PREFACE
@

Thank you for buying the Sharp Personal Computer MZ-80 series FDOS.
To make the best use of the FDOS. read the instruction manual thoroughly and perform the operations

described correctly this will enable you to make most effective use of the system.

— The master diskette cannot be replaced after it is purchased; therefore be sure to use the COPY

command to create a submaster diskette for normal use.

— Itis particularly important to read and understand the explanations of the following commands before

using FDOS.

® FORMAT command (page 41 of the System Command manual)
Before using FDOS with a new diskette, it must be formatted and initialized for FDOS. The file
' contents of diskettes initialized for use with other systems (e.q., SB-6510 or SB-6610) will be
destroyed if used with this system. Likewise, diskettes initialized with FDOS cannot be used with
other systems.
® COPY command (page 35 of the System Command manual)
This command allows creation of submaster diskettes from the master diskette and of backup

diskettes for slave diskettes.
— Since the FDOS operating instructions are divided into several parts, a guide is included to enable easy

reference as needed. Full understanding of FDOS is not a prerequisite to making active use of it; refer

to the guide as needed and your knowledge of the system will grow as you use it.

S-1

PRODUCT GUIDE

The following materials are included in this group of products.

System Command Instruction Manual
Text Editor Instruction Manual
Z-80 Assembler Instruction Manual
Symbolic Debugger Instruction Manual
Linker Instruction Manual
Programming Utility Instruction Manual
PROM FORMATTER
EXAMPLE OF PLOTTER CONTROL APPLICATION
Library/Package Instruction Manual

Appendix .

FDOS Master Diskette

Also, the following files are included in FDOS Master Diskette. Refer to the various instruction manuals

for details.

S-2

; File name Applicable command or manual Function
| — il
| ASM . SYS ASM 780 Assembler
EDIT . SYS EDIT Text editing
LINK . SYS LINK Linker
MLINK . SYS MLINK Linker
& DEB & . SYS DEBUG Symbolic debugger
PROM . SYS PROM PROM formatter
BASIC . SYS BASIC BASIC compiler (sold separately)
FORMAT . SYS FORMAT Formatting diskettes .
| COPY . SYS COPY Copying diskettes
HCOPY . SYS HCOPY Copying one frame on CRT
LIMIT . SYS ‘ LIMIT FDOS management area declaration
| LOAD . SYS LOAD + Loading object files
ASSIGN . SYS ASSIGN . Device definition
STATUS . SYS STATUS Device status control
CONVERT . SYS | CONVERT File mode conversion
PTRP . ASC | ""Appendix "' Paper tape reader/punch control
PTRP . OBJ "Appendix "' Paper tape reader/punch control
S10 . ASC 'j ""Appendix "' ! RS 232C control
SIO . OBJ ‘ " Appendix "' * RS 232C control
CMTI1 . ASC " Appendix "' MZ-80K cassette tape control
CMT1 . OBJ " Appendix " MZ-80K cassette tape control
| START-UP . ASC "System Command " Key definition
| LOADAUX . ASC . "System Command" Loading auxiliary device controller
| MONEQU . AS " Library/Package"' Monitor library source file
MONEQU . LIB " Library/Package"' Library file for the above
FDOSEQU . ASC "Library/Package"' FDOS library source file
FDOSEQU . LIB ""Library/Package" Library file for the above
1S10EQU . ASC SB-1510 monitor library source file
1510EQU . LIB ~ Library file for the above .
RELO . LIB ; "Library/Package" © BASIC compiler library file
SB-1511 . RB ; . SB-1511 monitor relocatable file

—GUIDE TO USE OF THESE PUBLICATIONS—

C Start

,

Want to know the basics of FDOS and yes
the system programs?

no
Want to run the computer yes
immediately?

no
Want to run programs generated by yes
a cassette tape based system under
FDOS?

no
Want to develop programs using only yes
standard devices supported by FDOS?

no
Want to use user-supplied devices in yes
addition to standard devices?

no
Want to develop programs using FDOS yes
libraries?

no
Want to link with programs generated yes
by the optional BASIC compiler?

no
Want to develop object programs using yes
a PROM writer?

no
Want to refer to system error yes
messages?

m
\—/

See the explanations under ""'SYSTEM
PROGRAM ORGANIZATION" in the
System Command Instruction
Manual.

See the explanations under ""COPY "
and "FORMAT" in the System
Command Instruction Manual.

See the explanations under ""CON-
VERT" in the System Command
Instruction Manual.

See the explanations under "FDOS
COMMAND USAGE" in the System
Command Instruction Manual

and the following reference manuals:
Test Editor

Z-80 Assembler

Linker

Symbolic Debugger

See the explanations under ""User
I/O Routine" in Appendix in
addition to the above manuals.

See the explanations under "LINKING
ASSEMBLY PROGRAM WITH FDOS"
in Appendix, and Library/Package in
addition to the above manuals.

See ""CONVERT" in System Command,
"EXAMPLE OF PLOTTER CONTROL
APPLICATION" in Programming
Utility and BASIC Compiler, as well

as references indicated in 4 above.

See the explanations under "PROM
formatter'" in Programming Utility .

See "System Error Messages'' in the
System Command Instruction Manual.

—OPTIONAL FDOS PROGRAM PRODUCTS-—

1. BASIC Compiler SB-7701 (Previously released)

Requirements:
Major features:

Compilation mode:

Compatibility:

Packaging:

o © O O

FDOS and 64K bytes of RAM
Fast execution.

FDOS commands can be invoked from BASIC programs.

Can be linked to assembly language programs.

Compiles a source file (source program) and generates a relocatable file (RB
file) which can be linked and loaded with the FDOS LINK command.
Programs developed by the SB-5000 and SB-6000 series must be converted to
the FDOS format by the FDOS CONVERT command before compilation.
Some BASIC commands (file handling commands) may differ in syntax.
Excessively large programs may not be compilable (source programs are

limited to about 10K bytes).

The BASIC compiler is available on cassette tape with a reference manual. The

compiler should be copied onto the submaster diskette so that it can be run

under FDOS control.

2. Serial 1/0 Ports (to be released in the near future)

Requirements:

Major features:

Packaging:

FDOS and 64K bytes of RAM

One Z-80SIO serial interface LSI device.

Baud rate is switch-selectable.

Two RS232C I/O channels. One of which may be used for a current loop
circuit.

One interface board, its control programs (on cassette tape) and a reference
manual.

The control programs should be copied onto the submaster diskette so that

they can be run under FDOS control.

S-4

Personal Computer

mz-=08

SHARP

R e el e al o R T R T R e T O AR P U SN

¥
i
°
i
d
o

NOTICE

The MZ-80 series of sophisticated personal computers is nanufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

F“40"\0“\‘3’\“’\0%0‘&\““%\%."\!"\."v‘:‘i.ﬁﬁ‘\%\“v‘%‘)’;ﬂ
BB 8t 8 8 in G B A 8 6 e B 8 e B s B8 8 S B 6 8m 8 5 5 8m 8 e e &

R R Rl e T e R R D e T A e r T T T P R T R U U R SR

GUIDE TO USE OF THIS MANUAL

Want to know the basic prin-
ciples of the assernbler, text
editor, linker and symbolic
debugger?

Want to know the basic
principle and specifications
of the MZ-80B FDOS?

Want to run the computer
immediately?

Want to develop programs
under FDOS?

Want to link with programs
generated by the optional
BASIC compiler?

Want to add new commands
to an FDOS library?

Want to define user-supplied
1/0 devices in FDOS?

Want to refer to the system
error message?

(Start

no

no

no

no

no

no

no

no

yes

1

See Sections 1 and 2 (pages 1 — 13).
(Readers may skip these sections.)

yes

1

See Section 3 (pages 14 — 17).
(Readers may skip this section.)

yes

¥

See Section 4 (page 41 and 35). Read the explanations
about the FORMAT and COPY commands.

yes

K

Read Section 4 (pages 18 — 64) throughly.

yes

?

Read Section 4 (pages 18 — 64) throughly, as well as

the following manuals:

BASIC Compiler

Library/Package

"EXAMPLE OF PLOTTER CONTROL APPLICATION"
in Programming Utility

yes

-

Read Section 4 (pages 18 — 64) throughly, as well as
Library/Package and "' LINKING ASSEMBLY
PROGRAM WITH FDOS" in Appendix.

yes

x

Read Section 4 (pages 18 — 64) throughly (especially
the explanations about the LIMIT, ASSIGN, LOAD and
STATUS commands). Read ' User 1/O Routine" in
Appendix.

yes

(End

=

See ""System Error Messages'' in this manual. (page 63)

SYS-i

System Command

—— CONTENTS —

1. THE MEANING OF "CLEAN COMPUTER" 1
2. SYSTEM PROGRAM ORGANIZATION onn. 3
2.1 Text Editor Functions 4
2.2 Assembly Procedures 5
2.3 LINKET . .t e 9
2.4 Symbolic Debugger 11
2.5 PROM Formatterot 13
3. FDOS ORGANIZATION e 14
3.1 Boot LinKert e 15
3.2 TOCS s 15
3.3 Dynamic Segmentationt 17
4. FDOSCOMMAND USAGE i 18
4.1 Program Development Under FDOS 18
472 FDOSControl Keys e 20
421 Mainkeyboard e 20

4.2.2 Automaticrepeat function 21

423 Cursorcontrol Keys 21

424 Initial Settings . . . oo v vt vttt 21

4.2.5 Differences between the SB-1511 and SB-1510 22

4.3 FDOS Command Coding Rules 23
4.3.1 Command line format e 23

432 Filenameottt e 23

433 Filemodes oottt 24

4.3.4 Fileattributesttt 24

4.3.5 File types ..ot 24

4.3.6 Wildcard characters 25

4.3.7 Drive number and volume number 25

4.3.8 Basicdevicename.............. B R 25

4.3.9 Auxiliary devicename e 26

4.3.10 SWItChes i s 27

4.3.11 Default assumptions ottt 28

4.3.12 ATGUMENES . ..ottt e e e 29

SYS-ii

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.49

4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.4.21
4.4.22
4.4.23
4.4.24
4.4.25
4.4.26
4.4.27
4.4.28
4.4.29
4.4.30
4.4.31

ASM . e 30
ASSIGN . 31
BASIC e 31
BOOT 32
CHATR .. 32
CONSOLE i 33
CONVERT ... e 34
COPY .. e 35
DATE 36
DEBUG 37
DELETE 38
DIR 38
EDIT .. . e 39
EXEC ... 40
FAST . 41
FORMAT 41
FREE 42
HCOPY .. . 43
KEY . e 43
KLIST .. 44
LIBRARY ... 45
LIMIT ... 45
LINK . 46
LOAD 47
MLINK . .. 47
MON . e 48
PAGE 49
POKE e 49
PROM .. . 50
RENAME 50
REW . 51

SYS-iii

4432 RUN e 51

4.433 SIGN ... e e e - 52
4.434 STATUS e 53

4435 TIME e 53
4.436 TYPE 54
4.437 VERIFY e 54

. 4438 XFER e 55
4.5 FDOS Command SUMMATYttt ettt et e i e iae e 57
4.6 System ErrorMessages 63
5. MUTUAL CONVERSION i 65

SYS-iv

® 1. THE MEANING OF ""CLEAN COMPUTER"

Three important developments accompanied the shift from the boom in microcomputer Kits to the

entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available.

This development eliminated the need to devote great amounts of time and effort to compressing
system functions to the maximum extent possible to conserve valuable memory for user programs. Now
it is more important that system programs be written and managed in a structured manner and that their
overall usefulness be raised. It is more and more apparent that what the user comes in contact with is not
so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later
charge coupled devices and magnetic bubble memories will be used in this capacity. This suggests that
there will be increasing stratification of programs culminating in operating systems, and that the efficiency
of systems will also increase. From the user’s point of view, this means that a wide variety of programs will
be readily available for use.

(3) The development of various peripheral circuit LSIs has made possible realization of efficient inter-

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided
in a system and how useful they are. In terms of the contents of the system, the main concern will be in
developing operating systems capable of organically combining terminals and program processing with
a minimum of effort on the part of the user. It is even possible that real time processing of multiple tasks
and jobs on a level approaching that of minicomputers will become possible with the operating systems

of microcomputers.

As is apparent, it is extremely difficult to predict the extent to which computers will evolve as integ-
rated circuit technology and program language theory become widely dispersed. This tends to undermine
the belief which some people have that rapid changes in hardware result in good computers.

Although the name "clean computer" has been given to the MZ-80 series, computers are basically clean
in principle. As the field of personal computers opens, the concept of embedding a single language,
BASIC, in ROM has become a hindrance to use of full computer capacity. Out of consideration for the
many different types of service which will be required by users as yet-to-be developed technology comes
into use in the future, it will be necessary to preserve the cleanliness of the computer to the maximum
degree possible to minimize constraints placed on its use. The ultimate ends to which computers are
applied will be determined by the junction of technological possibilities and user requirements; the only
other limits imposed are those which are inherent in the fact that the computer is nothing more than a
machine. In order for computers and users to get along well together, it is necessary that computers be
designed with a minimum of constraints so that they can be suited to user requirements, rather than the
other way around. In other words, the usefulness of the computer and the efficiency of the service it pro-

vides depends on how clean it is.

SYS-1

The explanations in these publications are intended to show how flexible the MZ-80 series of computers
is in terms of system development. A tape-based program development system is provided to enable inex-
pensive development of small programs; the floppy disk operating system (FDOS) was developed to assist
with the creation of large programs which require large quantities of memory. The functions and configu-
ration of FDOS are suited to a range of applications approaching those provided by a low level minicom-
puter. We think that the software technology and utilization procedures applied in this system will open a

new world of possibilities for personal computers.

SYS-2

2. SYSTEM PROGRAM ORGANIZATION

SHARP MZ-80B system programs include an assembler, a text editor, a linker and a symbolic debugger.

They are organized to execute a sequence of assembly phases.

. > Linker
g‘ext editor s ﬁzzsggller = Program relocation
ource program editing y and linkage

Symbolic debugger

Debugging Object program

Fig. 2-1 Assembly phases

Figure 2-1 shows the assembly process, which consists of creating source programs, assembling them,
relocating and linking the assembly output and debugging them.

One cycle of the phases in the left half of the figure makes up a program creation stage. The pro-
grammer prepares a source program with the text editor and creates a source file, then inputs it to the
assembler. The assembler analyzes and interprets the syntax of the source program and assembly language
instructions into relocatable binary code. When the assembler detects errors, it issues error messages. The
programmer then corrects the errors in the source program with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable object program (the
relocatable binary file), output by the assembler to the symbolic debugger. The symbolic debugger reads
the object program into the link area in an executable form and runs the program. During the debugging
phase, the programmer can set breakpoints in the program to start, interrupt and continue program exe-
cution, and to display and alter register and memory contents for debugging purposes. If program logic
errors and execution inefficiency are detected during the debugging phases, the programmer reedits the
source program using the text editor.

After all bugs are removed from the source program, the programmer loads and links the program
unit(s) in the relocatable file(s) and creates an object program in executable form with the linker.

Each system program always generates an output file for use in other system programs. Figure 4-1
shows the interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system programs.
By assigning the system functions to separate programs, the MZ-80B can accomodate large-scale, serious
application programs, thus enhancing its program development capabilities. "PROM formatter" is pro-
vided which punches object programs into paper tape in several formats for use with various PROM writers
now on the market.

The system program commands are listed in the last part of Appendix.

SYS-3

2.1 Text Editor Functions

The major functions of a text editor are to insert, delete and modify characters, words and/or lines.
If the editor does not allow the programmer to use these functions interactively and easily, he will have to
devote more effort to editing and modifying programs than to executing them. To alleviate this problem,
SHARP uses a command format which is almost perfectly compatible with that of the NOVA minicom-
puter series from the Data General Corp.; this has been refined through the support of many uses.

The most important concern of the programmer in conjunction with the text editor is the concept of
the character pointer (CP) and its usage. During line-base editing, the CP is situated not on a line but
between two consecutive lines, as shown in Figure 2-2. Therefore, the location to/from which a lline is
to be inserted/deleted can uniquely identified. If the CP was located somewhere on a line, two locations
would be possible; that is, before and after the CP. The J and L in CP move commands are representative
commands which use this interline pointer concept.

During character-base editing, the CP is situated not on a character but between two consecutive charac-
ters. This permits close editing. The programmer will become accustomed to the text editor quickly if
he is aware of what commands use the interline CP and what command use the intercharacter CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such
commands can be placed on a line separated by separators so that the programmer lists them as they

come into his head.

B & 5M & 3J [CR]

t cp L < Top of the edit buffer
Two or more commands can be D (beginning of the text)
specified by separating them with 5M [SP]
the separator &8 . A
CP 1’ Line 1
4
H
20BECTH3 [CR]
cP> -
3J D
) [SP]
C783
B Line 2 Edit buffer
P> N =
Search for ADD starting at 'CR|
the beginning of the edit buffer [CP> cp vy
L D
B 83 SADD 8 L % 2T [CR])
[SP] .
A » Line 3
B
'CR!

Fig. 2-2 Character pointer movement

SYS-4

2.2 Assembly Procedures

As the programmer becomes familiar with the Z-80 instructions, he is able to construct programs more
easily, even though he may feel difficulty in grasping the structure of large programs. At this stage, it is
not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with the
help of good reference manuals. One of the major reasons for this is the operating principles and architec-
ture of most computers tend to be alike. It is therefore possible to develop a general purpose assembler

for such micro-processors. In this section, the technique employed in the MZ-80 assembler is described.

This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembler is the interpretation of statements. It is therefore important to
establish a proper statement coding format. Figure 2-3 shows an example of a coding format, used in the

MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret.

Scanning the statements in this format, the assembler:

(1) Recognizes labels and stores them into the label table,

(2) Recognizes fields and assembles object codes,

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if

it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (Figure 2.4)

and a 2-dimensional operation table (Table 1) are introduced.

Label :[Mnemonic |—| Operand 1 |,] Operand 2 ;] Comment [/
/ T | J—
_ . - —
—] \\§#//
Field 1 Field 2 Field 3 Field 4 Field 5

Fig. 2-3 Assembler coding format

SYS-5

The symbol # in the instruction list represents a register and the symbol § represents a label or numeric
value. The assembler identifies each instruction by matching the read assembly statement with this listing.
As a result of this match, the assembler produces the major portion of the op-code, the byte length of the
instruction and its atom type. An atom type is one of the numbers identifying the instruction groups of
the Z-80 instruction set. As is seen from Table 1, there are 48 atom types; these are sufficient for newly
defined instructions.

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom type
01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits are to
be performed in that order. The control words identified by the set flag bits specify the actual operations
to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, that it must shift the
data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4 indicates that
this atom type represents the LD r,r’ operation.

Let us examine atom type 18. The set flag bits are 0, 1 and A. The control word for flag 1 is all zeros,
which means no operation. Flag A indicates that the instruction requires address modification (address
procedure) and that the address field must be not longer than 16 bits (size of the field). Thus, atom type
18 represents instructions such as JP nn’ and JP NZ, nn’.

The above assembler operating procedure is summarized in Figure 2-5. Most of the assembly operations
involve table references. In fact, the assembler uses a register table, a separator table and a label table
during the assembly process, in addition to the instruction list and the 2-dimensional operation table. If
these tables are redefined to conform to a new instruction set the assembler may also be used as a cross
assembler. The MZ-80B assembler is currently being used not only as a Z-80 self-assembler but also as
cross assemblers for the Intel 8080A, Fujitsu MB8840 series (4-bit microprocessors), and NEC uCOM-40

series (4-bit microprocessors).

01 0000 :

02 0000 : INSTRUCTION LIST

03 0000 :

04 0000 SYMP : ENT

05 0000 4C442023 DFFM 'LD# #' ;LIKELD B, C

06 0004 2C23

07 0006 F1 DFFB FlH F delimits the instruction pattern. 1 indicates the length of
the instruction in bytes.

08 0007 40 DFFB 40H Main portion of the mnemonic code

09 0008 01 DFFB OlH Atom type

10 0009 4C442023 DFFM "LD #, (IX$)’ ; LIKE LD A, (IX+15)

11 000D 2C284958

12 0011 2429

13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes.

ig ggig]3(1)) 46 gg?g ggEDH DD4600 is the main portion of the mnemonic code.

16 0017 03 DFFB 03H Atom type

17 0018 4C442023 DFFM 'LD # (IY$)' ; LIKE LD B, (IY+AFC)

18 001C 2C284959

19 0020 2429

20 0022 F3 DFFB F3H

21 0023 FD46 DFFW 46FDH

22 0025 00 DFFB OOH

23 0026 03 DFFB 03H

24 0027 4C442028 DFFM 'LD (IX$), #’ : LIKE LD (IX+23), A

25 002B 49582429
26 002F 2C23

27 0031 F3 DFFB F3H
28 0032 DD70 DFFW 70DDH
29 0034 00 DFFB OOH
30 0035 04 DFFB 04H

Fig. 2.4 Instruction list (part)

SYS-6

Table 1 Two-dimensional operation table

Flags (analyzed and processed in ascending flag bit number order)

Atom Description 01 2 3 4 5 6 7 8 9 ABCUDE F
00 Reserved
01 LD # # 1 11
02 | LD %% 1 1 1
03 | LD # (IX+$) LD # (IY+%) 1 11 1
04 | LD (IX+$), # LD (IY+$), # 1] 1 11
05 LD (IX+$),$ LD (IY+$), $ 1)1 11
06 | LD A, (3) 11 1
07 LD (%), A 1 1
08 | LD BC,§ etc. 11 1
09 | LD IX,$ LDIY,$ 11 1
0A | LD HL, ($) 11 1
0B | LD BC, (3)etc. 11 1
0C | LD ($),HL 1 1
0D | LD (3), BC etc. 1 1
OE ADD A, #etc. 111 1
OF | ADD A, $ etc. 11 1
10 | ADD A, (IX+$) etc. 11 1 1
i1 INC #etc. 1 1
12| INC (IX+$) etc. 11 1
13 | RLC Z#etc. 1 1
14 | RLC (IX+$) etc. 1|1 1
15 | BIT $, #etc. 1 1 1
16 | BIT $, (HL)etc. 1 1
17 | BIT $, (IX+3) etc. 1 1 1] 1
18 | JP NZ, $ etc. 11 1
19 | JR C, § etc. 11 1
A | JR $ DINZ $ 1 1
1B SUB #etc. 1 1
IC__| SUB $ etc. 1 1
1D SUB (IX+$) etc. 1 1 1
1IE | RST § 1 1
IF | IN A, (3$) 11 1
20 | IN # (C) 1 1
21 OUT ($), A 1 1
22 | OUT (C), # 11 1
23
24 =
k\ r
2E T L ———
2F
ADDRESS PROCEDURE 1 1|1 111
MUST BE SINGLE 1] 1]1]1 111 1
MUST BE ADR-2 1
1] 1 1
a 111 1
& LEFT SHIFT POSITION
= 1 1 1
—
)
= DON'T CARE
5 EQUATION PROCEDURE 1 111
© 1] 1] 11 1
1[1]1]1 1
SIZE OF FIELD
1] 1 1
1

SYS-7

((START)

[LOC<0] LOC (location counter)

[Read statement]

Wait next pass

[Store label into]
label table

Reference instruc- ”
tion list

lLOC<—LOC+Instructi0n]
length

Fig. 2-5 General assembly flow (excluding assembler directive processing)

I Reference instruc-
tion list

1

Extract flags

Address
processing?

Label
reference?

no

Perform register/table reference,
pattern conversion, shift and
other operations as specified

no by the control words

[[Reference label table ”

Address modification
(decimal-to-binary
conversion)
(hexadecimal-to-binary
conversion)

[

r Assemble object code J

lLOC<—LOC+]nstruct10r1|
length

[l Construct CRT l.isting—"

Construct printer
listing

Convert object code
to relocatable binary
format

O

SYS-8

2.3 Linker

The linker loads and links two or more program units using external symbol referencing instruction

from relocatable files and generates absolute binary code in the link area and saves it into an object file.
The relocatable files contain control frames and external symbol information. The linker resolves external

symbol references and relocates the program units as described below.

(1) External symbol reference resolution

The linker refers to the symbol table when resolving external symbol references (see Figure 2-6). The
symbol table contains a 9-byte symbol table entry for each external symbol. A symbol table entry consists
of a 6-byte field containing the symbol name, a 1-byte field containing the definition status, and a 2-byte
field containing an absolute address with which the symbol is defined or a relocation address.

When the linker encounters an external symbol reference while loading the program unit from a reloca-
table file, it checks to determine whether the symbol has been cataloged in the symbol table.

(1) If it has not been cataloged, the linker enters it into the symbol table as a new undefined symbol,
loads the relocation address into the symbol table entry and loads code FFFFH into the operand
address of the instruction in memory.

(2) If it has been cataloged and defined, the linker loads the defined absolute address into the operand
address in memory.

(3) If it has been cataloged but not defined, the linker moves the old relocation address in the symbol
table entry to the operand address in memory and loads the new relocation address into the symbol
table entry.

Thus, the linker chains undefined references to each symbol and, when the symbol is defined, replaces
all reference addresses with the defined absolute address. In other words, when an external symbol defined
by the ENT assembler directive appears in the control frame, the linker enters the symbol into the symbol
table as a defined symbol and replaces all preceding operand addresses chained in memory (terminated by
FFFFH) with the absolute address defined. The programmer can examine the definition status of the
symbols using the table dump command.

An example of external symbol reference resolution follows. Assume that three program units are to be
linked and that each unit references subroutine SUBI in the third program unit (see Figure 2-8).

When the first CALL SUBI instruction is encountered in program unit 1, the linker enters SUB1 into
the symbol table as an undefined symbol, loads the operand address (relocation address SO01H in this
case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table
entry and loads the code FFFFH into the operand address in memory (see Figure 2-8(a)).

When the CALL SUBI instruction is encountered twice in program unit 2, the linker chains together
their operand addresses which reference SUB1 (see Figure 2-8(b)). When SUBI is defiend in program unit
3, the linker designates SUB1 as a defined symbol and loads all operand addresses referencing SUB1 with
the defining absolute address. The end of the operand address chain is identified by the code FFFFH.
Figure 2-8(c) shows that SUB1 is defined by absolute address 5544H. When the linker subsequently en-
counters a CALL SUBI instruction, it immediately loads 5544H into the operand address of the instruc-
tion since symbol SUB1 has been defined.

SYS-9

Loading area

Symbol table area

} Link area

0000 Monitor
12A0 FDOS
Linker
Stack area
FF00 Reserved

Fig. 2-6 Memory map for the linker

411 5]6

71819

Symbol name

N —
Definition Address
status

(value)

Fig. 2-7 Symbol table entry format

Program unit 1

¢

CALL SUBI1

END

5000

CD | FF | FF

te—]Jdentifies the

location referenc-
ing an undefined

symbol for the
first time (serving
as an end mark).

L »["suB1 [02]o1]50] fﬁjt?yl table
This code indicates that —
the symbol is undefined.
(@)
Program unit 2 l
! 5000] CD | FF | FF |
CALL SUB1 l
2 [Lsiio co| o1 | so0 [
¢ Operand
CALL SUB1 |—=5310{ CD | 11 [51 || addresses
2) 2 referencing
the symbol
END are chained
together.

[suB1]oz[n[ssli

(®)
Program unit 3
5000 CD | 44 | 55
{ | —
SUBL : ENT {— 5i10] CD | 44 | 55 D
XOR A [
5310[cD | 44 | 55
!
END 5544 AF
L] SUBI |00]44|55

This code indicates that
the symbol is defined.

(©

Fig. 2-8 Example of external symbol reference chaining

SYS-10

(2) Program relocation

The linker relocates instructions referencing external symbols while linking the programs. For instruc-
tions which reference internal symbols and for which relocation addresses are generated by the assembler,
however, the linker produces absolute addresses for the symbols by adding bias to the relocation
addresses.

Thus, the linker generates absolute binary code in the link area in an executable format which is de-
pendent on the bias specified by the programmer when the program unit is loaded. When creating an
object file, the linker saves the absolute binary code from the link area in the file together with its loading

address and execution address.

2.4 Symbolic Debugger

The symbolic debugger inputs relocatable files under the same input conditions as the linker except
that it presumes that absolutable binary code is loaded into the link area in an immediately executable
form. The symbolic debugger permits the programmer to debug his program while running it.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified
locations and check the system status at these points. The programmer specifies the breakpoints at which
program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves the
operation code at the address set as the breakpoint in the break table and replaces it with an RST 6
instruction (F7H) (see Figure 2-9).

The RST 6 instruction is a 1-byte call instruction to address 30 in hexadecimal. Its operation is as

follows:
(SP - 1)« PCu,(SP - 2) < PC.
PC < 0030H

Hexadecimal address 30H contains a jump instruction which transfers control to the breakpoint control
routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is
reached the number of times specified by the break counter. Before the break count is reached, execution
is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and
displays them in the screen., When the program is restarted, the debugger restores the contents of the
register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

Saved OP code Replace
Breakpoint address \

(label symbol) F7

decimal.

[+ Breakpoint
is set

Break count Variable count

Break table entry

. Object program
Fig. 2-9 Breakpoint setting and breakpoint table format

SYs-11

The symbolic debugger has indicative start and

memory list dump commands in addition to the

breakpoint setting command, execution command,

OIOT

memory dump command and register command.

H—=DMDM
Uctd o
)]

(V1]

D
A
Q
A
=]
P
7
S

The indicative start (I) command displays contents
of the CPU registers with which the program is to
be executed for confirmation before actually
transferring control to the address designated by

the program counter (PC) displayed. For example,

The above display shows that the program is to be started

when an I command is enterd, the display shown in at address 7500 (hex) with the CPU register values shown.

Figure 2-10 appears on the screen. When the pro- Fig. 2-10 I command example
grammer pressed after confirming the CPU

register contents, the debugger initiates an indicative start as shown in Figure 2-11,

Register buffer
General-purpose AF BC DE HL The debugger restores the contents of .
s | APRCDEHL || gacy | DSERRIOLRSE RO
Special-purpose SP IX 1Y 1 / gr\:mv:i:::iu?ifortll.le PC and initiates pro-
registers PC

Fig. 2-11 I command operation

The memory list dump (D) command displays the machine code in the specified memory block with
one instruction on each line.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure
2-12. With symbolic addresses, the programmer can specify any addresses in the program wherever the
program is located in memory.

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol ‘

(2) The address of an instruction 1 to 65535, lines away from the address represented by the symbol

(3) An address 1 to 65535,, bytes away from the address represented by the symbol

Of course, the programmer can also specify memory locations with absolute addresses.

For example, the program unit whose source program is shown at the left of Figure 2-12 is loaded into
memory by the debugger starting at hexadecimal address 7500, execution of a D command will display

a dump of the memory block as shown at the right
in Figure 2-12,

#DD S
START : ENT 2298
LD SP, START 5288
CALL MSTP z5ea
XOR A
LD (? TABP), A
LD B, A
MAINO : ENT
LD A, OFH

Fig. 2-12 D Command

SYS-12

2.5 PROM Formatter

The PROM formatter generates formatted absolute binary code and stores it into paper tape under the
PTP control. It is the system backup software used to transfer object programs to the PROM writer.
Currently, the following paper tape output formats are supported (see Figure 2-13):

(1) BNPF format: Britronics, Intel and Takeda

(2) B1OF format: Takeda

(3) Hexadecimal format: Britronics, Takeda, Minato Electronics

(4) Binary format: Britronics

The variety of tape formats supported by the SHARP PROM formatter extends the application range
of programmable ROMs.

format 2T
format list

ENFPF (Bri?htronics RPG-8764)
he~xadec 1ma
2

)
3

E %Q,‘fg,},a”?g?g%s, Fig. 2-13 Paper tape output formats

DT
JIx 00T

A
B
¢
E
F
G
H:
§
PA

[
B
B S
B
he
M
re
or

e
ma

The PROM formatter is made up of format, the PTP and the PRT-controls (See Figure 2-14). These
enable the programmer to perform foramt conversion.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when reading
paper tape. In the formats using ASCII code (BNPF, B10F and hexadecimal), the most significant bit is
assigned even or odd parity. When even parity is used, for example, ASCIl code "A" (41 hexadecimal)
is punched as is, whereas "C" (43 hexadecimal) is converted to C3 in hexadecimal before being punched
by setting its MSB. The parity mode can be set using the P command with the desired switch assigned,
e.g. XP$SPTP/PE /LF.

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/
reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose 1/O
card (MZ-801/0-2). Tt can also control other models, such as the DPT26A paper tape punch from Anritsu,

if I/O conforming to the punch specifications can be implemented on the general-purpose 1/O card.

PROM formatter All FDOS devices
- other than the
$CMT and SMEM

Absolute binary Formatter section

rogram unit >
Prog Format control (_/

F version >
(Format conversion, > Paper tape punch

output to punch,
input from reader) /__/

Paper tape reader

Fig. 2-14 PROM formatter configuration

SYs-13

3. FDOS ORGANIZATION ®

Figure 3-1 shows the files which are run under control of the SHARP MZ-80B FDOS. The FDOS has
the following features:
(1) Multistatement processing.
(2) Default argument processing.
(3) Allows wildcard characters in file references.

(4) File-oriented processing extended to I/O devices.

——| Boot/linker J Reads and links system commands.

— 10CS The standard devices include disks, tape unit, keyboard,
J display unit, line printer, paper tape punch and paper tape reader.
— Text editor |

— Z-80 assembler |
——‘ Linker I .
— Symbolic debugger |
[PROM formatter |
——r BASIC compiler J

[Builtin commands | Include DIR, XFER, etc. (See Table 4-1)

——{ Other transient commandsJ Include LIBRARY, VERIFY, etc. (See Table 4-2)
— User programs | Source files, relocatable files and object files created with this system

FDOS

Fig. 3-1 FDOS file organization

Figure 3-2 shows the memory map for the above 0000 Monitor
syste . i i A
ystem resources. FDOS is made up of a resident 12A0 FDOS main section
section and an overlay section. Their resident sec- Command interpreter,
o boot linker, supervisor
tion ir.cludes: call procedure, work .
utilities » Resident area

(1) A command line interpreter which interpretes

I0CS main section
IOCS table, file

(2) A boot linker which reads and links command TPA management 1
files from the FDOS diskette.

(3) A supervisor call procedure which manages

and executes system commands.

Command unit

system resources, including files.

Tables \ Overlay area
(4) An I/O control system (IOCS) Allocation map, (transient area)

(5) A file management program which manages the device table

diskette allocation map, file table and other Work segments
segment variables
information. ZWORKO0-ZWORK19
Stack area
FF0O0

Reserved area .

Fig. 3-2 FDOS memory map

SYS-14

3.1 Boot Linker

The FDOS transient commands (whose file mode is .SYS) are not resident in memory, but are stored

in relocatable files on the system diskette. These programs exist not in absolute form but in relocatable
form. When they are invoked, boot linker relocates them and specifies their loading addresses (see Figure
3-3).

These relocatable system files differ from relocatable files generated by the assembler in the way in
which they are loaded into memory. The external symbol references of the system files have been re-
solved; these are just relocated by the boot linker. Accordingly, the control frame associated with each
statement of the system programs contains only a field identifying the statement as having a relative
address or absolute data and containing the byte count of the statement. When a relative address is indi-

cated in the control frame, the system adds loading bias to the relative address to form an absolute

address.
Monitor
FDOS
=" Boot linker
|
Relocate :
y > Absolute binary code
FDOS » Transient area
transient (FDOS commands
commands may be loaded in
J arbitrary locations
Relocatable files within this area)
(identified by the .SYS file mode)
Fig. 3-3 Loading FDOS transient command with the FDOS boot linker
3.2 10CS

IOCS in FDOS provides control over the display unit, cassette unit, floppy disk unit and printer. The
programmer can define other I/O devices using the ASSIGN command.

Control programs for such user I/O devices can be stored in external files and their names can be cata-
loged in the 10CS table. They are invoked and executed by IOCS as required.

The actual file management programs form a hierarchical structure as shown in Figure 3-4. In the MZ-
80B system, routines from the macro command programs to the device control programs are collectively
called the input/output control system (IOCS). Being of modular construction, these programs are as
independent of each other as possible. By hiding controls unique to I/O devices, such as device address
management and buffering, IOCS permits the programmer to handle these programs as logical files and to
control the I/O devices as general files.

The alternate start/stop feature is enabled during IOCS operations. The system temporarily suspends
the read operation when an alternate stop is effected during a data read. At this point, the programmer
can switch to the FDOS command mode or continue the suspended IOCS operation by effecting an

alternate start.

SYS-15

yun Aedsip piroqAay 1un adey
WasAS WAISAS yound ade) 1odeg 1apeas ade) 1adeg 1a1und sury 2113SSBD WalSAS wun ysip Addojy
N N (\'j
301A3p 193] Q/1 [e113S [ERI7ETg}
&)
13][011U0d 13][01}U0D 13[j013U0d 13]j013U0d 19([013U02 yound 13[]011U0D 13peAI 13[[011U03 I3[[011U0D 13]]013U0d swesdoid
901A3P J38(] 0/1 1eudg nun Aeydsiq pleoqAay adey 1adeg adey 1adeg 1a1uud aury ade) a1jasse) ystp Addojg [o1uod
JOMA
-— e med
— T
yuswaeusw uresdoid
[puuRy) [011U0D [auUURY) $001
©
swe1doid M
|||||| 3OO Nado LNd LIAD JLIM avay PURLILIOD OIOE W
lllllll Burssaoadisod ay1g Fuissavordaid afig uonajap g Jurweuas a4 uonEaId A1 sweidoid
’ JuswadruRl 1]
SPURLUWOD JUIISUBL] 1apdwod JISvVy Ja11BWIO) WOUd 19ur] 1533nqap d10quIAS 10113 1X3L 13[QUIASSE 08-7 EEmo\Ma
WaISAS

sureaSoxd yuowraSeuruw 3[Ij JO IMONYS [BIYOIRIIH - "1

3.3 Dynamic Segmentation

Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register. Consequently, methods of

simulating this function are commonly used. The boot linker previously mentioned can be thought of as a

variation of such simulations. Here, a method of memory segmentation and assignment which leaves the

memory image unchanged is described.

Two subroutines are used for memory segmentation as shown in Figure 3-5 and 3-6. These two subrou-

tines and segment variables are maintained in fixed locations in the FDOS main program area. They are

accessible to all programs. The 20 segment variables are initialized during preprocessing for each command

and assigned values so that no memory segment exists. They are redefined as required during processing

of each command, thus creating memory segments.

Fig. 3-5 Extending a specified segment

r - — —_ —_—— == 1
: A2 ; Segment No. (0-19) :
: BC «—=500 ; 500 bytes I
i CALL DOPEN ;DYNAMIC OPEN J
e e
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1: 5500
2 ZWORK 2 : 6000+(500) ZWORK 2 : 6500
3 ZWORK 3: 6500+(500) ZWORK 3: 7000
4 ZWORK 4 : 7000+(500) ZWORK 4 : 7500
5 ZWORK 5 : 7500+(500) ZWORK 5: 8000
6 ZWORK 6 : 8000+(500) ZWORK 6: 8500
7 ZWORK 7 : 8500+(500) ZWORK 7: 9000
18 ZWORK]18 :29000+(500) ZWORKI18 : 29500
19 ZWORK19 :29500+(500) ZWORKI19 : 30000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2) *
/—/—bJ (ZWORK 2)
(ZWORK18) |-
o —~—
— —
(ZWORK19) | (ZWORK18)
(ZWORK19)

SYS-17

Fig. 3-6 Deleting a specified segment

rr---"""""""—-"""—""—_""—-"—=-"—"—"—""——— 1
[
! A—2 ; Segment No. (0-19) l
| BC<+—500 ; 500 bytes |
Il_ CALL DDELET ; DYNAMIC DELETE JI
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1: 5500
2 ZWORK 2 : 6000—(500) ZWORK 2: 5500
3 ZWORK 3: 6500—(500) ZWORK 3: 6000
4 ZWORK 4 : 7000—(500) ZWORK 4 : 6500
5 ZWORK 5 : 7500—(500) ZWORK 5: 7000
6 ZWORK 6 : 8000—(500) ZWORK 6 : 7500
7 ZWORK 7 : 8500—(500) ZWORK 7 : 8000
18 ZWORKI138 :29000—(500) ZWORK138 : 28500
19 ZWORKI19 :29500—(500) ZWORK19 : 29000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2)
(ZWORK 2)] (ZwOoRK 3)[
e r—_/
(ZWORK18) }- (ZWORK19)
(ZWORK19) |

4. FDOS COMMAND USAGE ®

4.1 Program Development Under FDOS

Source file Text editor

Source file

Q_O XFER O . EDIT __|Source creation
(0] and editing
o XFER 0
Source file $EDI~§ FD4
~—) ASM BASIC
\/—\ Assembler BASIC compiler
$PTR, $PTP, etc. ' Assembly Compilation
Assembly > listing Compilation > listing
$CRT, $LPT, etc. $CRT, $LPT, ete. .
Relocatable files Library file
LIBRARY
%) ?O
LINK DEBUG
System file Linker Symbolic debugger

Oo - Linking
d \

) Link

(Execution) information

Debugging
o

Object file
Obiject file BNPF, HEXADECIMAL, BINARY formats
XFER
Q_O O | PROM _
Oo
$CMT
P PTP .
RUN $PTR, SPTP, etc

V%
Execution

Fig. 4-1

SYsS-18

1531 NNA (X3 T €0S "LSIL ANIT (X3 T/Ld1S “/L¥IS "LSAL WSV (XT L1ag (xg

pasasay

Bare yoey§ — |
a|qel [oquiss

pasnup) _\ ease Junjury 21qe} [oquiAg laynq 1pg
(f40°1S7L) (g4¥°1S31)
1wawdas a1y rdQ Juawdas apy gy
(a4°140s) (OSV'1SAL) .
syuawdas : Bare JuaWAas a1y AN
o[uado u paxui| aq 0} 7 judwdag 1uaw3as dj1) Ad1nog PAAIISOL S 1011PD %

(8¥°1S7L) 1X3) 3Y] ul papnpou
payui] 3q 0] | JUSNIFAE 1 3y} ul papnpug _ Juawidas 2[1J 301005
paxul| pue {42[quasse ()8 Z)
PaIquIasse u3aq sey (aayury) awdss pueuiwo) (1011pa 1x3])
Yotym 1uawidas 193lqQ JUSWEos puBwWILo) Judwdas purwIWIO)

S0da: SO Junsi A|lquossy S0d:1 soa4d

10)IUOW ﬁ 101IUO 10} IUOW I0)IUOW
uonndaxy D hmm_.mm Iayury D 12[QUIASS Y D D
o [« (-] o
O O O < I0Up3 IN3L O)
7/ -
[
uonnaaxg g 1S3L ayury 9 LSTL sndwod JISVe DSV LSAL %
J[qel [oqUIAS
pasnun) L -
pasnup
Bare 3uiyury
s1uawdds o1y uado u (140" 1S4.L) -
1uow3ss Ay 4O :uh%ow m—.mm_b
wauidas 3uing @ o1y ¥ : _d.:« a4 ;
PAU 29 01 £ Iuausag :uEwuwuum< Humw%
Juawdas Kedsy (4¥°1S9L) ! o 3
3
(rd0°'IS31) e (1apdwod JISVe)
Ul pUE (aoyury) 51 uonenduio :uEmwm UBLLIWO
papidwod usaq sey Juaw3ss puBwWo)) ! P D
Yorym 1uswdas 103[q0
SO SOA.{ \ SOa4d
IoJIuUop 101TUoN IoNuol
LSAL NNY (X3 417 OTd¥ "LSAL JNIT (XT 1§41 D/01Sve (X7

S0a4 Aq syuawdsg Jo uoneAndy - Sig

4.2 FDOS Control Keys

4.2.1 Main keyboard
Except for the following, the control keys on the main keyboard are used in the same manner as under
the SB-1510.

The scrolling speed of the display data is maintained at the preset speed while this key is
held down. When this key is released, the scrolling speed returns to the maximum speed.
The scrolling speed is set with
POKE $000F nn
nn =01 ~FF The speed slows down as the value of nn is increased.

nn = 40 Normal speed
+[0] Deletes the portion of the line from the cursor position to the end of the line,
+(1] Sets a tab at the cursor position.
+ Resets the tab at the cursor position.

SHIFT| + Resets all tabs set by the above procedure.
SHIFT| + Sets the number of characters per line to 40.

The screen is cleared and the cursor is returned to the home position.

SHIFT| + Reverses the shift mode of the alphabetic keys.
Making these entries again resets the reversed shift mode.

SHIFT| + Sets the number of characters per line to 80. The screen is cleared and the cursor is re-
turned to the home position.

[SHIFT] + | INST] Enables insertion of an arbitrary number of characters at the cursor position. Pressing
the key terminates insertion,

BREAK Terminates the program currently being executed, displays the message ' Break " and
awaits entry of a new FDOS command. Executing ON BREAK GOTO under the BASIC
compiler causes a jump when the [BREAK]| key is pressed.

SPACE Holding down the space key for a certain period of time suspends current program execu-
tion. The time differs according to the operation currently being executed. For example,
when the printer is operating, the space key must be held down until a carriage return is
performed. After program execution has been suspended, one of the following operations
is possible.

® Pressing the key : See the explanation above.
® Pressing the key : Resumes program execution.

The [0] through [8] keys are on the numeric pad.

It is convenient to affix seals on which the following functions are printed to the front of the numeric

keys to identify the functions of SHIFT|+[0]—[5] [8].

DELETE, SETTAB, CLRTAB, CLR , CHR40, CHANGE, CHR80
TO EOL ALL TAB

SYS-20

4.2.2 Automatic repeat function

. All keys other than the cassette tape control keys are provided with the automatic repeat function:
when a key is held down for more than a preset period of time, the key entry is automatically repeated
at a preset speed. The period and speed are stored in memory location 000D and can be set with the
following BASIC statement.

POKE §$000D sstt
ss=01 ~FF : The repetition speed is reduced as the value of ss increases.
tt=01 ~FF: The period described above is determined by (ss) * (tt), so it becomes greater as

the value of tt is increased.

Example:
POKE $000D 2010

4.2.3 Cursor control keys

Key entry Picture character Code Function
+ [4] 4 OlH Moves the cursor down 1 line.
+ [1] T 02H Moves the cursor up 1 line.
GRPH | + [>] s 03H Moves the cursor to the right by 1 space.

+) 04H Moves the cursor to the left by 1 space.

+ H O05H Moves the cursor to the home position.

+ [06H Clears the screen and moves the cursor to the home position.

+ &8 1FH Delimiter
}
|

4.2.4 Initial settings
Various initial values are set when FDOS is activated by MZ-80B system IPL. These values are the intial
default values, and they can be updated by the programmer.

e Definable function keys

R UN [Fl1] __$ FDI1 ;
XFER _, [F12] _$ FD2;
DELETE [F13] _.$ KB ..
RENAME Fl4] _,$ CRT

DI R [F15] ..$ L P T/L
EDI T ., [FI6] _$ CMT;
ASM . AS C
LI NK FI18] . RB _,

DEBUG FI9] . L1 B.,
FI0O] BAS I C F20 0 BJ .

For - , press — and simultaneously.

SYs-21

Scrolling speed: nn=80

Automatic repeat speed and preset period:

(ss) % (tt) =40 *x 0C

Tab spacing: S characters
Small letter input mode: Shift position in the normal mode or [SHIFT |+[5]
Other initial values are the same as those set by BASIC SB-5510.

4.2.5 Differences between the SB-1511 and SB-1510

Item

SB-1510

SB-1511 (monitor)

Automatic repeat function

e Cursor control keys only
o Key entry is repeated only when a

cursor control key and the | SHIFT

key are pressed simultaneously.

e All keys other than the cassette tape
control keys

® The repetition speed and the time re-
quired for starting repetition are
variable. See page 22.

Definable function keys

e Up to 10 functions can be assigned.

[F1] ~ [F10]

e Up to 20 functions can be assigned.
~ and
SHIFT| + ~

Interrupt

When interruptions are disabled upon
entry to a subroutine, they are enabled
before the RET instruction is executed.

When interruptions are disabled upon
entry to a subroutine, they are enabled
or kept disabled according to the condi-
tion set just before control was trans-
ferred to the subroutine.

RST7 (PANIC) displays the contents of
registers AF, BC, DE, HL and PC and

awaits entry of a new monitor command.

e RST7 (PANIC) displays the contents
of registers AF, BC, DE, HL, PC and
SP and awaits entry of a new monitor
command.

® RST6 is reserved for use by the
debugger.

SYS-22

4.3 FDOS Command Coding Rules

This section describes the coding rules for FDOS commands.

4.3.1 Command line format
In the command mode, FDOS prompts for command entry with a number and the symbol ">". Enter
a command followed by arguments (described later), if necessary, press key and the FDOS will

execute the command.

Command

Example 1: %\?EDITQIEhéT: [CR] Argument . denotes a space.
|

Prompt
Default drive number (described later)

The first number (1 ~ 4) indicates the default drive, namely, the currently logged-on disk drive.

Some commands may require two or more arguments,

Example 2: 2> XFER. TEST, $ CMT
- Argument 2
————————— Argument 1
Command

The command and arguments must be separated by commas and/or spaces.

(Legal) 2> XFER_,_ TEST_.$ CMT
(Legal) 2> XFER , TEST, $ CMT[CR]
(Illegal) 2>XF ER TEST, ,$ CMT

Only one comma is allowed.
No space is allowed.

Two or more commands may be specified on one logical line by separating them with colons ("' : ").
A line containing two or more commands is called a multistatement line. A logical line may contain any

number of commands but it must not exceed 160 characters in length.

Example 3: 2> DELETE TEST : RENAME AAA, TEST : ASM TEST

Example 4: 2> Xfer $kb,aBc
Either upper or lower case letters may be used for commands and arguments. The FDOS does not
distinguish between upper and lower case letters.

4.3.2 File name

All program and data files on a diskette are given file names. The programmer must specify a file name
when storing a program or data file on a diskette and when reading it. A file name must be from 1 to 16
alphanumeric characters (including lower case letters) and/or special characters L#E D&, (), +H —, <,

=>,@[\,],1and <.
No two files on a diskette can have the same file name and file mode (described later). Files with the

same file name may exist on a diskette if their file modes are different from one another.

(Files with the same file name and mode may exist on different diskettes).

SYs-23

4.3.3 File modes
The file mode iridentifies the type of the file. It is usually used with a file name. The MZ-80B file

modes are listed below.

File mode

File mode Meaning
.OBJ Identifies an object file which contains Z80 machine code.

ASC Identifies a source file, such as one created by the text editor, which contains a stream of
' ASCII characters.

RB Identifies a relocatable file which contains pseudo-machine language code (relocatable binary
) code) generated by the assembler or compiler.
.LIB Identifies a library file consisting of two or more relocatable files.

SYS Identifies a file containing a system program which runs under FDOS, such as the text editor
’ and assembler.

4.3.4 File attributes
File attributes are information pertaining to file protection. There are four file attributes: 0, R, W and

P. File attribute O indicates that a file is not protected. The other file attributes inhibit the use of specific

commands as listed below.

File attribute R w P
TYPE TYPE
XFER XFER
EDIT EDIT
ASM ASM
Inhibited FDOS LINK LINK
Commands DEBUG DEBUG
PROM PROM
BASIC BASIC
DELETE DELETE
RENAME RENAME
L ROPEN # ROPEN #
é“;i‘nbg:: d‘:ASIC INPUT #() INPUT #()
PRINT #() PRINT #()

4.3.5 File types

A file type indicates the file access method. There are two file types: sequential (S) and random (X).
FDOS normally handles only sequential files. Random files can be accessed only by the DELETE,
RENAME and CHATR commands. An optional BASIC compiler is required to create, write to and read

from random files.

SYS-24

4.3.6 Wildcard characters
The programmer can specify two or more files at a time by specifying wildcard characters in the file
name and file mode. The wildcard characters " ? " and "' * " are used for file names and " .*"" is used for
file modes. |
[Wildcard character " ? " |
" 7" represents any one character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,
XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command.
TYPE A?C?.ASC
is entered, the contents of the files ABC3 . ASC and ADCN . ASC will be displayed.
| Wildcard character " " }
" * " Represents 0 or more characters.
A : Represents file names beginning with "A'" e.g., A, A2, ABC
*2 : Represents file names ending with "'2" e.g., TEST2, SAMPLE?2
P>*5: Represents file names beginning with "P" and ending with "5" e.g., PROGRAMS, PM5
| Wildcard characters " " |

""" represents all file modes.

