COMPAS

Pascal Program Development System

Version 3.0

OPERATING MANUAL

Copyright (C) 1983

Poly-Data microcenter ApS
Aaboulevarden 13
DK-1960 Copenhagen V

COPYRIGHT

Copyright (C) 1982, 1983 by Poly-Data microcenter ApS. All rights

reserved. No part of this publication may be copied, duplicated .
or otherwise distributed, in any form or by any means, without -
the prior written permission of Poly-Data microcenter ApS, Aabou-

levarden 13, DK-1960 Copenhagen V, Denmark.

| DISCLAIMER o

Poly-Data microcenter ApS makes no representations or warranties
with respect to the contents hereof and specifically disclaims
any implied warranties of merchantability or fitness for any
-particular purpose. Further, Poly-Data:microcenter ApS reserves
the right to revise this publication without obligation of Poly-
Data microcenter ApS to notify any person of such revision,

TRADEMARKS

COMPAS, COMPAS Pascal, COMPAS-80 and COMPAS-86 are trademarks of
Poly-Data microcenter ApS. CP/M, CP/M-80 and CP/M-86 are trade-
marks of Digital Research Inc. MS-DOS is a trademark of Microsoft

) Inc. .

Poly-Data microcenter ApS
Aaboulevarden 13
DK-1960 Copenhagen V, DENMARK

Telephone: +1 35 61 66
Telex: 16600 FOTEX DK, Att: microcenter

o

TABLE OF CONTENTS

Introduction

0.1 System requirements
0.2 The distribution disk
0.3 Notations used in this manual

Running COMPAS

1.1 Invoking COMPAS
1.2 Command lines
1.3 The HELP command

Loading, saving and naming source texts
The LOAD command

The SAVE command
The NAME command

LS (S N}
- L] .
W -

he editor

3
®

Cursor movement commands
Mode selection commands
Editing commands

Block commands :
Search/replace commands
The ADJUST mode

Other editor commands
Editor error messages

[P S Iy S DS I DU N I SR N Y
L[] * L] L] . L] L] L]
B ~dAUV S Wi

[« BB
=3
o

compiler

The COMPILE command
The RUN command

The PROGRAM command
The OBJECT command
The FIND command
The WHERE command
Error handling

Lo~ R - -
. L] L] L] L] * @

N BN

Further commands

The DIR command
The USE command
The MEMORY command
The ZAP command
The QUIT command

(VAN LIS, S, Y]
. . L] . L]
U b W N

Table of conten

I~ ~ AU un W oW w N

11
11
12
12
13
14
14
15

16
16
17
19
20
21
21
23
23

24

© 24

25

~

Section 0 Introduction

Section 0

Introduction

COMPAS is a program development package based upon the block
structured programming language Pascal. COMPAS is available in
three different versions: For CP/M-80 running on a Z-80 processor
and for CP/M-86 or MS-DOS running on an 8086 (or 8088) processor.
The 8086 versions support the 8087 floating point co-processor.
Throughout the manual, the Z-80 version is referred to as COMPAS-
80 and the 8086 versions are referred to as COMPAS-86.

COMPAS includes all facilities required to create, edit, compile,
run and debug programs written in Pascal. The system consists of
a run time package, an on-screen editor, and a Pascal compiler,
and it is fully contained in a single program occupying only 28K
bytes for the Z-80 or 32K bytes for the 8086.

COMPAS Pascal closely follows the definition of Standard Pascal
as contained in the "User Manual and Report" by K. Jensen and N.
Wirth., In addition COMPAS Pascal offers some extensions to fur-
thermore increase the versatility of the language. ‘

This manual describes how to operate the COMPAS package. In
programming matters you are referred to the "COMPAS Pascal Prog-
ramming Manual”. - -

The COMPAS Pascal language system and its documentation is writ-
ten by Anders Hejlsberq.

()

Section O ' Introduction

0.1 System requirements

To use COMPAS-80 the following requirements must be fulfilled by
your computer system:

2-80 microprocessor.

CP/M 2.2 (or later) operating system.

At least one disk drive.

At least 48K bytes of RAM available to programs.

0000

To use COMPAS-86 the following requirements must be fulfilled by
your computer system:

8086 or 8088 microprocessor.
CP/M-86 or MS-DOS operating system.
At least one disk drive,

At least 64K bytes of RAM available to programs.

© 0 00

Note that COMPAS will pnot run on systems with an 8080 or an 8085
microprocessor.

0.2 The distribution disk

The distribution disk contains the following files (the '.COM'
expension is used by CP/M-80 and MS-DOS and the '.CMD' extension
is used by CP/M-86):

README, DOC A text file which describes the current version of
the COMPAS. Before using COMPAS please display and
read this file, for instance using a 'TYPE' com-
mand from the operating system.

COMPAS.COM This file contains the COMPAS system itself, i.e.

COMPAS.CMD the run-time package, the editor, and the Pascal
compiler,

COMPAS.ERM The error messages file. This file contains a 1list
of error messages used by the compiler for repor-
ting compilation errors.

COMPAS . HLP The help texts file. This file contains the help
texts displayed by the HELP command and by the "J
editor command.

CPAS87.COM The 8087 version of COMPAS (shipped wirth COMPAS-

CPAS87.CMD 86 only. This version uses the 8087 NDP (numeric
data processor) for floating point calculations,
but in all other aspects it is equivalent to ‘the
standard version. If your system is equipped with
an 8087 co-processor, you will probably want to
use this version instead of the standard version.,

INSTALL.COM The COMPAS install program. If you have bought an

INSTALL.CMD uninstalled version of COMPAS, use this program to
configure the package for use on your specific
system. INSTALL may also be used to modify a pre-
installed version to suit your individual needs.
The INSTALL program is fully self-explanatory.

-

Section 0 . Introduction

INSTALL.TRM Install program data files. These files contain
INSTALL.DAT configuration data for up to 50 different computer
systems and terminals.

The distribution disk may furthermore contain various demonstra-
tion programs as source texts (i.e. as '.PAS' files).

0.3 Notations used in this manual

Whenever the term "filename" is used it refers to a CP/M or MS-
DOS disk file name. The general format of a disk file name is:

<drive>:<nameb>.<type>

where <drive> is the disk drive identifier (A-P for CP/M, A-O for
MS-DOS), <name> is any combination of up to 8 letters or digits,
and <type> is any combination of up to three letters or digits.
The <name> field must always be specified, whereas the <drive>
field and the <type> field are optional. If the <drive> field
(and the colon following it) is omitted, the currently logged
drive is assumed. If the <type> field (and the period preceding
it) is omitted, a default type is assumed depending on the con-
text,

Throughout the manual, hex numbers (numbers to base 16) are
preceded by a '$' character, e.g. $16EOQ.

@

Sectivn 1 Running COMPAS

Section 1

Running COMPAS

1.1 Invoking COMPAS
To invoke COMPAS enter the command line:
COMPAS

If the COMPAS.COM or COMPAS.CMD file is not located on the cur-
rently logged drive, first log in this drive (for instance by
entering 'B:', if COMPAS is on the disk in drive B). Once loaded
the system prompts:

" COMPAS V3.XY (rrrrrrr version, ssss CPU)

Copyright (C) 1983 Poly-Data microcenter ApS

Include error messages (Y/N)?
where Y and X are the release and revision numbers respectively,
rrrrrrr is the name of the operating system, and ssss is the CPU
type. Now type 'Y' to load the error message file (COMPAS.ERM),
or any other character to omit it. If you type 'Y' at this point,
the compiler will display an error message on locating an error.
Otherwise, only the error number is displayed, and you will
yourself have to look up the error in the "COMPAS Pascal Program-
ming Manual”.

Following a cold-start (as described above), COMPAS may be warm-
started from CP/M or MS-DOS using the command line:

COMPAS *

This of course requires that no vital memory areas have been
overwritten by other programs run in the meantime.

1.2 Command lines

COMPAS prompts by printing two angle brackets ('>>'). Each time
this prompt appears, COMPAS is ready to accept and process a
command line. When you enter a command line, you may use the
following editing keys:

BACKSPACE Backspaces one character. On most keyboards this
code is generated by pressing the key marked BS,
BACK, or BACKSPACE, or by pressing CTRL/H. ‘

DEL Same as BACKSPACE described above. On most keyboards
this code is generated by pressing the key marked
DEL or RUBOUT.

CTRL/X Backspaces to the beginning of the line.

RETURN Terminates the input line. On most keyboards this
code is generated by pressing the key marked RETURN
or ENTER. - :

Section 1 . Running COMPAS

Below is shown a list of the commands recognized by COMPAS (each
command is described in full in the subsequent sections). All-:
commands may be abbreviated to their first letter.

HELP Display help texts.

LOAD Load a source text.

SAVE Save the source text.

NAME Set current file name.

EDIT Invoke the on-screen editor.

COMPILE Compile the source text.

RUN Run the current program.

PROGRAM Compile into a program file.

OBJECT Compile into an object file.

FIND Find a run time error.

WHERE Find error location in an include file.
DIR Display disk directory.

USE Change current logged drive and user.
MEMORY Display size of text and free memory.
ZAP Delete the source text.

QUIT Return to the operating system.

1.3 The BHELP command

The HELP command is used to display help texts. Use it whenever
you are in doubr as to what to type on a command line. The
command line format of the HELP command is:

HELP <command>

Where <command> jis one of the commands shown above (or the first
letter of one of them). If <command> is not specified, HELP
displays a command summary. Otherwise, it displays a complete
description of that particular command.

The EELP command only works if the COMPAS.HLP text file is pre-
sent ,on the disk from which COMPAS was executed. If this is not
the case, HELP displays:

No COMPAS.HLP file on disk

If you try to obtain help on an unexisting command, HELP dis-
plays:

No such help text

Section 2 " Loading, saving and naming files

Section 2

Loading, saving and naming files

2.1 The LOAD command

The LOAD command is used to load a source text into the memory
buffer. The command line format is:

LOAD <filename>
The file type defaults to '.PAS'. When a file is loaded, it 1is
appended to the end of the source text already held within the
memory buffer. On loading the file, COMPAS displays:
Loading d:filename.typ
If the file specified does not exist, COMPAS displays:

No such file

If loading the entire file would overflow the memory buffer,
COMPAS displays:

File too big

For both error conditions the text already held within the memory
buffer remains unchanged.

When a file is successfully loaded, the current file name is set
to the name of that file. The current file name is used by the
SAVE, PROGRAM, and OBJECT commands if a file name is not explici-
tly stated.

2.2 The SAVE command

The SAVE command is used to save the text held within the memcry
buffer in a disk file. The command line format is:

SAVE <filename>

The file type defaults to '.PAS'. If <filename> is omitted enti-
rely, the current file name is used. On saving the file, COMPAS
displays:

Saving d:filename.typ

If a file of the same name and type exists on the disk specified,
its type is changed to '.BAK' before the new file 1is created (the
backup file facility may be disabled using the INSTALL program,
so that duplicate files are simply deleted). If the disk directo-
ry is full, COMPAS displays:

Directory is full

Section 2 Loading, saving and naming files

If there is not enough room on the disk to create a new file,
COMPAS displays:

Disk is full
If one of the above errors are reported, insert a new disk, log
it in using the USE command, and try SAVE again.
2.3 The NAME command

The NAME command is used to display and optionally change the
current file name. The command line format is:

NAME <filename>
If <filename> is omitted entirely, the current file name is not
changed, but only displayed. Otherwise the current file name is

set to <filename>. The default file type is '.PAS'. The NAME
command ends by displaying:

Current file is d:filename.typ

[y -

Section 3 ’ The editor

Section 3

The editor

The COMPAS on-screen editor is used to enter and edit source
texts. In COMPAS-80 the size of a source text is limited only by
the amount of memory available (up to 35K bytes or so depending
on your system). In COMPAS-86 the maximum size of a source text
is up to 60K bytes depending on the amount of memory available
(usually enough memory is available to allow source texts of all
60K bytes). If a program grows to be too large for the editor to
handle it in one piece, you must break it into one or more
seperate texts and use include files.

The editor is invoked using the command:

EDIT

The on-screen editor is specifically designed for use with video
displays. On entering the editor, the start of the text held
within the memory buffer is displayed on the screen. If the text
is too long for the screen, which it usually is, then only the
first portion is displayed. This is the concept of a "window".
The whole text is there and accessible by editor commands, but
only a portion c¢f it can be seen through the "window" of the
screen. When any editor command would take you to a position in
the text which is not displayed, the "window" is moved to show
that portion of the text.

The cursor marks a position in the text and can be moved to any
position occupied by text. The window shows the portion of text
near the cursor. To see another portion of the text, simply move
the cursor.

Lines of a text may be as long as you wish, but the editor is
only able to display the first part of a line. If a line is
longer than the screen width, a '+' is displayed in the last
position of the line on the screen.

When you use the COMPAS editor, you will notice that it has a
great deal of "intelligence" built in. For instance, it updates
the display only when it has nothing else to do, i.e. only when
you are not entering commands or characters. Furthermore, when
the editor is in the process of updating the display, it still
scans the keyboard for your input. If the editor cannot keep up
with your input, i.e., if you type characters faster than the
editor can process them, the characters are stored in a "type-
ahead” buffer, and once you relax, the buffer is emptied one
character at a time. Up to 64 characters can be waiting in the
"type-ahead" buffer.

To enter characters into the text you simply type them. Depending
on the current mode of operation, new characters will either be
inserted (pushing the remainder of the line to the right), or
they will replace old characters.

Section 3 ' The editor

You command the editor through control characters. A control
character is entered from the keyboard by pressing the CTRL Key
and a letter Key simultaneously. In this manual, an up arrow
prefixing a letter indicates a control character, e.g. "A for
control-A,

Since there are more editor commands than there are single con-
trol characters in the ASCII alphabet, some editor commands are
invoked by entering two characters, for instance “K°D which means
control-K followed by control-D. Note that the second character
of a two-character control sequence need not be entered as a
control character. Thus control-D in the above example might as
well have been entered as 'D' or 'd'.

To allow you to benefit fully from the special keys offered by
your keyboard, COMPAS allows you to define alternate keys for
invoking specific editor functions., A typical example is defining
your cursor arrows to do the same as the standard cursor controls
(s, "D, "B, and “X), and in that case, whenever the manual
refers to a standard key, the alternate key may be used instead.
Alternate keys are defined using the INSTALL program supplied on
the master disk. INSTALL may also be used to display a list of
the alternate keys defined for your computer,

The COMPAS editor offers four different options (or switches)
called INSERT, AUTO, TABS, and ADJUST. Together they determine
the current mode of operation. Each option may be activated or
passivated independantly using editor commands.

When INSERT is on, characters typed at the keyboard are inserted
into the text and the remainder of the current line is puyshed to
the right. When INSERT is off, new characters simply replace old
characters on the line,

To improve the readability of -Pascal programs, the lines of a
source text are often indented, for instance according to the
number of BEGINs preceding the line. For this purpose, COMPAS
provides an AUTO (automatic tabulator) option, which, when acti-
vated, causes each new line to automatically start at the same
indentation as the line above.

When TABS is on, the TAB ("I) command will insert ASCII TAB
characters into the text. Otherwise, the TAB command will insert
an appropriate number of blanks to move the cursor to the next
TAB stop.

The ADJUST mode is used to quickly adjust the indentation of a
line or a block of lines. See section 3.6 for a complete descrip-
tion. '

The top line of the screen is reserved for the status line, which
shows the current status of the editor at all times. More speci-
fically, it shows the number of bytes in use and free, and the
state of the INSERT, AUTO, TABS, and ADJUST options. When an
option is on, its name appears on the status line.

10

Section 3

%@:‘%w'xm» = i

The editor

3.1 Cursor movement commands

°S

~

D

Move cursor left one character.
Move cursor right one character.
Move cursor left one word.

Move cursor right one word.

Move cursor to beginning of line.
Move cursor to end of line.

Move cursor up one line.

Move cursor down one line.

Move cursor to top of screen.
Move cursor to bottom of screen.
Move cursor up one page.

Move cursor down one page.

Move cursor to start of text.

Move cursor to end of text.

selection commands

INSERT on/off. When INSERT is on and a character is
typed at the keyboard, the remainder of the line is
pushed to the right to make room for the character. When
INSERT is off and a character is typed at the keyboard,
the new character simply replaces the character under
the cursor.

AUTO (automatic tabulator) on/off. When the automatic
tabulator is on, every new lin2 will automatically start
at the same indentation as the line above,.

TABS on/off. When TABS is on, the TAB ("I) command will
insert ASCII TAB characters into the text. Otherwise,
the TAB command will insert an appropriate number of
blanks to move the cursor to the next TAB stop. Using
ASCII TAB characters often saves memory, but it prevents
use of the ADJUST mode to adjust the indentation of
blocks of lines. '

ADJUST mode on/off. The ADJUST mode is used to adjust

the indentation of blocks of lines. For further details,
see section 3.6. ‘

11

g T L e A

Section 3 o The editor

3.3 Editing commands

RETURN Newline (same as “M). This command depends on whether
INSERT is on or off. When INSERT is on, a CR/LF (carria-
ge-return line-feed) sequence is inserted into the text,
which causes a blank line to appear, or which breaks the
current line into two if the cursor is not at the end of
the line. The cursor is then moved to the beginning of
the new line. If AUTO is also on, the new line will
automatically start at the same indentation as the line
above. If INSERT is off, the cursor is simply moved to
the beginning of the next line.

“N Insert carriage return. Inserts a CR/LF (carriage-return
line-feed) sequence at the cursor, which causes a blank
line to appear, or which breaks the current line into
two if the cursor is not at the end of the line. The
cursor does not move.

TAB Tabulate (same as "I). If TABS is on, an ASCII TAB
character is inserted into the text, which causes the
cursor to move to the next multiple of eight column. If
TABS is off, enough blanks are inserted to move the
cursor to the next multiple of eight column. Note that
TABS should be off if you plan to use the ADJUST mode to
adjust the indentation of your program lines later on.

DEL Delete character left. Deletes the character before the
cursor, and moves the cursor left one column.

G Delete character right. Deletes the character under the
cursor. The cursor does not move.

T Delete word. Deletes the word that starts at the current
character position (a word is any group of non-blank
characters). The cursor does not move.

Y Delete line. Deletes the entire line holding the cursor,
and scrolls the remainder of the screen up one line. The
cursor roves to column one of the next line.

“Q DEL Delete to beginning of line. Deletes all characters
before the cursor on the current line.

“Q°Y Delete to end of line. Deletes all characters after the
cursor on the current line.

3.4 Block commands

The block commands operate on blocks of text. A block is deli-
mited by a start block marker and an end block marker, and these
are shown on the screen as '>' and '<' in reverse. Before issuing
a block manipulation command, you must first set a start and an
end block marker, and furthermore you must make sure that the
cursor is not within the block.

12

PR ST

Section 3

“K°B

“K°K

“K"V

"K°C

KTY -

“K°P

“K"H

B L A T EN . . P S 0 P ORI SRS ¥ 3%

The editor

Set start block marker. Inserts a start block marker at
the current cursor position, and moves the cursor right
one column. If a start block marker is already set
somewhere else, it is removed.

Set end block marker. Inserts an end block marker at the
current cursor position, and moves the cursor right one

column. If an end block marker is already set somewhere

else, it is removed.

Move block. Moves the marked block to the current cursor
position, i.e. copies it to the current cursor position
and removes it at its original position. The block
markers are removed. This command will not operate if
the cursor is within the marked block.

Copy block. Copies the marked block to the current
cursor position. The block markers are not removed. This
command will not operate if the cursor is within the
marked block.

Delete block. Delete the marked block as well as the
block markers. This command will not operate if the
cursor is within the block.

Print block. Outputs the marked block to the printer.
This command will not operate if the cursor is within
the block.

Remove block markers. Note that when you leave the
editor, using the “K°D command, the block markers are
automatically removed.

3.5 Search/replace commands

The search/replace commands are used to quickly locate and optio-
nally replace occurrances of a string in the text., Note that
search and replace strings cannot contain CR/LF (carriage-return
line-feed) sequences, and that the maximum length of such strings
is 32 characters.

AQAF

" Find string. On entering this command, the status line

is cleared, and a 'Find?' prompt appears in its place,.
Now type the string to be found, and end by pressing
RETURN. You may use the DEL key to correct errors. Note
that TAB characters are displayed as '"“I'. Once the
string is input, the scanning of the text starts. If a
matching string is found, the cursor is moved to the
character position just after the string. Otherwise the
cursor does not move. The scan only includes the text
after the cursor. To include all of it, type "Q°"R before
“Q°F.

13

<

O B T R T AP Ve WU L N ERERTNE X % STV, e o AN L e e L

Section 3 The editor

“Q°A Find and replace string. This command is an extended
version of "Q°F, which furthermore allows you to replace
the string(s) found with another string. The command
will prompt you for a find string (the 'Find?' prompt),
a replace string (the 'Replace with?' prompt), and an
option list (the 'Options (G,N)?' prompt). The 'G' op-
tion indicates a global search, and the 'N' option
indicates that the string(s) found should be replaced
without asking. On entering options, type the letters
with no delimiters in between. If the 'N' option is not
selected, a 'Replace (Y/N)?' prompt will appear each
time a matching string is found, and the cursor will
move between the text and the prompt in short intervals.
Typing 'Y' will replace the string, whereas 'N' will
leave it unchanged. If the 'G' option is selected, the
search will not stop at the first occurrance, but conti-
nue until the entire text (after the initial cursor
positon) has been scanned, or RETURN is entered in
response to the 'Replace (Y/N)?' prompt.

L Continue search. Repeats the last “Q°F or “Q°A command
with the same parameters.

3.6 The ADJUST mode

The ADJUST mode is designed to make it easy to adjust the inden-
tation of a line or a whole group of lines, You enter the ADJUST
mode by pressing “W.

Once you are in the ADJUST mode, each time “S is typed, the whole
line moves one position to the left, and each time "D is typed,
the whole line moves one position to t-e right. Moving the cursor
up or down, using "E or "X, makes the same adjustment to lines
above or below. Note that once a direc:ion has been chosen (eit-
her up or down), you cannot move backwards in the opposite direc-
tion. '

When the line (or group of lines) is adjusted to the desired
indentation, press "W to leave the ADJUST mode.

Note that the ADJUST mode will not correctly adjust lines contai-
ning ASCII TAB characters. Therefore, set TABS off before ente-
ring lines that may require adjustments later on.

3.7 Other editor commands

~J Help. Displays a summary of all editor commands on the
screen. This command only works if the COMPAS.HLP file
is present on the disk from which COMPAS was started.

“K°D Terminate editor. On entering this command, the screen
is cleared and you are returned to the command mode (the
'>>' prompt). If you have been correcting an error in an
include file, it will be saved, and the original file
will be reloaded. For further details on this, see
section 4.7.

14

Section 3 ‘ The editor

“K°X Exit editor. Under normal circumstances this command
does exactly the same as "K°D. However, if you have been
correcting an error in an include file, "K°X will not
restore the original file upon exit.

3.8 Editor error messages

Editor error messages are displayed on the top line (where the
status line is normally located). An example:

ERROR: No room to insert. Press <RETURN>

To reset from an error condition and restore the status line,
press RETURN. There are four different error messages:

No room to insert

This message is displayed if you try to insert characters
when there is no memory left.

Block not found -

This message appears if you invoke a block command when no or
only one block marker is set. It will also be reported if you
are within the marked block on invoking the block command. In
the latter case, simply move the cursor outside the block,
and re-enter the command.

No COMPAS.HLP file on disk

This message is displayed if the “J (help) command is unable
to locate the COMPAS.HLP text file.

No such help text
This message is displayed if the COMPAS.HLP file does not

contain an editor command summary. Under normal circumstances
you will never see this message.

15

Section 4 The compiler

Section 4

The compiler

The compiler is the heart of the COMPAS Pascal language system.
It is capable of translating COMPAS Pascal, as defined in the
"COMPAS Pascal Programming Manual®, into native machine code
instructions.

When the compiler is invoked from a COMPILE or a RUN command, the
object code is stored directly into memory in succession of the
source text. This mode is extremely fast (up to 5000 lines are
processed per minute), and once the program is compiled it can be
executed immediately. COMPAS-80 users should however note that
since the system requires memory for both source text and the
object code at the same time, it is likely that very large prog-
rams cannot be compiled in this mode. This also applies to COM-
PAS-86 users running on systems with small amounts of RAM.

The PROGRAM and OBJECT commands instruct the compiler to write
the object code to a disk file. This mode is of course somewhat
slower than the above, but it requires less memory, and makes
possible the generation of '.COM' or '.CMD' files which may be
executed directly from the operating system.

When activated from a FIND command, the compiler may be used to
locate a statement in the source text which corresponds to a
specific address in the object code, typically the address of a
run-time error. This mode is invaluable help for the debugging of
a program.

4.1 The COMPILE command

When the compiler is invoked from a COMPILE command, the object
is stored direct_y into memory in succession of the source text.
Note that whenever you invoke the editor, the code produced by
the COMPILE command is erased. The actions performed by the
COMPILE command cepends on the version of COMPAS in use.

COMPAS-80
On entry the compiler displays:
Compiling

Following a successful compilation, you are informed of the size
of the object code, the size of free memory, and the size of the
data area:

Code: rrrrr bytes (aaaa-bbbb)

Free: sssss bytes (cccc-dddd)

Data: ttttt bytes (eeee-ffff)
where the numbers in parentheses are the start and end addresses

(in hex) of each specific area. The size of the code section does
not include the run-time package.
|

16

e s S b e e AN B
“r .“,x.,w,w,,;»é'a}.}wq\ﬂs‘,}ﬂ. RGNS
)

Section 4 The compiler

COMPAS-86
On entry the compiler displays:
Compiling
Following a successful compilation, you are informed of the size

of the code segment, the size of the data segment, and the size
of free memory (used for the stack segment):

Code: rrrrrr bytes (aaaa paragraphs)
Data: ssssss bytes (bbbb paragraphs)
Free: tttttt bytes (cccc paragraphs)

where the numbers in parentheses are the paragraph sizes (in hex)

"of each segment. One paragraph corresponds to 16 bytes. The code
segment size includes both the run-time package and the actual
program code.

4.2 The RUN command

The RUN command is used to execute a program. If no object code
is present, the compiler is invoked to compile the program.
Assuming a successful compilation, or if the object code was
already present, the message:

Running

is output, and control is transferred to the program. When the
program ends, it automatically enters the command mode of COMPAS.

If a run-time error occurs, or if you interrupt the program by
pressing “C, the program will terminate displaying a status
message, for instance: '

EXECUTION ERROR 04 AT PC=254E
Program terminated

You may then use the FIND command to locate the statement that
caused the error or was interrupted.

4.3 The PROGRAM command

The PROGRAM command is used to compile the program into a machine
code program file on a disk. The command line format and the
actions performed by the command depends on the version of COMPAS
in use. : '
COMPAS-8Q

For COMPAS-80 the command line format is:

PROGRAM <filename>,<origin>,<top>

17

Section 4 The compiler

where <filename> is a disk file name, and <origin> and <top> are
hex addresses (without the preceding '$' character). The default
file type is '.COM'. If <filename> is omitted entirely, the
current file name is used with its type changed to '.COM'.

<origin> specifies the start address of the object code. If it is
omitted, the end address of the run-time package is assumed.
<origin> values should never be less than the end address of the
run-time package (to find this address, simply use the PROGRAM
command without the <origin> parameter, and note the start ad-
dress of the code area).

<top> specifies the address of top of memory for the program.
Programs will never access locations above this address. If <top>
is omitted, the current logical top of memory is assumed. Since
the compiler allocates storage for variables starting at the top
of memory and working downwards, programs compiled for a given
memory Size cannot be run on systems with smaller memory sizes.

Before compiling the program COMPAS displays:
Compiling to d:filename.typ

On compiling the program, COMPAS also writes a copy of the run-
time package into the command file. The run-time package always
occupies the first portion of a program file. If an origin ad-
dress greater than the end address of the run-time package is
specified, a gap is left in the program file. Since this area is
neither accessed by the run-time routines, nor by the program
code, it is a suitable place for EXTERNAL specified machine code
subroutines. These may be inserted into the program file using
the DDT utility supplied on your CP/M master disk.

Following a successful compilation you are informed of the size
of the program ccde, the size of free memory, and the size of the
data area:

Free: rrrrr bytes (aaaa-bbbb)
Code: sssss bytes (cccc-dddd)
Free: ttttt bytes (eeee-ffff)
Data: uuuuu bytes (gggg-hhhh)

where the numbers in parentheses are the start and end addresses
(in hex) of each specific area. The size of the code section does
not include the run-time package. The first line is displayed
only if an origin value was specified on the command line.

COMPAS-86
For COMPAS-86 the command line format is:
PROGRAM <filename>,<ssegmin)>,<ssegmax>,<csegmin>,<dsegmin>

where <filename> is a disk file name, and <ssegmin>, <ssegmax>,
<csegmin>, and <dsegmin> are hex addresses (without the preceding
'$' character). The default file type is '.CMD' for CP/M-86 and
' .COM' for MS-DOS. If <filename> is omitted entirely, the current
file name is used with its type changed to '.CMD' or '.COM'. Any
one of the four hex parameters may be omitted, for instance:

18

Section 4 The compiler

PROGRAM B:TEST,800 (only <ssegmin))
PROGRAM ,,,CD8,12E4 (only <csegmin> and <dsegmin>)

<{ssegmin> and <ssegmax> specify the minimum and maximum sizes (in
paragrahps) of the stack segment. <ssegmin> defaults to 100 hex
(4K bytes), and <ssegmax> defaults to the value of <ssegmin>.
<csegmin> and <dsegmin> specify the minimum sizes (in paragrahps)

" of the code and data segments. They default to the lowest possib-

le values. They must not be larger than hex FFF (64K bytes), and
usually they are only specified for programs that will chain to
other programs with larger code and/or data segments.

Before compiling the program, COMPAS displays:
Compiling to d:filename.typ

On compiling the program, COMPAS also writes a copy of the run-
time package into the command file. The run-time package always
occupies the first portion of the code segment.

Following a successful compilation, you are informed of the size
of the code segment, the size of the data segment, and the mini-
mum size of the stack segment:

Code: rrrrrr bytes (aaaa paragraphs)
Data: ssssss bytes (bbbb paragraphs)
Free: tttttt bytes (cccc paragraphs)

where the numbers in parentheses are the paragraph sizes (in hex)
of each segment. One paragraph corresponds to 16 bytes. The code
segment size inclydes both the run-time package and the actual
program code. '

In COMPAS-86 the PROGRAM command actually works in two different

- modes. In the "compile” mode, it generates the object code and at

the same time writes it to the program file. This mode only
requires room for the source text and the symbol table. In the
"dump" mode on the other hand, the PROGRAM command simply dumps
an already existing object code into the program file, without
actually compiling the source text. This mode is extremely fast
and only limited by the speed of your disk system.

The PROGRAM command automatically selects the proper mode of
operation, If a COMPILE command is issued before the PROGRAM
command, the PROGRAM command realizes that the object code alrea-
dy exists within memory, and thus selects the "dump” mode. On the
other hand, if no object code is present within memory prior to
the PROGRAM command, the "compile"” mode is selected. Since the
"dump"” mode is significantly faster than the "compile” mode,
especially for large programs, it is recommended that you always
issue a COMPILE command immediately before a PROGRAM command.

19

:

Section 4 The compiler

4.4 The OBJECT command

The OBJECT command is used to create object (chain) files, i.e.
files that do not contain the run-time package but only the
actual program code. Object files may only be activated through
the chain procedure of COMPAS Pascal - they cannot be executed
directly from the operating system. For further details on prog-
ram chaining, please refer to the "COMPAS Pascal Programming
Manual®. The command line format of the OBJECT command depends on
the version of COMPAS in use.

COMPAS-80
For COMPAS-80 the command line format is:
OBJECT <filename)>,<origin>,<top>

where <filename> is a disk file name, and <origin> and <top> are
hex addresses (without the preceding '$' character). The default
file type is '.0BJ'. If <filename> is omitted entirely, the
current file name is used with its type changed to '.0OBJ'. For a
description of <origin> and <top>, please refer to the PROGRAM
command.

COMPAS-86
For COMPAS-86 the command line format is:
OBJECT <filename>

where <filename> is a disk file name. The default file type is
'.CHN' (short for chain). If <filename> is omitted entirely, the
current file name is used with its type changed to ‘'.CHN'.

Since the memory allocation state is not changed by a call to the
chain procedure, you need not specify segment size information
when creating an object file.

It is up to you, however, to specify sufficiently large minimum
segment sizes on compiling the "root" program (using the PROGRAM
command), as the memory allocation state is established once and
for all when the "root" program is executed from the operating
system. Therefore, note the code and data segment paragraph sizes
output at the end of each object file compilation, and specify
the largest values when compiling the "root" program.

4.5 The PIND command

The FIND command is used to locate a statement in the source text
that corresponds to an offset address in the object code. In this
mode the compiler generates no object code. The command line

format is:

FIND <offset>

20

L)

Section 4 The compiler

where <offset> is the offset address of the statement to be
located. The offset address must be specified in hex with no
preceding '$' character. For COMPAS-80 the offset address is
relative to the start address of the program code. Thus, if the
program code starts at address $1E80, then 'FIND 348' will locate
the statement that resides at $21C8., For COMPAS-86 the offset
address is always the true program counter offset within the code
segment.

If <offset> is omitted, the offset address of the most recent

run-time error is substituted instead. Thus, to locate the state-

ment that caused a run time error, simply enter a FIND command

when the error is reported. On entry the compiler displays:
Searching

If the offset address is passed during compilation, the compiler

- stops and displays:

Target address found
Press <RETURN> to edit or <ESC> to abort

When you press RETURN the editor is invoked, and the cursor is
placed at or just after the relevant section. If you press ESC
you are returned to the command mode. If the offset address is
out of range, the compiler outputs: !

Target address not found
before returning you to the command mode.

If a run-time error occurs within an overlay subroutine (a disk
resident procedure or function), the FIND command will not always
correctly locate the statement that caused the error. For a
discussion of this problem and a method to avoid it, please refer
to section 15.9 of the "COMPAS Pascal Programming Manual".

