
1708 D9 0544 EXX
. 17D9 FDE1 0545 poP 1Y
(17DB DDE1 05646 POP X
170D €t 0547 POP BC
| 17DE D1 0%48 POP DE
17DF E1 0549 POP HL
‘ 1760 D9 0550 EXX
17E1 €9 0551 RET
0552
17€2 0553 DEFS 100 : SPACE FOR YOUR OWN
0554 : DRIVER.
| 0555 : USE THIS ARER FROM THE
, 0556 : LOWEST ADRESS UP, AS
0557 : PATCHES, IF IT BECOMES
0558 ; NESSESARY, WILL USE THIS
0559 : ARER FROM THE TOP DOWN.
1846 00 0560 DEFB o : BYTE SO THE ASSEMBLER
0561 : WORKS PROPERLY.

COPYRIGHT (C) 1981 METANIC ApS DENMARK

————— €

APPENDIX C
LIST OF ERROR MESSAGES

ERROR

- .
CUONOWUWEUWUN-

-
[y

o s bt ph e
U WN

-
o~

[
")

TEXT

No more storage
Syntax error
Overflow

No ¢/#% here

For strings only
Error in command

No more new names
String not terminated
Illegal character
Illegal character
Illegal line wnumber
Line too long
Variable expected
)’ expected

Type conflict
Expression too
complicated

*{’ expected

Type conflict in
parameter

Has no parameters
Wrong type

',’ expected

TAB not allowed here
Operand expected
Constant expected
*:’ expected
Function not allowed
here

Illegal use of
t=/34/t=/=

s=/:4/i- expected
s’ not allowed here
FILE’ expected
End-of-line here ?
Unknown device

A name expected

See manual

OF’ expected

Not a string function
Line number expected
GOTO/GOSUB expected
Illegal after *THEN’
See manual

Array not allowed

COPYRIGHT (C) 1581 METANIC RpS

DENMARK

PAGE C-001

P

Shi ke ARE RS

42
43

44
4%
46
48

49
S0

S1

S3

C -

S5

o6

61
62
63

64
65

67
68
69
70
71
72
73

74

(‘ COPYRIGHT (C) 1981 METANIC ApS DENMARK

TO/DOWNTO expected
READ/WRITE/RANDOM
expected

From)= To
End-of-line expectecd
Statement expected
Command expected
Error in program

st ructure

Type conflict

Error in program
structure

Multiply defined
Function name expected
Name conflict with
PROC/DEF

FOR-NEXT nesting depth
Unknown line number
RESTORE: to a data-
statement only
Control structure not
closed

Control structure not
closed

Control structure not
closed

Control structure not
closed

Control structure not
closed

Control structure not
closed

Control structure not
closed

Unknown PROC/DEF/LABEL
Program structure too
complicated

'OUTPUT’ expected
Index error

Illegal record number
No substrings here
Too few indices

Tooc many indices

Out of data

Error in assignment
to substring

For arrays only

“AGE C--002

7
78
79

80
81
82
a3
84
85
(-]3
a7

a9
91
92

93
94

96

97

o %

99

100

S VO 101

102

103
104

(‘ 106
- 107

108
109

111
112

A AT oy - ¢ O R . oy

PAGE C-003

Error in the USING-
string

Illegal TAB-value
Variable already exists
Cannot return

Name conflict with
PROC/DEF

CASE-value not existing
STEP = O

SYSTEM ERROR
S8YSTEM ERROR

Out of domain

Too long

OVERFLOW

Undefined variable
or function value
Too long

Not now

Index error

Type conflict in
parameter

Too many parameters
Too few parameters
Division by O
SYSTEM ERROR

Type conflict

Line too long

Not now

Error in NEXT

?:’ not allowed here
No line has such a
number

Impossible
Impossible
Impossible

Auto overflow

1]

Saved under an incom-
patible COMAL-version
Arrays must carry REF
The parameter must be
a variable

The parameter has a
wrong dimension

EXIT without LOOP
Control structure not
closed

COPYRIGHT (C) 1981 METANIC ApS DENMARK

' (" 114
3 115

113

116
117
118
119
120
121
122

123
126

125

= 126
C 127
128

129

130
13t

132

133
134
135
136

137

138
139
140
141
142

(143
- 144
145
146

147
148

149
150

151

P

152

i

The channel is already
open

The channel is not open
Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype statec
Filetype not allowed
here

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

Cannot write

Cannot read

Alreacdy open in
another mode

File in use

SYSTEM ERROR

Cannot open more

disk files
Non-existing file
Version number rot
allowed here

SYSTEM ERROR

SYSTEM ERROR
Impossible as a file
is open

SYSTEM ERROR

Simple i/o device
SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

File catalog full

Disk or file full
SYSTEM ERROR

Illeqgal use of the file
"End-of-file"

SYSTEM ERROR

SYSTEM ERROR

Wrong block length
Control structure not
closed

The chamnel is already
open

The chamnel is not open

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

153
154
155
156
157
158
159
160

161
162
163
164
165
166

167
168
169

170
171

172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
i88
189
190
191
192
193
194
195

Illegal channel number
Unknown i/o device
Unknown i/o devace
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

Cannot write

Cannot read

Al ready open in
another mode

File in use

SYSTEM ERROR

Cannot open more
disk files
Non—-existing file
Version number not
allowed here

SYSTEM ERROR

SYSTEM ERROR
Impossible as a file
is open

SYSTEM ERROR

Simple i/oc device
SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

File catalog full
Disk or file full
SYSTEM ERROR

Illegal use of the file
"End-of-file"

SYSTEM ERROR

SYSTEM ERROR

Wrong block length
SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

COPYRIGHT (C) 1981 METANIC RpS DENMARK

PAGE C-005

AN A R TRt S G 5 B WA O R R s

216

217
218
219

220
221

222
223
224

(225
o 226

227
228
229
230
231
232
234
235
236
237

COPYRIGHT (C)