DELETE PROG 1. % Deletes all files whose file name is PROG1
XFER > .ASC, $ PTP Punches all files whose file mode is .ASC.
DIR A XB>* ?3 .RB

DELETE > . Deletes all files on the diskette,

4.3.7 Drive number and volume number

A drive number refers to the drive number of a floppy disk drive (MZ-80FB or MZ-80FBK). Drive
numbers 1 through 4 are assigned device names $FD1 through $FD4 respectively.

A volume number (1-255) is a number identifying a diskette. FDOS checks this number for validity

each time it accesses a file.

4.3.8 Basic device name
FDOS can handle the following I/O devices:

$KB : MZ-80B system keyboard
$CRT : MZ-80B system display unit
$FDI1 :
$FD2 :)
Floppy disk drives (MZ-80FB or MZ-80FBK)
$FD3 :
$FD4 :

$CMT : System cassette unit
SLPT : System printer (MZ-80P4 or MZ-80P5)
$MEM : A part of main memory regarded as an I/O resource.
The system automatically reserves an unused area as SMEM. This area is released by the

DELETE SMEM command or when an error occurs.

SYS-25

4.3.9 Auxiliary device name
Auxiliary devices are devices whose control programs are not resident in the FDOS area in memory. ‘
Their control programs are stored in external files. An auxiliary device name is assigned to an auxiliary

device control program using the ASSIGN command to allow IOCS to manage the control program.

Paper tape reader and punch. The user must prepare an interface circuit for these using a

iz;fj :. universal interface card. The system contains their control programs, however. For details,
refer to "PAPER TAPE PUNCH AND READER INTERFACE" in the Appendix.

$SIA : Serial input port A

$SIB : Serial input port B

) The interface card for these I/O ports is optional.
$SOA : Serial output port A

$SOB : Serial output port B
$CMT1 : Cassette tape deck for the MZ-80K

$USR1 :

$USR2 :| These device names are provided for user-supplied I/O devices. The control program
$USR3 : | must be supplied by the user. '
$USR4 :

To use these device names, prepare a machine language area using the LIMIT command, load the
corresponding auxiliary device control program into the area using a LOAD command and link the
program with the I/O controller of FDOS using an ASSIGN command. The auxiliary device control
programs are supplied in the form of object files and ASCII files. In general, use the object files. If you
want to change the loading address, assemble and link the ASCII files with FDOSEQU.LIB from the
master diskette.

The loading address of each auxiliary device control program is shown below.

F300 SCMT1 » CMTI1.ASC, CMT1.0BJ
F700 $SIA
F7DA $SIB
F8B4 $SOA \
F98E $SOB SI0.ASC, SIO.0OBJ
FC0O0 SPTR .
FE39 $PTP
FE0O FDOS work area
FFOO Interrupt vector area PTRP.ASC, PTRP.OBJ
1. Memory map

2. Control programs

Example 5: 1 > LIMIT $F300
1> LOAD CMT! SIO PTRP
1 > ASSIGN $CMT1 $F300 $SIA $F700 $SIB $SF7DA $SOA $F8B4 $SOB
$F98E $PTR SFCO0 $PTP SFE39
Example 6: EXEC $FDI1 ; LOADAUX
All the auxiliary device control programs are loaded since file LOADAUX.ASC contains

the above programs.

Notes:
1. Any file input from the keyboard ($KB) is terminated by pressing the , BREAK | key. For example, exe-
cution of the command ’

1 > XFER $KB, XYZ

is terminated when the programmer presses the BREAK i key.
SYS-26

2. The end of files from $PTR is identified by the null code (00H) following the data area (null codes in

the feed area are ignored).

3. 8CMT and $MEM can be accessed only by the built-in commands and programs compiled by the BASIC
compiler. When they are used by other programs, the error message

no usable device

is issued.

4. $CMT can handle only .ASC and .OBJ mode files. $KB, $SCRT, $LPT, $PTR, $PTP and $MEM can
handle only .ASC mode files (error message "il file mode" is issued if an illegal file mode file is used
with one of these devices).

5. $PTP and $PTR automatically skip the tape feed portions.

4.3.10 Switches

Switches follow command names or arguments and specify optional command functions. There are
three types of switches.
| Global switches |

Global switches are appended to command names and specify the mode in which the command is to be

executed. Two or more switches may be specified for a command as shown in Example 5. In such cases

they may be placed in any order.

Example 7: t > DATE/P /P denotes LPT.
T LGlobal switch
Command
Example 8: 1> LINK/P/T TEST /P denotes LPT.
LGIObal switch /T denotes the symbol table.
/(\‘: ‘\ J(\ No space may appear in these positions.

Local switches |

Local switches are appended to arguments and specify the use of the arguments.

Example 9: 1> ASM TEST, § LPT/L, XYZ/0 /L specifies the device on which the assembly listing is
to be output.
/0 specifies the relocatable output file.

| Device switches |

Device switches are appended to device names. Their format is identical to that of local switches. The
legal device switches are /PE, /PO, /PN and /LF. These switches can be appended only to devices
$PTR, $PTP, $SIA, $SIB, $SOA and $SOB.

The meanings of the device switches are listed below.

Switch Input Output
/PE Specifies that data is to be cheked for even parity. Specifies that even partiy is to be used. (Note)
/PO Specifies that data is to be checked for odd parity. Specifies that odd parity is to be used. (Note)
/PN Specifies that bit 7 (MSB) of input data is to be set to 0. | (Note)
/LF | Invalid Specifies that is to be followed by [LF].

Note: An error is generated (il data) if the MSB of the data is set to 1 from the beginning (e.g., graphic characters).

SYS-27

Note:

Any switch following the first argument of the RUN command is treated as a global switch.

Example 10: 1 > RUN__, ASM48/P__TEST, XYZ/O

Local switch
Global switch

The meanings of the individual global switches are described in the related command descriptions.

4.3.11 Default assumptions
The general format of a file specification (valid for $FD1—$FD4 and $CMT) is given below.

Example 11: FD2 ; PROG2 . ASC $ CMT ; TEST2 . OBJ
File mode File mode
File name File name
Device name Device name

The programmer can omit portions of the complete file specification as explained below.
Default drive
The device name may be omitted as exemplified below.

Example 12: 2> LINK TESTI, $FD3 ; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk drive (identified by

"2>") before TEST1 and TEST3. Consequently, the above command line is equivalent to the following:
2> LINK $FD2 ; TESTI, $FD3; TEST2, $FD2; TEST3

The default drive can be changed by:
1. Executing the DIR command or
2. Moving the cursor to the left of the prompt ">" and changing the drive number (e.g., changing
"2>"to"1>").

[Default file name |

The file name may be omitted when reading files from the cassette tape unit ($CMT). When a file name
is omitted in the XFER command or other similar command (See example 10), the system assumes an
appropriate file name.

Example 13 : XFER $ FDI1 ; ABC . ASC, $ FD2

The system assumes $FD2; ABC. ASC.

| Default file mo<iiJ

When the file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.
Notes:

1. Both device name and file name cannot be omitted simultaneously.
2. No file name can be assigned to devices other than $FD1 through $FD4 and $CMT.

SYS-28

4.3.12 Arguments

There are several argument formats.

1. Device name + File name + File mode
Examples : $ FDI1 ; ABC . ASC $CMT ;XYZ.0OBJ $FD2; k. %k

2. Device name + File name. The file mode is omitted.
Examples : $ FD1 ;ABC $FD2; Ak $ CMT ; TEST

3. File name + File mode. The device name is omitted (default drive).
Examples : TEST3.RB . ASC PROG? . RB

4. Device name
a. When the file name and mode are omitted or when the device name proper is to be specified.
Examples: $FDI §CMT
b. When neither file name nor mode can be specified.
Examples: $PTR §$CRT §$LPT

5. Hexadecimal constant
Examples : $ 1200 $CO000

6. Special arguments

Examples : TIME 9 :30: 00
4‘v'Argument
Command

LIMIT MAX

T Nm— Argument
Command

SYS-29

4.4 Using FDOS Commands
4.4.1 ASM Transient
Format

ASM filename

Function

The ASM command assembles the source program in the souice file specified by the argument, out-

puts the result to a relocatable file and outputs an assembly listing to the specified file or device.

| Default file mode |
.RB when local switch /O is specified; otherwise, .ASC.

Global switches:

None: A relocatable file is generated.
/N: No relocatable file is generated.
Local switches:

None: Specifies that the specified source file is to be assembled.

/ O: Specifies that the relocatable code is to be output to a file under the selected name.
/E: Specifies that only error statements are to be output to the selected file or device.
/ L: Specifies that the assembly listing is to be output to the selected file or device.

| Wildcard characters]
Not allowed

(1) ASM TEST
Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) ASM TEST, $ LPT/L,XYZ/0
Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly
listing to LPT.

(3) ASM/N TEST, $CRT/E, $ SOA/L
Assembles source fiel TEST.ASC while displaying error statements (including external symbol
references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $ FD2 ; TEST1 /L, $FD2 ; TEST1 .RB/O
Assembles source file TEST.ASC and saves relocatable file TEST1.RB and assembly listing TEST1.
ASC on FD2.

(5) ASM TEST, $ LPT /L, $ 2000
Assembles source file TEST.ASC, generates relocatable file TEST.RB and outputs the assembly
listing to LPT with a bias of 2000H added.

SYS-30

4.4.2 ASSIGN Transient

Format

ASSIGN devicenamel, $nnnn, , devicenameN, $nnnn

Function

The ASSIGN command assigns logical device names to user-supplied I/O control routines.

None.

| Wildcard characters |
Not allowed.

(1) LIMIT $F000
ASSIGN $USRI1, $F000
Assigns device name $USRI1 to the user I/O control routine at address $F000.
(2) ASSIGN SUSR2, $F200, SUSR3, $F400
Assigns $USR? to the routine at address $F200 and $USR3 to the routine at address $F400.
(3) ASSIGN S$PTP, $F600
Assigns $PTP to the new PTP routine at address $F600 in place of the PTP control routine in
FDOS.

| Programming notes |

(1) When a device name is assigned more than once, the last assignment is taken.
(2) To cancel an assignment, set the address operand to $FFFF,
Example : ASSIGN $USRI, $FFFF This command cancels SUSR1.
(3) When an I/O control routine is destroyed by execution of a new LIMIT or LOAD command it is

necessary to cancel the device assignment for that routine using the above procedure.

4.4.3 BASIC Transient

BASIC filename

Function

The BASIC command compiles the source program written in BASIC language identified by the argu-
ment and outputs the BASIC listing:

| Default file mode |
.RB when local switch /O is specified; .ABC otherwise.

SYS-31

Global switches .
/N: Specifies that no relocatable file is to be generated.
/C: Specifies that the BASIC listing is to be displayed on CRT.
/P: Specifies that the BASIC listing is to be printed on LPT.

(Note that switches /C and /P cannot be specified simultaneously.
Local switches

None: Specifies that the specified source file is to be compiled.
/0: Specifies that the relocatable file is to be output to the selected file.
| Wildcard characters |

Not allowed.

(1) BASIC TEST .
Compiles source file TEST.ASC and generates relocatable file TEST.RB.
(2) BASIC/C TEST, XYZ/0O
Compiles source file TEST.ASC, generates relocatable file XYZ.RB and displays the BASIC listing
on CRT.
(3) BASIC/N/P TEST
Compiles source file TEST.ASC and prints the BASIC listing on LPT. No relocatable file is gene-

rated.

| Programming notes

(1) The compiler terminates generation of the relocatable file when it detects an error during compila-
tion.

(2) The BASIC compiler is available as an option.

4.4.4 BOOT Built-in .

Format
BOOT

Function

Terminates execution of FDOS and activates the MZ-80B system IPL (Initial Program Loader).

| Programming notes

The system program is loaded into memory when IPL is activated. Therefore, former memory con-

tents (such as FDOS, monitor and user programs) are cleared.

4.4.5 CHATR Built-in

Format

CHATR sign, filenamel, attributel, , filenameN, attributeN .

Function

The CHATR command changes the attributes of a specified file.

SYS-32

’ Default file mode

.ASC

None.
[Wildcard characters |

Only .>kcan be used to specify the file mode.
| File attributes |

0: None.

R : Read-protected file

W : Write-protected file

P : Permanent file
(1) CHATR KEY, TEST, R
Assigns the password "KEY" to file TEST.ASC and declares the file as a read-protected file.
(2) CHATR SECRET, TEST.OBJ, 0
Deletes the file attributes of file TEST.OBJ. The specified password, "SECRET", is matches with
the password specified for the file before the command is actually executed.
(3) CHATR
Allows the programmer to interactively specify the sign, file name and attribute in that order.
(4) CHATR sign

Allows the programmer to interactively specify the file name and attribute in that order.
Brogramming not?!

The interrelationship of the file attributes is shown below.

=

N

— Set sign,

o Check sign.
446 CONSOLE @ -~ - Does not check sign. Built-in

Format
CONSOLE Sscrolling-start-line, endline, Ccharacter-number, R, N
Sets the scrolling area on the CRT screen, sets the number of characters per line to 40 or 80 and/or
reverses the picture.
| Default file mode |

None.

None.

SYS-33

| Wildcard characters

None.

(1) CONSOLE 2,10
Sets the scrolling area to the area from the 2nd line through the 10th line.

(2) CONSOLE R, C80
Reverses the characters and graphic display on the screen and sets the number of characters per
line to 80.

| Programming notes

The arguments of the CONSOLE commands can be written in any order. The modes set are effective

until they are set again.

4.4.7 CONVERT Transient

Format
CONVERT

Function

Converts a file generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series
into a file usable under FDOS, or converts a file generated with FDOS into a file usable under the

SB-5000 series or SB-6000 series. The relationship between file modes handled by this command is

as follows.
BASIC FDOS
BTX —— ASC
BSD — ASC
OBJ —— OBJ
| Default file mode |
None.
None.
[Wildcard characters |

Not allowed.

2 > CONVERT
Choose one from:
1:BTX — ASC
2:BTX « ASC
3:BSD « > ASC
4:0BJ < - OBIJ
(1~4)?
Source drive No. (1 ~ 4, CMT =0) 72 Enter 1 ~ 4 for the $FD and O for the $CMT.
Source file name ? SAMPLE
Destination drive No. (1 ~4,CMT =0) ?3

SYS-34

Destination file name ? SAMPLE
. End of convert

[Programming notes |
(1) Never intermix D-BASIC format diskettes and FDOS format diskettes. Otherwise, disk contents

may be‘destroyed.

(2) Since the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some
cases in which programs converted with the CONVERT command cannot be compiled by the
BASIC compiler without some modification. Use the text editor to modify such programs before
compiling them with the BASIC compiler.

(3) A BRD file cannot be converted. First convert it into a BSD file, then execute the CONVERT

command.

4.4.8 COPY Transient

Format

‘ COPY

The COPY command copies the contents of the source diskette to the destination diskette. The
programmer can specify only predetermined types of diskettes as the destination and source diskettes

as summarized in the table below.

Source Destination | Allowed/disallowed Remarks
(Any diskette) Master Disallowed
Master Submaster Allowed
Master Slave Allowed The destination diskette becomes a submaster diskette.
Submaster Submaster Disallowed
Submaster Slave Disallowed
Slave Submaster Allowed The destination diskette becomes a slave diskette.
Slave Slave Allowed

. It is desirable to create a submaster diskette from the master diskette using the COPY command and
to use this submaster diskette during normal operation. It is also desirable to make copies at appro-
priate times when the original diskette is updated to prevent errors due to physical defects in the disk

or software errors or inadvertent use of the DELETE command.

| Default file mode |

None.

None,
[Wildcard characters

None.

(1) FDOS always copies from $FD1 to $FD2 when the system has two or more floppy disk units.

2> COPY
‘ Destination diskette’s sign 7BACKUP < Proceeds to the next step if the passwords match.
Insert source into $FD1 < Insert the source diskette in drive FD1.
Destination into $FD2, { space key =~ < Insert the destination diskette in drive FD2, then press the key.
2> Copying is completed.

SYS-35

4.4.9 DATE Built-in

Format ‘

DATE mm/dd/yy

Function

The DATE command sets or displays the system calender date in the month/date/ year format.
This information is assigned to each file when it is saved on a diskette. The date is not automatically
updated, however.

LDefault file mode]

None.

Global switch/P: Specifies that the date is to be printed on LPT.

| Wildcard characters |
Not allowed. .

(1) DATE 11/20/81

Sets the system calender date to November 20th, 1981
(2) DATE

Displays the current date on CRT.
(3) DATE/P

Prints the current date on LPT.

SYS-36

4.4.10 DEBUG Transient

Format

DEBUG filenamel, , filenameN
The DEBUG command links and loads relocatable files specified by the arguments to form an object
program in memory for debugging,

| Default file mode|
.OBJ when local switch /O is specified; .RB otherwise.
Global switches

None: Specifies that only the link information is to be displayed on CRT.

/T Specifies that the symbol table information is to be output (on CRT unless global switch
/P is specified).

/P: Specifies that the link and symbol table information is to be printed on LPT when global
switch /T is specified.

Local switch
/0: Specifies that the object file is to be created under the selected file name.

| Wildcard characters |
Not allowed.

(1) DEBUG TEST1, TEST2
Links and loads relocatable files TEST1.RB and TEST2.RB and waits for a debugger command.
The link information is displayed on CRT.

(2) DEBUG/T/P TEST, TEST/O
Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and gene-
rates object file TEST.OBJ.

(3) DEBUG TEST1, $1000, TEST2, TBL $20
Links and loads relocatable files TEST1.RB and TEST2.RB and reserves $1000 bytes of free area
in memory between them. The symbol table size is set to $2000 (approximately 8K bytes).

When the table size is not specified, the debugger automatically allocates 6K bytes for it.
(4) DEBUG

Invokes the symbolic debugger and enters the command mode.

SYS-37

4.4.11 DELETE Built-in

DELETE filenamel, , filenameN
The DELETE command deletes the files specified by the arguments except those with the W or P file
attribute.
| Default file mode |
.ASC

Global switches /C : When this switch is specified, the system displays each file on CRT for confir-

mation. The file is deleted when the programmer presses thekey and
skipped when he presses the [N| key.

/N : Specifies that no deleted file is to be displayed. (The programmer must not
specify /N and / C simultaneously.)

| Wildcard characters|
Allowed.

(1) DELETE TEST .
Deletes all files whose file name is TEST.
(2) DELETE /C X .OBJ
Displays all files with a file mode of .OBJ on CRT for confirmation before deleting them.
(3) DELETE $FD2; % . X
Deletes all files on FD2 except those with the file attribute P or W. To delete file-protected file,

it is necessary to cancel the file protect attributes with the CHATR command.
(4) DELETE $ MEM
Deletes file $ MEM.

4.4.12 DIR Built-in

Format
DIR devicename (filename)
Displays the contents of the directory specified by devicename of filename. "devicename" must refer
to a floppy disk unit.
I Default file modﬂ
%

Global switch /P : Specifies that the directory is to be printed on LPT.

SYS-38

LWildcard characters

Allowed.

(1) DIR $FD2
Displays the file information of all files on the diskette in FD2 on CRT. FD2 is designated as the
default drive.

(2) DIR/P
Prints the file information of all files on the deskette in the current default drive on LPT. The
directory device remains unchanged.

(3) DIR TEST
Displays on CRT the file information of all files on the diskette in the current default drive whose

file name is TEST.

(4) DIR $FD2 ;> . ASC
Displays the file information of all source files on the diskette in FD2 on CRT. FD2 is designated

as the default drive.

l Programming notes l

sect at filename mm.dd.yy
2>10 RS TEST. ASC /10.25.80
i i File mode
NT L File name m creation (October 25th, 1980)
File type (sequential file) (/22.72.27 appears if unknown)

File attribute (read protected)

Number of sectors used
Drive number

4.4.13 EDIT Transient

EDIT filename

Function

The EDIT command invokes the text editor to create a new source file or edit an existing source file.
[Default file mode—'
ASC

Switches

None.
| Wildcard characters |
Not allowed.

Examples
(1) EDIT
Invokes the text editor and enters the command mode.
(2) EDIT TEST
Invokes the text editor, reads source file TEST. ASC and enters the command mode.
(3) EDIT $FD2 ; TEST
Invokes the text editor, reads source file TEST. ASC from the $FD?2 and enters the command

mode.

SYS-39

4.4.14 EXEC Built-in

o

EXEC filename

Function

The EXEC command executes the contents of the file specified by the argument as FDOS commands.

A device name may be specified in place of filename. Files containing FDOS command are called
EXEC files.

| Default file mode |

.ASC

None.

| Wildcard characters]

Not allowed.

°

(1) EXEC MACRO

Executes the contents of source file MACRO.ASC assuming that the file consists of FDOS com-
mands. When the file MACRO.ASC contains the command lines shown below, the system executes
the commands in sequence from the top to the bottom.

ASM $FD2 ; TEST

LINK/T/P $FD2 ; TEST

CHATR KEY, $FD2 ; TEST.OBJ, W

RUN $FD2 ; TEST

3>FREE « Display the number of used sectors on the diskette in FD3.

DIR /P $FD2 < Print the contents of the FD2 directory on LPT and designate FD2 as the current default
drive.

(2) EXEC MYDEVICE

Sequentially executes the command lines contained in source file MYDEVICE.

LIMIT $F000 < Limit the FDOS area to $F000. .
LOAD MYPRINTER < Set the loading and execution addresses to $F000.
LOAD MYLIGHTPEN < Set the loading and execution addresses to $F800.
ASSIGN $USRI1, $F000, $USR2, $F800 < Assign user I/O names to user programs.
ASM TEST, SUSR1/L « Assemble source file TEST and output the assembly listing on the user-
defined printer.
XFER 3USR2,XYZ « Transfer data obtained with a light pen to file XYZ.

(3) EXEC ABC

Executes the routine in file DEF repeatedly if file ABC.ASC contains the following routine.

RUN DEF
EXEC ABC

SYS-40

| Programming notes

(1) Since the EXEC command executes the commands specified in a file as macro commands, it

cannot be specified on a multistatement line as shown below.
EXEC MACRO : TYPE MACRO

(2) The specified file may have the file attribute R, W or P. However, execution of files with the
attribute R or P is not displayed.

(3) When an error occurs during execution of an EXEC file, the system immediately terminates pro-
cessing and waits for entry of a new FDOS command from the keyboard.

(4) When the file name START-UP is assigned to an EXEC file, that file will be automatically exe-
cuted when FDOS is activated.

4.4.15 FAST Built-in

Format
FAST
Fast-forwards the cassette tape. Control is given to the next command as soon as the fast-forward

operation has been started.

4.4.16 FORMAT Transient

Format
FORMAT S$FDn

The FORMAT command formats (initializes) a new diskette.
The user must always format new diskettes before using them.
| Default file mode |

None.

None.
| Wildcard characters |

Not allowed.

(1) FORMAT $FD2

FDOS diskette formatting

Insert diskette into $FD2, & space key

New sign ? SHARP

Volume No. ?50

END

Insert diskette into $FD2, { space key

Break +— Press the[BREAK|Key to return to FDOS.

SYs41

The above interaction shows an example of formatting a completely new diskette.

"sign"' prompts for a password to be given at the diskette. When this diskette is resubmitted for
formatting, the system checks for a password match before actually reformatting the diskette.
"Volume No." prompts for a volume number to be assigned to the diskette. The programmer can

specify any number from 1 to 255. The volume number should be unique.

(2) FORMAT

FDOS diskette formatting

Insert diskette into $FD1, J space key

Old sign ? SHARP <— The system matches the password entered with that stored on the diskette and proceeds to
the next step if they match.

New sign ? MZ-80 <— Set a new password.

Volume No.? 128

END

Insert diskette into $FDI, L space key

Break <— Press the[BREAK] key to return to FDOS.

The above interaction shows an example of reformatting a previously formatted diskette. The

meanings of "'sign” and " Volume No." are identical to those in example (1).

| Programming notes |

The following message will be displayed if a diskette cannot be initialized because of defects, etc.

(1) bad track #nn
When this message is displayed, the XFER command can be executed for the diskette but the
COPY command cannot.

(2) no usable diskette
When this message is displayed, neither the XFER nor COPY command can be executed for the
diskette.

4.4.17 FREE Built-in

Format
FREE $FDn

Function

The FREE command displays the number of used sectors, the number of unused sectors, and/or the
volume number of the diskette in the specified floppy disk unit.
| Default file mode |
None.
Global/P : Specifies that the disk usage information is to be printed on LPT.
[Wildcard characters ’
Not allowed.

SYS-42

Examples

(1) FREE $FD2
$ FD2 vol: 128 left: 1072 used : 48
(2) FREE/P
Prints the same information as given in example (1) on LPT, except that the information pertains

to the diskette in the default drive.

| Programming note ‘

A diskette is comprised of 1120 sectors (each consisting of 256 bytes). Of these 1120 sectors,
however, 48 sectors are reserved by the system as FDOS areas. Consequently, used: 48 is indicated for

new diskettes.

Transient

Format
HCOPY display page

Function

»
»
mah
(o]
X
O
(o]
)
<

Copies one frame from the CRT screen on the LPT.
| Default file mode |

None.

Switches

None.
| Wildcard characters |
Not allowed.

Examples:
HCOPY 1 Copies character data from the CRT screen on the LPT.
HCOPY 2 Copies the display data in graphic area 1 on the LPT.
HCOPY 3 Copies the display data in graphic area 2 on the LPT.
HCOPY 4 Copies the display data onto the LPT when the contents of graphic areas 1 and 2 are

displayed simultaneously.

4.4.19 KEY Built-in

Format
KEY keynumber ="8"

Function

Assigns a function to the definable function key indicated by a key number from 1 through 20. The
function is specified by writing a string or command name enclosed in double quotation marks.
| Default file modeJ

None.

Switches

None.
Wildcard character

None.

SYS-43

KEY1 ="XFER" .
KEY 7 ="DELETE"

KEY 13 ="$KB"

KLIST

KEY 1 ="XFER"
KEY 7 ="DELETE"
KEY 13 ="$KB"

KEY20=" "

| Programming notes |
Definable function keys 11 through 20 are activated by pressing the | SHIFT | key and one of keys

through simultaneously.

4.4.20 KLIST Built-in

o

KLIST

Function

Lists the definition status of the definable function keys.
| Default file mode |

None.

None.
| Wildcard character |

None.

KLIST
KEY 1 = NRUNII
KEY 2="XFER" .
KEY 3="DELETE"
KEY 4="RENAME"

KEY 5="DIR"

KEY 6="EDIT"
KEY 7="ASM"
KEY 8='"LINK"

KEY 9="DEBUG"
KEY 10 = "BASIC"
KEY 11 ="$FD1;"
KEY 12=" "
KEY 13=" "
KEY 14="
KEY 15=" "
KEY 16=" "
KEY 17=" "
KEY 18=" " o
KEY 19="
KEY 20=" "

SYs-44

4.4.21 LIBRARY Transient

@ [Format

LIBRARY filenamel, , filenameN

The LIBRARY command reads the relocatable files specified by the arguments to form a library file.

LDefault file mode '
.LIB when local switch /O is specified; .RB otherwise.

Switches

Global switches

None: Link information pertaining to the relocatable files is displayed on CRT.
/P Specifies that the link information is to be printed on LPT.
Local switches
None: The first filename specified is used as the name of the library file,
/0: Specifies that the library file is to be created with the selected file name.

| Wildcard characters_[
Not allowed.
(1) LIBRARY TEST1, TEST2
Reads relocatable files TEST1.RB and TEST2.RB to generate library file TEST1. LIB. The link
information is displayed on CRT.
(2) LIBRARY /P TESTI1.LIB, TEST2, XYZ /O
Reads relocatable files TEST1.LIB and TEST2.RB and generates a library file named XYZ.LIB.

The link information is printed on.LPT.

4.4.22 LIMIT Transient

Format
LIMIT $nnnn
The LIMIT command sets the FDOS area boundary at address $nnnn.
| Default file mode |
None.
None.
[Wildcard characters |

None.

SYS45

Examples

(1) LIMIT $FO000

Limits the FDOS area to $F000 and frees the higher area.
(2) LIMIT MAX

Sets the FDOS area to the maximum available address.

| Programming note]

The LIMIT command cannot be specified in a multistatement as shown below.
Illegal: LIMIT $EO000 : DIR $FD2

4.4.23 LINK Transient

Format

LINK filenamel,, filenameN
The LINK command links the relocatable files specified by the arguments to generate an object or
system file,

| Default file mode |
.OBJ when local switch /O is specified; .RB otherwise.
Global switches

None: Only the link information is displayed on CRT.

/T: Specifies that the symbol table is to be output (on CRT unless global switch /P is
specified).

/P: Specifies that the link and symbol table information is to be output to LPT (when global
switch /T is specified).

/S: Specifies that a system file is to be generated.

Local switches '
None: The first filename specified is used as the name of the object file.
/0: Specifies that the object file is to be created under the specified file name. If global

switch /S is specified, specifies that the system file is to be created under the specified

file name.

| Wildcard characters |

Not allowed.

(1) LINK TEST1, TEST2
Links relocatable files TEST1.RB and TEST2.RB and generates an object file named TESTI.
OBIJ. The loading and execution addresses of the object file are automatically set to the beginning
address managed by FDOS. The link information is displayed on CRT.

(2) LINK/T/P TESTI1, TEST2, XYZ /O
Links relocatable files TEST1.RB and TEST2.RB and generates object file XYZ.OBJ. The loading
and execution addresses of the object file are set to the beginning address managed by FDOS.,

The link and symbol table information is output to LPT.

SYS-46

(3) LINK $C000, TEST, FDOSEQU.LIB, EXECSC100
Links TEST.RB and FDOSEQU.LIB and generates object file TEST.OBJ, specifying $C000 as the
loading address. The execution address of the object file is $C100.

(4) LINK TEST1, $1000, TEST2, TBL $20
Links file TEST1.RB (specifying the beginning of the FDOS area as the loading address), then
links and loads file TEST2.RB, reserving $1000 bytes of free area between the two files. The
symbol table size is set to 8K ($2000) bytes.

4.4.24 LOAD Transient

Format

LOAD filenamel, , filenameN

Function

The LOAD command loads the object files specified by the arguments in areas outside the area
managed by FDOS.
| Default file mode |
.OBJ
None.
| Wildcard characters
None.

Example

(1) LOAD TEST1, TEST2
Loads object files TEST1.0BJ and TEST2.0BJ into memory areas outside the area managed by

FDOS. The programmer must create object files so that they are to be loaded in appropriate

addresses.

4.4.25 MLINK Transient

Format
MLINK filenamel, , filenameN
The MLINK command links the relocatable files specified by the arguments to generate an object file.
| Default file mode |
.OBJ when local switch /O is specified; .RB otherwise.
Global switches
None: Only the link information is displayed on the CRT.

/T: Specifies that the symbol table is to be output (on the CRT unless global switch /P is
specified).
/P: Specifies that the link and symbol table information is to be output to the LPT (when

global switch /T is specified).
Local switches
None: The first file name specified is used as the name of the object file.

/0: Specifies that the object file is to be created under the selected file name.

SYs-47

‘ Wildcard characters
Not allowed. .

2> MLINK STARTREC

‘ Programming notesJ

(1) The MLINK command can be used in the same manner as the LINK command except that it
cannot specify the table size (TBL$hh).

(2) The LINK command can generate an object file of up to approx. 36K bytes. The MLINK com-
mand is used when the file exceeds this size to generate object files of up to approx. 46K bytes.
However, the MLINK command takes twice as long as the LINK command to generate an object

file because the MLINK command links relocatable programs using a 2-pass system. The following

diagrams show memory maps applicable to execution of the LINK and MLINK commands.

Monitor Monitor
12A0H FDOS 12A0H FDOS
LINKER MLINKER The object
. program is
Link area } The object pro- Symbol table generated
gram is gene- on the
Symbol table rated in this area, Unused diskette.
then saved on
Stack area the diskette. Stack area
FFOOH Reserved FFOOH Reserved
LINK command MLINK command
4.4.26 MON Built-in
Format

MON ’

The MON command returns control to the monitor.

[Programming notes |
Control is transferred to FDOS from the monitor with the following monitor command,
*J
J-adr.§12A0

SYS-48

4.4.27 PAGE Transient

PAGE output-device or PAGE n

The PAGE command carries out a paging operation on the output device specified by output-device,
or sets the number of lines per page on LPT.

| Default file mode |

None.
None.
| Wildcard characters |

None.

(1) PAGE or PAGE $ LPT
Carries out a form feed on LPT.

(2) PAGE $ PTP, $ SOA, $ USR1
Produces a feeder tape on PTP and outputs the code defined with the STATUS command to SOA
and USRI,

(3) PAGE 22
Sets the number of lines per page on the LPT to 22. The print form is fed to the top of the next
page when a page feed code is issued or the TOP OF FORM button is pressed.

4.4.28 POKE Built-in

POKE $nnnn, datal, , Suuuu, dataN

Stores datal consisting of an even number of digits in and from address $nnnn (4-digit hexadecimal

number) on, and stores dataN consisting of an even number of digits in and from address $uuuu
on. Any address is accessible. The maximum length from POKE to dataN is 160 characters including

ODH, space, etc.

| Default file mode |

None.
None.
| Wildcard characters |
None.
POKE $000D, 2010, $000F, 40
Stores 20 in address $000D, 10 in $000E and 40 in $000F.
POKE $000D, 1235678, 12, $000F, 40
Not allowed

SYS-49

4.4.29 PROM Transient

(-
PROM
[Faiction]

Function
The PROM command converts the format of the object file to an appropriate PROM writer format.
| Default file mode|

None.

(1) PROM
Invokes the PROM formatter program and enters the command mode. Refer to the "PROM For-

matter' manual for further information. .

4.4.30 RENAME Built-in

Format

RENAME oldnamel, newnamel, , oldnameN, newnameN
Function

The RENAME command renames specified files.
Default file mode]

.ASC

Switches

—

None.
| Wildcard characters |
An asterisk may be used to specify the file mode (. %). ‘

Examples
(1) RENAME TEST1, TEST2
renames TEST1.ASC to TEST2.ASC.
(2) RENAME $FD2 ; TEST1 . OBJ, TEST2, TEST3 . RB, TEST4
Renames TEST1.0BJ on the diskette in FD2 to TEST2.0BJ and TEST3.RB on the diskette in
the default drive to TEST4.RB.

SYS-50

[Programming notes

(1) Files with the file attribute W or P cannot be renamed.

(2) The command RENAME $FD2;TEST1, $FD2;TEST2 cannot be executed since $FDn specified
for the old name applies to the new name, which is illegal.

(3) The command RENAME TEST1.LIB, TEST2.RB cannot be executed since the file modes of the
old and new names disagree.

(4) The command RENAME TEST.LIB, TEST2 can be executed normally. The new name is assigned

the file mode of the old name.

4.4.31 REW Built-in

Format
REW

Rewinds the cassette tape.Control is transferred to the next command as soon as the rewind operation
has been started.

The next command is executed when the cassette tape is fully wound.

4.4.32 RUN Built-in

Format
RUN filename or file name
The RUN command executes the program in the object file specified by the argument.
| Default file mode |
.OBJ, .SYS
None.
[Wildcard characters

None.

SYS-51

(1) RUN TEST
Executes the program TEST.OBJ. When its loading address is such that it overwrites the FDOS

area, the system issues the message

destroy FDOS ?
on the CRT. When the programmer press the [Y] key, the system loads the program, overwriting

the FDOS area and executing it. When the programmer presses the N| key, the system issues the

error message ''memory protection" and waits for a new FDOS command.

(2) 1 > TEST

Accesses the drive 1 to seek .SYS mode file and executes it if found. If not found, error occurs.

(3) 2] TEST

Accesses drive 2 to seek program TEST.SYS and executes it if found. If not found, it seeks TEST

.OBJ and executes it if found. If not found, error occurs.

Programming notes}

The meanings of the prompt symbols (> and]) are shown below.

Command filename RUN filename Rggﬂiﬁg“ RUN $nnnn
. .SYS
File mode "OBJ .OBJ . OBJ
Accesses the drive 1 Accesses the default Accesses $FDn to
to seek . SYS mode drive to seek . OBJ seek . OBJ mode
Prompt file and executes it mode file and executes | file and executes it Calls address $nnnn.
> if found. If not found, it if found. If not if found. If not
error Occurs, found, error occurs. found, error occurs.
Accesses the default
drive to seek . SYS
mode file and executes
it if found. If not
Prompt found, it seeks . OBJ Same as above. Same as above. Same as above.
mode file and executes
it if found. If not
found, error occurs.

4.4.33 SIGN

SIGN $FDn

Transient

The SIGN command defines or changes the password and/or volume number of the diskette in the

specified drive.

[Default file mode |

None.

Switches

None.

| Wildcard characters |

None.

SYS-52

(1) SIGN
Old sign ? SHARP < Proceeds to the next step if the password entered matches the old password.
New sign ? MZ-80

New volume No ? 79
The above interaction changes the password from "SHARP" to '"MZ-80" and defines the volume number as 79.

4.4.34 STATUS Transient

STATUS devicename, $nnnn
The STATUS command displays or sets the control status of the specified device. The control status
information is used to initialize the I/O controllers. Refer to " User /O Routine" in Appendix for
details.
| Default file mode |
None.
None.
u\’ildcard characters
None.
(1) STATUS S$SOA, § 1234
Sets the SOA control status to 1234 (hexadecimal).
(2) STATUS $USRI1
Displays the control status of USR1 on CRT.
(3) STATUS SLPT, $0000

00 normal mode

12 double-size mode
14 ... reduced mode

[Programming note—’
This command is available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), $LPT and user

devices ($USR1 to $USR4). Any STATUS command set for SCMT1, $PTR, $KB, $CRT, $FD1 to
$FD4, $CMT, SMEM or $PTP will be invalid.

4.4.35 TIME Built-in

TIME mm ;dd ;ss

The TIME command sets or displays the time of the system clock.
| Default file mode]

None.

Global switch /P: Specifies that the time is to be printed on LPT.
LWildcard characters I

None. SYS-53

(1) TIME 20 :30:40 .
Sets the system clock to 20 hours, 30 minutes and 40 seconds.

(2) TIME
Displays the current time on CRT.

(3) TIME/P
Prints the current time on LPT

4.4.36 TYPE Built-in

Format
TYPE filenamel, , filenameN

Function

The TYPE command outputs contents of the files specified by the arguments on the CRT or LPT

device.
| Default file modeJ .
. ASC

Global switch /P: Specifies that the file contents are to be printed on the LPT device.
| Wildcard characters|
Allowed.
(1) TYPE TEST
Displays the contents of source file TEST . ASC on CRT.
(2) TYPE/P TESTI1, TEST2
Prints the contents of source files TEST1 . ASC and TEST2 . ASC on LPT.

4.4.37 VERIFY Transient ‘

VERIFY sourcefile 1, destinationfile 1, , sourcefileN, destinationfileN
The VERIFY command compares the contents of the source and destination files specified by the
arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a
byte basis (if the file mode is other than .ASC).

| Default file mode |
. ASC
Global switch /P: Specifies that the matching results are to be printed on LPT.

[Wildcard characters|

Allowed for source files (see example (4) below).

SYS-54

Examples

‘ (1) VERIFY TESTI, TEST2
Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.

(2) VERIFY /P $CMT ;XYZ, $FD2 ; TEST
Matches source file XYZ.ASC on CMT with source file TEST.ASC on the diskette in FD2 and

prints the results on LPT.

(3) VERIFY $CMT, SFD2
Matches the first file on CMT with the file on the diskette in FD2 which has the same name as the

file on CMT. An error is generated if file on CMT has no file name.

(4) VERIFY $CMT ; TEST X, $FD2
Matches the first file on CMT whose name matches TEST * with the file that name on the diskette

in FD2. Note that only the first file whose file name matches TEST>x is taken.

4.4.38 XFER Built-in
‘ Format
XFER sourcefilel, destinationfilel, , sourcefileN, destinationfileN

Function
The XFER command transfers the contents of source files to destination files.

| Default file mode |

. ASC
None.
| Wildcard characters |
Allowed for the source files (see example (5) below).
(1) XFER TESTI1, TEST2
. Transfers the contents of source file TEST1.ASC to TEST2.ASC.

(2) XFER SPTR, SLPT
Reads the file on PTR and prints it on LPT.

(3) XFER $CMT ; XYZ.0OBJ, $FD2
Reads object file XYZ.0OBJ from CMT and creates object file XYZ.OBJ on $FD2,

(4) XFER $CMT, $FD2
Reads in the first file on CMT and creates a file with that file name on the diskette in FD2. An
error is generated if file on CMT has no file name.

(5) XFER $CMT ; TEXT %, $SFD2
Reads in the first file on CMT whose file name matches file name TEST> and creates a file with
the same name on the diskette in FD2. Note that only the first source file on CMT whose file
name matches TEST >k is taken.

SYS-55

(6) XFER $KB, TEST

Reads a file from the system keyboard and creates source file TEST.ASC. The file read from the ‘
keyboard is terminated by pressing the key.
(7) XFER SFD2; * . ASC, SFD3
Transfers all source files on the diskette in FD2 to that in FD3. The source drive must not contain
files with the file attribute R or P.
(8) XFER * . = ,FD2
Transfers all files on the diskette in the current default drive to that in FD2. The source drive

must not contain files which have the file attribute R or P.

SYS-56

4.5 FDOS Command Summary

The FDOS commands are broadly divided into built-in commands (Table 4-1) and transient commands
(Table 4-2). Transient commands are implemented in relocatable file form on the FDOS diskette. They
are loaded into the transient area in main memory by the boot linker and linked to the FDOS main pro-

gram as required.

In the command format in Table 4, the items enclosed in brackets are optional.

Table 4-1 Built-in commands

BOOT

Terminates the FDOS and activates sytem IPL.
Example: BOOT ./

CHATR sign, filenamel, attribute [, ...filenameN, attribute]

Matches the password’s sign and changes the file attribute(s) of the matching file(s) identified by filename to

attribute(s).
P: Permanent file R: Read inhibit
0: No protection W: Write inhibit

Examples: CHATR KEY, ABC, 0, XYZ,P o : Deletes the file attribute of file ABC and changes the file attribute
of file XYZ to PERMANENT if matches occur with the password
KEY.
CHATR KEY, $FD2 ; UVW, R .0 : Changes the file attribute of file UVW in FD2 to READ INHIBIT
if a match occurs with the password KEY.
CHATR » : This allows the programmer to interactively specify the password,
file name and attribute,

CONSOLE Sscrolling-start-line, end-line [, Ccharacter-number, R, N]

Sets the scrolling area on the CRT screen, sets the character display mode and/or reverses the picture on the screen.
Example: CONSOLE C80./ : Sets the number of characters per line to 80,
CONSOLE R : Reverses the picture on the screen.

DATE {MM/DD/YY]

Displays the current date or sets the specified date in month, date, year format. The set information is used as file
information when new files are created.

Global switch /P : Specifies that the date is to be printed on the LPT.
Examples: DATE/P . : Lists the current date on the LPT.
DATE 12/25/80 < : Sets the current date to December 25, 1980.
DELETE filenamel [, ..., filenameN] ?,%)

Deletes the file(s) specified by filename(s).

Global switch /C : Specifies that each file name is to be displayed on the screen for
verification. The programmer must enter Y to delete it or N to
suppress deletion.

Examples: DELETE ABC. *k : Deletes all files identified by ABC. > .
DELETE/C A % . x : Displays files identified by A > . > on the screen for verification
before deletion,
filename : ABC.ASC deleted < Indicates that the file is deleted since 'Y " is entered.
filename : ABC.RB < Indicates that the file is not deleted "N "' is entered.
filename : AXY.OBJ permanent < Indicates that the file is not deleted because it is assigned the
PERMANENT file attribute.

SYS-57

Table 4-1 Built-in commands cont.

DIR [$FDn] or [filename] (?,X)
Displays file information in the directory specified by $FDn or of the file specified by filename on the screen.
Global switch /P : Specifies that the file information is to be output to LPT. The file information is displayed
on the screen when this switch is not specified.
Examples: DIR : Displays all file information in the current directory on the screen.
DIR/P $FD2 : Outputs all FD2 file names to LPT and switches the currently logged
disk to FD2.
DIR $FD2 ; ABC. X : Displays the file information of files in FD2 identified by ABC. X .
EXEC filename
Executes the contents of the file identified by filename as FDOS commands.
Example: EXEC ABC.ASC < :-Sequentially executes the FDOS commands in file ABC.
FAST

Fast forwards the cassette tape.
Example: FAST <

FREE [$FDn]

Lists statistical information about the disk identified by $FDn on the screen or on the LPT.
Example: FREE $FD2 .
$FD2 master left : XXXX used : YYYY
Indicates that the diskette on FD2 is a master diskette, that the number of unused sectors is XXXX
and that the number of used sectorsis YYYY.

KEY keynumber="S"

Assigns a function to the definable function key indicated by a keynumber from 1 through 20. The function is
specified by writing a string or command name enclosed in double quotation marks.
Example: KEY 1 ="RUNT}"o : Assigns the function of the RUN command to key 1.

KLIST

Lists the definition status of the definable function keys on the screen.
Example: KLIST

MON

Terminates FDOS processing and returns control to the monitor.
Example: MON

POKE $nnnn, data [, ..., $uuuu, dataN]

Stores data in the specified addresses in memory.
Example: POKE $000D, 2010, $000F, 40

RENAME oldnamel , newnamel [, ..., oldnameN, newnameN]

Renames the file specified by oldname to newname.
Examples: RENAME ABC, XYZ ~ : Renames file ABC to XYZ.
RENAME ABC, DEF, UVW, XYZ -/ : Renames file ABC to DEF and UVW to XYZ.

Table 4-1 Built-in commands cont.

REW

Rewinds the cassette tape.
Example: REW J

RUN filename

Executes the program in the object file identified by filename.
Example: RUN ABC . : Executes the program in file ABC, assuming it ot be ABC.OBJ.

TIME [HH : MM : SS]

Displays the current time or sets specified time in hour, minute, second format. This information is used as file
information when new files are created. The current time is set to 00 : 00 : 00 upon system start.

Global switch /P : Specifies that the current time is to be listed on the LPT.
Examples: TIME/P o : Lists the current time on the LPT.
TIME 16:30:30. : Sets the current time to 16 : 30 : 30
TYPE filenamel [, ..., filenameN] @, Xx)
Lists the contents of the file(s) identified by filename(s) on the screen or on LPT.
Global switch /P : Lists the file contents on LPT.
Examples: TYPE ABC, DEF o : Displays the contents of files ABC and DEF on the screen.
TYPE/P $FD3 ; XYZ < : Lists the contents of file XYZ in FD3 on LPT.
TYPE $PTR : Reads paper tdpe data from PTR and displays it on the screen.
XFER sourcefilel, destinationfile2 [, ..., sourcefileN, destinationfileN] (sourcefile only ? ,)
Transfers the source file(s) to the destination file(s).
Examples: XFER ABC, XYZ : Copies file ABC to XYZ.
XFER $PTR, DEF ~ : Transfers the file at the PTR to file DEF.
XFER XYZ, $PTP/PE < : Transfers file XYZ to the PTP with even partiy in ASCII code.

SYS-59

Table 4-2 Transient commands

ASM filename

Assembles the source file identified by filename and produces a relocatable file and an assembly listing.

Global switch (none) : Specifies that the relocatable file is to be output.

Global switch/N : Suppresses generation of the relocatable file.

Local switch/0 : Specifies that the relocatable file is to be output with the specified file name.

Local switch/E : Specifies that error statements are to be output to the specified file.

Local switch/L : Specifies that the listing is to be directed to the specified file.

Examples: ASM ABC : Assembles source file ABC and generates relocatable file ABC.RB.
ASM/N ABC,$CRT/E » : Assembles source file ABC and displays error statements on the

screen (no relocatable file is created).
ASM ABC, XYZ/0,$LPT/L . : Assembles source file ABC and generates relocatable file XYZ.RB
and an assembly listing on the LPT.
ASM ABC, $FD2 ; XYZ /L, $LPT/E o : Assembles source file ABC outputs the assembly listing to
file XYZ.ASC in FD2 and outputs error statements on the

LPT.
ASSIGN devicename, address
Sets the address of a user device drive routine.
Examples: ASSIGN $USR1, $B000 : Sets the drive routine address of user device $USR1 to BOOO
(hexadecimal).

BASIC filename

Invokes the BASIC compiler to compile the source program identified by filename.
Example: BASIC XYZ </ : Invokes the BASIC compiler, compiles source file XYZ.ASC and generates relocata-
ble file XYZ.RB.

CONVERT

Converts a file generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series into a file which
can be used under FDOS, or converts a file generated with FDOS into a file which can be used under the SB-5000
series BASIC interpreter or the D-BASIC SB-6000 series.

Example: CONVERT .

COoPY

Copies the files on the diskette in drive 1 to the diskette in drive 2. The system matches the passwords in these dis-
kettes before carrying out a copy operation.
Example: COPY <

DEBUG filename [, ..., filenameN]

Invokes the symbolic debugger and links and loads relocatable file(s).

Global switch /T : Specifies that the symbol table information is to be output.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if omitted).

Local switch /O : Specifies that the object file is to be generated with the specified file name.

Example: DEBUG ABC, DEF » : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

EDIT ({filename]

Loads the text editor and reads in the file (if specified). The file must be an ASC mode file.
Examples: EDIT . : Loads the text editor and waits for an editor command.
EDIT $FD2 ; ABC o~ : Loads the text editor and reads in file ABC from FD2.

SYS-60

Table 4-2 Transient commands cont.

FORMAT [$FDn|

Initializes the diskette in $FDn in the system format. The pasword set by the SIGN command is checked before
execution,
Examples: FORMAT </ : Initializes the currently logged-on diskette.

FORMAT S$FD2 o : Initializes the diskette in FD2.

HCOPY n

Copies a data frame from the CRT screen to the LPT.
Examples: HCOPY 4 o : Copies a data frame from the CRT where the contents of graphic areas 1 and 2 are
displayed simultaneously.

LIBRARY filenamel [, ..., filenameN]

Links specified file(s) into a library file.

Global switch (none) : Specifies that the link information is to be displayed on the screen.
Global switch /P : Specifies that the link information is to be printed on the LPT.
Examples: LIBRARY ABC, DEF, ./ : Links relocatable files ABC and DEF and stores their contents into

library file ABC.LIB
LIBRARY ABC, DEF, XYZ /0.’ : Links relocatable files ABC and DEF and stores their contents
into library file XYZ.LIB.

LIMIT address

Sets or changes the end address of the memory area managed by FDOS.
Examples: LIMIT $B00O ./ : Sets the FDOS area to BOOO (hexadecimal).
LIMIT MAX < : Sets the FDOS area to the maximum available address.

LINK filenamel [, ..., filenameN]

Links relocatable files identified by filename1 through filenameN and outputs an object file with a link table listing.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P - Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if the switch is omitted).

Global switch /S : Specifies that a system file is to be generated.

Examples: LINK ABC, DEF o : Links relocatable files ABC and DEF and outputs object file ABC.OBJ

LINK/T/P ABC, DEF, XYZ /O.’: Links relocatable files ABC and DEF and outputs object file XYZ.
OBJ with the link table information on the LPT.

LOAD filename

Loads the object file identified by filename into the area immediately following the area established by the LIMIT
command.
Example: TLOAD ABC.OBJ < : Loads object file ABC.OBJ into memory.

MLINK filenamel [, ..., filenameN]

Links relocatable files identified by filename1 through filenameN and outputs an object file with a link table listing.
This command can link files to generate an object file of up to 46K bytes, although the LINK command can only
deal with up to 36K bytes.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be output on the LPT (the listing is displayed on the
screen if this switch is omitted).

Example: MLINK ABC, DEF » : Links relocatable files ABC and DEF and outputs object file ABC.OBJ.

SYS-61

Table 4-2 Transient commands cont,.

PAGE [output-device] or nn

Performs a form feed operation on the output device identified by output-device, or sets the number of lines per page

on the LPT.
Examples: PAGE & : Moves the print position to the home position of the printer form.