4.6 The WHERE command

The WHERE command invokes the editor, and moves the cursor to a
specific position in the text. The command line format is:

WHERE <offset>

where <offset> is a hex number (with no preceding '$' character)
specifying the offset address of the spot to be located. Whenever
you leave the editor, the offset address of the cursor is recor-
ded as the default <offset> value. Thus, if you use WHERE with no
arqument instead of EDIT to invoke the editor, the cursor will be
moved to the spot you left previously instead of to the beginning
of the text. In addition, when the compiler reports an error, it
also records the offset address of the error as the default WHERE
argument. In this case, a WHERE command will invoke the editor
and move the cursor to the spot in error.

21

Section ¢4 The compiler

4.7 Error handling

If an error is found during a compilation, the compiler stops and
displays an error number. If the error message file was loaded on
running COMPAS, an error message is displayed as well:

Error 04: Duplicate identifier
Press <RETURN> to edit or <ESC> to abort

On pressing RETURN, the editor is invoked and the cursor is moved
to the spot in error. You may then edit the source text in the
same way as usual. If you press ESC you are returned to the
command mode.

If an error is spotted within an include file the situation is a
bit more complicated. In this case the compiler displays the name
of the file and the offset address of the spot in error. Assuming
that the current file name is A:MAIN.PAS and that the include
file name is A:FUNCLIB.PAS. The error message might then read:

Include file A:FUNCLIB.PAS at CC=07B2
Error 25: Unknown or invalid variable identifier
Press <RETURN> to edit or <ESC> to abort

The offset address (CC) is the number of characters (in hex) read
from the file before the error occurred. If you press RETURN at
this stage, COMPAS will proceed by saving the text currently held
within memory. On doing so, it would in this case display:

Saving A:MAIN.PAS

since A:MAIN.PAS is the current file name (set through LOAD or
NAME). The file is only saved if it has not been modified since
it was loaded or saved the last time, Next thing the include file
is loaded. In this case COMPAS would display:

Loading A:FUNCLIB.PAS

Finally COMPAS will automatically invoke the editor and move the
cursor to the spot in error. You may then correct the error. If
you exit the editor through "K°D, COMPAS will automatically save
the include file and reload the original file before returning to
the command mode. In this cese, the display would be:

Saving A:FUNCLIB.PAS
Loading A:MAIN.PAS

If you however exit the editor through “K“X, the include file
will remain the current file. '

22

Section S Further commands

Section 5

Purther commands

5.1 The DIR command

The DIR command is used to display the directory of a disk. The
command line format is:

DIR <afn>

where <afn> is an ambiguous file name as the one used in a CP/M
or MS-DOS DIR command, i.e. question marks (?) and asterisks (*)
may be interspersed throughout the file name and type fields.

A gquestion mark will match any character in that position, and an
asterisk will match any combination of characters within the
field in which it is used (actually, an asterisk in the name
field is equivalent to eigth question marks, and an asterisk in
the type field is equivalent to three question marks).

If both the name field and the type field are left out, leaving
only the drive identifier and a colon, then all files on that
drive are listed. If <afn> is omitted entirely, then all files of
the currently logged drive are listed.

5.2 The USE command

The use command is used to display and set the currently logged
drive (the default drive). In the CP/M versions of COMPAS it is
furthermore used to log in new disks, and to set and display the
current user number. The command line format depends on the
version of COMPAS in use.

“p/ .
For the CP/M versions of COMPAS the command line format is:
USE <drive><user>

where drive is a drive identifier (A-P) and user is a user number
(0-15). If <drive> is specified, the currently logged drive is
changed to that drive, and if <user> is specified, the current
user number is changed to that number.

The USE command is furthermore used to log in new disks. Whenever
a disk 1is changed in one of the drives, a USE command should be
issued. Otherwise CP/M will report an R/O error if you try to
write to that disk).

Before returning to the command level, the USE command displays
the currently logged drive and user number, for instance:

Current drive is A, user 0

23

i

Section S Further commands

MS-DOS version

_For the MS-DOS version the command line format is:

USE <drive>

Where <drive> is a drive identifier (A-0O). If <drive> is speci-
fied, that drive becomes the default drive. Before returning to
the command level, the USE command displays the identifier of the
default drive, for instance:

Current drive is A

5.3 The MEMORY command

The MEMORY command is used to display the current memory alloca-
tion state., The actual display depends on the version of COMPAS
in use.

COMPA3S-8Q

L]

COMPAS-80 displays:

Code: rrrrr bytes (aaaa-bbbb)
Free: sssss bytes (cccc-dddd)
Data: ttttt bytes (eeee-ffff)

The 'Code' and 'Data' fields are displayed only if an object code
version of the cyrrent program is present in memory. The numbers

in parentheses are the start and end addresses (in hex) of each
specific area.

COMPAS-86
COMPAS-86 displays:

Code: rrrrrr bytes (aaaa paragraphs)

Data: ssssss bytes (bbbb paragraphs)

Free: tttttt bytes (cccc paragraphs)
The 'Code' and 'Data' fields are displayed only if an object code
version of the current program is present in memory. The numbers
in parentheses are the paragraph sizes (in hex) of each area. One
paragraph corresponds to 16 bytes.
5.4 The ZAP command
The ZAP command erases the text held within the memory buffer,
and changes the current file name to 'WORK.PAS'. As a safety
precaution, ZAP prompts:

Are you sure (Y/N)?

Any answer but 'Y' or 'y' will leave the text unchanged.

24

Section S ' Further commands

5.5 The QUIT command

- The QUIT command transfers control to CP/M. If the source text

has been edited but not saved, COMPAS prompts:
Text not saved. Quit (Y/N)?

and any answer but 'Y' or 'y' will return you to the command
mode. You may later warmstart COMPAS as described in section 1l.l.

25

Tk kkk
khkkkkhk*k
* k% * k%

* % &

*k %k

* Kk *

k%%

k&

*kk k&
AkhkkRXhkAk®
Akt kX

hhkkkkk
kkkkkkkk
Ak k k&K
* ok ok * % %k
*k k * k%
khkk , hkk
*%k K 'YL
*k ok k& k
* & & *k ok
hhkkkkkhh
Ahkkkk

* Kk %k * k%
%k k% * Kk k&
kkkkk Kkkkk
kkk hkk Kkkk
* k% * * k%
* k% * %k &k
* k% * k%
* k% * k%
kk % * Xk %k
* k% * k%
k% * k%

khkkkhkkk

khkkkhkkkk*h
* %k % *
* &k & *
* &k %k *
khkkkhhkh*k
khkkkhkhkhk
k&

* %k %

AR

k%

%

R
*
*
*

Ahkkhkkk
khkkhk ki ki

* %k &k
* Kk k
L&

* k%
* & %k
* k%

khkkkhkhkkhkhk
ARARRXRXA AKX

kk*k
k%
hk%k
L &)

* k%
*x kX
k k&
k¥

hkk
khkkkkhkkk

Ahkhkhkhkd

kkkkkhkhk
* kX
* %k

* kK

k%

khkkk k&

L2 AR RSS2 RRRRRRRRRRRRRRRRRR2RRRRRRRRR22 22222 2222222222 RXX X 2

W3 3k 2 o 3k ok ok Ok 3 ok 3Ok ok 3 3 3k ok ok Ok ok 3k b % ok o T ok ok o ok 3 0 % b 3 3b JE 3k b b ok ok 0 3 0k 3 3 3 ok b % O 3 % 3 o % ok o 3 o 3% % %

Pascal Program Development System

P R OGRAMMING

Poly-Data microcenter ApS

COMPAS

Version 3.0

Copyright (C) 1982,1983

Aaboulevarden 13
DK-1960 Copenhagen V

MANUAL

LA R E RS2SRRSR Rt 222 2 2 2 2 2 2222 R R 2 2 X 2R R R RS R RSR LR R Y

x4
% % o %k ok 3k ok 0k 3 3k b 3k 0k 3k 26 3 ok 3 3k 3k 3k 3k 3 3 3k 3k 3k 3% 3k 3k 3 3k 3 3k 3k 3 W b 3 % % o 3 3k 3 3k 3 3k 3k o 3 3 ok 3 b 3 3 o b N 3 % % % 3 %

COMPAS

Pascal Program Development System

Version 3.0

PROGRAMMING MANUAL

Copyright (C) 1983

Poly-Data microcenter ApS
Aaboulevarden 13
DK-1960 Copenhagen V

COPYRIGHT

Copyright (C) 1982, 1983 by Poly-Data microcenter ApS. All rights
reserved. No part of this publication may be copied, duplicated
or otherwise distributed, in any form or by any means, without
the prior written permission of Poly-Data microcenter ApS, Aabou-
levarden 13, DK-1960 Copenhagen V, Denmark.

. DISCLAIMER

Poly-Data microcenter ApS makes no representations or warranties
with respect to the contents hereof and specifically disclaims
any implied warranties of merchantability or fitness for any
particular purpose. Further, Poly-Data microcenter ApS reserves
the right to revise this publication without obligation of Poly-
Data microcenter ApS to notify any person of such revision.

TRADEMARKS

COMPAS, COMPAS Pascal, COMPAS-80 and COMPAS-86 are trademarks of
Poly-Data microcenter ApS. CP/M, CP/M-80 and CP/M-86 are trade-
smarks of Digital Research Inc. MS-DOS is a trademark of Microsoft

. Inc.

Poly-Data microcenter ApS
Aaboulevarden 13
DK-1960 Copenhagen V, DENMARK

Telephone: +1 35 61 66
Telex: 16600 FOTEX DK, Att: microcenter

I
RS TR e

COMPAS Pascal Programming Manual

TABLE OF CONTENTS

0 Introduction
1 Basic language elements

1.1 Basic symbols

1.2 Reserved words and standard identifiers
1.3 Separators

1.4 Program lines

2 user defined language elements

Identifiers

Numbers

Strings

Comments

Compiler directives

NN
Vs W~

3
.
.
.
L]

3 Standard scalar types

3.1 The type integer
3.2 The type real
3.3 The type boolean
3.4 The type char
3.5 The type byte

4 The program heading and the program block

The program heading
The declaration part
4.2.1 Label declaration part
4.2.2 Constant definition part
4.2.3 Type definition part
4.2.4 Variable declaration part
4.2.5 Procedure and function declaration part
4.3 The statement part

N
L[] L]
N =

5 Expressions

5.1 Operators
5.1.1 The unary minus
5.1.2 The NOT operator
5.1.3 Multiplying operators
5.1.4 Adding operators
5.1.5 Relational operators
5.2 Function designators

6 Statements

6.1 Simple statements
6.1.1 Assignment statements
6.1.2 Procedure statements
6.1.3 GOTO statements
6.1.4 Empty statements

6.2 Structured statements
6.2.1 Compound statements
6.2.2 Conditional statements

1

Table of contents

()

COdJ ~

b
cCowww W

11

11
11
11
12
12

13

13
13
13
14
14
15
16
16

18

18
18
18
19
19

19
20

20
20
20
21
21
21

21

-

COMPAS Pascal Programming Manual

10

11

12

13

TABLE OF CONTENTS

.1 IF statements

.2 CASE statements
itive statements

.1l WHILE statements
.2 REPEAT statements
.3 FOR statements

Scalar and subrange types

1 Scalar types

2 Subrange types
3 Type conversion
4 Range checking

7.
7.
7
7‘
String types

String type definitions

String expressions

String assignments

String functions and procedures
Strings and characters
Predefined strings

o o0 o
YUV bW

Array types

Using arrays
Multidimensional arrays
Predefined arrays

9.3.1 The mem array
9.3.2 The port array
9.4 Character arrays

(Ve JVojpVe]
W+

Record types

10.1 Using records
10.2 WITH statements
10.3 Record variants

Set types

11.1 Set type definitions
11.2 Set expressions
11.2.1 Set constructors
11.2.2 Set operators
11.3 Set assignments

Typed constants

12.1 Typed constants of unstructured types
12.2 Structured constants

12.2.1 Array constants

12.2.2 Record constants

12.2.3 Set constants

FPile types

PRPRITEE S SR NN

Table of contents

22
22
23
23
23
24

25

25
26
26
27

28

28
28
29
29
31
32

33

33
34
34
34
35
36

37

37
38
39

41

41
42
42
42
43

44

44
44
45
46
46

47

LA e, 3 A,Wé‘y&'v~* st

COMPAS Pascal Programming Manual

14

15

16

17

18
19

TABLE OF CONTENTS

Table of contents

13.1 File type definitions 47
13.2 Operations on files 47
13.3 Textfiles 50
13.3.1 Operations on textfiles 51
13.3.2 Logical devices 52
13.3.3 Standard files 54

13.4 Untyped files 55
13.4.1 Operations on untyped files 55

13.5 I/0 checking 57
Pointer types 59
14,1 Pointer type definitions 59
14.2 Using pointers 59
14.3 Direct access to pointers 63
14.4 Summary of pointer related routines 63
Procedures and functionse 65
15.1 Parameters 65
15.2 Procedures 66
15.2.1 Procedure declarations 66
15.2.2 Standard procedures 68

15.3 Functions 68
15.3.1 Function declarations 68
15.3,.2 Standard functions 70
15.3.2.1 Arithmetic functions 70

15.3.2.2 Scalar functions 71

15.3.2.3 Transfer functions 71

15.3.2.4 Further standard functions 71

15.4 FORWARD references' 72
15.5 Strings as variable parameters 73
15.6 Untyped variable parameters 74
15.7 Absolute procedures and functions 75
15.8 Stack overflow checks 75
15.9 Overlay procedures and functions 75
15.10 EXTERNAL specifications 79
Input and output 81
16.1 The procedure read 81
16.2 The procedure readln 82
16.3 The procedure write 83
16.4 The procedure writeln 84
User interrupts 85
17.1 User interrupts during console I1/0 85
17.2 User interrupts during execution 85
Include files 86
Program chaining 88
In-line machine code 91

COMPAS Pascal Programming Manual

21

22
23

24

25

Y LA e AN

TABLE OF CONTENTS

System function calls

21.1 COMPAS-80 system function calls
21.2 COMPAS-86 system function calls

User written I/0 drivers
Internal data formats

23.1 Basic data types
23.1.1 Scalars
23.1.2 Reals
23.1.3 Strings
23.1.4 Sets
23.1.5 File interface blocks
23.1.6 Pointers
23.2 Data structures
23.2.1 Arrays
23.2.2 Records
23.2.3 Disk files
23.2.3.1 Textfiles
23.2.3.2 Random access files
23.3 COMPAS-80 parameter transfers
23.3.1 variable parameters
23.3.2 Value parameters
23.3.2.1 Scalars
23.3.2.2 Reals
23.3.2.3 Strings
23,.3.2.4 Sets
23.3.2.5 Pointers
23.3.2.6 Arrays and records
23.3.3 Function results
23.4 COMPAS-86 parameter transfers
23.4.]1 Parameters
23.4.2 Function results

Memory management

24.1 COMPAS-80 memory management
24.2 COMPAS-86 memory management

Interrupt handling

25.1 COMPAS-80 interrupt handling
25.2 COMPAS-86 interrupt handling

Differences between COMPAS and Standard Pascal
Summary of standard procedures and functions
Summary of operators

Summary of compiler directives

ASCII character table

Table of contents

D SRR R ARSI g e L 2 o A

94

94
94

96
99

99
99
100
100
100
100
103
103

103 "
103
103
103
104
104
104
105
105
105
105
105
106
106
106
106
106
108

109

109
111

113

113
115

116
117
120
121

124 o

e AR R

COMPAS Pascal Programming Manual Table of contents

TABLE OF CONTENTS

E COMPAS syntax _ 125
P I/0 error messages 131
G Execution error messages 133
H Compiler error messages 134

®

Section 0 Introduction

Section 0

Introduction

The purpose of this manual is to define the programming language
COMPAS Pascal. The manual is not meant as a tutorial. It is
however, as far as possible, organized in such a way that the
features of the languare are introduced in a logical order.
Newcomers to Pascal are recomended to supplement the reading of
this manual with a Pascal tutorial. Once you know your way about
the COMPAS Pascal language, you will find the appendices in the
back of the manual to be of help as a quick reference guide.

COMPAS Pascal is a superset of Standard Pascal, which is defined
by K. Jensen and N. Wirth in the "pascal User Manual and Report”.
COMPAS Pascal closely follows the definition of Standard Pascal -
only few and minor differences exist and these are thoroughly
described in section 26. Among the extensions introduced by
COMPAS Pascal are:

Dynamic strings

Random access data files

Structured constants

Overlay procedures and functions

Free ordering of sections within declaration part
Control characters in string constants

Type conversion functions

Program chaining with common variables
Include files ,
Full support of operating system facilities
Logical operations on integers

Bit/byte manipulation

Non-decimal integer constants

Direct access to CPU memory and data ports
Absolute address variables

In-line machine code generation

000000000 0DO0O0O0D0O0OOO

In addition, some extra standard procedures and functions are
offered to furthermore increase the versatility of COMPAS Pascal.
All language extensions are characterized either by being absolu-

tely necessary for the intended application area, or by being
highly convenient as compared to the unextended language.

Throughout the manual, the Z-80 version of COMPAS is referred to
as COMPAS-80 and the 8086 version of COMPAS is referred to as
COMPAS-86.

The COMPAS Pascal language system and its documentation is writ-
ten by Anders Hejlsbergq. :

"\

Section 1 Basic language elements

Section 1

Basic language elements

1.1 Basic symbols

The basic vocabulary of COMPAS Pascal consists of basic symbols
divided into letters, digits, and special symbols:

Letters: A to Z, a to z, and underscore '_'
Digits: 01234567839
Specials: +-*/=<> (Y[{}Yy., s " 88

The compiler does not distinguish between upper and lower case of

letters. Certain operators and delimiters are formed using two
special symbols: '

1. <> = >= = .
2. (. and .) may be used instead of | and]
3. (* and *) may be used instead of { and }

1.2 Reserved words and standard identifiers

Reserved words are integral parts of COMPAS Pascal and cannot be
redefined. Thus, reserved words should never be used as user
defined identifiers. The reserved words are:

AND ARRAY AT
BEGIN CASE CODE
CONST DIV DO
DOWNTO ELSE END
EXOR EXTERNAL FILE
FOR FORWARD FUNCTION
GOTO IF IN
LABEL MOD NIL
NOT OF OR
OTHERWISE OVERLAY PACKED
PROCEDURE PROGRAM RECORD
REPEAT SET SHL
SHR STRING THEN
TO -~ TYPE UNTIL
VAR WHILE WITH

Throughout the manual reserved words are written in upper case
letters. COMPAS Pascal also defines some standard identifiers
giving names of predefined types, constants, variables, proce-
dures, and functions. Standard identifiers can be redefined but
this is strongly discouraged as.it means the loss of the facili-
ties offered by that specific identifier and often leads to
confusion. The following standard identifiers are common to all
versions of COMPAS:

arctan addr allocate
assign aux blockread
blockwrite boolean buflen
byte chain char

chr close clreol

Section 1 Basic language elements

clreos clrhom con
concat copy cos
delete dellin eof
eoln erase execute
exp false fill
flush frac gotoxy
hi hptr input
insert inslin int
integer iores kbd
keypress len length
in lo 1st
mark maxint mem
memavail move new
odd ord output
pi port pos
position pred ptr
pwrten random randomize
read readln real
release rename reset
rewrite round rvsoff
rvson seek sin
size sqr sgrt
str succ swap
text trm true
trunc usr val
write writeln

The following standard identifiers are unique to COMPAS-80:

aoaddr aladdr bdos
bdosb bios biosb
" ciaddr coaddr csaddr
loaddr rptr sptr
uiaddr uoaddr

The following standard identifiers are unique to COMPAS-86:

aoofs aiofs ciofs
coofs cseg csofs
dseg loofs memw
ofs portw seg
sseg swint uiofs
uoofs

1.3 Separators

Blanks, end of lines, and comments are considered as separators.
At least one separator must occur between any two consecutive
language elements.

1.4 Program lines
The maximum length of a program line is 127 characters. If a line

is longer than 127 characters, all characters beyond the 127'th
are ignored.

Section 2 User defined language elements

Section 2

User defined language elements

2.1 Identifiers

Identifiers serve to denote labels, constants, types, variables,
procedures, and functions. An identifier consists of a letter or
underscore followed by any combination of letters, digits, or
underscores. All characters are significant. Some examples:

COMPAS sum root3 last_item

Note that COMPAS Pascal does not distinguish between upper and
lower case of letters.

2.2 Numbers

Numbzars are constants of type integer or of type real. Integer
constants are whole numbers expressed either in decimal or
hexadecimal notation. When the '$' symbol preceeds the constant
it i's considered a hexadecimal constant. The decimal integer
range is =-32768 through 32767 and the hexadecimal integer range
is $0000 through SFFFF. Some examples of integer constants:

1 3741 -3 $20 SE7B4

The real magnitude is 1E-38 through 1E+38 (1E-308 through 1E+308
for the 8087 version) with a mantissa of up to 11 significant
digits (15 for the 8087 version). Exponential notation may be
used, in which case the letter 'E' preceding the scale factor has
the meaning of "times ten to the power of". Whenever a real
constant is allowed an integer constant is allowed as well. Some
examples of real constants:

1.0 -0.025 5E10 2E-5 -3.7833654719E+12

No separators may occur within numbers.

2.3 Strings

Text strings are sequences of characters enclosed in single
quotation marks. If the string is to contain a quote mark it
should be written twice. Strings consisting of a single character
are constants of the standard type char. Strings containing n
(where n is greater than one) characters are constants of the
types ARRAY [m..n+m-1] OF char. All string constants are compati-
ble with all STRING types. Some examples of text strings:

'COMPAS' ‘*That''s all folks' ot NER '
Note the last example - the quotes enclose no characters and the

string constant denotes the empty string which is only compatible
with STRING types.

Section 2 User defined lanquage elements

COMPAS Pascal also allows for control characters to be embedded
in strings. Two notations for control characters are supported:
The '@' symbol followed by an integer constant (in range 0..255)
denotes a character of the ASCII value given by the constant, and
the '"!' symbol followed by a character, of ASCII value n, denotes
the control character of ASCII value n-64. Some examples of
control characters:

813 €127 €s1cC “M “G L A

Control characters may be concatenated into strings if they are
written with no separators in between:

€13€10 g27@61e@32@32 Mg "G°G"G “ze3le3l"yg

The above strings contain two, four, two, three, and four charac-
ters respectively. Control characters may also be mixed with text
strings:

"ERROR '"G"G"G' TRY AGAIN' @27'[1l;1f’ 'Line 1'"M"J

The above strings contain nineteen, six, and eight characters
respectively.

2.4 Comments

A comment can be inserted anywhere in the program between two
language elements. It is bounded by the symbols { and } or by the
symbols (* and *). Some examples: '

{this is a comment} - (* this is also a comment *)

2.5 Compiler directives

Certain features of the COMPAS Pascal compiler are controlled
through compiler directives. A compiler directive is actually a
special form of a comment. Thus, whenever a comment is allowed, a
compiler directive is allowed as well. A compiler directive 1list
is introduced by a $ character immediately following the opening
comment bracket. The syntax of the directive list depends upon
the directives selected. A full description of each of the compi-
ler directives follow later in this manual, and a summary of
compiler directives 1is located in Appendix C. Some examples of
compiler directives:

{S1-} {SA+,R-,B+} {SI STRINP.LIB} (*SW5*)

Note for now, that there must be no spaces in the {$ or (*$ or
immediately after the $ character.

10

i
t
!
!
|
!
i

Section 3 Standard scalar types

Section 3

Standard scalar types

A data type defines the set of values a variable may assume.
Every variable occurring in a program must be associated with one
and only one type. Although data types in COMPAS Pascal can be
quite sophisticated, each must be ultimately built from simple
(unstructured) types. A simple type is either defined by the
programmer, and then called a declared scalar type, or one of the
five standard scalar types, integer, real, boolean, char, or
byte.

3.1 The type integer

An integer is a whole number within the range -32768 through
32767, or within the range $0000 through $FFFF. Variables of type
integer occupy two bytes of memory.

Overflow on integer arithmetic operations is not detected. Fur-
thermore, partial results in integer expressions must be kept
within the integer range. For instance, the expression 4000*50/25
will not yield 8000 as the multiplication causes an overflow to
occur.

3.2 The type real

For COMPAS-80 and the standard version of COMPAS-86 the real
magnitude is 1E-38 through l1E+38 with a mantissa of up to 11
significant digits, and variables of type real occupy 6 bytes of
memory. For the 8087 version of COMPAS-86 the magnitude is 1E-308
through 1E+308 with a mantissa of up to 15 significant digits,
and variables of type real occupy 8 bytes of memory.

If an overflow occurs during an arithmetic operation involving
reals, the program will halt, displaying an execution error. If
an underflow occurs, a result of zero is returned.

Although real is included as a standard scalar type, it cannot
always be used in the same context as other scalar types. In
particular, the functions pred and succ cannot take real argu-
ments, and values of type real cannot be used in array indexing,
nor for defining the base type of a set, nor in controlling FOR
and CASE statements. Furthermore, subranges of type real are_ not
allowed.

3.3 The type boolean
A boolean value is one of the logical truth values denoted by the
predefined identifiers true and false. The byte boolean is

defined such that false < true. A boolean variable occupies one
byte of memory.

11

Section 3 " Standard scalar types

3.4 The type char

A char value is a character in the ASCII character set. Charac-
ters are ordered according to their ASCII value, such that for
instance 'A' < 'B'. The ordinal (ASCII) values of characters may
range from 0 to 255 (i.e. from @0 to @255). A char variable
occupies one byte of memory.

3.5 The type byte

The type byte is actually a subrange of the type integer, defined
such that TYPE byte = 0..255. Thus, bytes are compatible with
integers, i.e. bytes and integers may be mixed in expressions and
byte variables may be assigned integer values. A variable of type
byte occupies one byte of memory.

12

L

Section 4 The program heading and the program block

Section 4

The program heading and the program block

Every program consists of a program heading followed by a program
block. The block contains a declaration part, in which all
objects local to the program are defined, and a statement part,
which specifies the actions to be executed upon these objects.

4.1 The program heading

The program heading gives the program a name, and lists its
parameters, through which the program communicates with the
environment. The list consists of a sequence of identifiers
separated by commas and enclosed in parentheses. Some examples of
program headings:

PROGRAM squares;
PROGRAM calculator(input,output);
PROGRAM convert(printer,disk);

In COMPAS Pascal the program heading is purely optional and of no
significance to the program.

4.2 The declaration part

The declaration part of a block declares all identifiers used
within the statement part of that block, and other blocks within
it. The declaration part is divided into 5 different sections:

Label declaration part

Constant definition part

Type definition part

Variable declaration part

Procedure and function declaration part

[Salr RN UV RN SR]
. .

COMPAS Pascal allows each of the above sections to occur any
number of times in any order in the declaration part. Standard
Pascal, however, specifies that each section may only occur zero
or one time, and only in the above order.

4.2,]1 Label declaration part

Any statement in a program may be marked by prefixing the
statement with a label followed by a colon, making possible a
reference by a GOTO statement, However, the label must be
declared in a label declaration part before its use. The reserved
word LABEL heads this part, and it is followed by a list of label
identifiers separated by commas and ended by a semicolon. An
example:

LABEL '100,error,999,stop;

13

Section 4 The program heading and the program block

Note that Standard Pascal specifies that labels may only be
numbers of at most 4 digits, whereas COMPAS Pascal allows both
numbers and identifiers to be used.

4.2.2 Constant definition part

A constant definition introduces an identifier as a synonym for a
constant. The reserved word CONST heads the constant definition
part, and it is followed by a list of constant assignments sepa-
rated by semicolons. Each constant assignment consists of an
identifier followed by an egqual sign and a constant. Constants
are either strings or numbers as defined in sections 2.2 and 2.3.
An example:

CONST
number = 45;
max = 193.158;
min = -max;
name = 'Michael';
home = @27'[1;1f]"';

The following constants are predefined in COMPAS Pascal, i.e.
they can be referred to without previous definition:

pi real 3.1415926536E+00.
false boolean The truth value false,
true boolean The truth value true.
maxint integer 32767.

A constant definition part may also define typed constants. This
is described in full in section 12.

4.2.3 Type definition part

A data type in Pascal may be either directly described in the
variable declaration or referenced by a type identifier. Not only
are several standard type identifiers provided, but also a
method, the type definition, for creating new types. The reserved
word TYPE heads the type definition part, and it is followed by a
number of type assignments separated by semicolons. Each type
assignment consists of a type identifier followed by an egqual
sign and a type. Some examples: .

TYPE
word = integer;
day = (mon,tues,wed,thur,fri,sat,sun);

list = ARRAY[1..10] OF real;
digits = SET OF 0..9;
complex = RECORD re,im: real END;

More examples of type definitions are found in the subsequent
sections.

14

Section 4 The program heading and the program block

4.2.4 Variable declaration part

Every variable occurring in a program must be declared in a
variable declaration. This declaration must textually precede any
use of the variable, i.e. the variable must be "known" to the

.compiler before it can be referred to.

A variable declaration associates an identifier and a data type
with a new variable simply by listing the identifier followed by
a colon and its type. This identifier/type association is valid
throughout the entire block containing the declaration, unless
the identifier is redefined in a subordinate block. The reserved
word VAR heads the variable delcaration part. An example:

VAR
rootl, root2,root3: real;
count,i: integer;
found: boolean;
dl,d2: day:
buffer: ARRAY[0..127] OF byte;

variables may be declared to reside at specific memory addresses.

~This is done by adding an AT clause to the variable declaration.

The specific syntax of an AT clause depends on the version of
COMPAS in use.

The reserved word AT must be followed by an integer constant
giving the address of the first byte to be occupied by the
variable. Some examples:

VAR
memtop: integer AT $0006;
cmdline: STRING[127] AT $80;

COMPAS-86

The reserved word AT must be followed by two integer constants,
separated by a colon, which specify the segment base and offset
of the first byte to be occupied by the variable. Some examples:

VAR .
int_3_ofs: integer AT $0000:5000C;
int_3_seg: integer AT $0000:$000E;

To place variables at absolute offsets within the code segment or
the data segment, use the identifier cseg or the identifier dseg
followed by a colon and an offset:

VAR
cmdline: STRING[127] AT dseg:$80;

15

Section 4 The program heading and the program block

The AT specification may also be used to declare a variable "on
top"” of another variable, or more specifically, to specify that a
variable should start at the same address as another variable.
When AT is followed by the identifier of a variable (or a
parameter), the new variable will start at the address of that
variable (or parameter). An example:

VAR
str: STRING[32];
strlen: byte AT str;

The above declaration specifies that strlen should start at the
same address as str (and since the first byte of a string
variable gives the length of the string, strlen will contain the
length of str).

A variable declaration which employs an AT specification may only
list one identifier before the colon.

Further details on variable space allocation are given in sec-
tions 23 and 24.

4.2.5 Procedure and function declaration part

A procedure declaration serves to define a procedure within the
current procedure or program (see section 15.2). A procedure is
activated from a procedure statement (see section 6.1.2).

A function declaration serves to define a program part which
computes and returns a value (see section 15.3). A function is
activated by the evaluation of a function designator which is a
constituent of an expression (see section 5.2).

4.3 The statement part

The statement part is the ending part of a block. It specifies
the algorithmic actions to be executed upon activation of the
program. The statement part takes the form of a compound state-
ment followed by a period ('.'). A compound statement consists of
the reserved word BEGIN, followed by a list of statements sepa-
rated by semicolons, and it is ended by the reserved word END.

A sample program:

PROGRAM convert (output);
CONST

addin = 32; mulby =

low = 10; high = 19;

separator = '—-—---==--- '
TYPE

degreetype = low..high;
VAR

degrEé: degreetype;

1.8;

16

Section 4 The program heading and the program block

BEGIN
’ writeln(separator);
FOR degree:=low TO high DO
BEGIN

write (degree:10,'c',round(degree*mulby+addin):10,'£f');
IF odd(degree) THEN writeln;
END;
writeln(separator);
END.

The program produces the following output on the screen:

10c 50f llc 52f
l2c 54f 13c 55f
l4c 57f 15¢c 59f
léc 61f 1l7c 63f
18c 64f 19c¢ 66 £

)

17

Section 5 Expressions

Section 5

Expressions

Expressions are constructs denoting rules of computation for
obtaining values of variables and generating new values by the
application of operators. Expressions consist of operators and
operands, i.e. variables, constants, and function designators.

This section describes how to construct expressions of the stan-
dard scalar types integer, real, boolean, and char. Expressions
of declared scalar types, string types, and set types may also be
constructed - this is described in sections 7.1, 8.2, and 11.2
respectively.

The rules of composition specify operator precedences according
to five classes of operators. The unary minus (minus with one
operand only) has the highest precedence, followed by the NOT
operator, then the multiplying operators, then the adding opera-
tors, and finally with the lowest precedence the relational
operators. Seguences of operators of the same precendece are
evaluated from the left to the right. Any expression enclosed
within parentheses is evaluated independent of preceding or suc-
ceeding operators.)

5.1 Operators
If both of the operands of the arithmetic operators of addition,
subtraction, and multiplication are of type integer, then the

result is of type integer. If one (or both) of the operands is of
type real, then the result is also of type real.

5.1.1 The unary minus
The unary minus denotes negation of its operand which may be of
type real or of type integer.

5.1.2 The NOT operator

The NOT operator denotes negation (inversion) of its boolean
operand:

NOT true = false
NOT false = true

COMPAS Pascal also allows the NOT operator to be applied to an
integer operand, in which case it denotes bitwise negation. Some
examples:

NOT O = -1
NOT -7 =6
NOT $23AS5 = $DCS5A

18

Section 5

5.1.3 Multiplying operators

Operator Qperation

*

/
DIV

MOD
AND
SHL
SHR

Multiplication
Division

Integer division
Modulus

Logical AND
Shift left

Shift right

5.1.4 Adding operators

Operator QOperatjion

T
OR
EXOR

Addition
Subtraction
Logical OR
Logical EXOR

5.1.5 Relational operators

Type of operands

real, integer
real, integer
integer

integer

integer, boolean
integer

integer

Type of operands

real, integer
real, integer
integer, boolean
integer, boolean

Expressions

Type of result

real,
real
integer
integer
as operand
integer
integer

integer

Type of result

real, integer
real, integer
as operand
as operand

The relational operators work on all standard scalar types, real,
integer,

SUNN U VI U « TR o1

AV AVAL

boolean,

and char.

