i

Module Reference Number: “T/IO 3.
|
|

PTS

Moedule Number
User Library
Not Relevant i
Not Relevant I
Complete Module !
Release

English Version

T

A publication of

Philips Data Systems
888 - Training & Documentation
Apeldoorn, The Netherlands

Copyright & by Philips Data Systems, June 1983

All rights strictly reserved. Reproduction or issue to third parties

in any form whatever is not permitted without written authority from
the publisher.

Order Number 5122 993 20432

PRETACE

This manual forms part of the documentation package to support TOSS
Release 12. It describes the disk file handling functions supported by

the data manageament packages supplied for TOSS.

In addition, it contains the information that is needed to understand
the principles of data management in TOSS and the way T08S disks are
organized internally,

It is designed as reference material for application programmers.
For information on the writing of CKREDIT applications, refer to the
other modules of the Programmers Guide, modules M21A - M25A.

The complete set of PTS documentatium to support the user comprises the
following modules. iodules related ro the subject matter in this manual
are marked with an asterisk.

M2A A Programmers Introduction
*M4A CREDIT Reference Manual

M54 Device Drivers Reference Manual

*MB8A TOSS Uriliries Reference lanual

ML1A DOS-PTS Reference Manual
*M21A Programmers Guide - Elementary CREDIT
M22A Programmers Guide - Workstation Handling
M23A Programmers Guide — Disk File Handling
M24A Programmers Guide - Data Communication
H25A Programmers Guide —- Workstation Management
HY0A PTS Reference Booklet

*M91A CREDIT Reference Booklet

For an overview of the complete Training and Documentation package for
PTS, please refer ro the diagram on the following page.

PUBLICATION HISTORY

This version, published in June 19&3, is based on the initial release
of TOSS Release 12.

M234 0.0.0 June 1983

PTS Training and Documentation package

Training Training Reference
modules manuals manuals
M100 Introduction M2A Programmers
Introduction
M110 Elementary M214 Elementary M4A CREDIT
Mlil CREDIT CREDIT M31A CREDIT
Reference Card
M5A Device Drivers
M120 Multitasking (M21A Elementary (M4A CREDIT)
Mi21 in CREDIT CREDIT) (M31A GREDIT)
M130 DOS-PTS Ml1A DOS-PTS
MI31 MI0A PTS Reference
Card
Mi50 CREDIT M22A CREDIT (M4A CREDIT)
M151 Workstation Workstation (M91A CREDIT)
M152 handling handling
Mi53
M160 Disk file M23A Disk file (MAA CREDIT)
Ml61 handling handling M8A TOSS Utilities
(M214 Elementary (M90A PTS Reference
CREDIT) Card)
For basic DC training, refer to the Training Brochure
M171 Data M244 Data (M4A CREDIT)
Communication Communication (M90A CREDIT)
in CREDIT M15A DC Drivers
MI90 Workstation M25A Workstation (M4A CREDIT)
M191 Management Management (M90A CREDIT)
M192
M193
M194
Notes : Brackets indicate further use of a module already introduced.

M23A

Modules marked with an asterisk are not yet available.

0.0.1

June 1983

CONTENTS

PREFACE
1 INTRODUCTION

1.1 Structure of this manual
2 DATA MANAGEMENT

M23A

2.1

2.2

2.4

2.5

File Organization
2.1.1 Files

2.1.2 Data records
Record Identification
Index File
Prime key
Duplicate Keys
Currency

d Access

Access Method
Examples

= e e » .
0 e« .« .
LS e N B S P R

™
=]
e

Blocking Factor
Examples
a Management Functions
1 File Handling Functions
2 Sharability
3 Data Set Declaration
e Enlargement

1 Growth Factor

2 Example
nsaction Control
1

2

NNwNN%NNNN

[w]

a

.

. s e

[.
NN OO ULt AN WWO NN RN

Integrity Unit
Transaction Control Functions

NN NN NN

VOLUME ORGANIZATION

3.1

3.6

Disk Types

3.1.1 Disk Volumes

3.1.2 CMOS Memory

3 1.3 Simulated Disk in Primary Memory
Disk Structure

3.2.1 Sectors

3.2.2 Interlacing

3.2.3 PT36875 and PTS6876 Disk Versions
Survey of Disk Capacity

Reserved Areas

3.4.1 Volume Label

3.4.2 Free Space Administration Table
3.4.3 VIOC Records

Volume Creation

3.5.1 Badspot File (B-file)

Reserved File Names

3.6.1 Standard Data Management Files
3.6.2 Extended Data Management Files
3.6.3 System File Names

0.0.2

June 1983

4 TOSS DATA MANAGEMENT PACKAGES

4.1 Extended Data Management
4.1.1 Versions of EDM

2 Standard Data Management

3 Abridged Data Management

o4 Comparison

5 Summary

5 FILE PARAMETERS

5.1 Introduction

5.2 Data File Parameters

5.3 L and X File Parameters (only ADM)
5.4 Index File Parameters

5.5 Layout of the File Parameter Block

6 DISK FILE HANDLING INSTRUCTIONS

(=2}
—

Introduction

6.1.1 Survey of Disk File Handling Instructions
Open File

Close File

Set Current Record Number (not for ADM)
Read File Parameters

Read Record

Write Record

Rewrite Record

Discard Record

Commi t

Rollback (only for EDM)

6.11.1 Automatic Rollback

Leatio N = N J00 N« AN e A« N+ W0}

—r—D 00 SN oY DN

-0

7 ABRIDGED DATA MANAGEMENT

1 Introduction

2 ADM Instruction Set

3 File Types

4 File Creation

7.4.1 File Creation under ADM
4.2 File Creation by T0SS Utilities
4.3 Fnlarging Files

44 Buffer Management

and X File Handling

turn Information

6.1 Status Word

6.2 Return Status

M23A 0.0.3 June 1983

8 STANDARD

[eaiie i es)
W N

0 00 o o
oo~ O

8.10

9 EXTENDED

9.
9.
9

W N =

M23A

DATA MANAGEMENT

Introduction

SDM Instruction Set

File Types

1 Standard Files
2 Indexed File of S-type
3 Index File of S-type
4 Master Index File
.5 File Structure
rd Identification

1 Record Keys

2 Currency

3 Last Record Number (LRN)

e Creation

1 Creating a File by SDM

.2 Creating Files by the TOSS Utilities
3 Master Index File Size

8.5.4 Load Factor

Enlarging Files in SDM

File Maintenance

File Recovery

Buffer Management

8.9.1 Block Buffers

8.9.2 Delay Option

Return Information

8.10.1 Status Word

8.10.2 Return Status

RO oI ®E®E Xx©
Ut 0 WWwwww

DATA MANAGEMENT

Introduction

Instruction Set

File Types

9.3.1 Standard Files
Indexed Files of E~type
Free Record Chain
File Status

d Identification
Prime Key
Concatenated Keys
Duplicate Keys
Conditional Indexing
Currency

Transaction Logging
Transaction Log Information
Transaction Log Buffers
Transaction Log File
Initializing the Transaction Log File
Function Logging
Function Log Information
Function Log Buffers
0 Function Log File
1 Initializing the Function Log File
2

2
3
4
r
1
2
3
4
5
i
1 File Recovery
2
3
4
5
6
7
8
9
1
1
1 Function Log File on Disk

0.0.4

June 1983

10

O WO
O 00~

9.5.13 Automatic Englargement of Function Log File

9.5.14 Function Log File full (Disk)
9.5.15 Function Log File on Tape

9.5.16 Function Log File full (Tape)

File Creation

9.6.1 Creating an E-File with Utility CRF
9.6.2 Creating an E-File by EDM

Enlarging Files

File Maintenance

Return Information

RETURN INFORMATION

10.1
10.2

Appendix A

M23A

Al
A2

A.3

Introduction

Condition Register

10.2.1 Condition Register

10.2.2 Condition Register and Status Word
Status Word

Return Status

Supplementary Return Status (EDM only)

SPACE REQUIREMENTS

Introduction

Extended Data Management
A.2.1 Size of Object Code
AJ2.2 Size of Data Areas
Standard Data Management
A.3.1 Size of Object Code
A.3.2 Size of Data Areas
Abridged Data Management
A4l Size of Object Code
A.4.2 Size of Data Area
File Management

A5.1 Size of Object Code
h.5.2 Size of Data Areas

June 1983

Chapter 1

INTRODUCTION

1.1 STRUCTURE OF THIS MANUAL

The manual is divided into two parts: chapters 2 up to 5 give general
information related to disk file handling, while the remaining chapters
contain information on the disk file handling instructions in CREDIT
and the disk file handling functions supported by each package.

Chapter 2 introduces and defines the terms used in the remainder of the
manual.

Chapter 3 contains information on disk formats and volume organisation
of the disk types that can be used.

Chapter 4 introduces the different data management packages available
in PTS and tries to give some hints on when to use these packages.

Chapter 5 is a full description of all file parameters used for the
different file types handled by the data management packages.

Chapter 6 discusses the CREDIT instructions for disk file handling in
detail,

Chapter 7 discusses the Abridged Data Management (ADM) package.
Chapter 8 discusses the Standard Data Management (SDM) package.
Chapter 9 discusses the Extended Data Management (EDM) package.

Chapter 10 lists and explains all the return parameters that can be
obtained by each package.

Appendix A gives an estimate of the memory space needed for each
package or version of a package.

M23A 1.1.1 June 1983

Chapter 2

DATA MANAGEMENT

2.1 FILE ORGANIZATION

The information processed by a computer generally consists of large
quantities of data which must be read, written and updated by an
application.

Data management is concerned with the possibilities and methods of
organizing data in such a way that they are accessible for different
applications.

2.1.1 Files

Related data are grouped into files. To enable an application to
retrieve data from the file, the information must be stored in the file
according to a number of rules, defining the sequence of the data and
the way of identifying them. These rules determine the file
organization.

A data file need not be a contiguous area on the disk. Separate parts
of the data file may reside on one or several volumes.

File Section
A file section is a continuation of the file on a different volume.

File sections may reside on different disk types. Up to four file
sections are allowed for a file.

M23A 2.1.1 June 1983

DATA MANAGEMENT

File Extent

A file extent is a continuation of the file in a separate physical area
on the same volume. Up to 64 extents of one file are allowed per volume.
The logical sector number of the first sector of a file extent is
always a multiple of 3, and the file extent length is also a multiple
of 3 logical sectors and of the block length.

2.1.2 Data-records

Data items holding information on the same subject (e.g. an account-
holder, or an article) are grouped into records. A file contains
records of the same type. Account-holders records will reside in an
account-holder file, article records constitute an article file.
In a PTS system records on a file must all have the same length.

Status Byte

Data management adds a status byte to every record. This byte indicates
if a record is "used" or "free".

When a file has been created and formatted, the file is preset with
empty records with a status "free". New data records written to the
file overwrite these free records and the status byte is set to "used".
When a record is deleted by the application its status is set to
"free".

The status byte is not inzluded in the record length for I/0, but it
must be taken into account when calculating the blocking factor.

a disk volume
i FILE FILE FILE | contains one
or more files.

| BLOCK | BLOCK | BLOCK | BLOCK | a file
contains blocks

one block
| RECORD | RECORD | RECORD | RECORD | contains n
records

one record

| DATA | STATUS| contains n bytes
of data, plus one
status byte.

Fig. 2-1 Data Organisation

M23A 2.1.2 June 1963

DATA MANAGEMENT

2.2 RECORD-IDENTIFICATION

Data records on a file are identified by keys. There are two methods:
- Relative Key

The records of a file are identified by their sequence number in the
file. This is the position of the record relative to the beginning of
the file, and is called the relative record number or relative key.
The first record in the file has relative key 1.

Every record can always be located by its relative key.

- Symbolic Key

For the user it may be easier to identify the record by one or more
of the data items on it. These are the symbolic keys or record keys.
For example, the key of an account holder’s record could be the
surname, the account number or the user number, and the key of an
article record could be the article name or code, or the name of the
supplier.

2.2.1 Index File

When the application provides a symbolic key to identify the data
record that must be accessed, this has to be converted to a relative
key for the system. A table is built with one entry for every record in
the data file, holding the symbolic key and the relative key of the
data record. This table forms an index to the data file and is called
the index file.

Index Levels

In the index file there is one index entry for every data record. For a
large data file, this means a long search of the index file before the
reference is found.

To reduce search time for a record, the index file may be divided into
parts and for every part another index entry may be created. These
index entries indicate the range of symbolic keys contained by each
part of the index file. Together they constitute the "master index" or
the level 1 index. When a record must be located via a symbolic key,
the master index is searched first. The found entry points to the part
of the index file to be searched and here the pointer to the data
record will be found.

2.2.2 Prime Key

At least one of the keys must be unique for each data record. This is
the prime key. The index containing the prime key must be defined as
the first index when the file is created or opened.

The other keys are called alternate keys, and these need not be unique
for one data record.

M23A 2.2.1 June 1983

DATA MANAGEMENT

2.2.3 Duplicate Keys

For the alternate keys, duplicates are allowed: the key may have the
same value in several records. For indexed accesses on these records,
the first one 1s found by an indexed direct access and the others are
then accessed by indexed sequential operatiouns.

The Return Status "Duplicate Key" will inform the application that the
next record has an identical symbolic key.

2.2.4 Curreny

For every task that opens a file, data management keeps a pointer to
the current record for the task., The current record is the record last
read. The currency is updated by read instructions and it is not
affected by write instructions.

The currency allows the application to:
- read the next record

~ rewrite the current record

— discard the current record

The currency of the data file is called the Current Record Number or
CRN.

If the file is indexed, data management also keeps an index currency,
This points to the current index entry: the index entry used for the
last read instruction via this index.

M23A 2.2.2 June 1983

DATA MANAGEMENT

2.3 RECORD ACCESS

2.3.1 Access Method

The access method is the way to find a record in the file. If the
records are identified in more than one way, there exist several access
methods for the same file.

Non Indexed Access
Access on a data file without indexes may be:

- Sequential
Records are processed in sequence of the relative key. The next
record is read or written. For Read Sequential instructions this is
the record following the record last read. For Write Sequential
instructions this is the first free record in the file, according to
the file type. File types are explained in later chapters.

- Direct
The record to be accessed is indicated by the relative key specified
by the program. Records may be accessed directly in any (random)
sequence.

- Current
For Rewrite and Discard instructions the current record may be
specified.

Indexed Access
Access on an indexed data file may be:

— Indexed sequential
The records are read in the sequence in which they appear in the
index file, that is, in sequence of the symbolic record key for that
index.

- 1Indexed direct
The record is identified by a symbolic key, either the prime key or
an alternate key, specified by the program. For some instructions
this has to be the prime key (see the instruction descriptioms in
Chapter 6).

Indexed direct read with a symbolic key specified for which
duplicates exist in the file, will access the first record with that
key occurring in the file, indicating "Duplicate Key" in the Return
Status. The other records with this key may then be read with Read
Indexed Sequential.

M23A 2.3.1 June 1983

DATA MANAGEMENT

2.3.2 Examples

Some examples of the different access methods for the file structure in
fig., 2-2:

~ Sequential Access
Sequential access on the data file will access the records
‘Clayton’, ‘Shaw’, ‘Wilcocks’, and so on, in the order in which
they appear in the data file.

~ Indexed Sequential Access
To access the record in nummeric order of the customer number,
which is the prime key, they may be accessed via the index. The
records will than be read in the following order: Phyllis Wathke
022; Deborah Williams 043; Francis Dewidt 1225 Ronald Williams 207;
and so on.

Relative Prime
Level 1 Level 0 Key Key 2 Key 3 key
1 |207 022 (14 1 Clayton David M | 826
2 /537 043 119 2 Shaw Patrick M | 743
3732 122 | 20 3 Wileocks Brian M | 657
4 (815 207 {10 . 4 Coleman Jim M { 815
5 |FFF 229 (09 5 Anderson Ethel F | 732
6] 251 {17 r 6 Bloch David M | 882
733012 —7 Watkins Thora F | 537
8537 |07 —~—I_ 8 Smith Denis M| 791
02 | 596 | 18 b———— | —»9 Lewis Peter M [229
10| 647 |15 10 Williams Ronald M | 207
11 [657 |03 11 Berry Printha F | 888
121732 |os 12 Hillary Thomas M { 330
13 (743 {02 13 Richardson| John M| 772
14772 (13 — 14 Wathke Phyllis F | 022
15]791 |08 15 Henhurst Donald M | 647
16 | 815 |04 16 Hartman Paul M | 863
17 | 826 |01 17 Oswald Denis M [251
18863 {16 18 Burket John M | 596
191882 |06 19 Williams Deborah F | 043
20888 |11 20 Dewidt Francis F | 122
21 FFF |00

Fig. 2-2 Indexed File

M23A 2.3.2 June 1983

DATA MANAGEMENT

2.4 BLOCKING

Blocking is grouping records into larger units that are traunsferred
during one disk access, because transferring one record per disk access
ig in most cases not efficient. Transfer always starts on a logical
sector boundary, so if the records are shorter or a little longer than
255 bytes, large areas remain unused.

For every transfer the read-write head is positioned at the required
sector and transferring the records one by one means that a search time
is needed for every record. This takes more time than is necessary,
especially when the records are processed sequentially. Better use of
time and disk space is made by "blocking" the records. A block is a
number of records transferred during one disk access.

2.4.1 Blocking Factor

The number of records per block is the blocking factor. The blocking
factor is chosen by the user when the file is created. To choose a
blocking factor by which the most efficient use is made of the
available disk space, it must be noted that:

- The system adds one status byte to every data record (except for L
and X files, see chapter 7). When calculating the blocking factor, 1
must be added to the record length.

- Logical sector length is 256 bytes.

- Blocks always start on a sector boundary, but they may have a block
length of several logical sectors.

- File extents always start on a sector with a logical sector mmber
which is a multiple of three.

- The most effective disk access time is obtained when 3 logical
sectors are read or written in one access, especially when 16+80 Mb
disks are used in the PTS6000 system.

- For large blocks, large block buffers are needed in memory.

2.4.2 Examples

When the record length is 40 bytes a blocking factor of 6 uses
6x(40+1)=246 out of 256 bytes per logical sector.

When the record length is 150 bytes a blocking factor of 3 uses
3x(150+1)=453 bytes out of 512, and every block occupies 2 logical
sectors. A blocking factor 5 uses 5x(150+1)=755 out of 768 bytes and
every block occupies three logical sectors. The most efficient blocking
factor in this case is 5.

M23A 2.4.1 June 1983

DATA MANAGEMENT

2.5 DATA MANAGEMENT FUNCTIONS

2.5.1 File Handling Functions

Data management supports the following functions:

Create File

A new file may be created during runtime. The file must be opened for
"Output only” and the application must supply the necessary
information such as file name, volume where the file must reside,
file size, record length, blocking factor, and the definition of
symbolic keys if it is an indexed file. In that case the index
filesare also created. As much space as is requested is reserved on
the disk and formatted with "free" records.

The following functions can be executed for an existing file:

Open File

An Open file instruction is necessary to initiate a file for access by
a task.

Disk files are held on a volume which may contain several different
files. Also there may be more than one disk volume on-line at the time,
and the data file may have index files to it that reside on a different
volume. Therefore, an Open instruction must be executed to tell the
Monitor which file is to be opened, on which volume(s) the file exist,
how many indexes are to be used and on which volume the index files are
found, before the records of a file can be used by the application.

Data Management checks if the task is allowed to open the file, and if
there is space in memory for block- and record buffers, currency and
protected-record administration.

If all requirements are met the file is opened for the task.

Read Record

Read Record is the instruction to read data from the file. The records
are read into the application record buffer.

Rewrite Record

If in the course of a transaction some of the data in a record must be
changed, this is done by the application in the application record

buffer. The updated record is then rewritten to the file, where it
overwrites the old one.

M23A 2.5.1 June 1983

DATA MANAGEMENT

Discard Record

A record which is no longer needed can be discarded. The data is not
physically removed from the disk but the status of the record is
changed to "free". A free record can not be read by the application.

Write Record

A new data record may be written to the file from the application
record buffer. A new record can only be written to a free record in
the file.

Extend File

If a number of new records must be written to an existing standard
file, the file may be opened for Extend. New records are written to
the free part at the end of the file.

Close File

When the task no longer requires access to the file, it must close
the file. The space reserved for buffers and administration within
the Monitor becomes available for other tasks or other files to be
opened. It is especially important to close files which were opened
for exclusive access by the task as soon as possible, so that a
second task may then open the file.

Delete File

A file no longer needed may be deleted from the disk. The VTOC record
for the file will then get the status "free" and the file can no longer
be accessed. Only a file that has been opened for exclusive access by a
task can be deleted by that task.

2.5.2 Sharability

A number of tasks may be using records of the same files at one time.
There must be a protection against simultaneous updating of records by
different tasks., Protection is possible on record level and on file
level.

Record Protection

- Unprotected
There is no restriction on concurrent use of the same records by
other tasks. "Unprotected" is only allowed when the file has been
opened for input only (the records can only be read, not updated or
discarded).

M23A 2.5.2 June 1983

DATA MANAGEMENT

— Protected
When a file is opened protected, a task will hold the records it
accesses under Protected Access. No other task can access the record.
Other tasks may still access other records on the same file.

The records are released when the task issues a transaction control
instruction (see section 2.7) or closes the file, or when data
management releases the records automatically to prevent a deadlock
situation.

File Protection

— Exclusive
Protection on file level means that the file is attached to the task,
and no other task can access records of this file. A task can obtain
exclusive access to a file by specifying sharability Exclusive when
the file is opened. Exclusive access to a file is released by a Close
instruction.

Sharability Exclusive must be specified when the file is created or
extended, and when it is to be deleted.

2.5.3 Data Set Declaration

Data management files to be accessed by an application must be defined
by a DSET declaration in the data division, in the same way as other I/0
devices. This is described in the CREDIT Programmer’s Guide for
Elementary CREDIT, module M21A.

The DSET declaration links the data set identifier used by the
application to the TOSS file code specified during Monitor generation.

Data Management file codes wust be defined in Special Device Classes.

It is not possible to have common files in CREDIT applications.

M23A 2.5.3 June 1983

DATA MANAGEMENT

2.6 FILE ENLARGEMENT

File enlargement is the addition of another file extent. Both non-—
indexed and indexed (not in ADM) files can be automatically enlarged
during runtime. Automatic enlargement takes place when during Write
instructions the last record of the file is written. For the details of
automatic enlargement, which are different for each data management
package, refer to chapters 7, 8 and 9.

2.6.1 Growth Factor

The size of the added file extent in the case of automatic enlargement
is determined by the Growth Factor in the File Descriptor Block. The
Growth Factor is set by the user when the file is opened. It represents
a percentage of the size of the file when it is opened. From this, the
number of records by which the file must be extended is calculated by
data management. This number is then rounded upward to obtain a file
extent length which is a multiple of three logical sectors and of the
block length.

If after the file has been enlarged the end of file is reached again by
Write instructions, the file is enlarged again by the same number of
logical sectors, for it is the same percentage of the length of the
file when it was opened.

The number of sectors by which the file will be enlarged is changed
when the file is closed and opened again. A different Growth Factor may
then be specified. However, if the Growth Factor remains the same, the
percentage will be taken from the new file size and also result in a
different file extent length.

Files are only extended if the Growth Factor specified is not zero.

If the file can not be enlarged, the message End of Medium is returned
when the end of the file is reached by Write instructioms. The file can
not be enlarged if:

- The Growth Factor is zero

- There is no free VTIOC record available for the new file extent

- The maximum number of file extents (64) on a volume has been reached
and no next volume is available

- The maximum number of file extents and file sections has been reached

2.6.2 Example

A file with a size of 200 records is opened. The Growth Factor
specified is 10. During Write instructions, the end of the file is
reached. A new file extent is automatically created by data management,
with a size of 10% of 200 records =20 records.

The sequential write operations are continued until the new end of file
is reached. Another file extent is added, with a size of 10% of the
original file size (200 records) so again 20 records.

M23A 2.6.1 June 1983

DATA MANAGEMENT

Then the file is closed, and opened again. The size is now 240
records. The Growth Factor specified is still 10. Automatic enlargement
will be by 10% of 240 =24 records.

If, when the file is opened for the second time, a Growth Factor of 5
is specified, automatic enlargement will be by 5% of 240 records = 12
records.

Note that this is only an example to explain the mechanism. In reality
it would not be advisable to create such small file extents. Also, the
size of the additional file extents will be rounded upwards to a
multiple of three logical sectors.

M23A 2.6.2 June 1983

DATA HMANAGEMENT

2.7 TRANSACTION CONTROL

In a business environment, applications will mostly be designed to
execute transactions. A transaction is an elementary business
operation. A transaction may include one or more reads, writes and
updates of data records in a number of files.