PAGE 22 . : Sets the number of lines per page on the LPT to 22. The print form is fed to the
top of the next page when a page feed code is issued or the TOP OF FORM button
is pressed.

PROM

Generates formatted code on the paper tape punch from an object file. Applicable PROM writers are those which are
supplied by Britronics, Intel, Takeda and Minato Electronics.
Example: PROM .

SIGN [SFDn]

Changes the password of the diskette in $FDn.

During a diskette copy or formatting operation, the system checks the programmer-specified password with that
stored in the diskette directory for a match and carries out the specified operation only when a match occurs.
Example: SIGN ~ : Changes the password of the diskette currently logged on.

STATUS devicename, status

Sets the status of the I/O device identified by devicename to status.
Example: STATUS $SIA, $1234 : Sets the control status of serial input port A to 1234 (hexadecimal).

VERIFY filenamel, filename2 [, ..., filenameN-1, filenameN] (?, X only for filenamel, ..., filenameN-1])

Compares the contents of files filenamel through filenameN.

Global switch /P : Specifies that the results of the comparison are to be listed on the LPT.

Example: VERIFY $CMT, $FD2 ; ABC </ : Compares the first file on the cassette tape with source file ABC in
FD2.

SYS-62

4.6 System Error Messages
‘ There are four system error message formats.

— ERR: error message

Pertains mainly to coding errors. Issued when invalid commands are detected.

— ERR filename (device name) : error message

Indicates errors pertaining to file or device specifications.
— ERR logical number: error message

Indicates errors pertaining to logical number specifications.
— ERR logical number file name (device name): error message

Indicates errors pertaining to logical number specifications and file (or device) specifications.

The system error messages are listed below. The error numbers are not output.

() ERR-

syntax

il command

il argument

il global switch

il data

il attribute ; Illegal file attribute found
different file mode

il local switch

O 00 0 O i AW N

il device switch

10

11 no usable device ; Device unavailable
12 double device

13 directory in use

14
15
16 not enough arguments
. 17 too many argument
18
19
20 no memory space
21 memory protection
22 END?
37 Break
38 system id ; Diskette not conforming to FDOS format.
39 System error ; System malfunction, user program error, diskette replaced

improperly, etc.

SYS-63

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

not found

too long file
already exist
already opened
not opended
read protected
write protected
permanent

end of file

no byte file
not ready

too many files
disk volume

no file space
unformat

FD hard error
il data

no usable diskette
(sub)master diskette
mismatch sign
il file name

il file attribute
il file type

il file mode

il lu#

not ready
alarm

paper empty
time out
parity

check sum
flaming

over run
interconnect
full buffer
uncontrollable
interface

less data

much data

lu table overflow
source ?
destination ?
can’t xopen
too long line
end of record
diff record length

; File size exceeds 65535 bytes

; The file has been already opened or
the logical number is already used.

; Number of files exceeds 96
; Diskette replaced improperly

; Diskette unformatted
; Hardware related disk error

; Invalid file name

; Invalid file attribute

; Invalid file type

; Invalid file mode

; Invalid logical number

; Printer error

; Paper tape reader or punch error

; Serial I/O errors (to be implemented later)

; IEEE-488 related errors (to be implemented later)

; Attempt made to open too many files

; Line exceeding 128 bytes

SYS-64

® 5. MUTUAL CONVERSION

Mutual conversion between files generated by different system programs are possible for the following

combinations of files using the conversion procedure shown:

Possible Combinations of Files

File 1 File 2

System : System . Procedure

Program File Mode Program File Mode

BASIC | FD/CMT| BTX > FDOS FD/CMT| ASC use FDOS CONVERT command

BASIC | FD BSD > FDOS FD ASC use FDOS CONVERT command

BASIC | FD BSD «— FDOS CMT ASC use FDOS CONVERT command
BASIC | CMT BSD > FDOS FD ASC use FDOS XFER command

BASIC | CMT BSD «— FDOS CMT ASC fully compatible

‘ BASIC | FD/CMT/!| OBJ «— FDOS FD/CMT| OBIJ use FDOS CONVERT command

K CMT BTX — BASIC | CMT BTX use convert-tape (MZ-80T10C)

K CMT ASC «— FDOS FD ASC use FDOS XFER command with SCMT1
K CMT OBJ > FDOS FD OBJ use FDOS XFER command with $CMT1

BASIC : MZ-80B

FDOS
K

FD
CMT
BTX
BSD
ASC
OBJ

. Example

Cassette

BASIC interpreter, Versions SB-5510, -5610, -6510, and -6610.
MZ-80 FDOS or BASIC compiler SB-7xxx
MZ-80K -

Floppy disk.

tape.

BASIC interpreter text file.

BASIC interpreter sequential data file.
ASCII file.

Object file.

When converting BRD generated by D-BASIC to File of a form acceptable by FDOS:

16 REM

48 XOPEN #1,R$:

S50 I=1

D-BASIC and Fig. 1 used
D-BASIC BRD — D-BASIC BSD

FDOS BRD

—> FDOS ASC

J FDOS convert command used

MZ-80B-compiler and Fig. 2 used

BRD » B3D sample conversion program.
28 INPUT "RND FILE ? "3R$
38 INPUT "SEQ FILE ? "3S%$

&B INFUT #1(I),AS:

78 PRINT #2.,A%:

WOPEN #2.,%%

IF EOF(#1) THEN CLOSE :
I=I+1: GOTO 4@

Fig. 1

END

SYS-65

19
20
38
40
50
Y]
7@
88
98

REM BSD 3+ BRD sample conversion program.
INFUT "SEQ FILE ? "3S$

INPUT "RND FILE ? "3R$

ROPEN #1,S%: XOFEN #2,R$%

I=1: D$=CHR$($0D)

Ag=""

INPUT #1,B%: IF EOF(#1) THEN CLOSE : END
A$=A$+B$: L=LEN(AS)

IF L>32 THEN PRINT "ERROR": CLOSE : END

109 IF L<{32 THEN A$=A$+D$: L=L+1
118 IF L<22 THEN 70
120 PRINT #2(1),A$: I=I+1: GOTO 49

Fig.2

Personal Computer

ms-c08

Text Editor

SHARP

R R e R e e e e e e e h hah ha b e e e R N N S N S N T L S T o

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions,

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

B B B At RIS B IR B L B In B N B A R L B R TR R SR B A R SR
B n B a8 e B BBt 8 i e B B B G B 8 R B e T ey o 6 0 %

R e e e e e e R e e R e T e E h aah E a e R R R R Lok T L LTI

— CONTENTS —

OUTLINE 1
Activating the Editor 1
Editor Command Table 2

CHARACTER POINTER AND DELIMITER 3

TEXT EDITOR COMMANDS 4
Input Commands 4

R (Read file) Command 4

A (Append file) Command 5
Output Command 6
W (Write) Command 6

Page Processing Commands 7
TypeCommand 10
T (Type) Command 10

CP Positioning Commands 11
B (Begin) Command 11
ZCommand 11
JJump)Command 11
L@Line)Command 12
MMove)Command 12
Correction Commands 13
C (Change) Command 13
QQueue)Command 13
I(Insert)Command 14

K ill) Command 15

D (Delete) Command 16
Search Command, 17
S (Search) Command 17
Special Commands, 18
NCommand 18
=Command 18
cCommand ..., 18
&Command, 18
#Command, 19
PCommand 19
ERRORMESSAGES i, 20

EDIT

Text Editor

" OUTLINE
. OUTLNE

The text editor generates, corrects and edits source files such as assembler source files and BASIC text
files.

Data correction and edition are performed conversationally between the editor and programmer.

—Activating the Editor—

The editor is activated by the following FDOS
commands. (See the photograph at right.)

SB-7101 ¥
1. EDIT

The editor is activated and entry of an editor com-
mand is awaited when this FDOS command is ex-
ecuted.

2. EDIT <filename>

The editor is activated and the specified source file

in the active disk drive is read when this FDOS com-
mand is executed, then the editor waits for entry of
an editor command.
3. EDIT $FD3; <filename>
The editor is activated and the specified source file in drive 3 is read when this FDOS command is
executed.

The editor has the following correction and editing functions.

1. Insertion 2. Deletion 3. Alteration
Each line of source text read into the edit buffer is assigned a sequential line number.
Positions to be corrrected are specified with the character pointer (CP).

Correction and edition can be performed in a units of lines or characters. Search and replacement can

be performed in character string units.

The memory map is as shown below when the text editor is used.

Floppy disk 0000 Monitor
O 12A0

° FDOS

\ Text editor
Floppy disk Program unit 1
O Append Edit buffer

°O - > Program unit 2

Stack area
FF00 Reserved

EDIT-1

Editor commands are listed in the following table. Commands separated from each other with the

delimiter " & " and are executed when is entered. .

Command type

Command name

Function

Input command

R

Clears the edit buffer and loads it wih the input file indicated by the
filename. The CP is positioned at the beginning of the edit buffer after

execution of this command.
Appends the input file indicated by the filename to the contents of the

edit buffer. The CP position is not changed.

Output command

Writes the edit buffer contents to the output file specified by the file-
name in ASCII code.

Page processing
command

PR

PA

PW

PC

Same as the R command, except that the maximum amount of data read
is 1 page.

Same as the A command, except that the maximum amount of data read
is the unused area of the edit buffer.

Same as the W command, except that the maximum amount of data
output is 1 page.

Terminates execution of the processing command. This command is
required whenever a PR, PA or PW command is executed.

Kills the file opened by a page processing command.

Type command

Displays the entire contents of the edit buffer. The CP position is not
changed.
Displays n lines starting at the CP position.

CP positioning
command

SR

Positions the CP at the beginning of the edit buffer.

Positions the CP at the beginning of the line indicated by n.

Moves the CP to the beginning of the line n lines after the current CP
position.

Moves the CP to the beginning of the current line. This is the same as
when n =0 in the nL command.

Changes the CP position by n characters.

Does not move the CP. This is the same as when n =0 in the nM command.
Moves the CP to the end of the text in the edit buffer.

Correction
command

nlNZE

Searches for the specified character string and replaces it with another
character string; the search starts at the current CP position and proceeds
to the end of the edit buffer. The CP is repositioned to the end of the
character string replaced.

Repeats the C command each time the specified character string is found
until the end of the edit buffer is reaches. The CP is repositioned to the
end of the character string last replaced.

Inserts the specified character string at the position of the CP. The CP is
repositioned to the end of the character stirng inserted. Line numbers are
updated when a line is inserted with this command.

Deletes the n lines following the CP. The CP position is not changed.
Deletes all characters preceding the CP position until a[CR]code is
detected. The[CR]code is not deleted.

Deletes the n characters following the CP.

No operation

Search command

Searches for the specified character string, starting at the CP position and
proceeding to the end of the buffer. The CP is repositioned to the end of
the character stirng when it is found.

Special command

N/

&
#
1

Executes the specified built-in command.

Displays the number of characters stored in the edit buffer (including
spaces and CRs).

Displays the number of the line at which the CP is located.

Deletes the entire contents of the edit buffer.

Changes the list mode for listing to the printer.

Transfers control to the FDOS.

Most of the above commands are compatible with those used in the NOVA editor program manufac-

tured by the Data General Corporation.

EDIT-2

PY CHARACTER POINTER AND DELIMITER

The character pointer (CP) is positioned at the boundary between two adjacent characters or the

beginning or end of the text. It does not point directly at any character.

Movement of the CP is explained below based on the assumption that the following text is stored in

the edit buffer. The beginning of the edit buffer
(The beginning of text) Cp L
D
1 LD A, 14H [SP]
2 LD B, 7 A
3 ADD A, B C d
4 DAA ommand 1L ,
1
Command B)
(Line numbers are not stored 4 Edit buffer
in the edit buffer.) H
CP —
L
D
Command 5M [SP]
B
cp :
7
J
Command 3
>—> The beginning of line 3 CP A
D
D

The B command moves the CP to the beginning of the edit buffer, the J] command moves it to the top

of the specified line and the L command to the beginning of the nth line from the line in which the CP is

currently located; the top of the specified line is the boundary following the[CR]code of a preceding line.

Delimiters are used as separators between editor commands. Entering several editor commands and
separating them with delimiters allows them to be executed consecutively by pressing the[CR]key.

The I (Insert) command must be followed by a delimiter because it usescodes as character codes
for the source text.

The following example replaces ADD on line 3 in the above program with ADC.
3JB2MB1IDRICE or BECADDEBADC

—Screen Edit—
The line on which the cursor is located can be modified by entering new data from the keyboard and
pressing the[CR Jkey after data has been displayed by executing the T, C, Q or S command. The CP is
positioned at the end of the updated line.

Note that the line number may be changed when the I, D or K command is executed.

EDIT-3

TEXT EDITOR COMMANDS ®

— Input Commands—

R (Read file) Command
This command clears the edit buffer area, then loads it with the source file (ASCII file) specified by the
filename; loading starts at the beginning of the edit buffer. The CP is positioned at the beginning of the

edit buffer after execution of this command.

* RFORMULA#1 Reads source file FORMULA#1 into the edit buffer.
* R$FD1; FORMULA#1 Reads source file FORMULA#1 from the diskette in drive
1 into the edit buffer.

— Enter R followed by the file name while in the command wait state.
— The editor searches for the file and reads it. .
-— The file is stored starting at the beginning of the edit buffer as shown below.

~— The CP is positioned to the beginning of the edit buffer after reading.

CP <«— The beginning of the edit
FORMULA#1 R command buffer
Source file - FORMULA #1 Edit buffer

— The message "Full buffer' is displayed when the edit buffer becomes full. In this case, only part of
the input file is stored in the edit buffer. .
— The page processing mode is entered automatically when the buffer becomes full. Therefore, the

remainder of the input file can be read by the PR command.

Note: "> " is displayed to indicate that the system is in the command wait state.

EDIT-4

A (Append file) Command
. This command appends the file specified by the filename to the contents of the edit buffer. The CP

position is not changed.

edit buffer.

f
|
f
P
|
i
\

L

* AFORMULA#2 Appends source file FORMULA#2 to the contents of the

k ASFD2; FORMULA#2 Appends source file FORMULA#2 from the diskette in drive
2 to the contents of the edit buffer.

— Enter A followed by the file name while in the command wait state.
— The editor searches for the specified file and reads it.
— The file is stored in the area following the end of the last text in the edit buffer. The figure below
shows a case in which the file FORMULA#?2 is appended to the file FORMULA#1.
<— The beginning of the edit
buffer
FORMULA#1 Edit buffer
FORMULA#2 A command
Source file \
FORMULA#2
— The message "Full buffer” is displayed when the edit buffer becomes full. In this case, only part of
‘ the sepecified file is store the edit buffer and the contents of the edit buffer must be reedited to store

the entire file.

— The page processing mode is entered automatically when the buffer becomes full. Therefore, the

remainder of the input file can be read by the PR command.

EDIT-5

—Output Command—

W (Write) Command '

This command outputs the entire contents of the edit buffer to the file specified by the filename

regardless of the CP position.

* WFORMULA#3 Outputs the contents of the edit buffer to file FORMULA#3
in the active drive.

* W$FD2; FORMULA#3 Outputs the contents of the edit buffer to file FORMULA#3
in floppy disk drive 2 ($FD2).

— Enter W followed by the filename while in the command waite state.
— The editor waits for entry of another command after the edit buffer contents have been output.

The file generated is a source file.

Text editor

The beginning of — W command
the edit buffer
Text
FORMULA#3
filename "FORMULA#3" Source file
Edit buffer

— The CP position is not changed by execution of the W command.

EDIT-6

—Page Processing Commands—

These commands are used in cases where the total size of files to be edited exceeds the size of the edit
buffer, as shown in the following examples.
If the diskette is replaced with a new one during page processing, the contents of the diskette may be

destroyed. Be sure to terminate page processing before replacing the diskette.

1. When several files are to be edited and the resulting file is larger than the edit buffer:

@ * PRABC Reads source file "ABC" into the edit buffer until the buffer is full.
2 * PADEF Reads source file "DEF" and appends it to the contents of the edit buffer

until the buffer is full. Message ""Full buffer" is displayed.
Note: If >k PRDEF is entered, the contents of file "ABC" stored in the edit

. buffer are cleared and file "DEF" is loaded in the edit buffer from its begin-
ning.
® * PWGHI Outputs the contents of the edit buffer to file "GHI" after editing is com-
pleted.
@k PR Reads the remainder of a file specified by a preceding PR command into the

edit buffer. In this example, the command reads the remainder of file
"DEF" into the edit buffer.

Note: File name "DEF" specified in step (2) remains valid.

® >k PW Outputs the contents of the edit buffer and appends it to the file specified
by the preceding PW command after editing is completed. In this example,
. the command appends the contents of the edit buffer to file "GHI."
® * PC Terminates page processing. (This command is mandatory.)
File "ABC" Edit buffer File "GHI"'
} @ ®
File "DEF" @ —
} Edit buffer ®
@

EDIT-7

2. When the file to be edited

®>* PRABC

Note:
@ > PWDEF

Note:
@ PR

Note:

@> PW[CR]

® > PC[CR]

is larger than the edit buffer:

Reads source file "ABC" into the edit buffer until it is full. Message "Full
buffer" is displayed.
Omission of the file name in the first page processing command will result in

€Iror.

Outputs the contents of the edit buffer to file "DEF" after editing is com-
pleted.

X PW results in an error. An error results when editing increases the size
of file in the edit buffer so that it exceeds the size of the edit buffer.

Reads the remainder of file "ABC" into the edit buffer.

A file name specified in step (O remains valid until a new file name is speci-
fied.

Appends the contents of the edit buffer to file "DEF" after editing is com-
pleted.

Terminates page processing. (This command is mandatory.)

(® Repeat steps @ and @when file "ABC" is too large to be processed by performing steps 3) and @

once.

File "ABC"

e, ——————

Edit buffer File "DEF"

e L

® Edit buffer @

EDIT-8

3. When the file to be edited first is larger than the edit buffer and another file is to be edited and append-
‘ ed to the first edited file:

®* PRABC Reads file "ABC" into the edit buffer until the buffer is full.

@ < PWDEF Outputs the contents of the edit buffer to file "DEF" after editing is com-
pleted.

@ % PR Reads the remainder of file "ABC" into the edit buffer.

@x PW Appends the contents of the edit buffer to file "DEF" after editing is com-
pleted.

®* PRGHI Reads file "GHI" into the edit buffer.

Note: In this case, specifying > PR will not be valid if the end of file "ABC"
. has been reached.

(6% PW Appends the contents of the edit buffer to file "DEF " after editing is com-
pleted.

D * PC Terminates page processing. (This command is mandatory.)

File "ABC" Edit buffer File "DEF"

F

Edit buffer

File "GHI" }

Edit buffer

TN

. 4. When a file which was opened by a page processing command is to be killed:

@®* PK Kills the file opened by a page processing command.

EDIT-9

—Type Command—

T (Type) Command

This command displays all part of the contents of the edit buffer. The CP position is not changed.

* T [CR]
* nT [CR]

Displays all of the contents of the edit buffer with line numbers attached.

Displays the n lines following the CP. (Same as the above when n=0.)

— Key in the number of lines, n followed by T (Type) while in the command wait state.
— Press to display the contents of the edit buffer.

— The following are special cases of nT,

n=0: thesameasT

n <0 : results in the error message "'77?"

n>m (where m is the number of lines from the one at which the CP is located to the end of the

buffer contents): only m lines are displayed.

— The current CP position can be determined with the nT command, since display starts with the charac-

ter following the boundary at which the CP is located.

— Press the | BREAK | key to terminate T command execution.
Press the | SPACE | key to suspend T command execution, and press it again to resume it.
— The photograph at right shows the relationship

between the type command and the CP for the

following text.

. START : ENT
. LD SP, START

. CALL TIMST ;TIMER SET
. CALL LETNL ;NEW LINE
END

[I S R

—.4
MW
zmmc;

e
rr— rrrma

(%Y

O DOV
T
rr

*
1
<
3
=
s
*3
=
t
3
=
4
: 3

— The error message ''Large” is displayed when n exceeds 65535.

EDIT-10

~X 4
ZUD—

[R
o4

Zw
—

M

p 20K 4
m
ra

Z—

D I 4
m
ro
Zw
—

Z-

—CP Positioning Commands—

B (Begin) Command

* B Positions the CP to the beginning of the edit buffer.

— Key in B while in the command wait state.
— Press [CR].
— The B command is executed to position the CP to the beginning of the edit buffer.

— nB performs the same function.

Z Command

* Z Positions the CP to the end of the contents of the edit buffer.

— Key in Z while in the command wait state.
— Press [CR].
— The Z command is executed to position the CP to the end of the contents of the edit buffer.

— nZ performs the same function.

J (Jump) Command

* nJ Positions the CP to the beginning of line n.

— Key in line number n and J while in the command wait state.

— Press [CR].

— The nJ command is executed to position the CP to the beginning of line n.

— The following are special cases.
n=0or 1 ornisomitted: the command performs the same function as the B command.
n < 0 : results in the error message "'?7?7?",

n > m (where m is the number of lines of the edit buffer contents): the command performs the

same function as the Z command.

EDIT-11

L (Line) Command

This command moves the CP forward or backward the specified number of lines. The CP is positioned

at the beginning of the specified line after execution.

* nL [CR]

* L [CR]

Moves the CP to the beginning of the nth line from the line at which it is
currently located.

Moves the CP to the beginning of the line at which it is currently located.

— Key in number of lines, n and L while in the command wait state.

— Press .

— The CP is positioned at the beginning of the specified line when the nL command is executed.

— The following are special cases:

n =0 : the command functions in the same manner as the L command.

n > m (where m is the number of lines from the line on which the CP is located to the end of the

edit buffer contents): the command functions in the same manner as the Z command.

n < 0: the CPis moved In |lines toward the beginning of the edit buffer.

Inl> 2 — 1 (where £ is the number of the line at which the CP is currently located): the

command functions in the same manner as the B command.

M (Move) Command

This command moves the CP forward or backward by the specified number of characters. Spaces and

carriage returns are counted as characters, but line numbers are not.

* nM [CR]

Moves the CP to the position which is n characters from its current position.

— Key in number of characters, n and M while in the command wait state.

— Press .

— Executing the nM command moves the CP to the specified boundary between characters.

— When n < 0, the CP is moved backward by |nl characters.

— The CP position is not changed when n = 0 or if it is omitted.

EDIT-12

—Correction Commands—

C (Change) Command
This command replaces a string in the edit buffer with another string. The search for the specified
string starts at the current CP position and proceeds toward the end of the edit buffer; the string is re-

placed when it is found and the CP is positioned at the end of the string replaced.

> Cstring 1 8 string 2 Searches for the character string specified by string 1, starting
at the current CP position and proceeding toward the end of the
edit buffer; replaces the string with the one specified by string 2
when it is found.

>* Cstring 1 Deletes the character string specified by string 1.

— Key in C while in the command wait state.

— Key in the string to be located followed by a delimiter.

— Key in the string which is to replace the one located.

— Press and a search is made for the first string. Only the first occurrence of the string is replaced.
The line including the string replaced is displayed and the CP is positioned at the end of that string.

— The message "Not found" is displayed if the specified string is not found and the CP is positioned
to the beginning of the edit buffer.

Q (Queue) Command

This command repeats the function of the C command each time the specified character string is

found until the end of the edit buffer is reached. The CP is repositioned to the end of the string last

replaced.

% Qstring 1 88 string 2 Causes the function of the C command to be executed

repeatedly.
>* Qstring 1 Deletes all occurrences of the character string specified
by string 1.

— Key in Q while in the command wait state.

— The remainder of the operation is the same as for the C command.

X

~ MM o0
nNOooMm m-
m-a

— The potograph at right shows the result of execution

~

Dt

of the Q command on the following text.

1 LD BC, (XTEMP)
2 LD (XTEMP), DE
3 JP 1300H

4 XTEMP : DEFS 2

<.
. NATOQMA

Y
OIM OMMIIX

m

AN M/NMNICO M
N ©ODT
mv

M ~td Nt Xt

MO MM TN
mMC MMCmM V-
oM weTmm

VO
B UL RN
m
mn
1))

3
p
<
=
4
#
i
<z
4
»7
*

EDIT-13

| (Insert) Command
This command inserts the specified string at the CP position. A carriage return is performed on the CRT ‘

screen if one is included in the string.

Line numbers are updated automatically when a new line is inserted. The CP is repositioned to the end

of the string inserted.

% Istring &8 Inserts the specified string at the CP position.
> Istring 1 Inserts the lines specified by string 1, string 2 and string 3 at the CP
position.
string 2
string 3
= A is treated as a character by the I command. Therefore, a
delimiter must be keyed in before is pressed to execute the
command. .

— Key in I while in the command wait state.

— Key in the string to be inserted.

— Strings keyed in are inserted at the CP position and the contents of the edit buffer following the CP
are automatically shifted toward the end of the edit buffer.

— When a is keyed in, it is inserted as a carriage return code.

— Key in a delimiter & after all the strings have been keyed in.

— Press key to execute the I command.

— The photograph at right shows an example of

using the I command. »7T
1 STAR
2 LD =
3 CALL
Text: 4 CALL
S EMD
*4JEILD
1 START : ENT %T
2 LD SP, START Z
3 CALL TIMST ;TIMER SET =z
4 CALL XTEMP ;SET TEMPO =
5 END 5

LD A, 5 ;TEMPO 5 is inserted between lines 3
and 4 of the above text.

EDIT-14

K (Kill) Command

‘ This command deletes the n lines preceding or following the CP from the edit buffer.
sk nK Deletes the n lines preceding or following the CP from the edit buffer.

A line is not deleted if the CP is located within it, since characters

preceding or following the CP are not deleted.

* K Deletes characters preceding the CP position until a is detected.
The is not deleted.

— Key in the number of lines, n and K while in the command wait state.

— Press to execute the K command.
— Operation differs according to the value of n as follows.

. n>0: Deletes all characters following the CP until n codes are detected.
codes detected are also deleted. Command execution ends after the last

code has been deleted.

n<O0: Deletes all characters preceding the CP until [nl+ 1 codes are detected.
The (Inl+ Dth code is not deleted.
n=0or Deletes all characters preceding the CP until a code is detected. That is,
not specified deletes the part of the line in front of the CP. The code detected is not
deleted.

— Line numbers are automatically updated after

-~

deletion.

— The CP position is not changed.

w

CTORM —MO
LT =TI
x
|
—

ITMX X I M
WX

. — The photograph at right shows an example of the

—~x
=
C

result of execution of the K command with the

N
NI OHEDLLODD

O M@ OO IRLOOD
I WdIMubIXIMty

lae)
[\
O

following text. (This text is presented only for

x
-
r

the purpose of illustration; it has no meanings

X

-

X4X

IrnT
x
r
.

»
p
<
=1
3
»
1
2
¥
1
z
=
E
*

in assembly language.)

1 AABBCC
2 DDEEFF
3 GGHHII
4 JJKKLL

EDIT-15

D (Delete) Command

This command deletes the specified number of characters from the edit buffer, starting at the CP .

position.
> nD Deletes the specified number of characters from the edit buffer, starting
at the CP position.
A code is counted as a character.
* D (No operation results.)

— Key in the number of character n and D.
— Press to execute the command.

— Operation differs according to the value of n as follows.

n>0: Deletes the n characters following the CP from the edit buffer. .
A code is counted as a character.

n<O0: Deletes the | n | characters preceding the CP from the edit buffer.
A code is counted as a character.

n=0or No operation results.
not specified

— Line numbers are automatically updated if necessary.

— The CP position is not changed.

— The photograph at right shows an example of the

result of execution of the D command with the be
following text. (This text is presented only for ‘:f
the purpose of this illustration; it has no meaning P
4
in assembly language.) =
.

1 ABCD

2 EFGH

3 IJKL

4 MNOP

EDIT-16

—Search Command—

. S (Search) Command

This command searches for the specified character string in the contents of the edit buffer.

> S string Searches for the specified character string, starting at the current CP position;

the CP is repositioned to the end of the character string when it is found.

— Key in S.
— Key in the string to be located.
— Press to execute the S command.

— The search starts at the current CP position and proceeds toward the end of the buffer.

— When the specified string is found, the line which includes it is displayed and the CP is positioned to
. the end of the character string.

— If the specified string cannot be found, the message "Not found" is displayed and the CP is reposi-

tioned to the beginning of the edit buffer.

— The photograph at right shows the result of a search for the character string "LETNL" in the follow-
ing text. The line including "LETNL" is displayed following the S command. The 2T command
indicates that the CP is positioned to the end of the string.

1 START : ENT
2 LD SP, START

3 CALL TIMST ;TIMER SET b

4 CALL LETNL ; NEW LINE <

5 LD A, 04H ; TEMPO<-—4 a

=

6 CALL XTEMP 2

"

. 7 END 7

¥

4

*

=

*

EDIT-17

—Special Commands—

\.Command

This command executes the specified built-in command. " > " is displayed to indicate that command

entry is awaited after execution.

 \DELETE ABC Deletes file ABC.ASC.

— Enter the \.command when " > " appears to indicate that command entry is awaited.

— Specify the built-in FDOS command and press the key; the command is then executed.

— The XFER and EXEC commands cannot be executed. The RUN command cannot be executed when
the program is too long to be executed.

— No built-in FDOS commands can be executed in the page processing mode. If an attemp is made to
execute one in the page processing mode, the message "Page opened!" is output. In this case, reset

the page processing mode with the PC or PK command.

= Command
* = Displays the total number of characters (including spaces and CRs) stored
in the edit buffer.
— Key in " =" (equal) while in the command wait state.

— Press[CR]; the total number of characters stored in the edit buffer is displayed.

. Command
X . Displays the number of the line on which the CP is located.

— Key in . (period) while in the command wait state.
— Press[CR]; the line number on which the CP is located is displayed.

& Command

* & Clears the contents of the edit buffer.

— Key in & (ampersand) while in the command wait state.
— Press[CR]; the contents of the edit buffer are then cleared.

EDIT-18

Command

* # Changes the printer list mode.

— Key in # (sharp symbol) while in the command wait state.
— Press[CR]; the printer list mode is then changed.

— The printer list mode is disabled when the text editor is started. It is enabled when the # command is

executed once; executing it again disables it, and so on.

— The following shows a listing obtained by executing the T command when the printer list mode is

enabled.

v TYRFE COMMAND

s TYPESENT

LD DESWTHEL S DE:=SWITCH TARLE
CALL 7oRW: CHECK GLOBRAL SWITCH
FET ©

Catl. Cxiol 5 SELECYT CRT OR LFT
Calt., 78EFP 5 CHECE SEFARATER
SET [

3OGR 20

BEFARATER="," 7
3 I8 ERR CODE

el i E R0 S R NI 5 L o I N O B B
Bl
-
Lo
i
.
x® S

ﬁ
I ofed BRIk

N s MO ERFORETURR

TYFEO:CalL, 7LSW 5 CHECE LOCAL SWITCH
1% RET O

Ta LD sy g 20rE ERRECODE

17 8CF

18 RET NZ 53 ERROR, LSW EXIaT

17 LD 128 5 Lid#r=12a

20 XX

' LD By ds DEFALLT MODE=&S0

CAbL ROFEN § READ-OFERN
RET ©

NN

JF 3
Ci i
DEFR @&H; /F
CUF

CALL U FRPAGE) 1R PAGTIG
IRy TYPEER
CaLlL MODECE 3 FTLEMODE CHECK
CDEFE 4 5 L A0 T

TEST GLOBOL SWTTOH

! Command

* ! Returns control to FDOS.

. — Key in ! (exclamation mark) while in the command wait state.
— Press[CR]; control is then returned to FDOS.

EDIT-19

ERROR MESSAGES ®

Error message Explanation , Related commands
Full buffer The edit buffer is full. R, A,PR, PA
777 n <0 in the nT or nJ command. T,J
Large n greater than 65535 was specified. T,J,LLM,K,D,B,Z
Not found The string specified in the command was not found. 5,C,Q
Invalid Other than an editor command was entered or an incorrect format

was used. A

Ex) > H[CR]: There is no H command. ny case
> S [CR]: A string should be specified.

Page opened ? g;:nfe“l(lie) to be subjected to page processing is not defined (or is not PR, PA, PW, PC
Page opened ! An attempt to execute the ! or \command was made on a file which

was subjected to page processing, but which was not closed or killed 1N

by the PC or PK command.
No file is saved These messages are displayed where an attempt is made to execute a
after edition ! command after the edit buffer contents have been corrected with-
End of job? out first executing a W or PW command. Pressing the | Y| key in this !

case executes the ! command. Pressing the key causes the system
to await entry of a new command.

Note: Refer to the System Error Messages in the System Command manual for the system errors.
Display of the message "Already opened'" during execution of a W command indicates that there

is a PW command which has not been closed.

EDIT-20

Personal Computer

ms-c08

Z-80 Assembler

SHARP

B e e R S T T N N N R T D T S AP S B L e LR SR L Mermstn et ataetag B L S A e o P L e L X]

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

B e e e R e R e L e g e o e N T 4

e e e L e S N e S U S U S

P R e N R X e N e N R LT T R T LR ey RO St Gt Sty St bty Sty Gt M et O Bt Bt Bt Nl B i b n &y 5 S B A O T 0 ey ey by %

— CONTENTS —

INTRODUCTION e 1
ASSEMBLY LANGUAGE RULES 3
Characters 4
Line 5
Label Symbols 5
CONStants 6
ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7
Definition Condition Messages 8
Error Messages 8
ASSEMBLER DIRECTIVES 10
ENT (entry) e e 10
EQU (equate) 11
ORG (origin) 12
DEFBn (define byte)o 13
DEFB’S’, DEFB "S" (define byte) 13
DEFW nn’ (defineword) 14
DEFM ’S’, DEFM "S" (definemessage) 14
DEFS nn’ (define storage)o, 15
SKPn(skipnlines) 16
SKPH(skiphome) 16
END (end) 16
MESSAGE TABLE 17

ASM

9
Q
S
)
0
0
<
o
o
N

INTRODUCTION

The assembler translates a source file written in assembly language to generate a relocatable binary file;

the source file is one which has been generated and edited by the text editor, and the relocatable binary
file is an intermediate file between the source file and object file. It is possible to link several relocatable

files by the linker.

The assembly source file is coded in assembly language. It consists of labels, mnemonic operations
codes, assembler directives, comments and an end directive; these are arranged according to the rules of the
assembler. The source file edited by the editor is written in ASCII code. The assembler translates the
source file to generate a relocatable file and outputs messages which indicate definition conditions and
syntax errors. These messages are included in the assembly listing which is displayed on the CRT or

printed on the printer.

The following FDOS commands activate the assembler.

® ASM SAMPLE
Activates the assembler. The assembler translates source file SAMPLE.ASC and generates relocatable
file SAMPLE.RB.

e ASM SAMPLE, SLPT/L, SCRT/E
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable file
SAMPLE.RB, prints the assembly listing on the printer and display only erroneous lines of the CRT

screen.

e ASM/N SAMPLE, $SOA/L
Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the assembly
listing to serial output port A (3SOA), but does not generate a relocatable file since global switch/N

is specified.

e ASM SAMPLE, $FD3; SAMLIST /L
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and outputs the assembly listing in the same form as that printed on the printer to
SAMLIST.ASC on FD3 in ASCII code.

e ASM SAMPLE, SLPT/L, $4000
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and prints the assembly listing on the printer with a bias of $4000 added to the
relocatable address. Relocatable file is not affected by the bias of $4000.

ASM-1

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads a source

file from its beginning to end. The following shows operation of the assembler with the 2-pass system.

Assembler source
File (ASCII)

FDOS

PASS 1

Assembler

\

Symbol table

Assembler source
file (ASCII)

¥

PASS2 _

\

Assembler

(RB)

Relocatable file

/ Symbol table

CRT screen or

During pass 1, the assembler stores label
symbols according to the assembler rules in the
symbolic label table. Label symbols help the
operator to read and understand the program
easily.

During pass 2, the assembler generates a
relocatable file with reference to the symbol
table generated during pass 1, then outputs the
assembly listing (on the CRT or printer).

The relocatable file and the assembly listing
do not occupy space in RAM, which is only
used by the symbol table. Therefore, the size
of the source file to be assembled is not limited
by the amount of RAM.

The following program list will help you understand the function of the assembler. This program is

only for reference and has no meaning.

% Z80 ASSEMBLER SB-7201 <A> PAGEOl

01 0000
02 0000
03 0000
04 2000
05 2000
06 2002
07 2004
08 2006
09 2008
10 2009
11 200A
12 200B
13 200C
14 2010
15 2012
16 2013
17 2014
18 2014
19 2014
20 2014
21 2017
22 201A
23 201D
24 2020
25 2023
26 2026
27 2029
28 202C
29 202E
30 2030
31 2033
32 2036
33 2039
34 2039
35 203C
36 203F
37 2042
38 2045
39 2048
40 204A
41 204B
42 204B

* ok
ABC

3E33
FE43
FE43
FEOS
22

27

43

02
06050201
0304
7E
7E

P
C32120
C30A00
C31420
C30A00
C32A20
2100D0
213930
212120
3EOD
3EFF
21FFFF
21FOFF
C33520

CD4A20
CD5420
CD4B20
21FFFF
21FEFF
4920

00

P

. SAMPLE LIST

ORG
LD

CP

CP

CP
DEFB
DEFB
DEFB
DEFB
DEFM

LD
LD

XYZ: EQU
Jp

ABC: JP
JP
JP
JP
LD
LD
LD
LD
LD
LD
LD
JP

CALL
CALL
CALL
LD
LD
DEFW
272Z: NOP
XXX: EQU
END

Z80 ASSEMBLER SB-7201
2017 XXX 0001 XYZ

2000H

A3’

43H

el

ry

el

rv

gClHl+ L]~}

A, (HL)

10
ABC+XYZ
XYZ
ABC-3

10

+10

HL, D000
HL, 12345
HL, ABC+XYZ
A, XYZ+3
A -1

HL, -1
HL, -10H
-1

22Z
ZZZ+10
ZZZ+XXX
HL, -XXX

HL, -XXX-XXX

Z2ZZ-XXX

1

<A> PAGE 02
000A ZZZ 204A

22/?2/??

; M may be used in place of (HL).

; Relocatable address + EQU defined aymbol value.

, Absolute address 10
; Relative address 2AH (20H+10)
; Handled as a hexadecimal number.

. EQU defined label value + numerica data
; Negative value is converted into one’s complement.

22/22/27

; Indicates the contents of the symbol table.

ASM-2

ASSEMBLY LANGUAGE RULES

The source program must be coded according to assembly language rules. This paragraph describes the

structure of the source program and the assembly language rules.

The assembly source program consists of the following,

Z80 instruction mnemonic codes

Label symbols
Comments

Definition directives
Assembler directives Entry directives

(Pseudo instructions) Skip directives

End directive

Comments may be used as needed by the programmer; they have no effect on execution of the program
and are not included in the relocatable file.

All assembly source programs must be ended with the assembler directive END,

Z80 instruction mnemonic codes from the body of the assembly source program. These are explained
in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma, etc.) and
operands.

A label symbol symbolically represents an address or data. A label symbol is either placed in the label
column and separated from the following instruction with a colon (:), or placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used) are
ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for
separators and special symbols may be used.

Comments are written between the separator " ;" and a code; these have no influence on program
execution.

Assembler directives will be explained later in this manual. These are written in the same column as the
Z80 instruction mnemonic codes.

An END directive is one of the assembler directives; all assembly source programs must end with this

directive.

ASM-3

—Characters—

Characters which are used in an assembly source program are alphanumerics, sepecial symbols and other
characters. The special symbols have functional meanings. (Separators, ,[SPACE], etc.)
1) Alphabetic characterss ABCDEFGHIJKLMNOPQRSTUVWXYZ
These characters are used to represent symbols and instruction mnemonic codes. A ~ F are also used
for representing hexadecimal values. Further, D is used to indicate decimal and H is used to indicate
hexadecimal.
2)Numerics: 0123456789
These are used to represent constants and symbols. Whether a constant is a hexadecimal number or a
decimal number is determined according to the rules of constants,
3) Space
Spaces are treated as separators except when they are used in comments. They perform the tabulation
function on the assembly listing when they are placed between op-code and operand or between ope-

rand and comment as shown below:

Example: OR [SP|FOH[SP]; A<—X0
XYZ : PUSH [SP]AF Editor list
ADD HL, BC [SP]; BC = COUNT
2
OR FOH ; A<—X0
XYZ: PUSH AF Assembly listing
ADD HL,BC ;BC=COUNT
0 1

Tab set Tab set
4)Colon " : "
A colon behaves as a separator when it is placed between a label symbol and an instruction. It performes
the tabulation function on the assembly listing.

Example: START: LD SP, START
MAIN: ENT
+)
Tab set Tab set

An address is assigned to the label symbol even if no instruction follows. (See the prargraph on symbols.)

Example: ENTRY: < "ENTRY "is assigned the same address as ‘' TOPQ"'.
TOPO: PUSH HL

5)Semicolon " ;"
A semicolon represents the beginning of a comment. None of the characters between a semicolon and a
code have any influence on execution of the program. The semicolon is placed at the top of a line
or the beginning of a comment column.

Example: ;
; SAMPLE PROGRAM All lines are comments.

CMMNT: ENT ; COMMENT

N— e
Comment column

ASM4

6) Carriage return ([CR])

A carriage return code represents the end of a line.
7) Other special symbols: + —"(),

All these are special symbols used in instructiln statements,

8) Other symbols

Other characters are not generally used, although they may be used as symbol labels or in the comment

column.

—Line—

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage
return. Except for comments, each line includes only one of the Z80 instructions, an assembler directive,
an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the assembly

listing on page 7.)

—Label Symbols—

All characters other than special symbols may be used for label symbols, but generally alphanumerics
are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used, are

ignored by the assembler.

Example: Correct ABC START BUFFER 50STEP
Incorrect (ABC) HL IY+3 XYZ+3 < Special characters are used.
COMPAREO | The following label are treated as the same label symbol " COMPAR™
COMPARE] € Tollowing label are treated as the same labe Symbo .
Assembler directive EQU defines data (1 byte or 2 bytes) for a label symbol and assigns it to the label.
Example: ABC: EQU 3
CR: EQU ODH

VRAMO: EQU DO0OH
Assembler directive ENT defines a label symbol as a global symbol. A colon (:) placed between a
label symbol and a following instruction defines the label symbol as a relocatable instruction address.

Example: RLDR: ENT
RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assembler first searches
the symbol table for the specified label symbol; if it is not found, the assembler treats it as hexadecimal
data. For example, when CALL ABC is encountered, the assembler searches the symbol table for ABC;
if it is not found, the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which it is
used, or must be defined as a global symbol in another assembly source program unit. Otherwise, it is
converted into binary and left undefined.

A label symbol which has once been defined cannot be defined again.

ASM-5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ABCD: ENT Label symbols ABCD, EFGH and 1JK are all defined
EFGH: ENT as relocatable addresses of LD A, B. ABCD and EFGH
JK LD A,B are also defined as global symbols.
ABCD:
EFGH: Same as the above, except that ABCD and EFGH are not
) global symbols.
JK: LD A,B

—Constants—

There are two types of constants: decimal and hexadecimal. + and — signs can be attached to these.
A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the
requirements for a constant,

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists
of numerics followed by D.

Example: 23 999 +3 —62 16D 0003D

6 3

The assembler treats a constant as a hexadecimal constant when it consists of 0~9, A, B, C, D, E and
/ or F followed by H.

Example: 2AH CDH +01H -BH 0010H OOADH OOH

A constant used in the operand of a JP, JR, DINZ or CALL instruction represents an absolute address
when it has no sign and a location relative to the current address when it has a sign. In other cases, con-

stants without signs and those with a + sign represent numerics, while those with a — sign are converted

into two’s complement.

ASM-6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES

The assembly listing is output to the CRT screen or printer when an FDOS system command ASM is
executed with $CRT/L or SLPT /L specified as an argument. Examining the assembly listing is one of
the most important procedures in assembly programming since this is when a check is made for errors in
the source program.

The assembler translates the specified source program and outputs the assembly listing, which includes
line numbers, relative addresses, relocatable binary codes, assembler messages and the source program list
(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is pages
every 60 lines.

The comment column is displayed when the number of characters per line is set to 80, but is not dis-
played when it is set to 40.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes, operands

and comment columns.

Relative Assembler
address message
Line Relocatable
number l binary code FL Label Op-code Operand Comment
101 | | I L1 | T I
>X>k Z80 ASSEMBLER SB-7201 <A> PAGE 01 ?7/72/??] This message is output at the top of each page.
01 0000 ;
02 0000 ; ASSEMBLER LIST SAMPLE
03 0000 ;
04 0000 P LETNL: EQU 0762H
05 0000 P MSG: EQU 06B3H
06 0000 ;
07 0000 START: ENT ; ENTRY FROM UNIT#1
08 0000 MAIN: ENT ; ENTRY FROM UNIT#2
09 0000 310000 LD SP, START ; INITIAL STACK POINTER
10 0003 210000 E LD HL, TEMPO
11 0006 DD210000 E LD IX, TEMP1
12 000A DD360000 EE MAINO: LD (IX+CONSTO), CONST1
13 OOOE 00 Q X0A A ; A<-00
47 O005A 1A MAIN7: LD A, (DE)
48 005B B7 OR A
49 005C 2000 v JR NZ, COMP
50 OOSE EB MAINS8: EX DE, HL ; EXCHANGE DE, HL
>k Z80 ASSEMBLER SB-7201 <A> PAGE 02 ??/??/?? | A new page is started when the number of lines
on the preceding page reaches 60.

ASM-7

Errors detected during assembly and definition conditions are indicated with assembler messages.

—Definition Condition Messages—

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by the
operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another assembly program unit for
linkage with the current unit by the linker. (See "Assembler Directive ENT" on page 10.)

An undefined byte of data is treated as "00"; 2 undefined bytes of data (or an address) are uncertain.

Example: E LD B, CONSTO
The byte of data ""CONSTO" is not defined in the program unit.
E CALL SORT
t——Address SORT is not defined in the program unit.
BIT TOP, (IY+FLAG)
E The byte of data"FLAG" is not defined in the program unit. .

The byte of data™ TOP" is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value
assigned. A label symbol indicated by this message can be referenced from an external file. In this case,
however, the program unit including the EQU statement must be loaded before the other program units
which are to be linked with it.

The P message is displayed when a label symbol different from those stored in the symbol table during
PASS 1 is found.

Example: P LETNL: EQU 0762H
P DATAL: EQU 3
Indicates that LETNL and DATA1 are defined by EQU.

[p—

The P message is displayed in the relocatable binary code column rather than in the assembler ‘
message column.

—Error Messages—

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.

Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

N (Non label error)

This message indicates that ENT or EQU has no label symbol. '
Example: N EQU 0012H
—_—
No label symbol

ASM-8

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: L JR XYZ
XYZ is not defined in the current source program.

No externally defined global symbol can be used as an operand of the JR or DINZ commands.
The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER
¢
M ABC: ENT
Indicates that ABC is defined more than once,

O (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)
This message indicates that a mnemonic code is incorrect.
Example: Q CAL XYZ
CALL XYZ is correct.
Q PSH B
PUSH BC is correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DEFM statement.
Example: S DEFM GAME OVER
DEFM 'GAME OVER’ is correct.

V (Value over)

This message indicates that the value of the operand is out of the prescribed range.

Example: V LD A, FF8H
\" SET 8, A
\"% JR —130

ASM-9

ASSEMBLER DIRECTIVES ®

Assembler directives (also sometimes referred to as "pseudo instructions') control assembly, but are
not converted into machine language. However, in the DEFB, DEFW and DEFM directives, their operands

are sometimes converted into machine language.

—ENT (entry)—

This assembler directive defines a label symbol as a global symbol. Label symbols which are referenced
by two or more programs when multiple programs are linked must be defined by the entry directive.
Label symbols defined by the entry directive are included in the relocatable file so that the linker can

identify them The symbolic debugger can performs symbolic addressing using these label symbols.

Label symbols which are not defined by the entry directive contribute only to assembly of the current
source program unit, and are not included in the relocatable file output by the assembler. However, labels .
defined by the EQU directive are exceptions since they are defined as global symbols and entry definition
is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN and
GAUSS-SR. The E message in the assembler message column indicates that a label symbol which is not

defined in the current program unit is being referenced externally.

; GAUSS-MAIN
MAINO: ENT < Entry definition of label symbol
MAINO
Address undefined CALL CMPLX
Program unit 1 CD0000 E :
GAUSS-MAIN E message CALL CMPLX+2 <« No offset can be added to a label symbol
which is defined externally. ‘
END < END is always required at the end of a
program unit.
; GAUSS-SR
CMPLX: ENT < Entry definition of label symbol
Address undefined : CMPLX
Program unit 2 Py :
"GAUSS-SR" €30000 _E,._ RI.ST
E message :
JP MAINO
END

ASM-10

—EQU (equate)—

This assembler directive defines a label symbol with a numeric value (or address) assigned. The numeric
value must be a decimal or hexadecimal constant. Any numeric value can be added to or subtracted from a

label ymbol once it is defined with a numeric value assigned; this allows a new label symbol to be defined.

The label symbol used as an address in the operand is generally treated as a relative address. However,
when a specific address is assigned to the label symbol with an EQU directive, the address is not changed

during assembly.

The EQU directive also defines a label symbol as a global symbol. A label defined by the EQU directive
can be referenced by an external program unit. However, program units including such directives must be

loaded before other program units to be linked.

The following example illustrates use of the EQU directive to define label symbols as monitor sub-
routine addresses and 1/0 port numbers for a specific device. The P messages indicate that the EQU

directives define the label symbols as global symbols.

k> 280 ASSEMBLER SB-7201 <A> PAGEQl ?2?2/72/7?

01 0000 ;

02 0000 ; MONITOR SUBROUTINE

03 0000 ;

04 0000 P BRKEY: EQU 0527H

05 0000 P GETKY: EQU 0610H

06 0000 P PRNTS: EQU 063AH

07 0000 P PRNT: EQU 063CH

08 0000 P MSG: EQU 06B5H

09 0000 P NL: EQU 0757H

10 0000 P LETNL: EQU 0764H

11 0000 P GETL: EQU OBESH

12 0000 SKP 3

16 0000 ;

17 0000 ; SET PORT#: PRINTER

18 0000 ;

19 0000 P POTFE: EQU FEH

20 0000 P POTFF: EQU POTFE+1 ; POTFF is defined with FF (hexadecimal)

21 0000 ; assigned.

22 0000 P CON1: EQU 1

23 0000 P CON2: EQU 2

24 0000 P CONZ3: EQU CON1+CON2 ; This results in assigned of 3 to CON 3. In this
case, CON1 and CON2 must be defined in
advance.

ASM-11

—ORG (origin)—

This assembler directive determines the object program loading address. For example, when
ORG 2000H
is placed at the beginning of the program to be assembled, the assembler assembles the program with a
loading address of 2000H specified.

When a relocatable binary file generated with the loading address specified with the ORG directive is
linked with other programs by the linker, the loading address specified with the ORG directive is effective
and that specified with the linker is not.

When relocatable files with loading addresses specified with ORG directives are linked, or when more
than one ORG directives is used in a program, the loading addresses specified must not overlap and must
appear in the sequential order.

When a relocatable file with a loading address specified with an ORG assembler directive is converted

into a system file using the LINK /S command, the specified loading address is ignored.

>k Z80 ASSEMBLER SB-7201 <ORG> PAGE 01 ?2/22/7?
01 0000 : TYPE COMMAND
02 0000 ;
03 2000 ORG 2000H
04 2000 TYPE: ENT
05 2000 116220 LD DE, SWTBL : DE: = SWITCH TABLE
06 2003 CD0000 E CALL ?GSW : CHECK GLOBAL SWITCH
07 2006 D8 RET C
08 2007 CDO0000 E CALL C&L1 : SELECT CRT OR LPT
09 200A CD0000 E CALL ?SEP ; CHECK SEPARATOR
10 200D D8 RET C
11 200E FE2C CP 2CH ; SEPARATER =" " ?
12 2010 3E03 LD A3 : 31S ERR CODE
13 2012 37 SCF
14 2013 CO RET NZ ; NO, ERR RETURN
15 2014 CDO000 E TYPEO: CALL ?LSW ; CHECK LOCAL SWITCH
16 2017 D8 REC c
17 2018 3E08 LD A8 : 8 IS ERR CODE
18 201A 37 SCF
19 201B CO RET NZ : ERROR, LSW EXIST
20 201C OE80 LD C, 128 : LU#: =128
21 201E D9 EXX
22 201F 0604 LD B, 4 : DEFAULT MODE = ASC
23 2021 D9 EXX
55 2062 88 SWTBL: DEFB 88H . [P
56 2063 FF DEFB FFH : END OF SWTBL
57 2064 BUFFER: DEFS 128 : 128 BYTE BUFFER
58 20E4 END
> > Z80 ASSEMBLER SB-7021 <ORG> PAGE 02 ?2/22/7?