The relational operators are:

>

b
b
b

b

b
b

true if a is
true if a is
true if a is
true if a is
true if a is
true if a is

5.2 Punction designators

equal to b.

not equal to
greater than
less than b,
greater than
less than or

b.
b.

equal

Integer and real operands may be
mixed. The type of the result is always boolean,
false.

i.,e. true or

or equal to b.

to b.

A function designator specifies the activation of a previously
declared function or a standard function.

parameter list,

It may contain a

which is a sequence of variables or expressions

separated by commas and enclosed in parentheses. Some examples of
expressions involving function designators:

round(degree)

sqrt (sqr(x) *sqr(y))
(max(a,b)<10) and (c>100)
volume (radius,height)

19

Section 6 ' Statements

Section 6

Statements

Statements denote algorithmic actions and are said to be executa-
ble. The statement part of a program, a procedure, and a function
is a compound statement, i.e. a sequence of statements separated
by semicolons (;) and enclosed within the reserved words BEGIN
and END. Statements in Pascal are either simple statements or
structured statements,

6.1 Simple statements

A simple statement is a statement of which no part constitutes
another statement. In this group are the assignment, procedure,
GOTO, and empty statements.

6.1.1 Assignment statements

The most fundamental of all statements is the assignment state-
ment. It specifies that a computed value is to be assigned to a
variable. An assignment consists of a variable followed by the
assignment operator (:=) and an expression.

Assignment is possible to variables of any type, except files.
However, the variable (or the function) and the expression must
be of identical type, with the exception that if the type of the
variable is real, the type of the expression may be integer. Some
examples of assignment statements:

count:=count+l;
degree:=degree+l0;

found:=false;

dist:=sqrt(sqr (x)+sqr(y))
digit:=(num>='0') and (num<='9"')
root:=(-b+sqrt (sqr(b)-d))/(2*a)
a:=max3(a,b,100);

6.1.2 Procedure statements

A procedure statement serves to denote the activation of a stan-
dard procedure or a user defined procedure. The statement con-
sists of a procedure identifier, optionally followed by a parame-
ter list. The parameter list is a list of variables or expres-
sions separated by commas and enclosed in parentheses. Some
examples of procedure statements:

seek (f,r);

sort (names) ;

exchange(x,y);

plot (x,round(sin(x*£f)*20.0)+24);

20

.\.,

Section 6 Statements

6.1.3 GOTO statements

A GOTO statement consists of the reserved word GOTO followed by a
label identifier. It serves to indicate that further processing
should continue from that point in the program text which 1is
marked by the label. On using GOTO statements the following rules
should be observed:

The scope of a label is the block within which it is
declared. It is therefore not possible to jump into and
out of a procedurs and functions.

Every label must be specified in a label declaration in
the declaration part of the block in which the label
marks a statement.

6.1.4 Empty statements

An empty statement denotes no action and occurs whenever the
syntax of Pascal requires a statement but no statement appears.
Some examples:

BEGIN END;
WHILE digit AND (a>17) DO {nothing};
REPEAT {wait} UNTIL Kkeypress;

6.2 Structured statements

Structured statements are constructs composed of other statements
which are to be executed in sequence (compound statements),
conditionally (conditional statements), or repeatedly (repetitive
statements).

6.2.1 Compound statements

In some instances, the syntax of Pascal allows for only one
statement to be specified. If more statements are to be executed
in such a situation, a compound statement may be used. It con-
sists of any number of statements separated by semicolons and
enclosed within the reserved words BEGIN and END, and specifies
that the component statements be executed in sequence. An exam-
ple:

IF x>y THEN
BEGIN .
temp:=x; x:=y; y:=temp; {exchange x and y}
END;
The last component statement of a compound statement need not be
followed by a semicolon.

6.2.2 Conditional statements

A conditional statement selects for execution a single of its
component statements.,

21

Section 6 Statements

6.2.2.1 IP statements

The IF statement specifies that a statement be executed only if a
certain condition (a boolean expression) is true. If it is false,
then either no statement or the statement following the reserved
word ELSE is to be executed.

The syntactic ambigquity arising from the construct:
IF <el> THEN IF <e2> THEN <sl> ELSE <s2)>
i1s resolved by evaluating:

IF <el> is false, no statement is executed.
IF <el> is true and <e2> is true, <sl> is executed.
IF <el> is true and <e2> is false, <s2> is executed.

In general, an ELSE part belongs to the last IF statement that
misses and ELSE part. Some examples of IF statements:

IF x<1.5 THEN z:=x+y ELSE z:=1.5;

IF number<0 THEN

BEGIN
writeln('Negative numbers are not allowed'):
number :=0;

END;

6.2.2.2 CASE statements

The CASE statement consists of an expression (the selector) and a
list of statements, each preceded by a case label. It specifies
that the one statement be executed whose case label contains the
current value of the selector. If none of the case labels contain
the value of the selector, then either no statement is executed
or the statements between the reserved words OTHERWISE and END
are executed.

A case label consists of any number of constants or subranges
separated by commas followed by a colon. A subrange is written as
two constants separated by a lazy colon (..). The type of the
constants must be the same as the type of the selector. The
statement following the case label is executed if the value of
the selector equals one of the-constants or if it lies within one
of the ranges.

Valid selector types are all simple types, i.e. all scalar types
except real. Some examples of CASE statements: ’

CASE operator OF
'+ x:=x+y;
‘-t X:i=Xx-y;
'x: xi=x*y;
/' x:=x/y;

END;

22

Section 6 Statements

CASE number OF
1,3,5,7,9: writeln('0dd digit');
2,4,6,8: writeln('Even digit');
0,10..255: writeln('Zero or between 10 and 255');
OTHERWISE
writeln('Negative or greater than 255');
count:=count+l;
END;

The last statement before the reserved word OTHERWISE and the
last statement before the reserved word END need not be followed
by a semicolon.

6.2.3 Repetitive statements

Repetitive statements specify that certain statements are to be
executed repeatedly. If the number of repetitions is known on
beforehand (i.e. before the repetitions are started), the FOR
statement 1s the appropriate construct to express this situation.
Otherwise the WHILE or the REPEAT statement should be used.

6.2.3.1 WHILE statements

The expression controlling the repetition must be of type boo-
lean. The statement is repeatedly executed as long as the expres-
sion yields true. If its value is false at the beginning, the
statement is not executed at all. Some examples:

WHILE number<l1000 DO number :=sqr {(number) ;

WHILE i>0 DO

BEGIN
IF odd(i) THEN z:=z+Xx;
i:=1i DIV 2;
x:=8qr(x) ;

END;

6.2.3.2 REPEAT statements

" The expression controlling the repetition must be of type boo-

lean. The sequence of statements between the reserved words
REPEAT and UNTIL is repeatedly executed (and at least once) until
the expression becomes true., An example:

REPEAT
readln(n); sum:=sum+n;
UNTIL n=0;

The last component statement of a REPEAT statement need not be
followed by a semicolon.

23

Section 6 _ ‘ Statements

6.2.3.3 POR statements

The FOR statement indicates that the component statement is to be
repeatedly executed while a progression of values is assigned to
a variable which is called the control variable. The progression
can be up TO (succeeding) or DOWNTO (preceding) a final value.

The control variable, the initial value, and the final value must
all be of the same type. Valid types are all simple types, i.e.
all scalar types except real. : .

If the initial value is greater than the final value when using
the TO clause, or if the initial value is less than the final
value when using the DOWNTO clause, the component statement is
not executed at all. Some examples of FOR statements:

FOR i:=1 TO 10 DO writeln(i:5,sqr(i):5);

FOR i:=1 TO n DO
BEGIN

readln (number) ;

IF number=0 THEN

numzeroes:=numzeroes+l ELSE

IF number>0 THEN

positivesum:=positivesum+number ELSE

negativesum:=negativesum-number;
END; . : TN
Note that the component statement of a FOR statement may not
contain assignments to the control variable. If the repetition is
to be terminated before the final value is reached, a GOTO state-
ment must be used (such constructs are however not recommended -
use a WHILE or a REPEAT statement instead).

Upon completion of a FOR statement, the control variable equals
the final value, unless the component statement was not executed
at all, in which case no assignments are made to the control

variable.

24

Section 7 ' Scalar and subrange types

Section 7

Scalar and subrange types

The basic data types of Pascal are the scalar types. Scalar types
are characterized by the fact that they constitute a finite and
linear ordered set of values.

Although the standard type real is included as a scalar type, it
does not conform to the above definition. Therefore, reals may
not always be used in the same context as other scalar types.

7.1 Scalar types

Apart from the standard scalar types (integer, real, boolean, and
char), COMPAS Pascal supports user defined scalar types, also
called declared scalar types. The definition of a scalar type
specifies, in order, all of its possible values. The values of
the new type will be represented by identifiers, which will be
the constants of the new type. Some examples:

TYPE
card = (club,diamond,heart,spade);
day = (mon,tues,wed,thur,fri,sat,sun);
operator = (plus,minus,times,divide);
sex = (male,female);

" Variables of the above type card can assume one of four values,

namely club, diamond, heart, or spade. You are already acquainted
with the standard scalar type boolean, which is defined as:

TYPE
boolean = (false,true);

The relational operators (=, <>, >, <, >=, and <=) are applicable
on all scalar types, provided that both operands are of the same
type (reals and integers may be mixed however). The ordering of
the scalar type, i.e. the order in which the values of the type
are introduced in the type definition, is used as the basis of
the comparison. For the above type card, the following is true:

club < diamond < heart < spade

Standard functions with arguments of scalar type are:

succ (x) The successor of x.
pred(x) The predecessor of x.
ord(x) The ordinal value of x.

The result type of succ and pred is the same as the arqument
type. The result type of ord is integer. The ordinal value of the
first value of a scalar type is 0. Assuming the above defini-

tions, then: ' '

succ (diamond) = heart

pred(fri) = thur
ord(times) = 2

25

Section 7 Scalar and subrange types

7.2 Subrange types

A type may be defined as a subrange of any other already defined
scalar type. Such types are called subranges. The definition of a
subrange simply indicates the least and the largest constant
value in the subrange, where the lower bound must be greater than
the upper bound. A subrange of type real is not allowed. Some
examples:

TYPE
day = (mon,tues,wed,thur,fri,sat,sun);
workday = mon..fri;
weekend = sat..sun;
digit = '0'..'9';
letter = 'A',.'2';
range = -99..99;
monthlength = 28..31;

The types workday and weekend shown above are both subranges of
the scalar type day, also known as their associated scalar type.
The associated scalar type of digit and letter is char, and the
associated scalar type of range and monthlength is integer. You
are already acquainted with the standard subrange type byte,
which is defines as:

TYPE
byte = 0..255;

A subrange type retains all the properties of its associated
scalar type with a restriction on the range of its values.

The use of declared scalar types and subrange types is strongly
recommended as it greatly improves the readability of programs.
Furthermore, run time checks are included in the program code,
unless otherwise specified, to verify the values assigned to
declared scalar variables and subrange variables. Another advan-
tage of declared scalar types and subrange types is that they
often save storage space. COMPAS Pascal allocates only one byte
of storage for variables of a declared scalar type or a subrange
type with a total number of elements less than 256. Similary,
integer subrange variables, where lower and upper bounds are both
within the range 0 through 255, occupy only one byte of storage.

7.3 Type conversion

As stated earlier in this section, the ord function may be used
to convert scalar types into values of type integer. Standard
Pascal does however not provide a way to reverse this process,
i.e. a way of converting an integer into a scalar value.

In COMPAS Pascal, a value of any scalar type may be converted
into a value of any other scalar type, with the same ordinal
value, by means of the retype facility. Retyping is achieved by
using the type identifier of the desired type in a function
designator. The function designator must specify one parameter
enclosed in parentheses which may be a value of any scalar type.
Assuming the type definitions given in section 7.1, then:

26

Section 7 ' Scalar and subrange types

integer (heart) = 2
day(4) = fri
operator(0) = plus
char (65) = 'A'
integer('0') = 48
boolean(female) = true

The retype facility will not accept reals, neither as the desired
type nor as the argument type.

7.4 Range checking

The generation of code to perform run time range checks on scalar
and subrange variables is controlled through the R compiler
option. The default setting is {$R+}, and when an assignment is
made to a scalar or a subrange variable in this mode, the value
assigned is checked by the program code. Otherwise, no run time
check code is gererated. An example:

PROGRAM rangecheck;
TYPE
digit = 0..9;
VAR
dl,d2,d3: digit;
BEGIN
d2:=5; {valid}
dl :=d2+1; {valid since d82<9}
{$R-} d3:=167; f{invalid but causes no error}
{SR+} d3:=55; {invalid and causes a run time error}
END.

The {$R+} setting also causes range check code to be generated to
check actual parameter values in procedure statements and func-
tion designators, when the formal parameter is a value parameter
of a scalar or a subrange type.

Range checking should only be passivated in a properly debugged

rogram.
‘. prog

27

Sectbon i ’ ' String cyped

Section 8

String types

The character string, which is a sequence of characters, 1is
frequently needed in programming. For character string proces-
sing, COMPAS Pascal introduces string types. String types are
structured types, and in many ways similar to array types (see
section 9). There is however one major difference as the number
of characters in a string (also known as the length of the
string) may vary dynamically between 0 and a specified upper
limit whereas the number of elements in an array is fixed.

8.1 String type definitions

The definition of a string type specifies the maximum number of
characters it can contain, i.e. the maximum length of strings of
that type. The maximum length follows, enclosed in square
brackets, the reserved word STRING in the definition, and it must
be an integer constant in the range 1 through 255. Some examples:

TYPE
filename = STRING[8];
line = STRING([72];
hexstr = STRING[4]:

variables of a given string type occupy the maximum length plus
one bytes of storage space. The individual characters within a
string are indexed from 1 to the length of the string.

8.2 String expressions

Character strings may be computed from other character strings
using string expressions. String expressions are built from
string constants, string variables, function designators, and
operators.

The relational operators (=, <>, >, < 2%, and <=) may be applied
to string operands, the result being a boolean value (true or
false). To compare two strings, single characters are compared
from the left to the right. If the strings are of different
lengths, but equal to the length of the shortest string, then the
shortest string is considered the smaller. Strings are equal if
and only if their lengths as well as their contents are identi-
cal. Some examples of string comparisons yielding true: '

'string' = 'string'
IBI > 'A'

'"ABC' < 'ABCD'
'test ' <> 'test'
112' ¢ ‘2!

28

Section 8 ' String types

- Of higher precedence than the relational operators is the conca-

tenation operator, which is written as a plus sign (+). The
concatenation operator returns the concatenation of its two ope-
rands. Some examples: :

'*Michael '+'Jones' = 'Michael Jones'
132 +','4+'377' = '132.,377!
lAl+lBl+lcl+lDl = IABCDI

8.3 String assignments

The assignment operator is used to assign the value of a string
expression to a string variable. Some examples:

digits:='0123456789"';
line:='this is a character string';

If a string variable is assigned a string which is 1longer than
its maximum length, then only the leftmost characters are trans-
ferred. If, for instance, the variable digits above is defined to
be of type STRING([4], then following the assignment it will only
contain the four leftmost characters, 1i.e. '0123'.

8.4 Sstring functions and procedures

The following standard string functions are available in COMPAS
Pascal:

len(s) Returns the length of the string expression s,
i.e. the number of characters in s. The type of
the result is integer.

pos(p,s) p and s are string expressions, and the type of
the result is integer. The pos function scans s
to find the first occurrence of p within s. pos
returns the index within s of the first character
in the matched pattern (the index of the first
character in a string is 1). If the pattern is
not found, pos returns 0.

copy(s,i,n) s is a string expression and both i and n are
integer expressions. copy returns a string con-
taining n characters from s starting at the i'th
position in s. If i is greater than len(s), an
empty string is returned. If i+n-1 1is greater
than len(s), a string of len{(s)-i+l characters is
returned. If i is outside the range 1..255, a
run time error occurs.

concat(strs) strs is any number of string expressions sepa-
rated by commas. The result is a string which is
the concatenation of the parameters in the same
order as they are written. If the length of the
result is greater than 255, a run-time error
occurs. Note that string concatenation may also
be achieved using the plus (+) operator. concat
is included only to maintain compatibility with
other Pascal compilers.

29

Section 8

String types

. The following standard string procedures are available in COMPAS

| Pascal:

delete(s,i,n)

insert(p,s,1)

val(s,x,p)

str(p,s)

s is a string variable and both i1 and n are
integer expressions. The procedure removes n
characters from s starting at the i'th position.
If i is greater than len(s), no characters are
removed. If i+n-1 is greater than len(s), then
len(s)-i+l characters are removed. If i is out-
side the range 1..255, a run time error occurs.

p is a string expression, s is a string variable,
and i is an integer expression. The procedure
inserts p into s at the i'th position. If i is
greater than len(s), then p is concatenated to s.
If the result is greater than the maximum length
of s, then s will only contain the leftmost
characters. If i is outside the range 1..255, a
run time error ocCcurs. '

s is a string expression, x is either an integer
or a real variable, and p is an integer variable.
The numeric string contained in s is converted to
a value of the same type as x, and stored in x.
The numeric string should follow the rules that
apply to numeric constants (see section 2.2).
Neither leading nor trailing spaces are allowed.
If no errors are detected, val sets p to O.
Otherwise p is set to the position of the first
character in error (in this case the value of x
is undefined).

p is a write parameter of type integer or of type
real, and s is a string variable. For a full
description of write parameters, please refer to
section 16.3. The procedure converts the numeric
value into a string and stores the result in s.

) Below is shown a program which demonstrates the string handling
facilities of COMPAS Pascal: '

PROGRAM stringdemo(output):;

VAR

st,more,pattern,less: string(64];
i,p: integer;

r: real;
BEGIN
st:='up’;

more:='what''s '+st+' doc';

writeln('line 1: ',more);

st:='hello there';

writeln('line 2: ',len(st),' ',len(''));

st:='this is a character string';

pattern:="'ch';

writeln('line 3: ',pos(pattern,st),’ ',pos('7','12345"'));
st:='keep something here';

less:=copy(st,pos('s',st),9);

writeln('line 4: ',less);
writeln('line 5: ',copy('12345',3,255));

st:='this is a very long character string’;

30

Section 8 : String types

delete(st,pos('a',st)+2,10);
writeln('line 6: ',st):
st:='a is equal to b';
insert('less than or ',st,6);
writeln('line 7: ',st);
st:='-1547"';
val(st,i,p);
writeln('line 8: ',i,' ',p);
r:=pi;
str(r:10:6,st);
writeln('line 9: ',st);

END.

When the program is run, it produces the following output:

line 1: what's up doc

line 2: 11 0

line 3: 11 0

line 4: something

line 5: 345

line 6: this is a character string
line 7: a is less than or equal to b
line 8: -1547 0

line 9: 3.141593

8.5 Strings and characters

String types and the standard scalar type char are compatible.
" Thus, whenever a string value 1is expected, a char value may be
specified instead and vice versa. Furthermore, strings and chara-
cters may be mixed in expressions. When a character is assigned a
string value, the length of the string must be exactly 1, or
otherwise a run time error occurs,

The characters of a string variable may be accessed individually
through string indexing. This is achieved by following the string
variable with an index expression, of type integer, enclosed in
square brackets. Some examples:

st[5] line[37]) digits([i] name [len(name)-1]

The character at index 0 contains the length of the string. Thus,
len(s) is the same as ord(s[0]). Assignments to the length indi-
cator are not checked to be less than the maximum length of the
string variable - this is the responsibility of the programmer.

When the range check compiler option is active, i.e. when state-
ments are compiled in the {$R+} mode, code is generated which in-
sures that the value of a string index expression does not exceed
the maximum length of the string variable. It is, however, possi-
ble to®*index a string beyond its current dynamic length - in such
cases the characters read are random, and assignments will not
affect the actual value of the string variable.

31

Section 8 String types

8.6 Predefined strings

COMPAS provides a number of predefined strings which may be used
to control the screen from within your programs. The strings are
defined using the INSTALL program. Below follows a description of
what happens when they are printed.

clrhom Clear home. Clears the screen and returns the cursor
to the home position, i.e. the upper left corner.

clreos Clear to end of screen. Clears all character positions
from the cursor to the end of the screen.

clreol Clear to end of line. Clears all character positions
from the cursor to the end of the line.

inslin Insert line. Scrolls the current line, and all 1lines
below it, one line down, and inserts a blank line at
the current line.

dellin Delete line. Deletes the current line and scrolls up
the following lines, with a blank line appearing at
the bottom of the display.

rvson Reverse on. Causes subsequent characters to be printed
in reverse video (or highlight).

rvsoff Reverse off. Cancels the attribute(s) activated by the
rvson string.

Note that all strings, except clrhom, are optional, i.e. there 1is
no guarantee that anything happens when they are printed. How-
_ever, if a string is not defined, its length is zero, and the
following construct can then be used to test it:

IF rvson='"' THEN writeln('Reverse video not supported');

32

Section 9 ‘ Array types

Section 9

Array types

An array is a structured type consisting of a fixed number of
components (defined when the array is introduced) where all are
of the same type, called the component or the base type. Each
component can be explicitly denoted and directly accessed by the
name of the array variable followed by the so-called index in
square brackets. Indices are computed from expressions, and their
type is called the index type.

9.1 Using arrays

The definition of an array type specifies both the component type
and the index type. An array type is introduced by the reserved
word ARRAY. Following this comes the index type, enclosed in
square brackets, then the reserved word OF, and finally the
- component type. Some examples:

TYPE
digit = 0..9;
colour = (red,green,blue);
list = ARRAY({1..100] OF real;
VAR

digitname: ARRAY[digit] OF STRING([10];
intensity: ARRAY[colour] OF digit;
a,b: list;

The selection of an array component is achieved through following
the array variable identifier by an index expression enclosed in
square brackets. Some examples:

digitname(5):="five';
intensity(green]:=7;
ali}:=a[i)*2.5/b(3+1];
a:=b;

Since assignment is allowed between any two variables of identi-
cal type, entire arrays can be copied using the assignment opera-
tor as shown above (a:=b).

The R compiler option controls the generation of code which will
perform range checks on array index expressions during run time,
The default state is {SR+}, and when statements are compiled in
this mode, all index expressions are checked against the bounds
of their corresponding index type.

COMPAS-80 provides an S compiler option which allows the program-
mer to decide whether the code generated to subscribe arrays
should be optimized with respect to code size or execution speed.
The default state is {$S-}, which indicates optimization with
respect to code size. The opposite state, {$S+}, indicates opti-
mization with respect to execution speed. The S compiler option
has no effect in COMPAS-86, since the code generated by the
COMPAS-86 compiler is always optimized with respect to both size
and execution speed.

33

Section 9 | ' Array types

9.2 Multidimensional arrays

The component type of an array may be any data type. In particu-
lar, the component type may again be an array, in which case the
structure is said to be a multidimensional array. Some examples:

TYPE
chesspiece = (king,queen,rook,knight,bishop,pawn);
chessboard = ARRAY[1..8) OF ARRAY[1l..8] OF chesspiece;
size = 0..9;
cube = ARRAY[size] OF ARRAY[size] OF ARRAY([size] OF real;

VAR
board: chessboard;
c: cube;

The definition of a multidimensional array can be contracted to a
more convenient form by specifying all indices right away, thus:

chessboard = ARRAY[1..8,1..8] OF chesspiece;
cube = ARRAY[size,size,size] OF real;

A similar abbreviation is also provided for the application of
more than one array selector:

board[3,7] is equivalent to board([3] (7]
cube[0,4,3] is equivalent to c[0][4]1(3]

It is, of course, possible to define multidimensional arrays in
terms of previously defined array types. An example:

TYPE
vector = ARRAY[l..n] OF real;
matrix = ARRAY[1l..m] OF vector;
VAR

vl,v2: vector;
m: matrix;

Iin this case all of the following assignments are legal:

vi[(i):=m[i,j]+1.5;
m{i] (3] :=v1(i)+v2(3];
vl:i=v2;

v2:=m[i];

m{i]:=m(J]};

9.3 Predefined arrays

COMPAS Pascal implements two predeclared byte arrays, called mem
and port, which are used to access CPU memory and data ports.
9.3.1 The mem array

The mem array is used to access memory. Each component of the mem
array is.a byte, whose index corresponds to its address in memo-

ry. The syntax of references to the mem array depends on the
version of COMPAS is use.

34

)

Section 9 Array types

COMPAS-80

In COMPAS-80 the index type of the mem array is integer. When a
value is assigned to a component of mem, it is stored at the
address given by the index expression. When a component of mem is
referred to in an expression, the value stored at the address
given by the index expression is loaded. Some examples:

mem {addr (v)+offset] :=$8C0;
iobyte:=mem[3];
mem{i) :=mem([i+l];

COMPAS-86

In COMPAS-86 the mem array requires both a segment and an offset
to be specified, separated by a colon. Some examples:

data:=mem[seg(v):0fs(v)+32];
nem[dseg:$80] :=1len(s);

The first expression specifies the segment base address and the
second specifies the offset within that segment. Both expressions
must be of type integer.

For direct access to words (integers) in the 8086 address space,
COMPAS-86 provides a memw pseudo-array. It corresponds to the mem
array in every aspect, except that the value loaded or stored is
a word (with the least significant byte first as is standard on
the 8086). Some examples:

bdos_segment :=memw [$0000:$0380] ;
stack_base:=memw|[dseg:$15];

9.3.2 The port array

The port array is used to access the data ports of the CPU. Each
element of the array represents a data port, whose port address
corresponds to its index. For COMPAS-80 the index type 1is byte
(8-bit port addresses) and for COMPAS-86 the index type 1is
integer (l6-bit port addresses). When a value is assigned to a
component of port, it is OUTput to the port specified. When a
component of port is referenced in an expression, its value is
INput from the port specified. Some examples:

port [$46] :=SFF;
port [base] :=port[base] EXOR mask;
while port[$B2] AND $80=0 DO {wait};

The use of the port array is restricted to assignment and refe-
rence in expressions only. Hence, port elements cannot function
as variable parameters to procedures and functions. Furthermore,
operations referring to the entire port array (reference without

index) are not allowed.

COMPAS-86 also offers a portw array which may be used for word
1/0. It behaves exactly as the port array, except that 16-bits
values are input and output.

35

Section 9 Array types

9.4 Character arrays

Character arrays are arrays with one index and components of the
standard scalar type char, i.e. arrays conforming to the defini-
tion:

ARRAY [n..m] OF char

where m is greater than n. Character arrays may be thought of as
strings with a constant length (m-n+l). String constants may be
assigned to character arrays, provided that the length of the
string constant equals the length of the character array.

COMPAS Pascal allows character arrays to participate in string
expressions, 1in which case the character array is converted into
a string of length m-n+l (where n and m are the lower and upper
bounds of the index type of the character array). Thus, character
arrays may be compared and manipulated in the same way as
strings. Note, however, that values computed from string expres-
sions cannot be assigned to character arrays - the only values
that may be assigned are string constants and other character
arrays variables of the same type.

36

Section 10 Record types

Section 10

Record types

A record is a structure consisting of a fixed number of compo-
nents, called fields. Unlike the array, components are not con-
strained to be of identical type. Hence, because there may be
several different component types in a record, a computed selec-
tor, i.e. an index expression, is not allowed. Instead, each
field is given a name, the field identifier, which is used to
select 1it.

10.1 Using records

The definition of a record type specifies for each component its
type and an identifier, called the field identifier. A record
type is introduced by the reserved word RECORD followed by a
field list and, to end the definition, the reserved word END. The
field list is a sequence of record sections separated by semico-
lons. Each record section consists of one or more identifiers
separated by commas followed by a colon and a type. Some exam-
ples:

TYPE
complex = RECORD
re,im: real;
END;
month = (jan,feb,mar,apr,may, jun,jly,aug,sep,oct,nov,dec);
date = RECORD
d: 1..31;
m: month;
y: 1900..1999;
END;
fullname = RECORD
surname: STRING{32];
noofnames: 1..3;
forenames: ARRAY[1l..3] OF STRING[1l6];
END;
VAR
X,y: complex;
birthday: date;
pers: fullname;
vacation: ARRAY([1l..14] OF date;

re, im, d, m, y, surname, noofnames, and forenames are field
identifiers. All field identifiers within a record must be unique
to that record. To reference a record component, the name of the
record is followed by a point and the respective field identi-
fier. Some examples:

Xx.re:=5.9;
y.im:=y.im+x.1im;
birthday.d:=2;
birthday.m:=dec;
birthday.y:=1960;
pers.surname:='Jones’';
pers.noofnames:=2;

Section 10 Record types

pers.forenames(l]:='John';

pers.forenames[2]:='Raymond’;
vacation([10] :=birthday;
X:=Y;

Note that, similar to array types, assignment is allowed between
records of identical types. Record components may be of any type.
Hence, a record type may itself contain records. An example:

TYPE
person = RECORD
name: fullname;
birthday: date;
END;
VAR
pl,p2,p3: person;

In this case the following assignments to the variables pl, p2,
and p3 are all legal:

pl.name.surname:='Smith’';
pl.name.noofnames:=1;
pl.name.forename(l]:="'David’;
pl.birthday.d:=17;
pl.birthday.m:=mar;
pl.birthday.y:=1951;
p2.name:=pl.name;

p3:=p2;

10.2 WITH statements

The above notation can be a bit tedious, and the programmer may
wish to abbreviate it using the WITH statement. The WITH clause
effectively opens the scope containing the field identifiers of
the specified record variable, so that field identifiers may be
used as variable identifiers. A WITH statement starts with the
reserved word WITH. Then comes a list of record variables sepa-
rated by commas followed by the reserved word DO and a statement.
Within the component statement one designates a field of a record
variable by designating only its field identifier (without prece-
ding it with the notation of the entire record variable). The
WITH statement below is equivalent to the series of assignments
shown above:

WITH pl,name,birthday DO
BEGIN
surname:='Smith’';
noofnames:=1;
forename[l]:='David’';
d:=17;
m:=mar;
y:=1951;
p2.name:=name;
p3:=p2;
END;

38

Section 10 Record types

Likewise, assuming the declaration:

VAR
dates: ARRAY[l..7) OF date;

then the statement:

WITH dates[4] DO
IF m=dec THEN
BEGIN
m:=jan; y:=y+l;
END ELSE m:=succ(m);

is equivalent to the statement:

IF dates[4].m=dec THEN
BEGIN

dates[4].m:=jan; dates[4].y:=dates[4].y+]1;
END ELSE dates[4].m:=succ(dates{4].m);

The form:
WITH rl,r2,....,cn DO
is equivalent to:
WITH rl DO WITH r2 DO WITH rn DO

For COMPAS-80 the maximum number of nested WITH statements al-
lowed, i.e. the maximum number of records that may be "opened” at
one time, is controlled through the W compiler register. The
default setting is {$W4}, which means that at most four records
may be "opened" at any one time. The maximum nesting level within
a specific block can be from 0 to 9 according to the setting of
the W compiler register at the beginning of that block. Thus, if
a {$W8} compiler directive is placed before the declaration part
of a block, the statement part of that block will allow for up to
8 nested WITH statements (note that this does not mean that only
8 WITH statements may occur within that statement part - it means
that no more than 8 WITH statements may active at one time). At
the beginning of every block, the compiler reserves two bytes of
workspace for each nesting level allowed. Thus, the {$W4} cefualt
setting will cause 8 bytes of workspace to be reserved for each
block in the program if it is not changed.

The W compiler register has no effect in COMPAS-86, although W
compiler directives are allowed. The maximum nesting level for
WITH statements in COMPAS-86 is always 16.

10.3 Record variants

The syntax of a record type also makes provision for a variant
part, implying that a record type may be specified as consisting
of several variants. This means that different variables, al-
though said to be of the same type, may assume structures which
differ in a certain manner. The differences may consist of a
) different number and different types of components.

39

Section 10 Record types

Each variant is characterised by a list, in parentheses, of
declarations of its pertinent components. Each list is headed by
one or more labels, and the set of lists is preceded by a CASE
clause specifying the type of these labels. As an example assume
the existence of:

TYPE
fig = (rect,tri,circ);

Then one could describe figures by data of the following type:

TYPE
figure = RECORD

<fields common to all figures>;

CASE fig OF
rect: (<rectangle fields only>};
tri: (<triangle fields only>);
circ: (<circle fields only>);

END;

Normally, a component (field) of the record itself indicates its
currently valid variant. For example, the above defined figure
type is likely to contain a common field:

kind: fig

This frequent situation can be abbreviated by including the
declaration of the discriminating component, the tag field, in
the CASE clause itself:

TYPE
figure = RECORD
: colour: (red,green,blue);
CASE kind: fig OF
rect: (height,width: real);
tri: (sidel,side2,angle: real);
circ: (radius: real);
END;

The fixed part of a record, i.e. the part containing common
fields, must always precede the variant part. In the above exam-
ple, the colour field is the only field in the fixed part. A
record can only have one variant part. In a variant, the paren-
theses must be present, even if they will enclose nothing.

The maintenance of tag field values is the responsibility of the
programmer and not of the Pascal system. Thus, assuming the
fiqure type above, the height field can be referred to even if
the kind field does not yield the value rect. Actually, the tag
field identifier may be omitted, leaving the type identifier
only. Record variants which have no tag fields are known as free
unions, as opposed to those who do, which are called discrimi-
nated unions. The use of free unions is infrequent and it should
only be practiced by experienced programmers.