Before and after a transaction the data in the files are in accordance

with each other and reflect a real situation. It is said that the files
are in a state of integrity. While the transaction is in progress, the

files are not in a state of integrity.

2.7.1 Integrity Unit

A series of record accesses on files, at the beginning and end of which
the files are in a state of integrity, is called an integrity unit.

One transaction may consist of one or more integrity units.
Example

A data file contains account holders records. A certain amount of money
must be withdrawn from the balance of Mr. X and paid into the bank
account of Mr. Y.

Before the transaction Mr. X has the money and Mr. Y has not, which is
a real situation. Halfway through the transaction, when the money has
been withdrawn from the balance of Mr. X and not yet added to the
balance of Mr. Y, the data in the file are not in a state of integrity
as they do not reflect a real situation.

When the record for Mr. Y., has also been updated the file is again in a
state of integrity and the transaction is completed.

The transaction in this example consists of one integrity unit.

2.7.2 Transaction Control Functions

The beginning and the end of a transaction are marked by tramsaction
control functions (Commit). All accesses on the files executed between
two transaction control functions belong to ome transaction.

Several records of several files may have to be updated during one
logical transaction. Before the transaction and after it, when all
updates belonging to one logical transaction have been executed
completely or not at all, the files are in a consistent state.

Points in the application program where files are in a consistent state
are defined by the transaction control functions Commit and Rollback.

COMMIT terminates a transaction or subtransaction. The updates
performed are "committed" to the data file, this means that it is no
longer possible to undo the transaction. The records involved are
released and may now be used by other tasks.

See also the detailed descriptions of transaction control functions for
the different packages.

M23A 2.7.1 June 1983

Chapter 3

VOLUME ORGANIZATION

3.1 DISK TYPES

A volume is a single physical unit capable of holding information. In
this manual, disk volumes are considered and secondary storage media

that are organised in the same way as a disk, the CMOS memory and the
"simulated disk in primary memory".

3.1.1 Disk Volumes
The following disk types are avallable for PTS systems:

PTS 6875 — 2.5 Mb fixed and cartridge disk

PTS 6876 — 5 Mb fixed and cartridge disk

PTS 6877 ~ 80 Mb fixed and cartridge disk

PTS 6961 ~ 16 Mb fixed and cartridge disk

PTS 6879 - 0.25 Mb flexible disk

PTS 6791 - 1 Mb flexible disk

PTS 6792 ~ 0.25 Mb flexible disk

PTS 6962 ~ 16 Mb + 80 Mb fixe and cartridge disk

3.1.2 CMOS Memory

The CMOS memory is approximately 8kb of CMOS RAM, connected to the
PTS6911 Workstation Controller (WS11). It can be considered as a
peripheral with a very fast access time, and organised in the same way
as a disk. The CMOS memory can only contain valid information when the
power is on. A back-up battery maintains the contents of the memory
during about 48 hours after a power failure., After that time the
contents of the CMOS memory are undefined.

M23A 3.1.1 June 1983

VOLUME ORGANIZATION

3.1.3 Simulated Disk in Primary Memory

A part of the memory may be reserved for use as a very fast access
storage. The size is a multiple of 4k bytes and is defined during
Monitor generation. Using the simulated disk in primary memory for
example for transaction logging will improve the system performance,

M23A 3.1.2 June 1983

VOLUME ORGANIZATION

3.2 DISK STRUCTURE

Each disk volume is divided into cylinders, each cylinder into tracks,
and each track into sectors. This structure is transparent to the
application, for the program ounly addresses records within a file. The
programmer must be aware of this structure when constructing files, for
it affects the blocking factor, number of file extents on the volume,
or number of volumes required for one large file.

| CYLINDER O | CYLINDER 1 | CYLINDER N | 1 volume contains
n cylinders

| TRACK O | TRACK 1 | TRACKTRACK n | 1 cylinder
contains n tracks

| SECTOR O | SECTOR 1 | SECTORSECTOR n | 1 track contains
n logical sectors

| BYTE 1 suevusveenssanonsenesnsses BYTE 256 | 1 logical sector

256 bytes

3.2,1 Sectors

Disk sectors as seen by the hardware are different from those seen by
the software. The hardware is concerned with physical sectors on the
disk, while the software handles logical sectors.

~ A physical sector is the unit of information transferred between the
disk and the primary memory.

- A logical sector is the unit of information transferred between the
disk driver and data management or the application. Depending on the
disk type, the loglcal sector length may be different from the
physical sector length.

All the disk drivers handle multiple logical sector I/0, so it is
possible to transfer more than one logical sector with one I/0 request.

Physical and logical sector numbering may be different. This depends on
the way in which the disk is premarked.

M23A 3.2.1 June 1983

N

Y.
ol

3.2.2. Interlacing

On many disk types the lagical sectors are not numbered in physical
sequence, but interlaced.

The figure below 1s an example. The inner ving of numbers represent the
numbering of th ical sectors, the logical sectors are interlaced
as shown by the ving of numbers.

Interlacing is do
time on the disk.
has been transferred,
needs some time to procose
before the next sacton can be
transferred., During this tims
disk keeps rotating and when the
next transfer can be done the dis!
head will not be pogiticned at the
adjacent sector, but further.
Marking this as the next logical
sector avoids wvaiting fov almost
one disk rotation.

Ianterlacing is fully transparect
processed In srnquence of logic

u the user, and sectors are always

[
sector number. The number and length
1
1

of physical seciors, and the interlacing factor, depend on the disk

type.

3.2.3 PTS6875 and PTsSed . Versions

75 and PTS6876, the
One of them is selected when the disk
RV).

Create Voiume (CR

There are two format versions tor the disks PTS68
Packed and the Uapacked verst s
is formaited by the TOSS util

Version 2 -~ Unpacked
There is one 1 1 sector per
average access times.

sector, which provides lower

Version 3 - Packed
Two physical sect
use of di

5 Cont

logical sectors. This version makes
An inrermediate buffer is used
the nurher of the firvst logical sector
cors to be transferred arve multiples of
ediate buffer is not needed, and access
2d version.

more efficis
during transie
and of the t
three. In that
times are 1o

Which version s
disk is fo
stored in th
line.

v CRV. The information is
smory when the disk is on

Loand read into om

M23A 3.2

June 1983

VOLUME ORGANIZATION

3.3 SURVEY OF DISK CAPACITY
Disk Type PTS6875 PTS6876
Format Version 2 | 3 2 3
i
Number of cylinders 204 204 408 408
Tracks per cylinder 2 ‘ 2 2
Physical sectors /track 16 16 16
Logical sectors/track 16 . 16 24
Bytes/physical sector 258 386 258 386
Bytes/logical sector 256 ‘ 256 256 256
Maximum logical sector no 6323 9791 12647 19583
Maximum physical sector no | 6527 | 6527 13055 13055
Disk Type PTS6879 PTS6877 | PTS8863
flexible disk "80Mb" | mini fixed

Disk Version TOSS IBM disk disk
Number of cylinders 77 77 822 255
Tracks per cylinder 1 1 5 2
Physical sectors/track 26 26 23 52
Logical sectors/track 13 26 69 52
Bytes/physical sector 128 128 768 128
Bytes/logical sector 256 128 256 256
Maximum logical sector no 1000 1932 283589 23399
Maximum physical sector no 2001 73026 94529 23399
Disk Type PTS6961 PTS6791

"l6+16" "1 Mb" flexible
Disk Version CMD disk disk
Number of cylinders 822 77
Tracks per cylinder 1 2
Physical sectors/track 23 26
Logical sectors/track 69 13
Bytes/physical sector 768 256
Bytes/logical sector 256 256
Maximum logical sector no 56717 3990
Maximum physical sector no 18905 4003

* For the IBM format on the PTS6879 flexible disk, physical sector

number has format “ttOss’,

where tt is track number, O is zero, and

ss is the sector number. 73026 corresponds to logical sector number

1923,

MZ23A

3.3.1

June 1983

VOLUME ORGANIZATION

3.4 RESERVED AREAS

On cylinder zero, some sectors are reserved on track zero for use by
the system software. If this track contains bad spots the volume can
not be used.

Track zero on cylinder zero contains:
- Volume Label in sector zeroj; the identification of the volume.

~ IPL loader in sectors starting in sector l. The number of sectors
occupied is device dependent.

- Free Space Administration Table (FSAT)
When a file must be created or extended, the Free Space
Administration Table is searched for free areas large enough to
contain the required number of sectors.

— Volume Table of Contents (VTOC), containing the identification of all
file extents on the volume.

Volume label and IPL are written by the utility Create Volume (CRV).
After that, sectors are reserved for the VIOC and the FSAT. The number
of sectors occupied by VTOC and FSAT depends on the number of VTOC
entries specified when the utility is run,

The total number of sectors in the reserved area must be a multiple of
three, For example, if Volume Label and IPL together occupy 4 sectors,
the VIOC and FSAT will be a multiple of 3 sectors plus 2.

CRV creates an FSAT with at least the same number of entries ad the
number of entries in the VTOC. The number of VTOC entries per sector is
6, the number of FSAT entries per sector is 32,

This results in the following number of entries in the FSAT:

No of VTOC VTOC FSAT No of FSAT
entries sectors sectors entries

1 -6 1 1 32

7 =12 2 | 3 96

13 - 18 3] 2 64

19 - 24 4 1 32

25 - 30 5 J 3 96

The layout of Volume Label, Free Space Administration records and
Volume Table of contents is described in the following sections.

M23A 3.4,1 June 1983

VOLUME ORGANIZATION

3.4.1 Volume Label

The volume label is located on cylinder 00, track 00 sector 00 of all
disk types.

The format of the volume label is shown below:

byte
1
2 VOLUME NAME
&4

6 FSAT + VTOC LENGTH

8 not used

10 FSAT BASE

12 VTOC RECORD LENGTH

14
16
18 12 NC NUMBER
20
22
24

26 NUMBER OF CYLINDERS

28 NUMBER OF TRACKS

30 NUMBER OF SECTORS / TRACK

32
34
36
38 RELEASE NUMBER
40
42
44

46 FSAT LENGTH

48 FORMAT | DEVICE TYPE

100 - 139 IPL

The fields have the following meaning:

VOLUME NAME

A string of 6 characters, left adjusted and padded with spaces. Spaces
are not allowed within the volume name. Volume names must be unique
within a system.

M23A 3.4.2 June 1983

VOLUME ORGANIZATION

FSAT + VTOC LENGTH
Number of sectors occupied by the Free Space Administration plus Volume
Table of Contents.

FSAT BASE
The address of the sector on which the FSAT starts.

VTOC RECORD LENGTH
The size of one VTOC record, in bytes. The status character is not
included.

12 NC NUMBER
Reserved for the 12 NC number of the disk.

NUMBER OF CYLINDERS
The number of cylinders available for the user

NUMBER OF TRACKS
Number of tracks per cylinder. This is equal to the number of disk
surfaces that are used.

NUMBER OF SECTORS PER TRACK
This is the number of logical sectors per track.

RELEASE NUMBER
This field contains the text "TOSS RELEASE xx.yy" where xx is the
release number and yy is the level.

FSAT LENGTH
Number of sectors used for the administration of free areas on the
volume.

FORMAT
Device dependent parameter indicating which interlacing pattern is used
to map the sectors on the physical addresses.

DEVICE TYPE
An 8 bit integer indicating:

1 = PTS 6875 2.5 Mb disk

2 = PTS 6876 5 Mb disk

3 = PTS 8863 6 Mb mini fixed disk

4 = PTS 6877 80 Mb disk

5 = PTS 6961 16 Mb disk

6 = Simulated disk in CMOS memory
7 = PTS 6872 0,25 Mb flexible disk

8 = PTS 6879 0,25 Mb flexible disk

9 = PTS 6791 1 Mb flexible disk

10 = Simulated disk in primary memory
IPL

IPL is device dependent code used by the Initial Program Loader for
that disk type.

All unused fields contain hexadecimal zeroes (X°007).

M23A 3.4.3 June 1983

VOLUME ORGANIZATION

3.4.2 Free Space Administration Table

The Free Space Administration Table (FSAT) entries describe the start
address and length of all free extents on the volume. The format of
each entry is shown below. Unused entries contain all zeroes (X’00").

byte

1
’ EXTENT LENGTH

2 | |
) |

4 |
] EXTENT BASE |

6 |

The fields have the following meaning:
EXTENT LENGTH

The size of the free extent, in number of sectors.

EXTENT BASE

Logical sector number of the first sector in this free extent.

M23A 3.4.4 June 1983

VOLUME ORGANIZATION

3.4.3 VTOC Records

Each VIOC record is 42 bytes long (41 bytes data + 1 status byte) and
they are blocked 6 per sector., One record exists for every used extent
in each file.

The VTOC is accessible only through Monitor routines. The Read File
Parameter instruction will make the information about the file

available to the application.

VTOC records have the following layout:

byte
1
2 FILE NAME
4
8 FILE SECTION NUMBER
10 FILE EXTENT NUMBER
12
FILE EXTENT LENGTH
14
16
FILE EXTENT BASE
18
20
LAST RECORD NUMBER
22
24 RECORD LENGTH
26 BLOCKING FCT | FILE ORG
28
30 CREATION DATE
32
34 RETENTION PERIOD
36 | NO OF INDEXES
38 KEY ADDRESS
40 NO OF EXTENTS| STATUS

M23A 3.4.5 June 1983

VOLUME ORGANIZATION

The fields have the following meaning:

FILE NAME

A string of 8 characters, left-adjusted and padded with spaces. This
field must be set to spaces (X’20’) for unused entries. No spaces are
allowed within the File Name. Some file names are reserved for use by
the system, see section 3.6

On one volume, all VTOC entries with the same file name are regarded as
describing extents of the same data file.

FILE SECTION NUMBER
A binary value numbering the file sections. File section numbering
starts from zero.

FILE EXTENT NUMBER
A binary value numbering the extents within each file-section. File
extent numbering starts from zero.

FILE EXTENT LENGTH
A binary value representing the number of sectors in the file extent.

FILE EXTENT BASE
A binary value representing the logical sector number of the fist
sector in the extent.

LAST RECORD NUMBER (LRN)

For Standard files, LRN is a binary value which is the relative key of
the last used record in the file written by Write Sequential
instructions. There may be "free" and "used" records in the file
between the LRN and the end of the physical file area.

For indexed files of S-type, LRN is the relative key of the last data
record written by Write Indexed Direct instructions.

For an index file of S—type, LRN is the relative key of the last index
record in the last used partition.

For a master index file of S-type, LRN ids the relative key of the last
used master index record.

For EDM files (both D and I files), LRN is the relative key of the
first record in the free record chain.

For L and X files, LRN is a binary value representing the number of
used sectors.

RECORD LENGTH

A binary value representing the number of bytes per record. This is a
fixed value for all records in the file and does not include the status
byte. For L-files the record length is always 256, for X files it is a
multiple of 256.

M23A 3.4.6 June 1983

VOLUME ORGANIZATION

BLOCKING FACTOR
A binary value representing the number of records per block. For I, L
and X files the blocking factor is always 1.

FILE ORGANISATION
One character indicating the file type:
S - File of S-type
- the data part of an EDM (E) file
- for the index part of an EDM (E) file
library file or load file
- bad spot file
- non-standard file

M=o
]

NUMBER OF INDEXES

For the indexed files of S-type this is a binary value representing the
number of index files belonging to this data file.

For other file types the field contains zero.

KEY ADDRESS

A binary value representing the first character position of the
symbolic key in the data record. This field is only used for index
files of S-type and is set to zero for other file types.

NUMBER OF EXTENTS

A binary value representing the number of extents of the file that
contained on this volume., This number is only set in the VTOC record of
the first extent.

STATUS

A single character indicating whether this VTOC record is used (X'FF’)
or free (X’00°), This character is not included in the VTOC RECORD
LENGTH defined in the volume label.

CRFATION DATE
A string of 6 ISO-7 characters representing the creation date of the
file. Recommended format can be either YYMMDD or YYDDD, left adjusted,
where

YY = last two digits of the year

MM = month of the year
DD = day of the month
DDD = day of the year

The format is not checked by the system software.

RETENTION PERIOD

A string of 3 ISO-7 characters representing the number of days that
this file is to be retained.

The contents of this field is not checked or used by the system
software.

M23A 3.4.7 June 1983

VOLUME ORGANIZATION

3.5 VOLUME CREATION

A disk volume to be used on the PTS system must be initialised and
formatted by the TOSS utility Create Volume (CRV). This utility is
described in the TOSS Utilities Reference Manual, module M8A.

The utility writes a Volume Label and an empty VTOC, and FSAT and an
IPL on track zero. Defective sectors are assigned to a badspot file,

3,5.1 BADSPOT file (B-file)

A Badspot file is a dummy file which includes all defective sectors on
a volume, so that these are not used for the real files, When a new
volume is formatted with the TOSS utility Create Volume, the quality of
each sector is checked. Unusable sectors are included in a B file,
registered as such in the Volume Table of Contents and withdrawn from
the Free Space Administration Table.

The BADSPOT file can contain up to 18 extents. If the disk contains too
mny defective sectors, it can not be used.

M23A 3.5.1 June 1983

VOLUME ORGANIZATION

3.6 RESERVED FILE NAMES

File names exists of up to 8 ISO-7 characters. The rules for the file
names of indexed file structures in SDM and EDM and the rules for L
file names are described below.

Within TOSS systems, some file names are reserved.

3.6.1 Standard Data Management Files

The file name of the data file is specified when the file is created.
It may consist of up to 8 characters, the first 6 are significant and
must be unique., The file names of the index files consist of "In"
followed by the first 6 characters of the data file name, where 'n" is
the number of the index. The file names of the master files consist of
"Mn" followed by the first 6 characters of the data file name, where

"n'" ig the number of the index.

3.6.2 Extended Data Management Files

The file name of the D file is specified when the file is created. It
may consist of up to 8 characters, the first 6 are significant and must
be unique. The file name of the I file consists of "I$" followed by the
first 6 characters of the D file name.

When EDM is used, the following file names are reserved: "TLOGFILE",
"FLOGFILE", "I$0000" and file names starting with "$$$s".
3.6.3 System File Names

File names with the format "$XXXX:nn" are reserved for load files and
coufiguration files and must not be used for TOSS files.

"XXXX" represents up to four IS0-7 characters and "nn" are two numeric
IS0-7 characters.

M23A 3.6.1 June 1983

Chapter 4

TOSS DATA MANAGEMENT PACKAGES

Three data management packages are available for PTS:

- Extended Data Management (EDM)
- Standard Data Management (SDM)
— Abridged Data Management (ADM)

A system may contain either EDM or SDM. ADM may be included on its own
or together with EDM or SDM, to handle the file types that EDM or SDM
cannot handle (library files and undefined files).

The data management package required is selected during Monitor
generation.

M23A 4.0.1 June 1983

TOSS DATA MANAGEMENT PACKAGES

4,1 EXTENDED DATA MANAGEMENT

Extended Data Management is a data management package for indexed
file handling. EDM supports transaction control and file recovery by
means of function logging.

EDM supports the following features:

~ Standard files and indexed files of E-type are handled.

- Up to 10 indexes may be defined for one data file

- Symbolic record keys consisting of up to 16 separate items
(concatenated keys)

~ Conditional indexing

— Re-use of deleted records in indexed files

~ Transaction control functions COMMIT and ROLLBACK to take care of
file consistency

- Transaction logging

- Automatic transaction rollback in the case of deadlock or fatal I/0
errors.

- Function logging

- The possibility to create, delete and extend files

4,1.1 Versions of EDM

Three versions of EDM are available:

- Version 1
A complete EDM package, disk resident, which includes all the
functions listed above.

- Version 2
A complete EDM package, primary memory resident.

- Version 3

A primary memory resident subset, not segmented, which does not
include transaction logging and function logging.

M23A 4.1.1 June 1983

TOSS DATA MANAGEMENT PACKAGES

4.2 STANDARD DATA MANAGEMENT

Standard Data Management (SDM) is a separate data management package.
It is primary memory resident, Indexed files are supported but index
handling is less powerful than in the EDM package.

SDM supports the following features:

- Standard files and indexed files of S-type are handled

- Up to four indexes are allowed per data file

- Keys consist of one data item

- Two levels of indexing

- The possibility to create and extend indexed and non-indexed data
files

- The possibility to delete files.

SDM is upward compatible with EDM in that the instruction set supported
by SDM is a subset of the instructions available in EDM.

An indexed file structure for SDM, however, can not be handled by
EDM, unless it is converted into an EDM file structure with the TOSS
utility Copy File to File, copying the data file of S-type to a
previously defined E file. The index part of the E file will be built
according to the definition of a I file.

M23A 4.2.1 June 1983

TOSS DATA MANAGEMENT PACKAGES

4.3 ABRIDGED DATA MANAGEMENT

Abridged Data Management is a data management package for file
handling on logical sector level,

Record length + 1 must be a multiple of 256.

In ADM the following features are implemented:

- Standard files, L files and X files can be handled

-~ Files can be opened for exclusive access

- TFiles can be created, extended and deleted.

- Direct access on files.

- Sequential access only for Write instructions on Standard files.

The instructions available for ADM are a subset of the inssruction
set for SDM.

M23A 4.3.1 June 1983

TOSS DATA MANAGEMENT PACKAGES

4.4 COMPARISON

Which data management package is used depends on the application
requirements, memory space available, and the organisation of the files
to be processed.

SDM - EDM

The main reasons for using EDM are:

- Logging and recovery functions

- Powerful index handling

- Support of large indexed files and a high updating frequency without
the need for reorganizing the files.

SDM may be preferred to EDM when rather static files with up to four
indexes are handled, for performance reasons: it may be faster and
requires less memory space.

The CPU load of EDM is approximately 3 times as much as the CPU load of
SDM for similar functions. The number of disk accesses is about the
same for SDM and EDM without logging functions. However, EDM needs more
disk accesses for direct access instructions because it does not have a
common block buffer pool.

The logging functions of EDM increase the number of disk accesses.
Transaction logging on the simulated disk in primary memory will
improve the performance of EDM.

SDM ~ ADM

ADM is used for standard files when the application itself does the
record handling and access on logical sector level is sufficient. ADM
must be used to handle L and X files.

Compared to SDM, Abridged Data Management has the following
restrictions:

Not supported are:

~ Physical I/0. Only basic write, without checking, is implemented.

~ Sequential access, except Write Sequential for Standard files.

~ Current access. ADM does not maintain a currency.

~ The POSIT instruction to position the currency.

~ Indexed files.

- Record protection.
File protection however is supported, it is possible to open a file
with sharability Exclusive.

- The Delay option

M23A 4,401 June 1983

TOSS DATA MANAGEMENT PACKAGES

- Transaction control functions. However, it is allowed to use dummy
COMMIT instructions for compatibility with SDM.
- No file recovery is possible after a disk fallure or a system halt.

The aproximate memory space requirements of each package are found in
Appendix A.

M23A 4eb,2 June 1983

TOSS DATA MANAGEMENT PACKAGES

4.5 SUMMARY

This diagram gives an overview of the file types and functions

supported by ADM, SDM and EDM.

Y = supported
- = not supported.

ADM SDM EDML,2 | EDM 3
FILE TYPES
E file - - Y Y
indexed fileof S-type - Y - -
Standard file Y Y Y Y
L file Y - - -
X file Y - - -
FILE HANDLING INSTRUCTIONS
OPEN FILE
for: input Y Y Y Y
input-output Y Y Y Y
output sequential Y Y Y Y
cutput direct Y Y Y Y
output extend Y Y Y Y
SHARABILITY
unprotected Y Y Y Y
protected - Y Y Y
exclusive Y Y Y Y
CLOSE FILE |
lock Y Y [4 Y
discard Y Y | ¥ Y
POSITION currency
direct - Y Y Y
indexed direct - Y Y Y
COMMIT - Y Y Y
protected - - Y Y
with release - Y Y Y
ROLLBACK - - | ¥ Y
release to prevent deadlock - Yy | ¥ b
LOGGING
transaction - - Y
function - - Y
M23A 4.5.1 June 1983

TOSS DATA MANAGEMENT PACKAGES

ADM | SDM | EDM1,2 | EDM 3
RECORD HANDLING INSTRUCTIONS
READ
sequential - Y Y Y
direct Y Y Y Y
indexed sequential - Y Y Y
indexed direct - Y Y Y
WRITE
sequential Y Y Y Y
direct Y Y Y Y
indexed sequential - - Y Y
indexed direct - Y Y Y
REWRITE
current - Y Y Y
direct Y Y Y Y
indexed direct - Y Y Y
DISCARD |
current - Y Y Y
direct Y Y Y Y
indexed direct - Y Y Y
READ FILE PARAMETERS Y | Y | Y Y
READ STATUS Y | Y | Y Y
M23A 4.5.2 June 1983

Chapter 5

FILE PARAMETERS

5.1 INTRODUCTION

The characteristics of a file are defined by a number of parameters
such as file name, record length, blocking factor. These parameters are
stored in the VTOC record of the first file extent. For an E file,
there is an index descriptor stored in the first block of the I file.