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

Control structure not
closed

The channel is already
open

The channel is not open
Illegal channel number
Unknown i/o device
Unknown i/o device
Error in filename
Error in filetype
Error in version number
No filetype stated
Filetype not allowed
here

SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERRCR

Cammot write

Cannot read

Already open in
another mode

File in use

SYSTEM ERROR

Cannot open more

disk files
Non-existing file
Version number not
allowed here

SYSTEM ERROR

SYSTEM ERROR
Impossible as a file
is open

SYSTEM ERROR

Simple i/o device
SYSTEM ERROR

SYSTEM ERROR

SYSTEM ERROR

File catalog full

Disk or file full
SYSTEM ERROR

Illegal use of the file
"End-of-file"

SYSTEM ERROR

SYSTEM ERROR

1581 METANIC ApS DENMARK

DAGE C-006

PAGE C-007

238 Wrong block length
239 SYSTEM ERROR
; : ("' 240 SYSTEM ERROR
241 SYSTEM ERROR
242 SYSTEM ERROR
243 SYSTEM ERROR
244 SYSTEM ERROR
245 SYSTEM ERROR
246 SYSTEM ERROR
247 SYSTEM ERROR
248 SYSTEM ERROR
249 SYSTEM ERROR
250 SYSTEM ERROR
R R e 251 SYSTEM ERROR
252 SYSTEM ERROR
. 253 SYSTEM ERROR
(254 SYSTEM ERROR
255 SYSTEM ERROR
256 SYSTEM ERROR
o 257 SYSTEM ERROR
N 258 Record exceeded
259 Illegal record length
260 This is not a RANDOM file
o 261 Wrong record length
262 Existing file
263 Impossible
264 Version number not
allowed here
. 265 Error in filename
266 Different i/o devices specified
. _ _ . 267 SYSTEM ERROR
268 SYSTEM ERROR
269 SYSTEM ERROR
270 SYSTEM ERROR
271 SYSTEM ERRGOR
272 SYSTEM ERROR
(273 SYSTEM ERROR
. 274 SYSTEM ERROR
275 SYSTEM ERROR
276 SYSTEM ERRDR
277 SYSTEM ERROR
278 SYSTEM ERROR
279 SYSTEM ERROR
280 SYSTEM ERROR
281 SYSTEM ERROR
282 SYSTEM ERROR
283 SYSTEM ERROR
284 SYSTEM ERROR

okt s i N R O T WO R T SR 3

COPYRIGHT (C) 1981 METANIC ApS DENMARK

(

285
286
287
288
289
290
291
292
293

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

COPYRIGHT ()

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

1981 METANIC ApS DENMARK

o}

-
"‘!.‘; :

-078

APPENDIX D ' PAGE D-001

DEMONSTRATION PROGRAMS

— @ U

0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130

0140
(ﬁ 0150

0160
0170
0180
0190
0200
0210
0220

0230
0240
0250
0260
0270
0280

S 0290

0300
0310
0320
0330
0340

‘r’ 0350
- 0360

// PRIME FACTORING PROGRAM

7/

// ASK FOR A NUMBER AND TEST IT

/7’

LooP
INPUT "INPUT POSITIVE INTEGER TO BE FACTORED: “: NUMBER
IF NUMBER)O AND FRAC(NUMBER)=0 THEN EXIT //TEST FOR POSITIVE
// INTEGER
PRINT "I ASKED FOR A POSITIVE INTEBER!'"

ENDLOOP

PRINT "THE PRIME FACTORS ARE: "

/77

// PRIME 2 AND 3 MUST BE TREATED SEPARATELY

24

DIVISOR:=2

EXEC TEST

DIVISOR:=3

EXEC TEST

7/

//ALL PRIMES CAN BE EXPRESSED AS

/7/N%6+5 AND Nx6+7
/7
FOR N:=0 TD SGR(NUMBER)/6 DO
DIVISOR:=6%N+5
EXEC TEST
DIVISOR:=6#N+7
EXEC TEST
NEXT N
IF NUMBER()1 THEN PRINT NUMBER
/7
PROC TEST
WHILE NUMBER MOD DIVISOR=0 DO
PRINT DIVISOR;
NUMBER :=NUMBER DIV DIVISOR
ENDWHILE
ENDPROC TEST

{ COPYRIGHT 1981 METANIC ApS DENMARK

—® C

PAGE D-002
0010 // CHARACTER SORT PROGRAM
0020 DIM STRING$ OF 2000
0030 DIM CHARRACTERS OF 1
0040 DIM COUNTER(ORD("A"):0ORD("Z"))
0050 SPECIAL_CHARACTERS:=0
0060 SPACES:=0
0070 TRAP ESC- // TAKE CARE. SAVE THE PROGRAM
0080 //
0090 PRINT "INPUT A STRING: ",
0100 LOGP
0110 EXEC GET_CHARACTER(CHARACTERS) // GET CHARACTERS ONE BY ONE
0120 IF CHARACTER$=""27"" THEN EXIT
0130 PRINT CHARACTERS,
0140 STRINGS t +CHARACTERS // CONCATENATE CHARACTERS
0150 ENDLOOP // “ESC" TERMINATES INPUT
0160 PRINT
0170 //
0180 FOR It=1 TO LEN(STRINGS) DO
0190 CHARACTERS :=STRING$ (1)
0200 IF CHARACTER$=" * THEN SPACES:+1 // TEST FOR SPACE
0210 IF CHARACTERS)="A" AND CHARACTERS (="Z" THEN // LETTER?