.TYPE 2000 BUFFER 2064 SWTBL 2062 TYPEO 2014 TYPE1O 203C
TYPE20 2048 TYPEER 2058

ASM-12

—DEFB n (define byte)—

. This directive sets constant n (1 byte) in the address of the line on which the directive is specified. A

label symbol defined with a constant (1 byte) assigned may be used in place of n.

This directive (as well as DEFW and DWFM) is used to form message data or a graphic data group for a

code conversion table or other table.

The following example forms the message "ERROR" in ASCII code. Since it uses ODH as an end mark,

monitor subroutine 06B3H can be used to output the message.

13 1FF3 B7 OR A
14 1FF4 CA0000 E JP Z, READY
15 1FF7 110020 LD DE, MESGO
16 1FFA CDBS506 CALL MSG
. 17 1FFD (30000 E JP MAIN2
18 2000 P MSG: EQU 06B5H
19 2000 ;
20 2000 ; MESSAGE GROUP
21 2000 ;
22 2000 MESGO: ENT ;""ERROR"
23 2000 45 DEFB 45H
24 2001 52 DEFB 52H
25 2002 52 DEFB 52H
26 2003 4F DEFB 4FH
27 2004 52 DEFB 52H
28 2005 OD DEFB ODH

—DEFB ’S’, DEFB "S" (define byte)—

This directive sets the ASCII code corresponding to the character enclosed in single or double quota-
. tion marks in the address of the line on which the directive is specified.

Since this directive converts characters to ASCII code, the above example can be rewritten as follows.

21 2000 MESGO: ENT ;"' ERROR"
22 2000 45 DEFB 'E’
23 2001 52 DEFB 'R’
24 2002 52 DEFB 'R’
25 2003 4F DEFB goh
26 2004 52 DEFB 'R’
27 2005 OD DEFB ODH
28 2006 06 DEFB SCR
29 2007 03 DEFB ‘hd’
30 2008 OD DEFB ODH
31 2009 27 DEFB "'"
32 200A 22 DEFB T

ASM-13

—DEFW nn’ (define word) —

This directive sets n’ in the address of the line on which the directive is specified and n in the following .

address; in other words, it sets two bytes of data. A label symbol may be used in place of nn’.

39 5FF1 CMDT: ENT ; COMMAND TABLE
40 S5FF1 41 DEFB 41H

41 SFF2 0053 DEFW CMDA
42 5FF4 42 DEFB 42H

43 5FFS 1ES53 DEFW CMDB+3
44 5FF7 53 DEFB 53H

45 S5FF8 0000 E DEFW CMDS
46 S5FFA 0D DEFB ODH

47 SFFB CONSTO: ENT

48 S5FFB O0FO0l DEFW 0l10FH
49 SFFD CONST1: ENT

50 SFFD 660D DEFW OD66H

—DEFM ’S’, DEFM "S" (define message)—

This directive sets the character string enclosed in single or double quotation marks in ASCII code in
addresses starting at that of the line on which the directive is specified. The number of characters must

be within the range from 1 to 64. On the assembly listing, codes for 4 characters are output on each line.

The example on the preceding page can be written as follows with this directive.

21 2000 MESGO: ENT ;"ERROR" .
22 2000 4552524F DEFM 'ERROR'

23 2004 52

24 2005 OD DEFB ODH

25 2006 06034142 DEFM ' AB’

26 200A OD DEFB ODH

27 200B 41274247 DEFM "A'B'C'"

28 200F 4327

29 2011 OD DEFB ODH

ASM-14

—DEFS nn’ (define storage)—

This directive reserves nn’ bytes of memory area starting at the address of the line on which the direc-

tive is specified.

This directive adds nn’ to the reference counter contents; the contents of addresses skipped are not
defined.

The following example reserves buffer areas.

02 4BBS8 TEMPO: ENT ; BUFFER A
03 4BB8 DEFS 1

04 4BB9 TEMP1: ENT ; BUFFER B
05 4BB9 DEFS 2

06 4BBB TEMP2: ENT . ; BUFFER C
07 4BBB DEFS 2

08 4BBD TEMP3: ENT ; BUFFER D
09 4BBD DEFS 128

10 4C3D BFFR: ENT ; BUFFER E
11 4C3D DEFS A

12 4C47 BUFFER: ENT ; BUFFER F
13 4C47 DEFS 2

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS statements.

ASM-15

—SKP n (skip n lines)—

This directive advances the assembly listing by n lines to make the list easy to read. .
30 COMMON: ENT ; NORMAL RETURN

31 3BB8 AF XOR A ; A<- -00

32 3BB9 32B84B LD (TEMPO), A ; CLEAR CMD BUFFER

33 3BBC 110020 LD DE, MESGO ; "READY"

34 3BBF C9 RET

35 3BCO SKP 3

3 line feeds are made.

39 3BCO ;

40 3BCO ; ABNORMAL RETURN

41 3BCO ;

42 3BCO ABNRET: ENT ; SET INVALID MODE

—SKP H (skip home)—

This directive advances the page during output of the assembly listing.

—END (end)—

This directive declares the end of the source program. All source programs must be ended with this

directive. Assembly operation is not completed if this directive is omitted. .
The assembly outputs

END?

when it reads a source file which doesn’t include an END directive.

ASM-16

® MESSAGE TABLE

Definition status message

Meaning

Example

Indicates that a label symbol is being
referenced externally; that is, the label

is not defined in the current source

E LD B,CONSTO
t o The data byte "CONSTO" is undefined.
E CALL SORT

E (External) program unit. b The address"SORT" is undefined.
EE BIT TOP, (IY+FLAG)
-The data byte "FLAG" is undefined.
The data byte ""TOP" is undefined.
Defines a label symbol with a constant P LETNL : EQU 0762H
assigned. P DATAI1: EQU 3
P (Phase) This message is also output when a LETNL and DATAI1 are defined by EQU.
label symbol is encountered during The P message is displayed in the relocatable
pass 2 which was not encountered binary code column rather than in the assembler
during pass 1. message column,
Error message Meaning Example
C (illegal Character Indlcfites that an illegal character is c Jp +1000—3
error) used in the operand.
F (Format error) 'Infilcates that the instruction format
is incorrect.
N label Indicates that no label symbol is N EQU 0012H
(Non a enol') specified for ENT or EQU. No label symbo]

L (erroneous Label
error)

Indicates that an illegal label symbol

is used.

L JR XYZ

XYZ is not defined in the current program.
No externally defined global symbol can be
used as the operand of a JR or DINZ command.
If such a label symbol is specified, the L message
is displayed.

M (Multiple label
error)

Indicates that a label symbol is defined

two or more times.

M ABC: LD DE, BUFFER
?

M ABC: ENT

L ABCis defined twice.

O (erroneous

Indicates that an illegal operand is

Operand) specified.
Q (Questionable Indicates that the mnemonic code is Q CAL XYZ
mnemonic) incorrect. CALL XYZ is correct.
S Indicates that single or double quota- S DEFM GAME OVER
(String error) tion mark(s) are omitted. DEFM °GAME OVER'’ is correct.
v Indicates that the value of the operand V LD A, FF8H V SET 8, A
(Value over) is out of the prescribed range. vV JR -130
END? Indicates that the END directive is

missing from the source program,

ASM-17

Note: Refer to the System Error Messages in the System Command manual for other system errors.

Personal Computer

m<Z-:=08

SHARP

RIS R S R SRS BT RS A DA B B R R B G Gt G T S M B B B R B I B N B TR B B N B R B R G G T B T B B Em B S B B Bt B ST Ot Gt Gt BN S G B 8 T Bt B S 3T

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

D e e e N e S o S O R
BB A B A R T BTN B TN B TR A TR TR B TN B Bt B N B T 6 T S a8 By & S &

T R e b b b e b e R e R e R i S R e L E e L R T T R S O S L]

— CONTENTS —

INTRODUCTION i e 1
Starting the Symbolic Debugger 2
SYMBOLIC DEBUGGER COMMAND TABLE................... 3
BREAKPOINTS 4
USING THE DEBUGGER COMMANDS 5
T (Table dump) Command 5
Link message examples 6

B (Breakpoint) Command 7

& (Clear BP) Command 9

M (Memory dump) Command 10

D (Memory list dump) Command 11

W (Datawrtie)Command 12

G (Goto)Command 13

I (Indicative start) Command 14

A (Accumulator) Command, 15

C (Complementary) Command 15

P (Program counter) Command 16

R (Register) Command i ... 16
Using register commands A,C,Pand R 17

X (Data transfer) Command 18

S (Save) Command, 19

Y (Yank)Command 20

N (FDOS) Command e e, 21
#FCommand 21
P'Command 21
ERROR MESSAGES i, 22

DEB

Symbolic Debugger

® | INTRODUCTION

The SHARP MZ-80B symbolic debugger links and loads one or more program units from relocatable
files to form an object program in memory in an immediately executable form and runs the object pro-
gram for debugging. It provides the programmer with facilities for taking a memory dump of the object
program in the link area, for setting a breakpoint in the program, for displaying and altering the contents
of the CPU internal registers and for starting execution of the program at a given address with the CPU

internal registers set to specified values (indicative start).

o Symbolic debugger debugging
Relocatable Linking | operations (program execution, A
file units (RB) "] breakpoint setting, data Program execution

/ alteration)

Debugging with the symbolic debugger

The debugger is said to be "symbolic" since it permits the programmer to reference addresses (e.g.,
breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols
declared as entry symbols in the source program with the ENT assembler directive. This releases the
programmer from the burden of remembering relative addresses in relocatable programs and offset values
specified when they are loaded.

In normal program development process, the programmer debugs each object program unit with the
symbolic debugger and, if he finds errors, he reedits its source program and reassembles it. After debugging
all object program units, the programmer links and loads them with the linker to form the final object
program.

Symbolic debugger commands are summarized in the table on page 3. Commands marked with a

. dagger permit symbolic operations. The debugger creates the symbol table in the same way as the linker.

FDOS
Symbolic debugger
Relocatable file #1 Y command
Object file
Relocatable file #2 S command
Symbol table

Symbolic debugger file processing

DEB-1

—Starting the Symbolic Debugger—

The symbolic debugger is started by entering one of the commands below in the FDOS command mode.

1. DEBUG

The debugger is invoked and the debugger command wait state entered.

2. DEBUG [filename 1, filename N
The debugger links and loads program units from relocatable files filename 1 through filename N and

waits for entry of a debugger command.

3. DEBUG/P ABC
The debugger loads the program unit from file ABC.RB and prints the link information shown in Figure

1 on the printer.

4. DEBUG/P/T ABC
The debugger loads the program unit from file ABC.RB and prints the link and symbol table informa-

tion on the printer.

5. DEBUG ABC, XYZ, TBL$20
The debugger links and loads program units from relocatable files ABC.RB and XYZ.RB and waits for
entry of a debugger command. It also reserves 2000 (hex) bytes (approximately 8K bytes) of space for the

symbol table. Approximately 6K bytes of space are reserved when the table size is not specified.

6. DEBUG ABC, $1000, XYZ, DEF/O
The debugger links and loads program units from relocatable files ABC.RB and XYZ.RB to generate an
object program in object program file DEF.OBJ, then waits for entry of a debugger command. It reserves

4K bytes of free space (offset of 1000 (hex)) between program units ABC and XYZ.

Note: When the debugger is invoked and the command wait state entered, all files (including those speci-
fied in the DEBUG command) are killed.
Linking ARC.RR

Top asm.bhias $45100
Erid asm.bias $&6134

FEYIN &1Eg U
Debugger area 6100-&135%
Figure 1.

l.inmking ARBC.RR
Top asm.bias 6100
Ernd asm.bias $&1354

Symbol table

CLEAR &H12% DRIND D FFED FEN TR A1EE UL MTFE 0 FFEA
START &H100
Debugger ares S100-51759

Figure 2.

DEB-2

® SYMBOLIC DEBUGGER COMMAND TABLE

Command type Command name Function
T Displays the contents of the symbol table; i.., the label symbol
Symbol table command name, its absolute address and the definition status for each table

entry. (Table Dump)

Bt Displays, sets or alters a breakpoint. (Breakpoint)
& Clears all breakpoints set. (Clear Breakpoints)
mt Displays the contents of the specified block in the link area in

hexadecimal representation or alters them. (Memory Dump)

ot Displays the contents of the specified block in the link area in
hexadecimal representation with one instruction on a line.
(Memory List Dump)

. WT Writes hexadecimal data, starting at the specified address in the
link area. (Write)
Gf Executes the program at the specified address. (GOTO)
I Executes the program at the address designated by PC with the
Debugging commands register buffer data set to the CPU internal reigsters.
(Indicative Start)
A Displays the contents of registers A, F, B, C, D, E,Hand L in hexa-
decimal representation or alters them. (Accumulator)
C Displays the contents of complementary registers A, F*, B’, C", D",
E’, H’ and L’ in hexadecimal representation or alters them.
(Complementary)
P Displays the contents of registers PC, SP, IX, IY and I in hexa-
decimal representation or alters them. (Program Counter)
R Displays the contents of all registers in hexadecimal representation.
(Register)
’ X Transfers the specified memory block to the specified address.
(Transfer)
S Saves the object program in the link area in an output file with the

specified name, (Save)
File I/O commands
Y Reads the object program from the object file with the specified

file name into memory. (Yank)

\ Executes the specified FDOS built-in command.
Special commands # Switches the printer list mode for listing printout.
! Transfers control to FDOS.

Note: Commands marked by a dagger permit symbolic operations.

DEB-3

BREAKPOINTS
o

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the
contents of the CPU registers are saved into the register buffer. At this point, the programmer can examine
and alter the memory and register contents. He can also restart the program at this point. Thus, break-

points facilitate program checking and debugging.

The symbolic debugger allows a maximum of nine breakpoints. When setting a breakpoint, the pro-
grammer must specify not only its address but also its count. The count specifies the number of allowable
passes through the breakpoint in a looping program before a break actually occurs. The maximum allow-

able value of the break count is E in hexadecimal (14 in decimal).

When a breakpoint is set in a program, the debugger saves the operation code at that location (address)
in the break table and replaces it with code F7. The debugger creates one breaktable entry for each break- ‘

point as shown below.

Saved operation code

Replace t
Breakpoint address \

(label symbol) F7

Break count Variable count 2

Breaktable entry
Object program

Hexadecimal code F7 is the operation code for RST 6, which initiates a break operation. When the
RST 6 instruction, which is a 1-byte CALL instruction, is executed, the contents of the program counter
are pushed into the stack and the program counter is loaded with new data 0030H; that is, program
control jumps to address 0030H in the monitor, from which point control is immediately passed to the
debugger. The debugger searches the breaktable for the pertinent breakpoint. If the breakpoint is not
found, the debugger displays error message "RST6?." Thus, the RST 6 instruction is used in the system
and cannot be used by user programs.

When the debugger finds the required breakpoint in the table, it checks the corresponding count and
decrements the variable count (this count is initially set to the break count) by one. If the variable count

reaches zero, the debugger performs break processing; otherwise, it continues program execution.

DEB-4

Py USING THE DEBUGGER COMMANDS

—T (Table dump) Command —

The T command displays the contents of the symbol table, that is, the label symbol name, its absolute

address and its definition status.

* DT Displays the contents of the symbol table.

— Enter a T command in response to the prompt ">D".

— The debugger displays the label symbol name, its absolute address (in hexadecimal) and the definition

status for each symbol table entry. The programmer can detect symbol definition errors by checking

the definition status of the displayed label symbols.

. — Messages pertaining to the symbol table definition status are identical to those issued by the linker.

The definition status messages are listed below, followed by examples.

— Two symbol table entries are displayed on a line when the number of characters per line is set to 40

and four entries are displayed on a line when it is set to 80,

Message

Definition status

Ox x2ca

Undefined symbol (address or data)
Multi-defined symbol (address or data)
Cross-defined symbol (address or data)
Half-defined symbol (data)
EQU-defined symbol (data)

No message is attached to symbols for which an address has been defined.

U, M, X and H indicate error conditions.

DEB-5

Link message examples

First program unit loaded (UNIT—#1)

TMDLYH: LD HL, START
COUNT: ENT
DEC HL
LD AH
Cp COUNTO
JR NZ, COUNT
LD AL
CP COUNT1
JR NZ, COUNT
CP COUNT2
JR NZ, COUNT
RET
PEND: ENT
DEFM 'TMDLYH'
DEFB ODH
COUNT1: EQU OOH
COUNTO: EQU 50H
END
Second program unit loaded (UNIT—#2)
TMDLYL: LD HL, START
LOOP1: DEC H
LD AH
CP COUNT
JR NZ, LOOP1
RET
PEND: ENT
DEFM 'TMDLYL '
DEFB ODH
START: EQU 1000H
COUNT: EQU OOH
END
Third program unit loaded (UNIT—#3)
INPUT: CALL 001BH
CALL TMDLYL
CALL 001BH
LD HL, START
CP ODH
JR Z, END
LD (HL), A
INC HL
JR INPUT
END: JP 0000H
COUNT2: EQU 12
END

DEB-6

"START" X
START is not defined as an address in the
first program, but is defined as data in the

second or subsequent program with the
START : EQU statement.

Note: The EQU statement should be placed

at the beginning of the program unit.

"COUNT2" H

COUNT? is not defined as data in the first
program, but is defined as data in the third
program with the COUNT2 : EQU state-

ment.

"COUNTI" D
COUNT1 is defined as data (D indicates no

error condition).

"COUNT" X
COUNT is defined as an address in the first
program while it is simultaneously defined

as data in the second program.

"PEND" M

PEND is defined as an address in the first
program while it is simultaneously defined
as an address in the second program (dupli-

cated definition).

"TMDLYL" U
TMDLYL is neither defined as an address
nor declared with the ENT directive in any

other external program unit.

—B (Breakpoint) Command—

The B command sets or changes a breakpoint. A breakpoint occurs after instructions immediately
preceding the breakpoint are executed the number of times specified in the break counter. When a break-
point is taken, program execution is interrupted and control is passed to the debugger. The debugger saves
the contents of the CPU registers into the register buffer and waits for a debugger command. The program-
mer can specify the breakpoint with either an absolute hexadecimal address or a label symbol (the label

symbol can be given a displacement of from —65535 to 65535 in decimal).

* DB Sets a breakpoint.
addr count
1 7530._.2 The breakpoint is address 7530 and the break count is 2.
2 SORT3._.1 The breakpoint is the address represented by label symbol "SORT3" and

the break countis 1.
3 SORT3+5L .1 The breakpoint is the address of the instruction S lines away from the
address represented by label symbol "SORT3" and the break count is 1.
4 MAINO-9._.2 The breakpoint is the address of the instruction 9 bytes before the
address represented by label symbol "MAINO" and the break count is 2.
S (The breakpoint and the break count must be separated by at least one
| blank (denoted by .).)

— Enter the B command in response to the prompt ">k D".

— The debugger carries out a new line operation and displays "addr count". It then performs a new line
operation and displays the breakpoint number followed by a space and the cursor to prompt the
programmer to enter a breakpoint address and a break count.

The programmer may specify a breakpoint address with a 4-digit hexadecimal number or a global
symbol (see the example above). In either case, enter an address followed by a space and a break
count. The break count specifies the number of allowable passes through the breakpoint before a
break actually occurs. The programmer can specify a hexadecimal value from 1 to E.

When a break count is entered, the debugger performs a new line operation and displays the next
breakpoint number to prompt for the next breakpoint address.

— When a label symbol is entered as a breakpoint address, the debugger displays message "'???" and waits
for a new command if the pertinent symbol is not defined or if the symbol is a data defining symbol.

— No breakpoint can be specified for the DINZ instruction When a breakpoint is specified for the DINZ
instruction, the debugger displays message "DINZ?" and waits for entry of a new command.

— No breakpoint can be specified for the CALL instruction either. Breakpoints cannot be specified for
any instructions which push the program counter contents into the stack. The debugger will display
the message "CALL?" if such an attempt is made.

To check a CALL instruction, set a breakpoint at the beginning of the called routine.

DEB-7

To clear a previously set breakpoint, enter that breakpoint address with a break count of O (use the &
command to clear all breakpoints).

The debugger displays message "???" and waits for a command when an attempt is made to clear
an undefined breakpoint.
The programmer can specify a maximum of nine breakpoints. When the programmer specifies nine
breakpoints, the debugger displays "X" on the next line instead of the next breakpoint number. This
requests the programmer to clear a breakpoint or change a break count, not to set a new breakpoint.
If the programmer attemps to set a new breakpoint, the debugger will not accept it and prompts for
a new command with message "Over".
When a B command is entered after breakpoints are set, the debugger displays them; in this case, the
hexadecimal address is displayed first, followed by the break count format.
The programmer can use the key while setting breakpoints. When the key is pressed,

the debugger is returned to the command wait state.

DEB-8

—& (Clear B.P) Command—

* D& Clears all the breakpoints which have been set.

— Enter the & command in response to the prompt "> D".

— The debugger clears all breakpoints set and waits for entry of a new command.

— The photo at right shows an example of setting

breakpoints. The breakpoints are set with a

[u)
C
3
o+

4-digit hexadecimal number (absolute address), a

global label symbol, a label symbol plus a line

wmmmoo

QI IINT
Rk R
Wi+ L0
NBN
Mg
N

BTOOOOTwo
wrrrwe

!
2

specification and a label symbol plus a byte

displacement.

— The photo at right shows that breakpoint
"KEYIN" has been cleared on the line identi-
fied by "X".

Q
-
3
-+

RakeRy]
N+ 4+ WIH+ =0

S AN
=N

xr-

muwmmmr = rwe
[
N

<N Wwmmme
PR, T 3 Ne o N]

e

— The photo at right shows an example of display-

ing previously set breakpoints with a B command.

Breakpoints are displayed with hexadecimal , 5oHnt

001
+ |
&SN
ro

absolute addresses shown first, followed by the
. break counts and the label symbols.

(SN
MOOOM
wrrrrw
@mmmuw
NI

JuNdawlor-

— The photo at right shows that a break occurred

immediately when the program was executed

> count

from address 6300 with a G command with a
breakpoint at 6300 and a count of 1. As soon as

a breakpoint was taken, an R command was

Ntd
X OIOI
mrmr

M

m -

G—ImMIM
o g

X

executed to display the status of the CPU re-

c
X
Se—
[\V]

gisters.

The status of the CPU registers is displayed on

one line when the number of characters per line

. is set to 80.

DEB-9

—M (Memory dump) Command—

The M command displays the contents of the specified memory block in hexadecimal representation.

The memory block may be specified with either absolute hexadecimal addresses or label symbols. The M

command permits the programmer to alter data with the cursor.

> DM 7800..7850 Displays the contents of the memory block from 7800
to 7850.

* DM MAIN7_MAIN9 Displays the contents of the memory block from the
address identified by "MAIN7" to the address identified
by "MAIN9".

> DM STEP0-9. .STEP3+15L Displays the contents of the memory block from the
address 9 bytes before the address identified by label
symbol "STEPO" to the address of the instruction 15
lines away from label symbol "STEP3".

— Enter the M command in response to the prompt "> D",

— The debugger displays the cursor with a space between the cursor and the letter M and waits for the

programmer to enter the starting and ending addresses of the memory block to be dumped. The pro-
grammer may specify the starting and ending addresses of the memory block with either 4-digit

hexadecimal numbers or global symbols.

— The starting address must be smaller than or equal to the ending address. Otherwise, the debugger will

display the message " 7 ".

— When a memory block in the link area is specified, the debugger displays a dump of memory contents

on the screen with 8 bytes on a line in the 40 characters per line mode and with 16 bytes on a line in

the 80 characters per line mode.

— If the printer is placed in the enable mode, the debugger prints the memory dump.on the printer with

16 bytes on a line.

— The cursor appears on the screen when the memory block dump is completed. The programmer can

then alter byte data in the memory dump by moving the cursor to the desired byte position on the
screen, entering the new byte data in hexadecimal and pressing . The byte data under the cursor
is overwritten with the new data. The debugger displays the message "Error" if the data entered does
not match the byte format.

— When is pressed with the cursor on a memory dump line, the data on that line is reentered into
memory. The debugger is returned to the command mode, however, when is pressed with the
cursor at the beginning of a line containing no data.

— Press the key to suspend display of the memory dump. To resume display, press the] SPACE]
key again.

— Press the key to force the debugger into the command mode.

DEB-10

—D (Memory list dump) Command—

The D command displays the contents of the specified memory block in hexadecimal representation

with one instruction on a line. The memory block may be specified with either absolute hexadecimal

addresses or label symbols. The programmer cannot alter memory contents through cursor manipulation.

> DD 7800..7850

* DD START__MAINO

Displays the contents of the memory block from addresses
7800 to 7850 with one instruction on a line.

Displays the contents of the memory block from the

addresses identified by "START" to the address identified
by "MAINO" with one instruction on a line.
> DD 7500_.START+12L Displays the contents of the memory block from address
7500 to the address of the instruction 12 lines away from

the label symbol "START" with one instruction on a line.

— Enter the D command in response to the prompt " > D",

— The debugger displays the cursor with a space between it and the letter D, then waits for the pro-

grammer to enter the starting and ending addresses of the memory block to be dumped. The pro-
grammer may specify the starting and ending addresses of the memory block either with 4-digit
hexadecimal numbers or global symbols. As with the M command, the starting address must be smaller
than or equal to the ending address.

Press the key after specifying the required memory block; the degugger then displays an address

and machine language code on each line.

Consider the source program shown below,
which contains the label symbols "START" and
"MAINO". Assume that the corresponding object
code is loaded in memory starting at address
7500. When a D command is entered, the de-
bugger displays a dump listing on the screen as

shown in the photo at right.

START : ENT
LD SP, START
CALL MSTP
XOR A
LD (? TABP), A
LD B, A
MAINO : ENT
LD A, OFH

It must be noted that the memory block starting address specified in the D command must contain
an operation code. If the starting address contains a data byte, subsequent lines dumped will display
meaningless instructions which read that data byte as an operation code. The same note applies

to the data areas (defined by DEFB and DEFW, etc.) in the memory block.

DEB-11

— Display of the memory dump listing can be suspended and resumed with the| SPACE key.
— The D command does not allow memory alteration; after the memory dump is completed, the de- . |

bugger is returned to the command wait state.
— Press the [BREAK] key to terminate this command in the middle of a dump.
—W (Data write) Command—

The W command writes hexadecimal data, starting at the specified memory address. The memory

address may be either an absolute hexadecimal address or a label symbol.

* DW 8000 Writes machine language data, starting at address 8000.
> DW DATAI Writes machine language data, starting at the address identified by label
symbol "DATA1".

— Enter the W command in response to the prompt "> D".
— The debugger displays the cursor with a space between it and the letter W, then waits for the program-
mer to enter the starting address of the memory area to be written. ‘

The programmer may specify the memory block starting address with a 4-digit hexadecimal number or

a global symbol.
— The memory area to be written must be inside the link area.
XDW 1111
1111 Address 1111 is not in the link area.
777
— When the programmer presses the key after specifying an address, the debugger displays that
address on the next line to prompt the programmer to enter 2-digit hexadecimal data.

The debugger enters a space each time 2-digit data is entered and performs a new line operation and

displays a new address each time eight bytes of data are entered.

— To correct the data just entered, press the key

w

to return the cursor to the byte of data just en-

tered and correct it. The photo on the right shows

w

[
NELIDOWE
m_mummcsm@

an example. As the photo shows, when the [H

6
a
4
5
Z]
4
=
2A

key is pressed, the cursor is placed on the next
line and the address of the byte of data to which

the cursor is moved is displayed.

— To specify a displacement for a JR, DINZ or other Z80 relative jump instruction, enter a period;
the debugger waits for the programmer to enter an absolute address (no label is allowed) with a 4-digit
hexadecimal number as the destination of the jump. When the programmer enters a 4-digit hexa-
decimal address, the debugger computes the displacement and stores the 1-byte result in the current

byte position. The seventh and eighth lines in the photo above show an example of specifying a

displacement.

— After the necessary data has been written, press[CR]; the debugger then returns to the command wait
state.

DEB-12

—G (Goto) Command—

The G command transfers program control to the specified address. This command is also used to

restart the program following a break.

* DG 7700 Executes the program at address 7700.
* DG START Executes the program at the address identified by label symbol "START".
* DG Restarts the program at the breakpoint. The restart address and CPU

register data are stored in the register buffer.

— Enter a G command in response to the prompt ">k D"

— The debugger then waits for entry of an execution address. The programmer can specify the execution
address with either a 4-digit hexadecimal number or a global label symbol defined with the ENT
assembler directive.

When using a label symbol, the programmer can specify the execution address on a line or byte basis.
* DG MAINO Executes the program at address "MAINQ".
* DG MAINO+3L Executes the program at the address 3 lines after "MAINQ".
* DG MAINO—-12 Executes the program at the address 12 bytes before the address identi-
fied by "MAINO".

— To restart the program at a breakpoint, enter a G command and press . If this operation is initiated

when no breakpoint is taken, the debugger returns to the command wait state without executing the
program,
The contents of the CPU registers to be restored when the program is restarted are displayed with the
R command. The value in the program counter (PC) is used as the restart address. Since the PC value
can be changed with the P command, it is possible to restart the program at an address other than the
breakpoint.

— Press the[BREAK] key to terminate entry of a G command.

DEB-13

—1 (Indicative start) Command—

The I command executes the program with the CPU registers loaded with the register buffer contents.

The execution address is designated by the program counter. The contents of the CPU registers can be

specified by the programmer through use of the A, C and P commands.

* DI
A F B C D E H L
01 23 45 67 8 AB CD ED
A FF B C D E H L
01 23 45 67 8 AB CD EF

PC SP X IY. |
78AB 1IFEA S5F70 4F50 00
Start OK? &

Executes the program at the address
designated by the program counter
with the data shown on the screen
loaded in the CPU registers.

— Enter the I command in response to the prompt "' X D".

— The debugger displays the 2- and/or 4-digit hexadecimal values to be loaded into the CPU registers.

These values are stored in the register buffer. They can be

— The debugger then displays message "Start OK?". To start the program in this environment, press
[CR]. The debugger then executes the program, starting at the address designated in the program
counter, To change register values or terminate the I command, press the | BREAK | key; the debugger

then returns to the command wait state.

displayed with the R command.

— The figure below shows how the CPU registers are set with the I command.

)
Z80 CPU

_ Register buffer
General [egister AF BC DE HL
set AF’ BC’ DE' HL
Special-purpose SP IX IY |
register set

PC

2

The CPU general registers and special-purpose registers SP, IX, IY and I are loaded first; the program

counter is then loaded with the execution address and the

— The photo at right shows how the debugger
responds to the I command and executes the
program (at address 7500 in this example.)

— The status of the CPU registers is displayed on a

line in the 80 characters per line mode.

DEB-14

program is executed.

]

19
A
=)
A
2
P

HAOP

—A (Accumulator) Command—

The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken; the
contents of the primary general registers saved can be displayed with the A command. The buffer contents

can also be altered using cursor manipulation.

* DA Displays the contents of primary register
A F B C D E H L pairs AF, BC, DE and HL.
01 23 45 67 89 AB CD EF
=

— Enter the A command in response to the prompt " < D"

— The debugger displays the contents of accumulator A, flag register F, and general register pairs BC, DE
and HL with 2-digit hexadeciaml numbers. These values represent the contents of the primary CPU
registers set up when a break occurs at a breakpoint. They are stored in the register buffer for use in
subsequent restart operations (see the G command description) at the breakpoint.

— The debugger displays the cursor on the line following the one last displayed. If necessary, the pro-
grammer can alter the register contents. To change a register value, place the cursor on the desired
register value, overwrite it with a new value, and press (the cursor will move to the beginning of
the next line).

The register values displayed or altered with the A command are those values which will be restored
to the CPU internal registers on a restart at a breakpoint or on an indicative start with the I command.

— Press with the cursor on the new line; the debugger then returns to the command wait state.

—C (Complementary) Command—

The C command displays the contents of the complementary general-purpose registers set up on the last

break. The programmer can alter their contents through cursor manipulation.

* DC Displays the contents of complementary
A F B C D E H L register pairs AF’, BC’, DE’ and HL".
01 23 45 67 89 AB CD EF
&=

— Enter the C command in response to the prompt "'k D".

— The debugger displays the contents of accumulator A’, flag register F' and general-purpose register
pairs BC’, DE’ and HL’ with 2-digit hexadecimal numbers. The contents of the registers and the mean-
ings of the register contents and data altered through cursor manipulation are the same as with the
A command. They are used for restart at a breakpoint or with the I command.

— Press the key with the cursor on the new line; the debugger then returns to the command wait

state.

DEB-15

—P (Program counter) Command—

The P command displays the contents of the special-purpose registers set up on the last break. The

programmer can alter their contents through cursor manipulation.

* DP
PC
78AB
B

SP
1FEA

IX

S5F70

IY

5F50

Displays the contents of special-purpose

I registers PC, SP, IX, 1Y and L.
00

— Enter the P command in response to the prompt " >k D".

— The debugger displays the contetns of special-purpose registers PC, SP, IX, IY and I with 2- and/or

4-digit hexadecimal numbers. The meanings of the register contents and the data altered through

cursor manipulation are the same as with the A and C commands.

The register values displayed or altered through cursor manipulation are restored into the pertinent

registers upon restartat a breakpoint or upon indicative start with the I command. The program does ‘

not have to restart at the breakpoint; the programmer can specify another restart address by altering
the PC value.
— Press with the cursor on the new line; the debugger then returns to the command wait state.

—R (Register) Command—

The R command displays the contents of all CPU internal registers set up on the last break or altered

with the A, C or P commands. The programmer cannot alter their contents.

* DR
A
01
A’
01
PC

78AB

F

23
F
23

B C D
45 67 89
BI CI DI
45 67 89
SP IX
1IFEA SF70

E
AB
E
AB
IY

SF50

H
CD
H
CD

Displays the contents of all CPU
L .
registers.
EF
: ®
EF
I
00

— Enter the R command in response to the prompt "' > D".

— The debugger displays the contents of all CPU registers with 2- and/or 4-digit hexadecimal numbers.

The cursor does not appear in the screen, so the programmer cannot alter their values.

The same data is automatically displayed when a break occurs or when an indicative start is initiated

with the I command.

— The debugger enters the command wait state after displaying all the register contetns.

— The above display is on 1 line in the 80 characters per line mode.

DEB-16

Using register commands A, C, P and R

Values displayed with register commands (A, C, P and R) are the actual contents of the register buffer

in the debugger. The register buffer in the debugger contains values loaded when breaks occur or when

changes are made through cursor manipulation with the A, C or P command. The values are restored

to the CPU registers when a restart is made from a breakpoint or when an indicative start is made.

The figure below shows the relationship between the CPU registers and the register commands; the

photos show examples of use of the register commands.

280 CPU REGISTER
BREAKPOINT |
CPU REGISTER BUFFER

MAIN REG SET BC DE HL ~— A command
COMPLEMENTARY REG SET HL «— C command
SPECIAL PURPOSE REG SET Iy 1 [«—= P command

RESTART FROM B.P.

OR
INDICATIVE START
v R command

280 CPU REGISTER

A command

C command

P command

SFTE €

R command

—X (Data transfer) Command—

The X command trasfers the contents of the specified memory block to the specified memory area.

* DX Transfers the contents of the memory block
From? 7500 To? 811F Top? 9000 from addresses 7500 to 811F to the memory
area starting at address 9000.

— Enter the X command in response to the prompt " ><D".

— The debugger displays the message "From?" and waits for the programmer to enter the starting
address of the source memory block with a 4-digit hexadecimal number. When the starting address
is entered, the debugger displays the message ""To?" to prompt the programmer to enter the ending
address of the source memory block with a 4-digit hexadecimal number. When the ending address
is entered, the debugger displays the message "Top?" to prompt the programmer to enter the starting
address of the destination memory area with a 4-digit hexadecimal number (symbolic addresses are .
disallowed).

— When the last address is entered, the debugger starts transferring the memory block. After completing
the trasfer, it returns to the command wait state.

— The source and destination memory blocks must be located within the link area.

— Data trasfer is accomplished successfully even if the source and destination memory blocks overlap
as shown below. The memory block shown in the figure at left may be trasferred to the memory

block shown in the figure at right and vice versa.

Symbolic debugger Symbolic debugger

Memory block %’
ke sees Memory block Link area .

Symbol table Symbol table

— The photo at right shows how the debugger trans-
fers the memory block starting at address 7500
and ending at address 750F to the memory area
starting at address 7508.

WO H
Shbhd
ammm
bbhbh
MO
HhbW
moon

o
]

1

Compare the memory contents displayed with

the two M commands.

2]
S
E
3
£

Lbbb M~
TIMOO

The contents of 8 memory bytes are displayed
on each line in the 40 characters per line mode

and the contents of 16 memory bytes are display-

ed on each line in the 80 characters per line mode.

DEB-18

—S (Save) Command—

a named output file in immediately executable form. The contents of this file can be restored to the link

area with the Y command.

The S command saves a specified block of the object program in the symbolic debugger link area into

X DSfilename
TBE_.7500__8FFF_,7500

Saves the immediately executable object program
from addresses 7500 to 8FFF in the link area to an

object file with a file name of filename. OBJ.

— Enter the S command followed by a file name in response to the prompt "% D"

— Press after entering a file name. The debugger displays a TBE (Top-Bottom-Execute) message

after verifying that the specified file does not exist on the specified diskette.

— Enter the starting and ending addresses of the block to be saved and the execution address with 4-digit

hexadecimal numbers or symbolic label names. When the execution address is omitted, the debugger

‘ assumes the block starting address as the execution address.

— The figure below shows how the object program block from addresses 7500 to 8FFF is saved to an

output file with the file name "FUNCTION"'.

Symbolic debugger

7500

Object program

* DSFUNCTION[CR]

X DS$FD2

Object file "FUNCTION"'
in the default drive.

TEST

8FFF

Symbol table

Object file "TEST"
in drive FD2.

A

The symbol table is not saved.,

DEB-19

—Y (Yank) Command—

The Y command reads the object file identified by filename into the link area.

> DY filename Reads the object file named filename into the link area under loading
Loading address $7500-8FFF conditions established when the file was saved.
Execute address $7500

— Enter the Y command followed by a file name in response to the prompt "> D".

— Press after entering the file name. The debugger then searches for the file named filename. OBJ

and reads it.
— The program in the filename.OBJ file is loaded into the link area block between the starting and end-

ing addresses specified when the file was saved with the S command.

Note: Files opened before the Y command is issued are all killed.

Symbolic debugger

Object file created by the Y command
symbolic debugger

Immediately executable
object program

Object file created by the

linker
Symbolic debugger
* DY$FD2;
Object file SAMPLE.OBJ SAMPLE
in drive FD2 > Immediately executable
object program
Object file TEST.OBJ
in the default drive > DYTEST

DEB-20

—\ (FDOS) Command—

The \ command executes a built-in FDOS command. "> D" is displayed to prompt for the next com-

mand.

* D\FREE $FDn Outputs the number of used and unused sectors on the floppy disk
in the disk drive indicated by $FDn.

— Enter the \ command followed by the desired built-in FDOS command in response to the prompt
"D

— Press the key; the debugger then executes the specified FDOS command and displays ">k D" to
prompt for the next command.

— The XFER and EXEC commands cannot be executed. The RUN command cannot be executed when

the program to be executed by the RUN command is too long.

—# Command—

* D# Switches the list mode for printout on the printer.

— Enter the # command in response to the prompt ">x<D".

— The debugger then switches the list mode. When the debugger is invoked, the printer list mode is set
to the disable mode. The mode alternates between enable and disable each time a # command is
entered. In the enable mode, all output is directed to both the screen and the printer (except with the

M command).

—! Command—

* D! Returns control to FDOS.

— Enter the ! command in response to the prompt " > D".
— Control is then transferred to FDOS.

DEB-21

ERROR MESSAGES °

Error message

Description

Related commands

The command operand fields does not match the 4-digit hexa-

decimal format.

sible value is E in hexadecimal).

79

o o A symbolic label is missing. M.D,W.B,G
O A data defining symbol is used as a label.
O An invalid number of digits was entered when altering register

Error or memory contents, or a key other than O through 9 or A A, C,P.M

through F was pressed.

DINZ? A breakpoint was set for a DJINZ instruction. B

CALL? A breakpoint was set for a CALL instruction. B

RST 6? A breakpoint was set for a RST 6 instruction. B

Over An attempt was made to set more than 9 breakpoints. B
O An attempt was made to access outside the link area. M,D,W B G, X
o The starting address is greater than the ending address. M,D

? © An attempt was made to clear an undefined breakpoint. B
© The breakpoint counter was set to F (the maximum permis- B

Note: Refer to the System Error Messages in the System Command manual for other system error messages.

DEB-22

Personal Computer

ms-E008

SHARP

L T T e e ke e e R D R e e e e Rl

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

R e R e e e e R e e e e e Rt el B
R e e N e ek e e e R e e e e]

P o L R e S e e i R e B R e e e e e et A T R L b R e e E el e hak ho b ok St

—— CONTENTS —

RELATIONSHIP BETWEEN THE EXECUTION ADDRESS

AND LOADING ADDRESS

OFFSET

LOADING ADDRESS AND EXECUTION ADDRESS

(ORG

SYMBOL TABLE

STATEMENT)

LINK

° INTRODUCTION

The linker for the SHARP MZ-80B inputs relocatable files output by the assembler or the BASIC com-

piler and outputs object files.

Relocatable files are not programs which are directly executable by the CPU, but are files which contain
information used to keep programs relocatable. They also contain global symbols in ASCII code which are

declared to link two or more program units.

The linker fetches relocation information and loads object programs into the link area in main memory
while adding the programmer-specified loading address to the relocatable addresses. When two or more
relocatable program units are loaded, units are appended to the first program unit (file), if the loading
address is specified for the first unit.

' The linkage operation itself is described in detail in Section 2.3, "Linker" of the System Command

manual. However, the programmer does not need to be aware of details of the linkage operation details.

When outputting the object program (object file), it is necessary to specify the loading address and the

execution address.

LINKER

Program unit 1

Linkage and relocation

:

Program unit 2 Link information

Symbol table
. Relocatable files

Object program

\/

Object file

LINK-1

LOADING ADDRESS °

The loading address specifies the address at which the object program is to be loaded. When this
address is not specified, FDOS assumes the starting address which can be managed by FDOS as loading

address.
LINK TEST1, TEST2 Links TEST1 and TEST2 and assigns the loading
address to the beginning of the area managed by
FDOS.
LINK $12A0, TEST1, TEST2 Links TEST1 and TEST2 and assigns the loading
address to 12A0H.

The figure below shows the flow of files from the time they are linked by the linker until they are
executed with the RUN command. Numbers @ through & in the figure denote the processing sequence. ’

LINK $12A0, TEST1, TEST2
0000 .
Monitor
12A0
FDOS
0 TEST1.RB
(-] .
O \ Load @ Linker <« The linked object program
Relocatable files > @ TEST 1. OBJ in memory has an address
g TEST 2. OBJ Save format such that it is loaded
° / Link area ©) and executed at address
O TEST2.RB 12A0 (hexadecimal).
Symbol table Object file TEST1. OBJ
Stack area 0
FF0O0 °O
Reserved
; @
RUN TESTI1
0000 Monitor @
12A0
FDOS
The object program is then ®< When the RUN command is
moved to the area starting at TEST1. OBJ executed, the object program
the loading address.. In this is temporarily loaded into the
case, the system displays a area under control of FDOS.
warning message indicating
that FDOS will be destroyed
and waits for a user response.
Stack area
FF00
Reserved

LINK-2

® RELATIONSHIP BETWEEN THE EXECUTION ADDRESS AND LOADING ADDRESS

The programmer may specify the execution address as well as the loading address when outputting an

object file through the linker.

LINK $8000, TEST1, TEST2, EXEC$8200

The above command links and loads relocatable program unit files TEST1 and TEST2 into memory,
specifying a loading address of 8000 (hex) and an execution address of 8200 (hex).
Examples of linkage and loading are given below (numbers in circles in the figures denote the processing

steps). The first example uses a simple RUN command.

. Monitor

@ FDOS @
Control is transferred to
address 8200 after pro-
8000 gram loading is completed.
°CO> Loaded by the RUN commang Object program 8200
l The object program is generated by:
LINK $8000, TEST1, TEST2, EXEC$8200 Stack area
Reserved

Memory after loading with the FDOS RUN command

Note: Any loading address or execution address is invalid for LINK /S even if specified.

LINK-3

When the monitor is used to load the object program, its starting address in memory is designated by
the loading address. The program counter is set to the address designated by the execution address after .

the object program is loaded. The figure below shows how an object program with a loading address of
12A0 and an execution address of 2000 is loaded and how control is transferred.

0000 -
Loading address Monitor

1240 ©)

Loaded via monitor Object program 2000
XL o

Execution address

Object program

Execution address = 2000 (hex)

Loading address = 12A0 (hex)
The FDOS XFER command is useful for
transferring the object program to a cassette

tape file. .

Coding example:
LINK $12A0, TEST1, TEST2, EXEC$2000 ./
XFER TESTI1. OBJ, $CMT o

Memory after loading with the monitor program

0000
Monitor
0 12A0
O FDOS
< filenamel >
Symbolic debugger Executed with the .
> G or I command
0 @)

Object program

[+ -
O < filename2 >

DEBUG < filenamel >, < filename2 >
When both loading and execution addresses
are omitted, the system assumes system-

specified addresses for the loading and exe-
cution,

Stack area

Reserved

Memory after loading with the symbolic debugger

LINK-4

Subroutine programs created with the assembler and BASIC programs created with the BASIC compiler

may be linked using a library (see the ''Programming Utility" manual) or the BASIC USR statement.

Here, an example is given of linking an object program with a BASIC program using the USR statement.

The figure below shows how an object program is loaded and linked with a BASIC program. The area
in memory which is managed by FDOS is reduced with the FDOS LIMIT command to create a free area.
The object program is loaded into this free area with the FDOS or BASIC LOAD statement. The BASIC

program can then call the object program as a subroutine using the USR(

FDOS command included in
the BASIC program which
loads the object program

0

-]

(Coding example:
LINK $C000, TEST1, TEST2 <

) statement.

0000
Monitor
12A0
FDOS
BASIC program (OBJ) ® Linked with the BASIC
> statement USR ($C000)
D FDOS command LIMIT
. Creates a free area
outside the FDOS
RET controlled area.
Stack area
Reserved

Memory after loading with an FDOS command in a BASIC program

LINK-5

OFFSET ®

The programmer can specify an offset to reserve a free area between two object program units.

LINK TEST1, $1000, TEST2 Links TEST1 and TEST2 so that the object program ‘
is loaded at the area equivalent to 1000 (hex) addresses l

reserved between them.

Execution of the above command is illustrated below.

0000

Monitor Monitor
12A0
FDOS FDOS
.0 | TESTI.RB o
O Linker
Load
> TEST1. OBJ TEST1. OBJ
Relocatable files < Offset <~ Offset
> TEST2. OBJ (4K bytes) TEST2. OBJ (4K bytes)
/ Link area
0
O | tEsT2.rB Symbol table E:>
Stack area
FF00
Reserved
Memory after loading with the Memory after loading with the
FDOS LINK command FDOS RUN command

Note that the loading address and offset are carefully distinguished in the following command:

A 4-digit hexadecimal number preceded by a $ symbol in the first argument position is always .

interpreted as the loading address.

LINK $8000, TESTI, $1000, TEST2, TBL$20, EXEC§8200
Loading address Offset (4K bytes) Symbol table size Execution address
(approx. 8K bytes)

Note: Any loading address or execution address is invalid for LINK /S even if specified.

LINK-6

LOADING ADDRESS AND EXECUTION ADDRESS (ORG STATEMENT)

Although a loading address can be specified with the linker, it can also be specified with the ORG
assembler directive during assembly. Assume that there are two relocatable files.

TEST1: Assembled with loading address 6000H specified. The object file will be loaded in the area
from 6000H through 6CO0H.

TEST2: Assembled with loading address 7000H specified. The object file will be loaded in the area
from 7000H through 7A00H.

These are linked as follows.

LINK TESTI, TEST2

Then, the object files are loaded as shown in the memory map below and the execution address of
TEST]1 . OBJ is automatically set to 6000H.

‘ Monitor Monitor
FDOS FDOS
Linker ':>
TEST1 . OBJ 400 6000
________________ H
S e } (7000H--6COOH) 6cool - - TESTL.OBJ |
TEST2 . OB
7000~ STy OB]
Symbol table 7A00 :
Stack area
Reserved

Memory map during linking Memory map during execution

The loading addresses specified during assembly are valid even if the loading addresses and offsets are
specified in the LINK command. However, when no loading address is specified for TEST2 during

. assembly, the offset specified in the LINK command is valid. The execution address specified in the LINK
command is valid.

LINK $5000, TEST1, $3000, TEST2, EXEC$6100

Monitor
FDOS

Control is transferred to location
6100 after loading.

6000

6C00 ___IIES_T_I_'E)_B{ --46100

7000 F-- = o — ——-——

TEST2 . OBJ
7A00
. Memory map during execution

Loading addresses specified during assembly are invalid when the LINK /S command is used to generate
a system file.

LINK-7

SYMBOL TABLE P

Information referred to as symbols in the linker and symbolic debugger indicates globally declared
labels (that is, label symbols defined by the ENT or EQU assembler directive) in the source program. This
information is stored in the relocatable file by the assembler for use in linking with other relocatable

programs.

The linker loads label symbols into the symbol table while inputting program units in the relocatable
files. The symbol table is placed at the end of the link area; its size is set to approximately 6K bytes by the
linker unless otherwise specified by the programmer. The programmer can specify an area of more than

6K bytes for the symbol table area using the LINK command as follows:

LINK TEST1, TEST2, TBL$20 This command links TEST1 and TEST2 and specifies a
symbol table size of 2000H (approximately 8K bytes). o

TBL$20 in the above command specifies that a symbol table of approximately 8K bytes is to be
created. In other words, the programmer can reserve a symbol table area in 256-byte units. As shown in
the memory map, the symbol table is constructed at the end of the link area.

Each symbol table entry is 9 bytes long. The for-
mat of the symbol table entry is shown at right.

Section 2.3, "Linker" in the System Command I 1 , 2 I 3 l 4] 5] 6—l 7 [8 I 9

i inke es this 9-byte
manual describes how the linker us i y Symbol name Definivion Address

information to link relocatable program units. status

Monitor .
FDOS
Linker
Link area
Symbol table } 6K bytes
when table size
Stack area is not specified
Reserved

Linker memory map

LINK-8

LINK/T COMMAND

The LINK /T command is used to display the contents of the symbol table after program linking is com-
pleted. It displays a symbol name, its absolute address (in hexadecimal representation) and the definition
status for each symbol table entry. The user can detect symbol definition errors by checking the defini-
tion status.

The LINK /T command has two basic formats:

LINK/T TESTI1, TEST2 Links TEST1 and TEST2 and displays the symbol
table on the CRT screen.
LINK /T/P TEST1, TEST2 Links TEST1 and TEST2 and prints the symbol table

on the printer.

— The photo at right shows link and symbol table

information displayed on the CRT screen with OLINK/T UNIT-#1,UNIT—#2 UNIT—#3

Link 1ng UNIT—#:L rRB
To asm.

the LINK/T command for the three program

l\ha (Y

A& f\ltU wD> DO

units shown on Page 11. Undefined symbols are
labeled "U".

A
[a]
B
A
A
B
A
al

[OHU] AA'UAATIAA

2
3
$
$

NN Lone: v wne

— Symbol definition messages are listed below.