The file parameters are transferred from the application to data
management and vice versa, File parameters are contained in the File
Parameter Block.

When a new file is created by data management, the application must
provide most of the file parameters and the complete index description.

When opening an existing file the application must provide those file
descriptor items that are subject to change, such as Protection, Growth
Factor, the I/0 Option, and the index descriptors of the indexes to be
opened.

The fields that are not relevant are "reserved" and must contain
zZeroes.

After opening a file, the file parameters can be obtained by by the
application with the DSC instruction to read the File Parameters (code
X’19’). The file parameters can be printed offline with the TOSS
utilities Print VTOC (PVC) and Print Descriptor Block (PDB), which are
described in the TOSS Utilities Reference Manual, module M8A.

M23A 5.1.1 June 1983

FILE PARAMETERS

The file parameters and index descriptors are discussed in the
following sections. All the parameters used in ADM, EDM and SDM are
listed here. Which parameters are required for each instruction is
explained in Chapter 6 of this manual and also found in the
corresponding instruction references in the CREDIT Reference Manual,
module M4A.

M23A 5.1.2 June 1983

FILE PARAMETERS

5.2 DATA FILE PARAMETERS

The following parameters

Record length

Blocking factor

File organization

Device type

1/0 option

Reserved

File name

Logging type (only EDM)

M23A

apply for all E, S, L and X files.

The length of the data records in bytes. The
status byte is not included in the record
length. The Record length may have any value
from 1 to 2047 for standard files or from 4 to
2047 for E files.

The maximum record length for a file created
and handled by TOSS utilities is 2047 bytes.

The number of data records per block in the
data file. The blocking factor may have any
value from 1 to 255. The maximum block length
in SDM is 2047 bytes.

This field indicates the file type.

0 = Standard file or data file of S-type
opened without indexes.

1 = E file or indexed file of S-type

For ADM it can also have the values:

2 = L file (load file)

3 = X file (undefined file)

This field must contain the value 1 to
indicate disk.

This field indicates the output mode selected
for the file when it was opened by the program:
0 = Physical read/write with read after write

check.
1 = Basic read/write, no check.
For SDM:

2 = Physical read/write and delay: I/0 is
performed to an internal block buffer and
not immediately to disk. (See also 8.7.2).
3 = Delay and basic read/write.

A field where File Management stores the
internal identification of the data file and
index file. This field is only used by some of
the TOSS utilities.

Data file name, consisting of one alphabetic
character followed by 0 to 7 alphanumeric
characters. System reserved file names are
found in section 3.6.

0 = no logging done for this file.

1 = transaction logging.

2 = function logging.

3 = transaction logging and function logging.
For SDM and ADM this field must contain zero.

5.2.1 June 1983

FILE PARAMETERS

Growth factor

Data

File

Data

File

Data

File

Data

File

M23A

volume name 1

section size 1

volume name 2

section size 2

volume name 3

section size 3

volume name 4

section size 4

For E- and S- files, this field contains the

percentage of the initial file size by which

the file must be extended when during a Write
instruction the end of the file is reached.

The name of the first volume where the data
file resides. Volume name consists of up to 6
alphanumeric characters.

Number of data records residing on the first
volume.

The name of the second volume where the data
file resides. Volume name consists of up to 6
alphanumeric characters.

Number of data records residing on the second
volume.

The name of the third volume where the data
file resides. Volume name consists of up to 6
alphanumeric characters.

Number of data records residing on the third
volume.

The name of the fourth volume where the data
file resides. Volume name consists of up to 6

alphanumeric characters.

Number of data records residing on the fourth
volume.

5.2.2 June 1983

FILE PARAMETERS

5.3 L AND X FILE PARAMETERS (only ADM)

For L and X files, the values of some file parameters are fixed:

Record length

Blocking factor

File organization

Must be 256 for L files or a multiple of 256
for X files.

must be 1.

=1L file

2
3 = X file

The following items are added to the File Parameter block:

File record number

Number of users

Protection

Creation date

NOTE :

The relative key of the last record of the
file written by Sequential Write instructions.

The number of successful Open instructions
that have been performed for this file on this
file code, At a Close instruction, this number
is decreased by one.

Q
1

file is opened for shared access.
the file is opened for exclusive access

A string of 6 characters representing
YYMMDD or YYDDD left adjusted. The format
will not be checked by the system.

File Record Number, Number of Users and Protection are used by the
system and must not be set or updated by the application!

Retention period

Reserved

A string of 3 characters representing DDD.
The format will not be checked by the
system.

This field must contain binary zeroces.

5.3.1 June 1983

FILE PARAMETERS

5.4 INDEX FILE PARAMETERS

The following parameters define the indexes for E files and indexed S
file structures. Fields that are not relevant must be set to zero, for
example all the fields defining a conditional index must be set to zero
for indexed files of S~type.

Index volume name

Index size

Number of indexes

Name of volume where the index files and
master index files reside for an indexed file
structure for the SDM package, or the I file
for the EDM package. Volume name consists of
up to 6 alphanumeric characters. The first
character must be alphabetic.

Size of the I file in number of index blocks
(only significant for EDM).

The number of index descriptors that follow
for this data file, This is the number of
indexes specified for the file when it is
opened by the application. Value from 1 to 4
for SDM, from 1 to 10 for EDM.

This number may be less than the number of
indexes that actually exist for the data file,
if not all of these indexes are relevant for
the task that has opened the file.

NOTE: In that case, if the records are updated
and any keys are changed of the indexes that
are not opened, file consistency is lost.

The following fields must be repeated for every index of the file
structure. The index specified first is the primary index.

Internal index
identification

Index type

Conditional index

M23A

A value generated by EDM to identify the
part of the I file containing the index
records for the key defined by the key
description that follows. This parameter is
used by the Read and the Posit instruction.

0 = no duplicate keys allowed

1 = duplicate keys allowed

For the prime key this field must be zero.
This parameter is only significant for EDM. In
SDM, duplicate keys are always allowed for
alternate keys.

0 = no conditional index
1 = conditional index

For SDM this parameter must be = Q

5.4l June 1983

FILE PARAMETERS

Conditional Index Descriptor (only EDM)

If conditional index is specified, the following parameters are
significant. If not, these fields must contain zeroes.

Condition

Conditional item
displacement

Conditional item
value

Symbolic Key Descriptor

Number of key-items

0 = Equal, the key is included in the index
file if the value of the conditional item in
the data record equals the Conditional Item
Valu= specified.

1 = Unequal, the key is included in the index
file if the value of the couditional item on
the data record is not the same as the
Conditional Item Value specified.

The character position of the conditional
item within the data record. The first
character position of the data record is
counted as zero.

Value with which the conditional item on the
data record must be compared.

Number of items that make up the key. Value
may be from 1l to 16,

There is one key~item descriptor for every key item. Note that for an
indexed files of S-type the symbolic key can not consist of more than

one key item.

Key-item displacement

Key-item length

M23A

Position of the key item concerned within the
data record, expressed as character position.
The first position is counted as zero.

The length in bytes of the key item concerned.

The sum of the lengths of the key items must
not exceed 64 characters.

5.4.2 June 1983

FILE PARAMETERS

5.5 Layout of the File Parameter Block
Byte
01 | reserved
09 ; record length
11 blocking factor
12 file organization
13 reserved, must contain 1
14 1/0 option
15 reserved
17 file name
25 logging (only EDM)
26 growth factor
27 data volume name 1
33 file size 1
37 data volume name 2
43 file size 2
47 data volume name 3
53 file size 3
57 data volume name 4
63 file size 4
From here, |
only for -—- --|
indexed e | index volume name
files |
73 index file size, for EDM
77 ’ number of indexes
78 ; reserved
M23A 5.5.1

June 19873

FILE PARAMETERS

Index
descriptor 1 —-|
79 reserved
80 index type
81 conditional index (only EDM)
82 expression
83 conditional item displacement
85 conditional item value
86 number of key items
Key
descriptor 87 key displacement
89 key length
90 reserved
For L- and X-files, bytes 67 - 88 contain:
67 file record number (LRN)
71 number of users
72 reserved
73 sharability
74 reserved
75 reserved
76 reserved
77 reserved
79 creation date
85 retention period
88 | reserved
M23A 5.5.2

June 1983

Chapter 6

DISK FILE HANDLING INSTRUCTIONS

6.1 INTRODUCTION

The CREDIT instruction set for disk file handling is described in
this chapter. The same instructions are used for all packages. The
description is based on the instruction set supported by SDM;
instructions, options and features not supported by ADM are marked
with '"not in ADM" and instructions, options and features only
supported by EDM are marked with "only for EDM".

Each section starts with a functional description of the instruction,
then the parameters are discussed and one or more examples are given
at the end.

Statements listed at the foot of the pages should be used for reference
to the CREDIT Reference Manual (module M4A), where syntax and further
information on the statements can be found. The TOSS release 12.0
version of the CREDIT Reference Manual should be used.

M23A 6.1.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.1.1 Survey of Disk File Handling Instructions

File handling instructions:

OPEN .DOUT
OPEN .EXT

OPEN .IN

OPEN .INOUT
OPEN .SOUT

CLOSE

CLOSE .DROP

POSIT .DIR
POSIT .IXDIR

DSC X'19

’

Create a new file and open for direct output
Open and Extend an existing standard file for
sequential output

Open an existing file for input only

Open an existing file for input and output
Create a new file and open for sequential output

Close file
Close and delete file

Set Current Record Number on specified record (not ADM)
Set Current Record Number on record with specified key
(not ADM)

Read File Parameters

Record handling instructions

READ .DIR
READ .SEQ
READ .IXDIR
READ .IXSEQ

WRITE .D

IR

WRITE .SEQ
WRITE .IXDIR
WRITE .IXSEQ

REWRITE
REWRITE
REWRITE

DISCARD
DISCARD
DISCARD

.CUR
.DIR
+IXDIR

«CUR
.DIR
«IXDIR

Read record with specified relative key

Read next record using the relative key (not ADM)
Read record with specified symbolic key (not ADM)
Read record with next symbolic key (not ADM)

Write record with specified relative key

Write next record using the relative key

Write record with specified symbolic key (not ADM)
Write record with next symbolic key (only EDM)

Rewrite current record (not ADM)
Rewrite record with specified relative key
Rewrite record with specified symbolic key (not ADM)

Delete current record (not ADM)
Delete record with specified relative key
Delete record with specified symbolic key (not ADM)

Transaction Control Instructions (not ADM)

COMMIT

COMMIT .PROT

COMMIT .REL

ROLLBCK

M23A

Release the records accessed during the current
transaction (dummy instruction for ADM)

Release the records accessed during the current
transaction except those on the specified files (only
EDM)

Release the records accessed during the current
transaction, on the specified files only

Rollback the current transaction (only EDM)

6.1.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.2 OPEN FILE

The Open instruction links a data file and any associated indexes to a
data set identifier. Open file can be used to open an existing file or
to create new files, both indexed {not for ADM) and non-indexed. An
existing file or file structure can be opened for input only (read
only) or for input and output.

In EDM, an implicit Commit is executed after a successful Open.
Operands to the instruction define:

- the File Parameter block

- the Open mode

— the Sharability

The No Wait option is not allowed for the Open instruction.

File Parameter Block

The application must supply information about the file and any
associated index files to be opened, in the File Parameter block.

Chapter 5 contains the layout of a File Parameter block required for
opening files. Bytes 1 to 66 are required for all files. Bytes 67 to 90
are required for all indexed files. Bytes 87 to 90 must be repeated for
each index item of a concatenated key (only for EDM), and bytes 79 to
90 must be repeated for every index defined for the file.

The parameters required for each Open mode are found in the diagram
below. The items that need not be supplied must be filled with binary
zeroes, and data management will set them to the proper value if they
are relevant for the file, after opening the file.

JIN |
OPEN .INOUT |
OPEN .DOUT
LEXT
OPEN .SOUT |

o
o
w
=4

<
ac]
™
=4

M23A 6.2.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

File Parameters required when opening a file,

’ Open Mode
Parameter [.SOUT j «DOUT JEXT . INOUT
Record Length II x I X
Blocking Factor " X ’ x
File Organization (X x) X x x
Device Type | x x
I I/0 Option , x x x x x
| File Name ' x X x x x
ll Logging Type |l b4 X X X X
| Growth Factor II x x X X
]' Data Volume Name(s) ll X X x X X
]' File Section Size(s) | x X |l
| oeEw i l
OPEN .INOUT
OPEN .DOUT
| OPEN .EXT |
| OPEN .SOUT |
M23A 6.2.2 June 1983

NTSK FILE HANDLING INSTRUCTIONS

Additional parameters for indexed files

Open Mode |
Parameter LN | LsouT .DOUT | .INOUT
t
Index Volume Name [} X | x |
fndex Size } X only EDM
Number of Indexes x : X x
Internal Index 1Id {
Tndex Type X E X X
Conditional Index x X x
Expression Value | X ‘ X X
| only
Conditional Ttem | x X X EDM
| Displacement |
| Conditional Item Valuet X X =
Number ot Key Items g > | X X
-Key Ttem Displacement }_ S | X X
Key [tem Length { x X X

The numeric items in the File Parameter block are binary values,
the alphanumeric fields such as file name, must contain IS0-7

characters.

Since the File Parameter block must be on a word boundary, it is
advisable to place it before any BCD or STRG declarations in the

workblock.

Opening an existing indexed file under SDM

When an indexed file structure is opened under SDM, only the indexes
specified in the File Parameter block are opened. For each index that
is opened, a currency buffer is reserved and the master index is read

into memory.

M23A

-IN
+<INOUT
.DOUT
JEXT
.S0UT

<
o
ez
Z

June 1983

DISK FILE HANDLING INSTRUCTIONS

When an indexed file is opened with Open mode Input under SDM, only the
indexes that are needed for record access need to be specified. It is
also possible to set the Number of Indexes and all other index
parameters except Index Volume Name, to zero. In that case all the
indexes of the file will be opened.

When an indexed file structure is opened for input/output under SDM,
all the indexes of the file should be opened. If not, the indexes that
have not been opened will not be updated when the data file is updated
and then the files will be inconsistent.

Opening an existing indexed file under EDM

When an indexed file structure is opened under EDM, the I file is
opened and all indexes are updated when the data file is updated. Only
the indexes needed for record access (either for input only or
input/output) need to be specified. The indexes may be specified in any
order.

When opening and indexed file under EDM it is also possible to set the
number of indexes and all the index parameters except for the Index
Volume Name to zero in the File Parameter block. The index descriptor
block from the I file is then read into the File Parameter block. The
File Parameter block length specified in the instruction determines the
number of indexes that are opened. The indexes are opened in the order
in which they are defined in the index descriptor block.

Open Mode

The Open mode specifies the type of access for which the file is
opened. The instructions Close File and Read File Parameters (DSC) are
allowed for every Open mode.

There are five Open modes:

.IN Input. Records can be read from the file but not written to
it, The only record handling instructions allowed are all
types of READ and POSIT.

. INOUT Input/Output. Records can be read from and written to the
file. All record handling instructions are allowed.

.S0UT Sequential Output. A new standard file is created and
records can be written to the file sequentially. The only
record handling instruction allowed is WRITE .SEQ.

M23A 6.2.4 June 1983

DISK FILE HANDLING INSTRUCTIONS

.houT

«EXT

The new file is not formatted at the Open instruction. When
the file is closed, the part after the LRN will be formatted
automatically.

In EDM only, Open .SOUT can also be used for the creation of
a new indexed file, The instruction WRITE .IXSEQ is then
allowed. an E file created with Open .SQUT will be formatted
by the Open instruction.

Direct Output. A new file is created and formatted, and
records can be written to the file directly, via the
relative key, and for indexed files, via the prime key. The
only record handling instructions allowed are WRITE .DIR and
WRITE .IXDIR, For Standard files, WRITE .SEQ is also allowed.

Extend. Records can be added sequentially to an existing
standard file. The only record handling instruction allowed
is WRITE .SEQ. The added file extent is not formatted. When
the file is closed, the part after the LRN will be formatted
automatically.

Open modes .IN, .INOUT and .EXT are only allowed for existing files.
Open modes .SOUT and .DOUT can only be used for creation of new files.

In SDM and ADM, a second task opening the same file must specify the
same Open mode as the first task that opened the file. In EDM the Open
mode need not be the same.

Sharability

The Sharability specifies the protection required for the opened file.
There are three types of Sharability:

NPROT

«PROT

M23A

Unprotected. The file can be opened by all tasks, and no
records are protected. This is only allowed with Open mode
.IN.

Protected. The file can be opened by all tasks, but any
accessed records are held under exclusive access for the
requesting task until a Commit, Rollback (EDM only) or Close
instruction is executed. This is only allowed with OPEN mode
.IN or .INOUT. Under EDM, when a file is opened with
Sharability PROT, instructions with the No Wait option (see
M21A) are not allowed for the file.

OPEN ,INOUT
OPEN .DOUT
OPEN JEXT

| OPEN .SOUT |

6.2.5 June 1983

DISK FILE HANDLING INSTRUCTIONS

.EXCL Exclusive. The complete file is held under exclusive access
for the task that issues the Open instruction, and no other
task can open it. This Sharability is allowed for all Open
modes and it must be used with Open mode .SOUT, .DOUT or
.EXT, or if the file is to be deleted with a Close .DROP
instruction.

In SDM and ADM, a second task opening the same file must specify the
same Sharability as the first task that opened the file., If the
Sharability is .EXCL, a second task can not open the same file.

In EDM, when a file is opened protected (,PROT), and transaction
logging is not done, file consistency may be lost in the case of an
automatic rollback.

In EDM, the Sharabilities need not be the same. If the Sharabilities
specified are not in conflict the file will be opened and also be
available to the second task. The combinations of Sharabilities allowed
in EDM are shown in the diagram below.

task 1 | |
| task 2 ‘ .NPROT | .PROT ’ LEXCL ‘
} «NPROT } I es } no %
l | | |
| +PROT | ves | vyes | no |
} JEXCL ' no } no I ‘

Return Information
Condition Register

After the execution of the Open instruction, the Condition Register
will be set to one of the following values:

|CR Value| Meaning

|
| 0 | Tile open successful
| 2 | Error

M23A 6.2.6 June 1983

DISK FILE HANDLING TNSTRUCTIONS

More information may be found in the Status Word and the Return

Status. The Status Word is obtained with the XSTAT instruction and the
Return Status with the RSTAT instruction. All possible values are found
in Chapter 10.

Currency

After a successful Open instruction the CRN and the currency for the
indexes will be set to zero so that the first data record is accessed
by the first Read Sequential instruction and the record associated with
the first index entry by a Read Indexed Sequential inmstruction.

Corrupt EDM File

In EDM the first byte of the I file is a status byte, indicating if the
files are in a consistent state (status byte =0) or corrupt (status
byte =1). If at an Open it appears that the files are corrupt, the Open
is unsuccessful, In that case the value of the Condition Register will
be zero, the Status Word has bit 8 set, the value of the Return Status
= 2 (1/0 error) and the value of the Supplementary Return Status = 254
(File Corrupt). If this occurs it is best to run the recovery and
restart the system.

Example of the OPEN Instruction

OPEN DSDK1, .INOUT, .PROT, PBLOK,LEN
DSDK1 This is the data set identifier for the disk file.

+INOUT Open mode. An Open mode of .INOUT permits execution of all
data management instructions.

+PROT Sharability .PROT causes all records accessed to be held under
exclusive access for the task, but allows other tasks to
access other records in the file.

PBLOK This is the name of the string data item containing the File
Parameter block.

LEN This is a binary data item containing the used length of the
¥ile Parameter block. In the above declaration this data item
holds the value 66.

(o]
o
)
=1
.

I
=z

M23A 6.2.7 June 1983

DISK FILE HANDLING INSTRUCTIONS

Example of a File Parameter Block

The File Parameter block in this example has been defined as a dufimy
structure in the Data Division.

CB1 STRUC
DUMM STRG 22X°0°
FILEORG STRG 2X°0°
DUMO STRG 2X°0°
RWOPTN STRG 2X°01°
DUM1 STRG 4X70°
FILENAM STRG 8C’ACCDEV *
LOGG STRG 2X'03"
GRWTH STRG 2X°107
VOL1 STRG 6CDEVMTL”
DUM3 STRG 8X’0’
VOL2 STRG 6C” ¢
DUM4 STRG 8X0”
VOL3 STRG 6C" *
DUM5 STRG 8X’0°
VOLS STRG 6C’ 7
DUM6 STRG 8X’0’
STRUCE ~ CBI!
*
DBl DSTRUC CB1
PBLOK STRG 66
STRUCE DBl

M23A 6.2.8 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.3 CLOSE FILE

The Close file instruction is issued by a task to indicate that it no
longer requires access to the file. It is also possible to delete a
file with the CLOSE instruction.

The Close instruction causes the following events to occur:

- EDM and SDM execute an implicit Commit. Any records held under
exclusive access when the instruction is executed are released.

- If the file has been opened exclusive, The exclusive access is now
released and the file may be opened by other tasks.

- The block buffer is written to disk unless the same block is
currently accessed by another task.

- If no other task currently has this file open, the LRN or, for EDM
files, the start of the free record chain, is updated in the VTOC.

- If a standard file has been created or extended the part after the
LRN will be formatted.

The No Wait option is not allowed for the Close instruction.
For a file opened with Delay option (see section 8.7.2), only after a
successful Close instruction is it certain that all updates have been

written to the files on disk.

Close and Delete File

An operand to the instruction may be used to specify that the file must
be deleted after execution of the Close.

.DROP Delete file. The file will be deleted after the Close. The VTOC
records of the data file and the index file if any, are deleted
from the volumes where they reside. The files can no longer be
accessed. Deletion is only allowed for files opened with
Sharability .EXCL.

Return Information

The Condition Register will be set to one of the following values as a
result of the execution of this instruction.

|CR Value| Meaning |
l |
! 0 | File successfully closed |
| 2 | Error

More information may be found in the Status Word and the Return

Status. The Status Word is obtained with the XSTAT instruction and the
Return Status with the RSTAT instruction. All possible values are found
in Chapter 10.

| CLOSE
| CLOSE .DROP |

M23A 6.3.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

If Close .DR(P is issued for a file that is not under exclusive access,
a normal Close is executed. The Condition Register will be zero and bit
8 is set in the Status Word. The Return Status value will be 6 "Illegal
Close option".

When errors occur during execution of a Close, no recovery can be
done. EDM will as much as possible leave files and Monitor table in a
consistent state. In EDM, the status byte of an I file involved may be
set to 1, "file corrupt".

Examples of the Close Instruction

Close File
CLOSE DSDK1
DSDK1 This is the data set identifier for a disk file. The file

currently open on this data set identifier will be closed.

Close and Delete File

CLOSE .DROP, TEMPFL
.DROP This is the keyword indicating that the file must be deleted.

TEMPFL This is the data set identifier for a disk file. The file
currently open on this data set identifier will be closed and
deleted.

| CLOSE
| CcLOSE .DROP |

M23A 6.3.2 June 1983

6.4 SET CUKRENT REUwii

LoE ADM)

NS

The POSIT instructicn is used 2o
index file to such a value tha:
Indexed Sequential instrvuction

the currency for the data file or
subsequeat Xead Sequential or Read
<3505 the record specified.

The value of the CRN zfter o rOSIT instruction will be one less than
the relative key of the record speciiied, subject to the rules
mentioned below, because the CRN is inccemented prior to a sequential
file access.

The POSIT iunstruction is alilowed for fiies opened successfully for
Input or Input-Dutput.

The record may bhe specified by t&
(part of) a symbolic key (PUSIT lud

velative key (POSIT Direct) or by
ad).

In SDM, the CRN set by a ¥O0SIT instruction can only be used for Read
(indexed) Sequential instructions. in EDM, the currency set by POSIT
can also be used for Rewrite and viscard Current.

1f the file was opened wiid Sharaniiity .PROT, the record specified
will be held under exclusive access f the task. If the record is
already under protected acc~gs, o} uction is not successful.

Under EDM, if the file was opened
option is not allowed rur this i

in siarability PROT, the No Wait
uvetion.

In SDM and in EDM it no transecs i ing is done, it is recommended
to use the POSIT imstruction to set currencies for the files at the
start of every transaction, aiter « {omuit instruction. After a
programmed (in %DM} ¢r @utowmatic Rollback during the transaction, the
application may then go back to this point and restore the currencies
of the files for reprocessing the transaction.