0220 COUNTER (ORD (CHARRACTERS)) s+1 // COUNT LETTER
0230 ELSE
0240 SPECIAL_CHARACTERS:+1 // COUNT OTHER CHARACTERS

0250 ENDIF

0260 NEXT 1 // GET NEXT CHARACTER

0270 // SET UP THE PRINT OUT FORMAT

0280 FOR J:=0ORD("A") TO ORD("Z") DO // PRINT THE LETTERS
0290 PRINT " ",CHR$(J),

0300 NEXT J

0310 PRINT // EMPTY LINE

0320 FOR K:=DRD("A") TO ORD("Z") DO // PRINT THE COUNT
0330 PRINT USING " ##": COUNTER(K),

0340 NEXT K

0350 PRINT

0360 PRINT

0370 PRINT "NUMBER OF CHARACTERS: “,LEN(STRINGS)

0380 PRINT

0390 PRINT "NUMBER OF SPECIAL CHARACTERS INCLUDING SPACES: ",
0400 PRINT SPECIAL_CHARACTERS

0410 PRINT

0470 PRINT "NUMBER OF SPECIAL CHARACTERS EXCLUDING SPARCES: ",
0430 PRINT SPECIAL_CHARACTERS-SPACES

0440 PROC GET_CHARACTER(REF A$) // LIBRARY PROCEDURE
0450 POKE 256, 255

0460 REPEART

0470 IF ESC THEN POKE 256, 27

0480 UNTIL PEEK(256) ()255

0490 As :=CHR$ (PEEK (256))

0500 ENDPROC GET_CHARACTER

COPYRIGHT 1981 METANIC ApS DENMARK

B P e

N N e

L

0010
0020

» ; - 0030
l.l} C ooso
0050

0060

0070

0080

0090

0100

0110

0120

0130

0150
0160

- 0170
(0180
0190
0200
0210
0220

0230
0240

0260
0270

0280

. 0290

0300

0310

0320

0330

0340

0350

0360

‘ 0370
‘:’ 0380

. 0390

0400

0410

0420

B T e JE T N7 T i G AT e -+

PAGE D-003

/7 CHANGING BASES
/7 THIS PROGRAM WILL CHANGE A POSITIVE INTEGER BASE 10
// TO ANY NEW BASE BETWEEN 2 AND 16
DIM VALUES$(0:15) OF 1
DIM DIBIT(20)
FOR I:=0 TO 15 DO

1/

// SET UP THE CHARACTER SET USED FOR ouTPUT

17/

READ VALUES$(I)
NEXT 1
DATA "0", u1u. "2", "3~ ngn, ngn "6", Ly A0
DATA neu' wgn Ll-L wpg* “ce, “p", wgw, nEw

—— 0140 //

// BET THE NEW BASE AND TEST IT
7/
REPEAT
INPUT "NEW BRSEt "3 NEW_BASE
UNTIL 2(=NEW_BASE AND NEW_BASE (=16 AND FRAC (NEW_BASE) =0
7/
// BGET THE NUMBER TO CONVERT
7/
REPEAT
INPUT "POSITIVE INTEGER TO BE CONVERTED: "3 VALUE
Vi=VALUE
UNTIL FRAC(VALUE)=0 AND VALUE}O

//
// CONVERT
7/
Tim]
REPEAT
DIGIT(I) 1=VALUE MOD NEW_BASE; VALUE t=VALUE DIV NEW_BASE
It+1
UNTIL VALUE=O
NO_DIGITS:=I-1
/77
/7 PRINT THE RESULT
7/
PRINT VALUE," BASE 10 CONVERTS IN BRSE » NEW_BASE, "™ TO: *,
FOR I1:=NO_DIGITS DOWNTO 1 DO
PRINT VALUES(DIBIT(I))," *,
NEXT I

{ COPYRIGHT 1981 METANIC ApS DENMARK

gt - e vt tae S iees maie e ealaat s L e

A s L e S TE.—. W oy = i

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450

// LISSAJOUS PATTERNS
//
// CONSTANTS DEFINING THE SCREEN.

// HALVE THE VALUES FOR 40-CHARACTER SCREENS.

PAGE D-004

// ADJUST *SCALE®’ TO YOUR SCREEN 80 THAT INPUTS 1, 1 AND 0.5

// PRODUCE A PERFECT CIRCLE.
/7
BCALE1=27

CHARACTERSt=80 // NUMBER OF CHARACTERS ACROSS THE SCREEN

LINES:=24 // NUMBER OF LINES ON THE SCREEN

/7

ADJUST :=INT { (CHRRACTERS-2#SCALE~-1) /2)
IF ADJUST (O THEN STOP
X_LIMITt=(LINES-2)/2

1/

DIM LINES$ OF CHRRACTERS

PI:=3.14159

CLERR

/7

REPERT

INPUT "RELATIVE FRER. FOR X: "t X_REL_FRE®@ // TRY 4

UNTIL FRAC(X_REL_FREQ)=0 AND X_REL_FRE®)=1

NO_STEPS:=X_REL_FREQ: X_REL_FREQ:=2#PI#X_REL_FREQ

/7
REPERAT

INPUT "RELATIVE FREQ@. FOR Y: "t Y_REL_FREQ@ // TRY J

UNTIL FRAC(Y_REL_FREQ)=0 AND Y_REL_FREM =1

Y_REL_FREQ:=2#PIxY_REL_FREQ
77

INPUT "Y PHASE, MULTIPLE OF PI: "t Y_PHASE // TRY 0O

Y_PHASE :=PI*Y_PHASE
17
CLEAR
FOR X_STEPt=X_LIMIT DOWNTO —-X_LIMIT DO.
LINE$:=5PC$ (CHRRACTERS)
X :=FN_ARCSIN (X_STEP/X_LIMIT)
FOR It=0 TO NO_STEPS-1 DD
LINES$ (FN_SCALED (X, I)) t="#"
LINES$ (FN_SCALED (PI-X, I)) t="a"
NEXT I
PRINT LINES
NEXT X_STEP
CURSOR 1, LINES-1
END
1/