Message Definition
U Undefined symbol (address or data)
M Multi-defined symbol (address or data)
X Cross-defined symbol (address or data)
H Half-defined symbol (data)
D EQU-defined symbol (data)

No message is attached to symbols for which an
address has been defined. U, M, X and H indicate

error conditions.

— If global switch /T is not specified, only error symbols (whose definition messages are U, M, X or H)

are displayed or printed.

LINK-9

The listing below shows a printout of link and symbol table information. The symbol table entries

have been sorted as may be seen from this listing. ‘

Linking M-LANG#!.RE
Tog asm.hbias $4A0H
End asm.bi1as %5472

Linkina M-LANGH#Z.RE
Top asm.biaz $5472
End asm.bias $%SRi4

Linking MONEQU.LIE
Top asm.hias $5E14
Ernd asm.bias $5EB14

Save M-LANG.OQRJ
lLoading address $4AQ0
Execute address $4A00
Bytesize $1114

Symbol table

LMEG 70z UFENT S
THE XU 57 c
AHEX 5774 z 5 CTKEY
TFEED 5. GERR1 [@ @ERRZ D
RERRZ [00AS oo ATLUM 4 ARZT7 D
BORIVE 4LCFY BAE BKTEL S BPDLM
BFFLG SAST SA BREAD BREAF .
BRKEY a527 Doaazs BUFFR BLZY
BWRIT SEA4 CLEF® 4CED CLEF1 CLEF 2
CLEFZ 4CF CLEF 54678 CLEAR MO
COMMON SS18 COMPL 4EFC COMPR CONT
CONTS S6IS CR D @a0s CTEL SEE4 CUREIL
o0l BEQE oM o @anc DR I AaDE EFREE D
ERCODE 4CFZ ERJMF 40FS ERIJFAD 4LCFé ERSECT 4CF4
ERTRE 4CFZ ESCPRT SZDA FiMD X FOERR 4AEBS
GETY S&OF GET1E 5741 GETZ GET4 5731
GET44 5720 GETEY Bé1E GETL GOTO
: ET= N IEUFE 1 JRTBL LFLG
4A9F LISTA 3l LISTM LISTN
S29A LOAD LOOKS Lok
SAZD MAINT MAINZ MELIY
MES 6 MEZ1 MES 1@
: MEZ13 MEZ14

S R U IS BN))

NLMSG FOTFE o @ .
FOTFF 0 GaFF FROG 4
FROTC ST7CF = FTAEL E
FLIZHR A0F1 e READY
REGST 407 S5 SACE

SAVE 4ARA SCOMP O BanA SEARCH
SEEE 4T5A SFREE D S7E7 SOUND
SFRROG SaCL STAFG AR TR i
TYFE® S77F TYFE!L S7ac TYFEZ
VERIFY S1az VRFIONT SA4: WRITE

WRE®R SA4SE WRE 1 SASH WRE =

WRE4 SAST WRES SAS4 YIHEX
XZHEX 5745 XFER : XGET1 SLEZ XGETZ
AGETZZ 5710 XGET4 5754 XTEMF AYRE I2ATER

IAF SASE ZAFLC SALD IR SASD BCC

ITE SASF INELC SAART ZHL SALL ZHLE

ZIR SATZ 21X SAAF 1Y SA71 IFLC

LEp SALD

(Note: This listing is not related to the programs on page 11.)

LINK-10

® LINK MESSAGE EXAMPLES

Refer to photo on page 9.

First program unit loaded (UNIT—#1)

TMDLYH : LD HL, START
COUNT : ENT
DEC HL
LD A H
CP COUNTO
JR NZ, COUNT
LD AL
CP COUNT1
JR NZ, COUNT
CP COUNT2
JR NZ, COUNT
RET
PEND : ENT
DEFM 'TMDLYH'
DEFB ODH
COUNTI: EQU 00H
COUNTO : EQU 50H
END

Second program unit loaded (UNIT—#2)

TMDLYL : LD HL, START
LOOPI : DEC H

LD AH

CP COUNT

JR NZ, LOOP

RET
PEND : ENT

DEFM 'TMDLYL'

DEFB ODH
START : EQU 1000H
COUNT : EQU 00H

END

Third program unit loaded (UNIT—#3)

INPUT : CALL O001BH
CALL TMDLYL
CALL 001BH
LD HL, START
CP ODH
JR Z, END
LD (HL), A
INC HL
JR INPUT
END : JP 0000H
COUNT?2 : EQU 12
END

LINK-11

"START" X
START is not defined as an address in the
first program, but is defined as data in the

second or subsequent program with the
START: EQU statement.

Note:
The EQU statement should be placed

at the beginning of the program unit.

"COUNT2"H

COUNT?2 is not defined as data in the first
program, but is defined as data in the third
program with the COUNT2: EQU state-

ment.

"COUNT1" D
COUNT! is defined as data (D indicates no

error condition).

"COUNT" X
COUNT is defined as an address in the
first program while it is simultaneously

defined as data in the second program.

"PEND"M

PEND is defined as an address in the first
program while it is simultaneously defined
as an address in the second program (dupli-

cated definition).

"TMDLYL" U
TMDLYL is neither defined as an address
nor declared with the ENT directive in any

other external program unit.

ERROR MESSAGES P

The error messages issued by the linker are described in the System Command manual. Here,only error

messages which require particular attention are described.

no memory space
Indicates that the symbol table is full; that is, that there are too many symbols to be cataloged. The
symbol table size is set to approximately 6K bytes by the linker unless specified by the programmer.

It is necessary to specify the TBL$ argument in the LINK command to increase or decrease the

symbol table size.

memory protection
Indicates that the link area is inadequate, that is, that the linked data has reached the symbol table

area located at the end of the link area. In this case, MLINK command is available. .

il data
Indicates that the data read from the specified relocatable file has an illegal link format. This condi-

tion méy be caused by a hardware read error in the floppy disk drive or by an assembly error in the

source program.

LINK-12

Personal Computer

ms-c08

SHARP

LR e B e e R R e R e et e R e e e s e bt R T e N e R e e e R Dk Rk e Y

t
:
{
:
:
:
i
:
:
:
:
I
:
i
:
{
i
:
i
:
;
¢
i
:
;
:
i
{
i
:
I
:
M

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

e e S R Y N N N L L L L T 2

B e e N e e L e T e N N ek e T e b e e B e N e e N e . e T e TR LY

—— CONTENTS —

U/PROM E
PROM FORMATTERc0oiiuiin i 1 5
Activation of the PROM Formatter 1 g’
PROM WRITER FORMATS 3 g
BNPE 3 ©
BIOF ... 4 S
HEXADECIMAL 5 a
BINARY . 6
Performance Boards of Various Companies 7
PROM FORMATTER COMMANDS 9
File Input/Output Commands. 9
Y (Yank file) Command 9
S (Savefile) Command 9
CY (Yankdisk)Command 10
CS (Save disk) Command 10
Formatting Commands 11
P (Punch)Command 11
R (Read)Command 11
Other Commands 12
M (Memory dump/modify) Command i2
V (VerifyyCommand 13
\ (FDOS)Command 13
(Change printer mode) Command 13
& (Clear) Command 13
? (Disp free area)Command 14
' (Return) Command 14
FormatCommands............ 14
PROM FORMATTER (SB-7501) COMMANDS & MESSAGES 16
U/PLOTTER
EXAMPLE OF PLOTTER CONTROL APPLICATION 1
Interface Card 1
Plotter Control Program 1
1. Conditions for linkage with a BASIC program 1
2. Linkage conditions when an erroroccurs 2
3. Use of external subroutines 2
4. Plotter control codes 2
S.Programoutline, 3
Command Table 6
Outline of the BASIC Program 7
Sample Program (Plotter Control Routines) 10
BASIC Main Program i, 19

U/PROM

Py PROM FORMATTER

The rapid advances in LSI technology have allowed the functions of a computer’s CPU to be concen-

trated onto a single semiconductor chip. These microprocessors are becoming ever more sophisticated,
while at the same time they are becoming less expensive. As a result, the range of fields in which micro-
processors are being utilized is growing rapidly. One subject of great importance to the development of
new device applications is that of developing efficient application programs; it is not too much to say that
the quality of the application program determines how well a newly developed device performs.

On the other hand, developments in LSI technology have also stimulated efforts to develop low cost,
large capacity memory elements (RAM and ROM). The increased availability of PROMs which are erasable
with ultraviolet rays has had a particularly strong influence on the development of devices which incorpo-
rate microprocessors.

The procedure which is most suitable for efficiently developing application programs is to create an
object file from a source file created through assembly programming using an assembly language, then to
reassemble it after debugging. The function of the PROM formatter is to load one or more object pro-
grams created with the assembler and linker, then to output it to a paper tape punch after converting

it to PROM writer format.

User I/O
PROM FORMATTER
Object file > ,
(OBY) - Format control Punch
(Diskette)
Reader

Functions of the PROM formatter

It also allows programs which are written in different formats to be input from a reader for storage on

diskette and enables conversion of programs to the required format for output on paper tape or the like.

—Activation of the PROM Formatter—

Entering PROM while in the FDOS command entry mode activates the PROM formatter.

Commands may be entered as soon as activation is completed.

U/PROM-1

The following formats are provided for in the PROM formatter:

1. BNPF

« Britronics
« Intel
« Takeda Riken

2. B10OF
« Takeda Riken

3. HEXADECIMAL

« Britronics
« Takeda Riken

« Minato Electronics

4. BINARY

« Britronics

0000

12A0

FFO0O0

U/PROM-2

Monitor

FDOS

PROM formatter

Free area

Stack area

Reserved

PROM formatter memory map

® PROM WRITER FORMATS

PROM writers are provided in many formats by different companies. This section discusses forms which

are converted by the PROM formatter; refer to the individual PROM writer manuals for details.
The examples in the figures include the file name "AAA", the address "0000", and the
data "SC", "BD" and "27". The leader section for the start of punched output and the

trailer section for the end of punched output are created automatically.

—BNPF—
Britronics (Format A)
5 SP indicates a space code J
. — |ala{ag|F|p|B|N[p|n|pIP|PININ|F|E|B|PIN| PP P|P|N|PFIS BN|N|PIN|NP|P|P|F|S]B
File 5C BD - 27
name Data

— The file name is punched in ASCII code (if one is specified). (Using the character "B" as a file name

will result in incorrect identification of the beginning of data.)

— and [LF |are punched in ASCII code.

— The space code (20H) and the byte of data at the address specified for "RAM from?" are punched in
BNPF format. The address is incremented successively.

— and are punched after each 6 items of data are punched in the BNPF format.

— Punching is performed in BNPF format up to the address specified for "to?".

. Intel (Format D)

— This is the same as the Britronics format. The BNPF format is one which has a relatively high degree

of standardization; thus, the PROM formatter can also be used with devices other than those which are

discussed in this manual.

U/PROM-3

Takeda Riken (Format E)

— |slalalal§|kl#lo|o]o|.[S]B|N|P|N|P P|P|N|N|F|S|B|P|N|P|P|P|P|N|P|F|E|B|N PFJ
File J Address 5C BD
name Data

— The " § " mark, which denotes the file name, is punched in ASCII code.

— The file name is punched in ASCII code (if one is specified).

— and are punched. The "$" mark is regarded as denoting the beginnning of a comment
statement; the end of a comment statement is denoted with an code.

— The "#'" mark (which indicates the beginning of an address) is punched, followed by the first three
digits of the address specified for "PROM address?". The separator between the address and the data
is punched as " . ".

— The data item at the address specified for "RAM from?" is punched in BNPF format. The address is
incremented successively.

— and are punched after each 6 items of data are punched in the BNPF format.

— A tape leader stop mark ")" is punched after the data has been punched up to the address specified

for "to?".

Note: Care must be taken to ensure that characters which act as control characters (B, :, $, #, etc.) are

not used when a file name is specified. (Otherwise, incorrect operation will result.)

—B10F—

Takeda Riken (Format F)

— |s|ajalalS|kls|o|ofo|.|S|Bloj1|o[1|1|1]ojo|F|R[B|1]of1]|1|1]1]0]1|F o|F)
File 5C BD
name Address Data

— Except for the NP section, this is the same as Takeda Riken’s BNPF format.
— The B10F format corresponds to the BNPF format in that 1 =P and 0 = N.

U/PROM-4

—HEXADECIMAL —

. Britronics (Format B)

C
T
R|C|L S S S S S S S S S S S
— [AlA|AlLIR|F|s|c|p|B|DIp|3|s|p|3(D|plo|s|p|o|B|p|o|D|B|1|s|p|1|B|p|1|D|p|2|5|p
e
A
File 5C BD 35 3D 05 0B oD 15 1B 1D 25
name Data

— The file name is punched in ASCII code (if one is specified).
— The "CTRL/A" mark (01H) indicating the beginning of data is punched.
— and are punched.

— The data item at the address specified for "RAM from?" is punched as a 2-digit ASCII code, then a
space code in punched.

— and are punched after 16 bytes of data have been punched.
. — Data is punched up to the address specified for "to?".

Takeda Riken (Format G)

— |s|ajala|§|El#|o]o|o]-|B|s|c|-|S|B|D|-|S|3(s|-|5|3lp| |§]o|s|-|3|o|B pl-D
- File Address 5C BD 35 3D 05
name Data

— The " $ " mark, which denotes the file name, is punched in ASCII code.

— The file name is punched in ASCII code (if one is specified).

— After and are punched (followed by the address specification mark "#" and 3 digits of the
. address specified for "PROM address?"). The separator " . " is punched.

— The space code is punched, followed by the 2-digit ASCII code for the data at the address specified

for "RAM from?". The separator " . " is punched after the data item.
— and are punched after 16 bytes of data have been punched.
— Data is punched up to the address specified for "to?", at which point the tape leader stop mark ") "

is punched.

U/PROM-5

Minato Electronics (Format H)

«— (alala|(|sjo]olo|B|s|c|p|B|D|D{3|s|E|3|D|B|o|s|plo|B|plo|D|R[1|5]p 2|s]]
File Address 5C BD 35 3D 05 0B 0D 15
name Data

— The file name is punched in ASCII code when file name is specified.

— The start-of-data mark " [" is punched.

— The address designation mark " # " is punched, followed by a 3-digit ASCII code for the address
specified for "PROM address?".

— A space code is punched, then the data at the address specified for "RAM from?" is converted to a
2-digit ASCII code and punched.

— 16 combinations of space codes and data items are punched, then and are punched.

— The end of data mark "] " is punched after data has been punched up to the address specified for
"to?".

—BINARY—

Britronics (Format C)

w

3(3(3{3|1|1{1¢1{1|1j1j1f{nrjr{1f1frj1nfr|rfr|rjafrjr|1farf1f1j1 1|5 MSD (upper 4 bits)

«— |A[A|A
ojojofo|5|C|B 5/3(D[0|5 B 5(1|B{1|D|2|{5|2|B|D|D|F|D|2 D| LSD (lower 4 bits)
File Address Data
name Block

— In the binary format, the 4-bit mark section and the 4-bit data section are expressed together as one
character (8 bits). The mark section is punched as the upper 4 bits of the paper tape, while the data
section is punched as the lower 4 bits.

— The file name is punched in ASCII code (if one is specified). Specifications which result in a "3" in
the upper 4 bits of the ASCII code file name are not permitted. Such specifications will result in in-
correct operation, since incorrect determination that the lower 4 bits of the file name are an address
wll result.

— Three binary digits for the address specified for "PROM address?'" are punched in the lower 4 bits.
The address designation mark (''3") is punched in the upper 4 bits.

— A data mark ("'1") is punched in the upper 4 bits and data at the address specified for "RAM from?"
is punched in the lower 4 bits.

— Data is punched 4 bits at a time (with the upper and lower 4 bits punched in alternation) up to the
address specified for "to?".

— Check sum marks ("'5") are punched in the upper 4 bits, followed in alternation by check sum data in

the lower 4 bits.

U/PROM-6

—Performance Boards of Various Companies— (Note: Consult the various manufacturers
for details.)

a) Intel
2716
2732
8748/8741

3621, 3602, 3622, 3602A, 3622A, 3604, 3624, 3604A, 3624A, 3605, 3625, 3605A, 3625A, 3628, 3608,
3604AL-6, 3604AL

8702A/1702A
8708/8704/2708/2704
8755A

b) Britronics

Company Element
Intel 3602A.722A, 3604A_ "24A, 3604AL . “24L, 360525 360828
Intersil 560010, 5603 A .23, 560424, 5605.25
Fujitsu 7055, 7051, 7052, 7058, 7053, 7059, 7054, 7057

533076330, 5331.76331, 5300, 6300, 5335.,76335, 5336.6336, 530876308, 5309, 6309,
Monolithic 53134763134, 5313563135, 530576305, 5306.76306, 53137.°63137, 53141763141,
Memory 5340.76340, 5341.76341, 5348.76348, 53496349, 5350.76350, 5351.76351, 5352, 6352,
5353.76353, 5380.76380, 538176381, 53846384, 5385.76385, 5386. 6386, 53876387

7602703, 7610A.711A, 7620A . “21A, 7640A “41 A, 7640AR 41 AR, 764243,
7644, 7646 R.“47R, 7648749, 7608, 768081, 7680R .81 R, 7680P . 81P,

Harris
7680RP_“81RP, 7683, 768485, 7684P . 85P, 768687, 7686R_87R, 7686P. 87P,
7686 RP .”“87RP
Fairchild 93417727, 93436.736, 93438748, 9345252
National 54,74 S387, 54745287, 54745470, 54745471, 54745570, 5474 S 571,
Semiconductor 777875295, 777875296, 54.774S473, 54745472, 54./74S572, 54,774 S573
NEC 403D, 406D
Raytheon 29660761, 29600.701, 29612713
Sioneti 82S114.7115, 82S126.7127, 82S130.-131, 82 S 140,141, 82S 136,137, 82S 180,181,
1ZNetics
& 8252708, 82S184.7185, 82S190.7191
Texas 54./7488A, 54.74S /88, 54745288, 54.°74S470, 54/74S71, 54/74S73,
Instruments 5474572, 5474575

¢) Minato Electronics
Adaptable to all PROMs.

U/PROM-7

‘$pIeoq ouBwIo)Iad SWes oY) Yilm Pasn aq UED S[ONID Ul SAInJIj sures ay} Y)im paielouue sjusws[q

161528 T919ZWH___O091SLWH Cax
061528 STSINH 9t9t P8EIT = 8 X BYOT
JHLBILNH__dHIRILWH
UL89LWH _ HUBOLWH
s8IS28 dLB9LNH __ d9S9LKH x
= X 850
8IS 28 189LNH____ 989LWH T618 = b X BY0
JS89LNH___d¥S9LWH
S8ILWH___ ¥SILWH
1 EE169 £99LINH
80,2528 1-18€9 200LIH
1 98£9
s
1-58€9 WM"MM JUI89LWH__dU0SILWH «un” @Hnwmu @M__MNM“: 7618 = 8 % $701
191528 1 18g9 MI89ZWH __ HOSILWH
081528 1189 Jd189LNH___ dOSILWH
1 0859 189LWH___ 0B9LWH
1-€5869 JEYOLWH dZYOLWH
B "
Le1szs CESLZWV 1-25¢€9 £5956 VIOLWH YPOLWH vs29¢ 92951 @PSOLaN @u90ed 960% = $ % $701
91528 ESLINY 1 15€9 5956 VEYILWH EYILWH v509¢ 9095W 1 YsoLan asorddr
10569 VIYILWH _ ZYOLWH
GY9LWH____ 9Y9LWH
1r1s28 hwmau« " 0“3 HLYILWH SLYSYINS rejodig
%Sz 8re9 arves YLYSYINS vrz9e SZ9SWT aserad~
orisze AVIFLWH _UVOYULWH | ®, 960% =8 X Z1S
L ove9 8eves SLYSHNS v $09E SO9SWI asovadr
siisze SISLZWV VIVOLWH W9LWH 2 rSYINS
1-10€9 VOYOLWH _ OVLWH
1e1sz8 EISLZNY 1-90€9 £1962 9rres VIZ9LWH 1Z9LWH 729 1SN 2FSOLaN 0T = b % 1S
oc1s28 S LZNY 1-50£9 21962 9c¥es VOZ9LWH 0Z9LWH 209¢ Y095 T £SOLAW
1-sE1E9 soL
H
1-9€£9
10962 1LPSVINS
rSZ8 1-5£€9 00962 ® rshiNS 8607 = 8 X 95T
1-60€9 YSZILWH
1-80€9
19962
621528 125 LZWV 1- 1089 09962 12v€6 1I9LWH VII9LWH LBESPINS 129t £29SW1 L LSOLAW . .
[=px
9zLS28 025 LZWY 1 00£9 £9962 L19g6 OI9LWH VOIOLWH L8ZSYINS 109¢ VEO9SHT 00LkSH Drsocam @acorad yeot =yx9st
29962
88ZSPLNS
21528 6ISLZNY 1159 E09LWH e gsoLdm
£2S78 8IS LZNY 1-0£€9 £0STOLNH 209(WH S8ISPINS 00951 OELYSH 1s0L8W 9sT=8%2¢
VEBIPINS
sjuswnIisu TUD,
ANDIS anyvy INN uosyAey | pryomeq SUIEH sexoL 1 193uj psiogul | ysiqusyy | nsiifng 1yoeUH %M”:m (£f1oedeo = s31q x spIom) -
: foedes ‘uonem3yuod g !
swieu Ioyep
SOW
SSL8 punodwo)
S 09¥8SW 7618 = 8 % pT01
@DESPINT 960 = v X ¥T01 SOND
DYSHINT 960% =8 X LIS
ZESZSHL L 89LTE = B X 960F
©PISCSHL
OLISHL ® 9 ®91LZISH @91ssaN ®9I1LI9NH ®asizad” ®DEZEWNL $8£91 = 8 X 8507
® 80LZWY @ #ouzd @R0LZSWL % ”MM @80LZISW @8ISBEN @B0LZIYNH @assrad” @OLZEWNL @BSLEWSH 7618 = 8 X $201
® rouz 960% =8 X LIS SON
1-OTZINNL o
SIZINNL 80T = ¥ X LIS
vzoLl CIssaN . -
DVIOLIAY @ yzoet @OLITSK cocain @VZ0LISENH @arsrad 80T = 8 % 95T
oTIE SIUAWINI)SU] 0
anyv pryoIef SEXaL e2liy | fis133u] ysiqnsiy nsiing yoeyy JdN BQIYSOL Huad PO | (Aoedes = 531q X SpIom) JuawISrE
i Aoededs ‘uorjernSyuod
QuIeu e L nemsyuod g

adA] SON
uayiy epayel (p

U/PROM-8

‘ Py PROM FORMATTER COMMANDS

—File Input/Output Commands—
Y (Yank file) Command

Reads the object (OBJ) file specified by the file name into the free area.

* YCHARAGEN Reads in CHARAGEN.OB]J
RAM from? 8000 to 87FF Specifies read-in from address 8000

(read up to address 8 7FF)

— File name can be specified by entering a Y (Yank file command) when " > " appears to indicate
that command entry is awaited.
. — Specify the starting address of the file to be read in as a 4-digit hexadecimal number. (Reading will
start at the address specified regardless of the actual data address of the object file.)

— The last address read is displayed when file read-in is completed.

Caution: The address specified for read-in must be in the free area.

S (Save file) Command

Writes the specified program (or data) in the free area onto a diskette,

* STEST# 2 Output program (data) to TEST# 2.0BJ
RAM from? 8400 to? 87E7 Output program (data) from adress 8400 to 8 7E7
. exec? 1300 data? 1300 Execute address 1300, data address 1300

— Another file name can be specified by entering an S (Save file) command when " x " appears to indi-
cate that command entry is awaited.

— The addresses of the memory block in the free area which is to be output are specified with 4-digit
hexadecimal numbers.

— The execute address and data address of the object (OBJ) file created are specified with 4-digit hexa-
decimal numbers. The data address is the address to which the program (data) is to be reloaded into
memory by a later RUN or LOAD command. The execute address is the address from which a pro-
gram reloaded into memory is to be executed. Specify 0000 when either of these addresses is not

necessary.

U/PROM-9

CY (Yank disk) Command

This command loads data in units of 256 bytes from the specified sector(s) of the specified track on '
the floppy disk in the specified drive into RAM.

* CY
drive? 1
track, sect? 0301
byte size? 0100 adrs? 7000

— Enter the CY command when " > " appears to indicate that command entry is awaited.
— Specify the number of disk drive containing the floppy disk storing the data to be loaded.
— Enter the track number and the first of the sector numbers in which the data to be loaded is stored
as 4 continuous hexadecimal digits.
— Enter the 4 hexadecimal digits which indicate the number of 256 byte units of data, then enter the .
starting address (4 hexadecimal digits) of the RAM area into which the data is to be loaded.
— The 4-digit hexadecimal number which indicates the amount of data is constructed as shown below.
XX XX
No numbers other than O should be entered in these two places (otherwise, the number of data
units specified in first two places will be afftected).
Indicate the number of 256-byte units of data to be loaded.
Ex.) 512 bytes of data are loaded when 0200 is entered (0101 is also interpreted as 0200).

CS (Save disk) Command

This command saves data in 256-byte units from RAM memory in the specified sector(s) of the speci-

fied track of the floppy disk in the specified disk drive.

* CS[CR] .
drive? 2
track, sect? 3002
byte size? 0100 adrs? 7000

— Enter the CS command when "> " appears to indicate that command entry is awaited.

— Specify the number of the disk drive containing the floppy disk on which the data is to be saved.

— Enter the track number and the first of the sector numbers in which the data is to be saved as a 4-digit
hexadecimal number.

— Enter the 4-digit hexadecimal number which indicates the number of 256 byte units of data, then
enter the starting address (4 hexadecimal digits) of the RAM area from which the data is to be saved.

— The 4-digit hexadecimal number which indicates the amount of data is constructed in the same manner
as for the CY command.
For example, 0101 is interpreted as 0200. .

— The track number must be 3 or greater. Great care must be taken not to destroy existing data on the
floppy disk.

U/PROM-10

—Formatting Commands—

P (Punch) Command

Punches data in the free area in the specified format.

X P Punch command
filename? CHARAGEN File name assigned to the paper tape to be punched.
format? C Format C
RAM from? 8000 to? 87FF Addresses 8000 to 87FF in the free area
PROM address? 0000 PROM write address 0000

— Enter the P (Punch) command when " > "' appears to indicate that command entry is awaited.

— Next, the file name is specified. This is not the file name which is included on the diskette, but the
name which is to be punched at the beginning of the tape. Refer to the explanations of the various
formats for details. When no file name is needed, enter only [CR].

— Next, specify the conversion format (A~H) and enter .

— Specify the starting and ending addresses of the memory block in the free area which is to be output
with 4-digit hexadecimal numbers.

— Finally, specify the PROM write address. (This step may not be required, depending on the format.)

The P command described above outputs formatted data to a PTP device. (More precisely, $PTP/LF
is used as the output device.)

The PROM FORMATTER can also output converted format data to devices other than PTP (including
user I/O and diskette).

(Ex. 1) *PSUSRI1 Outputs to user 1/0
(Ex. 2) X PXYZ Outputs file name XYZ.ASC to the diskette.

(Ex. 3) *P$PTP/PE /LF Adds even parity to PTP, affixes after and outputs the file,
As an application, data may be sent directly to the PROM writer by creating hardware and user routines

for its online interface.

R (Read) Command

This command reads in data formatted in the BNPF, HEXADECIMAL or other format from a paper

tape reader.

* R Read command
format? C Format C
RAM from? 8000 to 83FF Addresses in the free area into which data is to be read.

filename PROM#2

U/PROM-11

— Enter the R (Read) command when " > " appears to indicate that command entry is awaited.

— Next, specify the format of the data to be read.

— Finally, specify the starting address of the free area into which the data is to be read with a 4-digit

hexadecimal number.

— The last data address and the file name are displayed after the read is completed and entry of the

next command is awaited.

— With this PROM writer format, it may not be possible to read tapes punched using other programs

because of the need to maintain a certain minimum degree of redundancy.

The R command described above reads in formatted data from a PTR device, (More precisely, $PTR is

used as the input device.)

The PROM FORMATTER can also read in converted format data from devices other than PTR (in-

cluding user I/O and diskette).

(Ex. 1) *R$USR2 Inputs from user I/O
(Ex. 2) *RXYZ Inputs from XYZ.ASC on a diskette
(Ex. 3) * R$PTR /PE Inputs data with even parity affixed from PTR.

—Other Commands—
M (Memory dump/modify) Command

This command is used to display and modify the contents of the free area.

* M M command
RAM from? 7000 to? 7014 Area to be displayed

7000 ED 73 C8 SF 01 C6 SF 09 = Mo
7008 60 22 D8 CD 3E 28 CA 27 []]
7010 28 22 DE 26 CD (] [M]

— Enter the M (Memory dump/modify) command when " " appears to indicate that command entry
is awaited.

— Next, specify the starting and ending addresses in the free area of the data to be displayed with 4-digit
hexadecimal numbers.

— The PROM formatter, in the 40 (80) characters per line mode, divides data in the specified addresses
into 8-byte segments and displays the address (4 hexadecimal digits), the 8 (16) bytes of data (as
groups of 2 hexadecimal digits) and the 8 (16) corresponding ASCII characters in that order.

However, when the corresponding ASCII character cannot be displayed, a is displayed in its
place. Further, data is printed in 16 byte segments when the printer is used with the " # " command.
— Execution of the M command can be suspended or resumed by pressing] SPACE]. A switch can be
made to the command entry mode by pressing[BREAK].

— If no change is required in data displayed using the M command, just press. When a change is
required, move the cursor to the position where the change is to be made and press after entering
the 2 new hexadecimal digits. (The change is made when is pressed.) After data modification

is completed, move the cursor to an empty line and press to return to the command wait state.
U/PROM-12

— Data can also be changed using the cursor when display is halted with| SPACE]. In this case, display
is resumed when the cursor is moved to an empty line and is pressed.

Caution: Data is only printed when the printer is used with the " # " command; modification of data is

not possible in this case.

V (Verify) Command

Reads data formatted in BNPF, HEXADECIMAL and so forth from the paper tape reader and compares
it with the contents of the RAM free area.

* Vv Verify command
format? C » Format C
RAM from? 8000 to 8615 The start and end addresses of the area containing
filename ABC the data to be compared.
Verify OK.

— Enter the V (Verify) command when " > " appears to indicate that command entry is awaited.

— Specify the format of data to be read.

— Specify the start address (4-digit hexadecimal) of the area containing the data to be compared.

— The end address of the data read is displayed and "Verify OK." is displayed when the data read

matches the data compared. If not, the end address is not displayed and " Verify error." is displayed.

\ (FDOS) Command

This command invokes the specified built-in FDOS command. Command entry is awaited after execu-

tion of the FDOS command.

* \ DIR [CR]

— Enter the \ command when " > " appears to indicate that command entry is awaited.

— Next, specify the built-in FDOS command and press the[CR |key.

— The PROM formatter executes the built-in FDOS command, then awaits entry of the next PROM
formatter command.

— The XFER and EXEC commands cannot be executed. The RUN command cannot be executed if

the program executed by the RUN command is too long.

(Change printer mode) Command

This command starts and stops output to the printer. Printer output is OFF when the PROM for-
matter is activated, and is changed from ON to OFF to ON each time the " # " command is executed.

When printer output is ON, data is printed almost as it appears on the display screen.

& (Clear) Command

Buries the entire free area in hexadecimal code FFH.

U/PROM-13

? (Disp free area) Command

Displays the free area.

! (Return) Command

Terminates the PROM formatter and returns to FDOS.

—Format Commands—

Format commands are commands entered when "format?" is displayed during execution of the P, R
or V commands. Selecting one of these commands during execution of the P command determines
whether data is to be punched in BNPF, HEXADECIMAL or other format. Failure to specify the correct
format command during execution of the R command will result in failure to correctly read the program

into the free area.

A Command

— Used to specify the Britronics BNPF format. The control character "B" may not be used when the

file name is specified.

B Command
— Used to specify the Britronics HEXADECIMAL format.

C Command

— Used to specify the Britronics BINARY format. Numerals and the codes (:; <=>7?) may not be used
when the file name is specified.

— The message ""PROM address?" is displayed during execution of the P command to request specifi-
cation of the PROM loading address; specify it as a 4-digit number.

— Check sums are written following the data (with the P command).

— Data from the address specification to the check sums constitutes one block; if data is to be loaded
into an address which has been skipped, the operation must be divided into two or more parts. This

also applies when two or more blocks are read in with the R command.

D Command
— This command is used to specify the Intel BNPF format. The character "B" cannot be used in the file

name.

E Command

— This command is used to specify the Takeda Riken BNPF format. The character "B may be used in
the file name.

— A file is a block which begins with " $ " and ends with ") ".

— The message "PROM address?" is displayed during execution of the P command to request specifi-
cation of the PROM loading address; specify it as a 4-digit number.

— If two or more blocks are to be read out or written in, the operation must be divided into two or more
parts.

U/PROM-14

F Command

— This command is used to specify the Takeda Riken B10F format. The character 'B" may be used in
the file name.

— A file is a block which begins with " $ "' and ends with ") .

— The message "PROM address?" is displayed during execution of the P command to request specifi-
cation of the PROM loading address; specify it as a 4-digit number.

— If two or more blocks are to be read out or written in, the operation must be divided into two or more

parts.

G Command

— This command is used to specify the Takeda Riken HEXADECIMAL format.

— A file is block which begins with " $ " and ends with ") .

— The message "PROM address?" is displayed during execution of the P command to request specifi-
cation of the PROM loading address; specify it as a 4-digit number.

— If two or more blocks are to be read out or written in, the operation must be divided into two or more

parts.

H Command

— This command is used to specify the Minato Electronics HEXADECIMAL format.

— The start-of-data symbol " [" may not be used in the file name.

— The message "PROM address?" is displayed during execution of the R command to request specifi-
cation of the PROM loading address; specify it as a 4-digit number.

— Denote the end of data with the symbol "] ™.

U/PROM-15

PROM FORMATTER (SB-7501) COMMANDS & MESSAGES

COMMAND OPERATION
Y (Yank) Loads a program (data) from the diskette into the free area.
S (Save) Saves the program (data) in the free area on diskette.
File Input/ CY (Yank disk) Loads data in 256-byte units from the specified sector(s) of the
Output commands specified track on the diskette into RAM.
CS (Save disk) Saves data in 256-byte units from RAM memory in the specified
sector(s) of the specified track of the diskette.
P (Punch) Punches the specified contents of the free area in the specified format.
Format commands R (Read) Reads in a paper tape punched in the format specified.
M (Memory) Displays and modifies data in the free area.
V (Verify) Reads data from the paper tape reader and compares it with the
contents of the RAM free area.
Other commands \ (FDOS) Executes the specified built-in FDOS command.
Switches the list mode for listing on a printer.
& (Clear) Buries all data in the free area in hexadecimal code FFH. .
? Displays the starting and ending addresses of the free area.
! (Return) Returns control to FDOS.

Error message Error content Related command
memory protection An address outside of the free area was specified. Y,S,P,R, M,V
il command The command was not entered correctly.

il data The format specified does not match the format read. R,V
check sum Check sum error. R,V
$ LPT : not ready The printer is not ready. #
$ PTP : not ready The paper tape punch is not ready. P
$ PTR : not ready The paper tape reader is not ready. R,V

See the ""System Error Messages' in System Command for other error messages.

Caution: ’

Entry of characters other than S, Y, CS, CY, P, R, M, V,\, &, #, ? or ! will cause a return to the com-
mand wait state after the command table is displayed.

If a character other than A~H is input while "format?" is displayed and format entry awaited, the
format table will be displayed, after which the format entry wait state will be reentered. A return can be
made to the command wait state at this time by pressing[BREAK].

U/PROM-16

EXAMPLE OF PLOTTER CONTROL APPLICATION

Use of the FDOS editor, assembler and BASIC compiler allows the familiar BASIC language to be

used to write main programs without loss in processing speed, as long as control programs are created for

control of the various devices. Another benefit is that commands developed by the user can be used as
BASIC commands.

—Interface Card—

Universal interface card MZ-80102 is used for the interface between the MZ-80B computer and the

MIPLOT WX4671 plotter.

The connection conditions are as shown in Figure 1.

Output port (OFH) Input port (OEH)
1/O card Plotter side 1/0O card Plotter side

027 STROBE 117 700
026 DB 6 116 Grounded 6C—0O
025 DB 5 115 on the 50O—0
024 | DB4 14 intrface PO
023 DB 3 113 card 3070
022 DB 2 112 2 Q\O
021 DB 1 I11 ERROR ! Q\(D
020 DB 0O 110 BUSY

ON
ON
ON
ON
OFF
OFF
OFF

a) Connection conditions for all input/output terminals b)Address switch settings

Fig. 1 Connection conditions

5(V)
SN7406
(output) 2200
or > Data line
SN74LS125A
(input) 3900

¢) Data line termination conditions

SN7404 is included as the data driver for the universal interface card, but ICs 16 and 17 only are

changed to SN7406. All data line and status input terminations are made as shown in Figure 1-c). A 1.5

m cable can be used for this purpose.

See the universal interface card instructions for details.

—Plotter Control Program—

This section may skip if you are not interested in assembly subroutines.

1. Conditions for linkage with a BASIC program

Conditions for linkage with a BASIC program

(a) Command names must be externally declared with the ENT statement SIZE : ENT
(b) The number of parameters must be specified DEFB 1 (1 parameter)

(c) The parameter type must be specified.c.ccoovvvveveeeeennnnn. DEFB 0 (real number)

(d) Buffers must be specified for parameters.eoeuun...... SE : DEFS 2 (2 bytes reserved)

(e) The RET instruction must be included at the end of all control routines.

The above are the linkage conditions; the processing program is written between items (d) and (e).

U/PLOTTER-1

2. Linkage conditions when an error occurs

(a) A subroutine is used from FDOS library RELO.LIBcccoceeee. CALL BEERR
(b) The error number is Written.ccccceeeeeeennnan. DEFB 80

(c) The error message is written.oceeeiieeeennnn, DEFM °PLOTTER ERROR’

(d) The terminator is written.cccecoeveerereevemninannne. DEFB ODH

This causes > ER 80:PLOTTER ERROR to be output on the display screen when a plotter error

occurs.

3. Use of external subroutines

This control program uses 4 routines out of the subroutines included in FDOS library RELO.LIB. One
of these is BEERR, which was shown above; the remaining three are as follows:
(a) .. INTO
16 bit binary data is set in the HL register with a sign attached when an address with a para-
meter is loaded in the HL register and called. All registers except the AF register are protected

in the event of an overflow if the carry flag is set.

(b) CASC’
The unsigned 16-bit binary data from the HL register is converted to ASCII code and stored
in the address indicated in the DE register, then ODH is set.

(c) . MOVFE’
When the parameter contains a type 1 string and an address with data is loaded in the HL
register and called, a type 2 string is set in the address indicated by the DE register and ODH
is set.

See the "LIBRARY/ PACKAGE" instructions for details on all subroutines.

4. Plotter control codes

All data for the MIPLOT WX4671 currently used is in 7-bit ASCII code. Input statuses include the
BUSY signal and the ERROR signal. Data output is possible when the BUSY signal goes low, and the data
is taken in on the plotter side when the STROBE signal is output.

" " (that is, 2CH) is used as the data delimiter and 03H~ODH are valid as data terminators. However,

only OAH will be accepted when an error occurs; an error condition is not cleared by any data terminator
other than OAH.

At the port on the MZ-80 side, OEH is used for the status (that is, as the input for the BUSY and
ERROR signals) and OFH is used for the data and STROBE signal output.

U/PLOTTER-2

5. Program outline

Linkage conditions for a BASIC program have already been indicated; however, string type becomes
applicable in the parameter type specification with the 80H. Moreover, parameter types and parameter
buffers must be added depending on the number of parameters; the steps described in subparagraphs
(c) and (d) of that section are not required if the number of parameters is zero. See routines CTYPE,
SIZE, PLOT, HOME and so forth of the assembly listing for this.

This illustrated using the PLOT routine as a representative example. The flowchart is as shown in Figure
2 (pages 4 and 5).

(a) Data output

Although subroutines COUT, PLOT1 and DOUT are used, DOUT is the one which actually outputs the
data. With DOUT, the data set in the accumulator is output to the plotter with the STROBE signal if
the BUSY signal of the plotter is LOW. If BUSY is HIGH the routine repeats a loop.

With COUT and PLOT]I, the data at the address indicated in the HL register is loaded in the accumula-
tor and then DOUT is executed; this is repeated until ODH is output. After ODH is output, a check is
made for plotter errors and a jump is made to the error routine if any are found. Note that continuation

of program execution is possible if ON ERROR processing is provided on the BASIC side.

(b) Data conversion routine

As was indicated previously, all data must be converted into ASCII code since the plotter will not
accept data in any other form.

Subroutine BTOA uses the RELO.LIB routine in FDOS to convert data to ASCII code. This is as shown
in the flowchart in Figure 2-a) and paragraph 3, "Use of external subroutines"; however, checks are also

made for positive, negative and overflow data.

(¢) PLOT x, y routine

As is shown in the flowchart, the two parameters x and y are specified following the external declara-
tion. The parameter type is real number and two bytes are set in the parameter buffer for both x and y.

The pre-conversion data address, the starting address of the buffer for storage of the data after conver-
sion and the maximum value of x are loaded in registers HL, DE and BC, respectively, then BTOA is
called and the data is checked and converted to ASCII code. Afterwards, the data delimiter for the plotter
" " is loaded and the process is repeated for y. The starting address of the data converted into ASCII
code is loaded into the HL register, the 44H ("'D'") command (which draws a line on the plotter) is loaded
and COUT is called. With COUT, the contents of the address indicated in the HL register are output to the

plotter following the command.

U/PLOTTER-3

External

declaration

Number of para-
meters set (2)

Y

Parameter type
set (real number)

2 buffer bytes
set for the data

address (PX)

Parameter type
set (real number)

2 buffer bytes
set for the data
address (PY)

HL+-address of
real number (x)
DE«start of the
ASCII code buffer
BC+maximum data
value (x)

BTOA

x and y

x coordinate

y coordinate

{ BTOA

\

.. INTO
Data at the
address indi-
cated in HL
converted to
binary and
stored in HL

Check whether data
is positive or nega-
tive; display an
error message if
negative.

Setting of linkage conditions

'

CKCOD

Check whether the
data is larger or
smaller than the
data in BC: error
if larger

CASC’

Binary data indi-
cated by HL con-
verted to ASCII
and stored in the
address indicated
by DE.

~ Return

¥

INS 2C

2CH (Il’ll)
inserted in
place of ODH.

!

HL+-address of
real number (y)

DE<«address
foliowing 2CH

BC+~maximum
data value (y)

Y

BTOA

!

DE-HL
(POP HL)

A<44H ("'D")
command for
drawing a line

¥

couT

Return

a) ASCII conversion subroutine

Fig. 2 PLOT routine

U/PLOTTER-4

(PLOT 1)

couT)

r

DOUT

o]

e J

ACC——(HL)

'

DOUT

v

Mask bit 7

HL—HL +1

PLOT 1

yes

Input the
status

Error
display

b

no

b) Data output subroutine

Fig. 2 PLOT routine

U/PLOTTER-5

—

DOUT)

y
Save AF

Status
brought in

yes

AF restored

Logical sum of
accumulator and
80H obtained to
set the strobe

!

Data, strobe
output

Return

—Command Table—

Table 1. Plotter control commands

Command name

Function

Draws a straight line from the current position of the pen to the coordinates x, y;

PLOT

OT x.y x =0~ 3600,y =0 ~ 2540 are the possible range (other values will result in an error).
IPLOT ax,Ay Draws a straight line from the current position of the pen for the values of A X, +Ay only.
MOVE x,y Lifts the pen and moves it to the position indicated by coordinates x and y.

x =0~ 3600,y =0~ 2540 are the possible range (other values will result in an error).

IMOVE AX, Ay

Lifts the pen and moves it by an amount indicated by +Ax, xAYy.

XAXIS x,n Draws a scale with n divisions on the X axis at intervals indicated by x.

YAXIS x,n Draws a scale with n divisions on the Y axis at intervals indicated by y.

CTYPE A$S Prints the character string indicated by AS.

SIZE n Specifies that characters are to be written in the size indicated by n; n =0~ 15

CSIZE Spe_ciﬁ.es that characters are to be written in the size initially set for the plotter.
(n =4 is output automatically.)

DOT x Draws a dotted line over the interval specified by x. (x < 127)

DOTM Draws a line of dots spaced at intervals of 3 mm.

DOTO Clears DOT x or DOTM and returns to a straight line.

PUP Pen up (same function as IMOVEDQ, 0)

PDOWN Pen down (same function as [PLOT0,0)

ANGL n Rotates c}c}aracters by the anogle (in the counterclockwise direction) c§pecified byn. n=0~3
n=0-0 n=1--90 n=2-..180 n=3..270

WAk n | Msdems bt ncioe e

HOME Moves the pen to the x, y coordinates it was at when the power was turned on, clears the
error lamp and clears plotter error.

ERCLR Clears plotter errors when they occur; the error lamp is not cleared, however.

(Note) Values indicated by x and y are specified as integral multiples of 0.1 mm; for example, PLOT

100, 2000 results in a line being drawn to x = 10 mm and y = 200 mm.

U/PLOTTER-6

® External declaration
made to link with
commands used in the
plotter control routine.

v

@ Draws the FDOS
title.

'

® Makes a diamond
shaped pattern.

v

@ Rotates the character
string ''3D-GRAPH"
and writes it.

v

® Draws the 3-dimen-
sional illustration

v

® Draws scales on the X
and Y axes, adds marks
to the data and draws
a graph.

@ Writes the character
string ""SHARP"' in
varying sizes.

Writes representative
characters in normal
size.

(@ Draws an outline by writ-
ing solid lines, and dotted
lines with variably spaced
segments.

'

@ Pen up and pen down
are tested.

End

Fig. 3 Flowchart of the BASIC program

—Outline of the BASIC Program-—

As is indicated in the flowchart at left, the program con-

sists of 10 subroutines.

At (@®, the EXTERNAL statement is used for linking the
program with the plotter control program commands,
Although it is not necessary to use line numbers with
statements other than GOTO and GOSUB, they are used
in other locations to make the program easier to under-

stand.

At @), the title of FDOS is drawn from line number 110 to
910. This routine uses the MOVE, IMOVE, PLOT and
IPLOT commands.

At 3, a diamond pattern is drawn from line number 920
to 1050. MOVE X, Y is used to return the pen to the
starting point, while IPLOT A, B is used to draw the

pattern.

At @, "3D-GRAPH" specified by AS$ is written at 90°
angles with ANGL 1| and CTYPE AS$ from line number
1090 to 1140.

At (), repetitions of attenuated SIN(X) and a 3-dimensional
graph are drawn from line number 1190 to 1910. The 3-
dimensional graph is drawn in dots using the PUP and
PDOWN commands.

Try changing the program from line number 1500 to
1510 as shown below to draw the graph with solid lines.

1500 IF (A —2)>T THEN 1520

1502 T=A

1504 IF S=0 THEN MOVE DX, DY : GOTO 1508
1506 PLOT DX, DY

1508 PDOWN :S =1

1510 RETURN

1520 MOVE DX,DY:T=A:S=0:GOTO 1510

With this program, S indicates the pen status; S = 0 raises

the pen while S = 1 lowers it.

U/PLOTTER-7

At (), scales are drawn on the X and Y axes with the XAXIS and YAXIS commands and marks are drawn
on the graph with the MARK command; this processing is performed from line 1990 to line 2190. The
dotted line is drawn with the DOTM command, and the DOTO command is used to return to a solid line.

The curve is a drawing of SIN(X)/X. Refer to the command table for these commands.

At (D, the SIZE command is used from line number 2390 to 2460 to write the word SHARP in characters

of varying sizes. Afterwards, the CSIZE command is used to return to standard size.

At (®), representative characters of standard size are drawn from line number 2790 to 2820.

At @, the HOME, DOT and DOTO commands are used from line number 3000 to 5010 to draw the

the surrounding outline by changing between solid lines and dotted lines of varying pitch.

At @@, pen up and pen down are tested from line number 5100 to END.

If the program is written so that the HOME command can be executed if an error occurs with the
plotter, the error can be cleared, the error lamp extinguished and the pen returned to the starting position.
If the ERCLR command is used (it is not in this program), the error can be cleared without moving the

pen; however, in this case the error lamp is not extinguished.

—Conclusion—

As has been shown above, user-written programs can be easily linked with BASIC. By observing the
conditions for linkage, it is possible to connect many devices other than the plotter. When a main program
is created using the assembler, it may be necessary to output a picture on the display screen. The BASIC
compiler and FDOS are very useful for this purpose. Further, the processing is the same as with machine

language. The photograph on page 9 shows the result of execution of this program.

U/PLOTTER-8

H| b

a

! z

il S
| 2 . I
K > |
:H HdUy9-as 3D-GRAPH . £ o ‘H
! 2 \ / !
il X N s I
ny = LY X Ii;
'|l o N s I
| T I'
| N\ /\%L/!ﬂ\ li
i ~) |V It
||| XRXIS III
! |
'

PEN UP DOWN I

~sHarRp SHARP

I
lll 1234567890RBCDEFGHI JKLMNOPORSTUVWXYZ [#8%8()+-, . /*<>@72:; hl

—References—

1. Watanabe Manufacturing Co., MIPLOT WX4671 Instruction Manual

2. Sharp Corp., Universal Interface Card Instruction Manual

U/PLOTTER-9

—Sample Program (Plotter Control Routines)—

* %

0008
0000
0008
oee0
09000
0000
0000
eeaeo
0800
o000
0000
0000
oeoe
eeoo
12121
oooe
0000
oe6e
0000
eoee
1121
eeoo
0000
0000
0800
eoee
8000
oeee
0800
06900
0000
8000
0090
0000
0000
eoio
0010
o010
6011
ea12
0014
@e1s
ee17
ee17
BO1A
ee1D
001E
@821
0024
eez27
0824A
ee2D
0830
80831
0033
08346
0836
0036
80836
00446

180 ASSEMBLER SB-7201

@2
1]

2A1200
1100080
DS
01110E
cD52e2
cD83e2
2A1560
81EDO?
cD5202
El
3E4D
C34201

{PLOTTER> PAGE @1 87/09/81

MZ-89B Plotter control package.
Plotter WX-4471 & universal 1/0.

Copyright 198%f by SHARP Corp.

CALL

CALL

CALL

CALL

PORT

MO e WS R NP ME WS WE YE WS NS WS W YE WS NS WO UE Ve U WE BE ME ve WE uE W8 ue we

PLTSs
PLTD?
H

3§ MOVE
}
MBUFF:

5
MOVE!?

MX:

MY:

MBUFF ¢

- bt we we we

BASIC SUBROUTIN LINK

.. INTB

WITHOUT AF KEEP

16BIT BINARY TO HL
CASC’

WITHOUT AF KEEP

HL(16BIT BINARY)TO DE ADDRESS

(DE)=ASCII END=ODH

BEERR
ERROR MSG DSP-0UT
«MOVE’
CHR TYPE PARAMETER TO ASCIICODE(HL TO DE)
EQU 6EH $PLOTTER STATUS READ
EQU OFH $PLOTTER DATA OUT
X»Y(PEN UP)

DEFS +16

ENT

DEFB 2 $NO OF PARAMETER
DEFB o $REAL NO.

DEFS +2

DEFB @ $REAL NO.