. e

Operands to the instruction defimnc:

-~ the access type

- the POSIT type

- the relative record key or the symbolic key

Access Type

There are two possible access types Lor the POSIT instruction:

.DIR Direct. The record is specified by the relative key. After the
POSIT, the record required van be accessed with a READ .SEQ
instruction.

-IXDIR Indexed Direct. fhe record is specified by a symbolic key or
the part of a symbelic key. After the POSIT, the record
required can be accessed witio ¢ READ .IXSEQ imstruction.

i POSTT LB |

i PUSLE JIADIK |

MZ23A o4 i June 1983

R S AN \

DISK FILE HANDLING INSTRUCTIONS

The part of the key to be checked can be indicated by the

application by specifying a keylength different from the actual

keylength. The remainder of the key will not be checked and
Positioning is on the first record with a key starting with
specified characters. This makes it possible to position at
start of a series of keys. In EDM, the keylength is the sum
the lengths of the key items.

POSIT Type
There are three types of positioning, each indicated by a value:

0 - Equal: The CRN is set to the record pointed to by the relative
specified. The record may be "used" or "free'".

The index currency is set to the record identified by the
specified symbolic key (or part of it) according to the index
specified for the instruction. The record is always "used". If
record is not found, the error message "Key not found" is
returned.

the
the
of

key

the

1 -~ Greater: The CRN is set to the next "used" record pointed to by

the specified relative key.

The index currency is set to the record identified by the symbolic
key (or part of it) next to the key specified, according to the

index specified for the instruction.

2 - Not-less: The CRN is set to the record pointed to by the specified

relative key if this record is "used", or to the next "used"
record if this one is "free",

The index currency is set to the record identified by the symbolic

key (or part of it) specified if it exists, or to the record
identified by the next symbolic key according to the index
specified for the instruction.

Examples of POSIT Types

Fig 6 - 1 is a stylised part of a file layout, with examples showing
the effect of the POSIT type on the resulting value of the CRN for this

file.

| POSIT .DIR
| POSIT .IXDIR |

M23A 6.64.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

Logical
Record Data Section of the Status
Number Record Byte ‘FF'= "used"
‘00'= "free"
06 l [FF|
07 | [FE|
08 | 00|
09 | 00|
10 | [FF|
11 | JFF|
12 | 100 |

Fig 6-1 Example of POSIT Types

POSIT on Equal (type = 0)

TYPE EQU X'0”
MOVE RECNO,=X"A"
POSIT .DIR,DSDK1,RECNO, TYPE

The CRN will be set to 9 and the next record to be accessed will be
record 10.

POSIT on Greater (type = 1)

TYPE EQU X1’
MOVE RECNO,=X"7"
POSIT .DIR,DSDK1,RECNO, TYPE

The CRN will be set to 9 and the next record to be accessed will be
record 10. For POSIT on Greater, the search for a used record starts at
the record following that specified, so in this case the search for a
used record will start at record 8.

POSIT on Not-less (type = 2)

TYPE EQU X'2°
MOVE RECNO,=X"A’
POSIT .DIR,DSDK1,RECNO, TYPE

The CRN is set to 9 and the next record to be accessed will be record
10. For POSIT on Not-less, the search for a used record starts at
record 10.

POSIT .DIR
POSIT .IXDIR

M23A 6.4.3 June 1983

DISK FILE HANDLING INSTRUCTIONS

Return Information

The Condition Register will be set to one of the following values as a
result of the execution of this instruction.

greater than number of
records in file

CR Value Meaning i
0 Operation successful
1 End of File reached
2 Error
3 ' Attempt to use record number

The value of the currency (CRN) is not changed after an unsuccessful
POSIT instruction. After an unsuccessful POSIT .PIR on a standard file,
however, the Control Word will contain the relative key specified in
the instruction.

After a POSIT .IXDIR with Posti type O (equal), the CR is set to 2 and
bit 5 and 0 are set in the Status Word if the specified key is not

found.

Examples of the POSIT instruction

is

is
be

is

X1’
.DIR,DSDK1, RECNO,TYPE

the data set identifier for a disk file.

a decimal data item containing the relative key which
used to set the CRN pointer.

a value expression indicating the POSIT type required:

0 = equal, 1 = greater, 2 = not-less.

POSIT .DIR
TYPE EQU
POSIT
DSDK1 This
RECNO This
will
TYPE This
POSIT .IXDIR
TYPE EQU
MOVE
MOVE
MOVE
POSIT
M23A

X2’

STRG,=C" BAAAAAAA’
LEN,='8"

1X1D,="3"

. IXDIR,DSDKI, STRG,LEN, TYPE,IXID

| POSIT .DIR |
| POSIT .IXDIR |

6.4.4 June 1983

DISK FILE HANDLING INSTRUCTIONS

DSDK1

STRG

LEN

TYPE

IXID

This is the data set identifier for a disk file.

This is a string data item containing the key to be used to
position the currency of the index file, at the displacement
defined for the key in the File Parameter block.

This is a binary data item defining the length of the key
which is to be searched.

This is a value expression indicating the POSIT type required:
2 = not-less.

This is a binary data item or a literal constant specifying the
index to be used.

The currency for the index file I3 will be set to such a value that the
record with the key "BAAAAAAA" if it exists, else the record with the
next higher key value, will be accessed with a READ .IXSEQ instruction.

M23A

| POSIT .DIR |
| POSIT .IXDPIR |

6.4.5 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.5 READ FILE PARAMETERS

The File Parameters and the Current Record Number (CRN) are obtained by
the application with a Data Set Control (DSC) instruction. The File
Parameter block is the block specified in the OPEN instruction. Some of
the reserved fields will have had values inserted into them by the data
management.

The layout of the File Parameter block is found in Chapter 5.

The complete index descriptor is read from disk so that the index
descriptors returned are those specified when the file was created, and
in that order, independent of the indexes specified when the file was
opened.

The instruction is only accepted after a successful Open of the file
concerned. The instruction is allowed for each Open mode and
Sharability. The No Wait option is not allowed.

Operands to the instruction define:

~ The DSC control code. For Read File Parameters, this must be X’19°.

- The data item (BCD) where the CRN must be returned.

- The buffer where the File Parameters must be returned.

- The requested length. It is not necessary to read the complete File
Parameter block. The file parameters will be copied into the buffer
up to the specified length,

Return Information

The Condition Register will be set to one of the following values as a
result of the execution of this instruction.

[CR Value] Meaning
0 ' I/0 successful
| 2 | Error

The CRN is not affected.

M23A 6.5.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

Example of the DSC X’19’ Imstruction

An example of the DSC instruction used to obtain the File Parameters is
shown below:

FILEP

DSDK1

FILEP

COUNT

STRG

LEN

M23A

EQU X'19°
DSC DSDK1,FILEP,COUNT, STRG,LEN

This is the data set identifier for a disk file.

This is an equate identifier containing the control code. X197
is the control code for reading the file parameters.

This is a data item (BCD), which after execution of the
instruction, will contain the Current Record Number (CRN).

This is a string data item into which the file parameters will
be copied.

This is a binary data item, defining the length of the
buffer. After execution of the DSC instruction, LEN will
contain the number of bytes actually transferred. The number
of bytes transferred never exceeds the specified buffer
length.

For example, if the File Parameter of a sequential file
without indexes is read and LEN is set to 100, LEN will have
the value 66 after the instruction. On the other hand, if LEN

is set to 36, only the first 36 bytes of the File Parameter
block will be traunsferred to the buffer.

6.5.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.6 READ RECORD

The READ instruction is used to read records into the application
buffer. Records can be read from a file opened with Open mode .IN or
+INOUT. The record read will become the current record for the
requesting task.

If the file was opened with Sharability .PROT, the record read will be
held under exclusive access for the requesting task until the task
releases it with a COMMIT, ROLLBCK (only in EDM) or CLOSE.

Characters are read from the record iunto the string buffer specified in
the instruction until the number of characters given in the length
operand have been transferred or the end of the record is reached. If
the number of characters specified in the length operand is less than
the record length, the Condition Register will be set to 2 and bit 12
(Illegal length) is set in the Status Word.

Execution of the task issuing the READ will be suspended until the
instruction is completed, unless the No Wait option is specified in the
instruction. Under EDM, No Wait is not allowed for files opened with
Sharability .PROT,

Operands to the instruction define:

- Access type
- Application buffer
- Requested Length

Access Type
The access type may be

«SEQ Sequential. This access type is allowed for non-indexed and
indexed files opened with Open mode ,IN or .INOUT. The
"used" record following the current record according to the
relative key will be read. Records with status "free" are
ignored. The CRN is incremented before the record is
accessed. When a file is opened, the CRN is preset to zero
so the first READ .SEQ instruction will read the first
record in the file.

End of File is returned when the last record of the file
written by Write Sequential instructiomns, has been read.

.DIR Direct. This access type is allowed for standard and indexed
files opened with Open mode .IN or .INOUT. The record to be
read is identified by the relative key, specified by the
application.

| READ .SEQ

READ .DIR

READ .IXSEQ |
j READ .IXDIR |

M23A 6.6.1 June 1983

DISE FILE HANDLING TXSTRUCTIONS

If the relative key irts te a record with status "free",
the Condition Register will he o and bit 0 and 4, "No Data",
is set in the Status word. If the relative key points to a
record outside the physical data file, the Condition
Register is set to 3 and bit 2, "End of Medium'", is set in
the Status Word.

+IXSEQ Indexed Sequential, This access type is only allowed for
indexed files opened with Open mode .IN or .INOUT. Records
are read in the sequence in which the symbolic keys occur in
the index specified. If the end of the index has been
reached, the condition Register is set to 1l and bit 3, "End
of File'", is set in the Status Word.

If the current record has the same key as the next record,
the Condition Register will be zero and bit 6, "Duplicate
Key'", is set in the Status Word. This is not an error
message but an indication for the application.

When an indexed data file is opened, the currency for all
indexes is set to zero so that the first READ .IXSEQ
instruction will access the record associated with the first
index entry in the index specified.

SDM only maintalns one index currency at the time. This is
the most recently used index. The index currency of the
other indexes is set to zero.

EDM maintains the index currency for all indexes opened for
the file,

«IXDIR Indexed Direct. This access type 1= only allowed for indexed
files opened with Open mode .IN or .INOUT. The record to be
read is identified by a symbolic key. The key must be
supplied by the application, in the application record
buffer at the displacement defined in the index descriptor
for the index used.

If the key specified is a kev for which duplicates exist in
the file, the record associated with the first index entry
with the same key, is read. The other records with that key
can then be accessed by READ .IXSE{} instructions.
("Duplicate Key" is not returuned after READ .IXDIR.)

1f the requested symbolic key is not present in the
specified index, the Condition Register is set to 2 and bit
5 "Key not Found" is set in the Status Word.

} READ .SEQ
| READ .DIR
| READ .IXSEQ
| READ .IXDIR

M23A 6.6.2 June 1983

DISK FILF HANDLING INSTRUCTIONS

Return Information

After completion of the READ instruction, the following information is
returned:

Condition Register

The Condition Register will be set to one of the following values as a
result of the execution of a READ instruction:

JCR Valuel Meaning i
| | f
| 0 | Read successful |
| 1 | fnd of file reached

2 Error

3 End of device reached

More information can be obtained from the Status Word and the Reaturn
Status. All possible values are found in Chapter 10,

Effective Length
The actual number of characters read is returned in the length nperand.
The CRN

After successful completion of the READ instruction, the CRN point: to
the record read, independent of the access type. After Read Indexed
Sequential and Read Indexed Direct instructions, the currency of the
index file is set to such a value that the record associated with the
next index entry is accessed with the next READ .IXSEQ instruction.

If the READ is not successful, the value of the CRN is the same o=
before execution of the instruction, with the following exception:

After I/0 errors during a READ .SEQ on a standard file, the CRN will
point to the record that would have been read if the instruction had
been successful. The next READ .SEQ will than access the next rernrd.
In this way it is possible to pass badspots in a standard file.

The Control Word

After successful completinn of the READ instruction, the relative key
of the current record is returned in the Control Word. The Control Word
can be obtained by the application with a GETCW instruction.

If the READ is not successful, the value of the Control Word is the
same as before execution of the instruction, with the following
exception:

M23A 6.6.3 June 1983

After 1/0 ervers during a

the Control Word will canta
have been read if the instruosion

; vy oa READ WOIR on & standard file,
ive key of the record that would
«n successful.

1 thie

Examples of the READ Iasrruction

Read Sequential (READ .2

READ LSEQ,DSDKI, STRG, LEN

.SEQ Sequential, The CRN wili oe ircremented and the first "used"
record following the current record for data set DSDKI will be
read.

DSDK1 This is the data set identifier of rhe disk file.

STRG This is a string data item into which characters will be read.

It should be lacge erough to hoid one record.

LEN This is a binary ¢ iters contzining the number of characters
to be read (the record iengthi. Atcer execution it will
contain the actaal

L number o) chacacters read.

Read Direct (RE@nglQ{l

READ SR, DEDKY, STRG, LEN, RECHD

.DIR Direct. The record with the relatrive key value gpecified in
the operand RECKD will be read and the CRN pointer will be

updated.,
DSDK1 This is the data set identifier fov a disk file.
STRG This is a string data Iitem inzs which the characters will be

read. It should be large envueh to hold one record.

LEN This is a binarv dats item containing the number of characters
to be read (the record length). Afler execution this will
contain the actual number of churacters read.

RECNO This is a decimal data irem contalning the relative key value
of the record to b read.

READ .1XSEQ !
READ .IXDIR |

M23A hab6.4 June 1983

DISK FILE HANDLING INSTRUCTIONS

Read Indexed Direct (READ .IXDIR)

.IXDIR

DSDK1

STRG

LEN

IXID

READ .IXDIR,DSDKI, STRG,LEN,IXID

Indexed direct access. The record to be read is specified by a
symbolic key.

This is the data set identifier for a disk file.

This is a string data item into which the record will be
read. Before the instruction is executed, it must contain the
symbolic key of the record to be accessed at the displacement
defined for the key in this index.

This is a binary data item containing the number of characters
to be read (the record length). After execution it will
contain the actual number of characters read.

This is a binary data item or literal comnstant specifying the
internal index identifier {(index number) of the index to h-
used.

Read Indexed Sequential (READ .IXSEQ)

.IXSEQ
DSDKL1

STRG

LEN

< IXID

M23A

READ «IXSEQ,DSDK1, STRG,LEN,IXID
Indexed Sequential. The record to be read is the next in
sequence in the specified index.

This is the data set identifier for a disk file.

This is a string data item into which characters will be
read. It should be large enough to hold one record.

This is a binary data item containing the number of characters
to be read (the record length). After execution this will

contain the actual number of characters read.

This is a binary data item or literal constant specifying thc
index to be used.

LIXSEQ |

=
=
e
=)

6.6.5 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.7 WRITE RECORD

The WRITE instruction is used to write new records from the application
buffer to the file. Records can be written to files opened with Open
mode .DOUT, .SOUT, .EXT or .INOUT. The record written will become the
current record for the requesting task after Write Sequential
instructions on files opened with Open mode .SOUT or .EXT.

New records can only be written to records with the status "free". If
the WRITE is successful, the record status will be set to "used".

The new record is written from the application record buffer. The
buffer should be long enough to hold one record. The characters are
transferred sequentially until the end of the buffer is reached. If the
buffer is shorter than the number of characters defined in the record
length, the Condition Register is set to 2 and bit 12, "Incorrect
Length'", is set in the Status Word.

If the file is indexed, the new record is identified by the prime key.
The new data record is written to the first free position after the LRN
(for SDM) or to the first free record in the file (for EDM) and the
index entries are inserted in the index files in the correct places.
Under SDM, all index files should have been opened. Master indexes are
not updated. Under EDM, all indexes are updated.

If the file was opened with Sharability .PROT, the record written will
be held under exclusive access for the requesting task until the task
releases it with a COMMIT, ROLLBCK (only in EDM) or CLOSE.

Execution of the task issuing the WRITE will be suspended until the
instruction is completed, unless the No Wait option is specified in the
instruction. Under EDM, No Wait is not allowed for files opened with
Sharability .PROT.

Operands to the instruction define:

- Access type

- Application buffer

Access Type

The access type may be

.SEQ Sequential, WRITE SEQ is allowed for standard files opened
with Open mode .SOUT, .DOUT, .EXT or .INOUT.

WRITE .IXSEQ

M23A 6.7.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

.DIR

«IXDIR

. IXSEQ

M23A

The record will be written to the first "free" record
following the record pointed to by the Last Record Number
pointer (LRN). After a successful WRITE .SEQ the LRN is
incremented. The CRN is only incremented if the Open mode
was .SOUT or .EXT. When a new file is created, the LRN is
set to zero so the first WRITE .SEQ instruction will write
the first record in the file.

If the end of the physical file space has been reached and
the file is not automatically enlarged, the Condition
Register will be set to 1 and bit 3, "End of File", is set
in the Status Word.

Direct. WRITE .DIR is allowed for standard files opened with
Open mode .DOUT or .INOUT. The record to be written is
identified by the relative key, specified by the
application. The currency is not affected by Write Direct
instructions.

If the relative key points to a record with status "used",
the Condition Register is set to 2 and bit 9, "Duplicate
Error", is returned in the Status Word.

If the relative key points to a record outside the physical
data file, the Condition Register is set to 3 and bit 2,
"End of Medium" is set in the Status Word together with bit
0.

Indexed Direct. WRITE ,IXDIR is allowed for indexed files
opened with Open mode .DOUT or .INOUT. The prime key must be
supplied by the application, in the application record
buffer at the displacement defined in the index descriptor.
The currency is not affected by Write Indexed Direct
instructions.

If the prime key exists already in the primary index file,
the Write is not executed. The Condition Register is set to
2 and bit 9, "Duplicate Key", is set in the Status Word.

Indexed Sequential (only EDM). WRITE .IXSEQ is only allowed
for indexed files opened with Open mode .SOUT. Records must
be supplied by the application in sequence of the prime
key. All indexes defined for the file are updated. The
currency is not affected by Write Indexed Direct
instructions.

If the prime key of the new record is not greater than the
prime key of the last record written, the Write is not
executed. The Condition Register is set to 2 and bit 5
"Invalid Key", is set in the Status Word.

| WRITE .SEQ |
WRITE .DIR |
WRITE .IXSEQ |
| WRITE .IXDIR

6.7.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

Return Information

After completion of the WRITE instruction, the following information is
returned:

Condition Register

The Condition Register will be set to one of the following values as a
result of the execution of a WRITE instruction:

JCR Value| Meaning |
| |
0 l Read successful |
1 { End of file reached |

| 2 | Error
| 3 | End of device reached |

More information can be obtained from the Status Word and the Return
Status. All possible values are found in Chapter 10.

The CRN

The CRN will be set to the record just written for a standard file
opened for Output Sequential or Extend. For other file types and files
opened in other Open modes, the CRN and the index currency are not
affected.

If the WRITE is not successful, the value of the CRN is the same as
before execution of the instruction.

The Control Word

After successful completion of the WRITE instructiom, the relative key
of the record written is returned in the Control Word. The control Word

can be obtained by the application with a GETCW instruction.

1f the WRITE is not successful, the value of the Control Word is the
same as before execution of the instruction.

WRITE .IXSEQ

M23A 6.7.3 June 1983

DISK FILE HANDLING INSTRUCTIONS

Examples of the WRITE Instruction

Write Sequential (WRITE .SEQ)

.SEQ

DSDK1

STRG

WRITE .SEQ,DSDK1, STRG

Sequential. The record is written to the position after that
indicated by the current contents of the LRN. The LRN
sointer held in memory will be incremented.

This is the data set identifier of the disk file.

This is a string data item from which characters are
written. It should be large enough to hold one record.

Write Direct (WRITE .DIR)

.DIR

DSDK1

STRG

RECNO

WRITE .DIR,DSDKI, STRG,RECNO

Direct. The record is written to the position indicated by
the relative key supplied by the application.

This is the data set identifier of the disk file.

This is a string data item from which characters are
written. It should be large enough to hold one record.

This is a decimal data item (BCD) containing the relative
key of the record to be written.

Write Indexed Direct (WRITE -1:iDIR)

«IXDIR

DSDK1

STRG

M23A

WRITE .IXDIR,NSDKL, STRG

Indexed Direct. The contents of STRG is written to the file
opened on data set identifier DSDK1, and the corresponding
index entries are inserted in the associated index files, In
$DM, the record is written to the first free record after
the LRN. In EDM., the record is writtem to the first free
record in the free record chain of the data file.

This is the data set identifier for a disk file.
This is a string data item from which characters will be
written. It should be large enough to hold one record. The

string data item must contain the prime record key at the
displacement defined for the key of the primary index.

6.7 .4 June 1983

DISK FILE HANDLING INSTRUCTIONS

Write Indexed Sequential (WRITE .IXSEQ)

WRITE «LXSEQ,DSDK1,STRG

+IXSEQ Indexed Sequential. The records must be supplied in sequence
of the prime key.

DSDK1 This is the data set identifier for a disk file.
STRG This is a string data item from which characters will be
written. It should be large enough to hold one record. The

string data item must contain the prime record key at the
displacement defined for the key of the primary index.

WRITE .IXSEQ

M23A 6.7.5 June 1383

DISK FILE HANDLING INSTRUCTIONS

6.8 REWRITE RECORD

The REWRITE instruction is used to write an updated record from the
application buffer to the file. Records can only be rewritten to files
opened with Open mode .INOUT. The Rewrite instruction does not affect
the currency.

Records can only be rewritten to records with the status "used". Before
a record is rewritten to the file it should have been read, but this is
not checked by data management.

The record is written from the application record buffer. The buffer
should be long enough to hold one record. The characters are
transferred sequentially until the end of the buffer is reached. If the
buffer is shorter than the number of characters defined in the record
length, the Condition Register is set to 2 and bit 12, "Incorrect
Length", is set in the Status Word.

Under SDM, if the file is indexed, all record keys must be unchanged.

Under EDM, if the file is indexed, the value of the prime key must not
be changed. If alternate keys and conditional keys have been updated,
all indexes are updated. New index entries are generated and the old
ones removed from the index file.

If the file was opened with Sharability .PROT, the record rewritten
will be held under exclusive access for the requesting task until the
task releases it with a COMMIT, ROLLBCK (only in EDM) or CLOSE.

Execution of the task issuing the REWRITE will be suspended until the
instruction is completed, unless the No Wait option is specified in the
instruction. In EDM, No Wait is not allowed for files opened with
Sharability .PROT.

Operands to the instruction define:

— Access type
- Application buffer

Access Type

.CUR Current. Rewrite Current is allowed for standard and indexed
files opened with Open mode .INOUT. The current record is
rewritten.

SDM: After a POSIT instruction, Rewrite Current will rewrite
the record last accessed by a Read instruction.

EDM: After a POSIT instruction, Rewrite Current will rewrite
the record selected by the POSIT instruction.

| REWRITE .CUR |
| REWRITE .DIR |
| REWRITE .IXDIR |

M23A 6.8.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

.DIR Direct. Rewrite Direct is allowed for standard files opened
with Open mode .INOUT. The record to be rewritten is
identified by the relative key, specified by the
application.

If the relative key points to a record with status "free",
the Condition Register is set ot 2 and bit 4, "No Data", is
set in the Status Word together with bit O.

If the relative key points to a record outside the physical
data file, the Condition Register is set to 3 and bit 2,
"End of Medium" is set in the Status Word together with bit
0.

+IXDIR Indexed Direct. Rewrite Indexed Direct is allowed for
indexed files opened with Open mode .INOUT. The prime key of
the record must be unchanged.

In SDM, all keys must be unchanged.

In EDM, if alternate keys have been changed, the associated
indexes will be updated.

Under EDM, if one of the alternate keys for which duplicates
are allowed exist already, the Condition Register will be
zero and bit 6 "Duplicate Key" is set in the Status Word.

If one of the alternate keys for which duplicates are not
allowed exist already, the condition Register is set to 2

and bit 9 "Duplicate Key not allowed" is set in the Status
Word. The Rewrite is not executed.

If the prime key has been changed, the Rewrite is not
executed. The Condition Register will be zero and bit 8, "DM
rule violated", is set in the Status Word. The Return Status
is set to 2 and for EDM the Supplementary Return Status has
the value 214.

REWRITE .CUR
REWRITE .DIR
| REWRITE .IXDIR |

M23A 6.8.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

Return Information

After completion of the REWRITE instruction, the following information
is returned:

Condition Register

The Condition Register will be set to one of the following values as a
result of the execution of a REWRITE instruction:

CR Value Meaning
0 Read successful
2 Error
3 End of device reached

More information can be obtained from the Status Word and the Return
Status. All possible values are found in Chapter 10.