COPYRIGHT 1981 METANIC ApS DENMARK

¢ s e s S s S

0460
0470

0480

. r 0490
0500

0510

0520

0530

0540

0550

0560

0570

0580

0590

0610

0620

0630

PAGIAGe. &/ 3T T ARV - - it V. R oS AR, O

{

PAGE D-005
DEF FN_ARCSIN(X)
IF ABS(X) (0.1 THEN
FN_ARCSIN: =X+X~3/6+X~5%0, 075+X"7/22. 4
ELSE
FN_ARCSIN:=2#FN_ARCSIN (X/ (SR (1+X) +SAR(1-X)))
ENDIF
ENDDEF FN_ARCSIN
7/
DEF FN_COMPUTE(T, I)
GLOBAL PI, X_REL_FREQ, Y_REL_FREQ, Y_PHASE
TTi=(T+2#1#P1) /X_REL_FREQ
FN_COMPUTE :=SIN(Y_REL_FREQ#TT+Y_PHASE)
ENDDEF FN_COMPUTE
17
DEF FN_SCALED(T, I)
GLOBAL SCALE, ADJUST
FN_SCALED :=1+ADJUST+ROUND (SCALE* (FN_COMPUTE (T, 1) +1))
ENDDEF FN_SCALED

COPYRIGHT 1981 METANIC ApS DENMARK

P

ahaG

N R ok o

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0230
0300
0310
0320
0330
0340
0350
0360

0370

0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500

124

WRITTEN october -81 PAGE D-006
by H.C. Grosblll-Poulsen, Gl.Rye, Denmark

DESCRIPTION of the procedure "EDITLINE’

The procedure is closed, qualifying it for
immediate inclusion in the tUser’s library.
PURPDSE: to edit a textvariable written on

the screen, thus the procedure is effectively

@ lineeditor.

PARAMETERS! ORG_X# and ORG_Y# are integers
(valueparameter) describing the coordinates

of the position where the textvariable
originally was written.

REF LINE$ is the textvariable. It is a variable-
parameter, so that the editing is refered back
to the invocating variable.

REF KEYBOARD# is an integer, whose sole purpose
is to refer back the last input from the
keyboard for further processing in the calling

program. Value by entrance is of no significance.
Examplet

CURSOR 20, 15

PRINT TEXT$(I);

EXEC EDITLINE (20, 15, TEXTS(I),A#)

PROC EDITLINE(DRG_X#, ORG_Y#, REF LINE$, REF KEYBOARD#) CLOSED

DIM CODEs$ OF 15, HELP$ OF 80 // NB: The length may vary
X#:=1s RETURNBACK:=FALSE
EXEC INDATAINIT
CURSOR ORG_X#, ORG_Y#
REPEAT
EXEC INDATA (KEYBOARRD#, MACHINECODE)
CASE KEYBOARD# OF
WHEN 13, 11, 10 // refer to ASCII-table
RETURNBACK : =TRUE '
WHEN 8
EXEC CURSORLEFT
WHEN 12
EXEC CURSORRIGHT
WHEN 127
EXEC DELETEBYTE
WHEN 31
EXEC INSERTBLANK
OTHERWISE
EXEC WRITEBYTE
ENDCASE
UNTIL RETURNBACK

0510 ENDPROC EDITLINE

COPYRIGHT 1981 METANIC ApS DENMARK

0520
0520
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0830
0300
0910
0920
0930
0940
0950
0960
0970
0380
0990

PRGE D-007
/7
17/
PROC CURSORLEFT // if possible, move cursor left
IF X#)1 THEN
X#:-1
CURSOR ORG_X#+X#—1, ORG_Y#
ENDIF
ENDPROC CURSORLEFT
//
/7
PROC CURSORRIGHT // if possible, move right
IF X#-1(LEN(LINES) THEN
X#:+1
CURSOR ORG_X#+X#-1, ORG_Y#
ENDIF
ENDPROC CURSORRIGHT
/77
/7
PROC INSERTBLANK // test for extreme positioning
IF LEN(LINES))X#-1 THEN // of the cursor
HELPS$ =L INE$ (X#:LEN(LINES))
ELSE
HELPS$:=""
ENDIF
IF X#)1 THEN
LINES:=LINES$ (1, X#~-1)
ELSE
LINE‘==II ”
ENDIF
LINES$:+" “+HELPS
EXEC REWRITELINE
ENDPROC INSERTBLANK
/7
7/
PROC LINETEST // test for extreme positioning
IF LEN(LINES))X# THEN // of the cursor
HELP$:=LINES (X#+1 :LEN(LINES))
ELSE
HELP$1=""
ENDIF
IF X#)1 THEN
LINES:=LINES (1,6 X#-1)
ELSE
LINE$:=""
ENDIF
ENDPROC LINETEST
17/
1/

COPYRIGHT 1981 METANIC ApS DENMARK

it vl

PAGE D-008
1000 PROC DELETEBYTE
1010 EXEC LINETEST
1020 LINES:+HELPS$
1030 EXEC REWRITELINE
1040 ENDPROC DELETEBYTE
1050 7/
1060 7/
1070 PROC WRITEBYTE
1080 EXEC LINETEST
1090 LINES : +CHRS$ (KEYBORRD#) +HEL P$
1100 EXEC REWRITELINE
1110 EXEC CURSORRIGHT
1120 ENDPROC WRITEBYTE
1130 //
1140 //
1150 PROC REWRITELINE // used after writing, deletion
1160 CURSOR ORG_X#, ORG_Y# // or insertion of a
1170 PRINT LINES$+" "3 // character
1180 CURSOR ORG_X#+X#-1, ORG_Y#
1190 ENDPRDOC REWRITELINE
1200 //
1210 //
1220 PROC INDATAINIT // place machinecode in the space
1230 MACHINECODE :=VARPTR(CODES$) ; B:=MACHINECODE // allocated
1240 POKE B, 30 // LD E, 255 for in CODE$
1250 POKE B+1, 255
1260 POKE B+z, 14 // LD C,6 refer to Z80 and
1270 POKE B+3, 6
1280 PDOKE B+4, 205 // CALL BDOS CP/M manuals