DEFS +2

LD HL» (MX)
LD DE »MBUFF

PUSH DE

LD BC,@E11H $3600

CALL BTOA

CALL INS2C

LD HL s (MY)

LD BC,»B9EDH 32540

CALL BTOA

PoP HL

LD A, 4DH $’M’ MOVE CMD
JP couT

INCREASE MOVE(PEN UP)DX,DY

DEFS +14

U/PLOTTER-10

* %

8044
a0844
0047
@848
BB4A
6B4B
884D
884D
vase
0es3
0054
ees7
8085A
885D
90460
0a63
88466
0867
8869
8es6C
004C
easc
8escC
ea7Cc
pa7c
ea7c
va7Db
0B7E
8ese
eesi
8882
8083
8886
eesy
@B8A
easD
gove
0093
0896
ea99
809C
009E
80AB
8eAQ
BBA0
BaAQ
00B0O
aeBo
00Bo
0eB1
v0B2
6eB4
0eB3
QoB7
8eB7
eeBA
PBBD
@OBE
8a8cC1
eec4

186 ASSEMBLER SB-7201

8z
ao

(=1%]

2A4800
113408
DS
81118E
cns&282
cns3ez
2A4B0OG
@1EDBY
Ch&282
El
3ES2
C34201

62
80

1)

2A7EQQ
1146C@0
DS
@1118E
cDS2@2
CD3382
2A8180
81116k
cbhS282
3E31
1832

82
ao

-1"]

2AR200
11A600
DS

@1EDGY
CcD5202
cDg3ez

IMOVE:
IMX:

IMY:

RYBUF :

e) we ws we

YAXIS:

Y-AXIS

<FPLOTTER>

ENT

DEFB
DEFB
DEFS
DEFB
DEFS

LD
LD
PUSH
LD
CALL
CALL
LD
LD
CALL
POP
LD
JpP

DEFS

ENT

DEFB
DEFB
DEFS
DEFB
DEFS

FAGE @2

2
%]
+2
%]
+2

HL s (IMX)
DE» IMBUFF
DE
BC,BE11H
NSBTOA
INS2C
HL, (IMY)
BC»B9EDH
NSBTOA
HL

AsS2H
cour

+ O + QN
R

2

HL» (QX)
DE s @GRXBUF
DE
BCy@BE11H
BTOA
INS2C

KL (RX)
BC)»@E1L11H
BTOA
Ar31H
AXOUT

+16

2
a
+2
e
+2

HL, (QY)
DE . QRYRUF
DE
BC+B9EDH
BTOA
INS2C

U/PLOTTER-11

a7/09/21

iNO OF PARAMETER
s REAL

sREAL

L]
o~
L]
Lx)

32549

'R’ RELATIVE MOVE CMD

iNO OF PARAMETER
s REAL

s REAL

33608

iNO OF PARAMETER
s REAL

sREAL

525440

* %

eac7
88CA
@ecDh
eepo
eapn2
oeD5
eens
eaDg
oeDs
eoDs
8eDs
@0ES
BOES
@eES
BOE?
BBEA
@8EC
@B8ED
@BEF
GeEF
@0OF2
BBFS
BOF 6
BBF9
88FC
OOFF
9102
0105
@108
81089
e19B
eieD
816D
010D
010D
011D
011D
211D
811D
B11E
O11F
8121
9122
6124
0124
8127
812A
612B
912E
6131
0134
8137
213A
e13D
013E
6140
0142
8142
0142
8142

180 ASSEMBLER SB-72@1

2AB590
@1EDBY
CD5202
3E38
CD2382
El
186D

02
08

29

2AEAQG
11D899
DS
01110E
Ché282
cpe302
2AEDBO
91EDO?
ché282
El
3E49
1835

82
00

ea

2A1F0O1
11epol
DS
e1110E
cD5S282
cps3ez
2A2201
@1EDBY
cpS2e2
El
3E44
1006

CD2F@2

AXOUT: CALL

we we we

IPBUFF: DEFS
IPLOT: ENT
DEFB
DEFB
IPX: DEFS
DEFB
IPY: DEFS

.
’

PLOT XY

TBUFF: DEFS

D RN |

LOT: ENT
DEFB
DEFEB

PX: DEFS
DEFB
PY: DEFS

ASCII CODRE

ouTs CALL

{PLOTTER> PAGE @3

HL» (RY)
BC,B89EDH
BTOA

Ay 306H
AXIS

HL

PLOT1

INCREASE PLOT X+DX.Y+DY

+16

2
0
+2
e
+2

HL, (IPX)
DE, IPBUFF
DE
BC,BE11H
NSRBTO0A
INS2C
HL» (IPY)
BC,@9EDH
NSBTOA
HL

As49H
couT

+16

2
<)
+2
@
+2

HL: (PX}
DE: PTRUFF
DE
BC,»BE1 1H
BTOA
INS2C
HL» (PY)
BC+»@%EDH
BTOA

HL

Ar»44H
couTt

OUT SuUB

DouT

U/PLOTTER-12

867/89/81

32540

19’

$NO OF PARAMETER
s REAL

s REAL

33400

32549

/1’ INCREASE CMD

$NO OF PARAMETER
$REAL

sREAL

;3600

12540

3’D’ DRAW CMD

* %

9145
n14sé
8149
@14B
914D

. B14F

8150
a152
8152
B152
8152
8155
8157
a159
B15A
a1sDh
815k
0162
B166
alé6A
B16B
816C
a16cC
216cC
a16C
816C
016D
B16E
ai7e
e179
8173
8176
8177
a179
ai7B
B17B
a17B
9178
6180
@180
@180
a181
8182
0184
8184
8187
aiga
818D
o196
2191
8193
8195
0195
8195
8195
B19A
019%A
B19A
819B
819C

188 ASSEMELER SB-7201

7E
CO2FB2
EAT7F
FEGD
2803
23
18F3

CDCE®2
DBOE
E6082

S84C4FS4
54455220
4552524F
52
ap

a1
g8

2A4EB1
CDepses E

3ESO
18C7

a1
1%

2A8261
117801
@110006
CD52082
EB
3ES3
18AD

et
aa

PLOT1:

ERROR

() we we w

KER:

CKER1:

e we s

SBUF :

i
SIZE:

SE:

BUF :

0 ve O we ve we

U/PLOTTER-13

<{PLOTTER>

LD
CALL
AND
Cp
JR
INC
JR

CHECK

CALL
IN
AND
RET
CALL
DEFB
DEFM

DEFB
ASCII

ENT

DEFB
DEFB
DEFS

SIZE ALPHA

DEFS

ENT

DEFB
DEFB
DEFS

DOT LINE

DEFS

ENT

DEFB
DEFE
DEFS

PAGE B4 87/89/81

A (HL)
pouT
7FH
aDH
Z,CKER
HL
PLOT1

DLY

Ay (PLTS)

B2H SCKER(BIT 1=07)
NZ

BEERR

S50H ;86

‘PLOTTER ERROR’

@DH

1 sNO OF PARAMETER
86H s CHR
+2

HL ., (TP)

«MOVE’

DE,»HL

Ay SBH 3P’ PRINT CMD
couT

+5

i sNO OF PARAMETER
a iREAL
+2

HL (SE)

DE, SBUF

BC,B8016H 515

BTOA

DEsHL

A»S3H $/S’ SCALE CMD
cour

+5

[y

iNO OF PARAMETER
%] s REAL

* #*

B819E
819E
B1A1
a1A4
B1A7
B1AA
B1AB
@1AD
81BO
@a1B3
21BS
61BS
81BS
B81Bé&
81B9
81BB
91BB
81iBC
81BF
81C1
@1C1
81C2
81CS
ai1c7
e1c7
81C7
e1C7
a1Cc7
81Cs8
01CB
91CE
@1CE
81CE
B1CE
B1CE
61CF
81D2
e1D4
01D4
eiD4
81D4
aiD4
81D5
e1D7
e1D7
81D7
@107
aiD7
a1D8
a1DA
81DD
81DF
B1E1
B1EL
91E1
@1E1
B1ES6
B1ES
P1ES
@1E7

2A9CO1
119501
e1g8ea0
cD5282
EB
3E42
cp4201
21A202
188D

1%}
219F82
18F0

(21%
219Ce2
180A

51%]
21A502
1804

Qa0
21A802
c245081

1%}
21ADB2
18F7

]2
1884

217
3E48
CD2FBz
3EBA
184E

a1
86

780 ASSEMBLER SB-7281 <PLOTTER> PAGE 85

LD HL, (DT)
LD DE» DBUF

LD BC,0@B8BH
CALL BTOA
EX DE »HL
DOTWR: LD A:42H
CALL COuT
LD HL»DOTMSG
JR cout
DOTM: ENT
DEFB ©
LD HL »DOIMSG
JR DOTWR
DOT@a: ENT
DEFB @
LD HL s LTMSG
JR CNCT
CSIZE: ENT
DEFB ©
LD HL + ISMSG
JR CNCT
3+ PEN UP
PUP: ENT
DEFR @

LD HL » PUMSG
NCT: JP PLOTI

DOWN: ENT
DEFB ©
LD HL » PODMSG
JR CNCT
5 ERROR CLEAR
ERCLR: ENT
DEFB @
JR LFOUT
5 HOME
HOME ENT
DEFB @
LD Ar»48H
CALL DOUT
LFOUT: LD Ar»BAH
JR pouTr
3 ROTATE ALPHA
PBUF 3 DEFS +5
ANGL @ ENT
DEFB 1
DEFB @

U/PLOTTER-14

87/89/81

‘B’ LINE GAGE CMD

sNO FARAMETER

$NO PARAMETER

sNO PARAMETER

$NO PARAMETER

$NO PARAMETER

$1NO PARAMETER

tNO FARAMETER
$‘H’ HOME

sER CLEAR CMD

sNO OF PARAMETER
sREAL

* *

B1ES
Q1EA
P1EA
@1ED
g1F@
aiFz
81Fé6
@iF7
81F?
@1FC
81FC
aifFc
B1iFC
8201
6201
az2oe1
0202
8283
8205
62asS
8208
@20B
B20€E
8211
8214
8217
821A
021D
B21E
6220
8223
8223
0223
6223
0224
6226
0229
a22a
822D
B22F
822F
a22F
822F
B22F
B22F
a22F
B22F
022F
922F
6236
8232
8234
8236
8237
8239
a23B
923E
8240
8241
8243

2AESA1
11101
010400
chS52a2
EB
2ES!t
C34201

a1
00

2AB3@2
CDhoavoo
DABOBO
cDB20@2
ei1a708
cb8bez
11FCal
CcDoeoe
EB
3E4E
C34201

FS
3ES8
CD2FB2

CD2F82
3E2C

FS

DBBE
CB47
20FA

D306E
Fé80
CcDhCEB2
D3BE

DBOE
CBa7

188 ASSEMBLER

mm

SB-7201

<{FLOTTER> PAGE @6
AL: DEFS 2
LD HL s (AL)
LD DE.:PBUF
LD BC,0@0094H
CALL BTOA
EX DEsHL
LD AyS1H
JP couT
3 MARK
MBUF : DEFS +5
MARK @ ENT
DEFB 1
DEFB @
MK : DEFS +2
LD HL » (MK)
CALL ..INTH
JF CsERZ
CALL CKNEG
Lo BC/»0BBB7H
CALL CKCOD®
LD DE s MBUF
CALL CASC’
EX DEsHL
LD As4EH
JP cour
3 AXIS SUR
AXIS: PUSH AF
LD A»S8H
CALL DOUT
POP AF
CALL DOuUT
AXISi1: LD A 2CH
s PLOTTER DATA CONTROL
H A=DATA
DoUT: PUSH AF
DOUTP: IN As (PLTS)
BIT 8:A
JR NZ,DOUTP
POP AF
ouT (PLTS) A
OR 80H
CALL DLY
ouT (PLTS))A
PUSH AF
pouT@: IN A, (PLTS)
BIT 8,A

U/PLOTTER-15

a7/869/¢e1

3’0’ ROTATE CMD

iNO OF PARAMETER
i REAL

$ ‘N’ MARK CND

$'X’ AXIS CMD

57+’ DELIMITER

(5

a3
a4
a3
@é
07
as
29
1
11

12

14
15
16
17
12
19
28
21

e
-

[l
w

LRI U
[-

LIRS BN N I O O))
J 00 N0 0 SO

W W W
b w

8245
aza7
8249
B24A
824C
a24Dn
B2Z4F
2251
8252
azs2
H252
252

3253

Reae
9258
@2SE
n2s61
6262
82462
A28z
0245
az248
QZ4B
A26E

5 8271

@27z
az272
©6z272
a272
@273
8275
8276
nz78
B279
B27A
6278
827c
@z70
827k
827F
9289
6281
B282
az2s8z
B282
6282
8233
azs4
9284
e288&
B28A
628B
828C
628D
828D
a28D
a28D
B28E
B28F
@292

cnaaea
DARBBA
Chezaz
cn9202
cheaee
c9

chaeea
DARB60
cnrzz2aez
cbh9zez
coeoRa
c?

13
1A
FEGD
20FA
3E2C
12
12

ce

7C

CAB080
ES

261 <PLOTTER:> FAGE @7

JR
Lo
DEC
JR
POFP
AND
QuT
RET

2,DOUTEH
AsFFH

A

NZy-1

AF

7FH
(PLTS) A

BINARY TO ASCII

BTOA: CALL
JP
CALL
CALL
CALL
RET

NSBTOA: CALL
JP
CALL
CALL
caLL
RET

IF NEG...

 ue uE un

NsSzD: LD

CPL
LD

INC
RET

SEEK @D, IN

ve ue ws

INS2C: LD

CHECK DATA

() wn ws wn

KCoDB: LD

CKCOD: FUSH

. INTO
C,ER3
CKNEG
CKCOoD
CASC’

.. INTH
CrERZ
INSZD
ckcon
CASC’

INSERT ‘-~

ArH
7:A

z

Ay 2DH
(DE)»A
DE

AL

LA
AsH

HsA
HL

SERT 2C

DE

Ay (DE)

6DH
NZ,»INS2C-1
Ay 2CH
(DE) A

DE

VALUE

AsH

L
1,ER3
HL

U/PLOTTER-16

..

&8

* ¥*

8293
az94
8296
Q299
B29A
a29B
829c
@az29c
B29cC
az9c
B29D
029E
B29F
@29F
B29F
@29F
B2A0
a2A1
02A2
G2A2
B2A2
B2AZ2
02A3
@2A4
B2AS
a2AS
82AS
B2AS
B2A6
82a7
B2A2
02A8
B2A8
B2A8
B2A9
B2AA
B2AB
B2AC
a2AD
82AD
B2AD
02AD
02AE
Q2AF
92B0O

. B2B1

82B2
@2B2
B2B2
62B2
A2B3
B2BS
B2B6
B2B?
02BA
@2BE
B2C2
azcé
B2CA
@az2ch

B7
EDN42
F2e000
El

B7

co

4C

ap

33
38
an

7C

CB7F

cs
CDBoaa
g1
SS54E464F
S24D4154
20444154
41204552
S524F52
8D

180 ASSEMBLER SR-7201

E

E

OR
CKMAX: SEC
Jp
FOP
OR
RET

LINE MSG

™ we s e

TMEG: DEFB
DEFB
DEFB

BETWEEN DOT

(=TT

OIMSG: DEFB
DEFB
DEFB

3 DOT MSG
DOTMSG: DEFB

DEFB
DEFB

— e we ue

<PLQTTER>

FAGE @8 87/69/81

A
HL»BC
P,»ER3
HL

A

4CH sL
30H LI -
6DH

33H
30H
aDH

e e

‘g

4CH
31H
@DH

L
Ill

~e wn

INITIAL SIZE SET

SMSG: DEFB S3H IR
DEFB 34H 54/
DEFB @GDH

3 PEN UP MSG

H

PLIMSG: DEFE SZH 5 'R
DEFB 3@H A - R
LDEFR 2CH AR
DEFB 39H 5’8’
DEFR d@DH

3 PEN DOWN MSG

PDMSG: DEFEB 49H HES O
DEFB 38H N
DEFE 2CH S
DEFB 38H LI
DEFB ©@DH

§ CHECK DATA SIGN

CKNEG: LD AsH
BIT 7+A
RET z

CKER2: CALL BEERR
DEFB SiH =B
DEFM ‘UNFORMAT DATA ERROR’
DEFB @DH

U/PLOTTER-17

LINE CMD

LINE CMD

RELATIVE CMD

INCREASE CMD

at
6z
B3
a4
as
as
87
Be
a9
1
11

1z

AL

* %

62CE
B2CE
B2CF
azpe
azp2
azps
82D4
a2Dé
8208
azDy
BZDA
a20B

* %

BTOA

CKE
CSI
Dol
nor
ERC
IMY
IPX
MAR
MX

FDO
PTR
QRX
RY

XAX

R2
lE
MSG
WR
LR

K
WN

UFF
BUF

IS

123 ASSEMBLER SB-7201

CcS
F5
BLEA
AF
3D
28FD
16FA
Fi
c1
ce

18@ ASSEMBLER

Q1ER
6252
B2Ré&
a1c
A29F
B1AR
B1D4
@04B
PBEA
azai
8012
81CE
e1ap
aBec
BOBS
887cC

ANGL
CKCoD
CKMAX
CTYPE
DOME
pouT
HOME
INS2C
IFY
MBUF
MY
PLOT
PLIMSG
GRYBUF
SBUF
YAXIE

<PLOTTER>
i
DLY: FUSH
PUSH
LD
DLY2: XOR
DEC
JR
DJINZ
POP
FaP
RET
END
SR-7261 <PLOTTER>
BlEL AXIS Q0222
98292 CKgCaDe @&28D
@294 CKNEG AZB2
@14C DRUF @19
B81EB DOT B1%vA
©922F DOUTFP @230
#8107 IMBUFF 92364
@283 IN&zD @z72
AaBED ISMSG B2A0
A1FC MBUFF Boed
P15 NSBTOA 08242
#1110 FPLOTI ©14%5
B2A8 PUF a1c7
“aaAe QX Bwa7E
a178 SE A182
aeRo

FAGE @%

BC
AF
B,18

NZ:-1
DLYZ2

BC

PAGE 1@

AXISt @22D
CKER aLsz
CNCT B1CB
oLy AazCE
DOTH 81BS
pouTe 6241
IMOVE Qa4+
IFBRUFF @BDha
LFOUT @1DD
ME aze3z
PBUF BiEl
FLTD Gear
FX a11F
QY eap2
SIZE a128

U/PLOTTER-18

AXOUT
CKER1
couT
DLYZ
DOTMSG
ik

IMX
IFLOT
LTMSG
MOVE
PDMSG
PLTS
PY

RX

TP

azr/a9/¢e1

67/a69/81

@abz
a15A
8142
az02
B2A2
@19c
BA4s
feEe
829C
aaia
B82AD
aasE
@122
pagt
B14E

—BASIC Main Program-—

BASIC

1000

1180

1200

1460

compiler SB-7701 <X-YDEMO> page 1 87.09.81

EXTERNAL IPLOT,PLOT, IMOVE,MOVE,PUP,PDOWNXAXIS,YAXIS,CTYPE
EXTERNAL CSIZE,SIZE,»HOME,ANGL +MARK,ERCLR,LOTM,DOT®,:DOT
DIM D(1,255),E(50)
DIM A(23)+sB(23)
HOME : CSIZE : ANGL @: DOTe
REM *FDOS NO SAKUGA+
REM * F *
MOVE 2006,2400
IPLOT 4606,6: IPLOT @,-156: IPLOT -4006,0: IPLOT 0,150
IMOVE 508,-50: IPLOT 399,0: IPLOT 94,-5a: IPLOT -300,0: IPLOT 9,55
MOVE 2006,2170¢: IPLOT 40660,0: IPLOT ©,-15@6: IPLOT -220,0
IPLOT @,-220: IPLOT -170,0: IPLOT 9,370
IMOVE S@,-S0: IPLOT 30@,8: IPLOT 8,-50
IPLQT -238,49: IPLOT B,-220: IPLOT -79.,8
IPLOT 8,270
REM # D *
MOVE &42@,2400: IFPLOT 216,90
A=840: B=309: (C=2100: GOSUB 1190
IPLOT -210,8: IPLOT @,2370: IPLOT 176,6: IPLOT @,-220
A=818: B=1350: C=21006: GOSUB 1089
IPLQCT -186,0: IPLOT 8,156: IMOVE 50,-%8: IPLOT 146,08
A=840: B=250: (C=2100: GOSUB 1109
IPLOT -1¢8,08: IPLOT ©,276: IPLOT 7@,6: IPLOT 8,-220: IFLOT 40,Q
A=819: B=200: C=2190: GOSUB 1000
IPLOT -136,06: IPLOT 8,50: GOTO 12066
FOR I=-«/2 TO «/2 STEP «/+98
X=INT(A+B#COS(I)): Y=INT(C+B#SIN(I))
PLOT X»Y
NEXT 1
RETURN
FOR 1=a/2 TO -4/2 STEP -a/&@
X=INT(A+B*COS(I)): Y=INT(C+B*SIN(I))
PLOT X.,Y
NEXT 1
RETURN
REM * 0 »
X=@: Y=@Q: A=0: B=@: C=@: D=@d: MOVE 17¢0,2100
A=1448: B=300: C=2100: D=3R9: GOSUB 1399
IMOVE -568+08
A=14468: B=256: C=2106: [0=2%@: GOSUE 1360
IMOVE -96.,0
A=1440: B=14698: C=2100: [D=2p@a: GOSUE {200
IMOVE -50,90
A=1440: B=11@: (C=2106: D=150: GOSUR 1300
MOVE 1840,2359: G0TO 1409
FOR 1=0%, TO 2%« STEP «/40
X=INT(A+B%CQS(I1)): Y=INT(C+D*SIN(I))
PLOT X»Y
NEXT 1: A=@: B=@: (=0: D=@: X=8: Y=@: RETURN
REM % S »
FOR I=« TO «%7/& STEP o/48
X=INT(1940+1Z20%C0OS(1)): Y=INT(2350+120*SIN(I))
PLOT X,Y: NEXT I: X=0: Y=0
A=1v2@: B=116: C=20818: GOSUB 1590
IPLOT -12@,@: IPLOT 8,-56: IPLOT 1468

U/PLOTTER-19

@ES8S
BEB4
arac
BF87
aF9oc
1010
1837
168D
10FA
110F
1127
114F
11CB
11F3
1244
12AA
12BF
12DD
1282
1325
138B
13A0
13BE
13C4
13FD
1463
1478
1496
1494
14CB
14F1
158D
1621
1627
1649
1655
1482
14697
16B9
16CS
146E7
16F3
172A
1742
1757
1769
17AB
17€E8
17E0
1802
1838
1857
1864
187D
1891

BASIC

1500

1408

1700

1800

compiler SB-77081 <X-YDEMO> page 2 87.89.381

A=194@: B=166: C=2010: GOSUB 160806
FOR I=a%#7/6 TO «%186/180 STEP -«/60
X=INT(203Q+135%C0S(I)): Y=INT(22378+135%#SIN(I))
PLOT XY
NEXT I: IPLOT -¢G,08: X=0: Y=0: IMOVE -38,45
IPLOT 159,808
FOR I=«%#8/9 TO «%7/6 STEP /60
X=INT(2830+85#C0S(I)): Y=INT(2378+85*SIN(I))
PLOT XY
NEXT I: X=0: Y=0
A=1940: B=2106: (=2616: GOSUB 1580
IPLOT -198,0: IPLOT ©,150: IPLOT 176,90
A=1928: B=66: C=2010: GOSUB 1408
FOR I=w¥*7/6 TO «%8/9 STEP -«/40
X=INT(1966+176#C0OS(I)): Y=INT(22358+178%SIN(I))
PLOT X»Y
NEXT I: X=@: Y=8: GOTO 17086
REM * SUB A *
FOR I=«/6 TO -o/2 STEP -a/640
X=INT(A+B#C0OS(I))?: Y=INT(C+B*SIN(I))
PLOT XY
NEXT I: X=0: Y=8: RETURN
REM * SUB B *
FOR I=-«#/2 TO «/& STEP «/49
X=INT(A+B#COS(I)): Y=INT(C+B*SIN(I))
PLOT X»Y
NEXT I: X=8: Y=@: RETURN
REM * DIAMOND #
MOVE 3000,2050
FOR ZI=1 TO 23
A(Z)=INT(35B%COS(2%a%(7-1)/23+«/2)+300606)
B(Z)=INT(-358#SIN(2%~%(1-1)/23+4/2)+2858)
NEXT Z
FOR S=2 TO 11
L=2-§
X=A(23): Y=B(23)
MOVE X»Y
FOR I=1 TO 24
J=L+S
IF J<24 THEN 1808
J=J-23
X1=A(J): L=J: Y1i=B(J)
A=X1-X: B=Y1-Y
IPLOT A»B
X=X1: Y=Yl
NEXT I: NEXT $: X=@: Y=@: X1=@: Y1=8: A=0: B=0
MOVE 1650,1328
REM #PRINT " 3D-GRAFH"*
A$=" 3D-GRAPH"
FOR I=3 TO @ STEP -1
MOVE 14658,1320
ANGL I
CTYPE AS$
NEXT I: A¢=""
REM * 3D-GRAPHIC

U/PLOTTER-20

1891
12A2
18RE
12F2
1928
194K
1975
19B3
19FE
1A47
1AAZ
1RG4
1B39
1BR&E
1B92
1 EBBE
1BCA
1cez
1ca9
1CaF
12D
1068
1CAZ
10eF
1D7B
1DEE
10DS
1E42
{EAS
1EBS
1EBE
1EC!
1EES
1FacC
1Fi2
1F18
1FaD
1Fée
1FA4
1FAA
1FBA
1FDS
2049
285E
2879
z20ce
2805
20FC
z1@2
2139
2145
21%A
21E8
2214
2242

1700

20806

2106

2200
2300

2400

2790

compilter SB-7781 <X-YDEMO> page 3 a7.89.21

T=B: S5=8
FOR L=& TO 255

D(a,L)=-1: D(1,L)=-1% NEXT L

MOVE 10@,25a

FOR Y=-188 TO 180 STEP 4

FOR X=-18@ TO 188 STEF 4

IF (Y=-180)%(X=120) THEN 24980
R=«a/180%SQAR(X%X+Y%Y)
I=198*C0NS(R)-30*C0S(2*%R)
ASINT(110+X/24(16-Y/2)/2)
B=INT((116-Y/2-2)/2): B=192-H

IF (A<@)+(A»255) THEN 2060

IF D(@,A)=-1 THEN 2188

IF B<=D(@,A) THEN 2304

IF B>»=D(1,A) THEN 2494

NEXT X

IMOVE @,0: T=08: S=8

NEXT Y

GOTO 2706

IF A=@ THEN 220@

IF D(B,A-1)=-1 THEN 22080

IF D(@,A+1)=-1 THEN 2z&@
D(B,A)=INT((D(BA-1)+D(B,A+1))/2)
D(1,A)=INT((O(1,A-1)+0(1,A+1))/2)
GOSUB 25@0@: GOTO 2990

D(@sA)=E: D(1,A)=B: GOSUE 25@8@: GOTO 20668
GOSUB 2588: D(@,A)=B: IF D(1,A)=-1 THEN D(1,A)=EB
GOTO 2G86 .
GOSUE 25@@8: D(1,A)=E: IF D(G,A)=-1 THEN LO(1,A)=E
GOTO Z@ea

REM *SUB DATA OUT #*

DX=100+7%A: DY=8%B

MOVE DX,DY: FPDOWN : FUF

RETURN

REM #*SUB GENSUI *

FOR K=1 TO 58: E(K)=@: NEXT K

FOR I=1 TO 5@

E(I)=5IN(I*a/12.5)

NEXT I

N=15

FOR I=1 TO N

D=S*I1/N+S: G=(N-I+@.5)/N#4: 0=0OX: P=0Y
MOVE 0P

FOR J=1 TO 5@

0=DX+E(J)*G*(58-J): P=P+D

PLOT 0,P

NEXT J: NEXT I: MOVE DX,DY: GOTO 19@@
REM * SIN(X)/X =

MOVE 2358,900

XAXIS 87,12

MOVE 2870,7a6

YAXIS 200,4: MOVE 235@,909

FOR I=-4 TO & STEP ©.08

IF I=0 THEN Y=1: X=8: GOT0D 2889

X=1l%a

U/PLOTTER-21

RASIC compiler SB-7761 <X-YDEMO> page 4

-
IPLOT 174,08

MARK 2: IPLOT 174,-238: MARK 4

T @,-3@@: IPLOT -1844,06

ANGL @i As$=""

PREAR (V= S HI@RTEST

224F Y=SIN(X)/X

2264 2806 A=2870Q+INT(27.5%X+0.5)

229E B=98@+INT (402+Y)

22BF PLOT AyB

22D4 NEXT I

22DA MOVE 225@,12@@: DOTM : MARKE |

2329 IPLOT 174,8: MARK 2: IPLOT 174,-2808:

23ED IFLOT 174,266: MARK S: IPLOT 174,2006: MARK &t
2492 DOTo

249R MOVE 23%5@,76@8: IFLOT &,%@8: IPLOT 1644,0: IFLO
256C MOVE 3108,808: SIZE 2: A$="XAXIZ": CTYFE A$
25D7 A$="YAXIS": MOVE 28@8,1300: ANGL 1: CTYFE As%:
2668 REM * SHARP SIZE

24468 MOVE 2558, 360

2696 B$="SHARP "

246AA FOR I=1 TO i< STEF &

26D1 SIZE 1

26E0 CTYPE RS

246F2 NEXT I: Bs$=""

2766 CSIZE

27aF REM * CHARACTOR SET #

278@F MOVE 406,150

2736 C$="1234567890ABCDEFGHIJKLMNOPRRETUVWXYZ

277¢C CTYPE Cs

278E REM * DOTO TYFE *

278E HOME : PLCOT ©,2500@: PLOT 3596,256@: FLOT 2598,
2863 H=3560: V=2478: R=13

2891 FOR I=28 TO &8 STEF 20

28ERF DoT I

28CE IPLOT @.V: IPLOT H,@: IPLOT @&,-V: IPLOT -H,@:
296D V=V-~-2#R: H=H-2#R

299D NEXT I

29A3 HOME : IMOVE 40,40

Z29D3 DOTG : IPLOT @,V: IPLOT H.8: IFLOT &,-V: IFLOT
2A66 D$="PEN UP DOWN"

ZAT7F MOVE 2@58,40@

ZAAb CTYPE D$

ZABS IMOVE 58,0

2ADF FOR I=1 TO S: PUP : PDOWN : NEXT I

2B12 CSIZE ¢ DOTO : ANGL @d: HOME

2BA4S END

*% Compiler found no errors.

U/PLOTTER-22

@: PLOT @,6:

IMOVE RsR

-H, @

IMOVE 15,17

Personal Computer

ms-c08

N T £

SHARP

R R kT e e R e e R e R e L S R e e R e L e R e L LN}

R R ST Ty]

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

R et R e R N e R N L T L eepy

R e el e e ke k dae R e e e e N N N L T T e S A N N e e L e L b h e T ST S e S e

—— CONTENTS ——

)

(@)

USING LIBRARY ROUTINES. i, 1 g

MONITOR SUBROUTINES (MONEQU .LIB).................... 2 D(t_s

3

FDOS SUBROUTINES(FDOSEQU .LIB)ccvuu... 7 Eﬁ

OULIINe . .. e e e, 7 _5

CLI (Command Line Interpreter) Subroutines 8 -
10CS (Input Output Control System) Subroutines 11
Utility Subroutinesttt 17
FDOS Common Variablesc0cooev.... 24
CLI Intermediate Code Table 26
BASIC RELOCATABLE LIBRARY (RELO.LIB)................. 27
Type 1 and Type 2 Character String Formats 31
INDEX OF LIBRARY NAMES 32

Li8

Ps USING LIBRARY ROUTINES

The FDOS master diskette contains three libraries (MONEQU.LIB, FDOSEQU.LIB and RELO.LIB).

MONEQU.LIB is a file of monitor subroutine
addresses defined with the EQU statement. That is,

it contains a program such as that shown at right which WRINF: EQU 021DH

has been assembled and converted to the library (.LIB) WRDAT: EQU 024EH
mode. RDINF: EQU 025FH
Monitor subroutines are often used when creating RDDAT: EQU 027DH

VERFY: EQU 0286H
BRKEY: EQU 0527H

PRTHL: EQU 0568H
First, the subroutine names are written as is (without PRTHX: EQU 056DH

programs with the assembler; in such cases, they are

used as described below.

addresses defined) as external names when the program ASCI: EQU 0583H

is written. These are then assembled with the assembl- ‘

er. When the assembly listing is reviewed at this time,

the symbol “E” is affixed to indicate that the names Part of the content; of MONEQU . ASC
are external names. Next, the program is linked;

MONEQU.LIB is linked at this time also. For example,

2> LINK GAMEPRG]I, $FD1 ; MONEQU.LIB

L Program created

MONEQU.LIB must be written last at this time.

FDOSEQU.LIB is a file of subroutine aadresses in FDOS which are defined with the EQU statement; it
is used in the same manner as MONEQU.LIB. Since MONEQU.LIB is contained in FDOSEQU,LIB, it is
only necessary to link FDOSEQU.LIB when both monitor and FDOS subroutines are to be used at the
same time. ‘

RELO.LIB is a library of subroutines for programs created with the BASIC compiler. It contains sub-
routines for the four basic arithmetic operations, functional calculations, character string processing, error
message display and many others. In other words, whereas MONEQU.LIB and FDOSEQU.LIB are simple
collections of EQU statements, RELO.LIB contains actual subroutines.

When the linker is used for linkage with RELO.LIB, it is possible to select only the routines required
from the many available for linkage.

RELO.LIB is used in the same manner as MONEQU.LIB and FDOSEQU.LIB. Further, the contents
of MONEQU.LIB and FDOSEQU.LIB are included in RELO.LIB.

Source programs MONEQU.ASC and FDOSEQU.ASC are also included on the master diskette along
with MONEQU.LIB and FDOSEQU.LIB. It is possible to modify and add to the libraries by regenerating

the source programs to recreate the libraries as necessary.

Note:
Detailed procedures for using FDOSEQU.LIB are contained in "LINKING ASSEMBLY PROGRAM

WITH FDOS" in Appendix; see "EXAMPLE OF PLOTTER CONTROL APPLICATION" in Programming

Utility for details on RELO.LIB.
LIB-1

MONITOR SUBROUTINES (MONEQU.LIB) PY

Subroutine name

(hexadecimal address) Function Registers preserved
CALL LETNL . . . All registers
(0764H) To change the line and set the sursor to the beginning of the next line. except AF
CALL NL Changes the line and sets the cursor to its beginning if the cursor is not | All registers
(0757H) already located at the beginning of a line. except AF
CALL PRNTS . - . All registers
(063AH) Displays one space only at the cursor position on the display screen. except AF
Handles data in A register (accumulator) as ASCII code and displays it
CALL PRNT on the screen, starting at the cursor position. However, a carriage return All registers
(063CH) is performed for ODH and the various cursor control operations are except AF
performed for 01H—06H when these are included.
Displays a message, starting at the cursor position on the screen.
CALL MSG Th_e start‘mg address of the message ml:lSt be‘ specified in the register All registers
(06BSH) pair DE in advance. The message is written in ASCII code and must end except AF
in ODH. A carriage return is not executed, but cursor control operations
(control codes: 01H to 06H) are performed.
CALL MSGX Almost the same as MSG, except that cursor control codes are for All registers
06AFH reverse character display. except AF
p
CALL BELL . All registers
(0AS0H) Sounds a momentary tone (approximately 880 Hz) except AF
Plays musical data. The starting address of the musical data must be
specified in advance in the register pair DE. As with BASIC, the
M v musical interval and the duration of notes of the musical data are Al rec
CAL(’)I;A EI_:"D expressed in that order in ASCII code. The end mark must be either regli;‘rs
(3H) ODH or 2AH (for the character '">""). The melody is over if C flag is except
0 when a return is made; if C flag is 1 it indicates that | BREAK
was pressed.
Sets the musical tempo. The tempo data (1 to 7) is set in and called
from A register.
A< 0lH Slowest
CALL XTEMP A < 04H Medium speed)
(09BEH) A<O07H Fastest All registers
Care must be taken here to ensure that the tempo data is entered in A
register in binary code, and not in the ASCII code corresponding to the
numbers "'1'" to " 7" (31H to 37H).
Sets the built-in clock. (The clock is activated by this call.) The call
CALL TIMST conditions are. All registers
(09CAH) A <0 (AM), A < 1 (PM) except AF
DE < the time in seconds (2 bytes)
CALL TIMRD Reads the value of the built-in clock. The conditions upon return are: All registers
(0A16H) A< 0(AM), A <1 (PM) except AF
DE < the time in seconds (2 bytes) and DE

LiB-2

Subroutine name

(hexadecimal address) Function Registers preserved
CALL BRKEY - Checks whether was pressed. Z flag is set if it was pressed, All registers
(0527H) and Z flag is reset if it was not. except AF
Inputs one line entered from the keyboard. The starting address in
which the data input is to be stored and the number of characters which
can be input must be specified in advance in the register pair DE and
memory location KNUMBS (OBE3H), respectively. Key input is termi-
nated by pressing the (or) key, at which time end mark
CALL GETL ODH is stored following the data entered. The maximum number of
(OBESH) characters which can. be input (including the end mark) is 160. The All registers
data input is displayed on the screen. Cursor control, insertion and dele-
tion are accepted. Pressing the key during key input sets
break code OBH at the beginning of the address specified in the register
pair DE and returns control to the caller. This subroutine is also called
by the monitor program with the register pair DE loaded with memory
location BUFER (1100H) and location KNUMBS loaded with 39 (27H).
Takes one character only into the A register from the keyboard. For
example, when this subroutine is called with the B key held down,
CALL GETKY ASCII code 42H, corresponding to the character ''B", is loaded into the All registers
(0610H) A register and control is returned. If no key is held down, control is except AF
returned with the A register loaded with 00H.
Key input is not displayed.
CA(I;)I;S?;I)MO Sets the number of characters per line on the CRT screen to 40. :g,rggl’s[;gsale])écg;f
CA%OI; SCSI}{ll)lSO Sets the number of characters per line on the CRT screen to 80. Qg’r&gﬁ;%rsaiﬁcgf

CALL GETCRT

Takes the line on which the cursor is located from the display data.
The starting address where the data taken is to be stored and the number
of characters which can be taken must be specified in advance in the

All registers

(0C7CH) register pair DE and memory location KNUMBS, respectively. End mark | except AF
ODH is stored automatically following the data. The maximum number
of characters which can be taken (including the end mark) is 160.
CALL PRTHL Displays the contents of the register pair HL on the display screen as a All registers
(0568H) 4.digit hexadecimal number. except AF
CALL PRTHX Displays the contents of the A register on the display screen as a 2-digit All registers
(056DH) hexadecimal number. except AF
CALL ASCI Converts the contents of the lower 4 bits of A register from hexadecimal | All registers
(0583H) to ASCII code and returns after setting the converted data in A register. except AF
Converts the 8 bits of A register from ASCII code to hexadecimal and
CALL HEX returns after setting the converted data in the lower 4 bits of A register, All registers
(058DH) When C flag = "'0" upon return A < hexadecimal except AF

When C flag =""1"" upon return A is not assured.

Li8-3

Subroutine name

Function

(hexadecimal address) Registers preserved
Handles a consecutive string of 4 characters in ASCII code as hexadeci-
mal string data and returns after setting the data in the register pair HL.
The call and return conditions are as follows.
CALL HLHEX . DE <« starting address of the ASCH string (e.g.,"'3" "1 "A" "'5"") All registers except
(05A2H) t pE AF and HL
CALL HLHEX
C flag=0 HL < hexadecimal number (e.g., HL=31A5H)
C flag=1 HL is not assured.
Handles 2 consecutive ASCII strings as hexadecimal strings and returns
after setting the data in A register. The call and return conditions are
as follows.
CALL 2HEX DE < starting address of the ASCII string (e.g.,"' 3" "'A") All registers except
(0SB1H) t—pE AF and DE
CALL 2HEX
Cflag=0 A < hexadecimal number (e.g., A = 3AH)
Cflag=1 A isnot assured.
CALL 77KEY Awalt§ k.ey input while causing the cursor to_ flash. When a key entry is All registers except
made it is converted to display code and set in A register, then a return
(0OD77H) . AF
is made.
Controls the display on the display screen. The relationship between
A register at the time of the call and control is as follows.
A register
00H Same function as [SHIFT] + [0]
01H Same function as
02H Same function as
03H Same function as
04H Same function as
05H S functi
CALL ?DPCT ame function as | HOME All registers except
(0714H) 06H Same function as AF
07H Same function as |DEL
08H Same function as |INST
09H Same function as |[GRPH
0AH Same function as |SFT LOCK
OBH No control
0CH Same function as
ODH Same function as [CR:
OEH Cancels the GRAPHIC and SHIFT LOCK key input
mode :
OFH Cancels the REVERSE key input mode

Lie4

Subroutine name

(hexadecimal address) Function Registers preserved
Sets the current position of the cursor on the display screen in register
pair HL. The return conditions are as follows.
CALL 7PONT
HL <« cursor position on the display screen (V-RAM address)
(Note) The X—Y coordinates of the cursor are contained in DSPXY)
CALL ?PONT (10D1H). The current position of the cursor is loaded as All registers except
(0904H) follows. AF and HL
LD HL,(DSPXY) ;H < Y coordinate on the screen.
L « X coordinate on the screen.
The cursor position is set as follows.
LD (DSPXY), HL
Writes the current contents of a certain part of the header buffer (des-
CALL WRINF cribed later) onto the tape, starting at the current tape position. All registers
(021DH) Return conditions t AF
Cflag=0 No error occurred. excep
Cflag=1 The | BREAK]| key was pressed.
Writes the contents of the specified memory area onto the tape as a |
CMT data block in accordance with the contents of a certain part of |
CALL WRDAT the header buffer. All registers
(024EH) Return conditions except AF
Cflag=0 No error occurred.
Cflag =1 The | BREAK| key was pressed.
Reads the first CMT header found starting at the current tape position
into a certain part of the header buffer.
CALL RDINF Return conditions All registers
(025FH) Cflag=0 No error occurred. except AF
Cflag=1,A=FFH A check sum error occurred.
Cflag=1,A#FFH The|BREAK|key was pressed.
Reads in the CMT data block according to the current contents of a
certain part of the header buffer.
CALL RDDAT Return conditions All registers
(027DH) Cflag=0 No error occurred. except AF
Cflag=1,A=FFH A check sum error occurred.
Cflag=1,A#FFH The | BREAK] key was pressed.
Compares the first CMT header found starting at the current tape posi-
tion with the contents of the memory area indicated by the header.
CALL VERFY Return conditions All registers
(0286H) Cflag=0 No error occurred. except AF
Cflag=1,A=FFH A match was not obtained.
Cflag=1,A#FFH The |[BREAK] key was pressed.
Pushes registers IX, HL, DE and BC. The RET instruction at the end of
this subroutine then automatically POPs these registers.
CALL PUSHR SUBR : CALL PUSHR All registers
(ODF1H) RET Z . POP and RET except IX
if Z flag=1
RET ; POP and RET

CALL PUSHR2
(ODFDH)

Pushes registers IX, HL and BC. The RET instruction at the end of
this subroutine then automatically POPs these registers.
SUBR2 : CALL PUSHR?

RET Z ; POP and RET
if Z flag=1
RET : POP and RET

All registers
except IX

LIB-5

(Note) The contents of the header buffer at the specific addresses are as follows. The buffer starts at
address 1180H and consists of 128 bytes.

Address Contents
This byte indicates one of the following file modes.
01H Object file (machine language program)
02H BASIC text file
IBUFE 03H BASIC data file
(1180H) 04H Source file (ASCI file)
05H Relocatable file (relocatable binary file)
AOH PASCAL interpreter text file
03H PASCAL interpreter data file
These 17 bytes indicate the file name. However, since ODH is used as the end mark, in
IBU1 . .
(1181H) actuality the file name is limited to 16 bytes.
Example: AIM [P L
IBU18 L . o
These two bytes indicate the byte size of the data block which is to follow.
(1192H)
These two bytes indicate the data address of the data block which is to follow. The loading
I1BU20 address of the data block which is to follow is indicated by ""CALL RDDAT". The starting
(1194H) address of the memory area which is to be output as the data block is indicated by ""CALL
WRDAT".
I1BU22 - . L
(1196H) These two bytes indicate the execution address of the data block which is to follow,
IBU24 These bytes are used for supplemental information, such as comments.
(1198H)
Example
Address Content
1180 01 ; indicates an object file (machine language program)
1181 S’ ; the file name is’SAMPLE’.
1182 A’
1183 M’
1184 P’
1185 'L’
1186 *E’
1187 0D
i ig? } Variable
iig; (2)8 } ; the size of the file is 2000H bytes.
i ig: ?(3) } ; the data address of the file is 1300H.
iig: ?2 } ; the execution address of the file is 1360H.

LIB6

Py FDOS SUBROUTINES (FDOSEQU.LIB)

—OQutline—

FDOS subroutines can be broadly divided into three groups. That is,
1. CLI (Command Line Interpreter) subroutines
2. IOCS (Input Output Control System) subroutines
3. Utility subroutines

CLI subroutines are used to translate command lines appearing within user programs. That is, when
programs are called in which switches and arguments appear in appended format (such as RUN PROG/P
FILE1, FILE2 [CR]), these subroutines translate those switches and arguments.

IOCS subroutines are used to open and close files and devices. Utility subroutines are other general

‘ purpose subroutines.

Command lines are strings of characters (which have been converted to intermediate code) which are
input from the keyboard as FDOS commands or other character strings in the same format. In the expla-
nation below, except where otherwise indicated, command lines appear in intermediate code. See the table

on page 26 for the intermediate code.

LIB-7

—CLI (Command Line Interpreter) Subroutines—

TRS10

Function:

Input registers:

Calling procedure:

Output :gister:

Converts FDOS command lines written in ASCII code into intermediate code.
The HL register contains the starting address of the command line written in ASCII
code. The DE register contains the starting address of the area storing the command

line converted to intermediate code.

CALL TRSI10
CF=0...c...... Normal
CFEF=1.iruran.. Error (A < error code)

Note: See the ''System Error Messages' in System Command for details. The same applies below.

Registers preserved:

. CLI (Command Line Interpreter)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

All registers except AF.

Example of use (DATE/P)

Translates and executes FDOS

LD HL, DATE
command lines. LD DE, (RJOB)
The HL register contains the PUSH DE
CALL .CLI
command line pointer. POP HL
LD DE, (RJOB) LD (RJOB), HL
PUSH DE : JP C, ERROR
CALL CLI :DATE D:EFB B1H
POP HL : . DEFB 88H } Intermediate
de for DATE/P
LD (RJOB), HL DEFB opH | o
CF=0.......... Normal
CF=1 ... Error (A < FFH)
None

Caution: The LIMIT, RUN, EXEC and DEBUG commands cannot be executed.
See page 25 for the RJOB command.

? HEX (Check Hexadecimal)

Function:
Input registers:

Calling procedure:

Output registers:

Registers preserved:

Converts a 4-digit hexadecimal data item starting with "$" into sixteen bit, binary
notation.

HL contains the pointer; it should specify "$".

CALL ?HEX
CF=1 ... Not a hexadecimal number. (A < 3, and HL are preserved)
CF=0........ a hexadecimal number. (DE <« data, HL indicates the address

following the hexadecimal number)
All registers except AF, DE and HL.

LiB-8

? SEP (Check Separator)

Function:
Input registers:

Calling procedure:

Output registers:

Registers preserved:

Checks whether the contents of the address indicated by the HL register are a sepa-
rator (one of the following: e,).
Register HL is the pointer.

CALL 7?SEP
CF=1 .. Not a separator. A< 3(error code)and the HL register are preserved.
CF=0....... A separator.

A =2CH ... The separator is a space or a comma " ., ", ", " (the HL register

then points to the address following the separator)
A =0DH ... The separator is orslant "/ " (the HL register points to the
separator)

A=3AH ... The separator is a colon " :" (the HL register points to the
separator)

All registers except AF and HL.

? GSW (Check Global Switch)

Function:

Input registers:

Calling procedure:

Determines whether the global switch on the command line is correct and, if so,
stores it in the area within FDOS.

The DE register contains the starting address of the switch table. The HL register
contains the command line pointer which points to the global switch,

LD DE, SWTBL
CALL ?GSW

SWTBL : DEFB swi

Output registers:

Registers preserved:

DEFB sw2 List of items which ma by used as global switches

- (these are written in intermediate code, from 0 to a maximum of 5.
. See page 26)
DEFB swn

DEFB FFH End of table
CFEF=1 ... Error (A < error code)
CF=0........ Normal. The HL register points to the address following the global

switch.
All registers except AF, DE and HL.

LiB-9

TESW (Test Global Switch)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Determines the presence or absence of the specified global switch. Subroutine ’

"27GSW" must be called before this subroutine is used.

None
CALL TESW
DEFB global switch Example:
CF=0............
. CALL
The specified global DEFB
switch is present. PUSH
CALL
CF=1.......
o POP
The specified global CCF
switch is not present. CALL
All registers except AF. : JP

? LSW (Check Local Switch)

Function:

Input registers:

Calling procedure:

Output registers:

This routine outputs whether or not global
switch /P is present to the line printer or the

CRT.

TESW

88H ; intermediate code for /P

AF

C, MSG ; displayed on the CRT if the
switch is not present.

AF _

;CF < CF

C, PMSG ; Printed on the line printer if
the switch is present.

C, ERROR ;indicates a line printer error.

Used to determine the local switch which is attached to the file name on the com-

mand line.

The HL register is the command line pointer which indicates the start of the file

name.
CALL ?LSW
CF=1...... Error (A < error code)
CF=0.......... Normal
ZF =1 No local switch. (A < 0)
ZF=0.............. Local switch is present. (A « intermediate code for the local

switch)

Registers preserved: All registers except AF.

Example:

Read-opens (ROPEN) a file with logical number 2 if a local switch is not present; if local

switch /O is present the file is write-opened (WOPEN) with logical number 3; otherwise, an

€ITor occurs.

L2:

L3:

EXX

LD B, 4 ; default file mode .ASC
EXX

CALL °?LSW

JP C, ERROR

JR NZ, L2

LD C 2 ; logical number 2

CALL ROPEN

JR L3

CP 89H ; intermediate code for /O
LD A 8 ; error code (il local switch)
JP NZ, ERROR

LD C 3 ; logical number 3

CALL WOPEN

JP C, ERROR

LIB-10

—I10CS (Input Output Control System) Subroutines—

Runction:

Input registers:

Calling procedure:

Output registers:

ROPEN (Read Open)

Read-opens a file (including the input/
output device).

HL: Pointer which indicates the start of
the file name.

C : Logical number (see note 3)

B’ : Default file mode (see note 1)

CALL ROPEN
CF=1....... Error (A < error code) . FL
CF=0....... Normal

HL: Pointer (indicates the next separator)
B’ : File mode (see note 1)

C’ : File attribute (see note 2)

L’ : Device number

IY : Starting address of the device table

(see note 4)

Registers preserved: Only registers BC, DE and IX.

WOPEN (Write Open)

Fuction:

Input registers:

Calling procedure:

Output registers:

Write-opens a file (including an input/
output device).

HL: Pointer which indicates the start of
the file name.

C : Logical number (see note 3)

B’: Default file mode (see note 1)

CALL WOPEN .

- PTP
CF=1....... Error (A < error code)
CF=0........ Normal

HL: Pointer (indicates the next separator)
B’ : File mode (see note 1)

C’ : File attribute (only for "0'")

L’ : Device number

IY: Starting address of the device table

(see note 4)

Registers preserved: Only registers BC, DE and 1X.

LIB-11

LD
LD
EXX
LD
EXX
CALL
CALL
RET

: DEFB

DEFM
DEFB

LD
LD
EXX
LD
EXX
CALL

. DEFB

DEFB
DEFB
DEFB

Example (when $FD1 ; ABC)

HL, FL
C, 2 (logical number)

B, 4 (. ASC)
ROPEN

C,ERR (see page 23)
c

90H ($ FD1)
";ABC’

ODH

Example ($PTP/PE/LF)

HL, PTP
C, 3 (logical number)

B, 4 (. ASC)
WOPEN

C, ERROR

AlH ($ PTP)
8FH (/PE)
8CH (LF)
ODH

MODECK (Filemode Check)

Function:

Input registers:

Calling procedure:

Output registers:

Checks whether the file mode indicated in register B’ for the file opened is correct or
not.

Register B’ contains the file mode of the opened file.

CALL MODECK

DEFB file mode number (see page 26 concerning file modes)

CF=0........ The file mode is correct.

CF=1 ... The file mode is not correct. A < error code.

Registers preserved: All registers except AF.

(Note 1)

(Note 2)

(Note 3)

(Note 4)

The default file mode is the mode which is assumed when no mode is specified in the com-

mand line. The numbers enclosed in parentheses indicate the file mode number. (see page 26.)