40

Section 11 Set types

Section 11

Set types

A set is any collection of objects which are to be conceived of
as a whole. The objects within a set are known as the members or
the elements of that set. Some examples of sets:

A. All whole numbers between 0 and 100

B. The prime numbers whose magnitude is less than 100
C. The letters of the alphabet

D. The consonants of the alphabet

Two sets are the same if and only if their elements are the same.
There 1s no ordering involved here, so the sets [1,3,5], [5,3,1]
and [3,5,1] are all the same. If the members of one set are also
members of another set, then the first set is said to be included
in the second. Referring to the examples above, B is included in
A and D is included in C. D is also included in D, but this is
not a strict inclusion.

There are three operations involving sets, which are similar to
the operations of addition, multiplication and subtraction for
numbers. The union (or sum) of two sets A and B is that set whose
members are members of either A or B. For instance, the union of
(1,3,5,7) and [2,3,4) is [1,2,3,4,5,7]. The intersection (or
product) of two sets A and B is that set whose members are the
members of both A and B. Thus, the intersection of [1,3,5,7] and
{(2,3,4] 1is [3]. The relative complement of B with respect to A
(written A-B) is that set whose members are members of A but not
of B. For instance, [1,3,5,7])-1(2,3,4] is [1,5,7].

11.1 Set types

In theory there are no limitations placed on the objects which
may be members of a set. In Pascal, only a restricted form of
sets are available. The members of a set must all be of the same
type, called the base type of the set, and the base type must be
a simple type, i.e. any scalar type except real. A set type is
introduced by the reserved words SET OF followed by a simple
type. Some examples:

TYPE
smallinteger = SET OF 0..50
digit = SET OF 0..9;
letter = SET OF 'A'..'Z';
colourset = SET OF (red,green,blue);
charset = SET OF char;

In COMPAS Pascal, the maximum number of elements in a set is 256,

and the ordinal values of the bounds of the base type must both
be within the range 0 through 255.

41

Sectien Y Set types

. 11.2 Set expressions

Set values may be computed from other set values through set
expressions. Set expressions are built from set constants, set
variables, set constructors, and operators.

11.2.1 Set constructors

A set constructor consists of a list of set elements or set
ranges separated by commas and enclosed in square brackets. A set
element is an expression of the same type as the base type of the
set, and a set range is two such expressions separated by a lazy
colon (..). Some examples of set constructors:

(1,3,5]
[ICI,|O|,|Ml,lpt,lAl'IsI]
(x]
(i,3,k+3]

. (1..5])
(1..3]
[lAl..lzl’la'..tzl"ol‘.l9|]
(1,3..10,12]}

The set [l1..5) is the same as {1,2,3,4,5]. If i>j then [i..3]
denotes an empty set. A special set constructor is [], which
denotes the empty set. Since the empty set contains no expres-
sions to indicate its base type, it is compatible with all set
types.

11.2.2 Set operators

The rules of composition specify set operator precedences accor-
ding to three classes of operators. Of the highest precedence 1is
the intersection operator (*). Then comes the union and differen-
ce operators (+ and -), which are of the same precedence, and
finally, with the lowest precedence, comes the relational opera-

. tors and the inclusion operator. To summarize, the operators,
grouped in order of precedence, are:

* Set intersection.

+ Set union.
- Set difference.

= Test on equality.

O Test on inequality.

>= True if the second operand is included in the first’
operand. :

<= True if the first operand is included in the second
operand.

IN Test on set membership. The second operand is of a

set type, and the first operand is an expression of
the same type as the base type of the set. The
result is true if the first operand is a member of
the second operand, otherwise false.

O There is no operator for strict unclusion, but it may be program-
med as A*B=[].

42

| Section 1) Set typces]
Set expressions are often useful to clarify complicated tests.
For instance, the test: .
IF (ch='E') OR (ch='C') OR (ch='S') OR (ch='I"') THEN
can be expressed much clearer as:
IF ch IN ['E','C','S','1'] THEN
Likewise, - the test:
IF (ch>='0') AND (ch<='9') THEN

—may be abbreviated to:

IF ch IN ['0'..'9'] THEN

11.3 Set assignments .

The assignment operator (:=) may be used to assign set values, "
computed from set expressions, to set variables. Some examples: \

VAR
digits: SET OF 0..9;
vowels,consonants: SET OF 'A'..'2';
oddnumbers: SET OF 1..100;
BEGIN
digits:=[0..9];
vowels:=[('A','E','1','0','0U','Y"];
consonants:=['A'..'Z2')-vowels;
oddnumbers:=(];
FOR i:=1 TO 50 DO oddnumbers:=oddnumbers+[i+i-1];
END.

43

-~

Section 12 Typed constants

Section 12

Typed constants

Contrary to an untyped constant (see section 4.2.2), the defini-
tion of a typed constant speficies both the type and the value of
the constant. A structured constant may be compared to a variable
of the same type, with the exception that assignments to typed
constants should not be made. Furthermore, the value of a typed
constant is "known" upon the activation of the block within which
it is defined, whereas the value of an ordinary variable is inde-
terminable.

Typed constants are introduced in a constant definition part in
the declaration part of the block within which they are used. The
typed constant identifier must be followed by a colon and a type,
which again is followed by an equal sign and the actual constant.

12.1 Typed constants of unstructured types

Whenever a variable is expected, a typed constant may be speci-
fied instead. Thus, contrary to an untyped constant, a typed
constant may be used as a variable parameter to a procedure or a
function. Some examples of typed constants of simple types:

CONST
maximum: integer = 9999;
factor: real = -6.32774526;
name: STRING[13] = 'COMPAS Pascal';
crlf: STRING[2] = "M"J;

The vse of a typed constant is recommended if the constant is
referred to often throughout the program. The reason for this is
that a typed constant is included in the program code only once,
whereas an untyped constant is included every time it is referred
to. Since a typed constant is actually a variable with a constant
value, it cannot be used in the definition of other constants or
types. For instance, the following construct is not allowed:

CONST
low: integer = 0;
high: integer = 100;
TYPE
list: ARRAY[low..high] OF real;

since low and high are not untyped constants.

12.2 Structured constants
Structured constants are often needed in programming to provide

initialized tables and sets for tests, conversions, mapping func-
tions, etc.

44

Section 12 Typed constants

12.2.1 Array constants

An array constant consists of a set of constants separated by
commas and enclosed in parentheses. Some examples:

TYPE
color = (red,green,blue);
namelist = ARRAY[color]) OF STRING[S];
CONST
colorname: namelist = ('red','green’,'blue');

fact: ARRAY([l..7] OF integer = (1,2,6,24,120,720,5040);

The above example introduces the array constant colorname, which
may be used to convert values of the scalar type color into their
corresponding string representations, and fact, which may be used
as a mapping function for high-speed calculations of the facto-
rial of an integer. The components of colorname are:

colorname{red] = 'red'
colorname[green] = 'green'
colorname([blge] = 'blue'

Multidimensional array constants are also allowed, in which case
the constants of each dimension must be enclosed separatly in
parentheses. The innermost constants correspond to the rightmost
dimensions:

TYPE
matrix = ARRAY[1..2,1..3] OF real:
cube = ARRAY{0..1,0..1,0..1) OF integer;
CONST
m: matrix
C: cube =

= ((1.0,1.1,1.2),(6.0,7.5,9.0));
(((1,7),(2,9)),((0,8),(6,3)));

The components of ¢ are:

c(0,0,0] =1 c(0,0,1) = 7
c(0,1,0] = 2 c(0,1,1] =9
c[1,0,0] =0 c[(1,0,1] = 8

{1,1,0] = 6 cl(1l,1,1] = 3

The component type of an array constant may be any type except
file types and pointer types. An example of an array constant of
a structured type is found in section 12.2.2 (the array constant
called numbers).

Character array constants may be specified as single characters
and as strings. Thus, the definition:

CONST
digits: ARRAY[0..9]) OF char =
('0',.1','2','3','4',ls',’6l,'7'"8.,'9');
is equivalent to the more convenient form:

CONST
digits: ARRAY[0..9]) OF char = '0123456789"';

45

Section 12 Typed constants

12.2.2 Record constants

A record constant consists of a list of field constants separated
by semicolons and enclosed in parentheses. Each field constant
states the field identifier followed by a colon and a constant.
Some examples:

TYPE
complex = RECORD
re,im: real;
END;
month = (jan,feb,mar,apr,may,jun,jly,aug,sep,oct,nov);
date = RECORD
d: 1..31; m: month; y: 1900..1999;
END;
fullname = RECORD
surname: STRING([32];
noofnames: 1..3;
forenames: ARRAY[1..3] OF STRING[16];

END;
CONST
cl: complex = (re: 4.75; im: -8.0);
currentdate: date = (d: 12; m: jan; y: 1982);
jones: fullname = (surname: 'Jones’';

noofnames: 2;
forenames: ('John','Raymond',''));
numbers: ARRAY[1..3] OF complex =
((re: 1; im: 2),(re: 0; im: 37),(re: -3; im: 8.5));

Field constants must be specified in the same order as they
appear in the definition of the record type. If a record contains
fields of file types or pointer types, then constants of that
record type cannot be specified. If a record constant contains a
variant, then it is the responsibility of the programmer to
speficy only the fields of the valid variant. If the variant
contains a tag field, its value must be specified as well.

12.2.3 Set constants

The syntax of a set constant is exactly the same as that of a set
constructor (see section 11.2.1), except that the elements or
range bounds may only be constants. Some examples of set con-
stants:

TYPE
digitset = SET OF 0..9;
letterset = SET OF 'A'..'Z';
CONST

evendigits: digitset = [0,2,4,6,8];
vowels: letterset = ['A','E','I','0','U','Y'];
alphanum: SET OF char = ['A'..'Z','a'..'2','0'..'9"'];

46

Section 13 | File types

Section 13

File types

Files are the channels through which a program can store data for
later retrieval by the program itself or by another program. As
opposed to other data types, the data stored in a file is not
kept within memory but recorded in a disk file. Similary, the
data read from a file is obtained from a disk file.

A file consists of a sequence of components, all of the same

type. The number of components in a file, called the length of
the file, is not fixed by the definition of the file. Internally,
the system keeps track of file accesses through a file pointer.
Each time a component is written to or read from a file, the file
pointer of that file is advanced to the next component. Since all
components of a file are of equal length, the position of a
specific component can be calculated. Hence, the file pointer can
be moved randomly to any component in the file.

13.1 Pile type definitions

A file type is introduced by the reserved words FILE OF, followed
by the type of the components of the file. Some examples:

TYPE
date = RECORD
d: 1..31;
m: 1..12;
y: 1900..1999;
END;

dfile = FILE OF date;

l1ist = ARRAY[1..10] OF real;
VAR

intfile: FILE OF integer;

listfile: FILE OF 1list;

datefile: FILE OF date;

The component type of a file may be any type, except a file type.
(i.e. FILE OF FILE like type 1s not allowed). File variables may
neither appear in assignments nor in expressions.

13.2 Operations on files

The following file handling procedures are available in COMPAS
Pascal (f denotes a file variable identifier):

assign(f,s) s is a string expression which yields a CP/M or
MS-DOS file name of proper format. The file name
is assigned to the file variable, and all further
operations on f will operate on the disk file of
name s. assign should never be used on a file
which is not closed.

47

Section 13

rewrite(f)

reset(f)

read(f,vs)

write(f,vs)

seek (f,n)

flush(f)

close(f)

erase(f)

rename(f,s)

File types

A new disk file of the name assigned to f is
created and prepared for processing, and the file
pointer is set to the beginning of the file.
A disk file created by rewrite is initially empty,
i.e. it contains no elements.

The disk file of the name assigned to f is pre-
pared for processing, and the file pointer is set
to the beginning of the file. f must name an
existing file, or otherwise an I/0 error occurs.

vs denotes one or more variables of the component
type of f, separated by commas. Each variable is
read from the disk file, and following each read
operation, the file pointer is advanced to the
next component.

vs denotes one or more variables of the component
type of f, separated by commas. Each variable is
written to the disk file, and following each write
operation, the file pointer is advanced to the
next component.

n is an integer expression. The file pointer is
moved to the n'th component of the disk file. The
position of the first component is 0. Note that it
i$ not possible to seek beyond the current length
of the file.

A call to flush empties the internal sector buffer
of the file £, i.e. if any write operations have
taken place since the last disk update, the sector
buffer is written to the disk file. Furthermore,
flush insures that the next read operation will
actually perfom a physical read from the disk
file. Normally, calls to flush are only required
by programs which run on multi-user systems, where
several users may access the same disk file. flush
should never be used on a closed file. Note that
flush has no effect in the MS-DOS version of
COMPAS-86, since an MS-DOS random access file
variable does not contain a sector buffer.

The disk file associated with f is closed, and the
disk directory is updated to reflect the new sta-
tus of the disk file.

The disk file associated with f is erased. If the
file is open, i.e. if the file has been reset or
rewritten but not closed, it is generally good
programming practice to call close first.

The disk file associated with f is renamed to a
new name given by the string expression s. rename
should never be used on an open file. Further
operations on f will operate on the disk file
given by the new name.

48

Section 13 _ File types

The following standard functions are applicable to files:

eof (f) A boolean function which returns true if the file
pointer 1s positioned at the end of the disk
file, i.e. beyond the last component of the file.
If the file pointer is not at the end of the file,
eof returns false.

position(f) An integer function which returns the current
position of the file pointer. 0 corresponds to the
first component of a disk file.

length(f) An integer function which returns the length of
the disk file, i.e. the number of components in
the file, If length(f) is zero, then the file is
said to be empty.

The MS-DOS version of COMPAS-86 offers three additional file
handling routines, called longseek, longpos and longlen. They
correspond to seek, position and length but use reals to provide
an extended range (30 bits) - thus, the second parameter in a
call to longseek must be an expression of type real, and the
values returned by longpos and longlen are of type real.

The use of a fil2 should always be preceded by a call to assign,
to assign a disk file name to the file variable. If read and/or
write operations are to be performed, the file should then be
opened through @ call to rewrite or reset. As a result of this
call, the file pointer is set to point at the first component of
the disk file, i.e. position(f)=0. When a file is rewritten,
length(f) becomes 0.

A disk file can only be expanded by adding components to the end
of it. The file pointer can be moved to the end of the file by
executing:

seek (f£,length(f));

When a program is through performing its read/write operations on
a file, it should always call the close procedure. Failing to do
so may result in the loss of data, since the new status of the
disk file is not properly recorded in the disk directory.

The program shown below creates a disk file called A:RANDOMS.DAT,
and writes 1000 random integers between 0 and 999 to the file.

PROGRAM Writerandoms;
VAR
i,k: integer;
intfile: FILE OF integer;
BEGIN
assign(intfile, 'A:RANDOMS.DAT') ;
rewrite(intfile);
FOR i:=1 TO 1000 DO
BEGIN
k:=random(1000); write(intfile,k);
END;
close(f);
END.

49

Section 13 Pile types

. This program will read the random numbers from the disk file
created by the program above, and calculate their average.

PROGRAM readrandoms;
VAR
i,n: integer;
sum: real;
intfile: FILE OF integer;
BEGIN
assign(intfile,'A:RANDOMS.DAT') ;
reset(intfile);
sum:=0.0; n:=0;
WHILE NOT eof (intfile) DO)
BEGIN
read(intfile,i); sum:=sum+i; n:=n+l;
END;
close(intfile);
writeln('the average is ',sum/n:0:3);
END.

' The program shown below creates a new disk file called A:TEMP.DAT
and writes to it the components of the disk file A:RANDOMS.DAT in
reversed order. Finally, A:RANDOMS.DAT is erased, and A:TEMP.DAT
is renamed to A:RANDOMS.DAT. Note the use of the seek procedure
and the length function in order to read the file backwards.

PROGRAM reverse;
VAR
p,n: integer;
infile,outfile: FILE OF integer;
BEGIN
assign(infile,'A:RANDOMS.DAT'); reset(infile);
assign(outfile,'A:TEMP.DAT'); rewrite(outfile);
FOR p:=length(infile)-1 DOWNTO 0 DO
BEGIN
seek (infile,p); read(infile,n); write(outfile,n);
END;
close(infile); close(outfile);
erase(infile); rename(outfile,'A:RANDOMS.DAT') ;
END.

Users of COMPAS-86 under MS-DOS should note that if the length of
a disk file does not match the record size in transfers, meaning
that the last record of the disk file is not entirely filled, the
last record will be padded with zeros when it is read. However,
this situation will never occur if the file is always processed
using file variables of the same type.

13.3 Textfiles

Textfiles are unlike all other file types in that they are not
simply sequences of values of some type. The basic components of
a textfile are characters, but these are internally structured
into lines. Each line consists of any number of characters ended
by an end-of-line marker. The file itself is ended by an end-of-
file marker. The CP/M and MS-DOS operating systems use a CR/LF
sequence to mark the end of a line, and a CTRL/Z character to
mark the end of a file. Since the lengths of lines may differ,
the position of a given line in a file cannot be calculated.

50

Section 13 File types

Textfiles can therefore only be processed sequentially. Further-
more, textfiles cannot be written to and read from at the same
time. '

13.3.1 Operations on textfiles

A textfile variable is declared by referring to the standard type
identifier text. Similar to defined files, read/write operations
on a textfile must be preceded by a call to assign and a call to
reset or rewrite.

If a textfile is to be created, rewrite should be used to open
it. In this case the only operation allowed on the file is the
appending of new components to the end of it. If a textfile is to
be examined, reset should be used to open it. In this case the
only operattion allowed on the file is the sequential reading of
components. When close is called on a new textfile, i.e. a text-
file which was opened using rewrite, an end-of-file mark 1is
automatically appended to the file.

Characters are written to a textfile using the standard procedure
write, and read from a textfile using the standard procedure
read. For the processing of lines in a textfile, Pascal intro-
duces the following special textfile operators (where t denotes a
textfile variable identifier):

readln(t) Skips to the beginning of the next line, 1i.e.
skips all characters up to and including the next
CR/LF sequence.

‘writeln(t) Writes a line marker, i.e. a CR/LF sequence, to

the textfile.

eoln(t) A boolean function which returns true if the end
of the current line has been reached, i.e. if the
file pointer is positioned at the CR character of
the CR/LF line marker. If eof(t) is true, eoln(t)
is also true,

When applied to a textfile, the eof function returns the value
true if the file pointer is positioned at the end-of-file mark
(the CTRL/Z character ending the file). The seek and flush
procedures and the position and length functions are not applica-
ble to textfiles.

The program shown below will do a frequency count of the
alphabetic characters in the textfile A:LETTER.TXT.

PROGRAM freqcount;
CONST
letters: SET OF 'A'..'Z' = ['A'..'2"']
lowercase: SET OF 'a'..'z' = ['a'..'z
VAR
count: ARRAY['A'..'Z'] OF integer;
ch: char;
t: text;

- we

1

51

Section 13 File types

BEGIN
FOR ch:='A' TO 'Z' DO count[ch]:=
assign(t,'A:LETTER.TXT'); reset(t
WHILE NOT eof(t) DO
BEGIN
WHILE NOT eoln(t) DO
BEGIN
read(t,ch);
IF ch IN lowercase THEN ch:=chr (ord(ch)-32);
IF ch IN letters THEN count|[ch]:=countch]+l;
END;
readln(t);
END;
close(t);
writeln('character count');
FOR ch:='A' TO 'Z' DO
writeln("' ',ch,count{ch]:11); .
END.

0;
)

Further extensions of the procedures read and write (for the
convenient handling of legible input and output of other data
types than characters) are described in section 16.

13.3.2 Logical devices

A textfile may be used to communicate with a CP/M or MS-DOS
logical device such as a terminal, a printer, or a modem. This is
achieved by assigning the symbolic name of the logical device to
the textfile. The following logical devices are supported by
COMPAS Pascal:

CON: The console device. OQutput is sent to the CP/M or MS-DOS
console output device, typically the CRT, and input is
obtained “rom the console input device, typically the
keyboard. Contrary to the TRM: device (see below), the
CON: device provides buffered input. Briefly, this means
that each read or readln from a textfile assigned to the
CON: device will input an entire line into a line buffer,
and that the operator is provided with a suitable set of
editing facilities during line input. For more details on
console input, please refer to sections 13.3.3 and 16.1.

TRM: The terminal device. Output is sent to the CP/M or MS-DOS
console output device, typically the CRT, and input is
obtained from the console input device, typically the
keyboard. Input characters are echoed, unless they are
control characters. The only control character which
causes output is a carriage return (CR), which is echoed
as CR/LF.

KBD: The keyboard device (input only). Input is obtained from
the CP/M or MS-DOS console input device, typically the
keyboard. Input characters are not echoed.

LST: The list device (output only). Output is sent to the CP/M
or MS-DOS list device, typically the line priner.

52

Section 13 File types

AUX: The auxiliary device. Output is sent to the CP/M punch
device or the MS-DOS auxiliary device, and input is ob-
tained from the CP/M reader device or MS-DOS auxiliary
device. Typically, these devices refer to a modem.

USR: The user device. Output is sent to the user output routi-
ne, and input is obtained from the user input routine. For
further details on user input and output, please refer to
section 22,

Users of COMPAS-86 under MS-DOS should note that even though a
colon is not normally needed when referring to logical devices
under MS-DOS, it should be specified. In this way the COMPAS I/O
system will know that the file is a device and not a disk file,
and so input and output characters one at a time instead of in
blocks of 128.

Similar to disk files, files assigned to logical devices must be

- opened through reset or rewrite before they can be used. In the

case of a logical device there is no difference between the
functions performed by reset and rewrite. The close procedure
performs no function when applied to a file which is assigned to
a logical device. If erase or rename is attempted on a logical
device, an I/O error occurs.

The program shown below will list the disk file called B:MSG.TXT
on the line printer.

PROGRAM listfile;

VAR
ch: char;
infile,outfile: text;

BEGIN
assign(infile,'B:MESSAGE.TXT'); reset(infile);
assign(outfile,'LST:'); rewrite(outfile);
WHILE NOT eof(infile) DO

BEGIN
WHILE NOT eoln(infile) DO
BEGIN
read(infile,ch); write(outfile,ch);
END;
readln(infile); writeln(outfile);
END;
close(infile); close(outfile);
END.

The standard functions eof and eoln operate differently on logi-
cal devices than on disk files. In the case of a disk file, eof
returns true when the next character in the file is a CTRL/Z, and
eoln returns true when the next character is a CR or a CTRL/Z.
Thus, eof and eoln are actually "look ahead” routines. In the
case of a logical device it is however not possible to look
ahead, so eof and eoln therefore operate on the last character
read instead of the next character. In other words, eof returns
true when the last character read was a CTRL/Z, and eoln returns
true when the last character read was a CR or a CTRL/Z. As an
example, consider the following program, which inputs characters
from the terminal and echoes them on the printer until the opera-
tor enters a CTRL/Z.

53

Section 13 File types-. ’

PROGRAM printer;
VAR
terminal,printer: text; ch: char;
BEGIN
assign(terminal, 'TRM:'); reset(terminal);
assign(printer,'LST:'); rewrite(printer);
REPEAT
REPEAT
read(terminal,ch);
IF NOT eoln(terminal) THEN write(printer,ch);
UNTIL eoln(terminal);
IF NOT eof(terminal) THEN
BEGIN
readln(terminal); writeln(printer);
END;
UNTIL eof (terminal);
END. '

Similar to eof and eoln, the readln procedure differs between
logical devices and disk files. In the case of a disk file,
readln reads all characters up to and including the CR/LF sequen-
ce, whereas on a logical device it only reads up to and including
the next CR. Again, the reason for this is the inability to look
ahead on logical devices, which means that the system has no way
of knowing whether a LF follows the CR or not.

13.3.3 Standard files

Below is shown a list of the predefined textfiles of COMPAS
Pascal. These files may be used instead of declared textfiles to
save the code and data space otherwise needed for the files and
their initialization. All files are preassigned to a specific
logical device, and need not be rewritten or reset prior to their
use (actually assign, reset, rewrite, and close may never be
applied to one of these files):

_dnput The primary input file. This file is preassigned either

to the CON: device or to the TRM: device (see below for
further details).

output The primary output file. This file is preassigned either
to the CON: device or to the TRM: device (see below for
further details).

con Preassicned to the console device (CON:).
trm Preassigned to the terminal device (TRM:).
kbd Preassicned to the keyboard device (KBD:).
1st Preassicned to the list device (LST:).

aux Preassiéned to the auxiliary device (AUX:).
usr Preassigned to the user device (USR:).

54

Section 13 File types

The logical device referred to by the standard files input and

. output is determined through the use of the B compiler option.
The default state is {$B+}, and in this mode the console device
(CON:) is used. If a {$B-} compiler directive is placed at the
beginning .of the program text (note: before the declaration
part), input and output will instead refer to the terminal device
(TRM:). The terminal device offers no editing facilities during
input, but entries may follow the formats defined by Standard
Pascal. The console device, on the other hand, provides buffered
input with editing facilities (see section 16.1), but it does not
confirm to the standard in all aspects. Note that no differences
exist between the console device and the terminal device on
output operations.

Since the standard files input and output are used very frequent-
ly, they are considered the default values in textfile operations
when no textfile identifier is explicitly stated. Below 1is shown
a list of shortened textfile operations and their equivalents:

, write(ch) is equivalent to write (output,ch)
'.” read(ch) is equivalent to read(input,ch)
writeln is equivalent to writeln{output)
readln is equivalent to readln(input)
eof is equivalent to eof (input)
eoln is equivalent to eoln(input)

Further extensions of the procedures read and write (for the
convenient handling of legible input and output of other data
types than characters) are described in section 16.

- 13.4 Untyped files

An untyped file is a low—-level I/O channel primarily used for
direct access to a CP/M or MS-DOS disk file. An untyped file is
declared with thg reserved word FILE and no;hing more, e.g.:

VAR
. datafile: FILE;

13.4.1 Operations on untyped files

All standard file handling procedures and functions, except read,
write and flush, are allowed on untyped files. For MS-DOS however
the record size must be specified when the file is reset or
rewritten:

reset(f,s) or rewrite(£f,s)

where s is an integer expression which specifies the record size
in bytes. For CP/M the record size is always 128 bytes - thus,
the syntax of reset and rewrite is the same as for an ordinary
file.

Instead of read and write, two procedures, called blockread and
blockwrite, are introduced for high-speed data transfers. The

"b format of calls to these procedures are:

blockread(f,v,n) and blockw:ite(f,v,n)

- 55

Section 13 File types

where { is an untyped file variable identifier, v is any variab-
le, and n is an integer expression. The result of a call to one
of these procedures is that n records are transferred from/to the
disk file to/from memory starting at the first byte occupied by
the variable v. It is the responsibility of the programmer to
insure that enough memory space is occupied by v to accomodate
the entire data transfer. A call to blockread or blockwrite also
has the effect of advancing the file pointer n records.

Similar to a defined file, read/write operations on an untyped
file must be preceded by a call to assign and a call to rewrite
or reset. If rewrite is used, a new disk file is created and
opened. If reset is used, an existing disk file opened. If rew-
rite or reset is used on an untyped file, close should also be
used to secure proper termination of the processing of the file.

The effect of a call to the seek (or longseek) procedure or one
of the functions position (or longpos), length (or 1longlen), and
eof is exactly the same as with a defined file.

The use of an untyped file is demonstrated by the program shown
below. It will output a hex dump of any disk file to a logical
device or another disk file.

PROGRAM hexdump; {S$R-,A+,S+}
TYPE
hexstr = STRING([4];
filename = STRING[14];
sector = ARRAY[0..7,0..15] OF byte;
sysfile = FILE;
VAR
i,j,address: integer;
inname,outname: filename;
infile: sysfile;
outfile: text;
buffer: sector;

FUNCTION hex(number,digits: integer): hexstr;
CONST
hexdigits: ARRAY[0..15] OF char
VAR '
h: hexstr;
d: integer;
BEGIN
h([{0] :=chr(digits);
FOR d:=digits DOWNTO 1 DO
BEGIN-
h([d] :=hexdigits{number AND 15]
number ;=number SHR 4;
END;
hex:=h;
END; '

'0123456789ABCDEF' ;

BEGIN
write('Input file? ');
write('Output file? ')
assign(infile,inname) ;
assign(outfile,outname

readln(inname) ;

; readln(outname);
reset (infile);

); rewrite(oucfile);

56

‘.)

2

Section 13 - File types

address:=0;
WHILE NOT eof(infile) DO
BEGIN
blockread(infile,buffer,1l);
FOR i:=0 TO 7 DO
BEGIN
write(outfile,hex(address,4));
FOR j:=0 TO 15 DO
write(outfile,hex(buffer(i,j],2):3);
writeln{outfile);
address:=address+16;
END;
END;
close(infile); close(outfile);
END.

The above program is written for CP/M. If it is to be run on
COMPAS-86 under MS-D0OS, the statement ‘reset(infile)' should be
changed to 'reset(infile,128)°.

MS-DOS users should note that if the length of a disk file does
not match the record size used in transfers, meaning that the
last record of the file is not entirely filled, the last record
will be padded with zeros when it is read.

In read/write operations on untyped files, data is transferred
direcly from/to the disk file to/from the variable, as opposed to
other files, where data passes through a sector buffer in the
file variable. Since the sector buffer is not needed for an
untyped file, an untyped file variable occupies less memory than
other files. If a file variable is required only to use erase,
rename or other non input/output operations, an untyped file is
therefore recommendable.

13.5 1/0 checking

The I compiler coption controls the generation of code which will
check the result of I/0 operations during run time. The default
state is on, i.e. {SI+}. In this mode the COMPAS Pascal compiler
generates calls to an I/0 check routine following the code of
each I/0 operation. If I/0 checking is disabled, using an {$I-}
compiler directive, no run time checks are performed. Instead the
result of each I/0 operation may be monitored by calling the
standard function iores. Appendix F lists the possible values
returned and their meaning. Note for now that if iores is zero
the operation was successful. Also note that if an error occurred
all I1/0 operations are suspended until iores is called to examine
the result. Once this happens, the error condition is reset and
1/0 may be performed again.

The use of the iores facility is applicable in many situations.
Below is shown an example of iores use to determine whether a
given disk file exists or not: -

assign(f,'B:LETTER.TXT');

{SI-} reset(f) {S$I+};
IF iores>0 THEN writeln('File does not exist.');

57

)

Section 13 ‘ File types

When operating in the {$I-} mode, the following standard proce-
dures should be followed by an iores check:

rewrite reset read
write readln writeln
blockread blockwrite seek
flush close erase
rename execute chain

58

Section 14 Pointer types

Section 14

Pointer types

A static variable (staticly allocated) is a variable which is
declared in a program and subsequently denoted by its identifier.
It is called static since it exists during the entire execution
of the block to which it is local. A variable may, however, be
generated dynamically, and it is then called a dynamic variable.

Dynamic variables do not occur in an explicit variable declara-
tion and cannot be referenced directly by identifiers. Instead, a
pointer variable is introduced, which is merely a variable con-
taining the memory address of the dynamic variable.

14.1 Pointer type definitions

A pointer type is introduced by the pointer symbol (°) followed
by the type identifier (note: type identifier, not type) of the
dynamic variables which may be allocated and referenced through
pointer variables of the new type. Some examples:

TYPE
intptr = “integer;
str40 = STRING[40];
strptr = “strd40;
data = RECORD
i: integer; ch: char;
END;
dataptr = “data;

The type identifier in a pointer type definition may refer for-
wards to an as yet undeclared identifier. This is the only case
where the use of an identifier is allowed prior to its declara-
tion. An example:

TYPE
link = “person;
person = RECORD
firstname,lastname: STRING([32];
age: 0..100;
next: link;
END;

The above type definitions also demonstrates one very common use
of pointers, wherein the dynamic variables contain a link to the
next record in a chain of records.

14.2 Using pointers

The dynamic variable referenced by a pointer is accessed by

following the pointer variable by the pointer symbol (). Assu-
ming the following declarations:

59

Section 14 Pointer types

TYPE
item = RECORD
name: STRING[20]:
cost: real;
END;
itemptr = “item;
list = ARRAY[1..5] OF integer;
VAR
pint: “integer;
firstitem: itemptr;
plist: “list;
i: integer;

then the following assignments are valid:

pint”:=4;
firs-zitem™.name:='hammer';
firstitem™.cost:=2.95;
plist™(3]:=7;
plist™ (1] :=pint”~;
plist™([i]:=plist” [i+1]*2;

A dynamic variable is allocated using the standard procedure new.
Referring to the declarations above, the procedure statement:

new(firstitem);

allocates a new dynamic variable of type item, and assigns its
address to the pointer variable firstitem.

A pointer variable may be assigned the value of another pointer
variable, provided that both pointers are of the same type. Two
pointers of identical type may be tested for equality or inequa-
lity using the relational operators = and <>. The operators
return a boolean result (true or false).

‘The pointer value NIL (note that NIL is a reserved word and not a
predefined constant) is compatible with all pointer types. NIL
points to no dynamic variable, and may be assigned to pointer
variables to indicate the absence of a usable pointer. NIL may
also be used in comparisons.

As stated earlier, one very common use of pointers is the genera-
tion of linked chains, wherein each record contains a link to the
next record in the chain. The program below gives an example of
this:

PROGRAM chain(input,output);
TYPE
nametype = STRING[30];
personptr = “person;
person = RECORD
name: nametype;
next: personptr;
END;
VAR
chain,pp: personptr;
newname: nametype;

60

Section 14 Pointer types

BEGIN
chain:=NIL;
WRITELN('Enter names and end with a blank line:');
REPEAT
readln(newname) ;
IF newname<>'' THEN
BEGIN
new (pp) ;
PP .name:=newname;
pp” .next:=chain;
chain:=pp;
END;
UNTIL newname='"';
WRITELN('The following names were entered:');
pp:=chain;
WHILE pp<>NIL DO
BEGIN
writeln(pp“.name); pp:=pp .next;
END;
END.

Variables created by the standard procedure new are stored in a
stack-like structure called the "heap". The COMPAS Pascal system
controls the heap by maintaining a heap pointer which, at the
beginning of a program, is initialized to the address of the
first free byte in memory. On each call to new, the heap pointer
is moved up towards the top of free memory a number of bytes
corresponding to the size of the dynamic variable newly allo-
cated.