1290 POKE B+5, S

1300 POKE B+6, O

1310 POKE B+7, 183 // OR A

1320 POKE B+8, 202 // JP N1,B

1330 POKE B+9, B MOD 256

1340 POKE B+10, B DIV 256

1350 POKE B+11, SO // LD (KEYBOARD®),A // making the value
1360 POKE B+12, VARPTR(KEYBOARD#®) MOD 256 // accessible to
1370 POKE B+13, VARPTR(KEYBOARD®) DIV 256 // COMAL-80
1380 POKE B+14, 210 // RET

1390 ENDPROC INDATRINIT

1400 //
1410 //
1420 PROC INDARTA(REF KEYBOARD#, MACHINECODE) // get an
1430 CALL MACHINECODE // unechoed input from console

1440 ENDPROC INDATA

COPYRIGHT 1981 METANIC ApS DENMARK

APPENDIX E

LIBRARY ROUTINES

i —— T 93
9934
9335

9936

9337

9938

9339

9940

9941

9942

9343

e
9944

9945

» 9946
(9947
9948
9349
9950

9951

995z

9953

9954
9955

9956

9957

‘ 9958

9959

9360

e - 9961
9962
9963
9964
9965
9966

(9967
. 9968
9969
9970

P k. .y

/7 PROCEDURE TO GET KEYBOARD INPUT WITHOUT ECHO TO
/7 THE SCREEN.
/7 THE 'ESC’ KEY WORKS IN THE NORMAL WAY
PROC GET_CHARACTER(REF AS)

POKE 256,255

REPEAT

UNTIL PEEK(256) (}255

At : =CHR$ (PEEK (256))
ENDPROC GET_CHARACTER
/7
// PROCEDURE TO BET KEYBOARD INPUT WITHOUT ECHO TO
// THE SCREEN.
77 THE 'ESC’ KEY 1S TREATED LIKE ANY OTHER CHARACTER.
/7 THE ®TRAP ESC-’ STATEMENT MUST BE EXECUTED BEFORE
// THIS PROCEDURE 1S CALLED.
PROCEDURE GET_CHR_ESC (REF A$)

POKE 256,255

REPEAT

1IF ESC THEN POKE 256,27

UNTIL PEEK(256) ()255

A$: =CHR$ (PEEK (256))
ENDPROC GET_CHR_ESC
/7
7/ PROCEDURE TO SET PRINTED LINE WIDTH IN NUMBER OF
/7 CHARACTERS. WORKS FOR DEVICE ’LP:* OR 'LPOt’ ODNLY.
// THE POKE CAN ALSO BE DONE IN COMMAND MODE.
/7 VALID FOR COMAL-80 VERSION 1.8 ONLY
PROC WIDTH

POKE 1379,N // N t= NUMBER OF CHARACTERS
ENDPROC WIDTH
7
/7 PROCEDURE TO SET PAGE LENGTH IN NUMBER OF LINES.
// WORKS FOR DEVICE *LP1’ OR "LPOs* ONLY.
/7 THE POKE CAN ALSO BE DONE IN COMMAND MODE.
// VALID FOR COMAL-80 VERSION 1.8 ONLY.
PROC LENGTH

POKE 1378,K // Ki= NUMBER OF LINES
ENDPROC LENGTH

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

PAGE E-001

9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
93982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999

s MY it i LN TR M,

PAGE E-002

USER DEFINED FUNCTION TO DETERMINE FREE USER SPACE
THE RETURNED VALUE IS A LITTLE LESS THAN THE ACTUAL
AVAILABLE SPACE.
BASED ON THE 'DIM® STATEMENT GIVING A NON FATAL
ERROR IN THE *OUT OF STORAGE® SITUATION.
CALLED AS A NORMAL VARIABLE. EXAMPLE:

100 PRINT FN_FREE_SPACE

17
1/
1/
DEF FN_FREE_SPACE
MINt=1; MAX:=32768; OKt=0
REPERT
MIDDLE:= (MIN+MAX) DIV 2
EXEC TRY (MIDDLE, OK)
IF OK THEN
MIN:=MIDDLE
ELSE
'MAX t=MIDDLE-1
ENDIF
UNTIL MIN)=MAX-1
FN_FREE_SPACE 1 =MIN
ENDDEF FN_FREE_SPACE
PROC TRY (AMOUNT, REF OK) CLOSED
TRAP ERR-
DIM A$ OF AMOUNT
TRAP ERR+
OK:=(ERR=0)
ENDPROC TRY
/7

(COPYRIGHT (C) 1981 METANIC ApS DENMARK

APPENDIX F PAGE F-001
ASCI1 CHARACTER CODES

6 T — (' ASCII ASCII ASCI1
Code CHARACTER Code CHARACTER Code CHARACTER

000 NUL 043 + 086 v
001 SOH 044 . o087 W
002 8TX 045 _ 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 y4
005 ENQ 048 0 091 C
006 ACK 049 1 092 \
oo8 BS 051 3 094 -~
009 HT 052 4 095 -
+ 010 LF 053 5 096 ’
(011 vT 0S4 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 S0 057 9 100 d
015 s1 0sa s 101 e
016 DLE 059 : 102 f
017 DpCt 060 ¢ 103 g
, 018 DC2 061 = 104 h
' ‘ 019 pc3 062 > 105 i
020 DC4 063 ? 106 3
021 NAK 064 e 107 K
‘ 022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 c 110 n
e e e e e e e e 025 EM 068 D 111 o
026 SUB 063 E 112 p
027 ESC 070 F 113 q
028 FS 071 6 114 r
029 GS 072 H 115 s
- : 030 RS 073 1 116 t
(031 vs 074 J 117 u
© 032 SPACE 075 K 118 v
033] 076 L 119 w
034 " 077 M 120 X
03sS] o078 N 121 y
— 036 s 079 0 122 2z
037 % 080 P 123 <
o3e [081 Q 124 1
039 . oe2 R 125 >
040 ¢ 083] 126
_ 041) 084 T 127 DEL
042 * 08s]

ASCII codes are in decimal
(LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

- R RS

7"‘-"(,4» yom &

USER’S COMMENTS - ERROR REPORT COMAL-80 MANUAL

In our continuous efforts to improve this manual, METANIC RpS ask
you, the user, to use this report and send us ary correction,
comment, suggestion, or addition that you may "ave to this manual.