The CRN

The currency is not affected by Rewrite instructions. In EDM however,
if the currency had been set by a POSIT instruction, the currency will
be set to the record rewritten with a Rewrite Current so that a
subsequent Read Sequential will access the record following the record
rewritten.

The Control Word

After successful completion of the REWRITE instruction, the relative
key of the record rewritten is returned in the Control Word. The
Control Word can be obtained by the application with a GETCW
instruction.

If the REWRITE is not successful, the value of the Control Word is the
same as before execution of the instruction, with the following
exception:

After I/0 errors during a REWRITE .CUR or a REWRITE .DIR on a standard
file, the Control Word will contain the relative key of the record that
would have been rewritten if the 1/0 had been successful

| REWRITE .CUR |
| REWRITE .DIR |
| REWRITE .IXDIR |

M23A 6.8.3 June 1983

DISK FILE HANDLING INSTRUCTIONS

Examples of the REWRITE Instruction

Rewrite Current (REWRITE .CUR)

REWRITE LCUR,DSDKT, STRG

-CUR Current. The contents of the string data item is written
back to the record indicated by the current record number.
The contents of the CRN are unot affected by execution of
this instruction.

NShK1 This is the data set identifier of the disk file.

STRG This is a string data item. It contains the characters to be
written and must be large enough to hold one record.

Rewrite Direct (REWRITE«;BISZ
REWRITE .DIR,DSDK1,STRG,RECNO

.DIR Direct. The contents of the string data item is written back
to the record with the specified relative key.

DSHK1 This is the data set identifier for a disk file.

STRG This is a string data item from which characters are
written. Tt should be large enough to hold one record.

RECNO This is a decimal data item containing the relative key of
the record to be rewritten.

Rewrite Indexed Direct (REWRITE .1XD{B)

REWRITE .1XDIR,DSDKI1,STRG

.IXDIR Indexed Direct. The contents of the string data item is
written back to a record in the data file. The record
overwritten as a result of this instruction will be the
record whose prime key matches the prime key of the record
held in the string.

DSDK! This is the data set identifier for the disk file.

STRG This is a string data item from which characters will be
written. It should be large enough to hold one record. The
string data item must contain the prime record key at the
displacement defined for the key of the primary index.

| REWRITE .CUR |
| REWRITE ,DIR |
| REWRITE LIXDIR |

M23A 6.8.4 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.9 DISCARD RECORD

The Discard instruction is used to delete a record from the file.
Records can only be deleted from files opened with Open mode .INOUT.
Only records with status "used" can be deleted. The status will be set
to "free'.

If the file is indexed, the index files opened for the file are updated
under SDM. Master indexes are not updated. All indexes should have been
opened, Under EDM, all indexes are updated automatically.

If the file was opened with Sharability .PROT, the record deleted will
be held under exclusive access for the requesting task until the task
releases it with a COMMIT, ROLLBCK (only in EDM) or CLOSE.

Execution of the task issuing the DISCARD will be suspended until the
instruction is completed, unless the No Wait option is specified in the
instruction. Under EDM, No Wait is not allowed for files opened with
Sharability .PROT.

Operands to the instruction define:

- Access type
- Application buffer

Access Type

The access type may be

.CUR Current. Discard Current is allowed for standard and indexed
files opened with Open mode .INOUT. The current record is
deleted.

SDM: After a POSIT instruction, Discard Current will delete
the record last accessed by a Read instruction.

EDM: After a POSIT instruction, Discard Current will delete
the record selected by the POSIT instruction.

.DIR Direct. Discard Direct is allowed for standard files opened
with Open mode ,INOUT. The record to be rewritten is
identified by the relative key, specified by the
application.

If the relative key points to a record with status "free",
the Condition Register is set to 2 and bit 4, "No Data", is
set in the Status Word together with bit 0.

| DISCARD .CUR |
DISCARD ,DIR
DISCARD .IXDIR

M234 6.9.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

If the relative key points to a record outside the physical
data file, the Condition Register is set to 3 and bit 2,
"End of Medium'" is set in the Status Word together with

bit 0.

<IXDIR Indexed Direct. Discard Indexed Direct is allowed for
indexed files opened with Open mode .INOUT. The record is
identified by the prime key.

Return Information

After completion of the DISCARD instruction, the following information
is returned:

Condition Register

The Condition Register will be set to one of the following values as a
result of the execution of a DISCARD instruction:

|CR Value] Meaning
|
0 Discard successful
2 Error
| 3 | End of Device |

More information can be obtained from the Status Word and the Return
Status. All possible values are found in Chapter 10.

The CRN

The CRN is not affected by Discard Direct or Indexed Direct
instructions. After a Discard Current, the currency will be such that a
subsequent Read Sequential or Read Indexed Sequential instruction will
access the next record or the record associated with the next index
entry according to the last used index.

The Control Word

After successful completion of the DISCARD instruction, the relative
key of the record deleted is returned in the Control Word. The Control
Word can be obtained by the application with a GETCW instruction.

If the DISCARD is not successful, the value of the Control Word is the
same as before execution of the instruction, with the following
exception:

DISCARD .CUR
DISCARD .DIR
| DISCARD .IXDIR |

M23A 6.9.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

After I/0 errors during a DISCARD ,CUR or a DISCARD .DIR on a standard
file, the Control Word will contain the relative key of the record that
would have been rewritten if the I/0 had been successful,

Examples of the DISCARD Instruction

Discard Current (DISCARD .CUR)

.CUR

DSDK1

DISCARD .CUR,DSDK1

Current. The current record is deleted from the file, If the
file is indexed, the associated index entries are also
deleted from the index files. After this instruction the
currency is such that the next "used" record according to
the last used access path is read with a Read (Indexed)
Sequential instruction.

This is the data set identifier of the disk file.

Discard Direct (DISCARD .DIR)

.DIR

DSDK1

RECNO

DISCARD .DIR,DSDK1,RECNO

Direct. The record with the specified relative key is
deleted,

This is the data set identifier for a disk file.

This is a decimal data item containing the relative key of
the record to be deleted.

Discard Indexed Direct (DISCARD .IXDIR)

. IXDIR

DSDK1

STRG

M23A

DISCARD .IXDIR,DSDKI,STRG

Indexed Direct. The record with a prime key with the same
value as the prime key of the record in application buffer
is deleted from the file, If the file is indexed, the
associated index entries are also deleted from the index
files.

This is the data set identifier for the disk file.

This is a string data item from which characters will be
written. It should be large enough to hold one record. The
string data item must contain the prime record key at the
displacement defined for the key of the primary index.

| DISCARD .CUR |
| DISCARD .DIR |
| DISCARD .IXDIR |

6.9.3 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.10 COMMIT

The COMMIT instruction is used to release records held under exclusive
access on a file opened with Open mode .PROT, and to initiate the next
transaction if transaction and/or function logging is done (only in
EDM). Only a certain number of records may be held under exclusive
access at any one time. This number is specified during Monitor
generation.

ADM does not support the Commit instruction. Commit instructions may be
used for compatibility with SDM or EDM and will be treated as dummy
instructions.

In SDM and EDM, a COMMIT is executed automatically when a CLOSE
instruction is executed.

In EDM only, a COMMIT is executed automatically after a successful OPEN
instruction.

If transaction logging is done for the files, the transaction log
information of the current transaction is deleted., If function logging
is done, the function log buffers are written to the function log file
on disk or tape.

NOTE

Commit does not result in any I/0 operations to the files on disk. At
what time the contents of the internal block buffer is written to the
disk is determined by data management, independent of the transaction
control functions.

The No Wait option is not supported for the COMMIT instruction.
Operands to the instruction define:

- Commit type
- The data sets to which the Commit type applies
— The data item where to store the return information

Commit Type

As an option, one of the following types may be specified. If no type
is specified, all records under exclusive access for the task are
released.

+REL Release. Commit with Release is used to release the records
held under exclusive access for a task on the specified
files only. Protected records from other files remain
protected.

COMMIT
COMMIT .PROT
| COMMIT .REL |

M23A 6.10.1 June 1983

~ AN

DISK FILE HANDLING INSTRUCTIONS

Commit with Release defines a "sub-transaction" in the
application. The transaction log information is deleted, if
transaction logging is being done for the files. This means
that the application is responsible for file consistency at
the point where a COMMIT .REL is issued.

At a subsequent automatic or programmed (only in EDM)
Rollback, the records of the files that were not released
with the COMMIT .REL instruction will also be released.

.PROT Protect. (only EDM). Commit with protection is used to
release the records held under exclusive access for a task
except those on the specified files. This defines a
"subtransaction" in the application. The transaction log
information is deleted, if transaction logging is being done
for the files. This means that the application is
responsible for file consistency at the point where a COMMIT
.PROT is issued.

At a subsequent automatic or programmed (only in EDM)
Rollback, the records of the files specified in the COMMIT
«PROT instruction will also be released.

Return Information

The Condition Register and the currency are not affected and the
Control Word is not used by the COMMIT instruction.

The return information of the instruction is returned in the binary
data item supplied in by the application, This may be set to one of the
following values:

Value Meaning
0 Successful completion.
-1 I/0 error, Additional information may be found in the

Status word. All possible values are listed in
Chapter 10.

-2 Data Management rule violated. Additional information
may be found in the Return Status and Supplementary
Return Status. All possible values are listed in
Chapter 10.

The values -1 and -2 can only be obtained when EDM is used and
transaction or function logging is done.

COMMIT
COMMIT .PROT |
| COMMIT .REL |

M23A 6.10.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

Examples of the COMMIT Instruction

Commit
COMMIT PARM
All records held under exclusive access for the task are
released.

PARM This is a binary data item. After execution of this

instruction it contains the return information.

Commit with Release (COMMIT .REL)

COMMIT.REL,PARM,DSDKI,DSDK3

«REL Commit with Release. Exclusive access is released only for
records from the files opened on data set identifiers DSDK1
and DSDK3.

PARM This is a binary data item. After execution of this

instruction it contains the return information.

Commit with Protection (COMMIT .PROT) (only for EDM)

COMMIT.PROT,PARM,DSDK1,DSDK3

.PROT Commit with Protection. Exclusive access is released for all
files except from those opened on data set identifiers DSDKIL
and DSDK3.

PARM This is a binary data item. After execution of this

instruction it contains the return information.

COMMIT
COMMIT .PROT
| COMMIT .REL |

M23A 6.10.3 June 19873

DISK FILE HANDLING INSTRUCTIONS

6.11 ROLLBACK (only for EDM)

The ROLLBCK instruction is used to abort the current transaction and to
release records held under exclusive access on a file opened with Open
mode .PROT.

If transaction logging is done, the before images of the records logged
during this transaction will be re-—applied to the disk files

concerned. The files are then in the consistent state they were in at
the previous Commit or Open, i.e. at the beginning of the transaction.
If transaction logging is done, the currency for data and index files
will also be reset to the value at the previous Commit. After that the
transaction log information of the current transaction is deleted.

If function logging is done, the function log buffers are written to
the function log file on disk or tape.

NOTE

If the previous Commit was a Commit with Protection or Commit with
Release, Rollback will also release the records for the files that were
not released. Consistency of these files is the responsibility of the
program.

Rollback does not necessarily result in the before images of records
being written back to the disk. They are restored to the internal block
buffers in EDM.

The No Wait option is not supported for the ROLLBCK instruction.

The operand to the instruction defines:

~ The data item where to store the return information

Return Information

After completion of the ROLLBCK instruction, the following information
is returned:

Condition Register

The Condition Register is not affected and the Control word is not used
by the ROLLBCK instruction.

M234 6.11.1 June 1983

DISK FILE HANDLING INSTRUCTIONS

The return information of the instruction is returned in the binary
data item supplied in by the application. This may be set to one of the
following values:

Value Meaning
0 Successful completion.
-1 I/0 error. Additional information may be found in the

Status word. All possible values are listed in
Chapter 10.

-2 Data Management rule violated. Additional information
may be found in the Return Status and Supplementary
Return Status. All possible values are listed in
Chapter 10.

The values -1 and =2 can only be obtained when transaction or function
logging is domne.

The Currency
Only if transaction logging is done, the CRN and the currencies of the
index files are reset to he values they had at the previous COMMIT or

OPEN instruction.

If no transaction logging is done, the currencies are not affected.

Examples of the ROLLBCK Instruction

Rollback
ROLLBCK CODE
CODE After execution of the Rollback, the return information will

be stored here.

M23A 6.11.2 June 1983

DISK FILE HANDLING INSTRUCTIONS

6.11.1 Automatic Rollback

1f EDM detects a deadlock situation, Rollback is performed automatically
for the task whose request caused the deadlock situation. The records
held under protected access by this task are released.

NOTE:

If the previous Commit was a Commit with Protection or Commit with
Release, Rollback will also release the records for the files that were
not released. Consistency of these files is the responsibility of the
program.

If transaction logging is done for the files concerned, the before
images of the records are written back to the file and the currency is
reset to the value it had at the previous Commit.

When this happens, the Condition Register is set to 2 and bit 11,
""Sequence Error / Rollback Performed" is set in the Status Word.

Deadlock

A deadlock situation arises if tasks require protected access to the
same records and start waiting for each other to release them.

Before a task goes into a wait state to wait for a record, the
protected record administration is checked by EDM. If this task then is
already holding a record which the other task is waiting for, this is
deadlock and the transaction for this task is rolled back. Deadlock
situations with more than two tasks involved are also detected.

The situation of two tasks waiting for each other’s records can be
partially avoided if different tasks all follow the same sequence of
accessing records.

In SDM, an automatic Rollback occurs if access is requested to a record
held protected by another task. There is no check if this is a real
deadlock situation. A COMMIT, releasing the record protection for all
records, is then executed for the second task, with the risk of file
inconsistency.

For SDM and for EDM if transaction logging is not used, the following
application design is recommended to avold inconsistent files.

All records needed for a transaction are read by the task, before any
record is updated. In this way the task has all records involved under
exclusive access for the duration of the transaction. If the

transaction is rolled back as a result of a Read for a record which is
not available, no information on the files will have been updated yet.

M23A 6.11.3 June 1983

Chaptexr 7

ABRIDGED DATA MANAGEMENT

7.1 INTRODUCTION

This chapter discusses the file types handled by ADM. A list of the
file handling instructions supported by ADM and a survey of the Status
Word and Return Status values that may be returned by ADM are also
included.

M23A 7.1.1 June 1983

ADM ABRIDGED DATA MANAGEMENT ADM

7.2 ADM INSTRUCTION SET

The following instructions are supported by ADM:

File Handling Instructiomns:

OPEN .DOUT Create a new file and open for direct output

OPEN .EXT Open and Extend an existing standard file for
sequential output

OPEN .IN Open an existing file for input only

OPEN .INOUT Open an existing file for input and output

OPEN .SOUT Create a new standard file and open for sequential
output

CLOSE Close file

CLOSE .DROP Close and delete file

DSC X197 Read File Parameters

Record Handling Instructions

READ .DIR Read record with specified relative key
WRITE .DIR Write record with specified relative key
WRITE .SEQ Write next record to a standard file, using the

relative key
REWRITE .DIR Rewrite record with specified relative key

DISCARD .DIR Delete record with specified relative key

The status of the records is not checked. The records addressed by
Rewrite and Discard instructions are assumed to be “used" and the
records addressed by Write inmstructions are assumed to be “free". A
Read Direct instruction can be used to check if the status of a record
is "used".

Sharability "Protected" is not supported. Record protection is the
responsibility of the application. Sharability "Protected" may be
specified for compatibility if required, it will then be treated as a
dummy option.

Sharability "Exclusive" is supported and will result in the task’s

exclusive access to the file.

Transaction control instructions are not supported. Commit instructions
may be included in the application for compatibility if required. These
will then be treated as dummy instructions.

M23A 7.2.1 June 1983

ADM ABRIDGED DATA MANAGEMENT ADM

7.3 FILE TYPES

ADM handles the following file types:

- Standard file
A Standard file is a file where the records are identified by the
relative key. Record length +1 must be a multiple of 256 bytes. The
blocing factor must be 1.

- Load file (L file)
An L file is a file containing a Monitor or application load module,
The records are identified by the relative key. The records of an L
file have no status byte. The record length is 256 bytes, the
blocking factor is 1. L files can not be split into a number of
extents.

- Undefined file (X file)
An undefined file is a file of which the internal structure is not
checked by data management. The records are identified by the
relative key. The records of an X file have no status byte. The
record lenght must be a multiple of 256 bytes, the blocing factor
must be l. X files may consist of a number of file extents and file
sections.

ADM may be included in the Monitor on its own or together with SDM or
EDM. In that case, S and E files will automatically be handled by SDM
or EDM, while the L and X files are handled by ADM.

M23A 7.3.1 June 1983

ADM ABRIDGED DATA MANAGEMENT ADM

7.4 FILE CREATION

S, L and X files to be handled by ADM can be created by ADM or by the
TOSS utilities.

74,1 File Creation under ADM

To create a file under ADM, the file must be opened for Qutput Direct.
For standard files, Open mode Output Sequential is also allowed. The
records are written to the file by Write Sequential or Write Direct
instructions. When the file is closed the LRN will be written to the
VTOC.

The remaining part of the file is not formatted with empty records when
the file is closed. The contents of records after the LRN is

undefined. For a standard file, the status byte of the records will be
set to "free".

7442 File Creation by TOSS Utilities

Creation of a file by the TOSS utility CRF is described in the TO0SS
Utility Reference Manual module M8A.

The restrictions for record length, blocking factor, number of extents
and sections for each file type are found in section 7.3.

7.4.3 Enlarging Files

Standard files are automatically enlarged by ADM if during Sequential
Write operations the end of the file is reached and the Growth Factor
is not zero. The file is enlarged by adding another extent, the size of
which is indicated by the Growth Factor in the File Parameter block.
ADM does not allow the user to add new file sections, on another
volume, to the files,

File enlargement is further discussed in chapter 2 section 2.6.

7.4.4 Buffer Management

ADM does not contain internal block buffers. All I/0 is performed
directly to and from the application buffer.

M23A 7.4.1 June 1983

ADM ABRIDGED DATA MANAGEMENT ADM

7.5 L AND X FILE HANDLING

L and X files can only be handled by a CREDIT application if Abridged
Data Management (ADM) is included in the Monitor. The file handling
instructions allowed are:

OPEN .IN Open the file for read only.
OPEN .DOUT Create a new file and open for direct output.
OPEN .INOUT Open the file for input and output.

CLOSE Close file.
CLOSE .DROP Close file and delete it from the disk.
DSC Read file parameters.

The record handling instructions available for L and X files are:

READ .DIR Read direct
WRITE .DIR Write direct
REWRITE .DIR Rewrite direct
DISCARD .DIR Delete record

To open an L or X file, the File Parameter block must be set up in the
same way as for data files. Numeric fields contain a binary value and
alphanumeric fields contain IS0-7 characters. The first 66 bytes of the
File Parameter block is the same as for data files, with the following
fixed data:

- Record leugth must be 256 for L files or a multiple of 256 for X
files.

- Blocking factor must be 1

- File organisation must be 2 for L files or 3 for X files.,

The File Parameter block must be extended with a further 22 bytes,
filled with binary zeroes, where ADM will store additional information
as described in Chapter 5, section 5.3.

Note also, that the binary data item containing the File Parameter
block length must contain a value of 88 (X'0058").

M23A 7.5.1 June 1983

ADM ABRIDGED DATA MANAGEMENT ADM

7.6 RETURN INFORMATION

This section lists briefly the error messages that can be returned by
ADM. A detailed description of the errors indicated by the status word
and the return status, and possible remedies, is supplied in Chapter
10, Return Information.

7.6.1 Status Word

In the Status Word, the following bits may be set by ADM:

Bit O Request error

2 Boundary violation

3 End of File

7 Retries performed

8 Data Management rule violated.
This bit can only be set after an ‘Open File’ instruction.
When it is set, the Return Status may also be obtained.

9 File opened exclusive for other task
10 New volume loaded
12 Incorrect length
13 Data error
14 Throughput error
15 Disk not operable.
7.6.2 Return Status

The Return Status will only have a significant value after the Open
File instruction. It may be set to one of the following values:

Overflow

Illegal file parameter

Illegal function option

File code already used (illegal file code)
File name or volume name unknown.

VN W

M23A 7.6.1 June 1983

Chapter 8

STANDARD DATA MANAGEMENT

8.1 INTRODUCTION

This chapter discusses the file types handled by SDM, aud how to create
them. The indexing mechanism for an indexed file structure for SDM is
explained. In addition, details of file enlargement under SDM and notes
on file maintenance are given. A list of the file handling instructions
supported by SDM and a survey of the Status Word and Return Status
values that may be returned by sDM are alsov included.

M23A 8.1.t June 1983

SDM STANDARD DATA MANAGEMENT ShHM

8.2 SDM INSTRUCTION SET

The following instructions are supported by SDM:

File handling instructions:

OPEN .DOUT Create a new standard or indexed file of S-type and
open for direct output

OPEN .EXT Open and Extend an existing standard file for
sequential output

OPEN .IN Open an existing file for input only

OPEN .INOUT Open an existing file for input and output

OPEN .SOUT Create a new standard file and open for sequential
output

CLOSE Close file

CLOSE .DROP Close and delete file

POSIT .DIR Set Current Record Number on specified record

POSIT .IXDIR Set Current Record Number on record with specified key

DSC X'19° Read File Parameters

Record handling instructions

READ .DIR Read record with specified relative key
READ .SEQ Read next record using the relative key
READ .IXDIR Read record with specified symbolic key
READ .IXSEQ Read record with next symbolic key

WRITE .DIR Write record with specified relative key
WRITE .SEQ Write next record using the relative key
WRITE .IXDIR Write record with specified symbolic key
REWRITE .CUR Rewrite current record

REWRITE .DIR Rewrite record with specified relative key

REWRITE .IXDIR Rewrite record with specified symbolic key
DISCARD .CUR Delete current record

DISCARD .DIR Delete record with specified relative key
DISCARD .IXDIR Delete record with specified symbolic key

Transaction Control Instructions

COMMIT Release the records accessed during the current
transaction
COMMIT .REL Release the records accessed during the current

transaction, on the specified files only

M23A 8.2.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

Record Protection

When a file is opened with Sharability "Protected", any records
accessed will be under exclusive access for the task. A second task
requiring access to a record which is already under exclusive access
will have the message ''record protected" (bit l1) in the Status Word,
and the other records held protected for this task will be released.

This is called automatic rollback, because the task should then go back
to the previous COMMIT.

As a consequence, an application design is recommended where all
records used during one transaction are read before any record is
updated.

M23A 8.2.2 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.3 FILE TYPES

SDM handles standard files and indexed files of S-type.

It is possible to handle common files (with a common file code) in SDM
but then the Assembler interface must be used for the Open, Close and
I/0 functions. Common files can not be handled by the CREDIT interface.

8.3.1 Standard Files

A standard file is a file where the records are identified by the
relative key. The records have a fixed length and are grouped into
blocks that always start on a logical sector boundary. Each record has
a status byte indicating if the record is "used" or "free'. There is no
free record chain. The Last Record Number (LRN) defines the logical end
of the file (see section 8.4.3). Up to 64 file extents are allowed per
volume, and up to 4 file sections. The file name consists of one
alphabetic IS0-7 character followed by up to 7 alphanumeric characters.

8.3.2 Indexed File of S-type

An indexed file of S~type is a data file with the same characteristics
as a standard file. In addition to the relative key, the records are
identified by up to four symbolic keys., Each key must be contained in a
separate index. For each symbolic key there is an Index file aund Master
Index file of S-type.

8.3.3 Index File of S-type

An Index file of S-type has the same characteristics as a standard
file. It countains one index of an indexed data file of S-type. Each
record contains the symbolic key of a data record together with the
relative key of that record in the data file. The index records are is
ascending order of the binary value of the symbolic keys. An Index file
of S~type can not have more than one file section.

Index files are sequentially searched during an indexed file access.
The index file name must consist of the first 6 characters of the name
of the data file to which it belongs, with the prefix "In" where n is
the sequence number of the index., The prefix "JI1" must always denote
the primary index.

Index Record

Each index record has the following layout:

| KEY | RESERVED | DUPLICATE | RECORD | STATUS |
| | | KEY | NUMBER | BYTE |

M23A 8.3.1 June 1983

SDM STANDARD DATA MANAGEMENT SDH

Where:

Key : The symbolic record key.

Reserved : 2 bytes containing binary zeroes.

Duplicate key : 1 byte binary value representing the minimum number
of leading characters of the symbolic key which is
identical with the symbolic key in the next index
record.