If one or more dynamic variables are for some reason no longer
required by a program, the standard procedures mark and release
may be used to reclaim the memory allocated for these variables.
The mark procedure records the state of the heap pointer (i.e the
address contained in the heap pointer) in a variable. The form of
a call to mark is:

mark(v) ; :
]

where v is any pointer variable. The release procedure sets the
heap pointer to the address contained in its argument. The form
of a call to release is:

release(v);

where v is any pointer variable, previously set by mark. The
following program is a simple demonstration of how mark and
release can be used to control the heap:

PROGRAM heap;
TYPE
item = RECORD
name: STRING[30];
cost: real;
END;
VAR
pitem: “item;
heapmark: “integer;

61

IR
N 3
cnE A

Section 14 Pointer types

BEGIN
mark (heapmark) ;
new(pitem);
pitem”.name:="'screwdriver"';
pitem”.cost:=1.35;
release(heapmark) ;

END.

At the beginning of the program mark is used to record the ini-
tial state of the heap pointer in the variable heapmark (the
associated type of heapmark is irrelevant, since heapmark is
never used in a call to new). Then new is called to allocate a
dynamic variable of type item, and the variable is initialized.
Finally, release is used to reset the heap pointer to its initial
state, thereby discarding the dynamic variable pointed to by
pitem.

If new had been called several times bpetween the calls to mark
and release, the storage occupied by several variables would have
been released at once. Note that because of the stack nature of
the heap, 1t 1is not possible to release the memory space used by
a single item in the middle of the heap. Also note that careless
use of mark and release can leave "dangling pointers", pointing
to areas of memory which are no longer part of the defined heap
space.

To allocate a variable number of bytes on the heap, COMPAS pro-
vides a standard procedure called allocate. The format of a call
to allocate is:

allocate(p,n);

where p is any pointer variable and n is an integer expression
which specifies the number of bytes to allocate. p is set to
point at the first byte of the allocated area.

To find the number of bytes available on the heap at a specific
time, a program may call the standard function memavail, which
requires no parameters and returns an integer result. If more
than 32767 bytes of memory are available, then memavail returns a ~
negative number. In this case, the correct number of bytes free
may be calculated from 65536.0+memavail (note the use of a real
constant to generate a real result - this is required since the
result 1s greater than maxint).

Since COMPAS-86 allows the heap to be larger than 64K bytes, the
integer range would not be sufficient if memavail were to return
the exact number of bytes free. Therefore, the COMPAS-86 version
of memavail returns the number of paragraphs free. One paragraph
corresponds to 16 bytes.

More details on memory management may be found in section 24.

62

Section 14 Pointer types

14.3 Direct access to pointers

COMPAS Pascal allows the programmer to directly access the ad-
dress stored in a pointer. This facility may prove to be extreme-
ly valuable to the experienced programmer, since it enables poin-
ters to point anywhere into memory. If used carelessly it 1is
however also very dangerous, as a dynamic variable, through use
of the ptr function, may be placed on top of other variables, or
even worse on top of the program code.

Since the memory formats of pointers in COMPAS-80 and COMPAS-86
differ (COMPAS-80 uses 16-bit pointers whereas COMPAS-86 uses 32-
bit pointers), the methods used to directly control pointers
depend on the version of COMPAS in use.

COMPAS-80

For pointer manipulations COMPAS-80 provides two standard func-
tions, called ord and ptr. ord returns an integer, which is the
address contained in its pointer argument, and ptr converts its
integer argument into a pointer, which is compatible with all
pointer types. '

COMPAS-86

Pointers in COMPAS-86 are 32-bit quantities. Therefore, a pointer
cannot be converted an integer using the ord function, and the
ptr function cannot convert a single integer to a pointer. Alter-
natives are however provided: The ofs and seg functions return
the offset and segment addresses of any variable. To get at the
offset and segment addresses stored in a pointer variable simply
specify the variable followed by the pointer arrow, for example:

offset:=ofs(p~);
segment:=seg(p”); ‘

COMPAS-86 pointer values are created using the addr and ptr
functions. addr takes any variable as its argument and returns a
pointer to that variable. ptr creates a pointer from two integer
expressions, for instance:

p:=ptr (dseg, $80);
The first expression specifies the segment address and the second
specifies the offset address. Both expressions must be of type
integer. The pointer values returned by addr and ptr are compati-
ble with all pointer types.

14.4 Summary of pointer related routines

The following dynamic allocation procedures are available in
COMPAS Pascal:

63

Section 14

new(p)

allocate(p,n)

mark (p)

release (p)

Pointer types

p is a variable of any pointer type. The procedure
allocates a dynamic variable of the type bound to
p, and assigns its address to P.

P is a variable of any pointer type and n is an
integer expression. The procedure allocates an
area of n bytes on the heap and assigns its ad-
dress to p.

P 1s a variable of any pointer type. The procedure
records the address contained in the heap pointer
in the variable p.

P 1s a variable of any pointer type. The procedure
sets the heap pointer to the address contained in
the variable p.

The following heap and pointer related functions are available in

COMPAS Pascal:

memavail

ord(p)

ptr(i)

ptr(s,o)

addr (v)

An integer function which returns the number of
bytes (COMPAS-80) or paragraphs (COMPAS-86) cur-
rently available between the heap pointer and the
top of free memory. If more than 32767 bytes or
paragraphs are available, a negative number is
returned. In this case, the correct value is
65536.0+memavail.

COMPAS-80 only. A function which converts the
address given by the pointer value P into an
integer. p may be of any pointer type. Note that
ora(NIL)=0,.

COMPAS-80 only. A function which converts the
address given by the integer expression i into a
pointer value compatible with all pointer types.
Note that NIL=ptr(0).

COMPAS-86 only. A function which converts the
segment and offset addresses given by the integer
expressions s and o into a pointer value compatib-
le with all pointer types. Note that NIL=ptr(0,0).

COMPAS-86 only. A function which returns a pointer
a variable. v is any variable. Note that if v is
an array, 1indexing is allowed, and if v is a
record, specific fields may be selected.

Also see section 15.3.2.4 which contains a list of ‘'unclassified'
standard functions.

64

[)

Section 15 Procedures and functions

Section 15

Procedures and functions

A procedure is a seperate program part which may be activated
from a procedure statement (see sectien 6.1.2). A function is
very similar to a procedure, except that it computes and returns
a value. A function is activated from a function designator (see
section 5.2).

15.1 Parameters

Procedures and functions (in common referred to as subprograms)
may have parameters. Parameters provide a substitution mechamism
that allows the algorithmic actions of the subprogram to be
repeated with a variation of its arguments.

A procedure statement or a function designator may contain a list
of actual parameters. These are substituted for the corresponding
formal parameters that are defined in the heading of the subprog-
ram. The correspondence is established by the positioning of the
parameters in the lists of actual and formal parameters. Two
kinds of parameters are supported by COMPAS Pascal: Value parame-
ters and variable parameters.

When no symbols heads a formal parameter part of a subprogram
heading, the parameter(s) of this section are said to be value
parameters. In this case the actual parameter must be an expres-
sion (of which a variable is a simple case). The corresponding
formal parameter represents a local variable in the subprogram.
As its initial value this variable receives the current value of
the actual parameter (i.e. the value of the expression at the
time of the call). The subprogram may then change the value of
this variable by assigning to it, but this will not affect the
value of the actual parameter. Hence, a value parameter can never
represent a result of a computation.

When the symbol VAR heads a formal parameter part of a subprogram
heading, the parameter(s) of this section are said to be variable
parameters. In this case the actual parameter must be a variable.
The corresponding formal parameter represents this variable du-
ring the entire execution of the subprogram. Any operation invol-
ving the formal parameter is performed directly upon the actual
parameter. Hence, whenever a parameter is to represent a result
of the subprogram it must be declared as a variable parameter.

All address calculations are done at the time of the call. Thus,
if a variable is a component of an array, its index expression(s)
are evaluated when the subprogram is called.

Note that file parameters must always be specified as variable
parameters.

When a large data structure, such as an array, is to function as
a parameter, the use of a variable parameter is preferrable. This
will save both time and storage space, since the only information
passed on to the subprogram is a word (two bytes) giving the

65

Section 15 Procedures and functions

address of the actual parameter, as opposed to the use of a value
parameter, where storage must be allocated and initialized with a
copy of the entire structure.

15.2 Procedures

A procedure is either a standard procedure or a procedure dec-
lared by the programmer. Opposed to user declared procedures,
standard procedures can be referred to without previous declara-
tion. If a procedure is declared with the same name as a standard
procedure, that standard procedure cannot be used within that
block.

15.2.1 Procedure declarations

A procedure declaration consists of a procedure heading, a decla-
ration part, and a statement part.

The procedure heading specifies the identifier naming the proce-
dure and an optional formal parameter list. The formal parameter
list is a sequence of formal parameter parts separated by semico-
lons and enclosed in parentheses. A formal parameter part is a
list of identifiers separated by commas followed by a colon and a
type identifier. If a formal parameter part is preceded by the
reserved word VAR, the parameters of this section are variable
parameters. Otherwise the parameters are value parameters. Some
examples of procedure headings:

PROCEDURE switchoff;
PROCEDURE drawto(x,y: integer);
PROCEDURE scale (VAR data: matrix; factor: real);

The declaration part of a procedure has the same form as that of
a program. All identifiers introduced in the formal parameter
list and the declaration part are local to the procedure declara-
tion, which is called the scope of these identifiers. They are
not known outside their scope. A procedure declaration may refe-
rence any constant, type, variable, procedure, or function global
to it (i.e. defined in an outer block), or it may choose to
redefine the name.

The statement part specifies the algorithmic actions to be exe-
cuted upon activation of the procedure by a procedure statement.
The statement part takes the form of a compound statement (see
section 6.2.1). The use of a procedure identifier within the
statement part of the procedure itself implies recursive execu-
tion of the procedure.

Below is shown an example of a program which uses a procedure
with a value parameter. Since the actual parameter passed to the
procadure is in some instances a constant (a simple expression),
the formal parameter must be a value parameter. :

PROGRAM histograms;
VAR
i,k,n: integer;
number: real;

66

Section 15 Procedures and functions

PROCEDURE drawline(linelength: integer);
[] VAR
i: integer;
BEGIN
FOR i:=1 TO linelength DO write('*');
writeln;
END;

BEGIN
readln(n);
FOR i:=1 TO n DO
BEGIN
readln{number) ;
k:=round(number) ;
IF k<0 THEN drawline(0) ELSE
IF k>100 THEN drawline(100) ELSE
drawline (k) ;
END;
END.

. Here is another program which uses a procedure with two variable
parameters. Since a call to the procedure is to affect the values
of the actual parameters, only variable parameters are usable.

PROGRAM compare;
VAR
a,b: integer;

PROCEDURE exchange (VAR x,y: integer);
VAR
temp: integer;
BEGIN
temp:=Xx; x:=y; y:=temp;
END;

BEGIN
readln(a,b);
IF a=b THEN writeln('equal numbers') ELSE

, BEGIN
" IF b>a THEN exchange(a,b);
writeln('the largest number is ',a);
writeln('the smallest number is ',b);
END;
END.

Note that the type of the parameters in a parameter part must be
specified as a type identifier. Thus, the construct:

PROCEDURE sort(data: ARRAY([1..100] OF integer) ;

is not allowed. The correct method is to associate a type identi-
fier with the parameter type, using a TYPE definition, and then
use that type identifier as the parameter type, for instance:

TYPE
list = ARRAY[1..100] OF integer;

d PROCEDURE sort(data: list);

67

Section 15 Procedures and functions

15.2.2 Standard procedures

A number of standard procedures are implemented by COMPAS Pascal.
The standard procedures for string handling are described in
section 8.4, the standard procedures for file handling are des-
cribed in sections 13.2, 13.3.1, and 13.4.1, the standard proce-
dures for the allocation of dynamic variables are described in
section 1l4.4, and the standard procedures for input and output
are described in section 16. In addition, the following standard
procedures are available:

gotoxy(x,y) Moves the cursor to a specified position on the
screen. x and y are integer expressions giving the
new coordinates of the cursor. The upper left
corner corresponds to (0,0). The call is ignored
if x or y is outside range.

randomize Initializes the random generator with a random
value. COMPAS-80 uses the Z-80 refresh register
for the purpose of obtaining the random seed, but
in COMPAS-86 the randomize procedure does nothing.
To randomize the random number generator in this
case, do a random number of calls to the random
function.

move(s,d,n) Does a mass move of a specified number of bytes. s
and d are two variables of any type, and n is an
integer expression. A block of n bytes, starting
at the first byte occupied by s, is copied to the
block starting at the first byte occupied by 4.

fill(v,n,d) Fills a specified range of memory with a specified
value, v is a variablz2 of any type, n is an inte-
ger expression, and d is an expression of type
byte or of type char. n bytes, starting at the
first byte occupied by v, are filled with the
value d.

15.3 Punctions

Similar to a procedure, a function is either a standard function
or a function declared by the programmer.

15.3.1 Punction declarations

A function declaration consists of a function heading, a declara-
tion part, and a statement part.

The function heading is equivalent to the procedure heading,
except that the formal parameter list must be followed by a colon
and a type identifier defining the function result type. Some
examples:

FUNCTION busy: boolean;

FUNCTION average (VAR m: matrix): real;
FUNCTION max2 (a,b: real): real;

68

Section 15 Procedures and functions

The result type of a function must be a scalar type (integer,
‘ real, boolean, char, declared scalar or subrange), a string type,
or a pointer type.

The declaration part of a function is the same as that of a
procedure.

The statement part takes the form of a compound statement (see
section 6.2.1). Within the statement part at least one statement .
assigning a value to the function identifier must occur. This
assignment determines the result of the function. The appearance
of the function identifier in an expression within the function
itself implies recursive execution of the function.

Below is shown an example of a program which uses a function to
find the largest of four values:

PROGRAM findmax;
VAR
i,j,k,1: integer;

FUNCTION max4(a,b,c,d: integer): integer;

FUNCTION max2(a,b: integer): integer;
BEGIN

if a>b THEN max2:=a ELSE max2:=b;
END;

BEGIN
max4:=max2(max2(a,b),max2(c,d));
END;

BEGIN

readln(i,j, k,1);

writeln('the largest value is ',max4(i,j,k,1));
END.

Since the function max2 in the above example is nested within the ™

function max4, max2 can only be called from max4, and not from |
‘ the main program. s
The program shown below demonstrates the use of a recursive
function to calculate the factorial of an integer number:

PROGRAM calcfac;
VAR
n: integer;

FUNCTION fac(i: integer): integer;
BEGIN

IF i<=1 THEN fac:=1 ELSE fac:=i*fac(il);
END;

BEGIN

readln(n);

writeln(n,'! = ',fac(n));
END.

‘ "Note that the result type of a function must be specified as a
type identifier. Thus, the construct:

69

[—

Section 15 ' Procedures and functions

FUNCTION hex(number,digits: integer): STRING([4]:; "

is not allowed. Instead, a type identifier should be associated
with the type STRING[4], using a TYPE definition, and that type
identifier should then be used to define the function result
type, for instance:

TYPE
str4d = STRING[4];

" FUNCTION hex (number ,digits: integer): str4;

Note that if a function uses any of the procedures read, readln,
write, or writeln, then this function must never be referenced by
an expression within a write or writeln statement. The reason for
this lies in the nature of the implementation of write and
writeln - at the beginning of a call to one of these procedures,
certain informations are set up for the entire call, and if a
function, referenced by an expression within the write or writeln
procedure statement, were to call write or writeln "again", then
these informations would be corrupted. ‘

15.3.2 Standard functions

A number of standard functions are implemented by COMPAS Pascal.
The standard functions for string handling are described in
section 8.4, the standard functions for file handling are des-
cribed in section 13.2 and 13.3.1, and the standard functions
relating to pointers are described in section 14.4.

15.3.2.1 Arithmetic functions

In the functions listed below the type of x must be either real
or integer, and the type of the result is the type of x.

abs({x) Computes the absolute value of x.
sqr{x) Computes x*x. .

In the functions listed below the type of x must be either real
or integer, and the type of the result is real.

sin(x) Computes the sine of x, where x is in radians.
cos(x) | Computes the cosine of x, where x is in radians.
arctan(x) Computes the arccus tahgent, in radians, of x.
In(x) Computes the natural logarithm of x.

exp(x) Computes the square root of x.

int(x) Computes the whole part of x, i.e. the greatest

whole number less than or equal to x for x>=0, and
the smallest whole number greater than or equal to
) x for x<0. _ ‘

70

Section 15 Procedures and functions

frac(x) Computes the fractional part of x with the same
sign as x, i.e. frac(x)=x-int(x).

15.3.2.2 Scalar functions

succ(x) x is of any scalar type and the result is the
successor of x (if it exists).

pred(x) x is of any scalar type and the result is the
. predecessor of x (if it exists).

odd (x) x 1s of type integer. The boolean value true is
returned if x is odd, and the boolean value false
if x is even.

15.3.2.3 Transfer functions

In addition to the functions described below, the retype facility
(see section 7.3) may be used to convert values of any scalar
type to values of any other scalar type.

trunc(x) The type of x is real. The result is the greatest
integer less than or equal to x for x>=0, and the
smallest integer greater than or equal to x for
x<0.

round (x) The type of x is real, and the result is the value
of x rounded, i.e.:

round(x) = trunc(x+0.5) for x>=0
round(x) = trunc(x-0.5) for x<0

ord(x) x may be of any scalar type, and the result (of
type integer) is the ordinal number of the value x
in the set defined by the type of x. Note that
ord(x) 1is equivalent to integer (x).

15.3.2.4 Purther standard functions

pwrten(i) i1 is an integer within the range -37 through 37
(=307 through 307 for the 8087 version of COMPAS-
86). The result, of type real, is 10 raised to the
1'th power.

random Returns a random number within the range 0<=r<l.
The type of the result is real.

random (i) Returns a random integer within the range 0<=r<i.
keypress Returns the boolean value true if a key is pressed
at the console, or false if no key is pressed. The

result is obtained by calling the CP/M console
status routine.

71

Section 15

hi (i)

lo (1)

swap (i)

size(v)

addr (v)

ofs(v)

seg(v)

cseg
dseg

sseg

Procedures and functions

The type of i is' integer and the type of the
result is integer. The value returned is the high
order byte of i moved to the low order byte. The
high order byte of the result is zero.

The type of i is integer and the type of the
result is integer. The value returned is the low
order byte of i with the high order byte forced to
zero.

The type of i is integer and the type of the
result is integer. The value returned is construc-
ted from exchanging the high and low order bytes
of 1i.

v 1s any variable or a type identifier. The value
returned is the size of v (in bytes), or the size
of a variable of type v. The type of the result is
integer.

COMPAS-80 only. v is any variable or the identi-
fier of a procedure or a function. The value
returned is the memory address of v. The type of
the result is integer. Note that if v is an array,
indexing is allowed, and if v is a record, speci-
fic fields may be selected.

COMPAS-86 only. v 1is any variable or the identi-
fier of a procedure or a -function. The value
returned is the offset of v within its segment
(procedures and functions always reside within the
code segment, the base address of which may be
found using the cseg function described below). If
v 1s an array variable, indexing is allowed, and
if v is a record variable, specific fields may be
selected. The type of the result is integer.

COMPAS-86 only. Returns the segment base address
of any variable. As with addr and ofs, indexing
and field selection is allowed. The type of tne
result is integer.

COMPAS-86 only. Returns the base address of the
code segment. The result type is integer.

COMPAS-86 only. Returns the base address of the
data segment. The result type is integer.

COMPAS-86 only. Returns the base address of the
stack segment. The result type is integer.

15.4 FORWARD references

Calls to a procedure or a function may occur before the actual
definition of the subprogram by use of a FORWARD reference. This
may be convenient if two procedures or functions are mutually

recursive,

since it 1s impossible for both of them to appear

before their calls. A subprogram is FORWARD referenced by separa-
ting its heading from the block. The heading is specified first,

7?2

®

Section 15 Procedures and functions

followed by the reserved word FORWARD, and the body is then given
at a later time within the same declaration part. Note that the
parameters and function result type are not repeated at the body.
The program shown below demonstrates the use of a FORWARD refe-
renced procedure, '

PROGRAM flipflop;
PROCEDURE flip(n: integer); FORWARD;

- PROCEDURE flop(n: integer);
BEGIN
writeln('entry flop. n equals ',n);
IF n>0 THEN flip(n-1);
writeln('exit flop. n equals ',n);
END;

PROCEDURE flip;

BEGIN
writeln('entry flip. n equals ',n);
IF n>0 THEN flop(n-1);
writeln('exit flip. n equals ',n);

END;

BEGIN
flip(3);
END.

When the program is executed, it outputs:

entry flip. n equals 3
entry flop. n equals 2
entry flip. n equals 1
entry flop. n equals 0

exit flop. n equals 0
exit flip. n equals 1
exit flop. n equals 2
exit flip. n equals 3

15.5 Strings as variable parameters

On using a variable parameter (a parameter declared using VAR),
the type of the formal parameter and the type of the actual
parameter must be one and the same. Normally this means that
procedures and functions, which employ strings as variable para-
meters, will accept only a given string type (i.e. strings of a
fixed maximum length). The programmer may override this restric-
tion using the V compiler option. The default setting of this
compiler option is {$V+}, which indicates "strict" type checking.
In the "relaxed” mode, which is selected through a {$v-} compiler
directive, the compiler will allow any string type as the actual
lbarameter type, even though its maximum length is not the same as
the maximum length of the formal parameter type. An example:

73

Section 15 Procedures and functions

TYPE
anystring: STRING[255];
VAR
short: STRING([16]); long: STRING[64]:

PROCEDURE uppercase (VAR s: anystring);
VAR
i: integer;
BEGIN
FOR i:=1 TO len(s) DO
IF s[i] IN ['a'..'z'] THEN s{i]:=chr(ord(s(i])-32);
END;

BEGIN {$V-}
readln(short); uppercase(short); writeln(short);
readln(long); uppercase(long); writeln(long);
END.

15.6 Untyped variable parameters

When a formal parameter is an untyped parameter, the correspon-
ding actual parameter may be any variable, regardless of its
type. You already know untyped parameters from the move, fill,
blockread, and blockwrite standard procedures. If the type iden-
tifier (and the preceding colon) is omitted in the declaration of
a variable parameter, that parameter is considered an untyped
parameter. An untyped parameter is incompatible with all other
types, and it may therefore be used only in contexts where the
data type is of no significance, for instance as a parameter to
move, fill, blockread, blockwrite, or addr, or as the address
specification in a variable declaration using the AT clause.

The blockequal function shown below demonstrates the use of
untyped parameters. It compares a block of bsize bytes, starting
at vl, with a corresponding block starting at v2. If the blocks
are equal, it returns true, otherwise false.

FUNCTION blockequal (VAR vl1,v2; bsize: integer): boolean;
VAR
offset: integer; equal: boolean;
BEGIN
equal:=true; offset:=0;
WHILE equal AND (offset<bsize) DO
BEGIN
equa1:=mem[addr(vl)+offset]=mem[addr(v2)+offset];
offset:=succ(offset);
END;
blockequal:=equal;
END;

Assuming the declarations:

TYPE
matrix = ARRAY[1..10,1..20] OF real;
sector = ARRAY[0..127] OF byte;

VAR

ml,m2: matrix; sl,s2: sector; i,j: integer;

74

Section 15 Procedures and functions

then blockequal may be used in tests for equality, for instance:

blockequal (ml,m2,size(matrix))
blockequal(ml{i],m2[j],120)
blockequal(sl([32],s1(64],32)

15.7 Absolute procedures and functions

This section applies to COMPAS-80 only. Normally the code gene-
rated by COMPAS-80 for procedures and functions supports fully
recursive execution. In most cases recursion is however not
needed, and the A compiler option is therefore provided to allow
the programmer to choose between absolute and recursive subprog-
rams. The default setting is {SA-}, which causes recursive code
to be generated. An {$A+} compiler directive instructs the compi-
ler to generate absolute code, which is more compact and executes
faster. Absolute procedures and functions will only perform cor-
rectly if both of the below listed conditions are satisfied:

The procedure or function identifier must not occur in a
procedure statement or an expression within the statement
part of the subprogram. In other words, direct recursion
must not occur.

Procedures and functions which contain calls to the sub-
program must not be activated from within the subprogram.
In other words, indirect recursion must not occur.

Procedares and functions in COMPAS-86 always allow for fully
recursive execution., Thus, the A compiler optior has no effect in
COMPAS-86 (it is however allowed to maintain compatibility).

i

15.8 Stack overflow checks

COMPAS-86 provides a K compiler option which allows the program-
mer to control the generation of stack check code before subprog-
ram calls. The default state is {SK+}, and in this state stack
check code will be generated. In the opposite state, {$K-}, no
stack check code is generated. The K compiler directive has no
effect in COMPAS-80, but it is allowed to maintain compatibility.

15.9 Overlay procedures and functions

COMPAS allows for groups of procedures and/or functions to be
separated from the main program. On developing large systems this
is indeed an advantage, since such programs will occupy less
memory when they are executed.

All procedures and functions declared using the reserved word
OVERLAY will be separated from the main program during compila-
tion, and placed in one or more separate overlay files. During
execution of the program, the overlay subprograms are read into
memory from the disk when they are called. Since more overlays
may share the same memory area in the main program code (i.e. be
read into and executed in the same memory area), it is possible
to have several procedures and/or functions at the same cost as
one ordinary subprogram.

75

Section 15 Procedures and functions

It is important to note the difference between overlays and
chained programs: Overlays are compiled together with the main
program and may be used exactly as ordinary subprograms, whereas
chained programs are compiled separately, and must be invoked
through calls to chain or execute.

Overlays can not be used in direct mode programs, 1i.e. programs
invoked with the RUN command. Overlays only work in program
files, i.e. programs compiled with the PROGRAM or OBJECT com-
mands.

The declaration of an overlay is identical to the declaration of
an ordinary subprogram, except that it must start with the
reserved word OVERLAY. Some examples:

OVERLAY PROCEDURE initialize;
VAR
1: integer;
BEGIN
FOR i:=1 TO 10 DO datali]:=0;
count:=0;

END;
OVERLAY PROCEDURE average(d: datalist): real;
VAR
i: integer;
a: real;
BEGIN
a:=0;

FOR i:=1 TO 25 DO a:=a+dli];
average:=a/25;
END;

On compiling a program, all overlays declared immediately after
one another are placed in a single overlay file. In the main
program a gap is then reserved, which is large enough to accomo-
date the largest of the subprograms. Below follows an example of
a program with overlays:

PROGRAM overlay_demo_1;

OVERLAY PROCEDURE pl:;
BEGIN writeln('procedure 1'); END;

OVERLAY PROCEDURE p2;
BEGIN writeln('procedure 2'); END;

OVERLAY PROCEDURE p3;
BEGIN writeln('procedure 3'); END;

BEGIN pl; p2; p3; END.

Assume that the above program is compiled using the PROGRAM
command and the name OVDEMO. The compiler will then generate two
files, OVDEMO.COM and OVDEMO0.000. OVDEMO.COM contains the main
program, and thereby the area into which the overlays are loaded.
OVDEMO0.000 contains the machine code for the procedures pl, p2,
and p3. When OVDEMO.COM is invoked, pl, p2, and p3 are read into
memory and executed alternately.

76

Section 15 Procedures and functions

When an overlay subprogram is called, the run time system first
checks whether the subprogram already resides in the overlay
area. If so, the subprogram is invoked immediately, with no prior
disk accesses. Thus, if the main program above executed five
calls to pl, with no intermediate calls to p2 or p3, pl would
only be read from the disk once, at the first call.

Note that overlay subprograms residing in the same overlay file
may not call each other. Thus, referring to the example above,
pl, p2, and p3 may not call each other - they can be invoked only
from the main program or from other subprograms.

A program is not limited to have only one overlay file. Actually,
it can have up to 100 overlay files, numbered from 000 to 099.
Every overlay file has a specific overlay area in the main prog-
ram code, into which its overlay subprograms are loaded. Thus,
when there are more overlay files, several overlay subprograms
can reside in memory at the same time. As mentioned above, conse-
cutive overlay subprograms are placed in a single overlay file.
1f, however, other declarations are placed in between the decla-
rations of overlay subprograms, more overlay areas and files are
allocated. An example:

PROGRAM overlay_demo_2;

OVERLAY PROCEDURE pl;
BEGIN END;

OVERLAY PROCEDURE p2;
BEGIN END;

PROCEDURE p3;
BEGIN END;

OVERLAY PROCEDURE p4;
BEGIN END;

OVERLAY PROCEDURE p5;
BEGIN END;

BEGIN END.

If the above program is compiled as OVDEMO, the compiler will
produce three files: OVDEMO.COM, OVDEMO.000, and OVDEMO.0O1.
OVDEMO.000 contains the code for pl and p2, OVDEMO.00l1 contains
the code for p4 and p5, and OVDEMO.COM contains the code for p3
and the main program, and two overlay areas. During execution of
the program, pl or p2 may reside in memory at the same time as p4
or p5. Note that the declaration(s) that separates the two over-
lay groups need not necessarily be a subprogram - a LABEL, CONST,
or VAR declaration will do equally well. A comment, however, is
not sufficient, since it is completely ignored by the compiler.

In terms of programming, overlays are identical to ordinary

subprograms. Thus, overlays may also be nested (overlays within
overlays). An example:

77

Section 15 Procedures and functions

PROGRAM overlay_demo_3;

OVERLAY PROCEDURE pl;
BEGIN END;

OVERLAY PROCEDURE p2;

OVERLAY PROCEDURE p21;
BEGIN END;

" OVERLAY PROCEDURE p22;
BEGIN END;

BEGIN p2l1; p22; END;

OVERLAY PROCEDURE p3;
BEGIN END;

BEGIN pl; p2; p3; END.

In this case, the compiler generates two overlay files. The 000-
file contains the code for pl, p2, and p3, and the 00l1-file
contains the code for p2l1 and p22. Within the code for p2, an
overlay area is reserved for p2l and p22.

Since the subprograms in an overlay file may not call each other,
the subprograms may share the same data area. Hence, overlays not
only save code space but also data space.

When COMPAS compiles a progfam with overlays, the overlay files
are placed on the same disk as the main program file.

During execution of a program with overlays, the system assumes
that the overlay files are situated on the default disk (also
known as the currently logged drive). This may however be changed
using the Y compiler directive. The syntax for this directive is
the letter Y immediately followed by a letter from A to P or a 0
(zero), for instance {S$YA}, {SYE}, {SY0}. A letter designates a
specific disk drive and 0 designates the defalt drive, The Y
directive must be situated before the first subprogram of an
overlay group, and it will affect all following overlay groups,
until a new directive is met.

On the first call to an overlay subprogram following the invoka-
tion of a program, the overlay file is opened by the run time
system, and it remains open during the entire execution of the
program. In case that a diskette, on which one or more opened
overlay files reside, is to be replaced while the program is
running, a re-opening must be enforced. For COMPAS-80 this is

achieved by executing:
mem{addr (p)+36]:=0; mem([addr(p)+37]):=0;

For COMPAS-86 only one statement is required:

memw [cseg:0fs(p)+36]:=0;

78

()

Section 15 Procedures and functions

where p is the identifier of one of the subprograms in the over-
lay file. In connection with the re-opening of an overlay file,
it is also possible to select a new drive. For COMPAS-80 this is
achieved by executing:

mem[addr (p)+3) :=drive;
For COMPAS-86 the statement is:
mem[cseg:o0fs(p)+3]:=drive;

where drive is 0 (zero) for the default drive, or between 1 and
16 for drive A to P.

For overlays to be really effecient, the subprograms must be of a
substantial size, and they must not be called too often. In
addition, each overlay file should contain as many subprograms as
possible.

If a run-time error occurs within an overlay, the FIND command
will not always correctly locate the statement that caused the
error. The reason for this lies in the way FIND works: To locate
the statement that caused the error, FIND simply compiles the
program until it reaches the specified code address. Its internal
source text pointer will then be positioned at the statement in
error. In an overlay group several procedures and/or functions
share the same addressing range in the code, meaning that several
statements occupy the same addresses, but FIND always stops the
first time it reaches the target address. Therefore, FIND will
usually locate a statement in the first overlay subroutine of an
overlay group, although the error may have occurred in one of the
following subroutines.

To get around this problem, you must determine which overlay
subroutine was active at the time of error and then modify the
source text so that this subroutine is the first subroutine of
its overlay group. FIND will then operate correctly.

15.10 EXTERNAL specifications

The EXTERNAL specification is used to declare external procedures
and functions, typically procedures and functions written in
other languages, for instance machine code. An external subprog-
ram has no block (i.e. no declaration part and no statement
part). Only the subprogram heading is specified, immediately
followed by an EXTERNAL specification. The actual syntax of an
EXTERNAL specification depends on the version of COMPAS in use.

COMPAS-80

In COMPAS-80 an EXTERNAL specification consists of the reserved
word EXTERNAL followed by an integer constant defining the memory
address of the subprogram. External subprograms may have parame-
ters, and the syntax of calls to external subprograms is exactly
the same as that of calls to ordinary procedures and functions.
Some examples of declarations of external subprograms:

79

.x

Section 15 Procedures and functions

PROCEDURE moveto(x,y: integer); EXTERNAL S$F000;
PROCEDURE drawto(x,y: integer); EXTERNAL $F003;
FUNCTION point(x,y: integer): boolean; EXTERNAL $F006;
PROCEDURE fastsort (VAR d: namelist); EXTERNAL $1C00;

It is the responsibility of the programmer to insure that valid
machine code actually exists at the address specified. More
details on external subprograms and parameter transfers are given
in section 23.3. 51éc (oY

PAS-

In COMPAS-86 the EXTERNAL keyword should be followed by a string
constant which names a disk file. During compilation, COMPAS will
'1ink' the code contained in the disk file into the program code.
Some examples:

PROCEDURE quicksort (VAR d: namelist); EXTERNAL 'QSORT';
FUNCTION point(x,y: integer): boolean; EXTERNAL 'POINT';

The default file type is 'CMD' for CP/M-86 and 'COM' for MS-DOS.
For 'CMD' files, COMPAS loads all bytes contained in the CODE
segment (a CODE segment must be present). All other segments in
the 'CMD' file are ignored. For 'COM' files, COMPAS simply loads
the entire file.