The format of the COMAL-80 manual is designed for easy updating,
and your report may well be included in the next update. Forwardec
information becomes the property of METANIC ApS.

Please specify page and line references where applicable.

Manual Edition:

Errors:

Comments:

Name: Date:
Address:

Country:

FORWARD TOt METANIC APS, KONGEVEJEN 177, DK-2830 VIRUM, DENMARK

METANIC COMAL-80
SYNTAX DIAGRAMS & EXAMPLES

Gz

~tho /"&]fommmm}g

. *
@
o
Distributor:
e

Copyright (C) 1980 by METANIC ApS, Denmark.

All rights reserved.

Tryk: Kenen Mutpret A0S Gi Rye

T T TS W TSRS PO

METANIC COMAL-80
SYNTAX DIAGRAMS

VERSION 1.
Line:
—REM
—line No.-Lstatement 1—())——+comment—
Statement:
(o] . .
—READ - file . - variable ->

—>|label
© RESTORE- 1

-line No

I

—»DATA-rsigned constant

O+

® L WRITE ~ file +variable

@®:enum
RENUMBER
REPEAT

o RESTORE

o RETURN
RND
ROUND
RUN

SAVE

\@ sELECT

SGN

Signed Constant
SIN

SIZE

SPC$

SQR

Start & Step
Statement
STEP

STOP

String Constant

Page
10
10

15
15
11

10
14
14
11

14
14

o%*

METANIC COMAL-80

Page
String Expression 12
STR$ 14
TAB 2,3
TAN 14
Tape Name 16
THEN 5
TO 7
TRAP 6
TRUE 9,13
TRUNC 15
UNIT 811
UNTIL 5
USING 3
VAL 14
Variable 15
Variable Name 16
VARPTR 14
WHEN 6

A TR T R T AT R A AT TR A R

ok S A W

METANIC COMAL-80

1*0

PRINT ~file

&

()

L

L usING—, St ——(O)

o/

expression

L»expression-

—sexpression

L

1

-

—TAB—(()~numerical expression—))—
)

(U

—PROC—=name—(O— l»@
]

()=
o/

»CLOSED—

REF-—1—>variabIe name

[
L. REF —»variable name—»@ : > @

—ENDPROC »name

—ENDDEF

(O

—DEF—function name-L»©——->va"able——»

name
m———

function name——

-

St o s e R e aee o

.ENTER

EOD
EOF
ERR
ERRTEXT$
ESC

o EXEC

o EXIT
EXP

|. FALSE
File
FILE
File Name
FOR

o FORMAT
FRAC
Function Name

o GETUNIT
’GLOBAL
o GOSUB

6,14
14
6,14
4

6

14

9,13
9
7,8,9
12

7
8,11
15
17

8 11
4
4,5

METANIC COMAL-80

Page
o GOTO 5
o lIF 5
IN 13
o INIT 8,11
INP 14
o INPUT 2
INT 15
Integer
Expression 12
Integer

Variable Name 16

IVAL 14
Label 9
LABEL 4
LEN 15
S LET 2
Line 1
Line No. 9
Lines 12
LIST 10

SRR Rt S a3 o

METANIC COMAL-80

~label
2 . GOTO—L—line No.

° . ON numerical
—UN"expression

(o)

—xr—GOTO —line No.1—>

Gosus—

O+

END

o numerical

- 'F_"expression

»THEN
‘ L "
statement—

9%
Only statements marked © may be used here.

— ELIF—numerical expression

—ELSE

—THEN—

—ENDIF

—REPEAT

— UNTIL——numerical expression -

— WHILE—numerical expression

-DO -

METANIC COMAL-80
PROGRAM EXAMPLE
+* 5
0010 // LOOP AND CASE DEMONSTRATION
0020 // A SMALL RPN CALCULATOR PROGRAM
0030 // BY ARNE CHRISTENSEN, 1980
0040 DIM S(10), COMMAND$ OF 10
0050 MAT S:=0 // S IS THE STACK
0060 TOP:=0
0070 CLEAR // CLEAR SCREEN
0080 LOOP
0090 // PRINT OUT THE STACK
0100 CURSOR 1, 1 // UPPER LEFT
0110 FOR I:=1 TO TOP DO
0120 -PRINT S(1); SPC$(20)
0130 NEXT | |
0140 PRINT SPC$(20)
0150 // GET NEXT COMMAND
@160 CURSOR 1, TOP+3
0170 INPUT COMMANDS$
0180 CURSOR 1, TOP+3
0190 PRINT SPC$(20)
0200 // EXECUTE COMMAND
0210 CASE COMMANDS$ OF
0220 WHEN “+*
0230 TOP:-1; S(TOP):+S(TOP+1)
0240 WHEN "-*
0250 TOP:-1; S(TOP):-S(TOP+1)
0260 WHEN "% "
0270 TOP:-1; S(TOP):=S(TOP)*S(TOP+1)
0280 WHEN “/*
0290 TOP:-1; S(TOP):=S(TOP)/S(TOP+1)
0300 OTHERWISE
310 TOP:+1; S(TOP):=VAL(COMMANDS$)
320 ENDCASE
0330 ENDLOOP