Record number : 3 bytes containing the relative key of the data
record identified by this symbolic key.

Status byte : One byte indicating if this index record is "used"

(status X'FF’) or "free'" (status X'00").

8.3.4 Master Index File

A Master Index file of S-type has the same characteristics as a
standard file, It contains the level 1 index or "master index" to one
Index file of S~type. A Master Index file of S~type can not have more
than one file section.

Fach master index record corresponds with one partition in the Index
file and contains the highest symbolic key and the relative record
number of the first index record in that partition. The last record of
the master index file contains the value X'FF’ in every character
position of the symbolic key field.

With the Master index file it can be determined which partition of the
index file must be searched for the specified key. SDM performs a fast
binary searchof the Master index.

The master index file name must consist of the first 6 characters of
the data file name to which it belongs, with the prefix Mn where n is
the sequence number of the corresponding index.

When an index file is opened, the corresponding master index file is
read into memory. When the file is closed, the master index area in
memory is released.

After the index and master index files have been built or reorganised
by utility RIX, the number of index records per index partition is
equal to:

The number of used index records divided by the total length of the
master index expressed in number of records.

During dynamic use of the file structure, when records are added or
deleted, the index file is updated but the master index is not and
after some time the number of used index records in each partition will
vary. Running RIX again with the same size of the master index, will
result in a smaller or larger number of index records per partition.

It is also possible to have an empty master index, e.g. when there is
no memory space available for it. After running RIX the master index
file must then be deleted, and a new file of S-type with the same
master index name must be created but left empty (LRN = 0). When the
index file is opened this empty master index is read into memory,
occupying only a few bytes. As a result, the index file will always be
searched from the beginning (sequential search).

M23A 8.3.2 June 1983

SDM

STANDARD DATA MANAGEMENT

ShM

Both index files and master index files may be opened as standard files
and the records read, written and updated if required. Consistency of

the files is the user’s responsibility.

For index files and master index files several file extents are allowed
but all index and master index files belonging to one data file must
reside on one volume,

8.3.5

File Structure

Data file, index files and master index files together constitute a
file structure. A data file with the name NAMES may have the index
files IINAMES, IZNAMES, with their master indexes MINAMES and M2NAMES.

Fig 8-1 is an example of such a file structure. Data record 11 is found
via prime key "888" and via second key "Berry".

DATA FILE

HNAMES ¥

Master index 1 Index 1 Relative
MINAMES IINAMES Key
1207 |01 1@2—[1_1. 1
2| 537 jo5 2 043 |19 2
3 {732 o9 3l 122 {20 3
4 [815 [13 41 207 |10 4
5 |FFF [17 | __ 5| 229 ;09 5
6 251 |17 6
7] 330 |12 7
8] 537 |07 8
9| 596 |18 9
10] 647 |15 10
11} 657 |03 | 11
12| 732 |05 12
13 743 |02 13
14] 772 |13 4
15] 791 jog 15
16| 815 {04 16
L 17] 826 |01 17
E 18] 863 |16 18
E 19| 882 |06 19
Lom20{ 888 11 20
F‘ig. 8~1 File Structure

M23A

Master index 2
M2NAMES

01 CLAYTON [5)8

Prime
Key 2 Key 3 key
Clayton David M | 826
Shaw Patrick M| 743
Wilcocks Brian M 657
Coleman Jim M | 815
Anderson Ethel F [732
Bloch David M [882
Watkins Thora F | 537
Smith Denis M [791
Lewis Peter M 229
Williams Ronald M | 207
Berry Printha F 888
Hillery Thomas M 1330
Richardson| John M 772
Wathke Phyliis F | 022
Hanhburst Donald M { 647
Hartman Paul M | 863
Oswald Dents M | 251
Burket John M | 596
Williams Deborah F LOAJ
Dewidt Francis F [122
8.3.3

02 | HILLARY | 06

03 | SMITH 11

04 | “FFFFF | 16
Index 2
I2NAMES

Lrpt ANDERSON b5

(]

ip? | BERRY h1

3 | BURKETT I8

4 | Brocu 6

5 CLAYTON p1

6 | coumman o

7 JDEWIDT RO

8 | nawaursT 15

9 | HARTMAN |16

10 | HILLARY [12

11 LEWIS 0%

12 | OSWALD Q17

13 | RICHARDSONI3

14 | SHAW 02

[

15 | sMiTH o8

16 | WATHRE (14

17 | WATKINS [07

18 | wircocks (o3

19 | WILLIAMS |10

20 | WILLIAMS f19

June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.4 RECORD IDENTIFICATION

8.4,1 Record Keys

Symbolic record keys must consist of one key item or character string,
and the key length must not exceed 64 bytes.

Prime Key

At least one of the keys must be unique for each data record. This is
the prime key. The index containing the prime key must be defined as
the first index when the file is created or opened.

The prime index must not contain duplicate keys. The records are
identified by the prime key for the following instructionms:

Write Indexed Sequential
Write Indexed Direct
Rewrite Indexed Direct
Delete Indexed Direct

The other keys are called alternate keys, and for those duplicates may
exist. SDM does not check to see if there are duplicates. Note that the
parameter "Index Type", indicating if duplicate keys are allowded for
an index, is not significant for SDM but only for EDM.

Duplicate Keys

Duplicate keys are keys that have the same value in a number of data
records. For indexed accesses on these records, the first one is found
by an indexed direct access and the others are then accessed by indexed
sequential instructions.

8.4.2 Currency

SDM holds a Curreat Record Number (the CRN) per data file for each
task. This is the relative key of the current record for the task. The
CRN is set by Read and Posit instructioms. The CRN is used for record
identification by Read Sequential, Rewrite Current and Discard Current
instructions.

In SDM, the Posit instruction can not be used to set the CRN for
Rewrite and Discard instructions. Rewrite Current and Discard Current
after a Posit instruction will access the record last read.

Per task, SDM maintains the currency for one index at the time, that is
the index specified for the last indexed instruction. The currencies
for the other indexes associated with the data file will be zero, so
that the data record associated with the first entry in such an index
is accessed when a different index is used.

The Index currency is used for record identification by Read Indexed
Sequential instructions.

M23A 8.4.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.4.3 Last Record Number (LRN)

Per S file (not per task), SDM holds a Last Record Number (the LRN).
This denotes the logical end of the file, and the start point for
subsequent Write instructions except Write Direct on a standard file.

For a Standard file, the LRN points to the last record written by Write
Sequential instructions.

For an Indexed file of S-type, the data records are written to the data
file sequentially with Write Indexed Direct instructions. The LRN
points to the last record written by Write Indexed Direct instructions.

When the LRN is reached by Read Sequential instructions (CRN and LRN
have the same value), the message "End of file" is returned.

When a new file is created, the LRN is preset to zero.

With Read Direct and Write Direct instructions (non-indexed!) it is
possible to write and read records after the LRN. The LRN is not
updated by direct access instructions. However, only 'used" records can
be read and rewritten, and only “free" records can be written.

The LRN is stored in the VTOC record for the first file extent. When a
file is opened the LRN is read into memory and updated when new records
are written to the file, except by non-indexed Write Direct
instructions. The LRN is written back to the VIOC record when the file
is closed.

For an Index file of S-type, the LRN is the relative key of the last
index record in the last used partition of the file. This may be a
"free" record when index entries have been deleted afterwards, because
the LRN is not updated when records are deleted.

M23A 8.4.2 June 1983

SDM STANDARD DATA MAHNAGEMENT SDM

8.5 FILE CREATION

Indexed files of S~type are indexed random files, where the data
records need not be in sequence of any of the keys. The records are
located internally by the relative key.

When an indexed file structure is created, the file size specified for
the data file and the index files must allow for updates on the file
because SDM does not allow re-use of deleted records, and indexed files
can not be extended.

Standard files and indexed files of S-type may be created by SDM or by
the TOSS utilities Create File (CRF), Build Index File (BIX) and
Reorganise Index File (RIX). These are described in the T0SS Utility
Reference Mnaual, module M8A.

8.5.1 Creating a File by SDM

New standard and indexed files can be created during runtime by SDM. To
create a new file the file must be opened with open mode Output
Sequeantial or Output Direct.

The number of index files and master index files specified in parameter
"Number of Indexes'" is created on the volume specified for "Index
Volume Name'. The index files will have the size needed to contain the
number of index records equal to the number of records specified for
the data file., The master index files will have the size needed to
contain the number of master index records equal to the number of index
records in the index file, divided by 8.

When an indexed file structure is created by SDM, the master index file
will be created but it is not filled. After writing the data records to
the file, the master index must be built by running the utility RIX as
described in phase 7 in the next section.

When opened for Output Direct, the file will be formatted at the Open
instruction (the records are filled with spaces and the status is set
to "free'"). When opened for Output Sequential, the part of the file
after the LRN will be formatted when the file is closed.

8.5.2 Creating Files by the TOSS Utilities

Creation of a file structure is performed in the following phases:

1 The data file must be created by the TOSS utility Create File (CRF).

2 The index file and master index file must be created with utility
CRF.

3 The data records are written to the file.

4 One or two intermediate files must be created as workfiles to sort
the data records and build the index file.
One work file is needed if the records in the file are in sequence
of the key for which the index file is built. If this is not so, one
extra workfile is needed for the Sort utility.

5 The intermediate index file must be built on the first workfile, by
the TOSS utility Build Index File (BIX).

V234 8.5.1 June 1983

SDM STANDARD DATA ANAGEMENRT SDM

6 The index records in the workfile must be sorted on key value, by
the TOSS utility Sort (SRT). Output of SRT is the second workfile.

7 The index file is built from the sorted workfile, by the TOSS
utility Reorganise Index File (RIX).
Free records are distributed over the sectors on the index file
according to Lhe load factor specified, and the master index is
created.

8 Data file, index file and master index file are now available for
use by the application. The workfiles can be deleted by the TOSS
utility Delete File (DLF).

If the data records contain more than one symbolic key, steps 4 through
8 must be repeated for every index file of the file structure.

All index files and master index files belonging to the same data file
must reside on one volume,

Detailed descriptions of the utilities CRF, BIX, SRT and RIX are found
in the TOSS Utilities Reference lanual M8A.

Most of the parameters for the utilities are self-explanatory.
However, some that may need more explanation are discussed here:

Phase 1 - Create the data file with CRF.

~ TFile organisation: "S" must be stated for all files.

- Number of records:
File size should allow for extension and updates of the file.

- Number of index files:
Up to 4 index files may be specified. If there are no indexes,
answer zero.

- Key address in data record:
This question is only relevant when creating an index file. When
creating the data file answer zero.

CRF now searches the volume{s) for free extents large enough to hold
the stated file size. The file is created with the required number of
records, all containing space characters and all with a status byte
indicating "free"™ (X'06G"). The LRN is set to zero in the VTOC record of
the first file extent.

Phase 2 - Create the index file and master index file with utility CRF.

- File name:
For the index file, the file usme is the first six characters of the
data file name, with the prefix Ir where n is the sequence number of
the index file. The prefix "i{1" denctes the primary index.
For the master index file, the file name is the first six characters
of data file name with the prefix Mn where n is the sequence number
of the associated index file.

-~ File organization :
"S" must be specified for index and master index files,

~ Volume name:
For index files and master index files the same volume name must be
specified.

- Index volume name:
Not relevant when creating index and master index files.

M23A 8.5.2 June 1983

SDM STANDARD DATA MANAGEMENT SDM

- Blocking factor:
Number of records per block. This is not the number of index
records per partition. The blocking factor is determined in the same
way as for the data file.

- Record length:
For both files, the record length depends on the length of the
symbolic key of the data record.
For the index file the record length must be keylength +6, and for
the master index file the record length must be keylength +3,
specified in bytes.

- Number of indexes:
Not relevant, answer zero.

- Number of records:
For the index file, a larger number of records must be specified
than the number of records for which the data file was created, to
allow for insertion of index records into the last sector of the
index file.
For the master index file, the most efficient file size must be
chosen for the memory space available and the access times
required. See also section 8,5.3, Master Index File Size.

Phase 3 - Write data records to the file.

In most cases the data records will be written to the file by the
application. This may be performed by Sequential or Direct Write
instructions.

The LRN is not updated by Direct Write instructions. However, TOSS
utility BIX does not check the LRN but reads the entire data file until
End of Medium, ignoring records with status "free".

Phase 4 — Create the intermediate files with CRF

CRF is run to create the work files. File names and volume names may be
chosen as convenient.

- Record length:
For both files record length must be the same as for the index file,
which is keylength +6.

- DNumber of records:
Number of records must be at least the (estimated) number of used
data records now in the data file. This number is equal to the
number indicated by the LRN of the data file if the records have
been written with Sequential Write instructions.
No free space is needed in the intermediate files.

- Key address in data record:
Answer zero when creating the intermediate files.

Phase 5 ~ Build intermediate index file with BIX

- Address of key in record:
Specify the position of the first character of the symbolic key in
the data record. The first character position in the data record is
counted as zero,

- Key length:
Specify the key length in characters (max 64).

M23A 8.5.3 June 1983

SDM STANDARD DATA MANAGEMENT SDM

BIX then scans the data file and copies the specified fields to the
workfile, together with the relative keys of the data records. The
index records thus built are written to the workfile sequentially,
irrespective of the value of the key.

Phase 6

Sort the index records, if necessary. The TOSS utility Sort File (SRT)
is run to sort the index records. Sort is not necessary if the data
records have been written to the file in key sequence.Sorting is done
on the binary value of the symbolic keys. The input file for Sort is
the intermediate index file as built by BIX, and the output file is the
second workfile,

Parameters for Sort routine:

=~ Sub-key address in record:
Answer zero. The intermediate index records start with the symbolic
keys.

- Sub-key length:
Specify the length of the symbolic key, in number of characters.

- Max number of records:
This must be equal to the number of records on the data file.

~ Effective record length:
Answer zero to sort the complete index records. For duplicate keys
the index records will be in sequence of the relative keys of the
data records.

~ Ascending order:
Answer yes.

Phase 7 ~ Build the index file and master index file with RIX

This phase is also needed if a new indexed file structure has been
created under SDM.

Utility Reorganize Index file (RIX) is run to build the index file and
master index file. Input for RIX is the sorted intermediate file,
either created by Sort or by BIX if the data records were already in
key~sequence on the data file.

The size of the partitions of the index file is determined by the size

of the master index file. Each master index record corresponds to one

index partition. The number of records per index partition is equal to:
the number of used index records divided by the total number of
master index records (the length of the master index file expressed
as number of records).

The following questions will be output by RIX:

~ Maximum number of records on the output index file:
An estimation of the highest record number (the LRN) on the new
index file. This can be derived from the LRN of the data file, and
the load factor. The space in the new index file after the record
indicated by the LRN is reserved for future extensions.

- Load factor:
A decimal value indicating which percentage of each block in the
index file must be used. See the discussion of the load factor in
section 8.5.4.

M23A 8.5.4 June 1983

SDM STANDARD DATA MANAGEMENT SDM

The utility RIX returns the following information to the operator:
~ Number of index records per partition: nnnn.

The next question: "OK?'" can be answered with Yes if this number
corresponds with what was estimated and with the requirements of the
application (mainly regarding access times). If this is not so, answer
*No’., The utility will be aborted and a master index file with a
different size can be created before running RIX again.

Index records are read from the sorted work file and written to the
index file in the required format. Free records are added at the end of
each sector according to the load factor,.

Records are written to the master index file sequentially. RIX performs
a check on the record sequence. If a key sequence error is detected,
the utility is aborted and an error message is output on the operator’s
console,

8.5.3 Master Index File Size

The master index file size influences the performance.

If the master index is very large this may cause memory problems. The
search time is not much influenced by the master index size because SDM
does a binary search of the master index.

If the master index is too small, there is a large number of index
records per partition. This means many disk accesses and sequential
search of the index blocks, which will reduce the performance.

A master index file created during runtime will have the size needed to
contain the number of master index records equal to the number of
records specified for the data file, divided by 8.

8.5.4 Load Factor

SDM does not allow the index files to be extended. When the index file
is created, two characteristics specified by the user must allow for
future extension of the data file:

~ 1Index file size
The number of records in the index file must be larger than the
number of records in the data file, to allow for index entries with
a high key value to be added in the last partition of the index file.

~ Load factor
When new records are written tv the data file by the applicationm,
the corresponding index records must be inserted in the index file
in the correct position. To make this possible free space is
reserved in every block. The Load Factor determines which percentage
of each block of the index file will be filled with index records
when the index file is built,

M23A 8.5.5 June 1983

SDM STANDARD DATA MANAGEMENT SDM

Example 1

7 Data records have been written to the data file, and utility RIX is
run with a load factor of 30 specified. The blocking factor of the
index file is 10, RIX will build an index file where every block is
filled for 30%.

DATA FILE
Y#NAMES
Relative Prime
Key Rey 2 ¥ey 3 key
1 Clayton David M | 826 1{537 | 07 | Block 1
2 Shaw Patrick M} 743 21657 | 03
3 Wilcocks Brian M| 657 3{732 | 05
4 Coleman Jim M i 815 FREE
5 Anderson Ethel F 732 ﬁPACE
6 Bloch David M | 882
7 Watkins Thora F | 537
i -
)]
10 10 B
11 11743 02 Blac_k;
12 12|815 | 04
13 13(826 | 01
14 14| FREE
15 ;PACE
16
17
18
19 417 i
20 l
21 ss;ros B;ot_k;
22| FREE
23 ;PACE

The next data record written to the file has prime key 791. The data
record gets the relative kev f. The new index entry is inserted in the
index file at position 12 and the entries 12 and 13 are shifted to the
positions 13 and 14 to make space.

M23A 8.5.6 June 1983

SDM STANDARD DATA MANAGEMENT SDM

After some time the data file ”ggé TLE
: o X s
has been fll%ed to 90@. Index Relative Prime
entries are inserted in the Key Key 2 Rey 3 key
proper positions. The first 1 Claytoan David M} 826
block has no free space left,
the second block has 407 and the 2 Shav Patrick | M | 743
third block has been needed for 3 Wilcocks Briaa M| 657
the highest keys. 4 Coleman Ja v | 815
5 Anderson Ethel F | 732
L (022] 14 |Block L 6 Bloch David ¥ | 882
2
207 | 10 7 Watk(as Thara F | 537
3
229 | 09 8 smith Denis M § 791
4251 | 17 9 Lewis Peter M| 229
5 (330 12 10 Will{ams Ronald M o[207
6 |537 | o7 11 Berry printha | F | 888
7 |596 | 18 12 Rillary Thomas M | 330
8 647 | 15 13 Richardson| Joha M| 772
9 |657 | 03 14 Wathke phyllts |F | 022
73205} 11022 14(Block 1 15 Hanhurst | Donald M | 647
11 743 | 02 |Block 2 2 {207 10 16 Hartman Paul M | 863
12 1772 | 13 31229 09 17 Oswald Denis M | 251
13 {791 | o8 4j2s51) 17 18 Burket John M| 596
14 [815 | 04 s1330] 12 19
15 826 01 6) 537 07 20
16 |863 | 16 71 s96] 18
17 |FREE 8lea7| 15
18 |SPACE 9 157! 03
18 10 | FREE
20 o 11 [732] 05|Block 2
21 882 | 06 |Block 3 12 1743 o2
22 {888 | 11 11 772l 13
FREE 14 | 791] o8 To distribute the free space evenly over
SPACE the blocks, utility RIX is run again.
151815 04 The data file is now filled to 90%, and
»

16 1826] o01{ for the index file a load factor of 90
is specified. Block 3 of the index file
becomes free.

17 18631 16

19 | 888| 11

20 | FREE

21 | FREE Block 3

SPACE

Fig 8-2 Lload Factor

M23A 8.5.7 June 1983

SDM STANDARD DATA MANAGEMENT SDM

If the keys of the next data records that are added to the file have
values lower than 888, the index entries are inserted in the free
space in block 1 and block 2. But if they have high key values they
must be inserted after the last entry and the index records will be
shifted into block 3. For this reason, the index file must allow for
more entries than would be needed for a 100% filled data file.

Example 2

A file structure is created and only few data records are as yet
available. The load factor specified for the index file is 10%. This
leaves 90% free space in every sector. After the application has
written a number of records to the file and the corresponding index
entries have been inserted in the index file, some sectors may still be
almost empty and others may have little free space left.

To distribute the free space evenly over the sectors again, the TOSS
utility Reorganise Index File must be run.

The load factor specified this time must reflect the new status of the
data file. If the data file now has been filled for about three
quarters, a new load factor of 70 or 75 may be specified. The index
file will be rebuilt and every sector will contain 30% or 257% empty
space.

M23A 8.5.8 June 1983

S STANDARD DATA MANAGEMENT SDM

8.6 ENLARGING FILES IN SDM

Only standard files can be enlarged by SDM. Files will be automatically
extended by SDM when during Write Sequential imstructions the end of
the data file (indicated by the LRN) has been reached and the Growth
Factor is not zero. Standard files are explicitly enlarged when opened
with Open mode Extend.

A new extent is added to the file, with the size indicated by the
Growth Factor in the File Parameter Block, rounded upwards to a file
extent length which is multiple of three logical sectors and of the
block length. SDM does not allow new file sections (on another volume)
to be added to the file.

M23A 8.6.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.7 FILE MAINTENANCE

Discarded data records in an indexed file of S-type can not be re-
used. When such a file has been much updated, it is necessary to run
the TOSS utility Reorganise Index file (RIX) again, to reallocate the
free space available and to update the master index. When RIX is rerun
after some time, a new load factor can be specified, representing the
real or estimated percentage of used records in the data file.

The TOSS utility RIX must be run in the following situations:

~ The message End of File has been returned after a Write Indexed
Direct instruction, to indicate that index records in the last block
have been written after LRN. When a number of free blocks are
available at the end of an index file, the message End of File
(Condition Register set to 1) is returned and bit 3 is set in the
Status Word each time when a free block is used. This may occur
several times before it is necessary to reorganize the files.

- When index records have been shifted into the next partition, the
master index file no longer represents a good picture of the index
file, As searching of the index file for the specified key is done
sequentially, starting at the record pointed to by the master index,
the correct record will still be found, but search time increases.

— If the last block of the index file is filled completely the
message End of Medium is returned (condition register set to 3) and
the Write instruction is not completed. The files must be closed,
and BIX-SORT-RIX must be run immediately.

- After the data file has been much updated and consists of many file
extents or contains many discarded records, it may be reorganized by
copying it into a newly created data file of S-type. BIX, SORT, RIX
must then be run to build the index file and master index file for
each index.

M23A 8.7.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.8 FILE RECOVERY

The possibilities for file recovery in SDM are limited. The following
points must be taken into account when designing recovery procedures:

For files opened without the Delay option (see section 8.7.2, Delay
option), each Write instruction issued by the application results in a
disk access and the records are written to the file immediately.

When a file is opened with the Delay option, the information is written
to the block buffer, and will only be written to the disk when another
block of this file must be accessed, or when the file is closed.

During Write Sequential and Write Indexed Direct instructions, the LRN
of the data file is updated in memory and not written to the VTOC on
disk until the file is closed.

If a system failure occurs during updating of the file the value of the
LRN will be lost. When the file is opened again the old value of the
LRN will be read from the VIOC. Used records after the old LRN can be
recovered with the instruction sequence:

- Read Sequential up to End of File (the old LRN is reached)

- Read Direct, reading the used record after the old LRN

- Discard Indexed Direct, using the symbolic keys of the record just
read., The index entries are deleted from the index files (all
indexes must be opened!).

- Write Indexed Direct, using the keys of the record just read and
discarded. The LRN will be updated, and new index entries will be
inserted in the indexfiles,

M23A 8.8.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.9 BUFFER MANAGEMENT

8.9.1 Block Buffers

SDM contains internal block buffers, used for the data files and for
the index blocks. The block buffers are physically fixed in memory and
have a fixed length. This means that they must be long enough to
contain the longest block that has to be accessed, and that it may be
inefficient use of memory space to have files with very different block
lengths.

The minimum number of block buffers is 2 per disk driver.

The maximum number of block buffers that SDM can handle is 16. Which
buffer will be used for a request is determined by a Least Recently
Used (LRU) algorithm. A block buffer remains attached to a file during
an I/0 instruction and is released when the I/0 is completed, except
when the Delay option is used.

When an I/0 operation is started and there is no free block buffer, SDM
will wait until a block buffer is released.

The number of block buffers and their length is specified during
Monitor generation.

8.9.2 Delay Option

SDM supports the Delay option. When this option is specified, a block
buffer is attached to the file when the file is opened, and released
when the file is closed.

Updates to the file are not written to the disk immediately but to the
block buffer. This buffer is written to the disk when another block
must be accessed, when the file is closed or when there are no free
block buffers available.