Example:
Command line Default file mode Actual file mode
ABC . ASC . ASC G LASC (4
ABC . LIB .RB (5) .LIB (7))
ABC .OBJ §)) .0BJ (1)
ABC . ASC 4) ASC B

The file attribute indicates the type of tile access, and is expressed as one of the following

ASCII codes.
"0" a file with no attribute.
"R" a file for which reading is inhibited. (Read protected file)
"W" a file for which writing is inhibited. (Write protected file)
"P" a file for which both reading and writing are inhibited. (Permanent file)

However, files with the attribute "P' can be read and written if the file mode is
.OBJ. The EXEC command can be executed if the file mode is .ASC.

Normally, the programmer does not need to be aware of file attributes since they are managed

by FDOS.

Logical file numbers are numbers within FDOS which have a one-to-one correspondence with

physical files opened (including input/output devices). Numbers from 1 to 249 may be used as

logical numbers; however, since programs within FDOS use all of the numbers from 128 on,

user programs should use only the numbers from 1 to 127 to avoid conflict.
An explanation of the device table is contained in "USER CODED 1/O ROUTINES" in

Appendix; however, except for special I/O operations, the programmer normally does not

need to be aware of the contents of the device table.

LiB-12

GET1L (Get 1 Line)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Reads in one line from the file whose logical number is specified in the C register.
The line read is one which is terminated with ODH. The data read is stored in the
area indicated by the address in the DE register. The length of the line, including
ODH, must be no more than 128 bytes.

The C register contains the logical number. The DE register contains the address of

the area in which the data is stored.

CALL GETIL

CF=0......... Normal
CF=1,A=0........... File end
CF=1,A#0....... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

GET1C (Get 1 Character)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Reads one byte from the file whose logical number is specified in the C register.

The C register contains the logical number.

CALL GETIC

CF=0....... Normal (A < data read)
CF=1,A=0....... File end
CF=1,A+#0..... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

GETBL (Get Block)

Functions:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Read data into the address indicated in the DE register from the file whose logical
number is specified in the C register; only the number of bytes of data indicated
in the HL register are read in.

The C register contains the logical number. The DE register contains the address in

which the data is to be stored. The HL register contains the number of bytes of data

to be read.

CALL GETBL

CF=0.....c....... Normal DE < address of the next block of data to be read
CF=1,A=0..... File end HL < number of bytes of data actually read
CF=1,A#0 ... Error (A < error code)

IY: Starting address of the device table (see note 4 on page 12)
Only registers BC and IX.

LIB-13

? EOF (Check End-of-file)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks for the end of a read-opened file. Z flag becomes "'1" when an attempt is .
made to read beyond the end of data.

The C register contains the logical number.

CALL ?EOF

CF=1....... Error (A < error code)
CF=0,ZF=1 Not file end
CF=0,ZF=0.......... File end

1Y : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

PUT1C (Put 1 Character)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Outputs one byte of data to the file whose logical number is specified in the C re- .

gister.
The C register contains the logical number. The A register contains the data to be

output.

CALL PUTIC

CF=0........... Normal
CF=1......cc... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

PUT1L (Put 1 Line)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Outputs the line starting at the address specified in the DE register to the file whose
logical number is specified in the C register. Outputs the ending carriage return. .
The C register contains the logical number. The DE register contains the starting

address of the data to be output.

CALL PUTIL
CF=0............ Normal
CF=1....... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

LIB-14

PUTBL (Put Block)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Outputs the number of bytes of data indicated in the HL register to the file whose
logical number is specified in the C register, starting at the address indicated in the
DE register.

The C register contains the logical number. The DE register contains the starting
address of the data to be output. The HL register contains the number of bytes of
data to be output.

CALL PUTBL
CF=0........... Normal (DE <« address following the end of the block output)
CF=1....... Error (A « error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC and IX. (Register HL is also preserved if C flag = 0)

PUTCR (Put Carriage Return)

Outputs a carriage return to the file whose logical number is specified in the C
register.

The C register contains the logical number.

CALL PUTCR
CF=0......... Normal
CF=1....... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)
Only registers BC, DE, HL and IX.

PUTM (Put Message)

‘ PUTMX

Function:

Input registers:

Calling procedure:

Output registers:

. Registers preserved:

Outputs the line starting at the address indicated in register DE to the file whose
logical number is specified in the C register. PUTM and PUTMX operate in the same
manner except for their handling of SCRT and $LPT. Cursor control operations ([,
A, etc.) are executed only when PUTM is used; when PUTMX is used,they are only
displayed or printed as reverse characters. The end code (ODH) is not output.

The C register contains the logical number. The DE register contains the starting
address of the data to be output.

CALL PUTM or CALL PUTMX

CF=0........ Normal

CF=1....... Error (A < error code)

I'Y : Starting address of the device table (see note 4 on page 12)

Only registers BC, DE, HL and IX.

L1B-15

CLOSE (Close File)

KILL (Kill File) .

Function: Closes or kills the file whose logical number is specified in the C register. If this
subroutine is called when the C register contains 0, all currently opened files will be
closed or killed. (This excludes files which were opened by FDOS itself.)

Input registers: The C register contains O or a logical number.

Calling procedure: CALL CLOSE or CALL KILL

Output registers: CF=0........... Normal
CF=1..... Error (A < error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

LUCHK (LU Number Check)

Function: Checks whether a logical number (contained in the C register) has been defined.
Input registers: The C register contains the logical number.
Calling procedure: CALL LUCHK
Output registers: CF=1....... The logical number has not been defined.
CF=0....... The logical number has been defined.

L’ <+ device number (see page 26 concerning device numbers)

IY <« starting address of the device table. (see note 4 on page 12)
Registers preserved: All registers except AF, HL, IY, D’ and L’.

Example: LD C,5 ; logical number
CALL LUCHK .
JP C, NOTUSE
EXX
LD AL ; device number
EXX
CP 4

JP C, FD

LIB-16

— Utility Subroutines—

MTOFF (Motor Off)

Function:

Calling procedure:

Registers preserved:

Stops the motor of the floppy disk drive. (The drive motor is activated automa-
tically when necessary.)

CALL MTOFF

All registers except AF.

BREAK (Check Break Key)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks whether | BREAK | has been pressed.

None

CALL BREAK

CF=0....... Not pressed.

CF=1....... Pressed. (In this event, A < 37. 37 is the error code.)

All registers except AF.

HALT (Halt Action with Break Action)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks the keyboard and, if the | SPACE | key is pressed, stops execution until the
SPACE |key is pressed again. If | BREAK| is pressed, A < 37 and CF < 1. (37 is

the error code.)

None

CALL HALT

CF=0......... Normal

CF=1...... was pressed. (In this event, A « 37.)

All registers except AF.

LIB-17

SGETL (Screen Get Line)

Function: Inputs one line from the keyboard. The keyboard is provided with the automatic
repeat feature. The line which is actually input is the line in which the cursor is
located when is pressed; the maximum number of characters which can be
input is 160.

Input registers: The DE register contains the starting address of the area (80 bytes required) in
which the data is to be stored.

Calling procedure: CALL SGETL

Output registers: CF=0......... Normal
CF=1....... BREAK |was pressed. A < 0 (not 37)

Registers preserved: All registers except AF.

LTPNL (Let Printer New Line)
PMSGX (Printer Message X)
PMSG (Printer Message)
PPRNT (Printer Print)

PPAGE (Printer Page)

Function: These are printer control routines. Each routine performs the same function for the

printer as does the corresponding monitor subroutine shown below for the CRT.

CRT
LTPNL LETNL
(carriage return)
PMSGX MSGX
PMSG MSG
PPRNT PRNT
PPAGCE —_—
Output registers: CF=0........ Normal
CF=1....... Error (A < error code)

Registers preserved: All registers except AF and IY.

LIB-18

C&L1

&NL

&PRNT

&NMSG

&MSG

&1L

Function: Each subroutine directs output to the printer or CRT depending on the presence or
absence of the global switch (/P). &NL, &NMSG and &1L include the HALT func-
tion (see page 17 for the HALT function).

C&L1 Prepares either the printer or the CRT. This routine must be called before any
other routines are used. Further, "?GSW" must be called before this routine is
called.

&HL Performs the same function as LETNL.

&PRNT Performs the same function as PRNT.

&MSG Performs the same function as MSG.

&NMSG Executes &NL, then executes &MSG.

&IL Executes &MSG, then executes &NL.

Output registers: CF=0........ Normal
CF=1....... Error (A < error code)

Registers preserved: All registers except AF and IY.
See "LINKING ASSEMBLY PROGRAM WITH FDOS" in Appendix for an example of use.

LIB-19

CHKACC (Check Acc)

Function: Checks whether the contents of A register (accumulator) match any of several

different given data items.

; number of data items (1-255)

n items of data to be compared
DEFM "’ " may be used with ASCII.

Input registers: A contains the data items to be checked.
Calling procedure: CALL CHKACC

DEFB n

DEFB datal

DEFB data?2

DEFB data 3

DEFB datan

Output registers: ZF=1 ... e

One of the data items matches the contents of A.

No match was found.

Registers preserved: All registers except the flags.

MULT (Multiply)

Function: Multiplies the contents of the DE register and the HL register (handling them as 16-

bit unsigned integers) and places the result in the DE register.

Input registers: DE, HL
Calling procedure: CALL MULT

Output registers: CF=1 ...

Overflow (result cannot be expressed in 16 bits)

Normal. The DE register contains the result of the calculation.

Registers preserved: All registers except AF, DE and HL.

SOUND (Warning Sound)

Function: Produces the sound "AO+ARA+AR" to indicate that an error has occurred.

Calling procedure: CALL SOUND

Registers preserved: All registers.

LIB-20

BINARY (Convert ASCII to Binary)

Function: Converts an ASCII numeric string into a 16-bit unsigned integer.

Input registers: The HL register contains the starting address of the ASCII numeric string.

Calling procedure: CALL BINARY

Output registers: CF=1...... Overflow (cannot be expressed within 16 bits)

CF=0........ Normal. The DE register contains the converted data. The HL re-

gister contains the address following the end of the numeric string.
If the ASCII characters indicated by HL are not a numeric string,
CF < 0 and DE « 0.

Registers preserved: All registers except AF, DE and HL.

Example: LD HL, BUFFER
CALL BINARY
JP C, ERROR ;if CF = 0, DE becomes 400H.

: HL points to ODH.
BUFFER: DEFM '1024°
DEFB ODH ;must be an ASCII code for other than> 0’ — 9,

CASCII (Convert Binary to ASCII)

Function: Converts a 16-bit unsigned integer into an ASCII numeric string.

Input registers: The HL register contains the 16-bit unsigned integer. The DE register contains the
address of the area in which the ASCII numeric string is to be stored.

Calling procedure: CALL CASCI

Output registers: The DE register contains the ending address of the ASCII numeric string obtained.

Registers preserved: All registers except AF and DE.

Example: LD HL, 1024
LD DE, BUFFER
CALL CASCII
BUFFER: DEFS 10 ; after conversion the ASCII numeric string > 1024 °

is stored.

LIB-21

CLEAR (Clear Area)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Loads a continuous area in the memory with zeros. (The memory area must be 255 .

bytes or less.)
None

CALL CLEAR
DEFB length
DEFW address
None

All registers.

CHLDE (Compare HL, DE)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Compares the contents of the HL register with the contents of the DE register.

HL and DE
CALL CHLDE

FLAG < HL — DE; thatis CF=0,ZF =0
CF=1,ZF=0
CF=0,ZF=1

All registers except AF.

LCHK (Limit Check)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Compares the last usable memory area (the address indicated by the stack pointer

minus 256) with the contents of the HL register.

HL

CALL LCHK

CF=0....... HL <=SP-256
CF=1...... HL > SP-256

At this time, A < 21. 21 is an error code. (memory protect error)

All registers except AF.

Li1B-22

; number of bytes to be cleared.

; the memory is cleared starting at this address.

ERR (Display Error Message)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

ERRX

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

ERWAIT

(Display Error Message and Wait Space Key)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Displays an error message (see the System Error Messages in System Command
for details). The contents of the C register and the IY register must be preserved
from the time the error occurs until this routine is called. Further, the CLOSE or
KILL routine must not be called during that time (otherwise, the contents of the
error message may be incorrect).

The A register contains the error code (no error message is output if the error code
is FFH).

The C register contains the logical number.
\ These may not be necessary depending

The IY register contains the starting address
[on the type of error.

of the device table (see note 4 on page 12)

CALL ERR
A < FFH . Example:
CF < | . CALL SGETL (Page 18)
; CALL NC, &1L (Page 19)

All registers except AF. : JR NC, — 6

CALL C, ERR

RET C
This function displays a colon ("' : "), followed by the contents of the area from the

address following a specified ODH until the next ODH; the specified ODH is the one
which is the (ACC—1)th from the address indicated in the DE register.

The DE register contains the starting

address of the message block. Example:
.] : ERMSG: DEFM ’'SYNTAX'
The A register contains a number : DEFE ODH
(1-255). . DEFM ’'OVERFLOW '’
CALL ERRX) DEFB ODH
: DEFM 'ILD !
A < FFH ATA
DEFB ODH
CF < 1 :
All registers except AF. . LD A, 2
: LD DE, ERMSG
CALL ERRX

This displays * : OVERFLOW °.

1. Calls subroutine ERR if A # 0.

2. Displays the contents of the area starting with the address indicated in the DE re-
gister until ODH.

3. Displays "', & space key" if A = 0.

4. Waits until[SPACE Jor [BREAK] is pressed.

A and DE

CALL ERWAIT

CF=0....... was pressed.

CF=1 ... was pressed. (A < 37)

All registers except AF.
LIB-23

—FDOS Common Variables—

LIMIT (Limit of Memory)

Number of bytes: 2

Meaning: Contains the last address plus one of RAM mounted.

ISTACK (Initial Stack Pointer)

Number of bytes: 2

Meaning: Contains the last address plus one of the memory area which is available to FDOS,
This data is used by FDOS for initialization of the stack pointer. The contents of
ISTACK may be changed by the FDOS LIMIT instruction. The contents of ISTACK

must not be changed by any other means.

ZMAX

Number of bytes: 2
Meaning: Contains the last address of the area being used by FDOS (excluding the stack). The
contents of ZMAX may be changed depending on the next subroutine called.
(ROPEN, WOPEN, CLOSE, KILL, . CLD)
Caution: The area which may be used within the user program as free area is as follows.
1. [Lowest address] = [value contained in ZMAX when the user program was
entered]
+ [number of files which are simultaneously opened
(ROPEN or WOPEN)] x 350
+ [number of files which are simultaneously write-opened]
x 72
+ [number of floppy disk units used] x 128
[Maximum address] = [stack pointer (SP)] —«, ais approximately 256.
2. From ISTACK to LIMIT-1.
3. Area reserved by the DEFS statement within the assembly program.

LiB-24

.DNAME (Default File Name)

Number of bytes: 17
Meaning;: The file name and succeeding ODH contained in this area will be used as the default

file name when the file name is omitted. For example, when this area contains
"ABCD [CR]", "$FD3" appearing on the command line will be interpreted as
"$FD3;ABCD".

MDRIVE (Master Boot Drive)

Number of bytes: 1

Meaning: Contains the drive number minus one (0—3) of the drive containing the master

diskette.

BDRIVE (Boot Drive)

Number of bytes: 1
Meaning: Contains the default drive number minus 1 (0—3). The default drive number is the
number which appears to the left of the prompt " > " when FDOS is in the com-

mand wait state.

MAXDVR (Maximum Drive)

Number of bytes: 1

Meaning: Contains the number of floppy disk dirves connected (1—4).

TODAY

Number of bytes: 7
Meaning: Contains the month, day and year followed by ODH; each element of the date is
indicated with a two-digit ASCII code.

RJOB (Running Job Pointer)

Number of bytes: 2
Meaning: Area which indicates how far command line interpretation has proceeded. When
command lines are interpreted in a user program, the address following that of the

last command line interpreted must be placed in RJOB.

L1B-25

—CLI Intermediate Code Table—

ASCII Intermediate

/D
/C
/E
/G
/L
/N
/S
/P
/0
/T

/LE
/PN
/PO
[PE

code

80 H
81H
82H
83 H
84 H
85 H
86 H
87H
88 H
89 H
8AH
8BH
8CH
8DH
8EH
8FH

! Built-in commandsJ

ASCI Intermediate

RUN
DATE
XFER
DIR

RENAME
DELETE
TYPE
CHATR
FREE
MON
TIME
EXEC

POKE

CONSOLE

Other

code

BOH
B1H
B2H
B3H
B4H
BSH
B6H
B7H
B8H
B9H
BAH
BBH
BCH
BDH
BEH
BFH
COH
ClH

ASCII Device number
$FD1 0
$FD2 1
$FD3 2
$FD4 3
$CMT 4
$MEM 5
6
7
8
9
$PTR 10
11
$KB 12
$SIA 13
$SIB 14
15
ASCII Intermediate
code
KEY C2H
KLIST C3H
BOOT C4H
FAST CSH
REW C6H

Intermediate
code
90 H
91 H
92 H
93 H
94 H
95H
96 H
97H
98 H
99 H
9AH
9BH
9CH
9DH
9EH
9FH

ASCI Device number
SLPT 16
$PTP 17
$CRT 18
19
$SOA 20
$SOB 21
22.
23
$USR1 24
$USR2 25
$USR3 26
$USR4 27
28
29
30
31
ASCI File mode number
S 255
.0BJ 1
.BTX 2
3
.ASC 4
.RB 5
6
.LIB 7
8
9
.SYS 10
11
12
13
14

Intermediate
code
AOH
AlH
A2H
A3H
A4H
ASH
A6H
A7H
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH

Intermediate

code

FOH
F1H
F2H
F3H
F4H
F5H
F6H
F7H
F8H
FO9H
FAH
FBH
FCH
FDH
FEH
FFH

Codes other than those shown in this table are expressed as is in ASCII code. However, this applies only

to 01H-7FH. The codes for some small characters and graphic characters are the same as CLI intermediate

codes; therefore, they cannot be used.

LIB-26

® BASIC RELOCATABLE LIBRARY (RELO.LIB)

The basic relocatable library contains a collection of subroutines which are required by programs
created using the basic compiler. These routines are useful when basic program subroutines (external func-
tions, external commands, etc.) are created using the assembler.

Routines contained in RELO . LIB can only be used as basic subroutines; they cannot be executed as

independent assembly programs.

..INTO
. .INT1
. .INT2 (Convert Floating to Fixed)

Function: Converts a real number expressed in 5 bytes into a 16-bit integer. The absolute value
‘ or any decimal fraction is discarded. (Examples: 1.5 1 -2.7—->=2)
JINTO ... The input range is from —32768 ~ 32767
JINTT L The input range is from 0 ~ 255
JINT2 The input range is from —32768 ~ 65535
Input registers: The HL register contains the starting address of the 5 byte real number.

Calling procedure: CALL ..INTO CALL ..INTI1 CALL ..INT2

Output registers: HL <« integer

Error processing: .. INTO Upon overflow, CF « 1.
JINTI Upon overflow, JP ER3.
JINT2 . Upon overflow, CF « 1.

Registers preserved: All registers except AF and HL.
Note: The . FLTO and CONST subroutines (described below) are used to create the 5-byte real number.

. .FLTO (Convert Fixed to Floating)

Function: Converts a 16-bit signed integer into a 5-byte real number.

Input registers: The HL register contains the 16-bit signed integer. The DE register contains the
staring address of the area in which the real number is stored.

Calling procedure: CALL ..FLTO

Registers preserved: All registers except AF, DE and HL.

LiB-27

CASC’ (Change ASCII)

Function: Converts a 16-bit unsigned integer into an ASCII character string and appends ODH ‘
to the end of it.

Input registers: The HL register contains the 16-bit unsigned integer. The DE register contains the
starting address of the area in which the ASCII character string is stored.

Calling procedure: CALL CASC’

Registers preserved: All registers except AF.

MSGS (High Speed Message)

Function: Performs the same function as the monitor subroutine MSG, but at high speed.

Registers preserved: All registers except AF.

.MOVE’ (Move String) .

Function: Converts a character string from type 1 to type 2. The converted character string
is stored in an area called .WORD. (The type 1 and type 2 character string formats
are explained on page 31.)

Input registers: The HL register contains the starting address of the character string (type 1).

Calling procedure: CALL . MOVE’

Output registers: The DE register contains the starting address of the converted character string.
(The address of .WORD)

Registers preserved: All registers except AF, BC, DE and HL.

FASCX (Convert Floating to ASCII)

Function: Converts a 5-byte real number into an ASCII character string and appends ODH to .
the end of it.

Input registers: The HL register contains the starting address of the real number. The DE register
contains the starting address of the area in which the ASCI character string is
stored.

Calling procedure: = CALL FASCX

Registers preservec: None

LiB-28

CONST (Convert ASCII to Const)

Function: Converts a constant expressed in ASCII code into a 5-byte real number.

Input registers: The HL register contains the starting address of the constant expressed in ASCII
code. The DE register contains the starting address of the area in which the result
is stored.

Calling procedure:© CALL CONST

Output registers: The HL register contains the first address following the constant converted.

Registers preserved: None

Error processing: JP ER3

CHCOND (Character Condition)

Function: Compares the two character strings (type 1.)

Input registers: The HL and DE registers contain the strarting addresses of each of the two character
strings being compared.

Calling procedure: CALL CHCOND

Output registers: FLAG < (DE) — (HL)

that is,

CF=0,ZF =0 ...cceeernnne.n. (DE) > (HL)
CF=1,ZF =0 ..cccccuvrnnne... (DE) < (HL)
CF=0,ZF=1ccuuvrueee. (DE) = (HL)

Registers preserved: All registers except AF, BC, DE and HL.

ER1 ER13
ER2 ER14
ER3 ER21
ER4 ER24
ERS ER37
ER6 ER64
Function: Error message display routine used during BASIC program execution. See the

Error Message table in the BASIC compiler instruction manual (available sepa-
rately).
Calling procedure: JP ER1 (SYNTAX ERROR), etc.

LIB-29

BEERR (Basic Executing Error)

Function: Error message display routine used during BASIC program execution.

Calling procedure: CALL BEERR
DEFB error code (error number in BASIC)
DEFM 'ERROR MESSAGE'’
DEFB ODH

- No return made.

BABORT (Basic Abort)

Function: When a system error occurs during BASIC program execution, this routine displays
the applicable error message and interrupts execution.

Input registers: The A register contains the error code (system error number).
The C register is the logical number.

May not be required depending
The IY register contains the starting address .

] upon the type of error.
of the device table (see note 4 on page 12).

Calling procedure: JP BABORT
Example: LD C, 2
CALL GETIC
JP C, BABORT
Caution: BEERR is a routine which displays > ER nn: message in linenumber (where nn is

the error number in BASIC compiler) when an error occurs in a BASIC program;
BABORT is a routine which displays —~ERR message in linenumber when an error
occurs at the FDOS level. ON ERROR processing will be performed in both cases,
if specified.

LIB-30

. .STOP

Function: Interrupts BASIC program execution. (Corresponds to the STOP instruction of the
BASIC compiler.)
Calling procedure: JP ..STOP

..END

Function: Terminates BASIC program execution. (This corresponds to the END instruction
of the BASIC compiler.)
Calling procedure: JP ...END

-WORD

Function: 257-byte general purpose area.

—Type 1 and Type 2 Character String Formats—

There are two types of character strings which are handled by BASIC, these should be used as appropriate.
Type 1
DEFB length (character string length: 0 ~ 255)

DEFB ODH

LiB-31

INDEX OF LIBRARY NAMES o

Name Type Page Name Type Page Name Type Page
&1L UTYL 19 CONST RELO 29 MODECK 10CS 12
&MSG " 19 ER1 " 29 MSG MON 2
&NMSG " 19 ER2 o 29 MSGS RELO 28
&NL " 19 ER3 " 29 MSGX MON 2
&PRNT o 19 ER4 " 29 MTOFF UTYL 17
...END RELO 31 ERS " 29 MULT " 20
..FLTO o 27 ER6 o 29 NL MON 2
.. INTO o 27 ER13 " 29 PMSG UTYL 18
.. INTI " 27 ER14 ' 29 PMSGX " 18
.. INT2 “ 27 ER21 ” 29 PPAGE " 18
..STOP ' 31 ER24 ” 29 PPRNT ' 18
.CLI CLI 8 ER37 " 29 PRNT MON 2
. DNAME VAR 25 ER64 " 29 PRNTS " 2
. MOVE’ RELO 28 ERR UTYL 23 PRTHL o 3
.WORD o 31 ERRX " 23 PRTHX o 3
2HEX MON 4 ERWAIT " 23 PUSHR " 5
71KEY " 4 FASCX RELO 28 PUSHR?2 " 5
7DPCT " 4 GETIC 10CS 13 PUTIC I0CS 14
7EOF 10CS 14 GETIL " 13 PUTIL o 14
IGSW CLI 9 GETBL " 13 PUTBL " 15
7LSW " 10 GETCRT MON 3 PUTCR " 15
THEX " 8 GETL ' 3 PUTM " 15
7PONT MON 5 GETKY " 3 PUTMX ” 15
?SEP CLI 9 HALT UTYL 17 RDDAT MON S
ASCI MON 3 HEX MON 3 RDINF " 5
BABORT RELO 30 HLHEX ’ 4 RJOB VAR 25
BEERR " 30 IBU1 " 6 ROPEN 10CS 11
BELL MON 2 IBU18 " 6 SGETL UTYL 18
BDRIVE VAR 25 IBU20 " 6 SOUND v 20
BINARY UTYL 21 IBU22 " 6 TESW CLI 10
BREAK " 17 IBU24 " 6 TIMRD MON 2
BRKEY MON 3 IBUFE " 6 TIMST ' 2
C&LI UTYL 19 ISTACK VAR 24 TODAY VAR 25
CASC’ RELO 28 KILL 10CS 16 TRS10 CLI 8
CASCII UTYL 21 LCHK UTYL 22 VERFY MON 5
CHCOND RELO 29 LETNL MON 2 WOPEN I0CS 11
CHKACC UTYL 20 LIMIT VAR 24 WRDAT MON 5
CHLDE " 22 LTPNL UTYL 18 WRINF "

CHR80 MON 3 LUCHK 10CS 16 XTEMP "
CHR40 " 3 MAXDVR VAR 25 ZMAX VAR 24
CLEAR UTYL 22 MDRIVE " 25
CLOSE I0CS 16 MELDY MON 2
Type: MON Monitor subroutine
CLI ... CLI subroutine
I0CS ... 10CS subroutine .
UT(i’SL Utility subroutine FDOS subroutines
VAR ... FDOS common variable subroutine
RELO BASIC relocatable library

LiB-32

Personal Computer

mz-:=08

Appendix

SHARP

B ULC AL DR LTR ATR LT RS BIA DI TR A D T 8 55 8 50 B 0 80 8 G0 B0 B B S BB S B S B 55 B D S T oy © oy Sy B iy e 6 e B Sy e ey S By © Sy BTy S S B ey B B

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series FDOS.

R e T e e N O NP PR P
L e S e e A Ny R 3

R ek i R e R e e e e R e e R e h e b e b R T R R e G N e N S T R T e

— CONTENTS —

LINKING ASSEMBLY PROGRAM WITH FDOS 1
Sample Program (Command), 2
USER CODED I/O ROUTINES 4
UserI/ORoutine 0 4
Relocating User [JORoutinesovviti e, 6
Linking User I/O Routineswith FDOS 6
Sample Program (I/O Driver) ..., 8
CONVERSION OF CASSETTE BASED SYSTEM PROGRAMS..... 11
MEMORY EXPANSION i 12
I/O MAP .. 12
PAPER TAPE PUNCH AND READER INTERFACE 13
Single Name e 13
I/OPoOrts 13
Timing Chart i 14
Preparing a Paper Tape Punch/Reader [/OCard 15
COMMAND TABLES & ERROR MESSAGES 17
FDOS Built-in Commands uuueeo... 17
FDOS Transient Commandsc.iiiinueennnn. 20
System Error Messagesc. i 23
EditorCommands 25
Editor Error Messagesottt i e e e 26
Assembler Messages e 27
Symbolic Debugger Commands 28
Symbolic Debugger Error Messages PP 29
PROM FormatterCommands, 30
File Mode i 31
I/O Devices Handled by FDOS 31
File Attributes 32
ASCII CODE TABLE i, 33
MZ-80B CIRCUIT DIAGRAMS i 34
UNIVERSAL I/O CARD CIRCUIT DIAGRAM 45

APPENDIX

X
©
C
)
Q.
Q
<

LINKING ASSEMBLY PROGRAM WITH FDOS

An object program generated with the FDOS editor, assembler and linker can be executed with the

RUN command.

Example I: 1>RUN GALAXY

This command loads GALAXY.OBJ into memory from the floppy disk and executes it. Execution
of a RET statement in the object program returns control to FDOS. The contents of the stack pointer
must be restored to the value contained when the object program was called before the RET statement is
executed. CF must be reset before control is returned because an error message will be output on the

assumption that the ACC contains a system error code if CF is set.

Global switches and/or arguments can be assigned after the file name in the RUN command as shown

below.

Example 2: 2>RUN ASMZ8/P CONTROL-A[CR]
Global switch ~ Argument

In this case, FDOS converts the entire command line into intermediate codes (refer to the LIBRARY/
PACKAGE Manual), and loads ASMZ8.0BJ into memory from the floppy disk, then executes it. At this
time, the HL register points to the intermediate code corresponding to /P (88H). The RJOB area in FDOS
has the same value as the HL register.

Switches and arguments following the file name (ASMZ8) must be decoded by user object program.
They can be decoded using FDOS subroutines. When the last character (" : "' or ODH) is decoded, the HL
register contents must be stored in RJOB. To return control to FDOS, execute a RET statement in the
object program.

The sample program listed on the following pages illustrates command line decoding. It outputs an
ASCII file to the CRT display or printer. This program operates in a manner similar to the FDOS TYPE

command. The file name of this program is TYPE’. Thus, executing
Example 3: = 2>RUN TYPE’ ABC

outputs file ABC.ASC to the CRT display and executing
Example 4: 2>RUN TYPE'/P ABC

outputs ABC.ASC to the printer.

All external labels (indicated by the E message) in this program list are defined in FDOSEQU. LIB.
See page SYS- 51 is System Command for the RUN command.

APPENDIX-1

—Sample Program (Command)—

JE

E i
OOAE
4E
aF

=

TYFEER:

SWTEL

&0 &)
O

" 3
£ Calb

CF
JE

ROPEN
e
BINL

Oy TYPEER
TEHYW

By

Oy FRA
£ TYF

DE, BUFFER

My
R TYFELD

My TYPEER

Lol

! -

Le

el

A |

2y TYPED
CRLICIERS HL

’

e FFH

QEH
FFH

APPENDIX-2

zr rzs

z3 am

FTRREI RN

ST OER
i ALREADY

OF
BYTE

1

L INE

MEE

DL STYRE

BWTRL 00&2

APPENDIX-3

USER CODED 1/0 ROUTINES ®

FDOS supports control programs not only for the floppy disk drive but for the printer (SLPT) and the
paper tape reader ($PTR), etc. Other I/O devices can be operated under the control of FDOS by means

of user coded control programs.

—User 1/0 Routine—

A user 1/O routine consists of the following sections.
A. Device table (57 bytes)
B. ROPEN or WOPEN procedure
C. Data transfer program
D. CLOSE and KILL procedure
These sections are explained below using the FDOS paper tape reader control program (3PTR) as an .

example.

A. Device Table (line 7 through 20, bytes O through 56)
% FDOS uses bytes 0 through 2 (FLAG 0 ~ FLAG 2).
This area must be written exactly as it is shown.
% Byte 3 (FLAG 3) represents the attribute of the I/O device.
Bit7: 0
Bit 6 : 1 indicates that tabulation is possible. (This bit is set to 1 for the printer. See Note 1 on
page 7.)
Bit 5 : 1 indicates that parity specification ($PTR/PE, etc.) can be made.
Bit 4 : 1 indicates that only .ASC mode files can be transferred.
Bit3: 0
Bit2: 0 o
Bit 1 : 1 indicates that WOPEN is possible. (See note 2 on page 7.)
Bit 0 : 1 indicates that ROPEN is possible. (See note 2 on page 7.)
% Byte 4 indicates the data transfer format. (described later)
sk Bytes 5 and 6 are the starting address of the subroutine to be called during ROPEN execution.
* Bytes 7 and 8 are the starting address of the subroutine to be called during WOPEN execution.
(WOPEN is not executed for $PTR so DEFW 0 is specified in this program.)
* Bytes 9 and 10 are loaded with data by the FDOS STATUS command. (Not used for $PTR.)
% Bytes 11 through 14 are the starting addresses of the subroutines for CLOSE and KILL pro-
cessing.
* Bytes 15 through 22 (Procedures 1 through 4) are loaded with data transfer routine addresses.

The data transfer procedure differes according to the transfer format.

APPENDIX-4

ROPEN

Transfer format e 4
Procedure 1 Input 1 character Input 1 line
(ACC «— data) (From the address indicated by DE to
a CR code.)
Procedure 2 ~ 4 Unused Unused
WOPEN
Transfer format 1 5
Procedure 1 Unused Carriage return
Procedure 2 Output 1 character Output | character
(ACC : data)t (ACC : data)t
Procedure 3 Unused Output 1 line
(Corresponds to monitor subroutine
MSG)
Procedure 4 Unused Output line
(Corresponds to monitor subroutine
MSGX)

tOn .ASC mode, ODH means carriage-return,
and OCH means form-feed.

> Bytes 23 and 24 are used by FDOS.
X Byte 25 is used only when bit 6 of FLAG 3 is 1, in which case it must be loaded with the number
of characters of the line which have been output by I/O routine.
>* Byte 26 is loaded with the file mode by FDOS.
X Bytes 27 through 56 are the device name (up to 16 characters); the rest area must be reserved
with DEFS.
* When the transfer format is 4, a buffer area for 1 line is reserved after the byte 56 with DEFS.
B. ROPEN or WOPEN procedure (lines 39 through 50)
Only ROPEN is neede for the paper tape reader (SPTR). The tape feeder is skipped by this proce-
dure. WOPEN is also used to start a new page during output of an assembly listing.
C. Data transfer program (lines 51 through 83)
Program which performs actual transfer of data.
D. CLOSE and KILL procedures (lines 49 through 50)
No function with $PTR.

To return control to FDOS from the ROPEN, WOPEN, Procedure 1 ~ 4, CLOSE or KILL routines, set
registers as follows before executing the RET statement.
Normal : CR«—0
Error : CF «— 1, ACC <— error code (refer to the System Error Messages in the System Com-

mand Manual.)
Fileend : CF«—1,ACC+«—0
The contents of the 1Y, BC’, DE’ and HL' registers must be saved in any case.

APPENDIX-5

—Relocating User 1/0 Routines—

First, assemble the program coded (the program name DVM is used below). ‘
Example 1 2>ASM DVM, SLPT/L[CR]

Next, relocate the file to generate the object program. A higher loading address must be specified at this
time because of factors related to the LIMIT command described later. Take care to ensure that addresses

do not overlap when two or more user I/O programs are used. If necessary, link MONEQU.LIB or
FDOSEQU.LIB with the user I/O programs.

Example 2: 2> LINK $C000, DVM
Example 2°: 2>LINK $C400, CDISP, $FD1 ; FDOSEQU.LIB

—Linking User 1/0 Routines with FDOS— ()

User 1/O routines must be linked with FDOS 1/O controller every time FDOS is activated.

First, use the LIMIT command to reserve an area in memory for loading the object program (DVM.OBJ).
Example 3: 2> LIMIT $F000

Next, load the object program.
Example 4: 2>LOAD DVM

Finally, link the routine to the FDOS I/O controller. §USR1 through 4 are provided in FDOS as devide

names for user I/O routines; assign the user I/O control routine to one of these device names.

Example 5: 2> ASSIGN $USR1, $F000

Now the user program is linked with FDOS and can be called by specifying $USR1 (~4). It is conveni-
ent to prepare EXEC files which include LIMIT, LOAD and ASSIGN commands such as those shown
above. (Refer to the System Command Manual).

User I/O programs are called as shown below.

Example of use by FDOS commands

2>TYPE $USRI
2> XFER DATA4, $USR2

APPENDIX-6

Example of use by BASIC compiler

Note 1: Bit 6 determines the functions of BASIC statements PRINT # and INPUT #.

When bit 6 = 1, data is treated in the same manner as with the PRINT and INPUT statements.
When bit 6 = 0, separators (" ," and " ;") in the PRINT # statement are replaced with
and commas included in the input character string for the INPUT # statement are treated as data;
only is regarded as a data separator. (This is the same as with the PRINT # statement
supported by SB-6510 and the PRINT/T statement supported by SB-5510.)

Both ROPEN and WOPEN are possible, when both bit 1 and bit O are set, but they cannot be

Note 2:

10
20
30
40

ROPEN #2, "$USR1"
INPUT #2, AS

IF EOF (#2) THEN 100
PRINT A$

999 CLOSE #2

executed simultaneously.

APPENDIX-7

—Sample Program (1/0 Driver)—

*% 7130 ASSEMBLER Sk-7291 <{FPTRF> FAGE 81 Q7/ak/21
g1 98404 H
6z agaa s PTR/PTP DORIVER for MZ-S@B FDOS,
A2 A8Q1 3 LCopyright 1921 by SHARFP Corp.
64 QAEAR H
A5 Bpaa H
@46 BAEAa $FTR: ENT
A7 9PB6 ABKO DEFW 8
@2 8pe2 a4 DEFE @&
29 anA3 21 DEFB 21H sPAR»READ-ENABLE
19 AaBe4 ai DEFR 1
11 ARAS 7948 DEFW &FTRO SROPEN
12 9987 @84 OEFW 8
13 9809 ABAQ DEFW 8 sSTATUS
14 BOARE 24006 DEFW CLC sCLOSE
15 9880 23400 DEFW CLC sEILL
14 AQAF z2@a DEFW $PTRI1
17 @8ai11l DEFS 148
12 AAIB 24585452 $FTRNM: LEFM ‘$FPTR’
19 @avlF 8L DEFE @DH
2B 8nza DEFS 25
21 9A39 H
22 B8az? $PTF: ENT
22 B39 B8RAA DEFW @H
24 @GalB 9@ DEFR @H
25 @823C 22 DEFB 2Z2H sPAR» WOFEN-ENABLE
24 8RA20 681 DEFR 1
27 9A3E DEFS =2
28 Qo4 29061 DEFW $FPTFFD sWOFEN
29 Q847 BARAD DEFW @H sSTATUS
0 AG44 2941 DEFW $FTFFD sCLOSE
31 PA44L 2404 DEFW CLC
32 0@4s DEFS 2
33 B94A BEQA DEFW $PTFIC
%4 @aac DEFS @
25 9854 243515454 $PTFNM: DEFM ‘$PTF’
34 8B52 ab DEFR @DH
27 9859 DEFS 25
3 672 3
39 6872 111ER89 $PTRNR: LD DE » $PTRNM
4 AR75S ChRRaG E CALL IOWAIT
41 @872 Dg RET C
42 AA7e CL9504 $FTRO: CALL $PTRIN s ROPEN
432 QA@7C 22F4 JR C»$PTRNR
44 RpA7E 78 LD As'B
45 OQ7F A7 AND A
4, GABG 22F7 JR Z,$PTRO
47 QA@Qz2 72 LD A:B
4% GRE3Z 22ZBD6G LD ($PTRD) s A
49 QB34L AF CLC: X0OR A
S0 @6Rg7 .9 RET
S1 9828 CD958Y0 $FTR1: ©CALL $PTRIN SGETIC
S2 @egk D& RET C
53 898C Z1BRDAY LD HL » $PTRD
%4 angF 7E LD ArM
55 @a8%a 74 LD M:E
S6 aa%1 A7 AND A
s7 pae2 Ca RET NZ
S8 6@9z 27 SCF sEQF
59 aB%4 9 RET
LB AA9S 3

APPENDIX-8

*% 78H ASIZEMBLER SEB-72811 <FTRP:> FPAGE 82 A7 /84721

Rl AR9S ZEEF $FTRIN: LD A»EFH
a2 aae7 DIFD ouT (FIH) » A
B2 @ae%vy CORAOH $FTRZ: CALL $FTRCE
W4 @@avs CR&T7 BIT 4,A
@5 BARYE ZEFY JR Iy$FTRZ
A4 BEAE CHOEBBAG $FTRZ: CALL $FPTRCE
A7 BABAT CB&7 BIT 4,A

@E AEAS ZAFY JR NZy$FTRZ
HY @RA7 DBFC IN Ay (FCH)
18 a@ga» 2 CFL

11 3BAA 47 (L Es+A

1z @BAR ZEFF $FPTRS: LD AsFFH

= @aAD D3FD ouT (FOH) » A
14 G8AF C¥ RET

1% BQRa DBFD $FTRCKE: IN Ay (FOH)
14 @aapz CRAF BRIT S A

17 BagR4 C2 RET z

12 @8RS F1 FOF AF

19 @8B4 CDARBG CALL $FTRS

293 aapy 27 ZCF

21 AABRA =E3C Lo Ay &1 sNOT READY
22 BARC C9 RET

23 B9BRD $FTRD: DEFs 1

24 HAGEBRE :
25 HABE 3
24 BERE FS $FTFIC: PUSH AF
27 B@9BF DBFD IN Ay (FOH)
28 @aacl Esatd AND 1
29 aac: Zales JR Iy$PTRZE
2@ BAcS 2EFE Lo AsFEH
=1 a|ac7 D2FD ouT (FOH) » A
22 \Bace z1a8ag LD HL » BH
32 \aacc 2R $FTF1G: DEC HL

=4 @aacDh DRFD IN Ay (FOH)
25 @ACF E&BL AND 1

26 BEDl Z20A JR Zy$FPTFRZA
27 \B3|ghz 7C LI AsH

28 anng 5 aR L
% 88D ag NOFP
413 BADA& NCF
41 @ab7 LD A bD sNOT READY
47 @ALNY JR L1$FTRLE
472 Q@BLDEB JR $FTF1A
44 aaph H
45 ABDD ZIEFE $PTFZ29: LD A»FEH

4+ WADF DSFD ouT (FOH) s A
47 AQE1l DBFD $FTF33: IN Ay (FOH)
42 @@Ez CR47 BIT By A
49 QARES Z2AFA JR NZ»$FTPZG
S BRE7 F1i FOF AF
51 aBEZ FS FUSH AF
L2 @ABEY ZF CRL
52 BBEA D3IFC auT (FCH) »A
$4 BBEC ZEFC Lo A:FCH
55 @AEE D3FD ouT (FDH) »A
S6 @aFa z1@aaa LD HL » AH
57 agFz 2B $FTFP448: DEC HL
S5 @AaF4 7C LD A/H
59 @9F3 BS aR L
LB @AAF4L 2E4E LD As78 STIME QUT

APPENDIX-9

¥¥ 788 ASSEMBLER

A1 \aEFs 22173

62 AaFA DEBEFD

B3 BUFC CER4F

B4 QAFE ZAaF:z

RS A19a DBFD

e o a1az CR4AF

RH7 A184 ZRED

g2 a1as DBFD
ne 11Rs CE4F

18 AalBA Z2FA

11 a1ac DBFD

12 BAIGE CRAF

12 8118 Z2F4

14 ai112 E1

1% 8112 FS

14 @A114 ZEFE

17 4114 DEFD

12 8113 CDhz4s01

19 A11E 20

23 a11c DEFC

21 A11E F1

22 /B1iF Co
22 a1za 27

24 aiz1 CY
29 8122

26 R122 1154005

27 A1Z2S CDEOas E
28 G1ze ne

29 B1Z9 ALT4L

Il AizZB CS
21 812C AF

22 @120 COEREAA
23 813a -1

34 A1zl ZSEF
35 8133 19F4

24 8125 C9

27 8136

I A126 111006
39 B129 1R

4 A12A 7A

41 A1zB B2

2 913C ZBFR

2 B13E C9
44 BA12F

*% 720 ASSEMEBLER

$FPTF AAzY $FPTF18
$FTF4R QAFZ S$FTFSAH
$FPTFNR 8122 $FTR
$FTRS 0Q8AE $FTRCE
$FTRNR AR7Z2 $PTRO

SE-7201

SB-72011

m Dm0
U U R

n

$FTFSE:

IS

~—

$FTF

$FTENR:

$SFTFFDO:

OLYS@L

$PTFRILC
$PTFLO
$FTR1
$FTRD
CLC

APPENDIX-10

<FTRF

JR
IN
BIT
JR
IN
BIT
JR
IN
BIT
JR
IN
RIT
JR
FOF
FLI=H
LD
QuT
CALL
DEC
ouT
FOF
RET
K
RET

LD
CALL
RET
LD
FLIZH
XOR
CALL
FOF
JR
DJINZ
RET

LD
DEC
Lo
oR
JR
RET
END

{FTRF>

=
=)
[s]
m

Do I x|
Dao By Y IS
20 m 0 -
Lo o B 0 B O

=

FAGE &3

Ly$FTF4B
Ay (FOH)
1:+A
NZ;;$FPTF4E
A (FOH)
1+A
NZ,»$FTF4B
Ay (FOH)
1,4
1y$FTFSG
Ay (FDOH)
1/A

Ly $FTRSA
HL

AF

A:FEH
(FOH) » A
pLysan

A
(FCH) A
AF

N7

DE s $FTFNM
IOWAIT

LI

By1508

R

A

$FTRILC

EBC
Cr$FTFNR
$FTRFO+2

DEy1&
DE
Ay

E
NZ,-2

FAGE ©4

$FTPZ0
$PTFFD
$PTR2

$FTRIN
DLYZRU

AapDh
@129
Aaee
AA9S
a1

17 /86781
SA<--FFH
sFEEDER

[xv]
~
~
fax]
o
~
)

—

$FTPZ23 GBEL
$FTFNM G54
$FPTRZ @BAQ
$PTRNM DG1R

CONVERSION OF CASSETTE BASED SYSTEM PROGRAMS

The following cassette based system programs (for MZ-80K) have thus far been released.

e MACHINE LANGUAGE SP-2001

e EDITOR-ASSEMBLER SP-2201, SP-2102
e RELOCATABLE LOADER SP-2301

e SYMBOLIC DEBUGGER SP-2401

These system programs (and the MZ-80K FDOS) generate source files (with file mode .ASC), relocat-
able files (with file mode .RB), object files (with file mode .OBJ) and debug mode save files (i.e., object
files with symbol tables). Of these, source files and object files can be transferred to FDOS diskettes.

’ The procedure for transferring a cassette file to an FDOS file is as follows.

When the file name consists of characters which are usable with FDOS:
XFER $CMT1, $FDn(n=1 — 4)

When the file name includes characters which are not allowed by FDOS, a new file name

must be assigned as follows:
XFER $CMT1, $FDn ;filename (n=1 — 4)

When an assembly source file is to be transferred, use the following procedures to determine whether
or not pseudo instruction REL is used: load the file with the FDOS text editor and search for REL with
the S command. Delete all REL instructions; this is because FDOS sytem programs do not require REL.

‘ Next, assemble the file from which REL instructions have been deleted to generate a relocatable file
with the FDOS assembler. The object file is obtained by relocating it.

When object files generated by cassette based system programs are transferred to an FDOS file, they

can be executed with the following command.
RUN $FDn ; filename

The following message is displayed on the CRT screen when the specified object file has a loading

address which results in destruction of the FDOS area.
destroy FDOS?

. Pressing the key at this time performs the transfer operation, destroying the FDOS area; pressing
the key stops the operation and returns the system to the FDOS command wait state.

APPENDIX-11

MEMORY EXPANSION

FDOS requires 64K bytes of RAM

The standard memory size of the MZ-80B is 32K bytes; this is expandable to 64K bytes.

The optional 32K byte expansion RAM card, MZ-80RM, is inserted into the 20-pin connector which is
located on the right rear side of the CPU board (as viewed from the rear). The standard 32K byte RAM
card is located next to the expansion RAM connector. The connector pins on the bottom of the expansion
RAM card are inserted into the 20 pin connector on the CPU board.

Visually check orientation of the expansion RAM card before inserting it.

170 MA
MAP ®

I/O ports with addresses equal to or higher than BO are reserved by the manufacturer for control of

external devices; those used by FDOS are assigned device names such as $LPT.

00
User ports
BO
(RS-232C)
Co
Do
D8 Floppy disk
($FD1 ~ $FD4) ‘
EO
8255, 8253, PIO
EC
EE
Fo
Graphic display
| F8
| EX-ROM
| FA
FC Paper tape punch and
reader ($PTP, $PTR)
FE Printer
(SLPT) o

APPENDIX-12

® PAPER TAPE PUNCH AND READER INTERFACE

FDOS has built-in paper tape punch and reader control programs. These are assigned the device names

$PTP and $PTR, respectively. In actuality, however an interface circuit must be established with a

universal interface I/O card to connect the paper tape punch and reader with the MZ-80 series micro-

computer. The circuit diagram is shown on page 45.

The method for controlling the paper tape punch and reader is not standardized. A paper tape punch

and reader which can be controlled by FDOS must have the following signal timing system. The signal

names and timing charts shown below are based on the RP-600 paper tape punch and reader manufactured

by Nada Electronics Laboratory. (For details, refer to the manual included with the paper tape punch and

reader.)
—Signal Name—
< Puncher >
DT, ~ DT, : Data (PTP «— CPU)
MI* : Motor ON/OFF control signal (PTP «— CPU)
ST : START/STOP control signal (PTP<«— CPU)
TO . Timing signal (PTP — CPU)
(RDY)** . Ready state signal (PTP — CPU)
(This signal is not output from the RP-600 since it can be used in remote
operation. Ground it when the RP-600 is used.)
< Reader >
RD, ~RDg : Data (PTR — CPU)
STA : START/STOP control signal (PTR «— CPU)
SPR . Sprocket signal (PTR — CPU)
RB Tape end signal (abnormal stop signal) (PTR — CPU)
* Do not connect when the motor is not remotely controlled.
** The DPT26A manufactured by the Anritsu Electric Co. outputs this signal, but the RP-600
does not.
—1/0 Ports—
Port FCu is used for data by both the punch and the reader. Port FDy is used for control signals.
See Table 1.
< Punch > < Reader >
Owo Or7 Lo Lz
DT, | DT: | DT: | DT. | DTs | DT¢ | DT; | DT« | [Data] [&b | RD: | RD; | RD: | RDs | RDe | RD: | R |
020 } Oz 020) - Oz
. S R |[Control signals)___————Jsm] | |]

Iz7 I20 I27

vt [[] ——— [sw[m] [|

Table 1. Port allocation

APPENDIX-13

—Timing Chart—

Punch

Opera-

tion

Signal

Motor ON

START
STOP
Motor
OFF

MI
ST

TO

1
|

More than 2 seconds »!

s

o

-~ Within 20 msec

L LTLI_UU

(RDY)

l |

|quili= =S anliite =l anie S e Ne ol e o

Sl I N N

DD S A N A S

Reader

* The next data to be punched is readied while TO is H and maintained while TO is L.

** QT is set to L 2 or more seconds after the motor has been started, and is set to H after

Figure 1. Punch timing chart

TO has risen from L to H for the last data.

Opera-

tion

Signal

START

STA

[anta SN anite s qnibo ol o o
|

Figure 2. Reader timing chart

APPENDIX-14

—Preparing a Paper Tape Punch/Reader 1/0 Card—

It is convenient to use a universal I/O card (MZ-80102) for preparing a paper tape punch and reader I/O
interface circuit. Markings such as O,, or O,4 in the port allocation table on page 13 match those on the

universal I/O card. See page 16 for setting the universal I/O card switches to select port addresses FC and

FD.

The RP-600 internal interface circuit and input and output pin connections are shown below for refer-

ence. (For details, refer to the manual included with the RP-600).

Table 2.