[aYal

v -

»FOR integer variable name

integer expression

—»TOTinteger expression
—DOWNTO l»DO—»

METANIC COMAL-80

o)
Z/

—TO = numerical expression | >
- DOWNTO—! L—STEP: DO
numerical expression— |—>

—real variable name

L, STEP———integer expression— [@
numerical expressionv——ﬁ

—NEXT —
L

OPEN-—FILE

l*o

integer variable name——

real variable name

()

numerical expression

W/
—READ—

string expression—{()+~

—WRITE ‘

l*O

CLOSE >F

—RANDOM——(,)—numerical expression—

prs——-

1

ILE—>numerical expression—

7

METANIC COMAL-80
PROGRAM EXAMPLE

1

010 // ALL SOLUTIONS TO THE EIGHT-QUEENS
0020 // PROBLEM. FROM: ALGORITHMS + DATA
0030 // STRUCTURES = PROGRAMS BY N.WIRTH
0040 // BY ARNE CHRISTENSEN, 1980
0050 //
0060 DIM A(1:8), B(2:16), C(-7:7), X(1:8)
0070 PROC PRINTING
0080 FOR K:=1 TO 8 DO
0090 PRINT USING “###+#": X(K),
0100 NEXT K
0110 PRINT
0120 ENDPROC PRINTING
0130 //
0140 PROC TRY(l) CLOSED

150 GLOBAL A, B, C, X

ﬁmo FOR J:=1 TO 8 DO

0170 IF A(J) AND B(I+J) AND C(I-J) THEN
0180 X(1):=J; A(J):=FALSE; B(I+J):=FALSE
0190 C(1-J):=FALSE
0200 IF I<8 THEN
0210 EXEC TRY(l+1)
0220 ELSE
0230 EXEC PRINTING
0240 ENDIF
0250 A(J):=TRUE; B(l+J):=TRUE; C(I-J):=TRUE
0260 ENDIF
0270 NEXT J
0280 ENDPROC TRY
0290 //
0300 MAT A:=TRUE; B:=TRUE; C:=TRUE
'310 EXEC TRY(1)

O LTRATINERT

1R

METANIC COMAL-80

o, string ., . string
RENAME_"expression—'O expression

2 quiT .

—integer constant (1-9999)

File:
@ numerical R @_,
| Texpression L numerical '
FILE @ “expression
Label:
—>name >

Signed Constant:

—string constant

—FALSE .
—> TRUE .
—-real constant —

‘@ »integer constant—

I‘ctual Parameter List:

METANIC COMAL 80

Qg

-©

—~expression—— ()~

Variable name:

(string)

(integer)

—>pame

~®
®

(real)

teger Variable Name:

—-name

-@

Real Variable Name:

—-name

Comment & Tape Name:

any character—l

e e S ———— - o————

T T P BT T (BT A TY YT P e

N
.
i LR ST T XA e Ak it

METANIC COMAL-80
—SIZE

~—+RUN————line No.

INIT +device name —

—RELEASE device name—

—FORMAT—device name— (,)~tape name—

—DELETE —file name >

+~CAT ~device name »()file name->
UNIT ~device name~
—GETUNIT ->

— RENAME— file name —(,)— file name——

All statements marked ¥ may be used as
commands.

11

M, AN SEL s R e

METANIC COMAL-80

Operator:
‘1 | oo | ‘I.Llo‘n
oo T e T
L1 | | | A
¥
@l@l
[P1F .
Operand:

———(O—expression—) -

—integer constant

»real constant —

+string constant >

>TRUE -

—FALSE »

——function name ——actual parameter list—>

13

[T R S —— o

METANIC COMAL-80
.—»variable ->
Y ' }
ATN | SIN SQR SGN EOF CHR$
I CcoOSs | TA | EXP I ABS | INP |PEEK
| | L | |
, D
BSTR$ | STRS$ l
| SPC$ IERRTEXT$
I l v
numerical_>
b expression
T T 3
EOD RR
‘ ESC |
I 109
—F | 1
ORD BVAL
| IVAL | VAL
| | — . P Y
> ((O— string expression+()) -
— VARPTR © variable——())—~

1A

i o b ¥t 1 b S Bt

L

METANIC COMAL-80

} '
INT ROUND
ITRUNC | FRAC
| real _@_,

— @-. .
expression

string string _ A\,
"*Pos"@"expression"’@"’expression ©),

numerical @_r
e

numerical
n—’Q

—’RNDT ©_’expressio —expression

R R %k %k
» string variable—())—~

~LEN

*k ¥k
Not substrings.

Variable:

*

R *%
_Efunctlon name

. numerical
variable name—({)+— o ocoi

expression
O+

for strings only

—-()—

xpression

®

numerical numerical
——’©"expression—'®"'e

9% 9% %
Can be substituted for variables in expressions

and LET, READ, and INPUT statements only.

15

*ines:

METANIC COMAL-80

—~line No.—+(D —~line No.-%

-~() ~line No:

Start & Step:

—=line No. +»()—line No.

il

File Name & Device Name:

Any sequence of characters not starting with
a digit, a comma, a space, or a colon, and no
. containing a comma or a space may be used.

Numerical Expression:

t

| —integer expression

- 1o R S BN

el e SR Bt it

—real expression

String-, Iinteger-,
& Real-Expressions:

r—NO T
_@ —
‘ operand

—Operator

AN el

Ny

METANIC COMAL-80

Name:

%%
—|etter<+—
—letter— 1 . -
— digit +—
String Constant:

| any character except “ +~—
A) _ N
-»O : - ,@..

"@Tinteger constant«—@«-

Function Name:

r—letter<«

-O—® —t o

—digit «—

* %

Names starting with fn are reserved for function

names only.