External subprograms are usually coded in 8086 assembly language
and then translated into machine code using the assembler/linker
supplied with the operating system (ASM86/GENCMD for CP/M-86 and
MACRO-86/LINK-86 for MS-DOS).

Since the 'linking' of an external file involves no relocation
(it is a straightforward transfer of data from the file into the
program code), it is up to the programmer to insure that the code
is position independant. This means that all references to loca-
tions in the code segment should be relative to the instruction
pointer (jumps are always relative). No direct references should
be made to any locations in the code segment, and furthermore no
references should be made to any locations in the data segment.

The formats of parameters passed to and from an external subrou-
tine, and the methods used to access them, are described in
section 23.

An external subroutine should preserve registers BP, CS, DS and

SS, and it must itself provide the ending RET (within segment)
instruction.

80

Section 16 Input and output

Section 16

Input and output

The basis of legible input and output are textfiles (see section
13.3) that are assigned to represent a disk file or an input
and/or output device. In order to facilitate the handling of
textfiles, the four standard procedures read, readln, write and
writeln are extended to support a non-standard syntax for their
parameter lists, allowing, among other things, for a variable
number of parameters. Moreover, the parameters must not necessa-
rily be of type char, but may also be of certain other types, in
which case the data transfer is accompanied by an implicit data
conversion operation. If the first parameter is a textfile vari-
able identifier, then this is the file to be read or written.
Otherwise, the standard files input and output (see section
13.3.3) are automatically assumed as default values.

16.1 The procedure read

The procedure read allows for characters, strings, and numeric
values to be input. The format of the procedure statement is:

read(vl,v2,...,vn) or read(f,vl,v2,...,vn)

where vl1,v2,...,vn denote variables of type char, string, integer
or real. In the first case the variables are input from the the
console (the standard file input). In the second case the variab-
les are input from the textfile f. Note that f must be assigned
to a disk file or a logical device and opened, using the reset
procedure, before read is called to input values from it.

For a char variable, read reads one character from the file and
assigns that character to the variable. For a disk file, eof is
true if the next character is a CTRL/Z, and eoln is true if the
next character is a CR or a CTRL/Z. For a logical device, eof is
true if the character read was a CTRL/Z, and eoln is true if the
character read was a CR or a CTRL/Z.

For a variable of a string type, read reads as many characters as
possible into the string, unless the end of the line or the end_
of the file is reached. The maximum number of characters stored
into the string is given by its maximum length. No distinction is
made between blanks and other characters. For both disk files and
logical devices, eof is true if the string was ended with a
CTRL/Z, and eoln is true if the string was ended with a CR or a
CTRL/Z.

For a numeric variable (integer or real), read expects to read a
string of characters which can be interpreted as a numeric value
of the same type (see section 2.2 for the definition of the
formats of numeric constants). Any blanks, HTs, CRs, and LFs
preceding the numeric string are skipped. The numeric string must
not be longer than 30 characters, and it must be followed by a
blank, a HT, a CR, or a CTRL/Z. If the numeric string is not of a
proper format, an I/0 error occurs, Otherwise the numeric string
is converted to a value of the appropriate type and stored into

81

Section 16 Input and output

the variable. For a disk file, if the numeric string was ended
with a blank or a HT, the next read or readln will start with the
character immediately following the blank or the HT. For both
disk files and logical devices, eof is true if the numeric string
was ended with a CTRL/Z, and eoln is true if the numeric string
was ended with a CR or a CTRL/Z. A special case of numeric input
is when eof is true at the beginning at the read (or if the first
character input from a logical device 1is CTRL/2). Instead of
assigning a new value to the variable, the current value 1is
retained.

If the input file is assigned to the console device (CON:), or if
the standard file input is used in the {$B+} mode (which is the
default mode), special rules apply to the reading of variables.
Upon a call to read or readln, a line is input from the console
and stored into a buffer, and the reading of variables then uses
this buffer as the input source. During entry of the input line,
the following editing keys are available:

BACKSPACE Backspaces one character position. On most key-
boards this code is generated by pressing the key
marked BS or BACKSPACE or by pressing CTRL/H.

DEL Same as CTRL/H described above. On most keyboards
this code is generated by pressing the key marked
DEL or RUBOUT.

CTRL/X Backspaces to the beginning of the line.

RETURN Terminates the input line. On most keyboards this
code is generated by pressing the key marked ENTER
or RETURN.

Note that the terminating CR is not echoed. Internally, the input
line is stored with a CTRL/Z appended to the end of it. Thus,
when less values are specified on the input line than there are
parameters in the parameter list, any char variables in excess
will be set to CTRL/Z, strings will be empty, and numeric variab-
les will remain unaltered.

Normally the maximum number of characters that can be entered on
an input line from the console is 127. You may however control
this limit by assigning to the predefined variable buflen. The
value assigned must be an integer within the range 0 through 127.
Note that assignments to buflen affect only the next read. Once
this read completes its input, it restores buflen to 127. An
example:

write('Enter filename (up to 14 chars)? ');
buflen:=14; readln(filename);

16.2 The procedure readln

The procedure readln is identical to the procedure read, except
that after the last variable has been read, the remainder of the
line is skipped, i.e. all characters up to and including the next
CR/LF sequence (or the next CR for a logical device) are skipped.
The format of the procedure statement is:

82

()

Section 16 Input and output

readln(vl,v2,...,vn) or readln(f,vl,v2,...,vn)

After any readln, the next read or readln will start with the
first character of the next line. eoln is always false after a
call to readln, unless eof is true. readln may also be called
with no variables specified:

readln or readln(£f)

when readln is used on a file which is assigned to the console
device (CON:), tne only difference from a corresponding call to
reaé is that the CR terminating the input line is echoed.

16.3 The procedure write

The procedure write allows for characters, strings, booleans, and
numeric valuecs to be output. The format of a procedure statement
is:

write(pl,p2,...,pn) or write(f,pl,p2,...,pn)

where pl,p2,...,pn denote so-called write parameters, which,
according to the type of the value to be output, can take on one
of the following formats (m, n, and i denote integer expressions,
ch denotes a character expression, s denotes a string expression,
b denotes a boolean expression, and r denotes a real expression):

ch ch is output.

ch:n ch is output preceded by an appropriate number of blanks
to make the field width n.

s s is output with no preceding blanks. Note that arrays of
characters may also be output, since they are compatible
with strings.

s:n s is output preceded by an appropriate number of blanks to
make the field width n.

b One of the words TRUE or FALSE is output according to the
value of b.

b:n One of the words TRUE or FALSE is output preceded by an
appropriate number of blanks to make the field width n. :

i The decimal representation of i is output with' no prece-
ding blanks. .

i:n The decimal representation of i is output preceded with an
appropriate number of blanks to make the field width n.

r The decimal representation of r is output using floating
point format. For COMPAS-80 and the standard version of
COMPAS-86 the field width is 18 characters:

r>=0.0: bbd.ddddddddddEtdd

r<0.0: b-d.ddddddddddEtdd

83

Section 16 Input and output

For the 8087 version of COMPAS-86 the field width is 23
characters:

r>=0.0: bbd.ddddddddddddddEtddad
r<0.0: b-d.ddddddddddddddEtddd

where b stands for a blank, d stands for a digit, and t
stands for either '+' or '-'.

r:n The decimal representation of r is output using floating
‘ point format in a field of n characters. The generalized
format is:

r>=0.0: <blanks>d.<digits>Etdd
r<0.0: ¢<blanks>-d.<digits>Etdd

where <blanks> denotes zero Or more blanks and <digits>
denotes from one to ten decimal digits. Since at least one
digit is output following the decimal point, the field
width is always a minimum of 7 (8 for r<0.0) characters.
When n is greater than 16 (17 for r<0.0), the number 1is
preceded by n-16 (n-17 for r<0.0) blanks. For the 8087
version of COMPAS-86, the field width is always a minimum
of 8 (9 for r<0.0), and when n is greater than 21 (22 for
r<0.0), the number is preceded by n-21 (n-22 for r<0.0)
blanks.

r:n:m The decimal representation of r is output using fixed
point format with m digits after the decimal point. m must
be in the range 0<=m<=24, oOr otherwise floating point

format is selected. The number is preceded by an approp-
riate number of blanks to make the field width n.

16.4 The procedure writeln

The procedure writeln is identical to the procedure write, except

that after the last value has been output, a CR/LF sequence 1is

written to the file. The format of the procedure statement is:
writeln(pl,p2,...,Pn) or writeln(f,pl,p2,...,pPn)

To produce a single CR/LF sequence, call writeln with no write
parameters:

wfiteln or writeln(f)

84

Section 17 User interrupts

Section 17

User interrupts

COMPAS supports two types of user interrupts: Interrupts during
console I1/0 and interrupts during execution.

17.1 User interrupts during console I1/0

When COMPAS receives a CTRL/S character from the keyboard during
output to the console (CON: or TRM: device), the display is
stopped temporarily, until another character is received. Fur-
thermore, when COMPAS receives a CTRL/C character from the key-
board, it displays:

USER INTERRUPT AT PC=aaaa
Program terminated

and returns control to the command level (or to CP/M). The state-
ment at which the interrupt occurred may then be located using
the FIND command.

To make a program uninterruptable, i.e. to deactivate the above
described facility, insert a {$C-} compiler directive at the
beginning of the program (i.e. before the declaration part).
CTRL/S and CTRL/C will then be processed as all other ASCII
characters.

17.2 User interrupts during execution

If a program enters an indefinite loop then normally the only way
to interrupt it is by pressing RESET. COMPAS however offers a U
compiler directive, which instructs the compiler to generate
calls to a user interrupt check routine before each statement.
The default setting is {$U-} and in this mode no interrupt check
calls are generated. If a {$U+} directive is issued, the compiler
will generate interrupt check calls before the code of each
statement, and when the program is running, such statements can.
be interrupted by pressing CTRL/C. Contrary to the C compiler
option, the U compiler option may be used freely throughout the
source text, and all statements compiled in the {$U+} state will
be interruptable.

Note that statements compiled with {$U+} will execute signifi-
cantly slower than uninterruptable statements.

COMPAS-80 uses the RST 38H instruction for interrupt check calls,
and COMPAS-86 uses the INT 3 instruction. Normally these inter-
rupt locations are available to user programs, since the CP/M and
MS-DOS debuggers (DDT, DDT86 and DEBUG) use them when inserting
breakpoints.

85

Section 18 Include files

Section 18

Include files

There may be times when the source text of a program is too large
to fit into the buffer of the COMPAS editor. In a situation like
this, the program text may be divided into smaller text segments,
which are combined only at the time of compilation, through use
of the "include file" compiler directive.

The syntax for instructing the compiler to include another source
file into the compilation of the program text in memory is as
follows:

{SI filename} or (*SI filename?*)

where filename is a CP/M file name. The default file type is
'.PAS'. Spaces preceding the file name and following it are
ignored. It is recommended that no other objects precede or
follow the include file compiler directive on that 1line.

The compiler cannot keep track of nested include files. If an
include file includes another file, the reading of the first file
is not continued when the second file ends.

Include files are also of use in maintaining libraries of "sub-
routines" on disk. These "subroutines" may be be included in the
compilation of a program whenever they are needed, simply by
specifying their file name in an include file compiler option. As
an example, assume that the following "subroutine” exists on
drive A: under the filename MINMAX.LIB:

TYPE number = 0..99;

FUNCTION max{a,b: number): number;
BEGIN if a>b THEN max:=a ELSE max:=b END;

FUNCTION min(a,b: number): number;
BEGIN if a<b THEN min:=a ELSE min:=b END;

A program which uses the max and min functions may then be writ-
ten as:

PROGRAM minmax;
{SI MAXNUM.LIB}
VAR
X,Y: number;
BEGIN
write('enter two numbers: '); readln(x,y):
writeln('the largest number is ',max(x,y))
writeln('the smallest number is ',min(x,y)
END.

) 2

Since COMPAS Pascal allows free ordering (and possibly several
occurrances) of the individual sections in the declaration part

% of a block, library "subroutines" may declare types and variables
)

of their own or for use by the main program.

86

e -B4. . s a

Section 18 Include files

During the processing of an include file, COMPAS preserves the
state of all compiler flags and registers. The state of the
compiler flags and registers is not changed by an include file
directive, but if the include file itself contains compiler
directives, these directives will only affect the file and not
the "main" program.

87

Section 19 v Program chaining

Section 19

Program chaining

The COMPAS Pascal system provides a chaining mechanism through
which one program can execute another. To chain a program, the
standard procedure execute or the standard procedure chain is
used. The formats of calls to these procedures are:

execute(f) and chain (f)

where £ is a file variable of any type, previously assigned to a
CP/M disk file using the assign procedure. Provided that the disk
file exists, it is loaded into memory and executed.

The execute procedure may be used to execute any other COMPAS
Pascal program file. The chain procedure is used only to activate
COMPAS Pascal object files, i.e. files created using the OBJECT
command of COMPAS Pascal.

More details on the PROGRAM and OBJECT commands may be found in
the COMPAS Pascal Operating Manual. Briefly, the difference bet-
ween files generated using these commands is that the PROGRAM
command includes both the run-time package and the program code
in the file (thereby creating a machine code program which will
run all by itself), whereas the OBJECT command includes only the
program code. Thus, a file generated by OBJECT will run only if
the run time package is already in memory.

If the disk file referred to by the file variable specified in a
call to execute or chain does not exist, an I/O error occurs,
unless the {$I-} option switch is in effect, in which case prog-
ram execution is resumed at the statement folloWwing the call. At
this point 1ores contains a non-zero value, which must be exa-
mined before further I/0 can be performed. An example:

VAR
f: FILE;
BEGIN
assign(f,'B:PROG3.COM'); {SI-} execute(f) {SI+};
i:=iores;
writeln('B:PROG3.COM does not exist');
END.

Users of COMPAS-86 under CP/M-86 should replace the 'COM' file
type with 'CMD'.

Data can be transferred from the current program to the chained
program using one of two methods: Shared global variables or
absolute address variables. Data may of course be transferred
using a file, but this method is far less convenient.

Using the shared global variable method you must guarantee that
the declaration of global variables occurs as the first variable
declarations in both programs, and that the declarations are
listed in the same order. Furthermore, both programs must be
compiled for the same memory size. An example:

88

Section 19 Program chaining

PROGRAM mainprog;
VAR
i,j,k: integer;
f: FILE;
BEGIN
readln(i,j); k:=1i*j;
assign(f,'A:NEXTPROG.COM'); execute(f);
END.

PROGRAM nextprog:;
"VAR
i,j,k: integer;
BEGIN
writeln(i,' times ',j,' equals ',k):;
END.

Users of COMPAS-86 under CP/M-86 should replace the 'COM' file
type with 'CMD'.

Using the absolute address variable method you would typically
define a record type which contains all relevant information
fields, and then declare a variable of this type at an absolute
address (using the AT clause) in each program.

Note that when you are operating in the direct mode, a call to
execute or chain will cause an I/0 error to occur. The chain
facility of COMPAS only works if used from one machine code
program file or object file to active another machine code prog-
ram file or object file.

Below follows some notes for each specific version of COMPAS.

The COMPAS-80 version of execute allows any CP/M command file to
be activated. The file is loaded into memory starting at address

$100, and executed at address $100, exactly as the CP/M standard
specifies.

The chain procedure loads the object file into memory at the
origin of the current program (i.e. at the origin specified when
the current program was compiled). Thus, for the chain procedure
to function properly, the current program and the object file to
be chained must be compiled for the same origin address.

A program can determine whether is was invoked from the CP/M
coazanrd mode or through a call to execute or chain by examining
the byte at location $80. A value of SFF (255) indicates that it
%33 [nvoked from execute or chain, and other values that it was

tavoced from CP/M. The program shown below demonstrates this
feazize:

f9

Section 19 Program chaining

PROGRAM invoketest;
VAR
chainflag: byte AT $80;
BEGIN
IF chainflag=255 THEN
writeln('invoked through execute or chain.') ELSE
writeln('invoked from CP/M.');
END.

COMPAS-86 users should note that execute and chain do not alter
the memory allocation state. In other words, the base addresses
and sizes of the code, data and stack segments are not changed -
execute and chain only replace the program code in the code
segment. As an effect of this, execute cannot be used to initiate
"alien"” (i.e. non-COMPAS) programs. Furthermore the programmer
must guarantee that the "root" program (i.e. the program executed
from the operating system) allocates enough memory for the code,
data and stack segments to cater for the largest program to be
subsequently chained. The PROGRAM command provides parameters
which allow the programmer to explicitly specify the minimum
sizes of each of these segments.

A program can determine whether is was invoked from the CP/M-86
or MS-DOS command mode or through a call to execute or chain by
examining the byte at location $80 in the data segment (CP/M-86)
or the code segment (MS-DOS). A value of S$FF (255) indicates that
it was invoked from execute or chain, and other wvalues that it
was invoked from the operating system. The program shown below
demonstrates this feature:

PROGRAM invoketest;
VAR
chainflag: byte AT dseg:$80;
BEGIN
IF chainflag=255 THEN
writeln('invoked through execute or chain.') ELSE
writeln('invoked from CP/M.‘');
END.

Users of COMPAS-86 under MS-DOS should change the 'dseg’' identi-
fier above to 'cseg'.

90

Section 20 ' In-line machine code

Section 20

In-line machine code

COMPAS Pascal has a very useful built-in feature called CODE
statements. Such statements can be used to insert machine code
instructions (or other kinds of data) into the program code. The
syntax of a CODE statement is very simple: It consists of the
resérved word CODE followed by one or more constants, variable
identifiers, or location counter references, separated by commas.

The constants are either literal constants or constant identi-
fiers, and they must always be of type integer. If a literal
constant is specified it generates one byte of code if it is
within the range 0..255 ($00..$FF). Otherwise two bytes of code
are generated in the standard byte reversed format. A constant
identifier always evaluates into two bytes. The use of a variable
identifier will generate two bytes (in byte reversed format)
giving the memory address of the variable. A location counter
reference consists of an asterisk (*), optionally followed by a
plus (+) or a minus (-) sign and an integer constant. In the
first case, two bytes (in byte reversed format) of code are
generated, containing the current location counter value (i.e.
the address of the first byte). In the second case, the offset
specified is added or subtracted before coding the address.

The examples that follow depend on the version of COMPAS in use.

Below is shown an . example of the use of a CODE statement to
generate a machine code procedure which will convert all charac-
ters in its string argument to upper case.

PROGRAM testupcase; {SA+}

TYPE

str = STRING[64];
VAR

S: str;

PROCEDURE upcase (VAR strg: str);

BEGIN CODE
$2A,strgqg, { LD HL, (strg) }
$46, { LD B, (HL) }
S04, { INC B }
$05, { L1: DEC B }
$SCA, *+20, { Jp Z,L2 }
$23, { INC HL }
$7E, { LD A, (HL) }
SFE, S$61, { Cp - }
SDA, *-9, { JP C,L1 }
SFE, $7B, { Cp 'z'+1 }
$SD2, *~-14, { JP NC,L1 }
$D6, 520, { SUB 20H }
$77, { LD (HL) ,A }
$C3,*-20; { JP Ll }

END; { L2: EQU $ }

91

BEGIN
writei{'enter 3 Sti
upcase({s); wri = T
END.

Note that the JP i 0~

demonst-ate the locai. .

jumps like the ones &necy
appropriate.

CODE state:ients may he |
<hroughout the state:irent

iise all CPU registers ¢
stack pointer register (...

LY).

COMPAS-86
in COMPAS-86 the use of

base segment. Thne
riables declared in tkt
ant, which 16 access
agmerit of locai variadl
-~ent subprogram) 15
sffset 1s relarx
‘Fich automat..al
T¢ nNAsSe Segma I
15
not attempt ©o a«
. Z1in program not in

s>elow s ~hown an &¥xam
seneret.e & machinz cule

-ers in 1vs striig argum

FROCRAM testupcase-

TYPE

sey = STRINGI€4 -
VAR

SR -2

FUNMCTION upcase (VAR
RECIN CODE
.4, 3BE;.strg,
326,38A,500:;
>FE, 5Cl,
SFrI., 3C9.
S$74 ¢13,
€47,
$2& $80,83D,8¢1.
£712,$F5,
$2¢ 80,353 ,$7A,
<77 SEF,
$2¢ 380,827, §20.
SFr,SE9;
END:

accessible I

;tes of code which is t.
]

b

}

i

bz PR

=

Aunelnvy
_L:,'OC_ZL
.-.}1'.g}'1

~a

5
g1 JV
o
LI
Ry
N,
M

(TP D

M2

a1 ¢ machine o

‘3amp.e only to
« ty. For short
TS ¢y o.urse more

s . guite freely
TE L tatements may

w: contents of Che

¢y "rit as or en-—

Wiii generate two
g ¢ ieble within

v iables (i.e.
= (e datl seg-
i 3ier. The base
within the

~Ass Lne
g2 register, the

. une - %o be selec~

che code segment,
CODFE statements
~ 51 declared in

VO ® statement
st all charo-~

Y
o

s
—

et

®

In-line machine code

v—-dmvﬂ'.

{|’4&**nﬂbﬂ *dl!-lv f;f

" In-line. machrne code *

. A 4 ‘
"PL. .

COMPAS Pascal has a very useful built-in feature called ‘CODE

statements. 'Such statements can be used to insert machine-.code

instructions, (or other kinds of data) into' the- program,k cede. The

syntax of a CODB Statement:is very simple: It consists of the

reseérved wordhCODE followed by “one or more constants, .variable

1dent1f1ers, oL locatxon counter references, separated by commas.
The constants are either’ llteral constants ‘or constant 1dent1--
fiers, and they must always be of type integer. If a literal

constant is specified it generates one byte of code if it is

within the range 0..255 ($00..$FF). Otherwise two bytes of code

are generated in the standard byte reversed ‘format. A constant

idencifier always evaluates into two bytes. The use of a variable
identifier will generate two bytes (in byte reversed format)

giving the memory address of the variable. A location counter

reference conslsts of an asterisk (*), optionally followed by a

plus (+) or ‘a minus (-) sign ‘and an integer constant.' In the

first case, two bytes (in byte.reversed format) of code are

generated, containing the current location gounter value: (i.e.

the address of the first byte)..In the second case, the offset

spec1fied 1s added or subtracted before coding the -address.

The examples that follow depend on ‘the version oﬁ‘COMPAS in use.
g -
U,Tﬂ. : [. R - , ‘ . i

Below is shown an example of the use of a CODEsstatement to
generate a machine code procedure.which will convert all charac-

ters in its string argument to upper case. ;
3

PROGRAM testupcase; {S$SA+} - g v
TYPE ,

str = STRING[64]; e ey .
VAR !

S: str; oo
PROCEDURE upcase (VAR strg: str); ”"~"'£w'
BEGIN CODE ’ .

$2A,strgq, { LD HL, (strg) }: , .

$46, { LD B, (HL) } A

$04, { INC B } o, -

$05, { L1: DEC B } £

SCA,*+20, { Jp zZ,L2 } ¢

$23, { INC HL }

$7E, { LD A, (HL) } Yoy

$FE, $61, { Ccp ‘a' })

$DA,*-9, { JP C,Ll } ﬁ

SFE1$7B' { CP 'z'+1 } a

$D2,*-14, { JP NC,L1 } . .

$D6,$20, { SUB 20H } pam

$717, { LD (HL) ,A } .

$C3,*-20; { JP Ll }

{ }

END; L2: EQU $§

91

Section 20 In-line machine code

\ BEGIN
write('enter a string: '); readln(s); '
upcase(s); writeln(s);
END.

Note that the JP instruction is used in the example only to
demonstrate the location counter reference facility. For short
jumps like the ones above, the JR instruction is of course more
appropriate,

CODE statements may be mixed with other statements quite freely
throughout the statement part of a block, and CODE statements may
use all CPU registers (note however that the contents of the
stack pointer register (SP) must be the same on exit as on en-

try).
| In COMPAS-86 the use of a variable identifier will generate two "
bytes of code which is the offset address of the variable within

its base segment. The base segment of global variables (i.e.
variables declared in the main program block) is the data seg-
ment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the
current subprogram) is the stack segment, and in this case the
variable offset is relative to the BP (base page) register, the
use of which automatically causes the stack segment to be selec-
ted. The base segment of typed constants is the code segment,
which is accessible through the CS register. CODE statements
should not attempt to access variables that are not declared in
the main program nor in the current subprogram.

Below is shown an example of the use of a CODE statement to
generate a machine code procedure which will convert all charac-
ters in its string argument to upper case.

PROGRAM testupcase;

| TYPE
str = STRING[64]; - ‘
VAR
S: str;

FUNCTION upcase (VAR strg: str);

BEGIN CODE
$C4,$BE,strg,
$26, S8A,S$0D,

LES DI,strg(BP]
MOV CL,ES:[DI]

{ }

{ }
$FE, $C1, { INC CL }
$FE, $C9, { L1: DEC CL }
$74,913, { JZ L2 }
$47, { INC DI }
$26,$80,983D,%61, { CMP ES:BYTE PTR [DI],'a' }
$72,$F5, { JB Ll }
$26,$80,$3D,$7A, { CMP ES:BYTE PTR [DI],'z' '}
$77,SEF, { JA Ll }
$26,$80,9$2D, $20, { SUB ES:BYTE PTR [DI),20H }
$EB, $E9; { JMP SHORT L1 }

) END; { L2: } .

Q9

Section 20 In-line machine code

. BEGIN
write('enter a string: '); readln(s);
upcase(s); writeln(s);
END.

CODE statements must preserve registers BP, SP, CS, DS and ES.

Q7

Section 21 ' System function calls

Section 21

System function calls

21.1 COMPAS-80 system function calls

For the purpose of calling CP/M BDOS and BIOS routines, COMPAS-80
introduces two standard procedures, called bdos and bios, ana
four standard functions, called bdos, bios, bdosb, and biosb.
Note that these routines should only be used by the experienced
programmer who fully understands their implications.

bdos(f, p) This procedure is used to invoke CP/M BDOS rou-
tines. £ and p are integer expressions (p and the
preceding comma may be omitted if the routine
requires no entry parameter). f is loaded into the
C register, p (if specified) is loaded into the DE
register pair, and a call is placed to address 5
to invoke the BDOS. bdos may also be used as a
function, in which case the result, of type inte-
ger, is the value returned in the HL register
pair.

bios(f,p) This procedure is used to invoke BIOS routines. f
and p are integer expressions (p and the preceding
comma may be omitted if the routine requires no
entry parameter). f gives the number of the rou-
tine to call, with 0 corresponding to the WBOOT
routine, 1 to the CONST routine, etc. (in other
words, the address of the routine is calculated by -
adcing f£*3 to the address contained in locations 1
and 2). If p is specified, it is loaded into the
BC register pair prior to calling the routine.
bios may also be used as a function, in which case
the result, of type integer, is the value returned
in the HL register pair.

bdosb (£, p) This function is exactly the same as cthe bdos
function, except that the result, still of type
integer, 1is the value returned in the A register.

biosb(f,p) This function is exactly the same as the bios
function, except that the result, still of type
integer, is the value returned in the A register.

Details on BDOS and BIOS routines are found in the "CP/M Inter-
face Guide" and the "CP/M Alteration Guide" published by Digital
Research.

21.2 COMPAS-86 system function calls

In COMPAS-86 all system calls are performed through a single
standard procedure called swint (short for software interrupt).
The swint procedure takes two arguments. The first argument must
be an integer constant within the range 0 through 255, and it
specifies the number of the interrupt to execute. The second
argument must be a variable of the type regpack shown below:

94

Section 21 - System function calls

TYPE
regpack = RECORD
ax,bx,cx,dx,bp,si,di,ds,es,flags: integer;
END;

Before executing the INT (software interrupt), swint loads the
AX, BX, CX, DX, BP, SI, DI, DS and ES registers from the register
pack variable (note that the flags are not initialized before the
interrupt). On exit the contents of the registers and the flags
are stored into the register pack. The program shown below uses
the swint procedure to call the CP/M-86 BDOS (INT 224). It passes
function code 9 (print string) in CL and the address of the
string in DS:DX.

PROGRAM test_system_call;
CONST
bdos_int = 224;
print_string = 9;

TYPE

strl8 = ARRAY[1l..18] OF char;
CONST

message: strl8 = 'System calls work$';
VAR

regs: RECORD
ax,bx,cx,dx,bp,si,di,ds,es,flags: integer;
END;
BEGIN
regs.cx:=print_string;
regs.dx:=ofs (message) ;
regs.ds:=seg(message) ;
swint (bdos_int,regs);
END.

For further details on BDOS calls please refer to the "CP/M-86
Operating System System Guide".

If the above program were to run under MS-DOS, an INT 33 should
be used to invoke the MS-DOS function call handler, and the
function code should be passed in AH:

BEGIN
regs.ax:=swap(print_string); {Move to AH}
regs.dx:=off (message) ;
regs.ds:=seg(message) ;
swint (33, regs);

END.

For further details on MS-DOS system function calls please refer
to the "MS-DOS Operating System Programmer's Reference Guide".

95

Section 22 User written I/0 drivers

Section 22

User written 1/0 drivers

In certain applications it is desirable or even necessary for a
program to define its own low-level input and output drivers,
i.e. routines which does the basic inputting and outputting of
characters from and to an external device. In the COMPAS environ-
ment, the following drivers exist (note that the drivers are not
available as standard procedures and functions):

FUNCTION const: boolean:
FUNCTION conin: char;
PROCEDURE conout{ch: char);
PROCEDURE 1stout(ch: char):
PROCEDURE auxout(ch: char);
FUNCTION auxin: char; et
PROCEDURE usrout(ch: char);
FUNCTION usrin: char;

The const routine is called by the keypress function, the conin
and conout routines are used by the CON:, TRM:, and KBD: devices,
the lstout routine is used by the LST: device, the auxout and
auxin routines are used by the AUX: device, and the usrout and
usrin routines are used by the USR: device.

The defaulc drivers for the CP/M versions of COMPAS are the BIOS
entry points of the CP/M operating system, i.e. const uses CONST,
conin uses CONIN, conout uses CONOUT, 1lstout uses LIST, auxout
uses PUNCH, auxin uses READER, usrout uses CONOUT and usrin uses
CONIN.

The default drivers for the MS-DOS version of COMPAS-86 are
system function 6 (or 11, 8 and 2 in the {$C-} state) for constc,
conin and conout, system function 5 for lstout, system function 4
for auxout, system function 3 for auxin and system function 6 (or
2 and 8 in the {$C-} state) for usrout and usrin.

The default settings may be changed by the programmer by assig-
ning the address (COMPAS-80) or offset (COMPAS-86) of a driver
procedure or a driver function to one of the following standard
variables (the 'addr' postfix is used by COMPAS-80 and the 'ofs'
postfix is used by COMPAS-86):

csaddr csofs address of const function
ciaddr ciofs address of conin function
coaddr coofs address of conout procedure
loaddr loofs address of lstout procedure
aoaddr aoofs address of auxout procedure
aiaddr aiofs address of auxin function
uoaddr uoofs address of usrout procedure
uiaddr uiofs address of usrin function

QA

Section 22 User written I/O drivers

For COMPAS-86 all offsets are relative to the code segment regis-
ter (CS).

A driver procedure or a driver function must match the defini-
tions given above, i.e. a const driver must be a boolean func-
tion, a conin, auxin, or usrin driver must be a char function,
and a conout, 1lstout, auxout, or usrout driver must be a proce-
dure with a char value parameter.

Below is shown a program which defines and activates a new driver
for the LST: device. Apart from actually outputting characters to
the printer, the driver will keep track of the line and column of
the print head. Before each new line, a left margin, consisting
of a user defined number of blanks, is printed, and at the bottom
oi a form, the perforation is automatically skipped. Furthermore,
form-feeds are converted into an appropriate number of line-
feeds. Single characters are output from the driver by calling
the LIST routine (routine number 4) in the BIOS.
[4

PROGRAM 1listdriver; {SA+}

CONST
pagelength = 72; { overall page length in lines }
bottommargin = 6; { lines to skip at bottom }
leftmargin = 8; { left margin }

VAR

lstlin,lstcol: integer;

PROCEDURE prchr(ch: char);

BEGIN
bios(4,o0rd(ch)); { COMPAS-80 only }
END; «
PROCEDURE 1lstout(ch: char);
VAR
1: integer;
BEGIN
IF ch>=' ' THEN
BEGIN
IF lstcol=0 THEN
BEGIN
FOR 1i:=1 TO leftmargin DO prchr(' ');
lstcol:=leftmargin;
END;
prchr(ch); lstcol:=1lstcol+l;
END ELSE
IF ch=@13 THEN
BEGIN
prchr(€13); lstcol:=0;
END ELSE
IF ch=@10 THEN
BEGIN

prchr (@10); lstlin:=lstlin+l;
IF lstlin=pagelength-bottommargin THEN
BEGIN
FOR i:=1 TO bottommargin DO prchr(€10);
1lstlin:=0;
END;
END ELSE
IF ch=@12 THEN
BEGIN

97

o

o

Section 22 User written I/0 drivers

FOR i:=1stlin TO pagelength-1l DO prchr(€10);
1stlin:=0;
END;
END;

BEGIN
loaddr:=addr(lstout); 1lstlin:=0; lstcol:=0;
writeln(lst,'LST DRIVER TEST:');
writeln(lst,'This should produce three blank lines...');
write(lst,@10010810);
writeln(lst,'This should produce a form-feed...');
write(lst,@12);

END.