APPENDIX-15

Punch internal circuit MZ-80102 Reader internal circuit | MZ-80102
SN74368 %?sz SN74LS04 SN74368
' DATA [>o c{,\% O DATA
5v, 2.2K %
MC1413 1.2K SN74LS04 ? 1
—=<p +—O ST SPR
2.2K ’% 5V ‘
MC1413 MC14049 %2.21(|
W MI <p O sTa
MC1413 %4.7}(MC14049 ’
[>o- O TO —>— O RB
Punch interface circuit Reader interface circuit
Figure 3. Interface circuit (RP-600)
Punch 1I/O connector Reader I/O connector
Pin Signal Pin Signal Pin Signal Pin Signal
1 | DT,] 14 1 |RD, ~] 20
2 | DT, 15 2 | RD, 21
3 | DT; 16 3 | RD, 22
4 | DT, 17 4 | RD, Data 23
5 | DT, Data 18 S | RDs 24
6 | DT, 19 6 | RDg 25
7 | DT, 20 7 | RD, __| 26
8 20 8 | SPR Sprocket signal | 27
9 | DT, __| 21 9 | RDg Data 28 | STA START/STOP
10 22 | MI Motor ON/OFF 10 signal
11| TO Timing signal signal 11 29 | RB Operating state
12 | GND 23 | ST START/STOP signal 12 | GND 30| FG Frame ground
13 24 | FG Frame ground 13 31
14 32
15 33
16 34
17 34
18 35
19 36

Connector pin connections

o ~ or L* e 17 O2f -~ 027 12Ff ~— I27
FFEFFEFT FEEFEFET FFEFFEFE FESEEFET
FEFEIFFFFE FFFFIFET FEFFFEEE FFEFEFES
Icl4 IcI5 IcI6
clo ! €7 e
Y
o I —] [—
G
cg Iclo Icll Ic12 E
o
% | @ | @ 1 e | ¥
[}
z Ice Ic7 Ic8 Ico o7
an
)) | 2 | 2 | %
ce
RAI
o———] Ic3 o
S
‘ .
o - S— o,
cs
'Y
R PS Ic2 g] 2 =
e
e | @ 1% 9
c2 ci c3 .
&
20 15 10 5 [} +
Figure 4. Universal I/O card component location (parts)

(1) Number of ports
Input : 2 ports Output : 2 ports
(2) Port address
All port addresses can be set. (However,
FDOS uses BOy and higher locations.)
The input port for I,4 ~ 1, is set to an
even address.
The input port for I,, ~ I, is set to an
odd address.
The output port for O,, ~ O,, is set to an
even address.
The output port for O,, ~ O,, is set to an
odd address.
(3) Port address setting switches (PS)
Numbers marked on the PS switches corres-
pond to the address bus lines shown below.
Turning a PS switch OFF sets the correspond-
ing address bit to logical "1" and turning it

ON to logical "0".

1
A,

7
A,

6
Ag

Switch No.
Address bit

Ay | A | A,

Universal I/O card port address setting

Example: Setting the PS switches as shown below
sets the port address to FCy.
1 11 1 1 1 0 O
N S N N Y A N |
S; S¢ S5 S4 S; S, S,
When the PS switches are set as shown above,

ports FCy and FDy are used for this card.

Sy e, OFF
Sg crreenn. OFF

Sg e OFF f s i i i 2 f
S4 e OFF g%ggggggg
S3 e OFF

Sz e OFF

Si v ON

Caution: Installing two or more interface cards
which have the same port address settings will

result in destruction of ICs.

APPENDIX-16

® COMMAND TABLES & ERROR MESSAGES

—FDOS Built-in Commands—

BOOT

Terminates the FDOS and activates sytem IPL.
Example: BOOT .~

CHATR sign, filenamel, attribute [, ...filenameN, attribute]

Matches the password’s sign and changes the file attribute(s) of the matching file(s) identified by filename to

attribute(s).

P: Permanent file R: Read inhibit

0: No protection W: Write inhibit

Examples: CHATR KEY, ABC, 0, XYZ,P . : Deletes the file attribute of file ABC and changes the file attribute
. of file XYZ to PERMANENT if matches occur with the password

KEY.

CHATR KEY, $FD2 ; UVW, R . : Changes the file attribute of file UVW in FD2 to READ INHIBIT
if a match occurs with the password KEY.

CHATR o : This allows the programmer to interactively specify the password,
file name and attribute.

CONSOLE Sscrolling-start-line, end-line [, Ccharacter-number, R, N]

Sets the scrolling area on the CRT screen, sets the character display mode and/or reverses the picture on the screen.
Example: CONSOLE C80. : Sets the number of characters per line to 80.
CONSOLE RV : Reverses the picture on the screen.

DATE [MM/DD/YY]

Displays the current date or sets the specified date in month, date, year format. The set information is used as file
information when new files are created.

Global switch / P : Specifies that the date is to be printed on the LPT.
Examples: DATE/P . : Lists the current date on the LPT.
‘ DATE 12/25/80 : Sets the current date to December 25, 1980.
DELETE filenamel [, ..., filenameN] ?,%)

Deletes the file(s) specified by filename(s)

Global switch /C : Specifies that each file name is to be displayed on the screen for
verification. The programmer must enter Y to delete it or N to
suppress deletion.

Examples: DELETE ABC. * < : Deletes all files identified by ABC. > ,
DELETE/C A * . %k J : Displays files identified by A > . > on the screen for verification
before deletion.
filename : ABC.ASC deleted <« Indicates that the file is deleted since "Y' is entered.
filename : ABC.RB < Indicates that the file is not deleted ''N "' is entered.
filename : AXY.OBJ permanent < Indicates that the file is not deleted because it is assigned the
PERMANENT file attribute.

APPENDIX-17

DIR [$FDn] or [filename] @ .X)

Displays file information in the directory specified by $FDn or of the file specified by filename on the screen.

Global switch /P : Specifies that the file information is to be output to LPT. The file information is displayed
on the screen when this switch is not specified.
Examples: DIR : Displays all file information in the current directory on the screen.
DIR/P $FD2 » : Outputs all FD2 file names to LPT and switches the currently logged
disk to FD2.
DIR $FD2;ABC. X : Displays the file information of files in FD2 identified by ABC. X .
EXEC filename
Executes the contents of the file identified by filename as FDOS commands.
Example: EXEC ABC.ASC : Sequentially executes the FDOS commands in file ABC.
FAST

Fast forwards the cassette tape.
Example: FAST <

FREE [$FDn]

Lists statistical information about the disk identified by $FDn on the screen or on the LPT.
Example: FREE $FD2 .
$FD2 master left : XXXX used : YYYY
Indicates that the diskette on FD2 is a master diskette, that the number of unused sectors is XXXX
and that the number of used sectorsis YYYY.

KEY keynumber ="'S"

Assigns a function to the definable function key indicated by a keynumber from 1 through 20. The function is
specified by writing a string or command name enclosed in double quotation marks.
Example: KEY 1 ="RUNT{}"J : Assigns the function of the RUN command to key 1.

KLIST

Lists the definition status of the definable function keys on the screen.
Example: KLIST o~

MON

Terminates FDOS processing and returns control to the monitor.
Example: MON

POKE $nnnn, data [, ..., Suuuu, dataN]

Stores data in the specified addresses in memory.
Example: POKE $000D, 2010, $000F, 40 <

RENAME oldnamel, newnamel [, ..., oldnameN, newnameN]

Renames the file specified by oldname to newname.
Examples: RENAME ABC, XYZ ./ : Renames file ABC to XYZ.
RENAME ABC, DEF, UVW, XYZ < : Renames file ABC to DEF and UVW to XYZ.

APPENDIX-18

REW

Rewinds the cassette tape.
Example: REW U

RUN filename

Executes the program in the object file identified by filename.
Example: RUN ABC » : Executes the program in file ABC, assuming it ot be ABC.OBIJ.

TIME [HH : MM : SS]

Displays the current time or sets specified time in hour, minute, second format. This information is used as file
information when new files are created. The current time is set to 00 : 00 : 00 upon system start.

Global switch /P : Specifies that the current time is to be listed on the LPT.
Examples: TIME/P o : Lists the current time on the LPT.
TIME 16 :30: 30 . : Sets the current time to 16 : 30 : 30
TYPE filenamel [, ..., filenameN] 7, %)
Lists the contents of the file(s) identified by filename(s) on the screen or on LPT.
Global switch /P : Lists the file contents on LPT.
Examples: TYPE ABC, DEF . : Displays the contents of files ABC and DEF on the screen.
TYPE/P $FD3 ;XYZ ./ : Lists the contents of file XYZ in FD3 on LPT.
TYPE $PTR . : Reads paper tape data from PTR and displays it on the screen.
XFER sourcefilel, destinationfile2 [, ..., sourcefileN, destinationfileN] (sourcefile only ? |, >)
Transfers the source file(s) to the destination file(s).
Examples: XFER ABC, XYZ ./ : Copies file ABC to XYZ.
XFER $PTR, DEF -~ : Transfers the file at the PTR to file DEF.
XFER XYZ, $PTP/PE ~ : Transfers file XYZ to the PTP with even partiy in ASCII code.

APPENDIX-19

—FDOS Transient Commands—

ASM filename

Assembles the source file identified by filename and produces a relocatable file and an assembly listing.

Global switch (none) : Specifies that the relocatable file is to be output.

Global switch/N : Suppresses generation of the relocatable file.

Local switch/0O : Specifies that the relocatable file is to be output with the specified file name.

Local switch/E : Specifies that error statements are to be output to the specified file.

Local switch/L . Specifies that the listing is to be directed to the specified file.

Examples: ASM ABC < : Assembles source file ABC and generates relocatable file ABC.RB.
ASM/N ABC, $CRT/E : Assembles source file ABC and displays error statements on the

screen (no relocatable file is created).
ASM ABC, XYZ /O, $LPT/L . : Assembles source file ABC and generates relocatable file XYZ.RB
and an assembly listing on the LPT.
ASM ABC, $FD2 ;XYZ /L, SLPT/E o : Assembles source file ABC outputs the assembly listing to
file XYZ.ASC in FD2 and outputs error statements on the

LPT.
ASSIGN devicename, address
Sets the address of a user device drive routine.
Examples: ASSIGN §USRI1, $B000 .~ : Sets the drive routine address of user device §USR1 to B0O0OO
(hexadecimal).

BASIC filename

Invokes the BASIC compiler to compile the source program identified by filename.
Example: BASIC XYZ </ : Invokes the BASIC compiler, compiles source file XYZ.ASC and generates relocata-
ble file XYZ.RB.

CONVERT

Converts a file generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series into a file which
can be used under FDOS, or converts a file generated with FDOS into a file which can be used under the SB-5000
series BASIC interpreter or the D-BASIC SB-6000 series.

Example: CONVERT v

COPY

Copies the files on the diskette in drive 1 to the diskette in drive 2. The system matches the passwords in these dis-
kettes before carrying out a copy operation.
Example: COPY +

DEBUG filename [, ..., filenameN]

Invokes the symbolic debugger and links and loads relocatable file(s).

Global switch /T : Specifies that the symbol table information is to be output.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if omitted).

Local switch /0O : Specifies that the object file is to be generated with the specified file name.

Example: DEBUG ABC, DEF o : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

EDIT [filename]

Loads the text editor and reads in the file (if specified). The file must be an ASC mode file.
Examples: EDIT o : Loads the text editor and waits for an editor command.
EDIT $FD2 ; ABC » : Loads the text editor and reads in file ABC from FD2.

APPENDIX-20

FORMAT [SFDn]

Initializes the diskette in $FDn in the system format. The pasword set by the SIGN command is checked before
execution,
Examples: FORMAT : Initializes the currently logged-on diskette.

FORMAT 3$FD2 o : Initializes the diskette in FD2.

HCOPY n

Copies a data frame from the CRT screen to the LPT.
Examples: HCOPY 4 : Copies a data frame from the CRT where the contents of graphic areas 1 and 2 are
displayed simultaneously.

LIBRARY filenamel [, ..., filenameN]

Links specified file(s) into a library file.

Global switch (none) : Specifies that the link information is to be displayed on the screen.
Global switch /P : Specifies that the link information is to be printed on the LPT.
Examples: LIBRARY ABC, DEF, o/ : Links relocatable files ABC and DEF and stores their contents into

library file ABC.LIB
LIBRARY ABC, DEF, XYZ /0« : Links relocatable files ABC and DEF and stores their contents
into library file XYZ.LIB.

LIMIT address

Sets or changes the end address of the memory area managed by FDOS.
Examples: LIMIT $B000 - : Sets the FDOS area to B00O (hexadecimal).
LIMIT MAX « : Sets the FDOS area to the maximum available address.

LINK filenamel [, ..., filenameN]

Links relocatable files identified by filenamel through filenameN and outputs an object file with a link table listing.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if the switch is omitted).

Global switch /S : Specifies that a system file is to be generated.

Examples: LINK ABC, DEF o : Links relocatable files ABC and DEF and outputs object file ABC.OBJ

LINK/T/P ABC, DEF, XYZ /O.: Links relocatable files ABC and DEF and outputs object file XYZ.
OBJ with the link table information on the LPT.

LOAD filename

Loads the object file identified by filename into the area immediately following the area established by the LIMIT

command.
Example: LOAD ABC.OBJ < : Loads object file ABC.OBJ into memory.

MLINK filenamel [, ..., filenameN]

Links relocatable files identified by filenamel through filenameN and outputs an object file with a link table listing,
This command can link files to generate an object file of up to 46K bytes, although the LINK command can only
deal with up to 36K bytes.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be output on the LPT (the listing is displayed on the
screen if this switch is omitted).

Example: MLINK ABC, DEF : Links relocatable files ABC and DEF and outputs object file ABC.OBJ.

APPENDIX-21

PAGE [output-device] or nn

Performs a form feed operation on the output device identified by output-device, or sets the number of lines per page
on the LPT.

Examples: PAGE < : Moves the print position to the home position of the printer form.

PAGE 220 : Sets the number of lines per page on the LPT to 22. The print form is fed to the
top of the next page when a page feed code is issued or the TOP OF FORM button
is pressed.

PROM

Generates formatted code on the paper tape punch from an object file. Applicable PROM writers are those which are
supplied by Britronics, Intel, Takeda and Minato Electronics.
Example: PROM o

SIGN [$FDn|

Changes the password of the diskette in $FDn.

During a diskette copy or formatting operation, the system checks the programmer-specified password with that
stored in the diskette directory for a match and carries out the specified operation only when a match occurs.
Example: SIGN ~ : Changes the password of the diskette currently logged on.

STATUS devicename, status

Sets the status of the I/O device identified by devicename to status.
Example: STATUS $SIA, §1234 & : Sets the control status of serial input port A to 1234 (hexadecimal).

VERIFY filenamel, filename2 [, ..., filenameN-1, filenameN] (?, X only for filenamel, ..., filenameN-1])

Compares the contents of files filenamel through filenameN.

Global switch /P : Specifies that the results of the comparison are to be listed on the LPT.

Example: VERIFY $CMT, SFD2 ; ABC + : Compares the first file on the cassette tape with source file ABC in
FD2.

APPENDI{X-22

—System Error Messages—

There are four system error message formats.

— ERR:

— ERR

— ERR

— ERR

The sys

ERR-

37
38
39

error message
Pertains mainly to coding errors. Issued when invalid commands are detected.

filename (device name) : error message

Indicates errors pertaining to file or device specifications.
logical number: error message

Indicates errors pertaining to logical number specifications.
logical number file name (device name): error message

Indicates errors pertaining to logical number specifications and file (or device) specifications.

tem error messages are listed below. The error numbers are not output.

syntax

il command

il argument

il global switch

il data

il attribute ; Illegal file attribute found
different file mode

il local switch

il device switch

no usable device ; Device unavailable
double device
directory in use

not enough arguments
too many argument

Nno memory space
memory protection
END ?

Break

system id ; Diskette not conforming to FDOS format.

System error ; System malfunction, user program error, diskette replaced
improperly, etc.

APPENDIX-23

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

not found

too long file
already exist
already opened
not opended
read protected
write protected
permanent

end of file

no byte file
not ready

too many files
disk volume

no file space
unformat

FD hard error
il data

no usable diskette
(sub)master diskette
mismatch sign
il file name

il file attribute
il file type

il file mode

il lu#

not ready
alarm

paper empty
time out

parity

check sum
flaming

over run
interconnect
full buffer
uncontrollable
interface

less data

much data

lu table overflow
source ?
destination ?
can’t xopen
too long line
end of record
diff record length

; File size exceeds 65535 bytes

; The file has been already opened or
the logical number is already used.

: Number of files exceeds 96
; Diskette replaced improperly

: Diskette unformatted
: Hardware related disk error

; Invalid file name

; Invalid file attribute

; Invalid file type

; Invalid file mode

; Invalid logical number

; Printer error

; Paper tape reader or punch error

; Serial I/O errors (to be implemented later)

: IEEE-488 related errors (to be implemented later)

; Attempt made to open too many files

; Line exceeding 128 bytes

APPENDIX-24

—Editor Commands—

. Command type Command name Function

R Clears the edit buffer and loads it wih the input file indicated by the

filename. The CP is positioned at the beginning of the edit buffer after
Input command execution of this command.

A Appends the input file indicated by the filename to the contents of the
edit buffer. The CP position is not changed.

w Writes the edit buffer contents to the output file specified by the file-

Output command name in ASCII code.

PR Same as the R command, except that the maximum amount of data read
is 1 page.

PA Same as the A command, except that the maximum amount of data read

. is the unused area of the edit buffer.
Page processing PW Same as the W command, except that the maximum amount of data
command :
output is 1 page.

PC Terminates execution of the processing command. This command is
required whenever a PR, PA or PW command is executed.

PK Kills the file opened by a page processing command.

T Displays the entire contents of the edit buffer. The CP position is not

Type command changed.
. nT Displays n lines starting at the CP position.

B Positions the CP at the beginning of the edit buffer.

nJ Positions the CP at the beginning of the line indicated by n.

nL Moves the CP to the beginning of the line n lines after the current CP

e position.
CP positioning L Moves the CP to the beginning of the current line. This is the same as
command =0
when n =0 in the nL command.
nM Changes the CP position by n characters.

M Does not move the CP. This is the same as when n=0 in the nM command.

V4 Moves the CP to the end of the text in the edit buffer.

C Searches for the specified character string and replaces it with another
character string; the search starts at the current CP position and proceeds
to the end of the edit buffer. The CP is repositioned to the end of the
character string replaced.

Q Repeats the C command each time the specified character string is found
until the end of the edit buffer is reaches. The CP is repositioned to the

. end of the character string last replaced.
Sggsfat:l%n I Inserts the specified character string at the position of the CP. The CP is

repositioned to the end of the character stirng inserted. Line numbers are
updated when a line is inserted with this command.

Deletes the n lines following the CP. The CP position is not changed.
Deletes all characters preceding the CP position until a[CR]code is
detected. The code is not deleted.

Deletes the n characters following the CP.

No operation

wog =k

Searches for the specified character string, starting at the CP position and
Search command proceeding to the end of the buffer. The CP is repositioned to the end of
the character stirng when it is found.

~ Executes the specified built-in command.
= Displays the number of characters stored in the edit buffer (including
spaces and CRs).
Special command . Displays the number of the line at which the CP is located.
& Deletes the entire contents of the edit buffer.
Changes the list mode for listing to the printer.
! Transfers control to the FDOS.

Most of the above commands are compatible with those used in the NOVA editor program manufac-

tured by the Data General Corporation.

APPENDIX-25

—Editor Error Messages—

Error message Explanation ‘ Related commands
Full buffer The edit buffer is full. R, A, PR, PA
77? n <0 in the nT or nJ command. T,J
Large n greater than 65535 was specified. T,J,L,M,K,D,B,Z
Not found The string specified in the command was not found. 5,C,Q
Invalid Other than an editor command was entered or an incorrect format

was used. A

Ex) > H[CR]: There is no H command. ny case
* S [CR]: A string should be specified.
0) . . o .

Page opened ? The file to be subjected to page processing is not defined (or is not PR, PA, PW, PC

opened).
Page opened ! An attempt to execute the ! or N\command was made on a file which

was subjected to page processing, but which was not closed or killed o\

by the PC or PK command.

No file is saved These messages are displayed where an attempt is made to execute a
after edition ! command after the edit buffer contents have been corrected with-
End of job? out first executing a W or PW command. Pressing the | Y| key in this !

case executes the ! command. Pressing the key causes the system
to await entry of a new command.

Note: Refer to the System Error Messages in the System Command manual for the system errors.
Display of the message "Already opened' during execution of a W command indicates that there

is a PW command which has not been closed.

APPENDIX-26

—Assembler Messages—

Definition status message Meaning Example

Indicates that a label symbol is being E LD B, CONSTO
referenced externally; that is, the label Y The data byte ""CONSTO" is undefined.
is not defined in the current source E CALL SORT
E (External) program unit. b The address ""SORT " is undefined.
EE BIT TOP, (IY+FLAG)
-The data byte "FLAG" is undefined.
The data byte ""TOP" is undefined.

Defines a label symbol with a constant P LETNL : EQU 0762H
assigned. P DATA1: EQU 3

P (Phase) This message is also output when a t LETNL and DATAI1 are defined by EQU.
ase label symbol is encountered during The P message is displayed in the relocatable
pass 2 which was not encountered binary code column rather than in the assembler
during pass 1. message column.
Error message Meaning Example
C (illegal Character Indlc?tes that an illegal character is C P +1000—3
error) used in the operand.

Indicates that the instruction format

F (Format error) is incorrect

N label Indicates that no label symbol is N EQU 0012H
(Non label error) specified for ENT or EQU. LNO label symbol
Indicates that an illegal label symbol L JR XYZ
is used. XYZ is not defined in the current program.

No externally defined global symbol can be

Label
L (erroneous Labe used as the operand of a JR or DJNZ command.

error) If such a label symbol is specified, the L message
is displayed.
Indicates that a label symbol is defined M ABC: LD DE, BUFFER
M (Multiple label two or more times. ¢
error) M ABC:ENT
b ABC is defined twice.
O (erroneous Indicates that an illegal operand is
Operand) specified,
Q (Questionable Indicates that the mnemonic code is Q CAL XYZ
mnemonic) incorrect. CALL XYZ is correct.
S Indicates that single or double quota- S DEFM GAME OVER
(String error) tion mark(s) are omitted. DEFM GAME OVER’ is correct,
v Indicates that the value of the operand V LD A, FF8H V SET 8, A
(Value over) is out of the prescribed range. V. JR -130
Indi L
END? ndicates that the END directive is

missing from the source program,

Note: Refer to the System Error Messages in the System Command manual for other system errors.

APPENDIX-27

—Symbolic Debugger Commands—

Command type Command name Function
T Displays the contents of the symbol table; i.e., the label symbol
Symbol table command name, its absolute address and the definition status for each table
entry. (Table Dump)
Bt Displays, sets or alters a breakpoint. (Breakpoint)
& Clears all breakpoints set. (Clear Breakpoints)
i Displays the contents of the specified block in the link area in
hexadecimal representation or alters them. (Memory Dump)
pf Displays the contents of the specified block in the link area in
hexadecimal representation with one instruction on a line.
(Memory List Dump)
wh Writes hexadecimal data, starting at the specified address in the
link area. (Write)
el Executes the program at the specified address. (GOTO)
I Executes the program at the address designated by PC with the
Debugging commands register buffer data set to the CPU internal reigsters.
(Indicative Start)
A Displays the contents of registers A, F, B, C, D, E, H and L in hexa-
decimal representation or alters them. (Accumulator)
C Displays the contents of complementary registers A’, F*, B, C*, D",
E’, H' and L' in hexadecimal representation or alters them.
(Complementary)
P Displays the contents of registers PC, SP, IX, IY and I in hexa-
decimal representation or alters them. (Program Counter)
R Displays the contents of all registers in hexadecimal representation.
(Register)
X Transfers the specified memory block to the specified address.
(Transfer)
S Saves the object program in the link area in an output file with the
specified name. (Save)
File I/O commands
Y Reads the object program from the object file with the specified
file name into memory. (Yank)
Executes the specified FDOS built-in command.
Special commands # Switches the printer list mode for listing printout.
! Transfers control to FDOS.

Note: Commands marked by a dagger permit symbolic operations.

APPENDIX-28

—Symbolic Debugger Error Messages—

Error message Description Related commands

O The command operand fields does not match the 4-digit hexa-
decimal format.

O A symbolic label is missing.

O A data defining symbol is used as a label.

7? M,D,W,B,G

O An invalid number of digits was entered when altering register
Error or memory contents, or a key other than 0 through 9 or A A,C,PM
through F was pressed.

DINZ? A breakpoint was set for a DINZ instruction. B

CALL? A breakpoint was set for a CALL instruction. B

RST 6? A breakpoint was set for a RST 6 instruction. B

Over An attempt was made to set more than 9 breakpoints. B
© An attempt was made to access outside the link area. M,D,W B, G, X
O The starting address is greater than the ending address. M,D

? O An attempt was made to clear an undefined breakpoint. B
O The breakpoint counter was set to F (the maximum permis- B

sible value is E in hexadecimal).

Note: Refer to the System Error Messages in the System Command manual for other system error messages.

APPENDI1X-29

—PROM Formatter Commands—

COMMAND OPERATION
Y (Yank) Loads a program (data) from the diskette into the free area.
S (Save) Saves the program (data) in the free area on diskette.
File Input/ CY (Yank disk) Loads data in 256-byte units from the specified sector(s) of the

Output commands

CS (Save disk)

specified track on the diskette into RAM.
Saves data in 256-byte units from RAM memory in the specified
sector(s) of the specified track of the diskette.

P (Punch) Punches the specified contents of the free area in the specified format.
Format commands R (Read) Reads in a paper tape punched in the format specified.

M (Memory) Displays and modifies data in the free area.

V (Verify) Reads data from the paper tape reader and compares it with the

contents of the RAM free area.

Other commands \ (FDOS) Executes the specified built-in FDOS command.

Switches the list mode for listing on a printer.

& (Clear) Buries all data in the free area in hexadecimal code FFH.

? Displays the starting and ending addresses of the free area.

! (Return) Returns control to FDOS.

Error message Error content Related command
memory protection An address outside of the free area was specified. Y,S,P,R M,V
il command The command was not entered correctly.

il data The format specified does not match the format read. R,V
check sum Check sum error. R,V
$ LPT : not ready The printer is not ready. #
$ PTP : not ready The paper tape punch is not ready. P
$ PTR : not ready The paper tape reader is not ready. R,V

See the " System Error Messages' in System Command for other error messages.

Caution:
Entry of characters other than S, Y, CS, CY, P, R, M, V,\, &, #, ? or ! will cause a return to the com- .

If a character other than A~H is input while "format?" is displayed and format entry awaited, the

mand wait state after the command table is displayed.

format table will be displayed, after which the format entry wait state will be reentered. A return can be
made to the command wait state at this time by pressing| BREAK |.

APPENDIX-30

—FILE Mode—

File mode Meanings

ASCII file. A source file generated by the text editor or a file containing ASCII character strings
.ASC .

generated by a BASIC interpreter.
RB Relocatable file. A file containing pseudo-machine language code (relocatable binary code) which
) can be loaded into any location in memory. It is generated by the assembler or the compiler.
.OBJ Object file. A file containing Z-80 machine language codes.
.LIB Library file. A file into which FDOS links multiple relocatable files.
SYS System file. A file containing a system program runs under FDOS and which contains relocatable
) binary codes (such as the text editor and the assembler).

—1/0 Devices Handled by FDOS—

$KB

$CRT
$FDI
$FD2
§FD3
$FD4

$CMT :

SLPT

SMEM :

$PTR
$PTP
$SIA
$SIB
$SOA
$SOB

$USRI1:
SUSR2:
$USR3:
$USR4 :

$CMT1:

MZ-80B system keyboard
MZ-80B system display unit

Floppy disk drives (MZ-80FB or MZ-80FBK)

System cassette tape deck

System printer (MZ-80P4 or MZ-80P5)
A part of MZ-80 main memory

Paper tape reader

Paper tape punch

Serial input port A

Serial input port B

Serial output port A

Serial output port B

User devices 1 ~ 4

Cassette tape deck for MZ-80K

APPENDIX-31

—File Attributes—

File attributes are information pertaining to file protection. There are four types of file attribute: 0, R,

W and P. File attribute 0 indicates that a file is not protected. The other attributes inhibit the use of speci-

fic commands as indicated below.

File attribute R w P
TYPE TYPE
XFER XFER
EDIT EDIT
ASM ASM
g LINK LINK
Inhibited FDOS commands DEBUG DEBUG 0: No file protection
PROM PROM R: Read-inhibited file
BASIC BASIC W: Write-inhibited file
DELETE DELETE P: Permanent file
RENAME RENAME
ROPEN# ROPEN#
Inhibited BASIC statements INPUT#() INPUT#()
PRINT#() PRINT#()

APPENDIX-32

® ASCIl CODE TABLE

UPPER 4 BITS

._.
()
w
I
(=)}

A B C D E F

LOWER 4 BITS

=
Lol

()
-
=

=
™
—

=
s
=

= =
e
.3

Scuet

oo
3

S

4

H O] (@] [th] [«

OO N|O|O0]d]W|N|—||O

O1Z2||IZ||Ir||X||C||—|IT|®||m|m|O| 0| m| | [> e

LT @ @9 1][1][=][

1] >4 /]I [N][<][x][=][<][c|[H][w]|[o][o][D] |-
O3 ||3||—||X|p~|—=||T||0a|=| 0| Al o|loc]||m
A —|=|IN||<]||x |I€]l<|lc|l+]ltn]|~]l0]llo

=Y I\ ” AN||we|[e o

ANCEL| oStz

_Jojelr] 1P
HOAMALR
EHERAN
#I3lclslcls
BHEBRLHEIA
ABENMAM
REENHEN
HEBUENM
(IsIHIXIhEx
NENNMAN
ENHNHEHA
HHEERPD
BEENDN
=SMEIRN
D INI]~
HHEERA-

ASCII Codes of characters and control codes

APPENDIX-33

S —]ov 13835
v o Ll
GG 081 pisT oy H |
s K 0081 2821 9201 %% b
M L P Y W -
v dAl—p—OAT+ v , L
A sy no T FTozz
: & Y ”&n (1] n'~nx
oc —
Y $ oid
m 1% ¢
B ¢ =21s1
A “ vzsT vos3 2
ool s
A q MY -
0081
oM lo p——= 13538X3
o i
b
61 1 e
T - o EE o1
I
— v T s T ¢ osnd
sy < g} °Y ¢ e E AR
oy oy X.] LN vos] %3 H ._.pﬂ 353
- 5 5 1.} T <ol] 962 z
ny = < 4" um < us v s 4
o . e ay Emmz‘llwAl » o) {13534 1008
C 5 7 =2 i o : 1 ; g g g 2 < (dn
ov E2) ® G M oHO! vl 0os? 0081 ot
wy - - v 03N - o 03w €£9) €€l vuonmm__ w_uqu_ oty T} nﬂw
o -
oy o " Jaw e il « - Wsdy | L3S3¥
C ov2s rves]
99l Lt I
v25] =
AN (€291
m - — ,ﬁ
o] ; N =
na e
n L WoINB[5; a ¥0s1 v0s1
8 < ° T 2€ 0 zed
' : ’
Z | °a :
= '° 8087 ‘
7] @ R L] Zio1 -
1] 3
® 3 ANIX3
-9 4N T [ANI i
3 ‘o -
ks oy - i
- n__5 ousal b LivMX3
2222
(v08-2) VOBOOH1- TITT
€l
[L 1]
S HW O LM

ignal system

CPU s

block 1
APPENDIX-34

)

CPU board

Ca ay ey oy Ve ey P 2a0 syrywor

U JUP HIL)

(g vi (] w o v
e FETANTEY ={° w87 e =° 187 68
s Al s ! s .
,ﬁ T 1% CEEE 0 EEEE
082
ane
16187
g
o »
A
'
"
n
o
l
3
zw a
>
e
v

L
z | DE8OOOOEOE)

we
S5 30 OND VY W & WSy TSy v 15 oy 281
we e
a0z 3
an (¢
2on g gk asg 1 |7 RN ay

= FEECCEEE B o Il
s
T 0 o
T a 0
0 0 ‘o
O v 0
Cl g o
] v i
0 g a
o] g °a
s®287
iy
cessee .
so
20 o1 d sl dddd dededol of T
ey v Y ey a5
° of; e
5 nD 9Lz ol
- ol . %0050 v0 50 %040
w18 e als - [EEECEEE
e v en b +>
o T .
008
-ﬁl o »os1 V
)
S il ~ e /
e
s wl - S
o o) :
— i i -
&
I
: T° ~
s T e
Soen
N "
a2 =
o wasoss T sosn vos:
- 5 e o5
oo .
o s . . :
. ve
K g - T
@331 NIgS 2
HINAS v] g
ol noMas 3 - 1nog o FUC)
on meeal P S
s
o

(€20
ain

APPENDIX-35

CPU board, block 2

T m savon P
o w5 03! sishy 1% w g ~ -
= ' - =) = 'z 1s g
k3l E v g ova
G N 5081
> e €91
orwo o
- +
4w
o 5 M g
N w]® S5
Mg > =
wdon 2191 - vpe - ne——
e o
sz b L]
™
1353 bl Y
™
0 g 2 e
vor o
- R Y S 0 R A O [et o e T e e o R % %
2 n:
s 1ol o o s d 44 d | afd dd Ao 4] 1] =
Ll AL | " g sz e 1 i 2
o401 | i 0 K D —
$ o ! ! £J ki e V= v
| 6083 6osT[* eos]" eosa sos1]* sos[* sos1]" sosilt sos1]* sos7F sosi[sosaf | =1 . - P M
421 422 4T 2221 R Db ORI oRd! o 6 k] 8221 6ZD1 L T 0 w a
(] 2 Bl B B T s eI ey e e : v i P
T $3%3 * o w0
wron S35 [===
-4 & & & 5 S o 0 0 o] e ok o
v | o N3dO | @ svy o W =
i wan s s w0 sof— =10
| Jem = + 7 s> - @
1 AGVIM M 0 Al HuE oy @ wote
| A0v3YH 1 .23 8101
H Zum Jev
11 | & 1
e | O Hev
o & i
< + ° @ = doi8 T
I - < O
w0 o 0 o tY Y aiA v
o =] 0 o o]
w0 a —
=] i
& ;
<a o 0 e s (O 1
0 B9 o 2
0 7| “a =3
° 0 s »
g* T v
hd 7 32 [P RY) 5 = “
. My MO
Mo
T oawieoom J) o
23 3
cze e
O. 2 »2
v
v e

CPU board, block 3 : 8255 signal system
APPENDIX-36

<
) mv "y mvy () vy

20
(A wea

T T TTTTTT] 111 I LI T JTTTTIT I T T ITTITTI

17 _:_.m.: TTT :.H_._H._.__ off TT7 :‘_...W._..: T :.m_u.:
T :__M_._ﬁ: TTI7 :A_...m.: I :._h__.w._‘.: I :Nﬂm.:
11 :_.w._..: T __._,.,_a.._.: @u___ 1 :.___.__n._..: 11 __;_u._o.._.:
jamm ::_: “M T ::,.___ | T :_,t.._ﬂ 1T ___t:_

[1T JTT10 _ [T I T T T TTI0TT

C 10 =] Y03 '
(mvy th)wvy) wvy (A) Avy
e

[T T TTIITIT [T T JTTT off T T T TTTTITT T T TITTTTT

w = woq
-0 sy (Nmva sie (nwva iy (M)mva o "e (A W
X2 3| v Ot » ww o B v wivey ivoy
L oo oK C CEBLBEEEL 9] H |
1 N
vy J
— |I_ ¢ @%@%ﬂmvl_@nwuw
]
i T AT AS- ASe awp
d
d
INT g
..
d
u
N Csvu
ozs 26wy
" | v
o svw
o8 wnyy
o
von
CEY
CEERER —rl—vv
] L L
L2 B F5 5 52 mow
e L AL LEL LY LT L] { < 4 PEIE e
[EEEEL CCL] s AT
= W wo <1* P T
Ase - v . il
u LK LEE q
.W

i

YRy Y YN N NN YV ey

CPU board, block 4 : RAM signal system
APPENDIX-37

CN5 —=MZ -80GM

CN4,5 40P
1 AlS 2 Al4
3 Al3 4 Al2
5 All 6 Al0
7 A9 8 A8
9 GND 10 A7
i A6 12 AS
13 A4 14 A3
15| A2 16 Al
17 A® 18] GND
19| o7 20| De
21| DS 22 D4
23| D3 24| D2
25| DI 26| Do
27| GND 28| WNMI
29 |EX WAIT | 30| EX INT
3| |EX RESET | 32| RESET
33| IEO 34| HALT
35| MREQ 36| TOREQ
37| RD 38| WR
39| ™I 40| BUS®
=%V -5V
Stav +2v O
_+5V +5V O
+ |+ |+
= T T+
‘GND . GND

CPU board, block 5

APPENDIX-38

f——

To MZ-80EU

——]

- — - -
2ZVdb2e0 48MdO
()
A
- »0ZY
: V1EHOOXO-HY R >wo_~\uww~
80020 WIGIOZINYLY
L g 1810 svozsg L VLIS008TI0H X 2917001 K
noovrofzz 322900%Xd -HY 20021 A9I/022 T S 8£02d 3 ££
48020 20020 — — 9£022 . V11001 Av«vouz v20z3 €02y
2xA02 #Og! A iy A002/810° ACOZ/220° 10021 A o LR B TP
- S£020 ¥£02D Wy - —\W——-{<¢
e009 , -1 + neg L 890) 228 ogoa
&AM T snoosel-uny | VL16£00X0-HY| H H mw)z ASEPYSZ 40 40 83 . ssozu e €028 y00za
svozu| ' wyolw! nosz) ooxon Fe0z @sL9vs2 €028 wyeNI H 10
+ Lrppzy | .—- H 20020 j sooz0 Y 61029
| - @} %oz 0 T &
</ el Y ﬁ» ! i i Y <_wwuw~mv HFR mmwua 200
6£02) vlooxa-Hu . r2IO0° _
ovelziosz ocol /1 xa-Hul N@ Booze ao.H o9, 4O8RI082 | S8 4o 220 |ecens b3 I
2loozo w022 1£022 SONWWWN N\ is0z4 T+ Treozo 4
£v0|oxa-Hy _ H At es H . 10" g
oz (me/) 9¢ oozo(d) 92022 81022
noasd ely Ivozu ._. AE'E
o0b02D H 9£0zy
+——
AoOsin0 . ﬁuoo; ‘ oes >
- 2vjozo 1 321S-A zozy <
@ osg Aooz/fi0 mznz'z (8)%02 @
N 92028 $g029 §502y _ szozy
»ot nLz < c00-
_vifez0023-04 vzozy 20zY Hm.wme:ouo dooele
P @ pooz)5,
- & &) - 1 w]ingl S&N@ nsi/rlze ‘0]
ﬁ $00[ZoY ns [0 v10zo —~® >nmum“ m ASZ/LY Nzl e |
N LOLOBHIY 1002 zlozy A91/0022 Sioao* £1020 22028 0Z0ZY |
< w_o~o —— A2+
.//) JH _ 6 sl
_ S100XI1- Im A o_\;m 2 6 JixioLe i *l 3
vijpolosw 4:00&. 60020 (@08 zI02y 1
1g882L2 Asz/dol e hd s So2y f anNo
1 21022 00s ¥ <
6102y (IO 0@ 0 A_O ® d 0N H oepin
L
s _ ;mm_w £0020 Vs 2220
8102y P _ _ ASI aa] 'g029 sukg
L Al ASZILY 905y Wiz -] 60085 S
- 001 < < Apurozz ' 102 =, e H indu
3 9602 < < [e800z2 20022 nmw !ONRAJ. __ONz ol0zy v | punog
A 10 @ M\ - 90089, M- AW
L (mz/ng'| (m2/1)€°€
»s020 wofzz 102y (A)S66YSZ Jo 1024 Lo
£ =} ¥ 10028 >
pLeLe]] cosis! QeL9vS2 £0020 o oo~~m_ 9
16024 >
o 1o|asvd ozz ' < o020 LSVp41NOy
> QGING)
VdEY2OXI-H 20 9¥0Zd dwoo 9 (8)008
20021 1 02D 2002y
no1/doley 2 -4 posiily INLHOfI 48 et @s1z19s2 £
w1 el >
£6025 ® ©® e O @ @ O, vﬂo«wﬂ / Jv solZ, 10020 J "
(@)pose E
wyoZg L D & ® J@ Z ! ALAH -oonL
VA9!-dO %001 A > 300! Y nos/m 29
WA~ 4006 /s, — 1 Zacezu vd oo:|¢>w.mv 10022
veozy | 09023 69020 000! Swuwmn _L
onnA 4029 - & AG!
] es0zy A91/r{000) ¥IS19S2 S 00z
Asi/dLy hddie) WY 20020
.nONU YYy
A91/d01 2
Z5020 15024
-_— — e
NOILD3S Avdsia g02-ZIN

APPENDIX-39

CRT display control

— —_— -
+5v
CASSETTE CONTROL
RY | 42.9ma, 20va) are 3006
s i Sl H W
2o TINS +12v
3028
\ o ot +sv roor
-y —BL) \sAvE oM 0303 DI04 T
el 43008-2
L s >t . GND
1 1@ ci0s ,E
»
R3108 A3I08E J3008-3
L1 oK oK e + J 48V
®oK €302
cyior LM324 34 hadd
[Sy
L] 2
= i J3006-4
3 s +12v
3102 3 1C3101
LM324 2/ m 75452
A A
Wy
M A3ne rRINT
: c3ios R3120 S 1OK: M6
22) s.axaF
y
ICN3003-)
NS+ 12V I
oL

C1989Y

P J3008-7

J3005-9

NS. +12v !’o

3004
b isioes

Q3018
288762P

J3005-8

Jm%]

Q3020
2887610

'L—‘ /3008-4

NS +12v l
§ 03008
o 191088
Q3019
2s8762p
: 43008-5)
; s +i2v PNLL
130056)
3
@301l
, 2887600 430081 |
:70:6 +5v o™
43008-2)
=1
2
| J3002-2
sV IC3003 Q3003 FF
Lsoe C3736T™
RA30O! r J3002-3
2 12 0
k) 13 '-,‘?'4
34
03
ic300! 568° &3%%erw
o6 , LED
13010 | 2
T % I
L C ™ ' -
+5v
- J3003-5 WHITE
Cassette tape deck control

APPENDIX-40

AS +

A2+

AS -

AS +

A2+

AZI+

r Y T T T T T T T T s e - — — =
|
I
. A0E|-4 ne2 ALY
ooy ._n_oaH < 0¥ 20ve g [
> %95 > eofvolm & b3 _
b3 rory
] _|. w |
8 L 9 $ ¥ £ 2 | _
A ALy |
10 ¢¢>Mv‘x. NP2SE-9S 104D} 10ty _
I I T TR Y _
p—— _lé ¢ _
Azisiro |
2z < fecook sov2 I
SOvH & M.M_Wo.% b | gﬁ
2€29-v$2 Asesiee praszsdoosy
X- 4 § 3% 1092 - = - —— —
. $O¥IO¥D
aenl Ao1/do0ee - zovlo S3ove “H- - B] i T .u i
< ol®d b3 ! | _ |
< + AAA -1-]- “ss i
< Yool ¥ ‘ 11 Fre |
L TThoo 20%Y +T+T+]+ _ IT1%° !
T 1Hed @I ySI'EL | U |
oo —O0"\&3 ~—— ¢ T
T[poe2 0L1-¥SZ 1060° vsiel _ Lo——1 |
olgAss |
covd 10va | _ _
B r N |
L ez TR
NEE N9G vwm okoH S togy ~m.nunv ! _
200 vocu > 9ofgomm : I |
l'
[l N .
8 L 9 § ¥ £ 2z | e (I “
< 1088 [
S 4 N¥2SE-9S 10€21 | _
woelua 6 01 11 21 £ vl s 9 azn _ | |
4
ITTI oS onzs “ | |
T— 1080
q | —_—
.o eotd] 3 |__ r 7 _
§! >t ol |
08 _ | aswoces 2 [_ >t || fea-»
L _ | (
< 108 ¥I-3Y 4o Ju }
-3 #00-18843 | poe
+Mogose £0£0°20€0 _ | |
€00 | | | _
+ 00 4 ng t
£29-VSZ 10£4 ZxAse/fo o1
“losa zogo 044-¥sT T 0es T L _—__1 1 _
| 1060 I _
|] N |
0
| oLy | + A0t/ 001 zozd I_l +1 A9idoozz | |
| o2y 2 €022 1022 | _
< = - _ "
$06.-S4 .—- wi !
| z° 10201 el 4 4§ '—IQ/._.bLLIL. e |
! 008 0zd || 9£00d 1 _
- J L l_
8Md d33IMOd Y3IWHOSSNYYL
43IMOd

¥3alu4

H3IMOd
vo0n

Power supply

APPENDIX-41

Ic8
LSI57

ico
LS 42

To CPU BOAHD) ics cr
NS o Lsis7 LSI57
CNI__ sop .
V[— T2 = 67 >—8
3] — [a2 Ge >——!‘
S At} L) A0 Gs >—'°‘
7| A9 8| as Ga >>—
9! 680 0] AT
] ae li2] as
13] A4 14| a3 Ayo-—-f ry Y I’I_
18] a2 |is] a) ae <>-—z l._
17] a0 _Jis| ano A!O-’T‘ .
19| O7 20| De A4 Ot s 6
21| 03 J22] oe —l—,E'
23] 03 J2¢] D2
28] o1 J2¢] oo
27 — 28 —
29] — [so] —
31| —— s —
33] — |34 —
[35] — [5e] —
37| RO _|38] WR
39| — 40| —
(m CPU_BOARD
CNI3 10P
41 42| C3ED
43| iWh [aa[Fi~Fr
45| +5v |46 &M
[47] VoLK [48] 1w ngulgs Lcslgn
49| onD SO HBLK i 2 '{>°z
—_;]20
12} 3D 20 T
Lo 61
18 sl 0 60
Ls32
iwR KoL
0
rx‘ icis
Ls32
S
+8V TD_<

9 23 |1 |2 |3 s |¢ {7 |0
A Ap Ag At Ag As A« A Az Al Ao &l
Ica 2016 _
2 wE OE 2
1
2 ic3 2018 20
24
)
016
| c2 2 2
i1
« ici 2KRAM 2016 20
D7 Ds D3 D« 03 02 01 DO
17 s fis Jia b3 |0 [0 |0
ical
LSOO ic2t ice
00

o |o |« |& |o |> ju]s

G7 Gs Ge Gio

ich
L593

[Ic1o
LS93

IZ-!DWK)
CN 10K
CN2 1OP
| []] 2 | ¢SED
3| eo [a|douTz
i GND 6 aM
7/ VBLK |8 | 1m
9| GND [10] HBLK

Graphic Memory 1 card (optional) MZ-80GM

APPENDIX-42

+3V
GOouT 2

301S S1yvd © v

€1NI

€ND

€031 €3I

ZND

031 3|

10

aNo [zz| ON©
IWN |12 ov
livmx3 [oz| I1v
AN X3 |el| 2v
13s3u x3| 81| €V
13534 | 21| oV
o3l |al| sv
131 |st| ov
1IWWH [b1 2V
aNo €1 | sv
o3uN | 21| 6V
oadol (11| olv
ay ol | v
um 6| aIv
W 8 | €IV
gsng | L | viv
.Q 9 | siv
90 s | ano
sa v | oa
+0 €] 10
€a z | =20
AS+ 1| As+
a v
9ND ~IND

vin SIN viNI
9ND S NO $ND
s0a1 a3 03l si3l RG]
8081
121
=3
0
80871 ol
101
G
m
]
& L L
#" E
prUNI

vy

AS+

AAA
vy

AAA
wy

ANI X3

AAA

wy

AAA

wy

AS+

n.- udl
2wy

031

#sna |ob IN |es
um |eg oy |z¢
03y0l |oc| o3uw |se
1nvH [ee| o031 [ee
1353y |z [L13s3u xa| 1e
ANI X3 [og | Livm x3 |62
WN (82| ane |.z
oa |[sz g [s2
20 b2 €a [ez
va |2z sa |1z
9d |oz La el
oNe | 8l ov |
v | sl zv | sl
£V | bl vy |l
sv |2 v "
v o aNe | 6
sv |8 6V L
ov |9 1y S
2v | e eIV €
viv | 2 SIv I
dot 8 ZND

A aovvzo v
Qyvo8 NdO oL

Expansion I/O port (optional) MZ-80EU

APPENDIX-43

e | 1c2 ic3 ic9 icr
L8157 LSIs7 LsIs7 Lsid7 LS42
13
(8] Gr >—1] Gy >—2 62 >—2s o
G2 > Ge >—2 Gro >——i8 c
ar —1 o | ogamnr:
G0 >—— 6 —3 s —
As oe—ttfa v A7 o v An o2 YR azoe—3a P ot 3
Az O-e As o144 | 210 Ottt ls_ i A
A ot z as o3} : Pt] ife
Ao O3 A4 2 o (] Py '
[As s o s & @|
g [18 0 J;s 0 15
R |23 |« 5 (s |7 |8
Ao As As A7 AsAs A« A3 A2 Al A0 |ie
o3
___ icie 2016
3 Gef

Icie 2016
Ic12 2016
IC 8 2KRAM 2016

:

ljz—?

£y

G3 Ga

Gs Gs
(L ()
IC 6
LS93

7 P ps 13 0 ho |s
6o
[Siss
L
L douta
[] M J 13
= cI3
4 LSOO
4'5
14] b
13 cL 13
12 C]
uf.
sy
Lo ot

2

4
.ﬂ) 6 8Mm

[}

0~Alau—

GND_ |10

Graphic Memory 2 card (optional) MZ-80GMK

APPENDIX-44

Qyvd 0/ AVWSH3AINN

APPENDIX-45

vos? ol 221
1y T <L isy %AT 13538 hndll Lol povn e
e >3 v21|ec
L 4 sd | e i
v LXNE§ [
A ?29999090F¢ — _ rrra ey i
S W s1| aNp
R o0z 09Q o1 10- 3 oa W z 20| gs
e 0 vi| 920
1z a 101 7 m a "™ LS ° € szo0|zc
951 v o] v2o
zz! 2q 2o 3 3 z0 o o £20 |1t
S z1| 220
£2) £a €110 €q © o 1zo|og
¥ 9 1] ozo
— vezisa vs21$7 AgHO W Z ano |6z
o a1
91|82
H— —o(”:L vt |z oo
1
T ASHO— M \ v 8| €l
IR z 21192
4 "l
o ol s o 5
N
s— o — v ol vz
¢| 90
1 221 v0 b1l O 3 e va g0 | s2
v wo
C @ Y] Gl o S ————sa sv c1ol 22
Vel €| 210
921 9a 910 T ef[Vwo oz
2| o0
R a2z 20 2110 3 s—————* <0 oy ane | oz
1| owe
——
w257 vezis7
A v 3 4 .9 S N0 S0 NP S O TNINEIL TUNDIS
sv
D EHF)? E\,n. o\sllh 2 v
3015 Sibvd v
o s
i ans | 2zZ| ane
€01 n
08 ~——dv wn [12] ov
A v - < i xafoz| v
- g 23401 inix3 | 61| zv
Zv51 =
LISHXI 81) €V
O 13538 | 41| wv
/ . ELERE] o isy o o 031 | 91| svw
(L)
—_— #0073 o L) v 0 130 | s sv
N
ozo 3 0! ooy 0100— e B R
] o N QA_ % a0 e oo ane | 1] ev
szoe ° 9001 1°¢ e el 108 ' oaww | 21| ev
o oy €ay S0
A @ s ¢ 03801 | 11| ow
S [sus7 vovL Tosdsy 2oy 2 gy jor| nw
R am (e aw
- | <
PLERR o av3wL oy 9 w e | v
%2072 %2012 —
E 2078 g $sna | 2 | wiw
- L - o L - »0
V ¥200- z D Add o vo4 wioo z —° I vas vau wa [o] ew
pe——
sty szoo- ¥ —3]oz o 0zfy———=say Sl 00— k—310z |5, azl5 9y s s ons
1
A_ L < . M_ —— cfbb—<m®as sa 90
N 9zoo = P o os | 90y 3 00 3 oo o€ ot |5; L] w0 o1 o0
] L —— <
220 B 7 oy ow—m|AE& L QO 8 3 Z ov aov 3 LQy va < '
U v TH N 90y 90
wcccccc ove sus ovccck,m,c vose sus €0 2] 20
As+ | 1| Ase
08 cQ
a v
ACH AG 4+

d YOLI3INNOD O/