17

B

R

—>AUTO-+start & step

—RENUM

®

—RENUMBER
_l

~line No.—(:)-line No.—»@II

>start & step—

m——-

—LIST

lines

A

-»filename

—sSAVE—— filename

—-ENTER——filename

—>LOAD— filename

NEW

~CON

line No.

1

METANIC COMAL-80
Command: |
—DEL >lines
—EDIT lines

0 AN AT, AT

R AT

METANIC COMAL-80
PROGRAM EXAMPLE

* 2

0010 // LABEL DEMONSTRATION
0020 // BY ARNE CHRISTENSEN, 1980
0030 LABEL AGAIN

0040 RESTORE DATA2

0050 READ X

0060 PRINT X

0070 RESTORE DATA1

0080 READ X

0090 PRINT X

0100 GOTO AGAIN

0110 LABEL DATAT1

0120 DATA 47

0130 LABEL DATA2

0140 DATA -47

* 3

0010 SUM:=0

0020 FOR FIGURE#:=500 DOWNTO 1
0030 SUM:+ FIGURE#

0040 NEXT FIGURE#

0050 PRINT SUM

+ 4

0010 DIM FIRST_NAMES$ OF 10

0020 DIM FAMILY_NAMES$ OF 10

0030 DATA “John”, “Doe”, 10

0040 READ FIRST_NAMES$, FAMILY_NAMES$
0050 PRINT FIRST_NAMES$+" “+FAMILY_NAMES
0060 READ AGE

0070 PRINT AGE; "YEAR®

19

METANIC COMAL-80

e L T e e S bk R

:—»PAGE —

LCURSOR_’e?(%Tee;iscigln O el;t:)nr\g;ﬁgln T B
£ poxe— S — O el

Lo —— e —O—nmt— |

. oaLL——gumerical .

leT—’ex;trr;g%ion 22 ®, *vaat:iiggle ‘ -
~-RELEASE S

0 FORMAT string e (D— string

expression expression
o string - ..)
—DELETE——¢xpression B -
—>
o _, string i numerical
CAT—oxpression ~(D)-+FILE expression
o string
UNIT “expression
t' q a2 P ™ — " 2 "
@ erunr— g, :

R

5,

e

i o Rt oot o acloed o Wonel o L I S 4R

METANIC COMAL-80

INDEX Page Page
ABS 14| & CURsOR 8
Actual
Parameter List 16 DATA 1
AND 13 DEF 3
ATN 14| DEL 10
AUTO 10| o DELETE 8,11
Device Name 12
BSTR$ 14| DM 4
BVAL 14] DIV 13
DO 5,7
$ CALL s8| DOWNTO 7
CASE 6
o CAT 8,11 EDIT 10
o CHAIN 6| EUF 5
CHR$ 14| ELSE 5
& CLEAR 6| o END 5
& CLOSE 7| ENDCASE 6
CLOSED 3| ENDDEF 3
Command 10 ENDIF)
Comment 16 ENDLOOP 6
CON 10| ENDPROC 3
cos 14| ENDWHILE 6
21

b—>ENDWHILE

METANIC COMAL-80

—LOOP

(o)

EXIT

—ENDLOOP

—-CASE

—WHEN

—ENDCASE

expression

'

OF —

N\U%

@) — OTHERWISE

—-eXxpression

2 . CHAIN

0
2 ~RANDOM

¥ -RANDOMIZE

string expression—

(o]

X . TRAP

o
*,

CLEAR

ESC

L—erRR—

o

RS IR T

METANIC COMAL-80

Page Page
LOAD 10| Sout 8
LOG 14| ouTPUT 2
LOOP 6
5 PAGE 8
o MAT 2| PEEK 14
MOD 13| & POKE 8
POS 15
Name 17| & PRINT 3
NEW 10| PROC 3
NEXT 7
NOT 12] o quiT 9
Numerical
Expression 12| & RANDOM 6,7
& RANDOMIZE 6
OF 4,6 | o READ 1,7
o ON 5 Real Expression 12
& OPEN 7| Real Variable
Operand 13 Name 16
Operator 13 REF 3
OR 13| o RELEASE 8,11
ORD 14| REM 1
OTHERWISE - 6| o RENAME 9,11
23

—()——nume

METANIC COMAL-80

—DIM—F hame 1

for strings only

variable »@_

N

rical expressionAl

numerical

1 expression

D)~

vl
)

if strinLvariable

—(—

~0F7—>numerical expression—

M
O~ —h
—variable—
#vEXEc—»name—-—@ 1—expression—~)—
)
Q-
—GLOBAL 4 -variable name—y——
)
Q-
o ,
—-GOSUuB line No. '
2 RETURN .
—LABEL +|abel ->

2 .sToP

METANIC COMAL-80

Page
WHILE 5
o WRITE 1,7

All statements marked * may be used as
commands.

Only statements marked O may be used
after IF....THEN.

25

METANIC COMAL-80

A

0

i 2 - INPUT

*%

* %%

+~file —variable

. —TAB . g
9 @
::*LET iabl " @ pression
variable e X
Lt @
_,@
@
o
f** v @ .
—>MAT-—variable @ -expressuon]-
®

.?—»SELECT—>OUTPUT-—>string expression———

O~

—» string constant—()—

»variable-

(O~

O—-0~

In connection with strings :- may not be used,
whereas :+ may be used.

‘Variable and expression in one assignment must be
of the same type. The only exception is:
real variable:=integer expression

2

T s

METANIC COMAL-80

*cknowledgements:
ETANIC hereby wishes to thank all the persons

involved in specifying and testing of COMAL-80.

A special acknowledgement is extended to
Mr. Berge R. Christensen, DATO, Tonder.

This booklet contains the total syntax diagrams
for METANIC COMAL-80, Version 1.

‘Ainor differences may occur in the implementation
onto specific microcomputers. Please consult
your manual for changes.

The information furnished by METANIC in this
publication is believed to be accurate and
reliable. However, no responsibility is assumed
by METANIC for its use.