The above program applies to COMPAS-80 only. For the CP/M-86
version of COMPAS-86 the prchr procedure should be changed to:

PROCEDURE prchr(ch: char);
VAR
regs: RECORD
ax,bx,cx,dx,bp,si,di,ds,es,flags: integer;

END;
BEGIN
regs.cx:=5; regs.dx:=ord(ch); swint(224,regs);
END;

For the MS-DOS version of COMPAS-86 the prchr procedure should be
changed to:

PROCEDURE prchr(ch: char);
VAR
regs: RECORD
ax,bx,cx,dx,bp,si,di,ds,es,flags: integer;

END;
BEGIN '
regs.ax:=$500; regs.dx:=ord(ch); swint(33,regs);
END;

Furthermore, for both versions of COMPAS-86 the first line of the
program should be changed to:

loofs:=ofs{lstout); 1lstlin:=0; lstcol:=0;

At the beginning of the program, the lstout vector is modified to
reflect the address of the customized LST: output driver, and the
line and column counters are reset. A number of strings are then
written to the lst file (which is predefined and preassigned to
the LST: logical device), and thereby passed on to the lstout
routine one character at a time. Note that user written I/0O
drivers may under no circumstances call any of the procedures
read, readln, write, and writeln. Also note that if user written
drivers are used in a set of programs which chain each other,
then each program must contain the driver definitions and the
code needed to activate them.

Note that user written drivers should always be compiled with the
U compiler option off, i.e. in the {$U-} state. COMPAS-80 users
should furthermore note that it is recommended to compile drivers
in the {$A+} state.

98

[J

Section 23) : Internal data formats

Section 23

Internal data formats

In the following descriptions, the symbol 'addr' denotes the
address of the first byte that a variable of the given type
occupies. The methods used to allocate memory for variables
depend on the version of COMPAS in use.

In COMPAS-80 the compiler allocates memory for variables from the
top-of free memory working downwards. All variables (both main
program variables and subprogram variables) are statically allo-
cated, i.e. they reside at the same address throughout the entire
execution of the program.

In COMPAS-80 the standard function addr may be used to obtain the
address of a variable from a program.

COMPAS-86

Variables declared in the declaration part of the main program
block reside in the data segment, which is adreéssed through the
DS register. Typed constants reside in the code segment, which is
adressed through the CS register. Variables declared in subprog-
rams (procedures and functions) reside in the stack segment,
which is addressed through the SS register. Contrary to COMPAS-
80, a COMPAS-86 subprogram allocates memory for its variables
when it is called and releases this memory when it returns. Thus,
subprogram variables in COMPAS-86 are allocated dynamically, and
their absolute address is not known at compile time.

Variables are always contained entirely in their base segment,
i.e. the offset address of the last byte occupied by a variable
will never exceed SFFFF. For this reason, the size of a single
variable can never exceed 64K bytes.

In COMPAS-86 the standard function addr returns a pointer to a
variable and the standard functions ofs and seg return the offset
address and the segment base address of a variable.

23.1 Basic data types

The basic data types may be grouped into structures (arrays,
records, and disk files), but this structuring will not affect
their internal formats.

23.1.1 Scalars

Integer subranges, where both bounds are within the range 0..255,
booleans, characters, and declared scalars, with less than 256
possible values, are stored using a single byte. This byte gives
the ordinal value of the variable.

99

Section 23 Internal data formats

Integers, integer subranges, where one or both bounds are not
within the range 0..255, and declared scalars, with more than 256
possible values, are stored using two bytes. These bytes give a
2's complemenc 16-bit value. The least significant byte is stored
at che lowest memory address.

23.1.2 Reals

The data type real is implemented as 6 bytes giving a floating
point value with a 40-bit mantissa and an 8-bit 2's exponent. The
exponent is stored in the first byte and the mantissa in the
next five bytes which the least significant byte first:

aadr+0 Exponenc.
addr+1 LSB of mantissa.
addr+5 MSB of mantissa.

The exponent uses binary format with an offset of $80. Hence, an
exponent of $84 indicates that the value of the mantissa is to be
multiplied by 27($84-$80) = 274 = 16. If the exponent is zero,
the floating point value is considered to be zero. The value of
the mantissa is obtained from dividing the 40-bit unsigned inte-
ger by 2740. The mantissa is always normalized, i.e. the most
significanct bit (bit 7 of the fifth byte) should be interpreted
as a 1. However, the sign of the mantissa is stored in this bit,
a 1 indicating that the number is negative, and a 0 indicating
that the number is positive,

The 8087 version of COMPAS-86 uses 8 bytes to store a real value.
The format used is the 8087 "long real" format. For a complete
Gescription of the 8087 and the "long real"” floating point format
please refer to the "iAPX 86,88 Users Manual"” which is published
by Incel Corporation.

23.1.3 Strings

A string type occupies its maximum length plus one bytes of
memory. The first byte gives the current length of the string.
The following bytes contain the actual characters, with the first
character stored at the lowest address. In the table shown below,
n denotes the current length of the string, and m denotes the
maximum length:

addr+0 Current length (n).
addr+1 First character.
addr+2 Second character.
addr+n Last character.

addr+n+1l Unused.

addr+m Unused.

100

Section 23 Internal data formats

23.1.4 Sets

An element in a set occupies one bit, and since the maximum
number of elements in a set is 256, a set variable will never
occupy more than 32 (256/8) bytes.

If a set contains less than 256 elements, some of the bits are
bound to be zero at all times and need therefore not be stored.
In terms of memory efficience, the best way to store a set vari-
able of a given type would then be to "cut off" all insignificant
bits, and rotate the remaining bits so that the first elemenc of
the set would occupy the first bit of the first byte. Such rotate
operations are however quite slow, and COMPAS therefore employs a
compromise: Only bytes which are statically zero (i.e. bytes of
which no bits are used) are not stored. This method of compres-
sion is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated from
(max DIV 8)-(min DIV 8)+1, where min and max are the lower and
upper bounds of the base type that set. The memory address of a
specific element given by:

memaddr = addr+ (e DIV 8)-(min DIV 8)
and the bit address, within the byte at memaddr, is given by:
bitaddr = e MOD 8

where e denotes the ordinal value of the element.

23.1.5 File interface blocks

Each file variable in a program has an associated file interface
block (FIB). A FIB occupies 176 bytes of memory and is divided
into two sections: The control section (first 48 bytes), and the
sector buffer (lasc 128 bytes). The control section contains
various informations on the disk file or device currently assig-
ned to the file. The sector buffer is used to buffer input and
output from and to the disk file.

The table shown below defines the format of a FIB for the CP/M
versions of COMPAS:

addr+0 Flags byte.

acdr+l File type.

addr+2 Character buffer.

addr+3 Sector buffer pointer.

addr+4 Number of records (LSB).
aadr+5 Number of records (MSB).
addr+6 Record length in bytes (LSB).
addr+7 Record length in bytes (MSB).
addr+8 Current record number (LSB).
addr+9 Current record number (MSB).
addr+10 Unused (reserved).

addr+11 Unused (reserved).

addr+12 First byte of CP/M FCB.

addr+47 Last byte of CP/M FCB.

101

Soction 22

addr+48

addri. 75

First .1

Unider CP/M the Fiz .
data is transferred i1z

file. Thus,
bycts.

the leni. W

The table shuwn below cey
Jsersion of COMPAS:

addr+0
addr+1
aadr+2
aadr+3
addr+4

addr+7
aad.+8

addr+10
aadr+1l

Unde. nos
Lyp2

variables oce

Flags byti:
File . yp=
Characrcer
Secior b
Huwr of
N L Qf
Ur..sed {re:

Unused (re. .:

First by:e

.ast byee
Fiusc bDyte

Last byte
=t Sectu:

y. Ra " >m
48

i.rectiy througi .o om

aviig a’l

The Te by f121d specii .
el s cap.entiy assign
Eliteis Tah OCCHUL

RIS B

blccking and

sontains

sutput 1isg

L a2 used to
IR bueen writien
'F ot he secti:

Th: cor<sle devi
= tec¢. .nal dewv:
» keyooard devio, o i

-
TN

e

ey
. LSE;

(M5B,

R ana
,&bl@

i o 1ag Of o

w.. . of
Lo g”olt 0
: the
t1. Lecte
i, ., are

LI l,thel

‘j [{e f.\}’

. list device {iviy

4 Tre aaxiliary Jev
1ser device (o

i LN

Th: secto &
T zachor %
. - .)
. & v C N » N

pointea
. Wh=aa
nlEe QYU

S orrnal data formats

nuf’er, since
wo/frem the disk
ST file e only AR

"TB “oi the MS-DCS

)

£ile variables oFf
5 and untyped @1ile
.lways transf.rred
;2 or writteir chus
up 6 MS-DO.o

wh:oh eflect
t . oallcowed.
iong of COMPAS

t

¢, 3ir 2 is 0w

4 bit is ser if

device or a -
le. The follo

“he first ty<: o
2 logical de&+v <e,

~.gnificance.

Sectiou 23"7*‘ o Internalaﬁatauformats

"\)Y

In COMPAS-80 a poxnter consistd of two bytes giving a l16-bit
memory -address, and it is stored in memory using byte reversed
format, i.e«r-the least significant byte Ls stored first. The
value NIL corresponds to a zero word. '

23.1.6 Pointers'

In COMPAS-86 pointers occupy two words (four bytes). The word at
the lowest address contains the offset and the word at the high-
est address contains the segment base. NIL corgssponds ‘to two
words of zeros.

23.2 Data structures :
Data structures are built from the basic data types using various’
structuring methods. Three different structuring methods -exist:
Arrays, records, and disk files. The structuring of data does not
in any way affect the internal formats of the basrc data types.

23.2.1 Arrays

The components with the lowest index values are stored at the
lowest memory addresses. A multidimensional array is stored with
the rightmost dimension increasing first.

23 2.2 Records

The flrst field of a record is stored at the lowest memory ad-
dress. If the record containg no variant parts,: the length is
given by .the sum of the lengths of each field. If-a record
contains a variant, the total number of bytes occupied by the
record is given by the length of .the fixed part plus the length
of .largest of its variant parts. Each variant starts at the same
memory address.n : ;

K
* "

23.2.3 Disk files . = - L : Lo,
Disk files differ from other structures in that data is not
stored in memory but instead 'in a disk file. 'A-disk file is
controlled through a file interface block (FIB) as destribed in
section 23.1.5. In general there are two different types of disk
files: Textfiles and random access files.

23.2.3.1 Textfiles

A textfile is subdivided into lines. Each line consists of an
arbitrary number of characters ended by a CR/LF -sequence. CR
(carriage return) has the ASCII value 13, and LF (line feed) has
the ASCII “value 10. The file is ended by a SUB character
(CTRL/Z). SUB has the ASCII value 26.

N

103

\

J

Section 23 ‘ Internal data formats

23.2.3.2 Random access files

A random access file consists of a sequence of records, all of
the same length and internal format. To optimize file storage
capacity, the records of a file are totally contiguous, and not
dependant on sector boundaries.

In the CP/M versions of COMPAS the first four bytes of the first
sector of the file contains two values giving the number of
records in the file and the length of each record (in bytes):

Number of records (LSB).
Number of records (MSB).
Record length (LSB).
Record length (MSB).

sector 0, byte
sector 0, byte
sector 0, byrte
sector 0, byte

« se e

WO

The data of the first record in the file immediately follows
these control bytes.

In the MS-DOS version of COMPAS the number of records is calcu-
lated from the file length recorded in the directory. If the last
record is not filled entirely, it is padded with zeros when it is
read. Since the record length is neither recorded in the disk
file nor in the directory entry, it is up to the programmer to
insure that a file is accessed using the sam2 record length
always.

23.3 COMPAS-80 parameter transfers

This section describes the methods and formats used to transfer
parameters to and from procedures and functions in COMPAS-80,

Parameters are transferred to procedures and functions using the
7-80 stack. Normally, this is of no interest to the programmer,
as the machine code generated by COMPAS Pascal will automatically
PUSH parameters onto the stack before a call, and POP them at the
beginning of the subprogram. If the programmer however wishes to
use EXTERNAL subroutines, then such subroutines must themselves
POP the parameters from the stack.

On entry to an EXTERNAL subroutine, the top of the stack always
contains the return address (a word). The parameters, if any, are
located below the return address (that is, at higher addresses on
the stack). Therefore, to access the parameters, the subroutine
must first POP off the returns address, then all the parameters,
and finally it must restore the return address by PUSHing it back
onto the stack.

23.3.1 Variable parameters
If a parameter is a variable (VAR) parameter, one word is trans-

ferred on the stack giving the absolute memory address of the
first byte occupied by the actual parameter.

104

Section 23 Internal data formats

23.3.2 Value parameters

In the case of a value parameter, the data transferred on the
stack depends upon the type of the parameter.

23.3.2.1 Scalars

All scalars except reals, i.e. integers, booleans, characters,
and declared scalars, are transferred on the stack as a word. If
the- variable occupies only one byte when it is stored, i.e. if it
is an integer subrange with both bounds in range 0..255, a boo-
lean, a character, or a declared scalar with less than 256 ele-
ments, the most significant byte of the parameter word is zero.
Normally, a word is POPped off the stack using an instruction
like POP HL.

23.3.2.2 Reals

A real is transferred on the stack using three words. If these
words are POPped using the instruction sequence:

POP HL
POP DE
POP BC

then L will contain the exponent, H the fifth byte of the mantis-
sa (least significant), E the fourth byte, D the third byte, C
the second byte, and B the first byte (most sigriificant).

23.3.2.3 Strings

When a string is at the top of the stack, the byte pointed to by
SP contains the length of the string. The bytes at memory addres-
ses SP+1 through SP+n (where n is the length of the string)
contain the characters of the string. The following machine code
instructions may be used to POP the string at the top of the
stack and store it in STRBUF.

LD DE, STRBUF
LD HL,O

LD B,H

ADD HL,SP

LD C, (HL)
INC BC

LDIR

LD SP,HL

23.3.2.4 Sets

A set always occupies 32 bytes on the stack (set compression only
applies to the loading and storing of sets). The following mac-
hine code instructions may be used to POP the set at the top of
the stack and store it in SETBUF.

105

Section 22

LD) l:: R
LD BL.,C

ADD HL,
LD C, 3
LDIR

LD SP,E

-+

This will store the le: . cFa
lowest address in SETBUC

23.3.2.5 Pointers

A poincver value is trarn<:.. 1ot
memory address cf a dynr: A SN
to zero.

23.3.2.6 Arrays ang recc

Arrays and records are 11y
though they are used &= ,-are
transferred giving the .. Totr
valie parameter. It is t:. 28]
v~ POP this word, era . .y
sy operation.
Y ¥unction resclis
User written EXTERMAL - . ML
outlined below for retusr. . ., T o
28 of s3calar types i @0
ster pair. If the ., . NI ¢
only, then L shovld cochin
i are returned using _ 3.
-+, and H should conte .. .- St
B, - and L should conteair S mi
Striagys are returned c. ~ L
desc: pbed in section 2.
Pointer values aie tehbu.: Lo

22,4 COMP2S5-86 paranete: L

This sect or Jdesnyribes I
param:ler: :0 and frum . o an.

23.4.1 Poremeters

COMPAS~8B% trzicfere pzi

(adressG throwugh S¢:8U S
the s~ack alweéys hoids PR
ment). The pavamerers. ; ir
address f(that ‘s, - ‘. I

.2.nal data form4tg

~f ti:e set at the

: & word giving the
ue NIL correspords

i
e
s

whe stack. even

ngtead, 4 word i
2

aoccupied by the
£ the subroutine
dcress in & block

soiiow the nles

ro=2d us.ng the HL
pressed usineg one
A should by zer,

(s 3, C,

ra.
b in

115 i
L whnye

\ue

e o e ser
v COMPRE-3u.

1

T oLainge thie =Eoach

“P+ top word un
~“tir the «<ode seg-
notoaw the cethurn
tecow), ard 1ic the

: T s o 14 e g o A R LR %“%ﬁﬁﬁi
Section:23«i:& sz i Internal data formats

subprogram is a function, space is reserved for the: function
. result variable below the parameters (i.e. at a higher address)

The first 1nstruct1on§,executed’by,An EXTERNAL subprogram will

normally be: 4 !."I:’ ., 0] 4y
PUSH BP ;Save base page register
-~MOV = - -BP;SP - _;Form pointer to stack frame
SUB SP,varsize ;Reserve local workspace x

where 'varsize' is the size of the local workspace requ1red by

the subprogram. To exit, the subprogram should execute:- 2
< 'MOV: . ' :SP,BP ;Reset stack pointer = - ¢
" POP * - “BP:: ;Reset base page register
RET parsize ;Return and adjust stack

where ‘'parsize' is the number of bytes occupied by the parame- .
ters. ' - ‘ o P o

.' Assume <that ‘an EXTERNAL function: has the: followmg subprogram
header (strlG 1s assumed to be. strlng[lG]) L '

-~*FQNCTION stack(VAR is 1ntegerg—r: real; s: str16)~ integer;-
Furthermore assume that the above entry 1nstruct10ns have been

executed, with 50 subtracted from the stack pointer to reserve 50

bytes of local workspace. The stack will then conform to the

following map (the map extends from high memory to low memory):

-001F - 0020 Funtion result variable (1l word).: - :
001D - 0O01lE Segment base address of-i (1 word). ..@ :.. ..
.001B - 001C Offset address of i (1 word)
0016 -:Q0l1A - Mantissa of r (5 bytes) TR I S SR S
- 70015/ 0Qk5: = ‘Exponent of r (1 byte). fv I
<0005 -~ 0014 Characters of s (16 bytes).”“ L A
- 0004 - 0004 .Length of s (1 byte). _
.7 0002-+ 0003 Return address (1 word). SR
\ i 0000 - 0001 Saved base page register (l word)yiv - e
." FFCE - FFFF Local workspace (50 bytes). . S

The hex values are offsets from'the base page -register (BP).. Note
that function result variable is located above: the- parameters,,
and that the parameters are stored in reversed order.

Function result variables in COMPAS-86 use the same format as
ordinary variables. So do value parameters, except that integers,
booleans, characters, and declared scalars -transferred as value®
parameters always occupy one word, even though their range might
have been represented using a single byte. .Variable parameters
are transferred as a pointer (two words), which points to the.
first byte occupied by the variable. The formats descrlbed in
section 23.3‘do not apply to COMPAS-86 parameters.
o L o
Below is shown an example of an EXTERNAL subroutlne (a functlon)
which will fonvert its character argument to-upper: case.'The'“
functlon 1s£aec1ared in the Pascal program as: follows';,é ‘|
‘) ' ""FUNCTION‘ uPcase(ch char) char, EXTERNAL > eUPCASB‘

oty ‘.;‘g : « REREC SR S
p B

107

The function is writven ., | .. ,ssen
1sing the COMPAS editor;

Its source code is snhown i .

UPCASE: PUSH sP FY
MOV BP.SP %
MOV £L, (B, HARy
CMP AL,'a’ s Lt
JB UPCl iYe..
CMP M, e HE
JA UPCi Ve,
SUB BAL,20. ;e
UPCl: POP BP :Re.
RET z HYs
Wote that three bytes aie . Lf i
occupied by the ch parame: S
sesult variable (which is . o Laed iy
23.4.2 Function results
COMPAS-86 values of s. . 28
g the AX register. AR ... | pe S¢,
-equired for the resu; i . that |
¢ iiloun execuile an OR AX; ucti.
ding to the value returnesy .. Juncti,
ters and Lhe function zes... . [-ble
ning.
k~als are returned on the .. ., .:th
aadress. To acecomplish §. .. nply

: . Pies
able remain on the stu. i . cgtura, .

~ters,

5 are more complica:. . ; ., ,.€ iy

¢ all parameters and, 14€ the
tvw-7ds high memory so th.:, .. .;.,upie

ponding to its dynamic lejg:iv . a2 ONC

ter should point at the b,i. . . .onv..

Pointer values are ieturrn.:AX

AX). The function must r+:... « .il pa
result variable from the «:iu.b wy.n req .

. k“yuertx;;f;
using the assembler/linke; Lapplied

<12t data formatws

23172 {for instance

& m~chine code file

B

¢ .rivting system.

ngeT case

and return

n return - 1 wora
.3 py the functior
:‘5(?‘)

.

:. 5 are returned
ir only one byte
‘upetions must in
~he 2 flag accor-
. 'nove all parame-
“tack when retur-

:2nt av the lowest
7unction result
irmoving only the

che funcition must
.. iLhat 1s move it
.r of bytes corres-
., the stack poin-

itiing length.

in X, offsct in
#nd the function

Section'24 ;'i*? Memory'nAnagement

) LR
. . ﬂ!,ﬁvm; B o ot e
' SRR b1y A 5
Gy e ”"SFPPX”MO " ,@

]

24.1 COMPAS-80 memory management

During compilation of a program, ' the memory lajbut is‘éiven by
the table below: v

. 0000 - OOFF CP/M and run time package workspace *

0100 - EOFR ‘Run time package

EOFR - EOFC COMPAS monitor, editor, and compller

EOFC - EOFW COMPAS compiler workspace

EOFW - -EOFM "Error messages (if loaded)

‘EOFM - EQFT _ Source text - - :

EOFT - >>>> . Object code o : o

<<<< - MTOP Symbol table (built by compller)

<<<< - LTOP CPU stack

LTOP - FFFF CP/M operating system
If the error message file (COMPAS.ERM) was not loaded on running
COMPAS,qthegsource text starts at EOFW. When the:compiler 'is
invoked from®a COMPILE or a RUN rommand, it generates object code
worklng upwafds from the end of the source ‘text. The CPU stack
workswdownwamds from the loglcal top of memory, and the symbol
table’ "works-downwards from MTOP. LTOP is ‘the logical ‘top of
memory, and~M@OP is set to LTOP. less 1K bytes (LTOP-$400).

During the executlon of a program,. compiled using COMPILE or’ RUN,
the memory l@yout is given by the table shown - below-n:, :

. 0000 ~ Ob? CP/M and run t1me package workspace
0100 '~ EOBR‘ Run time package .
" EOFR - EOFC COMPAS monitor, editor, and compller
EOFC - 'EOFW. COMPAS compiler workspace
EOFW: -+ EOFM>* Error messages: {if . loaded) a fgete
" EOFM - EOPT" Source text i 7. B o
.EOFT*- EOFP ‘Object code gl
EOPP - BOEH~ Unused ‘
BOFH = >3»> + Heap (maintained through hptr)
<LK, v»BOFR ~ Recursion stack (maintained through rptr)
<K LéBOFS CPU stack (malntalned through sptr) L
BOFS - -PTOP" Unused i
FTOP - LTOP Program varlables
LTOP - FFFF CP/M operating system

EOFP ‘'is the end address of the object code, and hptr (the heap
pointer) is set to this address at the beglnnlng of the program
(BOFH=EOFP). The area between FTOP and LTOP is used for program
variables. FTOP is the top of free memory, and sptr (the CPU
stack pointer) is set to this address at the beginning of the
program (BOFS=FTOP). The recursion stack is used only by recur-
sive procedures and functions to save copies of their entire
workspaces. rptr (the recursion stack pointer) is set to the
address contained in the stack pointer less 1K bytes at the
beginning of the program (BOFR=BOFS-$400).

109

Section 24 Memory management

During the execution of a program file, the memory layout is

given by the table shown below: - @
0000 - OOFF CP/M and run time package workspace §
0100 - EOFR Run time package 1
EOFR -~ SOFP Unused (user written machine code routines)
SOFP - EOFP Object code
EOFP -~ BOFH Unused
BOFH = >>>> Heap (maintained through hptr)
<<<< - BOFR Recursion stack (maintained through rptr)
* K<< - BOFS CPU stack (maintained through sptr)
BOFS - FTOP Unused
FTOP - PTOP Program variables
PTOP - LTOP Unused
LTOP - FFFF CP/M operating system

SOFP is the start address of the object code, corresponding to
the <origin> parameter in the PROGRAM and OBJECT commands. PTOP
is the address of top of memory for the program, corresponding to
the <top> parameter in the PROGRAM and OBJECT commands.

As can be seen from the above memory maps, three stack-like
structures exist during the execution of a program: The heap, the
CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled
through the new, mark, and release standard procedures. At the
beginning of a program, the heap pointer (hptr) 1is set to the
address of the bottom of free memory.

The CPU stack is used to store intermediate results during the
evaluation of expressions, and to transfer parameters to proce-
dures and functions. Furthermore, an active FOR statement will
occupy one word on the CPU stack. At the beginning of a program,
the CPU stack pointer (sptr) is set to the address of the top of
free memory.

The recursion stack is used only by recursive procedures and
y functions (i.e. procedures and functions compiled in the {S$A-}
mode). On entry to a recursive procedure or function, the sub- .
program copies its workspace onto the recursion stack, and on
exit the entire workspace is restored to its original state. At
the beginning of a program, the recursion stack pointer (rptr) is
set to point 1K bytes ($400 bytes) below the CPU stack pointer.

To allow the programmer to control the positioning of the heap
and the stacks within memory, three predefined variables are

introduced:
hptr The heap pointer.
rptr The recursion stack pointer.
sptr The CPU stack pointer.

The type of these variables is integer (note that hptr and rptr
may be used in the same context as any other integer variable,
whereas sptr may only be used in assignments and expressions).

110

‘.ﬂ

Section 24 - Memory management

When assignments are made to these variables, always make sure
that they point to addresses within free memory, and that:

-
- hadl IV P

hptr < rptr < sptr

Failing to do so may cause unpredictable (and at in some instan-
ces rather catastrophic) results. Needless to say, assignments to
the heap and stack pointers may never occur once the stacks or
the heap are already in use (therefore, always move such assign-
ments to the very beginning of the main program).

On each call to the new procedure and on entering a recursive
procedure or function, the system checks that the heap and the
recursion stack has not collided, i.e. that hptr is less than
rptr. If this is not the case, an execution error occurs.

Note that no checks are made at any time to insure that the CPU
stack does not overflow into the bottom of the recursion stack.
For this to happen, a recursive subroutine must call itself some
300-400 times, and that is a rather seldom situation. Should a
program however require this sort of nesting, simply execute the
following assignment at the beginning of the program block:

rptr:=sptr-2*maxdepth-512;

where maxdepth is the maximum depth of calls to the recursive
subprogram(s). An extra 512 bytes (or in that region) are needed
as a margin to make room for parameter transfers and intermediate
results during the evaluation of expressions.

24.2 COMPAS-86 memory management
Wwhen a program created by COMPAS-86 is executed (either as a CMD
file from CP/M-86 or a as COM file from MS-DOS or through a RUN
command), three segments are allocated for the program: A code
segment, a data segment, and a stack segment.
CP/M-86 code sagment (CS is the code segment register):

CS:0000 - CS:EOFR Run-time package code.

CS:EQOFR - CS:EOFP Program code.

CS:EOFP - CS:EOFC Unused.

CP/M-86 data segment (DS is the data segment register):

DS:0000 - DS:00FF CP/M-86 base page.

DS:0100 - DS:EOFW Run-time package workspace.
DS:EOFW - DS:EOFM Main program block variables.
DS:EOFM -~ DS:EOFD Unused.

MS-DOS code segment (CS is the code segment register):

CS:0000 - CS:00FF MS-DOS base page.
CS:0100 - CS:EOFR Run-time package code.
CS:EOFR - CS:EOFP Program code.

CS:EOFP - CS:EOFC Unused.

111

g ;*.:'.:‘Qgg:

Section 24 - Memory management

MS-DOS data segment (DS is the data segment register):

DS:0000 - DS:EOFW Run-time package workspace.
DS:EOFW - DS:EOFM Main program block variables.
DS:EOFM - DS:EOFD Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-DS:EOFD)
are allocated only if a minimum size larger than the required
size is specified in the PROGRAM command line used to compile the
program. The sizes of the code and data segments never exceed 64K
bytes each.

The stack segment is slightly more complicated, as it may be
larger than 64K bytes. On entry to the program the stack segment
register (SS) and the stack pointer (SP) is loaded so that SS:SP
points at the very last byte available in the entire segment.
During execution of the program SS is never changed but SP may
move downwards until it reaches the bottom of the segment, or 0
(corresponding to 64K bytes of stack) if the stack segment is
larger than 64K bytes.

The heap grows from low memory in the stack segment towards the
actual stack residing in high memory. Each time a variable is
allocated on the heap, the heap pointer (which is a double word
variable maintained by the COMPAS-86 run-time system) is moved
upwards, and then normalized, so that the offset address 1is
always between $0000 and $000F. Therefore, the maximum size of a
single variable that can be allocated on the heap is 65521 bytes
(corresponding to $10000 less $00JF). The total size of all
variables allocated on the heap is however only limited by the
amount of memory available.

The heap pointer is available to the programmer through the hptr
standard identifier. hptr is a typeless pointer, which is compa-
tible with all pointer types (in the same way as NIL is). Assign-
ments to hptr should be excercised only with great care.

112

SRR o EVTRE

Section 25 Interrupt handling

Section 25

Interrupt handling

The COMPAS Pascal run-time package and the code generated by the
compiler are fully interruptable. If required, interrupt service
routines may be written in COMPAS Pascal.

25.1 COMPAS-~-80 interrupt handling

Interrupt procedures should always be compiled in the {$A+} mode,
they should never have parameters, and they must themselves
insure that all registers used are preserved. The latter is done
by placing a CODE statement, containing the necessary PUSH in-
structions, at the very beginning of the procedure, and another
CODE statement, containing the corresponding POP instructions, at
the very end of the procedure. Furthermore, the last instruction
of the ending CODE statement should be an EI instruction ($FB),
to enable further interrupts. If daisy chained interrupts are
used, the CODE statement may also specify a RETI instruction
(SED, $4D), which will then override the RET instruction generated
by the compiler.

The general rules for register usage are, that integer operations
use only the AF, BC, DE, and HL registers, other operations may
use IX and 1Y, and real operations use the alternate registers.

An interrupt service procedure should not employ any I/O opera-
tions using the standard procedures and functions of COMPAS
Pascal, since these routines are not re-entrant. Also note that
BDOS calls (and in some instances BIOS calls, depending on the
specific CP/M implementation) should not be performed from inter-
rupt handlers, as these routines are not re-entrant.

The programmer may disable and enable interrupts throughout a
program using DI and EI instructions generated by CODE state-
ments.

If mode 0 (IM 0) or mode 1 (IM 1) interrupts are employed, it is
the responsibilty of the programmer to initialize the restart
locations in the base page (note that RST 0 cannot be used, since
CP/M uses locations 0 through 7). If mode 2 (IM 2) interrupts are
employed, the programmer should generate an initialized jump
table (an array of integers) at an absolute address, and initia-
lize the I register through a code statement at the beginning of
the program.

The program shown below employs an interrupt service routine. It

assumes that a mode 1 interrupt (call to 38H on interrupt) occurs
every second. The program applies to COMPAS-80 only.

113

secrtion 2%

PROGRAM interrupt: {$:. .

TYPE ‘
timestr = STRINGI[B] .

VAR
r3tjump: byte AT S$3s
rstaddr: integer AT - ;.
seconds,minutes,hov, . .. jer:

PROCEDURE inctime:
- BEGIN

CODE S$FS5, $ES, SDS, SC.

seconds:=8UCC (S2COn .

IF seconds=60 THEN

BEGIN
seconds:=0; minut. SMmiri
IF minutes=60 Tuf.
BEGIN

minutes:=0; houv. . . {hou;
IF hours=24 THE, g
END;

END;
CODE = ',S8Dl,$E},S$E
END;

FUNCTION time: timest
UAR
! cimestr;
N
*l:=chr(8);
i :=chy (hour DIV
"~ ({hour MOD ;. ..

vi4. =.hr{(minutes i, T
(8 .=chr(minutes M. o ..
1] R :

hWr {seconds L.

’ ;'t,’f;
.-: <hr(seconds M . ;. it
time - Z; '
“ND.
- N
stijump:=9$C3;: rsted .inct
rite{‘enter hotis, .; . . an.
r=adln’hours,minute. . AP
CODE SED.$56,SFB;
vriteln('The time 3
CLie SF3;
ENi:,
Since ith: :crupt ser e
operaticns, .t need orliy .. . AP
The CCOLE statement at the .0 " e o
P.Ps required and anm EI 1y, T S
%¢ the Foginning of the ., &

o

2wy, .ak time is ther i+, . «H

¢ - ion: $38, which jumpz . 1 te:

intetrupt bhandlirig

aNiy Ye . integer
¢nad HL -egisters.
~pecifies both the
‘uruaer int v ohs,

rOAS BTy - at
Jhes nroc ot The
‘tion C$EL 3

Section 25 Intertupt handling

executed to select interrupt mode 1, and interrupts are enabled
using the EI insctruction (SFB). At the end of the program, fur-
ther interrupts are disabled.ysing the DI.instruction (S$F3).

25.2 COMPAS-86 interrupt handling

COMPAS-86 interrupt routines must manually preserve registers AX,
BX, CX, DX, SI, DI, ES and FLAGS. This is done by placing the
following CODE statement as the first statement of the procedure:

CODE $50,$53,$51,$52,$56,$57,506,$9C, SFB;

The last byte ($FB) is an STI instruction which enables further
interrupts - it may or may not be required. The following CODE
statement must be the last statement in the procedure:

CODE $9D, $07, $5F, $5E, $5A,$59, $5B, $58, $SCF;

The last byte ($SCF) is an IRET instruction which overrides the
RET instruction generated by the compiler.

An interrupt service procedure should not employ any I/0 opera-
tions using the standard procedures and functions of COMPAS-86,
or any operations on real variables, since these sections of the
COMPAS-86 run-time package are not re-entrant. CP/M-86 users
should also note that no BDOS calls may be performed, since the
BDOS is not re-entrant.

It is up to the programmer to initialize the interrupt vector
. used to invoke the interrupt service procedure. Assuming the
declaration:

VAR
int_10_vec: “integer AT $0000:$0040;

then the statement:
int_10_vec:=ptr(cseg,ofs(int_10_handler));

initializes the INT 10H vector to point at a procedure called
'int_10_handler'.

-

Section 26 Differences bewteen COMPAS and Standard Pascal

Sectiqn 26

Differences bééween' 'LOMPAS and Standard Pascal

The COMPAS Pascal language adheres closely to the Jensen & Wirth
definition of Standard Pascal as contained in the "User Manual
and Report". Some minor differences do however exist, and these
are described below. Note that this section does not describe the
extensions offered by COMPAS Pascal.