The Delay option improves performance when files with a blocking factor
greater than 1 are processed sequentially.

One extra block buffer per file opened simultaneously for which the
Delay option is required, must be reserved during Monitor generation.

M23A 8.9.1 June 1983

SDM STANDARD DATA MANAGEMENT SDM

8.10 RETURN INFORMATION

Under SDM, the following return information may be generated:
8.10.1 Status Word

The following bits can be set in the Status word. These error messages
are further discussed in chapter 10, Return Information.

bit O Request Error

bit 2 End of Medium

bit 3 End of File

bit 4 No Data

bit 5 Key not Found

bit 6 Duplicate Key at Read Indexed Sequential Instruction

bit 7 Retries performed for the disk transfer

bit 8 Data Management rule violated, more information in Return

Status
bit 9 Duplicate Key Error
bit 10 New Volume Loaded
bit 11 Protection Error, Rollback
bit 12 Incorrect Length
bit 13 Data Error
bit 14 Throughput Error
bit 15 Disk not Operable

8.10.2 Return Status
In SDM, the Return Status may be set to the following values:

Not enough memory
Overflow

Illegal File Parameter
Illegal file code
Illegal ECB parameter
File name unknown

O 00~ W

M23A 8.10.1 June 1983

Chapter 9

EXTENDED DATA MANAGEMENT

9.1 INTRODUCTION

This chapter discusses the file types handled by EDM and how to create
them, the types of indexing available and the logging functions
supported by EDM. In addition, details of file enlargement in EDM and
notes on EDM file maintenance are given.

M23A 9.1.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM
9.2 INSTRUCTION SET

File handling instructions:

OPEN .DOUT
OPEN .EXT

OPEN .IN
OPEN ,INOUT
OPEN .SOUT

CLOSE
CLOSE .DROP

POSIT .DIR
POSIT .IXDIR
DSC X197

Create a new file and open for direct output
Open and Extend an existing standard file for
sequential output

Open an existing file for input only

Open an existing file for input and output
Create a new file and open for sequential output

Close file
Close and delete file

Set Current Record Number on specified record
Set Current Record Number on record with specified key
Read File Parameters

Record handling instructions

READ .DIR
READ .SEQ

READ .IXDIR
READ .IXSEQ

WRITE .DIR
WRITE .SEQ
WRITE .IXDIR
WRITE .IXSEQ

REWRITE .CUR
REWRITE .DIR
REWRITE .IXDIR

DISCARD .CUR
DISCARD .DIR
DISCARD .IXDIR

Read record with specified relative key
Read next record using the relative key
Read record with specified symbolic key
Read record with next symbolic key

Write record with specified relative key
Write next record using the relative key
Write record with specified symbolic key
Write record with next symbolic key

Rewrite current record
Rewrite record with specified relative key
Rewrite record with specified symbolic key

Delete current record
Delete record with specified relative key
Delete record with specified symbolic key

Transaction Control Instructions

COMMIT

COMMIT .PROT

COMMIT .REL

ROLLBCK

Release the records accessed during the current
transaction

Release the records accessed during the current
transaction except those on the specified files
Release the records accessed during the current
transaction, on the specified files only
Rollback the current tramsaction

9.2.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.3 FILE TYPES

EDM handles standard files and indexed files of E-type (EDM-files).

9.3.1 Standard Files

A standard file is a file where the records are identified by the
relative key., The records have a fixed length and are grouped into
blocks that always start on a logical sector boundary. Each record has
a status byte indicating if the record is "used" or "free". There is no
free record chain. The Last Record Number (LRN) defines the logical end
of the file (see section 8.4.3). Up to 64 file extents are allowed per
volume, and up to 4 file sections. The file name consists of one
alphabetic ISO-7 character followed by up to 7 alphanumeric characters.

9.3.2 Indexed File of E-Type

Indexed files of E~type (EDM files) are indexed random files. The data
records are identified by up to 10 symbolic keys. Symbolic keys may
consist of up to 64 key~items. The file name consists of one
alphabetic IS0-7 character followed by up to 7 alphanumeric characters.

Internally, each data record is located by EDM by its relative key.

The data file of an EDM file is the "D-file" and the index file is the
"1-file".

D-file

A data file of E-type is a file which contains only data records. The
records are identified by the application by symbolic keys. Internally,
the records are identified by the relative key. The records have a
fixed length and are grouped into blocks that always start on a logical
sector boundary. Each record has a status byte indicating if the record
is "used" or "free".

The D-file has a free record chain (see also section 9.3.3). Discarded
records are added to the chain and thus may be re-used. The relative

key of the first free record in the chain is stored in the VIOC, as
described in chapter 3. Up to 64 file extents are allowed per volume,
and up to 4 file sections. The file name consists of one alphabetic ISO-
7 character followed by up to 7 alphanumeric characters.

I File

The I-file is a file which contains all the indexes defined for one
indexed EDM file. The index entries are grouped into records. The
record length of the I-file is always 256 bytes, with a blocking factor
of 1.

The index file name must consist of "I$" followed by the first 6

characters of the corresponding data flle name.

M23A 9.3.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

Each index entry contains the key with the highest value in one index
block on the one lower level, plus the relative key of that block. The
entries in each level are sorted on the value of the keys in ascending
order. The keys are packed, that is, only the part that is different
from the preceding key is stored in the index entry. Each key is
compared with the preceding key from left to right, to find the first
character which is different. The key is then stored, starting from
this character.

The first index block contains the index descriptors, which are
discussed in Chapter 5.

Each index block except the first one: has the following layout:

| LEVEL | INDEX | FREE | STATUS |
| NUMBER| ENTRIES | SPACE | BYTE |
Level Number : One byte containing the sequence number of the index

level of this index block.

Index Entry : Each index entry consists of the following items:
Key Length : “-u byte, The number of characters of the
ibulic key stored in this entry.
Key ¢ tue part of the symbolic key which is
different from the previous kev.
Pointer : Four bytes, containing the relative key

of the index block at the next lower
level which has this key as the highest
xey value. For the entries at the lowest
level, this is the relative key of the
corresponding data record.

Free Space : Starting with a dummy index entry, with a key field
filled with X'FF’ and a pointer value of zero. This is
to prevent all index levels from having to be updated
if a key is inserted with a higher value than the
highest value that occurs in the index.

Status Byte : Value X007 if the record is free, and the value X'FF’

if the record is used.

The size of an I-file, in sectors, is:

o+l +i§(keylength + 5) * number of records 4 4

1 logical sector length - 2
*n” is the number of indexes defined for the data file.
The size will be rounded upward to a multiple of three sectors.

M23A 9.3.2 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

Index Levels

Indexes in EDM may have up to 16 levels. The index with references to
the data records has index level zero. Index levels are transparent to
the application program.

For an indexed direct access, first the highest index level is searched
for a symbolic key with the same or a higher value than the key
specified. The index entry thus found, indicates from which point the
next lower level must be searched. The next lower level is then
searched for a key with the same or a higher value than the key
specified, and this index entry again indicates from where to search
the next lower level. This is repeated until, on index level zero, the
reference to the required data vecord is found.

When an index block in any level hecomes full, (no free space left) its
contents are split over two blocks each filled about half, and on the
next higher level one new index entry is created corresponding with
this new block. If the block on the higher level becomes full, it is
split in the same way and on the next higher level one new index entry
is added.

When there are already 16 index levels and a block at the highest level
has to be split, an automatic rollback is performed if transaction
logging is required for the file. Without transaction logging, the I-
file ig left in an inconsistent state (File Corrupt). If function
logging is required, the files can be recovered with the utility
Recover EDM File (RCF). The application is informed in the Return
Status (value 10).

9.3.3 Free Record Chain

Deleted data records are re~used by EDM. The "File Record Number" in
the VTOC record for the file contains the relative key of the first
free record. This first free record then contains the relative key of
the next free record, and so on. When a data record is deleted, its
relative key is added to this free record chain. When new records are
written to the file, they are written into these free record positions
and the chain is updated. When the file is closed, the updated File
Record Number is written back to the VTOC on disk.

9.3.4 File Status

The first byte of the I-file indicates the status of the I-file
(correct or corrupt). The value of this byte is set to 1, indicating
corrupt, when the Monitor detects anm I/0 error during a block split in
the I-file or EDM detects an inconsistency. When the file is accessed
and found to be corrupt, the request is completed with bit 0 and 8 set
in the Status Word and with Return Status indicating I/0 error. In that
case, the only order that will be accepted is Close File. The files may
have to be recovered from the backups with the information from the
function log file.

M23A 9.3.3 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.4 RECORD IDENTIFICATION
9.4.1 Prime Key

At least one of the symbolic keys must be unique for each data record.
This is the prime key. The index containing the prime key must be
defined as the first index when the file is created or opened. The
other keys are called alternate keys, and for those the File Parameter
"Index Type" may indicate that duplicates are allowed.

9.4.2 Concatenated Keys

Record keys may be concatenated keys, that is, they may consist of
several data items (up to 16). The key descriptor must contain the
number of items the key consists of and their position within the data
record.

The keylength of these keys is the sum of the separate key items.

9.4.3 Duplicate Keys

If the File Parameter "Index Type" indicates that duplicates are
allowed, the symbolic key may have the same value in several records.
For indexed accesses on these records, the first one is found by an
indexed direct access and the others may be accessed by indexed
sequential operations. Figure 9~1 gives an example for the key
"Williams", which occurs twice in the data file,

9.4.4 Conditional Indexing

If conditional indexing is required, reference to a data record is only
included in the index where it should go according to the symbolic key
under certaln predefined conditions.

One character item of the data record is defined to be the Conditional
Item. The value of this item is compared with the value of Conditional
Item Value set in the conditional index description by the application
when the file was opened. If the condition, which may be "equal" or
"unequal", is satisfied, the entry is included in the index.

During updating of the record the value of the conditional item may be
changed, e.g. an account holder’s balance may change from negative to
positive, or the amount on stock of a certain article may change from
positive to zero or to less than a minimum value. When the record is
rewritten to the file the index will be updated accordingly: the entry
is deleted from the index for which the conditional item no longer has
the required value, and/or included in the index for which the
condition is now fulfilled.

Example

For the file in fig. 9~1, the item in position 22 in the data record is
defined as a conditional item for index 4. The condition specified is
‘Equal’, the index only contains entries for the data records for which

the conditional item is equal to ‘F’.

M23A 9.4.1 June 1983

EDM EXTENDED DATA MANAGEMENT ¥DM

The record for a female with the name of Williams is retrieved by an
indexed access via index & with the key ‘Williams’. This will only give
record 19, and the application need not check the item indicating ‘F’

or ‘M.

To find the record for a man with the name of Williams, a fifth index
can be specified with the same conditional item. The same conditional
value can be stated and the condition Not Equal specified, but then
also records with an erroneous contents (for example, ‘G’) for this
item will be included. It is safer to specify conditional value ‘M’ and

the condition Equal.

Tmplicate Keys

INDEX 4
in index 2

Conditional Index
Cond. Item value "F"

Level 0
1 [ANDERSON] 05 INDEX 2
Level 1
02 BERRY D B ﬁ o1 CLAYTON |05
01 DEWIDT 20
w T 02 | HILLARY |10
05 | wATRINS | 07 I i >
a6 | wriLiams| 19 " S
wr | “revere | 00 s
1 ANDERSON P5
retative cond. Frine R M
Key Key 2 Key 3 item key 3 BURRETT i8
1 Clayton David ™ B26 4 BLOCH ps
2 Shaw Patrick M 743 5 CLAYTON pt
1 Wilcocks Bran M) 657 6 COLEMAN P4
“ Coleusn Huo % | 815 7 |oewior po
5 Anderson | Bthel F o732 | e —ed 8 | HANKURST 5
6 Bloch David L4 882 9 HARTMAN)
7 Watkins Thora F 537 10 HILLARY 2
8 Smith Denis N 791 11 LEWIS 09
9 Lewie Peter " 22% 12 QSWALD 7
10 Williama | Ronald M| 207 | effmmrrreannn 13] RICHARDSONL3
1 Berry Printha | 7 | 888 |t 14 | suaw p2
12 Hellary Thouas M 1330 Lgts |surm o8
13 Richardsoal John M 772 16 WATHKE L4
16 Wathke Phyllis F 022 I 17 WATKINS 7
15 Hanhurst | Donald M| 647 ! 18 | wiLcocks o3
16 Hartman Faul u | 863 s [Srcms Jio
17 Osvald Dents M 251 . 20 | wiiiiams f19
18 Burket John ® 596 21 “FEFFFF~ 0
19 Williame Deborah F 043 B
20 Devide Francts | F [122

Fig. 9~-1 Conditional Indexing and Duplicate Keys

M23A 9.4.2 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.4.5 Currency

EDM holds a currvent record number per data file for each task. This is
the relative key of the current record for the task. The currency is
set by Read and Posit instructions. The currency is used for record
identification by Read Sequential, Rewrite Current and Discard Current
instructions. Rewrite Current and Discard Current after a Posit
instruction will access the record that has become the current record
as a result of the Posit instruction. When a file is opened the
currency is set to zero sc that the record with relative key 1 is read
with the first Read Sequential (non-indexed) instruction.

Per task, EDM holds the currency for each index opened for the file.
When a file is opened all currencies will be zero, so that indexed
sequential access starts with he record associated with the first entry
for each index.

The index currency is used for record identification by Read Indexed
Sequential instructions.

M23A 9.4.3 June 1983

EDM EXTENDED DATA MANAGEMENT FDM

9.5 LOGGING

9.5.1 File Recovery

File recovery after error situations or system failure is possible when
logging is used. Two types of logging are implemented in EDM:

~ Transaction logging
~ Function logging

Transaction logging is needed for file recovery when a single
transaction can not be successfully completed. It is possible that
while a transaction is being executed, it becomes necessary to cancel
it. It may be that erronecus data have been keyed in by the operator,
that the input data from the files are in coanflict or that it is not
possible to access all the records needed for the transaction.
Transaction logging makes it possible to undo a transaction that has
not yet been completed, and bring the files back in the consistent
state they had at the start of the transaction.

Function logging is needed for file recovery after hardware failures.
Disk failures or power failures may disturb the files that are on~line
so that they can no longer be used. The transactions performed up to
that moment are lost. With function logging, a log has been made of the
functions performed and with this a back-up copy of the files can be
recovered before the application continues.

9.5.2 Transaction Logging

Transaction logging means that for every record which is modified
during a transaction, a "before image' is stored in the log file. Om
the execution of a Rollback (programmed or implicit by EDM) the before
images are restored to the files, and the files are again in the
consistent state they were in at the previous Commit. The curremcy for
these files will also be reset to the value at the previous Commit. For
this reason it may be useful to require transaction logging for a file
opened for Input.

At the execution of a Commit, Rollback, Open or Close instruction, the
information is deleted from the log file and logging of the next
transaction is initiated.

Note that Rollback does not guarantee that the before images are
physically written back to the disk. They are restored to the intermal
buffers of EDM and EDM determines when the I/0 should take place.

If transaction logging is required for accesses on a file, it must be
specified in the File Parameter block when the file is opened.

M2 3A 9.5.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.5.3 Transaction Log Information

The records of a transaction are stored in the transaction log file in
blocks of 255 bytes. The first 22 bytes contain system information. The
before—~images are stored immediately after that. User records are
stored without the status byte. For before-images longer than the
remaining 232 bytes, more blocks will be used.

The 22 bytes system information consists of the following items:

- Address of the preceding log record

- Record type, indicating: user record, index record, deleted record,
or empty record

- File identifier

- Record length

- Record address on disk

- File-type

- Number of blocks occupied by this record image

- Next free log record

The log records, which each occupy at least one block of 255 bytes, are
grouped into segments in the transaction log file. One segment contains
blocks of only one transaction.

When a transaction requires logging information to be written to the
transaction log file, one segment is assigned to the transaction. The
segment is released again at the execution of the next Commit or
Rollback.

The segment size is specified during Monitor generation and should
allow for logging of the largest transaction in the system. The size
required is found by adding the lengths of all the records that are
updated during one transaction. If during run=~time a transaction can
not be logged because the segment is full, the transaction is rolled
back and the Return Status indicates "overflow" (3),

9.5.4 Transaction Log Buffers

For transaction logging, one buffer of 256 bytes is reserved in memory.

9.5.5 Transaction Log File

The transaction log file may be defined on disk, in CMOS memory or on
the "simulated disk in primary memory”. It is created by EDM on the
volume specified during Monitor generation, when the application is
started, The transaction log file has the following characteristics:

Volume name 1 Specified during Monitor generation (default SYSRES)
File name : TLOGFILE

Record size : 255 bytes

Blocking factor: 1

Segment size ¢ Number of blocks per segment. The total file size

is the segment size multiplied by the number of
user tasks defined. Default segment size is 30
blocks of 255 bytes.

M23A 9.5.2 June 1983

EDM EXTENUED DATA MANAGEMENT EDM

9.5.6 Initializing the Transaction Log File

The transaction log file is created by EDM during system initialization
(IPL), according to the parameters specified during Monitor generatiomn.
If there is already a transaction log file on the volume specified,
this is deleted and a new file is created.

9.5.7 Function Logging

Function logging means that all functions that result in a modification
of the user files (write new records, rewrite updated records, delete
records) are logged on a function log file. After a hardware failure,
backup copies of the user files can be recovered with the utility
Recover EDM File (RCF). This utility reprocesses all functions logged
on the function log file up to the last logged Commit, Rollback or
Close. The use of the utility is described in the TOSS Utilities
Reference manual, module MBA.

The files can be recovered to the cousistent state of the last Commit,
Rollback or Close. Only the transactions that were being executed when
the failure occurred, are lost. If function logging is required for
accesses on a file, it must be specified when the file is opened.

9.5.8 Function Log Intormation

Function log information is stored in the function log file at the
execution of the instructions Open, Close, Commit, Rollback, Write,
Rewrite and Delete. For Open and Close, a Commit is also logged. When
the last user of a file closes the file, an "End of User” log record of
4 bytes is written to the log file in addition to the log record of the
Close itself.

M23A 9.5.3 June 1983

EDM

EXTENDED DATA MANAGEMENT

EDM

The information logged for earh function is shown in the diagram below,

where:
x = 1included
- = not included
u =

included but not relevant, contents undefined.

field |
Function Log length , Roll | End of
Information (bytes) | Open Close Commit back user
Function code ‘ 1 { x x x x x
Function option 1 x X X X bid
Transaction ident 2 { X X X X X
File reference Lol ox X - - -
Filler 1 | u u - - -
File identifier 42 | X - - - -
Relative rec no. 4 | - - - - -
Record length 2 | - - - - -
After image rec In | - - - - -
Before image | rec 1n - - - - -
Total length in |
function log file (bytes) ‘ 48 6 4 4 4

field Standard files
Function log length
Information (bytes) Write Rewrite Delete
Function code 1 X X X
Function option 1 X X X
Transaction id. 2 | X X x
File reference 1 X X X
Filler 1 u u u
File identifier 42 - - -
Relative rec. no. 4 X X X
Record length 2 X bd u
After image rec length | x X -
Before image | rec length - - -
Total length in 12 12 12
function log file (bytes) + rec 1n + rec In

M23A

9.5.4

June 1983

EDM EXTENDED DATA MANAGEMENT EDM

field Indexed files (EDM files)

Function log length \
Information (bytes) | write Rewrite Delete
Function code 1 l X X X
Function option 1 | x x x
Transaction id. 2 | X X X
File reference 1 X bS X
Filler 1 u u u
File identifier 42 - - -
Relative rec. no. 4 ' u u u
Record length 2 ! x x %
After image rec length X X -
Before image \ rec length ‘ - - X

|
Total length in 12 12 12
function log file (bytes) ! + rec 1ln + rec In + rec In

I

The number of transactions that can be logged on a tape or on a disk
file with the default size of 2048 records depends entirely omn the
record length and on the number and type of functions executed per
transaction.

9.5.9 Function Log Buffers

For function logging, two alternating buffers of 256 bytes are reserved
in memory.

The function log information is written to the function log file,
packed into blocks of 255 bytes. The function log blocks are shared,
which means that functions executed by different tasks may be logged in
one block. The function information itself is always stored completely
in one block, but after—-images or before—images of records are split
over more blocks if necessary.

A block is written to the function log file on disk or tape when the
buffer in memory is full or when a Commit, Rollback or Close function
has been logged.

“Overlapping transactions in function log file" may be specified during
Monitor generation., This means that when the end of a transaction
(Commit, Rollback or Close) has been logged, the remaining part of the
block is used for the next log information. The block is written twice
to the function log file: first after the Commit, Rollback or Close,
and again when the buffer is full.In this way more efficient use is
made of the space in the function log file, but the degree of security
decreases.

M23A 9.5.5 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9,5.,10 Function Log File

The function log file may reside on tape or disk. This is specified
during Monitor generation.

The characteristics of the file are:

Volume name : specified during Monitor generation (default SYSRES)
File name : FLOGFILE

Record size : 255 bytes

Blocking factor: 1

File size : specified during Monitor generation, default 2048

records of 255 bytes.

The blocks are written to the file sequentially. After a system
failure, the LRN of the log file is not up to date and can not be used
to find the end of the log file, Therefore, each function log block is
identified by a certification character in the last two bytes, by which
the utility RCF recognizes the valid log information.

9.5.11 Initializing the Function Log File

The way in which the function log file on disk or tape is to be
initiated at system start (IPL) is specified during Monitor
generation. There are two possibilities:

- The existing function log file is deleted and a new file is created.
The existing function log file is also deleted if it is not in a
consistent state because of a system failure.

- Function logging continues on the existing function log file.
There are two situations where this is not possible:
~ There is no existing function log file. A new file is created.
- The existing function log file is mot in a consistent state. This
can only occur after 1/0 errors on the function log files or after
a system failure. When this is detected during initialisation the
system will halt and the SOP lamps indicate 'Log file protected".

In that case the recovery utility RCF must be run and then the
function log file must be deleted.

9.5.12 Function Log File on Disk

If the function log file is on disk, the volume name must be specified
during Monitor generation. The disk must be TOSS formatted.

The function log file is created during system initialization, or the
existing file is extended during runtime. The new file or new file
extents are formatted if this is specified during Monitor generation.
Especially formatting of new file extents during runtime will slow down
the system. For that reason, formatting can be excluded, but in that
case full safety can not be guaranteed.

M23A 9.5.6 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

If formatting {s excluded, more safety can he obtained by initializing
the volume with zeroes offline.

At the end of a system session, all files must be closed by all the
tasks that have opened them, to leave the user files and the function
log file in a consistent state.

The log files should reside on a different volume from that which
contains the user files. Otherwise, if a disk becomes unusable because
of a hardware failure, the log files can also not be accessed and no
recovery can be performed.

Logging will slow down the system because of the extra disk accesses
needed. This is especially the case, if the transaction log file and
the function log file are on the same volume, or on the same volumes as
the user files, because then the read-write head will have to shift
continually between the files.

9.5.13 Automatic Enlargement of Function Log File

During Monitor generation it can be specified that the function log
file on disk must be automatically enlarged when it is full. If this
option is included, the function log file is enlarged by EDM when
necessary and the Supplementary Return Status (see chapter 10)
indicates "function log file enlarged”. The file is enlarged with 10
percent of its size at system start, rounded upward to a multiple of
three logical sectors.

9.5.14 Function Log File Full (Disk)

When the function log file is almost full and it is not possible to
enlarge the function log file, the message "function log file almost
full" (191) is returned in the Supplementary Return Status. It is not
possible to enlarge the function log file when the automatic enlarge
option has not been included or when the disk volume is full,

This Supplementary Return Status is given when there is still space to
close all the files. The files must be closed by all the tasks that
have opened them, to leave user— and function log file in a consistent
state. After that the application must ask the operator to load another
volume (with the same volume name), and then halt. The operator can
load the new volume and restart the system. A new function log file is
created on the new volume and logging can continue.

If no action is taken on the message "function log file almost full",
the function log file gets full. "Function log file full™ (246) is
returned in the Supplementary Return Status. The current transaction is
rolled back if transaction logging is required.

When no transaction logging is provided and the function log file is
full, the user files and the function log file are in an inconsistent
state. Backup copies of the user files can be recovered to the point of
the last Commit, Rollback or Close by running the recovery utility RCF.

M23A 9.5.7 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.5.15 Function Log File on Tape

If the function log file is on tape, the tape file code must be
specified during Monitor generation.

The function leg file on tape is started during system initialization,
or logging is continued in the existing file,

At the end of a system session, all files must be closed by all the

tasks that opened them, to leave the user files and the function log
file in a consistent state, and a tape mark must be written,

9.5.16 Function Log File Full (Tape)

When the end-of-tape mark is read the message "begin/end of tape' is
returned in the Supplementary Return Status (197).

The files must be closed by all the tasks that have opened them, to
leave user~— and function log file in a consistent state, and a tape
mark must be written.

It is the user’s responsibility to leave enough space after the end-of-
tape mark to log the closing of the files. The space needed is 6 bytes
for each Close instruction plus 4 extra bytes when the last user closes
the file. This is then rounded upward to a multiple of 256. It is
recommended to reserve space for one extra block, in case the end of
tape mark was detected at the start of a block.

After the files have been closed the operator must load another tape.
Function logging is continued on the new tape. It is not necessary to
halt and restart the system.

If no action is taken on the message "End of tape” the function log
file gets full. "I/0 error on function log file'(247) is returned in
the Supplementary Return Status. The current transaction is rolled back
if transaction logging is provided.

When this happens the user files and the function log file are in an
inconsistent state. Backup copies of the user files can be recovered
with the function log file to the point of the last Commit, Rollback or
Close by running the recovery utility RCF. The current transactions are
lost.

M23A 9.5.8 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.6 FILE CREATION

E-files are created either by utility Create File (CRF) or by EDM.

In both cases, the data file and index file are created at the same
time, in one step.

Data records are written to the file after creation, and for every data
record the index entry is written to the index file in the correct
place.

Up to 10 indexes are allowed for an E-file, and for every index the key
may consist of up to 16 key items. However, the total number of key
items is limited because the key descriptors together must be stored in
the first sector (256 bytes) of the I-file. One key descriptor occupies
8 + (number of items)*4 bytes. From this it follows that it is not
possible to have, for example, 10 keys each consisting of more than 4
key items.

When a file is created, the file size is specified as a number of
records. This number is rounded upward by EDM to a multiple of three
logical sectors and of the block length. The actual size of the file
created, in number of records, is returned in the File Parameter block.

E-files can be enlarged until the maximum number of file extents (64
per volume) and file sections (4) has been reached. However, it is not
possible to have more file extents on a volume than the number of
entries in the VTOC (see Chapter 3).

9.6.1 Creating an E-file with utility CRF

A detailed description of the TOSS utility Create File is found in the
TOSS Utilities Reference manual, module M8A.

Note that the questions to describe an index, from "duplicate key" to
"key item length", are repeated for every index, and the questions
describing a key item are repeated for every key item within one index.

This means that the length of the index descriptor block of an E-file
is not fixed but depends on the number of keys and key items.

9.6.2 Creating an E~File by EDM

An E-file is created by EDM by using the Open File instruction. The
Open mode must be Output Sequential or Output Direct. The information
defining the data file and the indexes must be provided on the File
Parameter Block (see chapter 4, File Parameters).

Data records can be written to the file by the application, and the
corresponding index entries are inserted in the index file in the
correct postion by EDM. The index file will contain 50% free space or
even more, at this stage.

M23A 9.6.1 June 1983

EDM EXTENDED DATA MANAGEMENT FDM

9.7 ENLARGING FILES

Automatic enlargement of files by EDM is possible for indexed and
standard files.

Files are automatically enlarged when during Write instructions the end
of the data file has been reached. A new extent is added to the file,
with a size as indicated by the Growth Factor on the File Parameter
Block, rounded upward to a file extent length which is a multiple of
three logical sectors and of the block size. The Write instructions are
executed without the message "End of File" being returned. New file
extents and new file sections may be added.

If an E-file is enlarged the new file extent is immediately formatted.
Standard files may be explicitly enlarged by using the Open mode
"Extend". When an S-file is enlarged the new file extend is not

preformatted. Formatting is done while new records are written to the
file and when the file is closed the remaining part is formatted.

Automatic Enlargement of I-Files

When the end of the index file is reached before the current Write
order has been completed, the I-file is automatically enlarged with the
number of sectors needed to execute the current Write order completely.
This is also done if a Growth Factor of zero is specified. The Write
request will be completed with bit 8§ set in the return code, and the
Supplementary Return Status indicating "Index file enlarged" (189).

Automatic Enlargement of Function Log File

Automatic enlargement of the funtion log file will take place as
described in section 9.5,13 if this is specified during Monitor
generation.

M23A 9.7.1 June 1983

EDM EXTENDED DATA MANAGEMENT EDM

9.8 FILE MAINTENANCE

For EDM files, maintenance in the form of reorganizing the index file
is needed less than for indexed files of S-type (in SDM). However, when
a data file has been updated by indexed direct instructions, or much
extended, the index file will contain free space within the blocks, and
consequently more index levels than is necessary. Index blocks may have
been split and hecome empty again.

To avoid overflow of the I-file, or long search times caused by many
empty blocks, it is recommended to reorganize the index file with the
TOSS utility Rewrganize EDM index File (REF). With this utility a load
factor of 95 or 75 can be specified, by the indication "static" or
"dynamic'" use.

It is recommended to specify "static" use if the file will not be
updated much, or if it is updated by Indexed Sequential operations.
"Dynamic" use is preferred for files on which many new records will
still be written by Indexed Direct instructions.

M23A 9.8.1 June 1983

R

EDM EXTENDED DATA MANAGEMENT EDM

9.9 RETURN INFORMATION

The return information gemerated by EDM in the Status Word, the Return
Status and the Supplementary Return Status is listed in chapter 10,
Return Information. The Status Word is obtained in CREDIT by the XSTAT
instruction, the Return Status and Supplementary Return Status by the
RSTAT instruction.

M23A 9.9.1 June 1983

Chapter 10

RETURN INFORMATION

10.1 INTRODUCTION

After every iInstruction, the result is reported by a value in the
Condition Register, the Status Word and the Return Status. If EDM is
used more detailed information is also returned in the Supplementary
Return Status.

In addition, the relative key of the record currently accessed is
returned in the Control Word. This can be obtained by the application
with the GETCW instruction.

The possible values of the condition Register, Status Word, Return
Status and Supplementary Return Status are listed in the following
sections.

M23A 10.1.1 June 1983

RETURN INFORMATION

10.2

10.2.1

CONDITION REGISTER

Condition Register

The Condition Register may have one of the following values:

0 =

1 =

The instruction was successfully completed (but see NOTE).

End of file.

The last used record of the file has been read (LRN reached) by
Read Sequential instructions, or the end of the file has been
reached by Write Sequential instructious and the Growth Factor is
2er0.

Error. The instruction was not successfully completed because of
sequence errors, illegal parameters or options, or permanent 1/0
errors.

End of device, or End of medium. This indicates that the
application tries to access disk space outside the physical area
reserved for the file, This occurs, for example, when the
relative record key supplied in an instruction is negative or
higher than the total number of records in the file.

The Status Word and in some cases the Return Status and Supplementary
Return Status may contain more information.

NOTE:

10.2.2

Under EDM it is possible that a fatal error has occurred but the
Condition Reigster is zero. Bit 8 is set in the Status Word, and
the Return Status and Supplementary Return Status may be read to
obtain more information.

Condition Register and Status Word

The relation between the values of the Condition Register and the bits
set in the Status Word is as follows:

Condition Status
Register Word
Value Bits
2 0 + any other bit, except bit 2 or 3
2 any of the bits 9 - 15
1 3or 0+3
3 20or 0+ 2
o] in all other cases
NOTE: If bit 8 is set in the Status Word to indicate that more
information can be obtained from the Return Status, this is not
necessarily indicated by the value of the condition register;
this may still have the value zero.
M23A 10.2.1 June 1983

RETURN INFORMATION

10.3 STATUS WORD

The Status Word is a value set by the TOSS Monitor, to give more
information about the result of an instruction. The Status Word is
obtained by the Extended Status Transfer instruction (XSTAT).

If bit 8 is set in the Status Word, indicating that a data management
rule has been violated, more information may be obtained by reading the
Return Status.

Bits set in the Status Word indicate:
No bits set : Successful completion

Bit O Request Error
This bit may be set in combination with bits 2, 3, 4, 5
and any of the bits 8 ~ 15.
An error is detected in the order option, in the
instruction or in the parameters in the File Parameter
block, or the file access could not be completed because
of hardware errors (indicated by bits 13 ~ 15).

Bit 1 Not used by data management.

Bit 2 End of Medium
The application tries to access space outside the
physical file space. Bit 0 is also set.
When this error occurs for an indexed file, file
consistency may be lost.

If during a Write instruction the end of the file is
reached and a Growth Factor has been specified, but it is
not possible to enlarge the file any more, this bit is
set and the value 3, Overflow, is set in the Return
Status.

It is not passible to enlarge the file any more, if there
is no free VIOC entry or no space left on the volume, and
no next volume is specified on the File Parameter block
where to continue the file, or if the maximum number of
file sections and file extents has been reached.

In SDM files can not be automatically enlarged into a new
file section (on another volume).

Bit 3 End of File
During a Read Sequential instruction the record indicated
by the LRN has been reached. This need not be the
physical end of the file, there may be "free" records
after it.

During a Write instruction for an indexed file the last
free record in the file has been written, and the Growth
Factor is zero or further enlargement is not possible.
Bit 0 is also set.

M23A 10.3.1 June 1983

RETURN INFORMATION

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

M23A

During a write instruction for a standard file the end of
the file has been reached and the file is enlarged by the
percentage defined in the Growth Factor. No other bits
are set.

During Read Indexed Sequential instructions the data
record associared with the last entry in the index has
been read.

No Data

A Read, Rewrite or Discard request has been issued for a
record with status '"'free".

Key not found

The requested record key is not present in the index file.

Invalid key

The prime key of a record to be written by a Write

Indexed Sequential instruction has a value not higher
than the prime key of the preceding record (only for EDM).

Duplicate Key

A duplicate key has been detected in an index where
duplicate keys are allowed.

During Read Indexed Sequential, a record is read with the
same symbolic key as the next record.

Under EDM only:

During Indexed Write or Rewrite functions, a record has
beer written and one of its keys, for which duplicates
are allowed, exists already in the index.

Retries performed

When this bit is set the driver has performed up to the
maximum number (disk driver dependent) of retries to
perform the I/0. If the I/0 was not successful, one of
the bits 13, 14 or 15 will be set. If the I/0 was
successful, one of the other bits may still be set to
indicate another error.

Data Management Rule violated

If this bit is set, more information can be found in the
Return Status and the Supplementary Return Status.

Bit 8 may be set together with any other bit (except bit
1).

Duplicate Key Error
The relative key specified for a Write Direct, points to
a record with status "used",

Under EDM only:

During an Indexed Write or Rewrite instruction a record
must be written to the file, and a key for which
duplicates are not allowed exists already in the index.

10.3.2 June 1983

RETURN INFORMATTIUN

Bit 10 New Volume loaded
This indicates tnat ¢ new volume has been loaded after
the file nad been opened. Close File is the only order
which will be accepted after this error message. All the
files must be closed and opened again before they can be
accessed. For more information on the New Volume Loaded
situation, see the description of the disk drivers in the
Device Drivers Reference manual, module M5A.

If not carefully handled by the application, the New
Volume Loaded situation mav result in corrupt files.

Bit 11 Automatic Rollback
In SDM, this indicates that the task has tried to access
a record already held exclusive for another task. All
records that the requesting task had under exclusive
access, are released, to prevent a deadlock situvation.

In EDM, a deadlock situation or another error has been
detected and automatic Rollback is performed for the
requesting task. This means that all records under
protected access for the task are released. If
transaction logging is done, the before images of the
records involved are written back to the files and the
currencies are reset te the values at the last Commit
(only for EDM).

Bit 12 Incorrect length

The requested length set by the application was not
correct. Tu most cases, this indicates that the requested
length is shorter than the record length.

Bit 13 Data error
Transmission unsuccessful because of parity check errors.

Bit 14 Throughput error
Transmission unsuccessful because the system is
overloaded or a seek error has occurred on the disk.

Bit 15 Not operable
Bit 15 is set in the case of a disk failure or when an
EDM segment has not been loaded.

If one of the status bits 2, 10, 13, 14 or 15 are set after accessing
an indexed file, file consistency may be lost (file corrupt), because
then it is possible that the data tile has been updated but not the
index file(s).

M23A 16.3.3 June 1983

RETURN INFORMATION

10.4 RETURN STATUS

The Return Status is a value set by Data Management to give more
information on the result of an instruction.

If bit 8 is set in the Status Word, the Read Status instruction (RSTAT)
may be used to obtain the Returu Status value in a binary data item.

The errors indicated by the Return Status will normally only occur when
an application is being tested. Most of them are not recoverable by the
application. If transaction logging is done (only for EDM) the
transaction will be rolled back., In all other cases these errors result
in corrupt files which have to be recovered from the back-up copies.

If any type of overflow is indicated by the Return Status, this must be
solved by generating a new Monitor and/or a reorganisation of the files
or of the disk volumes.

The Return Status may have binary values from O up to 10, each
indicating a number of possible error situations:

1 Memory Overflow

There is not enough work space to open the file.

~ 1In EDM and SDM, this may mean that there is no free File Work
Table (FWT) available.

=~ In SDM it may also mean that there is not enough space to read
the master index into memory.
The system must be reorganised and a new Monitor generated. An
estimate of the work space needed by EDM is found in Appendix A

2 Input—output error

When a new file is created this may indicate:
- 1Index file descriptor incorrect
- Error during formatting

When a file is opened, it may indicate:

= One or more file descriptors are not supplied. The file can not
be opened.

- File or index file corrupt.
The file status indicates “corrupt” and the file can not be
opened.,
The data file and the index file do not match., This may occur
when the files reside on different volumes and the volumes that
are on line do not match.

- Index block corrupt

The index file is corrupt, The files must be recovered from
back-up copies.

M23A 10.4.1 June 1983

RETURN INFORMATION

M23A

Prime key d sturbed
A Rewrite is issued and the value of the prime kev has been
changed.

Transaction log file disturbed.
The transaction log file can no louger be accessed.

Function log file full

Perform system close down, make backup of files if necessary,
and restart system.

Write error on function log file.

File disturbed during ROLLBACK

The file is now disturbed. Perform System close down and

recover the files from back-up copies.

File Management detected error

Overflow when a file is opened

File Control Area Table overflow

File identification table overflow

Too many files for logging

Protected record administration table full
No free Currency buffer (only for SDM)
Disk overflow

Transaction log file is full.

Free space exhausted on the I-file:

When this message is returned, the I-file is corrupt and can no
longer be accessed. A new I-file must be created by the TOSS
utility Reorganise EDM file, by copying the D-file into a new E-
file by the application. The utility Maintain EDM Indexed File
(MEF) may also be used to rebuild the indexes to a data file.

Wrong File Parameter

One or more file parameters specified when the file is opened
or created, are not correct.

Wrong file organization

Wrong record length

Wrong blocking factor

Illegal number of key items

Index descriptor too large

Illegal device type

The file organization has been specified as "Indexed", but the
index specification is not present iun the File Parameter block

10.4.2 June 1983

RETURN INFORMATION

M23A

Illegal number of indexes

Invalid key definition

Conditional index specified for prime key
Too many extents

Illegal instruction

The instruction issued by the application is not allowed for
the file or in this sequence, for example an indexed access is
requested for a non-indexed file, or a Write request for a file
opened for input only.

Transaction logging not allowed
Transaction logging is not allowed when version 3 of EDM is
used.

Tllegal statement sequence

J1llegal function option

Illegal Open mode

Illegal Sharability

Illegal Close option (CLOSE .DROP for a file not opened
Exclusive)

File is opened exclusive by another task

Tllegal type of logging specified

Illegal file code
Illegal index identification
Illegal file identification

Tllegal file number
Tllegal file code

Illegal ECB parameter

Incorrect File Parameter Block length (too small)

Incorrect key length specified

Only for the Posit instruction is it allowed to specify a
keylength shorter than the actual key length. Incorrect key
length is also returned if the key length specified is greater
than the actual keylength.

Illegal record address
The record buffer address specified by the application is not
valid.

Incorrect key value
Tllegal characters in symbolic key.

10.4.3 June 1983

RETURN INFORMATION

10

M23A

Name not found

File unknown
The file with the specified name is not found on the volume on-
line.

Volume unknown
The volume with the specified name is not on-line.

EDM error (only for EDM)

Too many index levels

The I-file has reached too many levels. If transaction logging
is done, the current transaction is rolled back. If not, the E-
file is now corrupt and can not be accessed any more. The files
must be recovered from back-up copies, and the I-file must be
reorganised by the TOSS utility Reorganise EDM File (REF).

Internal EDM error.

These will only occur during testing of EDM itself, for example
when a special version has been generated.

10.4.4 June 1983

RETURN INFORMATION

10.5 SUPPLEMENTARY RETURN STATUS (EDM only)

The Supplementary Return Status is a binary value giving more detailed
information about a situation already indicated by the value of the
Return Status. The value of the Supplementary Return Status is only
significant if EDM is used and the value of the Return Status is not
zero.

The Supplementary Return Status is returned together with the Return
Status after a Read Status (RSTAT) instruction.

Binary Code Meaning

000 No Supplementary Status information available

185 Incorrect EDM version.
This message is returned when, for example, logging is
requested while EDM version 3 is used, or a incorrect
non-standard version of EDM has been generated.

186 File identifier table overflow
The MAX NUMBER OF OPEN STANDARD FILES and/or the MAX
NUMBER OF OPEN INDEXED FILES specified during Monitor
generation was too small.

187 Memory overflow.
Generate a new Monitor, reserving no more space for
block buffers, currency buffers and protection table
than strictly necessary.

188 No free buffer available
The maximum number of user tasks or the number of index
buffers specified during Monitor generation was too

small.

189 The index part of an E~file has been enlarged

190 Function log file on disk has been enlarged.

191 Function log file almost full; all opened files must be
closed.

192 System Operator’s Panel error

193 Tape mark detected

194 Other error on function log tape
Run the recnvery (RCF), mount a new tape and restart the
system.

195 Function log tape not operable

196 Function log tape write protected

M23A 10.5.1 June 1983

RETURN INFORMATION

197

198

199

204

205

207

208

214

215

216

218

M23A

Begin or end of tape detected on function lug tape.
Close all the files, ask the operator to change the tape
and continue.

Not used

No-Wait option not allowed

Error detected by File Management

For example, no free FWT available, or too many file
extents or file sections. (lose ail the files, run the
recovery (RCF) and restart the system.

Hot used

Illegal close option

Conditional primary index not allowed

File corrupted during Rell-Back

It is recommended tou close all the files, run the
recovery (RCF), and restart the system.

Log file corrupt

1t is recommended to close all the files, if possible,
run the recovery (RCF), rename the functiou log file and
restart the system.

Duplicates not allowed for prime key

Duplicate file descriptor

File descriptor not present

Invalid key definition

Sequential write not allowed

Direct write not allowed

Incorrect key value

A Write Indexed Sequential request has been issued and
the prime key of the record to be written has a lower
value than that of the preceding record.

Not used

Prime key disturbed

Not used

Not used

Incorect key length

Record not free

10.5.2 June 1983

RETURN INFORMATION

225
226

227

233

234

236

M23A

Illegal internal index identifier
For example, a file has 2 indexes but internal index
identifier 3 has been specified for the instruction.

Illegal internal file identifier or file number

This is an internal EDM error. It is recommended to
close all the files, run the recovery and restart the
system. Describe the situation, take a memory dump and
dump the function log file aud transaction log file if
possible, and send a problem report,

Tllegal internal index identifier.

The internal index identifier has been set to a higher
value than the number of indexes that have been opened
for the file, or an internal index identifier has been
set for access on a standard file.

Illegal function option

Posit not allnwnd

Delete not allowed

Rewrite not allowed

Write not allowed

Read not allowed

Logging not allowed

Illegal number of indexes

Index block corrupt

It is recommended to close all files and run the
recovery (RCF).

File Descriptor area too small

The File Descriptor block length specified for an Open
instruction is too short.

Specified index not found in file descriptor

Incorrect file descriptor parameter

Illegal function code.

The function specified is not allowed, or the function
code is non-existent.

Protection error

Protection Table overflow. Generate a new Monitor with a
larger MAXIMUM NUMBER OF USERS, and /or use COMMIT
instructions to reduce the number of records held

protected per transaction.

Exclusive access error

10.5.3 June 1983

RETURN INFORMATION

237

239

240

243

264

245

248

249

251

252

253

254

M23A

Illegal logging parameter

Not used

Incorrect device type parameter

Illegal file organisation parameter

Error during move

This is an internal ELM error. It is recommended to run
the recovery (RCF) and restart the system. Describe the
situation, take a dump and send a problem repnrt.
Incorrect File Descriptor Block length

Illegal open mode

Illegal protection parameter

Tllegal open mode parameter

Function log file full

It is recommended to run the recovery (RCF) and restart
the system. This error can be avoided by defining a
larger function log file or specify automatic
enlargement of the function log file, during Monitor
generation.

I/0 error on function log

It is recommended to run the recovery, use another
volume for the function log tile and restart the sytem.
Index descriptor too large

Illegal number of key items

Illegal blocking factor

Incorrect record length

Incorrect file organisation. The file organisation
specified is illegal or incorrect.

File Control Area Table overflow
The maximum number of open standard or indexed files
specified during Monitor generation was too small.

File corrupt

The file can not be opened.
It is recommended to run the recovery (RCF).

10.5.4 June 1983

RETURN INFORMATION

255 Core space exhausted
EDM has not enough workspace to open the file. The
maximum number of open standard or indexed files
specified during Monitor gemeration was too small.
Generate a new Monitor, specifying a larger number for
one or more of the following SYSGEN parameters: MAX
NUMBER OF USER TASKS, NUMBER OF EXTRA INDEX BLOCK
BUFFERS, SIZE OF RECORD BUFFER AREA and SIZE OF BLOCK
BUFFER ARFA. The minimum size of the record and block
buffer area required is obtained by taking the sum of
the record lengths and the sum of the block lengths of
all files open simultaneously.

M23A 10.5.5 June 1983

Appendix A

SPACE REQUIREMENTS

A.l INTRODUCTION

The approximate amounts of memory space required for the different data
management packages and versions are listed in this appendix.

All values are given in bytes, or in K bytes if stated.

By "users" of a file {s meant the number of tasks that access the file
simultaneously.

To the space required for each package must be added the space required
by File Management (see A.4), which is the interface between the data
management package and the disk driver. This is also configuration
dependent.

M23 A.l.1 June 1983

SPACE REQUIREMENTS

A.2 EXTENDED DATA MANAGEMENT

A.2.1 Size of Object Code

- Version 1, Complete EDM package, memory resident

45 X bytes

~ Version 2: Complete EDM package, disk resident

Memory resident part
Additional segment frame per EDM task

- EDM subversion 3

AJ2.2 Size of Data Areas

Per task

Per opened S-file
+ one record buffer
+ one block buffer
+ per user

Per opened E-file
+ record buffer
+ block buffer
+ per user

Index buffer pool

Protection table

5K
1K

39 K

80+4x no of file code
(bytes)

160

record length
block length
20

570

record length
block length
90

520 x max number of users

(17 + max no of users
x 6) x 18

An average of 6 protected records per user and an overflow area for 17
records. Each protection entry consists of 18 bytes.

Work areas for transaction logging
Work areas for function logging

Fixed work fields
Additional if segmentation is used

Per EDM task

700 bytes
700

100
550

590

The number of EDM tasks is 2 x number of disk drivers in the system.

Minimum 2 EDM tasks.

The total size in memory must not exceed 64 K bytes.

M23 A.2.1

June 1983

SPACE REQUIREMENTS

A.3 STANDARD DATA MANAGEMENT

A.3.1 Size of Object Code

Only non-indexed S~files 4 X bytes
Additional for indexed S-files 3 K
Additional when Create, Delete, Fxtend

files option included 0.75 K bytes
A.3.2 Size of Data Areas

Per file code 4 bytes

Per file 100

Per protected record 6

Currency buffer per user Al
Additional per indexed file 4

Per block buffer block size + 10
Per DM task table 100

Master index pool user defined

M23 A.3.1 June 1983

SPACE REQUIREMENTS

A4 ABRIDGED DATA MANAGEMENT

A4 Size of Object Code

Object code

Additional when Create, Delete, Extend
files option included

A.4.2 Size of Data Area

Per file code

Per file
Per ADM task

M23 A4,

500 bytes

1200 bytes

4 bytes

ca, 80 bytes
ca. 100 bytes

June 1983

SPACE REQUIREMENTS

A5 FILE MANAGEMENT

A5, Size of Object Code

I/0 requests only 2 R bytes
Additional for Create, Delete, Extend 2 ¥
A.5.2 Size of Data Areas
Per disk file code 1 byte
Per file 50
Per additional file extent 12

M23 A.5.1

June 1983