Dynamic variables

Dynamic variebles and pointers are implemented using the new,
mark and release procedures rather than the new and dispose
procedures suggested by Standard Pascal. This was done partly to
maintain compatibility with other compilers (e.g. UCSD Pascal),
and partly because it is far more efficient in terms of execution
speed and support code needed. Furthermore, the new procedure
will not accept record variant specifications (the allocate stan-
dard procedure is easily used to circumvent this restriction).

Get and put I/0

The standard procedures get and put are not implemented. Instead,
the read and write procedures have been extended to handle all
I/0 needs. There are three reasons for this: Firstly the read and
write procedures are far more versatile and easier understood
that get and put, secondly read and write allow for faster execu-
tion of I/0 operations, and thirdly variable space overhead is
reduced, since file buffer variables are not required.

GOTO statements

A GOTO statement may not leave the current block, since this is
generally bad programming practice.

Page procedure

The page procedure is not implemented, since the CP/M and MS-DOS
operating systems do not define a form-feed character.

Procedural parameters

Procedures and functions may not be used as parameters. This
feature was omitted for two reasons: Firstly the standard defini-
tion of procedural parameters is quite weak and almost impossible
to implement (to our knowledge, no existing implementation of
Pascal on a microcomputer follows the standard in this aspect),
and secondly procedural parameters are rarely ever used.

Packed variables
The reserved word PACKED has no specific meaning in COMPAS Pascal
(although it is allowed). Instead, packing occurs automatically

whenever possible. Furthermore, the pack and unpack procedures
are not implemented, since they are not needed.

116

Appendix A Summary of standard procedures and functions

Appendix A

Summary of standard procedures and functions

This appendix lists all standard procedures and functions avail-
able in COMPAS Pascal. The following symbols are used:

<type> . Denotes any type.
‘<string> Denotes any string type.
<file> Denotes any file type.
<{scalar> Denotes any scalar type.
{pointer> Denotes any pointer type.

Note that some procedures and functions will accept variable
parameters of any type. In these cases, no type is specified for
that parameter. The following abbreviations may be shown in the
right margin:

80 Indicates COMPAS-80 only.
86 Indicates COMPAS-86 only.
MS Indicates MS-DOS version of COMPAS-86 only.

Input/Output routines

The procedures described below use a non-standard syntax for
their parameter lists.

PROC read (VAR f: FILE OF <type>; VAR v: <type>);
read (VAR f: text; VAR i: integer);
read (VAR f: text; VAR r: real);
read (VAR f: text; VAR c: char);
read (VAR f: text; VAR s: <string>);
PROC readln (VAR f: text):
PROC write (VAR f: FILE OF <type>; VAR v: <type>);
write (VAR f: text; i: integer);
write (VAR f: text; r: real);
write (VAR f: text; b: boolean);
write (VAR f: text; c: char);
write (VAR f: text; s: <string>);
PROC writeln (VAR f: text);

File handling routines

PROC assign (VAR f: <file>; name: <string>);
PROC blockread (VAR f: FILE; VAR dest; numrec: integer);
PROC blockwrite (VAR f: FILE; VAR dest; numrec: integer);-
PROC chain (VAR f: <file>);
PROC close (VAR f: <file>);
FUNC eof (VAR f: <filed>): boolean;
FUNC eoln (VAR f: text): boolean;
PROC erase (VAR f: <file>);
PROC execute (VAR f: <file>);
PROC flush (VAR f: FILE OF <type)>; pos: integer);
‘ FUNC length (VAR f: FILE OF <type>): integer;
length (VAR f: FILE): integer;

117

/

Appendix A
FUNC longlen
longlen
FUNC longpos
longpos
PROC longseek
longseek
FUNC position
position
PROC rename
PROC reset
: reset
PROC rewrite
rewrite
PROC seek
seek

Summary of standard procedures and functions

(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR

<file>;
<file>);

M Fh Fh Fh FhFEh P

: <filed>);

FILE OF <type>): real;
FILE): real;

FILE OF <type>): real;
FILE): real;

FILE OF <type>; pos: real);
FILE; pos: real):

FILE OF <type>): integer;
FILE) : integer;

name: <string>);

FILE; reclen: integer);

(VAR f: FILE; reclen: integer);

(VAR f: FILE OF <type>; pos:

(VAR f: FILE; pos: integer);

Arithmetic routines

FUNC

FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

FUNC

abs
abs
arctan
cos
exp
frac
int
1n
sin
sqr
sqgr
sqrt

Scalar routines

FUNC
FUNC
FUNC

odd
pred
succ

(i: integer): integer;

(r: real): real;
(r: real): real;
real): real;
(r: real): real;
(r: real): real;
(r: real): real;
(r: real): real;
(r: real): real;

—~
~
.

(i: integer): integer;

(r: real): real;
(r: real): real;

(i: integer): boolean;
{x: <scalar>): <scalar>;
(x: <scalar>): <scalar>;

Transfer routines

FUNC
FUNC
FUNC
FUNC

chr
ord
round
trunc

String routines

(i: integer): char;
{x: <scalar>): integer;
(r: real): integer;
(r: real): integer;

integer);

Note that the str procedure uses a non-standard syntax for
numeric parameter.

FUNC
FUNC
PROC
PROC
FUNC
FUNC

concat
copy
delete
insert
len
pos

(sl,s2,...,sn: <string>): <string>;
(s: <string>; pos,len: integer): <string>;
(VAR s: <string>; pos,len: integer);
(s: <string>; VAR d: <string>; pos:
(s: <string>): integer;

(pattern,source:

<string>): integer;

118

integer);

MS
MS
MS
MS
MS
MS

MS

MS

its

Appendix A Summary of standard procedures and functions
PROC str (i: integer; VAR s: <string>);

str (r: real; VAR s: <string>);
PROC val (s: <string>; VAR i,p: integer);

val (s: <string>; VAR r: real; VAR p: integer);

Pointer related routines

FUNC addr (VAR variable): <pointer>; 86
PROC allocate (VAR p: <pointer>; size: integer);
PROC mark (VAR p: <pointer>);
FUNC memavail : integer;
PROC new (VAR p: <pointer>);
FUNC ord (p: <pointer>): integer;
FUNC ptr (i: integer): <pointer>; 80
ptr (seg,ofs: integer): <pointer>; 86
PROC release (VAR p: <pointer>);
Miscellaneous routines
FUNC addr (VAR variable): integer; 80
addr (<procedure identifier>): integer; 80
addr (<function identifier>): integer; 80
PROC bdos (func,param: integer); 80
PROC bios (func,param: integer); 80
FUNC bdos (func,param: integer): integer; 80
FUNC bios (func,param: integer): integer; 80
FUNC bdosb (func,param: integer): byte; 80
FUNC biosb (func,param: integer): byte; 80
FUNC cseg integer; 86
FUNC dseg integer; ' 86
PROC fill (VAR dest; length: integer; data: byte);
fill (VAR dest; length: integer; data: char);
PROC gotoxy (x,y: integer);
FUNC hi (i: integer): integer;
FUNC iores : boolean;
FUNC keypress boolean;
FUNC lo (i: integer): integer;
PROC move (VAR source,dest; length: integer);
FUNC ofs (VAR variable): integer; 86
ofs (<procedure identifier>): integer; 86
ofs (<function identifier>): integer; 86
FUNC pwrten (exp: integer): real;
FUNC random (range: integer): integer;
random real;
PROC randomize ;
FUNC seg (VAR variable): integer; 86
FUNC size (VAR variable): integer;
size (<type identifier>): integer;
FUNC sseg integer; 86
FUNC swap (i: integer): integer;
PROC swint (<constant byte>; VAR regpack); 86

119

Appendix B Summary of operators

Appendix B

Summary of operators

The table shown below gives a summay of all operators available
in COMPAS Pascal. The operators are grouped according to their
precedences, and the operators of the highest precedence are
listed first.

Operator Operation Type of operand(s) Type of result

+ unary sign identity integer, real as operand

- unary sign inversion integer, real as operand

NOT negation integer, boolean as operand

* multiplication integer, real integer, real
set intersection any set type as operand

/ division integer, real real

DIV integer division integer integer

MOD modulus integer integer

AND logical AND integer, boolean as operand

SHL shift left integer integer

SHR shift right integer integer

+ addition integer, real integer, real
concatenation string string
set union any set type as operand

- subtraction integer, real integer, real
set difference any set type as operand

OR logical OR integer, boolean as operand

EXOR logical EXOR integer, boolean as operand

= equality any scalar type boolean
equality string boolean
equality any set type boolean
equality any pointer type boolean

<> inequality any scalar type boolean
inequality string boolean
inequality any set type boolean
inequality any pointer type boolean

>= greater or equal any scalar type boolean
greater or equal string boolean
set inclusion any set type boolean

<= less or equal any scalar type boolean
less or equal string boolean
set inclusion any set type boolean

> greater than any scalar type boolean
greater than string boolean

< less than any scalar type boolean
less than string boolean

IN set membership see below boolean

The first operand of the IN operator may be of any scalar

and the second operand must be a set of that type.

120

type,

Appendix C Summary of compiler directives

Appendix C

Summary of compiler directives

Compiler directives are written as comments and may occur when-
ever ordinary comments are allowed. A compiler directive list is
introduced by a $ character immediately following the opening
comment bracket. The generalized format of a comment containing a
compiler directive list is:

{$<directive list> <any comment>}
or:
(*S<directive list> <any comment>*)

The directive list is a sequence of instructions separated by
commas. Each instruction begins with a letter designating the
directive. If the letter refers to a compiler option, it must be
followed by a plus (+) if the option is to be activated or a
minus (-) if the option is to be passivated. If the letter refers
to a compiler register, it must be followed by a digit (see W
below), and if the letter refers to a special facility of the
compiler, it must be followed by a string of characters depending
on that facility (see I below). Some examples of compiler direc-
tives:

{$R-} {$S+,1+,A-} (*SW6,B-*) {$I B:MAX.LIB}
The following directives are available:

A COMPAS-80 only. When activated, this compiler option in-
structs the compiler to generate absolute code for proce-
dures and functions, i.e. code that does not allow for
recursive calls, but executes faster and takes up less
memory than its recursive equivalent. For further details,
please refer to section 15.6.

Default setting is off (A-).

B When this compiler option is active at the beginning of
the program block, the CON: device will be used as the
default 1/0 device, i.e. the device assigned to the stan-
dard files input and output. Otherwise the TRM: device is
used. For further details, please refer to sections 13.3.3
and 16.1.

Default setting is on (B+).

C When this compiler option is active at the beginning of
the program block, output to the console can be paused
using CTRL/S, and CTRL/C can be used to interrupt a prog-
ram during console I/0. For further details, please refer
to section 17.1.

Default setting is on (C+).

S’

Appendix C Summary of compiler directives

I A compiler option which, when activated, instructs the
compiler to include run time tests that check all I/0 .
operations to insure that no I/0 errors occurred. For
further details, please refer to section 13.5. If the I
directive is followed by a filename, it indicates that the
file should be included in the source text. For further
details on include files, please refer to section 18. Note
that when the include file directive is used, no further
directives may be specified in that directive list.

Default setting is on (I+).

K COMPAS-86 only. When activated, this compiler option in-
structs the compiler to generate calls to a stack overflow
check routine before calls to procedures and functions.
For further details, please refer to section 15.8.

Default setting is on (K+).

R When activated, this compiler option instructs the compi- '
ler to include run time tests that check all array index-
ing operations to insure that the index lies within the
specified bounds, and all assignments to variables of
scalar and subrange types to make certain that the assig-
ned values lie within the allowable range. For further
details, please refer to sections 7.4 and 9.1.

Default setting is on (R+). -

S COMPAS-80 only. A compiler option which, when activated,
instructs the compiler to optimize array indexing opera-
tions with respect to execntion speed instead of code
size. For further details, please refer to section 9.1.

Default setting is off (S-).

U When this compiler option is activated, the compiler will
generate calls to an interrupt check routine before the
code of each statement. During run-time, such statements .
may be interrupted by pressing CTRL/C at the keyboard. For
further details, please refer to section 17.2.

Default setting is off (U-).

v A compiler option which in its passive state instructs the
compiler to allow string variables of any type as actual
variable parameters, even if their maximum length does not
agree with that of the formal parameter. For further
details, please refer to section 15.6.

Default setting is on (V+).

W COMPAS-80 only. A digit n (0<=n<=9) must immediately fol-
low the W character, and it defines the maximum nesting
level of WITH statements. The W register must be set .

before the declaration part of the block it is to affect.
For further details, please refer to section 10.2.

Default setting is 4 (W4).

122

Appendix C Summary of compiler directives

Y A letter between A and P or a zero digit must immediately
follow the Y character, and it defines the drive on which
to look for overlay files during run-time. A letter de-
notes that specific drive, and a zero denotes the current-

ly logged drive. For further details, please refer to
section 15.9.

Default setting is 0 (YO0).

123

C)

Appendix D
DEC HX CHAR
0 00 NUL
1 01 SOH
22 02 STX
3 03 ETX
4 04 EOT
5 05 ENQ
6 06 ACK
7 07 BEL
8 08 BS
9 09 HT
10 0A LF
11 0B VT
12 0C FF
13 0D CR
14 OE SO
15 OF §SI
16 10 DLE
17 11 DC1
18 12 DC2
19 13 DC3
20 14 DC4
21 15 NAK
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC
28 1C FS
29 1D GS
30 1lE RS
31 1F US

DEC

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Appendix D

ASCII character

HX
20

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

CHAR

SPACE

I~ 4+ o~ = P& 3=

WO~ B WNEON-

WV LA e e

DEC

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

87
88
89

- 90

124

91
92
93
94
95

ASCII character

table

HX
40

42
43
44
45
46
47
48
49
4A
4B
4C
4D
AE
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
S5F

| >—a/-Nr<>:z<:c>auwwc>m<32:zt*vzaranzo'nnnc(3U!yrm E

DEC

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

HX

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
717
78
79
74
7B
7C
7D
7E
7F

table

CHAR

Fl

e N X £ <CCARAQTOIF XU DU anNnow

DEL

Appendix E COMPAS syntax

. Appendix E
COMPAS syntax

The syntax of the COMPAS Pascal language is presented here using
BNF (Backus-Naur Form) formalism. The following symbols are meta-
symbols belonging to the BNF formalism, and not symbols of the
COMPAS Pascal language:

so= Means "is defined as".

”

I Means "or".

{...} Denotes possible repetition of the enclosed
symbols zero or more times.

The symbol <character> denotes any printable character, i.e. a
‘ character with an ASCII value between $20 and S7F.

<empty> =::
<letter> :
N |
b |
p |
<digit> ::= 0 |1 | 2|3 | 4151617181239
<hexdigit> ::= <digit> | A | B | C | D | E | F
<program> ::= <program heading> <block> .

<program heading> ::= <empty> | PROGRAM <program identifier>
<file identifier list>

‘. <program identifier> ::= <identifier>
<identifier> ::= letter { <letter or digit> }
<letter or digit> ::= <letter> | <digit>

<file identifier list> ::= <empty> | (<file identifer>
{ , <file identifer> }

<file identifier> ::= <identifier>

<block> ::= <declaration part> <statement part>

<declaration part> ::= { <declaration section> }

<declaration section> ::= <label declaration part> |
<constant definition part> | <type definition part> |
<variable declaration part> |
<procedure and function declaration part>

. <label declaration part> ::= LABEL <label> { , <label> } ;

125

Appendix E COMPAS syntax

<label> ::= <letter or digit> { <letter or digit> }

<constant definition part> ::= CONST <constant definition>
{ ; <constant definition> } ;

<constant definition> ::= <untyped constant definition> |
<typed constant definition>

<untyped constant definition> ::= <identifier> = <{constant>

<constant> ::= <unsigned number> | <sign> <unsigned number> |
<constant identifier> | <sign> <constant identifier> |
{string>

<unsigned number> ::= <unsigned integer> | <unsigned real>

<unsigned integer> ::= <digit sequence> | § <hexdigit sequence>

<digit sequence> ::= <digit> { <digit> }

<hexdigit sequence> ::= <hexdigit> { <hexdigit> }

<unsigned real> ::= <digit sequence> . <digit sequence> |
<digit sequence> . <digit sequence> E <scale factor> |
<digit sequence> E <scale factor>

<scale factor> ::= <digit sequence> | <sign> <digit sequence>

<sign> ::= + | -

<constant identifier> ::= <identifier>

<string> ::= { <string element> }

<string element)> ::= <text string> | <control character>

<text string> ::= ' { <character> } '
<control character> ::= @ <unsigned integer> | = <character>
<structured constant definition> ::= <identifier> : <type> =

{structured constant>
<type> ::= <simple type> | <structured type> | <pointer type>

<simple type> ::= <scalar type> | <subrange type> |
{type identifier>

<scalar type> ::= (<identifier> { , <identifier> })
<subrange type> ::= <constant> .. <constant>
<type identifier> ::= <identifier>

<structured type> ::= <unpacked structured type> |
PACKED <unpacked structured type>

<unpacked structured type> ::= <string type> | <array type> I
<record type> | <set type> | <file type>

126

Appendix B COMPAS syntax

<string type> ::= STRING [<constant)>]

<array type> ::= ARRAY [<index type> { , <index type> }] OF
{component type>

<index type> ::= <simple type>
<component type> ::= <type>
<record type> ::= RECORD <field 1list> END

<field list> ::= <fixed part> | <fixed part> ; <variant part> |
<variant part>

<fixed part> ::= <record section> { ; <record section> }

<record section> ::= <empty> | <field identifier>
{ , <field identifier> } : <type>

<field identifier> ::= <identifier>

<variant part> ::= CASE <tag field> <type identifier> OF
<variant> { ; <variant> }

<tag field> ::= <empty> | <field identifier>

<variant> ::= <empty> | <case label list> : (<field list>)
{case %abel list> ::= <case label> { , <case label> }

{case label> ::= <constant>

<set type> ::= SET OF <base type>

<base type> ::= <simple type>

<file type> ::= FILE OF <type>

<pointer type> ::= ~ <type identifier>

<structured constant> ::= <constant> | <array constant> |
<record constant> | <set constant>

{array constant> ::= (<structured constant>
{ , <structured constant> })

<record constant> ::= (<record constant element>
{ ; <record constant element> })

<record constant element> ::= <field identifier> :
{structured constant>

<set constant> ::= [{ <set constant element> }] -
<{set constant element)> ::= <constant> | <constantd> .. <constant>

<type definition part> ::= TYPE <type definition>
{ ; <type definition> } ;

<type definition> ::= <identifier> = <type>

127

Appendix E , COMPAS syntax
<variable declaration part> ::= VAR <variable declaration>
{ ; <variable declaration> } ;

<variable declaration> ::= <identifier list> : <type> |
<identifier> : <type> AT <address specification>

<identifier list> ::= <identifier> { , <identifier> }

<address specification> ::= <variable identifier> | <constant> |
<constant> : <constant> | DSEG : <constant> |
CSEG : <constant>

<procedure and function declaration part> ::=
{ <procedure or function declaration> }

<procedure or function declaration> ::= <procedure declaration> |
<function declaration>

<procedure declaration> ::= <procedure heading> <block> ; |
OVERLAY <procedure heading> <block> ;

<procedure heading> ::= PROCEDURE <identifier> ; | -
PROCEDURE <identifier> (<formal parameter section>:
{ , <formal parameter section> }) ;

<formal parameter section> ::= <parameter group> |
VAR <parameter group>

<parameter group> ::= <identifier list> : <type identifier>

<function declaration> ::= <function heading> <block> ; |
OVERLAY <function heading> <block> ;

<function heading> ::= FUNCTION <identifier> : <result type> ; |
FUNCTION <identifier> (<formal parameter section>
{ , <formal parameter section> }) : <result type> ;
<result type> ::= <type identifier>
(statement part> ::= <compound statement>
<compound statement> ::= BEGIN <statement> { ; <statement> } END
<statement> ::= <simple statement> | <structured statement>
<simple statement> ::= <assignment statement> |
<procedure statement> | <goto statement> |

<code statement> | <empty statement>

<assignment statement> ::= <variable> := <expression)> |
<function identifier> ::= <expression>

<variable> ::= <entire variable> | <component variable> |
<referenced variable>

<entire variable> ::= <variable identifier> |
<typed constant identifier>

¢variable identifier> ::= <identifier>

128

|

Appendix B COMPAS syntax

<typed constant identifier> ::= <identifier>
<{component variable> ::= <indexed variable> | <field designator>

<indexed variable> ::= <array variable> [<expression)>
{ , <expression> }]

<variable>

<array variable>
<field designator> ::= <record variable> . <field identifier>

<record variable> ::= <variable>

<field identifier> ::= <identifier>
<referenced variable> ::= <pointer variable> ~
{pointer variable> ::= <variable>

<expression> ::= <simple expression> { <relational operator>
<simple expression> }

<simple expression> ::= <term> { <adding operator> <term> }

<term> ::= <complemented factor> { <multiplying operator>
<complemented factor> }

<complemented factor> ::= <signed factor> | NOT <signed factor>
<{signed factor> ::= <factor> | <sign> <factor>

<factor> ::= <variable> | <unsigned constant> |
(<expression>) | <function designator> | <set>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier> | NIL

<function designator> ::= <function identifier> |

<function identifer> (<actual parameter>

{ , <actual parameter> })
<function identifier> ::= <identifer>
<actual parameter> ::= <expression> | <variable>
{set> ::= [{ <set element> }]
{set element> ::= <expression> | <expression> .. <expression>
<multiplying operator> ::= * | / | DIV | MOD | AND | SHL | SHR
<adding operator> ::= + | - | OR | EXOR
<relational operator> ::= = | <> | >= | <= | > | < | IN
<{procedure statement> ::= <procedure identifier> |

<procedure identifier> (<actual parameter>

{ , <actual parameter> })

{goto statement> ::= GOTO <label>

129

1.
I

Appendix E COMPAS tyntax

<code statement> ::= CODE <code list element>
{ , <code list element> }

<code list element> ::= <unsigned integer> |
<constant identifier> | <variable identifier> |
<location counter reference>
L4
<location counter reference> ::= * | * <sign> <constant>

<{empty statement> ::= <empty>
{structured statement> ::= <compound statement> |

<conditional statement> | <repetitive statement> |
<with statement>

<conditional statement>. ::= <if statement> | <case statemenT>

<if statement> ::= IF <expression> THEN <statement> |
IF <expression> THEN <statement> ELSE <statement>

{case statement> ::= CASE <expressi€n> OF <case element>
{ ; <case element> } END | CASE <expression> OF

<case element> { ; <case element> } OTHERWISE <staﬁbment>

{ ; <statement> } END

<case element> ::= <case list> : <statement>

<case list> ::= <case list element> { , <case list elementi}

<case list element> ::= <constant> | <constant> .. <constarmnt>

{repetitive statement> ::= <while statement> |
<repeat statement> | <for statement>

<while statement> ::= WHILE <expression> DO <statement>

<repeat statement> ::= REPEAT <statement> { ; <statement>
UNTIL <expression>

<for statementc> ::= FOR <control variable>
{statement>

<for list> ::= <initial value> TO <final value> |
<initial value> DOWNTO <final value>

<control variable> ::= <variable identifier>
<initial value> ::= <expression>

<final value> ::= <expression>

<for list> RO

<with statement)> ::= WITH <record variable list> DO <statément>

<record variable list> ::= <record variable>
{ , <record variable> }

130

Appendix F ‘ 1/0 error messages

Appendix P

I/0 error messages

An 1/0 error occurs whenever an error condition arises during an
input or output operation. If I/0 checking is enabled, an I/0
error will cause the program to terminate, displaying an I/O
error message.

I1/0 ERROR nn AT PC=aaaa
Program terminated

where nn is the I/0 error number (in hex) and aaaa is the rela-
tive address of the error (with respect to the start address of
the program code). If I/0 error checking is disabled, an I/0
error will not cause the program to halt. Instead the error
number is stored so that it can be examined by the program
through the iores standard function.

The following I/0 errors can occur (note that the error numbers
are in hex).

01 Record length mismatch. This error is reported by reset if
you try to combine a file variable with a disk file of
improper format, or more specifically when the record
lengths of the the file variable and the disk file does not
agree.

02 File does not exist. This error is reported by reset, erase,
rename, execute, or chain if the file name assigned to the
file variable does not specify an existing file.

03 Directory is full. This error is reported by rewrite if you
try to create a new file when there is no more room in the
disk directory.

04 File disappeared. This error is reported by close if the
file you are trying to close have disappeared from the disk
directory, for instance due to the user changing a disk when
he is not supposed to.

05 File not open for input. This error is reported by read
(from a textfile or a defined file) or readln if you try
read from a file which has not been reset or rewritten, or,
in the case of a textfile, from a file prepared using re-
write, or from the LST: logical device.

06 File not open for output. This error is reported by write
(to a textfile or a defined file) or writeln if you try
write to a file which has not been reset or rewritten, or,
in the case of a textfile, to a file prepared using reset,
or to the KBD: logical device.

07 Unexpected end-of-file. This error is reported by read or

readln (from a textfile) if the physical end-of~-file 1is
reached on a disk file before the end-of-file character.

131

B!
3

Appendix F ' I1/0 error mes#ages

08

09

oA

0B

0C

0D

OE

OF

10

11

12

No room on disk. This error is reported by write or writeln
(to a textfile) if there is no more room on the disk.

Error in numeric format. This error is reported by read or
readln with a textfile argument when the string read for a
numeric value is not of a proper numeric format.

Read beyond end-of-file. This error is reported by read
(from a defined file) or by blockread if you try read from a
file when you are already at the end of the file.

File length overflow. This error is reported by write (to a
defined file) if you try to store more than 65535 records in
a file.

Disk read error. This error is reported by read or write (on
a defined file) or blockread if the routine is unable to
read the next sector from the file. In the case of read,
or write it indicates that there is something wrong in the
file itself, whereas for blockread it may also indicate that
you are trying to read beyond the end of the file.

Disk write error. This error is reported by read or write
(on a defined file), flush, or blockwrite if the routine is
unable to expand the file due to the disk being full.

Seek beyond end-of-file. This error is reported by seek if
you try seek beyond the end of the file.

File not open. This error is reported by blockread or block-
write if the file referred to has not been reset or rewrit-
ten.

Operation not allowed on a logical device. This error is
reported by erase, rename, execute, or chain (on a text-
file), if the file is assigned to a logical device

Not allowed in direct mode. This error is reported by exe-
cute or chain if you try to invoke another program when you
are operating in the direct mode (i.e. when the program was
run from a RUN command).

Illegal assign parameter. This error is returned by the
assign standard procedure if the program attempts to assign
a file or a device name to one of the standard files (irput,
output, con, trm, kbd, lst, aux or usr).

132

)

Appendix G Execution error messages

Appendix G

Execution error messages

An execution error indicates a fatal error condition in the
system. Execution errors always cause the program to halt and
display an error message:

EXECUTION ERROR nn AT PC=aaaa
Program terminated

where nn is the execution error number. For COMPAS-80, aaaa is
the realtive address of the error with respect to the start
address of the program code. For COMPAS-86, aaaa is the true
offset address of the error.

The following execution errors can occur (note that the error
numbers are in hex).

01l String length error. This error is reported by a string
concatenation operation (the plus operator or the concat
procedure) if the resulting string is longer than 255 char-
acters, or by a string-to-character conversion if the length
of the string is not 1.

02 Invalid string index. This error is reported by copy, delete
or insert if the index expression is not within 1..255.

03 Floating point overflow.
04 Division by zero attempted.

05 sqrt argument error. The argument passed to the sqit func-
tion was negative. ‘

06 ln argument error. The argument passed to the 1ln function
was zero or negative.

07 Out of integer range. The real value passed to trunc or
round was not within the integer range (-32768..32767).

08 Index out of range. The index expression at an array sub-
scription was out of range.

09 Scalar or subrange out of range. The value assigned to a
scalar or a subrange variable was out of range.

0A Heap/stack collision. This error occurs at a call to new or
allocate if there is not enough memory available on the
heap, or at a call to a subprogram if there is not enough
memory available on the stack. Note that in COMPAS-86 stack
overflow checks are performed only on subprogram calls com-
piled in the {$K+} state.

0B Overlay file not found. This error is reported on entry to
an overlay subroutine if the overlay file that contains its
code cannot be found. It is also reported if the overlay
file is in some way corrupted.

133

Appendix H Compiler error messages

01
02

03 -

04

05

" 06

07
08
09
10
11
12

13

14
15

16
17
18

19

Appendix H

Compiler error messages

'.' expected.
BEGIN expected.

Invalid function result type. Valid types are all scalar
types, string types, and pointer types.

Duplicate identifier. This identifier has already been used
within the current block.

*

Absolute variables not allowed in records. The AT clause may
not be used in a record.

Type identifier expected.

Files may only be variable parameters.

Unknown or invalid type.

END expected.

Set base type out of range. The base type of a set must be a
scalar with no more than 256 possible values or a subrange

where both bounds are within the range 0..255.

File components may not be files. FILE OF FILE constructs
are not allowed.

Invalid string length. The maximum length of a string must
be within the range 1..255.

Invalid subrange base type. Valid base types are all scalar
types, except real.

'..' expected.

Type mismatch in subrange bounds. The type of the lower
bound does not agree with the type of the upper bound.

Lower bound greater than upper bound. The ordinal value of
the upper bound must be greater than or equal to the ordinal
value of the lower bound.

Unknown or invalid simple type.

Simple type expected. Simple types are all scalar types,
except real,

Unknown pointer type in type definitions. A preceding poin-
ter type definition contains a reference to an unknown type
identifier.

Undefined label in statement part. The preceding statement
part contains a reference to an undefined label.

134

!
t

|
Appendix H Compiler error messages

21

22
23
24

25 -

26

27

28
29
30
31
32

33
34
35
36

37
38
39

40

41

42
43

Invalid GOTO in statement part. A GOTO statement in the _

preceding statement part references a label within a FOR
loop from outside the FOR loop.)

Label already defined. This label already marks a statement.
THEN expected.

DO expected.

Unknown or invalid variable identifier.

Variable type is not a simple type. The control variable of
a FOR loop must be of a simple type.

Type mismatch in FOR statement expressions. One (or both) of
the expressions in a FOR statement does not agree with the
type of the control variable.

TO or DOWNTO expected.

Constant and CASE selector type does not agree.

END or OTHERWISE expected.

Unknown label.

Too many nested WITH statements, Use the W compiler direc-
tive to increase the maximum number of nested WITH state-
ments.

Record variable expected.

Unknown or invalid variable.

Illegal assignment.

Type mismatch in assignment or parameter list. The type of
the variable and the expression in an assignment does not
agree, or the type of the actual and the formal parameter in
a procedure call or a function call does not agree.
Expression is not of type integer.

Expression is not of type boolean,

Expression type is not a simple type. Simple types are all
scalar types, except real.

Expression is not of type string.

Type mismatch in expression. The operands in an expression
are not of ¢compatible types.

Operand type(s) does not agree with operator.

Structured variables are not allowed here. Arrays (except
character arrays), records, and files are not allowed here.

135

Appendix H Compiler error messages

44

45
46
47

48

49
50
51
52

53

54
55

56
57
58
59
60
61
62
63
64
65
66
67

68

Type mismatch in set. The types of the elements or ranges in
a set does not agree.

Unknown identifier or syntax error in expression.
Constants are not allowed here.

Expression type does not agree with index type.
Unknown or invalid field identifier.

Unknown or invalid constant.

Integer constant expected.

Integer or real constant expected.

String constant not properly terminated. String constants
must be fully contained on a single line.

.

Error in integer constant. The integer constant contains one
or more syntax errors or it is not within the integer range,
i.e. -32768..32767. Whole real numbers should be followed by
a decimal point and a zero, e.g. 14764552.0. For the defini-
tion of an integer constant, please refer to section 2.2.

Error in real constant. For the definition of a real con-
stant, please refer to section 2.2.

Illegal character in identifier. Valid characters are ‘'A' to
'2', 'a' to 'z', and. underscore '_'.

'[' expected.
']' expected.

:' expected.
';' expected.

Unknown identifier or syntax error in statement.
',' expected.

'(' expected.

')' expected.

'=' expected.

':=' expected.

OF expected.

Unexpected end of source text. This error indicates that
your program cannot end in the way it does. Possibly you
have more BEGINs than you do ENDs.

No such file. The include file specified does not exist.

136

Appendix H Compiler error méssages

69

70

71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92

93

94

Buffer overflow. This error indicates that there is not
enough memory to compile the program. Note that this error .
may occur even though free memory seems to exist - this
storage is however occupied by the stack and the symbol

table during compilation. Break your source text into smal-

ler segments and use include files.,

Memory overflow. You are trying to allocate more storage for
variables than available. -

Variables of this type cannot be input.
Variables of this type cannot be output.
Textfile expected.

File variable expected.

Textfiles are not allowed here.

Untyped files are not allowed here. ‘
String constant expected.

String constant length does not agree with type.
Invalid ordering of fields in record constant.
Type mismatch in structured constant.

Constant out of range.

Files and pointers are not allowed here.

Invalid use of retype facility. The retype facility only
applies to simple types, i.e. all scalar types except real.

Integer or real expression expected.

String variable expected. .
Textfiles and untyped files are not allowed here.

Untyped file expected.

Pointer variable expected.

Integer or real variable expected.

Integer variable expected.

Reserved word. These may not be used as identifiers.

Label not within current block. GOTO statements may not
leave the current block.

Procedure or function not properly defined. The subprogram
has been FORWARDed, but the body never occurred. : ‘

Error in CODE statement,

137

CE SRR T

Appendix H ' Compiler error messages

95 Illegal use of AT specification. Only one identifier may
‘ appear before the colon in a variable declaration which
employs an AT specification. il

96 Overlays not supported in direct mode. Overlays may not be
used in programs compiled with a COMPILE or a RUN command.

97 Overlays cannot be forwarded. The FORWARD specification may
not be used in connection with overlays.

98 - PROCEDURE or FUNCTION expected.
99 Can not create overlay file. The compiler can not create a

new overlay file due to the disk directory being full or the
diskette being write protected.

100 Error in EXTERNAL file. This error is reported by the CP/M-

86 version of COMPAS-86 if an EXTERNAL file is not of a
proper 'CMD' file format.

138

